Science.gov

Sample records for acids subsequent fermentation

  1. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage.

    PubMed

    Wang, Yi-Chieh; Yu, Roch-Chui; Chou, Cheng-Chun

    2004-06-01

    To develop a probiotic dietary adjunct, soymilk fermented with various combinations of lactic acid bacteria (Streptococcus thermophilus and Lactobacillus acidophilus) and bifidobacteria (Bifidobacterium longum and Bifidobacterium infantis) was subjected to freeze-drying and spray-drying. Survival of the starter organisms during the drying process, subsequent rehydration at different temperatures and during a 4-month period of storage under different storage conditions was examined. After freeze-drying, lactic acid bacteria and bifidobacteria exhibited a survival percent of 46.2-75.1% and 43.2-51.9%, respectively, higher than that noted after spray-drying. Regardless of the drying condition, S. thermophilus showed a higher percentage of survival than L. acidophilus, while B. longum survived better than B. infantis. Further study with soymilk fermented with S. thermophilus and B. longum revealed that the freeze-dried and spray-dried fermented soymilk rehydrated at 35-50 degrees C and 20 degrees C, respectively, was optimum for the recovery of the starter organisms. Both S. thermophilus and B. longum survived better in the freeze-dried than the spray-dried fermented soymilk during storage. A higher percent of survival was also noted for both the starter organisms when the dried fermented soymilk was stored at 4 degrees C than 25 degrees C. Holding the dried fermented soymilk in the laminated pouch enabled S. thermophilus and B. longum to exhibit a higher percentage of survival than in the deoxidant- and desiccant-containing glass or polyester (PET) bottle. Among all the packaging materials and storage temperatures tested, starter organisms were most stable in the dried fermented soymilk held in laminated pouch and stored at 4 degrees C. Under this storage condition, S. thermophilus and B. longum showed a survival percentage of 51.1% and 68.8%, respectively, in the freeze-dried fermented soymilk after 4 months of storage. Meanwhile, S. thermophilus and B. infantis in

  2. Effect of fermentation and subsequent pasteurization processes on amino acids composition of orange juice.

    PubMed

    Cerrillo, I; Fernández-Pachón, M S; Collado-González, J; Escudero-López, B; Berná, G; Herrero-Martín, G; Martín, F; Ferreres, F; Gil-Izquierdo, A

    2015-06-01

    The fermentation of fruit produces significant changes in their nutritional composition. An orange beverage has been obtained from the controlled alcoholic fermentation and thermal pasteurization of orange juice. A study was performed to determine the influence of both processes on its amino acid profile. UHPLC-QqQ-MS/MS was used for the first time for analysis of orange juice samples. Out of 29 amino acids and derivatives identified, eight (ethanolamine, ornithine, phosphoethanolamine, α-amino-n-butyric acid, hydroxyproline, methylhistidine, citrulline, and cystathionine) have not previously been detected in orange juice. The amino acid profile of the orange juice was not modified by its processing, but total amino acid content of the juice (8194 mg/L) was significantly increased at 9 days of fermentation (13,324 mg/L). Although the pasteurization process produced partial amino acid degradation, the total amino acid content was higher in the final product (9265 mg/L) than in the original juice, enhancing its nutritional value.

  3. White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses.

    PubMed

    Stottmeister, U; Aurich, A; Wilde, H; Andersch, J; Schmidt, S; Sicker, D

    2005-12-01

    Functionalized compounds, which are difficult to produce by classical chemical synthesis, are of special interest as biotechnologically available targets. They represent useful building blocks for subsequent organic syntheses, wherein they can undergo stereoselective or regioselective reactions. "White Biotechnology" (as defined by the European Chemical Industry [ http://www.europabio.org/white_biotech.htm ], as part of a sustainable "Green Chemistry,") supports new applications of chemicals produced via biotechnology. Environmental aspects of this interdisciplinary combination include: Use of renewable feedstock Optimization of biotechnological processes by means of: New "high performance" microorganisms On-line measurement of substrates and products in bioreactors Alternative product isolation, resulting in higher yields, and lower energy demand In this overview we describe biotechnologically produced pyruvic, 2-oxopentaric and 2-oxohexaric acids as promising new building blocks for synthetic chemistry. In the first part, the microbial formation of 2-oxocarboxylic acids (2-OCAs) in general, and optimization of the fermentation steps required to form pyruvic acid, 2-oxoglutaric acid, and 2-oxo-D-gluconic acid are described, highlighting the fundamental advantages in comparison to chemical syntheses. In the second part, a set of chemical formula schemes demonstrate that 2-OCAs are applicable as building blocks in the chemical synthesis of, e.g., hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. Finally, some perspectives are discussed.

  4. Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol.

    PubMed

    Ewanick, Shannon M; Bura, Renata; Saddler, John N

    2007-11-01

    Utilization of ethanol produced from biomass has the potential to offset the use of gasoline and reduce CO(2) emissions. This could reduce the effects of global warming, one of which is the current outbreak of epidemic proportions of the mountain pine beetle (MPB) in British Columbia (BC), Canada. The result of this is increasing volumes of dead lodgepole pine with increasingly limited commercial uses. Bioconversion of lodgepole pine to ethanol using SO(2)-catalyzed steam explosion was investigated. The optimum pretreatment condition for this feedstock was determined to be 200 degrees C, 5 min, and 4% SO(2) (w/w). Simultaneous saccharification and fermentation (SSF) of this material provided an overall ethanol yield of 77% of the theoretical yield from raw material based on starting glucan, mannan, and galactan, which corresponds to 244 g ethanol/kg raw material within 30 h. Three conditions representing low (L), medium (M), and high (H) severity were also applied to healthy lodgepole pine. Although the M severity conditions of 200 degrees C, 5 min, and 4% SO(2) were sufficiently robust to pretreat healthy wood, the substrate produced from beetle-killed (BK) wood provided consistently higher ethanol yields after SSF than the other substrates tested. BK lodgepole pine appears to be an excellent candidate for efficient and productive bioconversion to ethanol.

  5. Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars.

    PubMed

    Nghiem, Nhuan P; Montanti, Justin; Kim, Tae Hyun

    2016-05-01

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15 % w/w NH4OH solution at a solid/liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied at two temperatures (40 and 60 °C) and four reaction times (6, 12, 24, and 48 h). Highest glucose yield of 91 % theoretical was obtained for the DDGS pretreated at 60 °C and 24 h. The solubilized hemicellulose in the liquid fraction was further hydrolyzed with dilute H2SO4 to generate fermentable monomeric sugars. The conditions of acid hydrolysis included 1 and 4 wt% acid, 60 and 120 °C, and 0.5 and 1 h. Highest yields of xylose and arabinose were obtained at 4 wt% acid, 120 °C, and 1 h. The fermentability of the hydrolysate obtained by enzymatic hydrolysis of the SAA-pretreated DDGS was demonstrated in ethanol fermentation by Saccharomyces cerevisiae. The fermentability of the hydrolysate obtained by consecutive enzymatic and dilute acid hydrolysis was demonstrated using a succinic acid-producing microorganism, strain Escherichia coli AFP184. Under the fermentation conditions, complete utilization of glucose and arabinose was observed, whereas only 47 % of xylose was used. The succinic acid yield was 0.60 g/g total sugar consumed.

  6. Fermentative l-lactic acid production from pretreated whole slurry of oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis.

    PubMed

    Eom, In-Yong; Oh, Young-Hoon; Park, Si Jae; Lee, Seung-Hwan; Yu, Ju-Hyun

    2015-06-01

    A simple and cost-effective biochemical conversion process consisting of hydrothermal treatment, enzymatic hydrolysis and fermentation of pretreated whole slurry (PWS) was developed for producing l-lactic acid (L-LA) from oil palm trunk (OPT). When OPT was hydrothermally treated at optimal condition capable of achieving maximum yield of hemicellulosic sugars after enzymatic hydrolysis, the enzymatic digestibility of the PWS afforded a yield of 81.4% of the theoretical glucose yield (TGY). However, glucose yield from washed pretreated solid (WPS) was only 43.5% of TGY. The use of two hydrolysates from PWS and WPS for fermentation by Lactobacillus paracasei engineered to selectively produce L-LA afforded yields of 89.5% and 45.8% of the theoretical LA yield (TLY), respectively. This study confirmed the inevitable extensive sugar loss during washing of pretreated slurry due to loss of soluble starch. Alternatively, the proposed design process is considered suitable for converting OPT to L-LA without such starch loss.

  7. Fumaric acid production by fermentation

    PubMed Central

    Roa Engel, Carol A.; Zijlmans, Tiemen W.; van Gulik, Walter M.; van der Wielen, Luuk A. M.

    2008-01-01

    The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations. PMID:18214471

  8. Amylolytic bacterial lactic acid fermentation - a review.

    PubMed

    Reddy, Gopal; Altaf, Md; Naveena, B J; Venkateshwar, M; Kumar, E Vijay

    2008-01-01

    Lactic acid, an enigmatic chemical has wide applications in food, pharmaceutical, leather, textile industries and as chemical feed stock. Novel applications in synthesis of biodegradable plastics have increased the demand for lactic acid. Microbial fermentations are preferred over chemical synthesis of lactic acid due to various factors. Refined sugars, though costly, are the choice substrates for lactic acid production using Lactobacillus sps. Complex natural starchy raw materials used for production of lactic acid involve pretreatment by gelatinization and liquefaction followed by enzymatic saccharification to glucose and subsequent conversion of glucose to lactic acid by Lactobacillus fermentation. Direct conversion of starchy biomass to lactic acid by bacteria possessing both amylolytic and lactic acid producing character will eliminate the two step process to make it economical. Very few amylolytic lactic acid bacteria with high potential to produce lactic acid at high substrate concentrations are reported till date. In this view, a search has been made for various amylolytic LAB involved in production of lactic acid and utilization of cheaply available renewable agricultural starchy biomass. Lactobacillus amylophilus GV6 is an efficient and widely studied amylolytic lactic acid producing bacteria capable of utilizing inexpensive carbon and nitrogen substrates with high lactic acid production efficiency. This is the first review on amylolytic bacterial lactic acid fermentations till date.

  9. Influence of Lactobacillus plantarum on yogurt fermentation properties and subsequent changes during postfermentation storage.

    PubMed

    Li, Changkun; Song, Jihong; Kwok, Lai-Yu; Wang, Jicheng; Dong, Yan; Yu, Haijing; Hou, Qiangchuan; Zhang, Heping; Chen, Yongfu

    2017-04-01

    This study aimed to evaluate the influence of 9 Lactobacillusplantarum with broad-spectrum antibacterial activity on fermented milk, including changes to the fermentation characteristics (pH, titration acidity, and viable counts), texture profile, relative content of volatile compounds, and sensory evaluation during 28-d storage at 4°C. First, L. plantarum IMAU80106, IMAU10216, and IMAU70095 were selected as candidates for further study because of their excellent coagulation and proteolytic activities. Subsequently, these L. plantarum strainswere supplemented to fermented milk produced by commercial yogurt starters (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus) and a panel of parameters reflecting product quality was subsequently monitored during 28 d of postfermentation storage. The pH value and titration acidity of the fermented milk mildly fluctuated, whereas the L. plantarum viable counts remained stable along the storage period. Fourteen key volatile compounds were detected in the fermented milk by gas chromatography-mass spectrometry, and some flavor compounds were uniquely present in the L. plantarum-supplemented fermented milk (including 2,3-pentanedione, acetaldehyde, and acetate). No significant difference was shown in the sensory evaluation scores between samples with or without L. plantarum supplementation, but a gradual decrease was observed over storage in all samples. However, when L. plantarum was added, apparent shifts were observed in the overall quality of the fermented milk based on principal component analysis and multivariate ANOVA, particularly in the texture (adhesiveness) and volatile flavor compound profiles (acetaldehyde). Compared with L. plantarum IMAU80106 and IMAU10216, both the texture and volatile flavor profiles of IMAU70095 were closest to those of the control without adding the adjunct bacteria, suggesting that IMAU70095 might be the most suitable strain for further application in functional dairy

  10. Pretreatment of dried distillers grains with solubles by soaking in aqueous ammonia and subsequent enzymatic/dilute acid hydrolysis to produce fermentable sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15% w/w NH4OH solution at a solid:liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied...

  11. In vitro ruminal fermentation of organic acids common in forage.

    PubMed Central

    Russell, J B; Van Soest, P J

    1984-01-01

    Mixed rumen bacteria from cows fed either timothy hay or a 60% concentrate were incubated with 7.5 mM citrate, trans-aconitate, malate, malonate, quinate, and shikimate. Citrate, trans-aconitate, and malate were fermented at faster rates than malonate, quinate, and shikimate. Acetate was the primary fermentation product for all six acids. Quinate and shikimate fermentations gave rist to butyrate, whereas malate and malonate produced significant amounts of propionic acid. High-pressure liquid chromatography of fermentation products from trans-aconitate incubations revealed a compound that was subsequently identified as tricarballylate. As much as 40% of the trans-aconitate acid was converted to tricarballylate, and tricarballylate was fermented slowly. The slow rate of tricarballylate metabolism by mixed rumen bacteria and its potential as a magnesium chelator suggest that tricarballylate formation could be an important factor in the hypomagnesemia that leads to grass tetany. PMID:6696413

  12. Extractive fermentation of acetic acid

    SciTech Connect

    Busche, R.M.

    1991-12-31

    In this technoeconomic evaluation of the manufacture of acetic acid by fermentation, the use of the bacterium: Acetobacter suboxydans from the old vinegar process was compared with expected performance of the newer Clostridium thermoaceticum bacterium. Both systems were projected to operate as immobilized cells in a continuous, fluidized bed bioreactor, using solvent extraction to recover the product. Acetobacter metabolizes ethanol aerobically to produce acid at 100 g/L in a low pH medium. This ensures that the product is in the form of a concentrated extractable free acid, rather than as an unextractable salt. Unfortunately, yields from glucose by way of the ethanol fermentation are poor, but near the biological limits of the organisms involved. Conversely, C. thermoaceticum is a thermophilic anaerobe that operates at high fermentation rates on glucose at neutral pH to produce acetate salts directly in substantially quantitative yields. However, it is severely inhibited by product, which restricts concentration to a dilute 20 g/L. An improved Acetobacter system operating with recycled cells at 50 g/L appears capable of producing acid at $0.38/lb, as compared with a $0.29/lb price for synthetic acid. However, this system has only a limited margin for process improvement. The present Clostridium system cannot compete, since the required selling price would be $0.42/lb. However, if the organism could be adapted to tolerate higher product concentrations at acid pH, selling price could be reduced to $0.22/lb, or about 80% of the price of synthetic acid.

  13. Lactic acid fermentation of crude sorghum extract

    SciTech Connect

    Samuel, W.A.; Lee, Y.Y.; Anthony, W.B.

    1980-04-01

    Crude extract from sweet sorghum supplemented with vetch juice was utilized as the carbohydrate source for fermentative production of lactic acid. Fermentation of media containing 7% (w/v) total sugar was completed in 60-80 hours by Lactobacillus plantarum, product yield averaging 85%. Maximum acid production rates were dependent on pH, initial substrate distribution, and concentration, the rates varying from 2 to 5 g/liter per hour. Under limited medium supplementation the lactic acid yield was lowered to 67%. The fermented ammoniated product contained over eight times as much equivalent crude protein (N x 6.25) as the original medium. Unstructured kinetic models were developed for cell growth, lactic acid formation, and substrate consumption in batch fermentation. With the provision of experimentally determined kinetic parameters, the proposed models accurately described the fermentation process. 15 references.

  14. Discovery and History of Amino Acid Fermentation.

    PubMed

    Hashimoto, Shin-Ichi

    2016-12-02

    There has been a strong demand in Japan and East Asia for L-glutamic acid as a seasoning since monosodium glutamate was found to present umami taste in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum in 1956 enabled abundant and low-cost production of the amino acid, creating a large market. The discovery also prompted researchers to develop fermentative production processes for other L-amino acids, such as lysine. Currently, the amino acid fermentation industry is so huge that more than 5 million metric tons of amino acids are manufactured annually all over the world, and this number continues to grow. Research on amino acid fermentation fostered the notion and skills of metabolic engineering which has been applied for the production of other compounds from renewable resources. The discovery of glutamate fermentation has had revolutionary impacts on both the industry and science. In this chapter, the history and development of glutamate fermentation, including the very early stage of fermentation of other amino acids, are reviewed.

  15. [Effects of fructose and maltose as aerobic carbon sources on subsequently anaerobic fermentation by Escherichia coli NZN111].

    PubMed

    Wu, Hui; Li, Zhimin; Ye, Qin

    2011-09-01

    To understand the effects of sugar whose uptake is dependent or independent on the phosphotransferase system (PTS), two-stage culture of Escherichia coli strain NZN111 that was constructed by disruption of IdhA and pflB encoding the fermentative lactate dehydrogenase (LDH) and pyruvate: formate lyase (PFL) of E. coli W1485, was carried out for organic acids production. When NZN111 was aerobically cultured on fructose (PTS dependent) or maltose (PTS independent), it fermented glucose with succinic acid and pyruvic acid as the major products in subsequent anaerobic culture. The experiments were also performed in a 5-L fermentor. The yields of succinic acid by the fructose-and maltose-grown NZN111 were 0.84 and 0.75 mol/mol, whereas the yields of pyruvic acid were 0.65 and 0.83 mol/mol, respectively. The final ratio of succinic acid to pyruvic acid in the anaerobic stage reached 1.73:1 and 1.21:1, respectively. The different behaviors in anaerobic fermentation by the fructose-, maltose- and glucose-grown NZN111 were likely caused by the regulation of catabolite repression in the aerobic culture stage.

  16. Recovery of carboxylic acids produced by fermentation.

    PubMed

    López-Garzón, Camilo S; Straathof, Adrie J J

    2014-01-01

    Carboxylic acids such as citric, lactic, succinic and itaconic acids are useful products and are obtained on large scale by fermentation. This review describes the options for recovering these and other fermentative carboxylic acids. After cell removal, often a primary recovery step is performed, using liquid-liquid extraction, adsorption, precipitation or conventional electrodialysis. If the carboxylate is formed rather than the carboxylic acid, the recovery process involves a step for removing the cation of the formed carboxylate. Then, bipolar electrodialysis and thermal methods for salt splitting can prevent that waste inorganic salts are co-produced. Final carboxylic acid purification requires either distillation or crystallization, usually involving evaporation of water. Process steps can often be combined synergistically. In-situ removal of carboxylic acid by extraction during fermentation is the most popular approach. Recovery of the extractant can easily lead to waste inorganic salt formation, which counteracts the advantage of the in-situ removal. For industrial production, various recovery principles and configurations are used, because the fermentation conditions and physical properties of specific carboxylic acids differ.

  17. Citric acid fermentation in whey permeate

    SciTech Connect

    Somkuti, G.A.; Bencivengo, M.M.

    1981-01-01

    Acid-whey permeate was used for the production of citric acid by Aspergillus niger. The fermentation proceeded in 2 phases: a growth phase when citric acid was not accumulated, followed by an acidogenic phase when citric acid accumulated and mold growth was greatly reduced. Optimal production of citric acid occurred after 8-12 days at 30 degrees. Maximum citric acid yields were influenced by the initial lactose concentration and reached 10 g/l when the lactose concentration in the acid-whey permeate was adjusted to 15%. MeOH at 2-4% markedly increased the production of citric acid. Fermentation of acid-whey permeate by a mutant strain (A. niger 599-3) was more reproducible, and yields of citric acid were substantially improved. The amount of citric acid produced by A. niger 599-3 was 18-23 g/l after 12-14 days, depending on the lactose content of the whey permeate. Throughout the fermentation, galactose was apparently co-metabolized with glucose.

  18. Importance of lactic acid bacteria in Asian fermented foods

    PubMed Central

    2011-01-01

    Lactic acid bacteria play important roles in various fermented foods in Asia. Besides being the main component in kimchi and other fermented foods, they are used to preserve edible food materials through fermentation of other raw-materials such as rice wine/beer, rice cakes, and fish by producing organic acids to control putrefactive microorganisms and pathogens. These bacteria also provide a selective environment favoring fermentative microorganisms and produce desirable flavors in various fermented foods. This paper discusses the role of lactic acid bacteria in various non-dairy fermented food products in Asia and their nutritional and physiological functions in the Asian diet. PMID:21995342

  19. The effect of lactic acid bacteria on cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  20. Extraction chemistry of fermentation product carboxylic acid

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. 123 references.

  1. Extraction chemistry of fermentation product carboxylic acids

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathways and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase.

  2. The Use of Fermented Soybean Meals during Early Phase Affects Subsequent Growth and Physiological Response in Broiler Chicks.

    PubMed

    Kim, S K; Kim, T H; Lee, S K; Chang, K H; Cho, S J; Lee, K W; An, B K

    2016-09-01

    .001) lactic acid bacteria, but lowered Coli-form bacteria in cecal contents compared with those fed the control diet. The number of Bacillus spp. was higher (p<0.001) in all groups except for LF-SBM 1 compared with control diet-fed chicks. At 7 d, jejunal villi were significantly lengthened (p<0.001) in chicks fed the fermented SBMs vs control diet. Collectively, the results indicate that feeding of fermented SBMs during early phase are beneficial to the subsequent growth performance in broiler chicks. BF-SBM and YBF-SBM showed superior overall growth performance as compared with unfermented SBM and SPC.

  3. The Use of Fermented Soybean Meals during Early Phase Affects Subsequent Growth and Physiological Response in Broiler Chicks

    PubMed Central

    Kim, S. K.; Kim, T. H.; Lee, S. K.; Chang, K. H.; Cho, S. J.; Lee, K. W.; An, B. K.

    2016-01-01

    .001) lactic acid bacteria, but lowered Coli-form bacteria in cecal contents compared with those fed the control diet. The number of Bacillus spp. was higher (p<0.001) in all groups except for LF-SBM 1 compared with control diet-fed chicks. At 7 d, jejunal villi were significantly lengthened (p<0.001) in chicks fed the fermented SBMs vs control diet. Collectively, the results indicate that feeding of fermented SBMs during early phase are beneficial to the subsequent growth performance in broiler chicks. BF-SBM and YBF-SBM showed superior overall growth performance as compared with unfermented SBM and SPC. PMID:26954207

  4. [The research progress of succinic acid fermentation strains].

    PubMed

    Wang, Qing-Zhao; Zhao, Xue-Ming

    2007-07-01

    The potential of succinic acid as an important chemical intermediates had been realized and fermentation is one of the best ways to make it possible in economical aspect. Fermentation organism is the key part of the fermentation method. The updated research developments of fermentation organisms and the fermentation characteristics and problems of them were reviewed and analyzed in this paper. Finally,the development future of fermenation organism was forecasted.

  5. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  6. Fermentation and recovery process for lactic acid production

    DOEpatents

    Tsai, S.P.; Moon, S.H.; Coleman, R.

    1995-11-07

    A method is described for converting starch to glucose and fermenting glucose to lactic acid, including simultaneous saccharification and fermentation through use of a novel consortium of bacterial strains. 2 figs.

  7. Acidogenic fermentation of lignocellulose - acid yield and conversion of components

    SciTech Connect

    Datta, R.

    1981-01-01

    Corn stover was fermented with a mixed culture of anaerobic microorganisms to form simple (C2-C6), volatile organic acids. Alkaline pretreatment allowed a greater fermentation of the pectin and hemicellulose than of the cellulose and lignin, but all components were utilized. The percent fermentation of the soluble fraction, hemicellulose, cellulose, and lignin was 79.6, 74.1, 36.9, and 20.9%, respively. The yield of acid (as acetate) with respect to material fermented was 84%.

  8. Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants.

    PubMed

    Longo, S; Katsou, E; Malamis, S; Frison, N; Renzi, D; Fatone, F

    2015-01-01

    This work investigated the pilot scale production of short chain fatty acids (SCFAs) from sewage sludge through alkaline fermentation and the subsequent membrane filtration. Furthermore, the impact of the fermentation liquid on nutrient bioremoval was examined. The addition of wollastonite in the fermenter to buffer the pH affected the composition of the carbon source produced during fermentation, resulting in higher COD/NH4-N and COD/PO4-P ratios in the liquid phase and higher content of propionic acid. The addition of wollastonite decreased the capillary suction time (CST) and the time to filter (TTF), resulting in favorable dewatering characteristics. The sludge dewatering characteristics and the separation process were adversely affected from the use of caustic soda. When wollastonite was added, the permeate flux increased by 32%, compared to the use of caustic soda. When fermentation liquid was added as carbon source for nutrient removal, higher removal rates were obtained compared to the use of acetic acid.

  9. Simultaneous detoxification, saccharification, and ethanol fermentation of weak-acid hydrolyzates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic feedstocks can be prepared for ethanol fermentation by pre-treatment with a dilute mineral acid catalyst that hydrolyzes the hemicellulose and opens up the plant cell wall fibers for subsequent enzymatic saccharification. The acid catalyzed reaction scheme is sequential whereby rele...

  10. Hydrogen production by fermentation using acetic acid and lactic acid.

    PubMed

    Matsumoto, Mitsufumi; Nishimura, Yasuhiko

    2007-03-01

    Microbial hydrogen production from sho-chu post-distillation slurry solution (slurry solution) containing large amounts of organic acids was investigated. The highest hydrogen producer, Clostridium diolis JPCC H-3, was isolated from natural environment and produced hydrogen at 6.03+/-0.15 ml from 5 ml slurry solution in 30 h. Interestingly, the concentration of acetic acid and lactic acid in the slurry solution decreased during hydrogen production. The substrates for hydrogen production by C. diolis JPCC H-3, in particular organic acids, were investigated in an artificial medium. No hydrogen was produced from acetic acid, propionic acid, succinic acid, or citric acid on their own. Hydrogen and butyric acid were produced from a mixture of acetic acid and lactic acid, showing that C. diolis. JPCC H-3 could produce hydrogen from acetic acid and lactic acid. Furthermore, calculation of the Gibbs free energy strongly suggests that this reaction would proceed. In this paper, we describe for the first time microbial hydrogen production from acetic acid and lactic acid by fermentation.

  11. Development of alcoholic and malolactic fermentations in highly acidic and phenolic apple musts.

    PubMed

    del Campo, Gloria; Berregi, Iñaki; Santos, José Ignacio; Dueñas, Maite; Irastorza, Ana

    2008-05-01

    This work reports the influence of the high acidity and high phenolic content in apple musts on the development of alcoholic and malolactic fermentations and on the final chemical and microbiological composition of the ciders. Four different musts were obtained by pressing several varieties and proportions of cider apples from the Basque Country (Northern Spain). Specially acidic and phenolic varieties were selected. Three musts were obtained in experimental stations and the fourth one, in a cider factory following usual procedures. The evolution of these musts was monitored during five months by measuring 18 parameters throughout eight samplings. In the most acidic of the three experimental musts, yeasts were added to complete the alcoholic fermentation. In the rest of the musts, alcoholic and malolactic fermentations took place spontaneously due to natural microflora and no chemical was added to control these processes. Malolactic fermentation (MLF) finished before alcoholic fermentation in the three tanks obtained in experimental stations, even in the most acidic and phenolic one (pH 3.18, 1.78 g tannic acid/l). After four months, these ciders maintained low levels of lactic acid bacteria (10(4)CFU/ml) and low content of acetic acid (<0.60 g/l). Both fermentations began simultaneously in the must obtained in the cider factory, but MLF finished 10 days after alcoholic fermentation. Subsequently, this must maintained a high population of lactic acid bacteria (>10(6)CFU/ml), causing a higher production of acetic acid (>1.00 g/l) than in the other ciders. These results show the possible advantages of MLF finishing before alcoholic fermentation.

  12. Simultaneous saccharification and fermentation (SSF) of jackfruit seed powder (JFSP) to l-lactic acid and to polylactide polymer.

    PubMed

    Nair, Nimisha Rajendran; Nampoothiri, K Madhavan; Banarjee, Rintu; Reddy, Gopal

    2016-08-01

    A newly isolated amylolytic lactic acid bacterium, Streptococcus equinus, was used for the production of l-lactic acid from jackfruit seed powder (JFSP) by simultaneous saccharification and fermentation (SSF). After optimization of shake flask fermentation by a response surface box-behnken design, the maximum lactate titer was 109g/L from 200g/L jackfruit seed powder. Amberlite IRA67, a weak base resin, was used to recover pure lactic acid from fermented broth and subsequently used for the synthesis of polylactic acid by direct condensation polymerization method with a yield of 62%.

  13. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application.

  14. Lactic acid fermentation in cell-recycle membrane bioreactor.

    PubMed

    Choudhury, B; Swaminathan, T

    2006-02-01

    Traditional lactic acid fermentation suffers from low productivity and low product purity. Cell-recycle fermentation has become one of the methods to obtain high cell density, which results in higher productivity. Lactic acid fermentation was investigated in a cell-recycle membrane bioreactor at higher substrate concentrations of 100 and 120 g/dm3. A maximum cell density of 145 g/dm3 and a maximum productivity of 34 g/(dm3.h) were achieved in cell-recycle fermentation. In spite of complete consumption of substrate, there was a continuous increase in cell density in cell-recycle fermentation. Control of cell density in cell-recycle fermentation was attempted by cell bleeding and reduction in yeast extract concentration.

  15. Utilization of renewables for lactic acid fermentation.

    PubMed

    Venus, Joachim

    2006-12-01

    Originally, lactic acid was produced from pure substrates like glucose. Increasingly, however, agricultural feedstocks such as grains and green biomass are also being used as raw materials for the biotechnological production of lactic acid. A high-productivity lactic acid bacterium strain was selected, process parameters were optimized for the batch fermentation on a laboratory scale, and its performance at cultivation on a barley hydrolysate medium together with different supplements was examined. The present results for the cultivation of the Lactobacillus paracasei on complex nutrient broth are in the same range as those for another strain of the same species with pure glucose, de Man, Rogosa and Sharpe medium (MRS) minerals, peptone and yeast extract. Under these conditions, this strain was able to accumulate more than 100 g lactate/L in the MRS medium. Medium optimization experiments showed that the main part of the nitrogen-containing nutrients in the medium (peptone, yeast extract) can be replaced by protein extracts from green biomass (lucerne green juice). The green juice after pressing fresh biomass contains a series of nitrogen-containing compounds and inorganic salts, which are essential for cell growth. Thus, on laboratory scale, we have demonstrated that it is possible to substitute synthetic nutrients by renewable resources like cereals and green biomass without any loss of productivity. This high biomass concentration together with the number of living cells could increase the productivity to higher levels compared to the well-adapted synthetic nutrients of MRS.

  16. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods.

    PubMed

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.

  17. Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...

  18. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    SciTech Connect

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  19. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented.

  20. Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol.

    PubMed

    Shrestha, Prachand; Rasmussen, Mary; Khanal, Samir K; Pometto, Anthony L; van Leeuwen, J Hans

    2008-06-11

    The goal of this study was to develop a fungal process for ethanol production from corn fiber. Laboratory-scale solid-substrate fermentation was performed using the white-rot fungus Phanerochaete chrysosporium in 1 L polypropylene bottles as reactors via incubation at 37 degrees C for up to 3 days. Extracellular enzymes produced in situ by P. chrysosporium degraded lignin and enhanced saccharification of polysaccharides in corn fiber. The percentage biomass weight loss and Klason lignin reduction were 34 and 41%, respectively. Anaerobic incubation at 37 degrees C following 2 day incubation reduced the fungal sugar consumption and enhanced the in situ cellulolytic enzyme activities. Two days of aerobic solid-substrate fermentation of corn fiber with P. chrysosporium, followed by anaerobic static submerged-culture fermentation resulted in 1.7 g of ethanol/100 g of corn fiber in 6 days, whereas yeast ( Saccharomyces cerevisiae) cocultured with P. chrysosporium demonstrated enhanced ethanol production of 3 g of ethanol/100 g of corn fiber. Specific enzyme activity assays suggested starch and hemi/cellulose contribution of fermentable sugar.

  1. Chemical characterisation and application of acid whey in fermented milk.

    PubMed

    Lievore, Paolla; Simões, Deise R S; Silva, Karolline M; Drunkler, Northon L; Barana, Ana C; Nogueira, Alessandro; Demiate, Ivo M

    2015-04-01

    Acid whey is a by-product from cheese processing that can be employed in beverage formulations due to its high nutritional quality. The objective of the present work was to study the physicochemical characterisation of acid whey from Petit Suisse-type cheese production and use this by-product in the formulation of fermented milk, substituting water. In addition, a reduction in the fermentation period was tested. Both the final product and the acid whey were analysed considering physicochemical determinations, and the fermented milk was evaluated by means of sensory analysis, including multiple comparison and acceptance tests, as well as purchase intention. The results of the physicochemical analyses showed that whey which was produced during both winter and summer presented higher values of protein (1.22 and 0.97 %, w/v, respectively), but there were no differences in lactose content. During the autumn, the highest solid extract was found in whey (6.00 %, w/v), with larger amounts of lactose (4.73 %, w/v) and ash (0.83 %, w/v). When analysing the fermented milk produced with added acid whey, the acceptance test resulted in 90 % of acceptance; the purchase intention showed that 54 % of the consumers would 'certainly buy' and 38 % would 'probably buy' the product. Using acid whey in a fermented milk formulation was technically viable, allowing by-product value aggregation, avoiding discharge, lowering water consumption and shortening the fermentation period.

  2. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol.

    SciTech Connect

    Donnelly, M. I.; Millard, C. S.; Clark, D. P.; Chen, M. J.; Rathke, J. W.; Southern Illinois Univ.

    1998-04-01

    Escherichia coli strain NZN111, which is unable to grow fermentatively because of insertional inactivation of the genes encoding pyruvate: formate lyase and the fermentative lactate dehydrogenase, gave rise spontaneously to a chromosomal mutation that restored its ability to ferment glucose. The mutant strain, named AFP111, fermented glucose more slowly than did its wild-type ancestor, strain W1485, and generated a very different spectrum of products. AFP111 produced succinic acid, acetic acid, and ethanol in proportions of approx 2:1:1. Calculations of carbon and electron balances accounted fully for the observed products; 1 mol of glucose was converted to 1 mol of succinic acid and 0.5 mol each of acetic acid and ethanol. The data support the emergence in E.coli of a novel succinic acid:acetic acid:ethanol fermentation pathway.

  3. Towards large scale fermentative production of succinic acid.

    PubMed

    Jansen, Mickel L A; van Gulik, Walter M

    2014-12-01

    Fermentative production of succinic acid (SA) from renewable carbohydrate feed-stocks can have the economic and sustainability potential to replace petroleum-based production in the future, not only for existing markets, but also new larger volume markets. To accomplish this, extensive efforts have been undertaken in the field of strain construction and metabolic engineering to optimize SA production in the last decade. However, relatively little effort has been put into fermentation process development. The choice for a specific host organism determines to a large extent the process configuration, which in turn influences the environmental impact of the overall process. In the last five years, considerable progress has been achieved towards commercialization of fermentative production of SA. Several companies have demonstrated their confidence about the economic feasibility of fermentative SA production by transferring their processes from pilot to production scale.

  4. Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes.

    PubMed

    Chen, Kequan; Zhang, Han; Miao, Yelian; Wei, Ping; Chen, Jieyu

    2011-04-07

    Rapeseed meal was evaluated for succinic acid production by simultaneous saccharification and fermentation using Actinobacillus succinogenes ATCC 55618. Diluted sulfuric acid pretreatment and subsequent hydrolysis with pectinase was used to release sugars from rapeseed meal. The effects of culture pH, pectinase loading and yeast extract concentration on succinic acid production were investigated. When simultaneous saccharification and fermentation of diluted acid pretreated rapeseed meal with a dry matter content of 12.5% (w/v) was performed at pH 6.4 and a pectinase loading of 2% (w/w, on dry matter) without supplementation of yeast extract, a succinic acid concentration of 15.5 g/L was obtained at a yield of 12.4 g/100g dry matter. Fed-batch simultaneous saccharification and fermentation was carried out with supplementation of concentrated pretreated rapeseed meal and pectinase at 18 and 28 h to yield a final dry matter content of 20.5% and pectinase loading of 2%, with the succinic acid concentration enhanced to 23.4 g/L at a yield of 11.5 g/100g dry matter and a productivity of 0.33 g/(Lh). This study suggests that rapeseed meal may be an alternative substrate for the efficient production of succinic acid by A. succinogenes without requiring nitrogen source supplementation.

  5. Whole grains, legumes, and the subsequent meal effect: implications for blood glucose control and the role of fermentation.

    PubMed

    Higgins, Janine A

    2012-01-01

    Whole grains and legumes are known to reduce postprandial glycemia and, in some instances, insulinemia. However, the subsequent meal effect of ingesting whole grains and legumes is less well known. That is, inclusion of whole grains or legumes at breakfast decreases postprandial glycemia at lunch and/or dinner on the same day whereas consumption of a whole grain or lentil dinner reduces glycemia at breakfast the following morning. This effect is lost upon milling, processing, and cooking at high temperatures. The subsequent meal effect has important implications for the control of day-long blood glucose, and may be partly responsible for the reduction in diabetes incidence associated with increased whole grain and legume intake. This paper describes the subsequent meal effect and explores the role of acute glycemia, presence of resistant starch, and fermentation of indigestible carbohydrate as the mechanisms responsible for this effect.

  6. Cooperative growth of Geobacter sulfurreducens and Clostridium pasteurianum with subsequent metabolic shift in glycerol fermentation

    PubMed Central

    Moscoviz, Roman; de Fouchécour, Florence; Santa-Catalina, Gaëlle; Bernet, Nicolas; Trably, Eric

    2017-01-01

    Interspecies electron transfer is a common way to couple metabolic energy balances between different species in mixed culture consortia. Direct interspecies electron transfer (DIET) mechanism has been recently characterised with Geobacter species which couple the electron balance with other species through physical contacts. Using this mechanism could be an efficient and cost-effective way to directly control redox balances in co-culture fermentation. The present study deals with a co-culture of Geobacter sulfurreducens and Clostridium pasteurianum during glycerol fermentation. As a result, it was shown that Geobacter sulfurreducens was able to grow using Clostridium pasteurianum as sole electron acceptor. C. pasteurianum metabolic pattern was significantly altered towards improved 1,3-propanediol and butyrate production (+37% and +38% resp.) at the expense of butanol and ethanol production (−16% and −20% resp.). This metabolic shift was clearly induced by a small electron uptake that represented less than 0.6% of the electrons consumed by C. pasteurianum. A non-linear relationship was found between G. sulfurreducens growth (i.e the electrons transferred between the two species) and the changes in C. pasteurianum metabolite distribution. This study opens up new possibilities for controlling and increasing specificity in mixed culture fermentation. PMID:28287150

  7. Wheat flour based propionic acid fermentation: an economic approach.

    PubMed

    Kagliwal, Lalit D; Survase, Shrikant A; Singhal, Rekha S; Granström, Tom

    2013-02-01

    A process for the fermentative production of propionic acid from whole wheat flour using starch and gluten as nutrients is presented. Hydrolysis of wheat flour starch using amylases was optimized. A batch fermentation of hydrolysate supplemented with various nitrogen sources using Propionibacterium acidipropionici NRRL B 3569 was performed. The maximum production of 48.61, 9.40, and 11.06 g of propionic acid, acetic acid and succinic acid, respectively, was found with wheat flour hydrolysate equivalent to 90 g/l glucose and supplemented with 15 g/l yeast extract. Further, replacement of yeast extract with wheat gluten hydrolysate showed utilization of gluten hydrolysate without compromising the yields and also improving the economics of the process. The process so developed could be useful for production of animal feed from whole wheat with in situ production of preservatives, and also suggest utilization of sprouted or germinated wheat for the production of organic acids.

  8. Separation of gamma-aminobutyric acid from fermented broth.

    PubMed

    Li, Haixing; Qiu, Ting; Chen, Yan; Cao, Yusheng

    2011-12-01

    Gamma-aminobutyric acid (GABA) is a non-proteinaceous amino acid that is widely distributed in nature and acts as the major inhibitory neurotransmitter in the mammalian brain. This study aimed to find a separation method for getting high-purity GABA from a fermented broth. Firstly, a fermented broth with a high content of GABA (reaching 997 ± 51 mM) was prepared by fermentation with Lactobacillus brevis NCL912. GABA purification was conducted by successive centrifugation, filtration, decoloration, desalination, ion-exchange chromatography (IEC), and crystallization. Inorganic salt (Na₂SO₄) was removed from the both by desalination with 70% ethanol solution. A ninhydrin test strip was designed for the real-time detection of GABA during IEC. The recovery rate for the whole purification process was about 50%. The purified product was characterized by thin-layer chromatography and HPLC, and its purity reached 98.66 ± 2.36%.

  9. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    PubMed

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.

  10. Fermentation of acid hydrolysates from olive-tree pruning debris by Pachysolen tannophilus.

    PubMed

    Moya, Alberto J; Bravo, Vicente; Mateo, Soledad; Sánchez, Sebastián

    2008-10-01

    The influence of the type and concentration of acid in the hydrolysis process and its effect on the subsequent fermentation by Pachysolen tannophilus (ATCC 32691) to produce ethanol and xylitol was studied. The hydrolysis experiments were performed using hydrochloric, sulphuric and trifluoroacetic acids in concentrations ranging from 0.1 to 1.0 N, a temperature of 90 degrees C, and a time of 240 min. The fermentation experiments were conducted on a laboratory scale in a batch-culture reactor at pH 4.5 and 30 degrees C. The hydrolysis with the highest acid concentration produced the complete solubilization of hemicellulose to monosaccharides. The highest values for the specific rate of ethanol production were registered in cultures hydrolyzed with trifluoroacetic acid, and values were found to decrease as the acid concentration increased. The highest values of overall ethanol yields (Y(E/s)G = 0.37 kg kg(-1)) were also found in the fermentation of the hydrolysates of trifluoroacetic acid.

  11. Characterization and fermentation of dilute-acid hydrolyzates from wood

    SciTech Connect

    Taherzadeh, M.J.; Niklasson, C.; Liden, G.; Eklund, R.; Gustafsson, L.

    1997-11-01

    Dilute-acid hydrolyzates from alder, aspen, birch, willow, pine, and spruce were fermented without prior detoxification. The hydrolyzates were prepared by a one-stage hydrolysis process using sulfuric acid (5 g/L) at temperatures between 188 and 234 C and with a holding time of 7 min. The fermentations were carried out anaerobically by Saccharomyces cerevisiae (10 g of d.w./L) at a temperature of 30 C and an initial pH of 5.5. The fermentabilities were quite different for the different wood species, and only hydrolyzates of spruce produced at 188 and 198 C, hydrolyzates of pine produced at 188 C, and hydrolyzates of willow produced at 198 C could be completely fermented within 24 h. From the sum of the concentrations of the known inhibitors furfural and 5-(hydroxymethyl)furfural (HMF), a good prediction of the maximum ethanol production rate could be obtained, regardless of the origin of the hydrolyzate. Furthermore, in hydrolyzates that fermented well, furfural and HMF were found to be taken up and converted by the yeast, concomitant with the uptake of glucose.

  12. Lactic acid bacteria and yeasts involved in the fermentation ofamabere amaruranu, a Kenyan fermented milk

    PubMed Central

    Nyambane, Bitutu; Thari, William M; Wangoh, John; Njage, Patrick M K

    2014-01-01

    Indigenous fermented milk products contain microbiota composed of technologically important species and strains which are gradually getting lost with new technologies. We investigated the microbial diversity inamabere amaruranu, a traditionally fermented milk product from Kenya. Sixteen samples of the product from different containers were obtained. One hundred and twenty isolates of lactic acid bacteria (LAB) and 67 strains of yeasts were identified using API 50 CH and API 20 C AUX identification kits, respectively. The average pH of all the traditional fermented samples was 4.00 ± 0.93. Lactobacilli, yeasts, and molds as well asEnterobacteriaceae counts from the plastic containers were significantly higher (P < 0.05) than those from gourd.Enterobacteriaceae were below 1.00 ± 1.11 log10 cfu/mL in products from the gourds and 2.17 ± 1.92 log10 cfu/mL from the plastic containers. The LAB species were identified asStreptococcus thermophilus (25%),Lactobacillus plantarum (20%), andLeuconostoc mesenteroides (20%). The predominant yeasts wereSaccharomyces cerevisiae (25%),Trichosporum mucoides (15%),Candida famata (10%), andCandida albicans (10%). The type of vessel used for fermentation had no significant influence on the type of isolated and identified species. The diverse mixture of LAB and yeasts microflora forms a potential consortium for further product innovation inamabere amaruranu and other fermented milk products. PMID:25493187

  13. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Iwanaga, Tomohiro; Sho, Tomohiro; Kida, Kenji

    2011-12-01

    An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo.

  14. Impact of available nitrogen and sugar concentration in musts on alcoholic fermentation and subsequent wine spoilage by Brettanomyces bruxellensis.

    PubMed

    Childs, Bradford C; Bohlscheid, Jeffri C; Edwards, Charles G

    2015-04-01

    The level of yeast assimilable nitrogen (YAN) supplementation required for Saccharomyces cerevisiae to complete fermentation of high sugar musts in addition to the impact of non-metabolized nitrogen on post-alcoholic spoilage by Brettanomyces bruxellensis was studied. A 2 × 3 factorial design was employed using a synthetic grape juice medium with YAN (150 or 250 mg N/L) and equal proportions of glucose/fructose (230, 250, or 270 g/L) as variables. S. cerevisiae ECA5 (low nitrogen requirement) or Uvaferm 228 (high nitrogen requirement) were inoculated at 10(5) cfu/mL while B. bruxellensis E1 or B2 were added once alcoholic fermentation ceased. Regardless of YAN concentration, musts that contained 230 or 250 g/L glucose/fructose at either nitrogen level attained dryness (mean = 0.32 g/L fructose) while those containing 270 g/L generally did not (mean = 2.5 g/L fructose). Higher concentrations of YAN present in musts yielded wines with higher amounts of α-amino acids and ammonium but very little (≤ 6 mg N/L) was needed by B. bruxellensis to attain populations ≥ 10(7) cfu/mL. While adding nitrogen to high sugar musts does not necessarily ensure completion of alcoholic fermentation, residual YAN did not affect B. bruxellensis growth as much as ethanol concentration.

  15. Submerged citric acid fermentation on orange peel autohydrolysate.

    PubMed

    Rivas, Beatriz; Torrado, Ana; Torre, Paolo; Converti, Attilio; Domínguez, José Manuel

    2008-04-09

    The citrus-processing industry generates in the Mediterranean area huge amounts of orange peel as a byproduct from the industrial extraction of citrus juices. To reduce its environmental impact as well as to provide an extra profit, this residue was investigated in this study as an alternative substrate for the fermentative production of citric acid. Orange peel contained 16.9% soluble sugars, 9.21% cellulose, 10.5% hemicellulose, and 42.5% pectin as the most important components. To get solutions rich in soluble and starchy sugars to be used as a carbon source for citric acid fermentation, this raw material was submitted to autohydrolysis, a process that does not make use of any acidic catalyst. Liquors obtained by this process under optimum conditions (temperature of 130 degrees C and a liquid/solid ratio of 8.0 g/g) contained 38.2 g/L free sugars (8.3 g/L sucrose, 13.7 g/L glucose, and 16.2 g/L fructose) and significant amounts of metals, particularly Mg, Ca, Zn, and K. Without additional nutrients, these liquors were employed for citric acid production by Aspergillus niger CECT 2090 (ATCC 9142, NRRL 599). Addition of calcium carbonate enhanced citric acid production because it prevented progressive acidification of the medium. Moreover, the influence of methanol addition on citric acid formation was investigated. Under the best conditions (40 mL of methanol/kg of medium), an effective conversion of sugars into citric acid was ensured (maximum citric acid concentration of 9.2 g/L, volumetric productivity of 0.128 g/(L.h), and yield of product on consumed sugars of 0.53 g/g), hence demonstrating the potential of orange peel wastes as an alternative raw material for citric acid fermentation.

  16. New fermentation processes for producing itaconic acid and citric acid for industrial uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Itaconic acid is an important industrial chemical that we have produced by fermentation of simple sugars using the yeast Pseudozyma antarctica. Itaconic acid is priced at ~$4 per kg and has an annual market volume of about 15,000 metric tons. Itaconic acid is used in the polymer industry and for m...

  17. Decarboxylation of Substituted Cinnamic Acids by Lactic Acid Bacteria Isolated during Malt Whisky Fermentation

    PubMed Central

    van Beek, Sylvie; Priest, Fergus G.

    2000-01-01

    Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation. PMID:11097909

  18. Enhanced phenylpyruvic acid production with Proteus vulgaris in fed-batch and continuous fermentation.

    PubMed

    Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J

    2016-01-01

    Phenylpyruvic acid is a deaminated form of phenylalanine and is used in various areas such as development of cheese and wine flavors, diagnosis of phenylketonuria, and to decrease excessive nitrogen accumulation in the manure of farm animals. However, reported phenylpyruvic acid fermentation studies in the literature have been usually performed at shake-flask scale with low production. In this study, phenylpyruvic acid production was evaluated in bench-top bioreactors by conducting fed-batch and continuous fermentation for the first time. As a result, maximum phenylpyruvic acid concentrations increased from 1350 mg/L (batch fermentation) to 2958 mg/L utilizing fed-batch fermentation. Furthermore, phenylpyruvic acid productivity was increased from 48 mg/L/hr (batch fermentation) to 104 and 259 mg/L/hr by conducting fed-batch and continuous fermentation, respectively. Overall, this study demonstrated that fed-batch and continuous fermentation significantly improved phenylpyruvic acid production in bench-scale bioreactor production.

  19. Amino acid fermentation at the origin of the genetic code

    PubMed Central

    2012-01-01

    There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments

  20. Production of Functional High-protein Beverage Fermented with Lactic Acid Bacteria Isolated from Korean Traditional Fermented Food.

    PubMed

    Cho, Young-Hee; Shin, Il-Seung; Hong, Sung-Moon; Kim, Cheol-Hyun

    2015-01-01

    The aim of this study was to manufacture functional high protein fermented beverage, using whey protein concentrate (WPC) and Lactobacillus plantarum DK211 isolated from kimchi, and to evaluate the physicochemical, functional, and sensory properties of the resulting product. The fermented whey beverage (FWB) was formulated with whey protein concentrate 80 (WPC 80), skim milk powder, and sucrose; and fermented with Lactobacillus plantarum DK211 as single, or mixed with Lactococcus lactis R704, a commercial starter culture. The pH, titratable acidity, and viable cell counts during fermentation and storage were evaluated. It was found that the mixed culture showed faster acid development than the single culture. The resulting FWB had high protein (9%) and low fat content (0.2%). Increased viscosity, and antioxidant and antimicrobial activity were observed after fermentation. A viable cell count of 10(9) CFU/mL in FWB was achieved within 10 h fermentation, and it remained throughout storage at 15℃ for 28 d. Sensory analysis was also conducted, and compared to that of a commercial protein drink. The sensory scores of FWB were similar to those of the commercial protein drink in most attributes, except sourness. The sourness was highly related with the high lactic acid content produced during fermentation. The results showed that WPC and vegetable origin lactic acid bacteria isolated from kimchi might be used for the development of a high protein fermented beverage, with improved functionality and organoleptic properties.

  1. Production of Functional High-protein Beverage Fermented with Lactic Acid Bacteria Isolated from Korean Traditional Fermented Food

    PubMed Central

    2015-01-01

    The aim of this study was to manufacture functional high protein fermented beverage, using whey protein concentrate (WPC) and Lactobacillus plantarum DK211 isolated from kimchi, and to evaluate the physicochemical, functional, and sensory properties of the resulting product. The fermented whey beverage (FWB) was formulated with whey protein concentrate 80 (WPC 80), skim milk powder, and sucrose; and fermented with Lactobacillus plantarum DK211 as single, or mixed with Lactococcus lactis R704, a commercial starter culture. The pH, titratable acidity, and viable cell counts during fermentation and storage were evaluated. It was found that the mixed culture showed faster acid development than the single culture. The resulting FWB had high protein (9%) and low fat content (0.2%). Increased viscosity, and antioxidant and antimicrobial activity were observed after fermentation. A viable cell count of 109 CFU/mL in FWB was achieved within 10 h fermentation, and it remained throughout storage at 15℃ for 28 d. Sensory analysis was also conducted, and compared to that of a commercial protein drink. The sensory scores of FWB were similar to those of the commercial protein drink in most attributes, except sourness. The sourness was highly related with the high lactic acid content produced during fermentation. The results showed that WPC and vegetable origin lactic acid bacteria isolated from kimchi might be used for the development of a high protein fermented beverage, with improved functionality and organoleptic properties. PMID:26761827

  2. Metabolism of lactic acid in fermented cucumbers by Lactobacillus buchneri and related species, potential spoilage organisms in reduced salt fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent evidence suggests that Lactobacillus buchneri may play an important role in spoilage-associated secondary fermentation of cucumbers. Lactic acid degradation during fermented cucumber spoilage is influenced by sodium chloride (NaCl) concentration, pH, and presence of oxygen. Objectives were to...

  3. The Use of Lactic Acid Bacteria Starter Culture in the Production of Nunu, a Spontaneously Fermented Milk Product in Ghana

    PubMed Central

    Tano-Debrah, Kwaku; Parkouda, Charles; Jespersen, Lene

    2014-01-01

    Nunu, a spontaneously fermented yoghurt-like product, is produced and consumed in parts of West Africa. A total of 373 predominant lactic acid bacteria (LAB) previously isolated and identified from Nunu product were assessed in vitro for their technological properties (acidification, exopolysaccharides production, lipolysis, proteolysis and antimicrobial activities). Following the determination of technological properties, Lactobacillus fermentum 22-16, Lactobacillus plantarum 8-2, Lactobacillus helveticus 22-7, and Leuconostoc mesenteroides 14-11 were used as single and combined starter cultures for Nunu fermentation. Starter culture fermented Nunu samples were assessed for amino acids profile and rate of acidification and were subsequently evaluated for consumer acceptability. For acidification properties, 82%, 59%, 34%, and 20% of strains belonging to Lactobacillus helveticus, L. plantarum, L. fermentum, and Leu. mesenteriodes, respectively, demonstrated fast acidification properties. High proteolytic activity (>100 to 150 μg/mL) was observed for 50% Leu. mesenteroides, 40% L. fermentum, 41% L. helveticus, 27% L. plantarum, and 10% Ent. faecium species. In starter culture fermented Nunu samples, all amino acids determined were detected in Nunu fermented with single starters of L. plantarum and L. helveticus and combined starter of L. fermntum and L. helveticus. Consumer sensory analysis showed varying degrees of acceptability for Nunu fermented with the different starter cultures. PMID:26904646

  4. Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification.

    PubMed

    Zhou, Ping-Ping; Meng, Jiao; Bao, Jie

    2017-01-01

    The aim of this work is to study the citric acid fermentation by a robust strain Aspergillus niger SIIM M288 using corn stover feedstock after dry dilute sulfuric acid pretreatment and biodetoxification. Citric acid at 100.04g/L with the yield of 94.11% was obtained, which are comparable to the starch or sucrose based citric acid fermentation. No free wastewater was generated in the overall process from the pretreatment to citric acid fermentation. Abundant divalent metal ions as well as high titer of potassium, phosphate, and nitrogen were found in corn stover hydrolysate. Further addition of extra nutrients showed no impact on increasing citric acid formation except minimum nitrogen source was required. Various fermentation parameters were tested and only minimum regulation was required during the fermentation. This study provided a biorefining process for citric acid fermentation from lignocellulose feedstock with the maximum citric acid titer and yield.

  5. [Effect of pH and fermentation time on yield and optical purity of lactic acid from kitchen wastes fermentation].

    PubMed

    Zhang, Bo; He, Pin-Jing; Shao, Li-Ming

    2007-04-01

    Batch experiments were carried out to analyze the effect of pH and fermentation time on the yield of total lactic acid and the distribution of L- and D-lactic acid among total lactic acid during the non-sterilized fermentation of kitchen wastes. The results show that the concentration of reduced sugar (calculated as organic carbon) is low, and its concentration was higher at neutral and alkali conditions (pH 6 - 8) than at acidic conditions (non-controlled pH and pH = 5). The maximum total lactic acid production rate and yield is 0.59 g x (L x h)(-1) and 0.62 g per gram VS at pH 7, respectively. The proportion of lactic acid (calculated as organic carbon) among the TOC reaches 78% and 89% at controlled pH 7 and 8, respectively. The L-lactic acid is the predominant isomer form at pH 8. Lactic acid concentration depends on pH, fermentation time and interaction from the response surface analysis. pH and fermentation time have a significant effect on the optical purity of lactic acid. At acidic conditions, the ratio of L-lactic acid to the total lactic acid increases with the fermentation time before 120 h, and the ratio reaches 0.9 at 120 h. At alkaline conditions, the ratio keeps at above 0.86 in the whole experimental fermentation time and reachs the maximum value (0.93) at 48 h. It decreases with fermentation time at pH 7. To obtain high lactic acid yield and optical purity simultaneously, it is suggested that pH should be contralled at 8.

  6. Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid.

    PubMed

    Khor, Way Cern; Roume, Hugo; Coma, Marta; Vervaeren, Han; Rabaey, Korneel

    2016-10-01

    Lactic acid is a high-in-demand chemical, which can be produced through fermentation of lignocellulosic feedstock. However, fermentation of complex substrate produces a mixture of products at efficiencies too low to justify a production process. We hypothesized that the background acetic acid concentration plays a critical role in lactic acid yield; therefore, its retention via selective extraction of lactic acid or its addition would improve overall lactic acid production and eliminate net production of acetic acid. To test this hypothesis, we added 10 g/L of acetate to fermentation broth to investigate its effect on products composition and concentration and bacterial community evolution using several substrate-inoculum combinations. With rumen fluid inoculum, lactate concentrations increased by 80 ± 12 % (cornstarch, p < 0.05) and 16.7 ± 0.4 % (extruded grass, p < 0.05) while with pure culture inoculum (Lactobacillus delbrueckii and genetically modified (GM) Escherichia coli), a 4 to 23 % increase was observed. Using rumen fluid inoculum, the bacterial community was enriched within 8 days to >69 % lactic acid bacteria (LAB), predominantly Lactobacillaceae. Higher acetate concentration promoted a more diverse LAB population, especially on non-inoculated bottles. In subsequent tests, acetate was added in a semi-continuous percolation system with grass as substrate. These tests confirmed our findings producing lactate at concentrations 26 ± 5 % (p < 0.05) higher than the control reactor over 20 days operation. Overall, our work shows that recirculating acetate has the potential to boost lactic acid production from waste biomass to levels more attractive for application.

  7. Using banana to generate lactic acid through batch process fermentation.

    PubMed

    Chan-Blanco, Y; Bonilla-Leiva, A R; Velázquez, A C

    2003-12-01

    We evaluated the usefulness of waste banana for generating lactic acid through batch fermentation, using Lactobacillus casei under three treatments. Two treatments consisted of substrates of diluted banana purée, one of which was enriched with salts and amino acids. The control treatment comprised a substrate suitable for L. casei growth. When fermentation was evaluated over time, significant differences (P<0.05) were found in the three treatments for each of five variables analyzed (generation and productivity of lactic acid, and consumption of glucose, fructose, and sucrose). Maximum productivity was (in g l(-1) h(-1)) 0.13 for the regular banana treatment, 1.49 for the enriched banana, and 1.48 for the control, with no significant differences found between the latter two treatments. Glucose consumption curves showed that L. casei made greater use of the substrate in the enriched banana and control treatments than in the regular banana treatment. For fructose intake, the enriched banana treatment showed significantly better (P<0.05) results than the regular one. Sucrose consumption was insignificant (P<0.05), probably because fermentation time was too short. Even when enriched, diluted banana purée is an ineffective substrate for L. casei, probably because it lacks nutrients.

  8. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    PubMed

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  9. High cell density propionic acid fermentation with an acid tolerant strain of Propionibacterium acidipropionici.

    PubMed

    Wang, Zhongqiang; Jin, Ying; Yang, Shang-Tian

    2015-03-01

    Propionic acid is an important chemical with wide applications and its production via fermentation is of great interest. However, economic production of bio-based propionic acid requires high product titer, yield, and productivity in the fermentation. A highly efficient and stable high cell density (HCD) fermentation process with cell recycle by centrifugation was developed for propionic acid production from glucose using an acid-tolerant strain of Propionibacterium acidipropionici, which had a higher specific growth rate, productivity, and acid tolerance compared to the wild type ATCC 4875. The sequential batch HCD fermentation at pH 6.5 produced propionic acid at a high titer of ∼40 g/L and productivity of 2.98 g/L h, with a yield of ∼0.44 g/g. The product yield increased to 0.53-0.62 g/g at a lower pH of 5.0-5.5, which, however, decreased the productivity to 1.28 g/L h. A higher final propionic acid titer of >55 g/L with a productivity of 2.23 g/L h was obtained in fed-batch HCD fermentation at pH 6.5. A 3-stage simulated fed-batch process in serum bottles produced 49.2 g/L propionic acid with a yield of 0.53 g/g and productivity of 0.66 g/L h. These productivities, yields and propionic acid titers were among the highest ever obtained in free-cell propionic acid fermentation.

  10. Membrane-integrated fermentation system for improving the optical purity of D-lactic acid produced during continuous fermentation.

    PubMed

    Sawai, Hideki; Na, Kyungsu; Sasaki, Nanami; Mimitsuka, Takashi; Minegishi, Shin-ichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu

    2011-01-01

    This report describes the production of highly optically pure D-lactic acid by the continuous fermentation of Sporolactobacillus laevolacticus and S. inulinus, using a membrane-integrated fermentation (MFR) system. The optical purity of D-lactic acid produced by the continuous fermentation system was greater than that produced by batch fermentation; the maximum value for the optical purity of D-lactic acid reached 99.8% enantiomeric excess by continuous fermentation when S. leavolacticus was used. The volumetric productivity of the optically pure D-lactic acid was about 12 g/L/h, this being approximately 11-fold higher than that obtained by batch fermentation. An enzymatic analysis indicated that both S. laevolacticus and S. inulinus could convert L-lactic acid to D-lactic acid by isomerization after the late-log phase. These results provide evidence for an effective bio-process to produce D-lactic acid of greater optical purity than has conventionally been achieved to date.

  11. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial ins...

  12. Production of propionic acid from whey permeate by sequential fermentation, ultrafiltration, and cell recycling.

    PubMed

    Colomban, A; Roger, L; Boyaval, P

    1993-11-05

    This article deals with the production by fermentation of a mycostatic and aromatic food additive based on propionic acid. Membrane bioreactors have been used from laboratory scale up to pilot and industrial production plants. Due to the high cell densities achieved by the sequential recycling mode of operation, a mixed acids solution was rapidly produced from whey permeate. The sterile fermented broth obtained was subsequently concentrated at different levels by evaporation and spray drying according to the projected use. Concentrated Propionibacterium cells (200 g x L(-1) DW) were obtained from the process by periodic bleeds and could be used to good effect as cheese starters, silage preservatives, or probiotics. Propionic acid concentrations from 30 to 40 g x L(-1) were easily achieved with no residual lactose. The highest volumetric productivity was 1.6 g x L(-1) x h(-1) for total acid and 1.2 g x L(-1) x h(-1) for propionic acid with a specific productivity of 0.035 h(-1).

  13. Open fermentative production of L-lactic acid using white rice bran by simultaneous saccharification and fermentation.

    PubMed

    Wang, Yong; Cai, Di; He, Meiling; Wang, Zheng; Qin, Peiyong; Tan, Tianwei

    2015-12-01

    To reduce raw material cost for lactic acid production, white rice bran as an important byproduct in rice milling, was used in l-lactic acid production by open simultaneous saccharification and fermentation (SSF). Although one thermotolerant strain was used at a temperature as high as 50°C, the open fermentation was still inefficient due to the indigenous thermophilic bacteria from corn steep liquor powder. A stepwise controlled pH was proposed in open SSF process, and no complicated pretreatment or sterilization was needed before fermentation. In batch fermentation, 117 gL(-1) lactic acid was obtained, and the productivity and yield reached 2.79 gL(-1) h(-1) and 98.75%, respectively. These results showed an efficient way to develop high value-added products from white rice bran.

  14. Metabolism of lactic acid in fermented cucumbers by Lactobacillus buchneri and related species, potential spoilage organisms in reduced salt fermentations.

    PubMed

    Johanningsmeier, Suzanne D; McFeeters, Roger F

    2013-09-01

    Recent evidence suggests that Lactobacillus buchneri may play an important role in spoilage-associated secondary fermentation of cucumbers. Lactic acid degradation during fermented cucumber spoilage is influenced by sodium chloride (NaCl) concentration, pH, and presence of oxygen. Objectives were to evaluate these factors on lactic acid utilization by L. buchneri, and to compare the biochemical changes to those which occur during fermented cucumber spoilage. Effects of NaCl (0, 2, 4, and 6% w/w), pH (3.8 vs 5.0), and aerobic environment were investigated using fermented cucumber media (FC) inoculated with spoilage microorganisms. At pH 3.8, L. buchneri degraded lactic acid in all NaCl concentrations. The highest rate of lactic acid utilization occurred in FC with 2% NaCl (P < 0.05). Lactic acid utilization was nearly identical under aerobic and anaerobic conditions, indicating that oxygen does not influence lactate metabolism by L. buchneri. Lactic acid utilization was accompanied by increases in acetic acid and 1,2-propanediol, and Lactobacillus rapi was able to convert 1,2-propanediol to propionic acid and propanol. L. buchneri initiated spoilage in a wide range of environmental conditions that may be present in commercial cucumber fermentations, and L. rapi may act syntrophically with L. buchneri to produce the commonly observed spoilage metabolites.

  15. Study on color identification for monitoring and controlling fermentation process of branched chain amino acid

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Wang, Yizhong; Chen, Ning; Liu, Tiegen; Xu, Qingyang; Kong, Fanzhi

    2008-12-01

    In this paper, a new method for monitoring and controlling fermentation process of branched chain amino acid (BCAA) was proposed based on color identification. The color image of fermentation broth of BCAA was firstly taken by a CCD camera. Then, it was changed from RGB color model to HIS color model. Its histograms of hue H and saturation S were calculated, which were used as the input of a designed BP network. The output of the BP network was the description of the color of fermentation broth of BCAA. After training, the color of fermentation broth was identified by the BP network according to the histograms of H and S of a fermentation broth image. Along with other parameters, the fermentation process of BCAA was monitored and controlled to start the stationary phase of fermentation soon. Experiments were conducted with satisfied results to show the feasibility and usefulness of color identification of fermentation broth in fermentation process control of BCAA.

  16. Acetic Acid Production by an Electrodialysis Fermentation Method with a Computerized Control System

    PubMed Central

    Nomura, Yoshiyuki; Iwahara, Masayoshi; Hongo, Motoyoshi

    1988-01-01

    In acetic acid fermentation by Acetobacter aceti, the acetic acid produced inhibits the production of acetic acid by this microorganism. To alleviate this inhibitory effect, we developed an electrodialysis fermentation method such that acetic acid is continuously removed from the broth. The fermentation unit has a computerized system for the control of the pH and the concentration of ethanol in the fermentation broth. The electrodialysis fermentation system resulted in improved cell growth and higher productivity over an extended period; the productivity exceeded that from non-pH-controlled fermentation. During electrodialysis fermentation in our system, 97.6 g of acetic acid was produced from 86.0 g of ethanol; the amount of acetic acid was about 2.4 times greater than that produced by non-pH-controlled fermentation (40.1 g of acetic acid produced from 33.8 g of ethanol). Maximum productivity of electrodialysis fermentation in our system was 2.13 g/h, a rate which was 1.35 times higher than that of non-pH-controlled fermentation (1.58 g/h). PMID:16347520

  17. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation.

    PubMed

    Tanino, Takanori; Nara, Youhei; Tsujiguchi, Takuya; Ohshima, Takayuki

    2013-08-01

    The coproduction of a useful material and electricity via a novel application of microbial fuel cell (MFC) technology to oxidative fermentation was investigated. We focused on vinegar production, i.e., acetic acid fermentation, as an initial and model useful material that can be produced by oxidative fermentation in combination with MFC technology. The coproduction of acetic acid and electricity by applying MFC technology was successfully demonstrated by the simultaneous progress of acetic acid fermentation and electricity generation through a series of repeated batch fermentations. Although the production rate of acetic acid was very small, it increased with the number of repeated batch fermentations that were conducted. We obtained nearly identical (73.1%) or larger (89.9%) acetic acid yields than that typically achieved by aerated fermentation (75.8%). The open-cycle voltages measured before and after fermentation increased with the total fermentation time and reached a maximum value of 0.521 V prior to the third batch fermentation. The maximum current and power densities measured in this study (19.1 μA/cm² and 2.47 μW/cm², respectively) were obtained after the second batch fermentation.

  18. Improvement of the fermentative activity of lactic acid bacteria starter culture by the addition of Mn²⁺.

    PubMed

    Cheng, Xin; Dong, Ying; Su, Ping; Xiao, Xiang

    2014-11-01

    Production of lactic acid bacteria (LAB) starter with raw material has received much scientific investigation, but little information is available on the influences of some trace elements on the growth and fermentative activity of LAB. Based on this fact, this paper aimed to investigate the effects of Mn(2+) on the performance of Lactobacillus plantarum CX-15 starter with Jerusalem artichoke (JA) as the main medium substrate. The results showed that Mn(2+) addition had a significant beneficial affect on the fermentative activity of L. plantarum CX-15 starter. In contrast, the lack of Mn(2+) would cause the subsequent fermentation significantly slower, whether the cell density in starter culture was higher or lower. The possible mechanism of these phenomenons was further elucidated by the time course analysis of the specific activities of metabolism key enzymes during the culture processes of L. plantarum CX-15 starter. Compared to the fermentation processes without Mn(2+) addition, it was found that Mn(2+) addition would enhance the lactate dehydrogenase (LDH) activity but reduce the activities of pyruvate dehydrogenase (PDH) and ATPase activity. Therefore, it could be concluded that the improvement of L. plantarum starter fermentative activity was probably a consequence of Mn(2+) acting as "metabolic switch," which regulated the metabolic flux from pyruvic acid to lactic acid and other metabolism pathway.

  19. Diluted phosphoric acid pretreatment for production of fermentable sugars in a sugarcane-based biorefinery.

    PubMed

    de Vasconcelos, Solange Maria; Santos, Andrelina Maria Pinheiro; Rocha, George Jackson Moraes; Souto-Maior, Ana Maria

    2013-05-01

    The influence of time (8-24 min), temperature (144-186 °C) and phosphoric acid concentration (0.05-0.20%, w/v) on the pretreatment of sugarcane bagasse in a 20 L batch rotary reactor was investigated. The efficiency of the pretreatment was verified by chemical characterization of the solid fraction of the pretreated bagasse and the conversion of cellulose to glucose by enzymatic hydrolysis. Models representing the percentage of cellulose, hemicelluloses, lignin, solubilized hemicellulose and the enzymatic conversion of cellulose to glucose were predictive and significant. Phosphoric acid concentration of 0.20% at temperature of 186 °C, during 8 and 24 min, was shown to be very effective in solubilizing hemicellulose from sugarcane bagasse, reaching solubilization of 96% and 98%, respectively. Relatively low amounts of inhibitors were produced, and the phosphoric acid remaining in the hemicellulosic hydrolysate is at adequate levels for supplying phosphorous requirement during subsequent fermentation.

  20. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  1. Lactic acid fermentation of food waste for swine feed.

    PubMed

    Yang, S Y; Ji, K S; Baik, Y H; Kwak, W S; McCaskey, T A

    2006-10-01

    This study was conducted to determine the effects of lactic acid bacteria (LAB, Lactobacillus salivarius) inoculation on the microbial, physical and chemical properties of food waste mixture (FWM) stored at ambient temperature (25 degrees C) for 10 and 30 days. A complete pig diet including restaurant food waste, bakery by-product, barley and wheat bran, and broiler poultry litter was amended with LAB at the levels of 0.1%, 0.2%, 0.5% and 1.0% and fermented anaerobically. These treatments were compared with intact FWM before storage and non-anaerobically stored FWM. Non-anaerobic storage of FWM showed microbial putrefaction with the loss (P < 0.05) of water and water soluble carbohydrate (WSC) and increases (P < 0.005) in protein and fiber. Anaerobic fermentation of FWM with or without LAB seemed effective in both 10- and 30-day-storage. The addition of LAB inoculants to FWM showed a linear trend (P < 0.05) toward an increase in the number of total and lactic acid bacteria and toward the nutritional improvement with WSC increased and fiber decreased. Long-term (30 days) storage resulted in consistent reduction (P < 0.05) in numbers of total and lactic acid bacteria and pH and showed little change in chemical components, compared with short-term (10 days) storage. On the basis of these results, LAB inoculation improved fermentative characteristics of FWM. Among anaerobic treatments, further WSC increase and NDF reduction did not occur (P > 0.05) when LAB-added levels were over 0.2%. Based on these observations the optimum level of LAB addition to FWM was 0.2%.

  2. Propionic acid production by extractive fermentation. 1. Solvent considerations

    SciTech Connect

    Gu, Z.; Glatz, B.A.; Glatz, C.E.

    1998-02-20

    Solvent selection for extractive fermentation for propionic acid was conducted with three systems: Alamine{reg_sign} 304-1 (trilaurylamine) in 2-octanol, 1-dodecanol, and Witcohol{reg_sign} 85 NF (oleyl alcohol). Among them, the solvent containing 2-octanol exhibited the highest partition coefficient in acid extraction, but it was also toxic to propionibacteria. The most solvent-resistant strain among five strains of the microorganism was selected. Solvent toxicity was eliminated via two strategies: entrapment of dissolved toxic solvent in the culture growth medium with vegetable oils such as corn, olive, or soybean oils; or replacement of the toxic 2-octanol with nontoxic Witcohol 85 NF. The complete recovery of acids from the Alamine 304-1/Witcohol 85 NF was also realized with vacuum distillation.

  3. Propionic acid production by extractive fermentation. I. Solvent considerations.

    PubMed

    Gu, Z; Glatz, B A; Glatz, C E

    1998-02-20

    Solvent selection for extractive fermentation for propionic acid was conducted with three systems: Alamine 304-1 (trilaurylamine) in 2-octanol, 1-dodecanol, and Witcohol 85 NF (oleyl alcohol). Among them, the solvent containing 2-octanol exhibited the highest partition coefficient in acid extraction, but it was also toxic to propionibacteria. The most solvent-resistant strain among five strains of the microorganism was selected. Solvent toxicity was eliminated via two strategies: entrapment of dissolved toxic solvent in the culture growth medium with vegetable oils such as corn, olive, or soybean oils; or replacement of the toxic 2-octanol with nontoxic Witcohol 85 NF. The complete recovery of acids from the Alamine 304-1/Witcohol 85 NF was also realized with vacuum distillation.

  4. Esterification of fermentation-derived acids via pervaporation

    DOEpatents

    Datta, Rathin; Tsai, Shih-Perng

    1998-01-01

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture.

  5. Esterification of fermentation-derived acids via pervaporation

    DOEpatents

    Datta, R.; Tsai, S.P.

    1998-03-03

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture. 2 figs.

  6. Phytic acid degrading lactic acid bacteria in tef-injera fermentation.

    PubMed

    Fischer, Maren M; Egli, Ines M; Aeberli, Isabelle; Hurrell, Richard F; Meile, Leo

    2014-11-03

    Ethiopian injera, a soft pancake, baked from fermented batter, is preferentially prepared from tef (Eragrostis tef) flour. The phytic acid (PA) content of tef is high and is only partly degraded during the fermentation step. PA chelates with iron and zinc in the human digestive tract and strongly inhibits their absorption. With the aim to formulate a starter culture that would substantially degrade PA during injera preparation, we assessed the potential of microorganisms isolated from Ethiopian household-tef fermentations to degrade PA. Lactic acid bacteria (LAB) were found to be among the dominating microorganisms. Seventy-six isolates from thirteen different tef fermentations were analyzed for phytase activity and thirteen different isolates of seven different species were detected to be positive in a phytase screening assay. In 20-mL model tef fermentations, out of these thirteen isolates, the use of Lactobacillus (L.) buchneri strain MF58 and Pediococcus pentosaceus strain MF35 resulted in lowest PA contents in the fermented tef of 41% and 42%, respectively of its initial content. In comparison 59% of PA remained when spontaneously fermented. Full scale tef fermentation (0.6L) and injera production using L. buchneri MF58 as culture additive decreased PA in cooked injera from 1.05 to 0.34±0.02 g/100 g, representing a degradation of 68% compared to 42% in injera from non-inoculated traditional fermentation. The visual appearance of the pancakes was similar. The final molar ratios of PA to iron of 4 and to zinc of 12 achieved with L. buchneri MF58 were decreased by ca. 50% compared to the traditional fermentation. In conclusion, selected LAB strains in tef fermentations can degrade PA, with L. buchneri MF58 displaying the highest PA degrading potential. The 68% PA degradation achieved by the application of L. buchneri MF58 would be expected to improve human zinc absorption from tef-injera, but further PA degradation is probably necessary if iron absorption has to

  7. Xanthan from sulphuric acid treated tapioca pulp: influence of acid concentration on xanthan fermentation.

    PubMed

    Gunasekar, V; Reshma, K R; Treesa, Greeshma; Gowdhaman, D; Ponnusami, V

    2014-02-15

    Xanthan gum was produced by fermentation of sulphuric acid pre-treated tapioca pulp. Effect of sulphuric acid concentration (0.5%, 2.5% and 5.0%) on xanthan fermentation was investigated. Maximum xanthan yield (7.1g/l) was obtained with 0.5% sulphuric acid pre-treatment. Further, increase in sulphuric acid concentration caused formation of inhibitory substance and lowered xanthan yield. The product was confirmed as xanthan using FTIR, (1)H NMR analyses. Viscosity was measured by Brookfield viscometer and the molecular weight was determined from the intrinsic viscosity. The results confirmed that the yield and quality of xanthan produced were strongly influenced by the acid concentration.

  8. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  9. Volatile fatty acids production from marine macroalgae by anaerobic fermentation.

    PubMed

    Pham, Thi Nhan; Nam, Woo Joong; Jeon, Young Joong; Yoon, Hyon Hee

    2012-11-01

    Volatile fatty acids (VFAs) were produced from the marine macroalgae, Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinite by anaerobic fermentation using a microbial community derived from a municipal wastewater treatment plant. Methanogen inhibitor (iodoform), pH control, substrate concentration, and alkaline and thermal pretreatments affected VFA productivity. Acetic, propionic, and butyric acids were the main products. A maximum VFA concentration of 15.2g/L was obtained from 50 g/L of L. japonica in three days at 35°C and pH 6.5-7.0. Pretreatment with 0.5 N NaOH improved VFA productivity by 56% compared to control. The result shows the applicability of marine macroalgae as biomass feedstock for the production of VFAs which can be converted to mixed alcohol fuels.

  10. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae.

    PubMed

    Coghe, Stefan; Benoot, Koen; Delvaux, Filip; Vanderhaegen, Bart; Delvaux, Freddy R

    2004-02-11

    The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt. Ferulic acid as well as 4-vinylguaiacol levels were determined by HPLC at several stages of the beer production process. During brewing, ferulic acid was released at the initial mashing phase, whereas moderate levels of 4-vinylguaiacol were formed by wort boiling. Higher levels of the phenolic flavor compound were produced during fermentations with brewery yeast strains of the Pof(+) phenotype. In beer made with barley malt, ferulic acid was mainly released during the brewing process. Conversely, 60-90% of ferulic acid in wheat or wheat malt beer was hydrolyzed during fermentation, causing higher 4-vinylguaiacol levels in these beers. As cereal enzymes are most likely inactivated during wort boiling, the additional release of ferulic acid during fermentation suggests the activity of feruloyl esterases produced by brewer's yeast.

  11. Dilute oxalic acid pretreatment for high total sugar recovery in pretreatment and subsequent enzymatic hydrolysis.

    PubMed

    Qing, Qing; Huang, Meizi; He, Yucai; Wang, Liqun; Zhang, Yue

    2015-12-01

    Oxalic acid was evaluated as an alternative reagent to mineral inorganic acid in pretreatment of corncob to achieve high xylose yield in addition to highly digestible solid residue. A quadratic polynomial model of xylose formation was developed for optimization of pretreatment process by the response surface methodology based on the impact factors of pretreatment temperature, reaction time, acid concentration, and solid-to-liquid ratio. The highest xylose yield was 94.3 % that was obtained under the pretreatment condition of 140 °C for 40 min with 0.5 wt% oxalic acid at a solid loading of 7.5 %. Under these conditions, the xylose yield results of verification experiments were very close to the model prediction, which indicated that the model was applicable. The solid residue generated under this condition also demonstrated a satisfactory enzymatic digestibility and fermentability.

  12. Divalent cations enhance fluoride binding to Streptococcus mutans and Streptococcus sanguinis cells and subsequently inhibit bacterial acid production.

    PubMed

    Domon-Tawaraya, H; Nakajo, K; Washio, J; Ashizawa, T; Ichino, T; Sugawara, H; Fukumoto, S; Takahashi, N

    2013-01-01

    One preventive effect of topical fluoride application is derived from the fact that fluoride can inhibit bacterial acid production. Furthermore, divalent cations such as Ca(2+) and Mg(2+) increase the binding of fluoride to bacterial cells. These findings suggest that exposure of oral bacteria to fluoride in the presence of divalent cations increases fluoride binding to bacterial cells and subsequently enhances fluoride-induced inhibition of bacterial acid production. This study investigated the effects of fluoride exposure (0-20,000 ppm F) in the presence of Ca(2+) or Mg(2+) prior to glucose challenge on pH fall ability by bacterial sugar fermentation, as well as fluoride binding to bacterial cells by exposure to fluoride, and fluoride release from bacterial cells during bacterial sugar fermentation, using caries-related bacteria, Streptococcus mutans and Streptococcus sanguinis. The pH fall by both streptococci was inhibited by exposure to over 250 ppm F in the presence of Ca(2+) (p < 0.01), whereas in the presence of Mg(2+), the pH fall by S. mutans and S. sanguinis was inhibited after exposure to over 250 and 950 ppm F, respectively (p < 0.05). The amounts of fluoride binding to and released from streptococcal cells increased with the concentration of fluoride the cells were exposed to in the presence of Mg(2+), but were high enough even after 250 ppm F exposure in the presence of Ca(2+). The enhanced inhibition of acid production in the presence of divalent cations is probably due to the improved efficiency of fluoride binding to bacterial cells being improved via these divalent cations.

  13. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.

    PubMed

    Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung

    2014-07-01

    Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.

  14. Carboxylic acid production from brewer's spent grain via mixed culture fermentation.

    PubMed

    Liang, Shaobo; Wan, Caixia

    2015-04-01

    This study aimed at investigating carboxylic acid production from brewer's spent grain (BSG) via mixed culture fermentation. The results showed that the distribution of fermentation products was significantly affected by pH conditions and the addition of electron donors. Lactic acid was the dominant component under acidic and alkaline conditions while volatile fatty acids (VFAs) became dominant under the neutral condition. Furthermore, the neutral condition favored the chain elongation of carboxylic acids, especially with ethanol as the electron donor. Ethanol addition enhanced valeric acid and caproic acid production by 44% and 167%, respectively. Lactic acid addition also had positive effects on VFAs production under the neutral condition but limited to C2-C4 products. As a result, propionic acid and butyric acid production was increased by 109% and 152%, respectively. These findings provide substantial evidence for regulating carboxylic acid production during mixed culture fermentation of BSG by controlling pH and adding electron donors.

  15. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.

    PubMed

    Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol

    2014-01-01

    This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter.

  16. Traditional Indian fermented foods: a rich source of lactic acid bacteria.

    PubMed

    Satish Kumar, R; Kanmani, P; Yuvaraj, N; Paari, K A; Pattukumar, V; Arul, V

    2013-06-01

    This review describes the diversity of Indian fermented food and its significance as a potential source of lactic acid bacteria (LAB). Fermented foods consumed in India are categorized based upon their base material. Fermented foods such as dahi, gundruk, sinki, iniziangsang, iromba, fermented rai, kanjika and handua were reported to have significant medicinal properties. Some fermented products such as koozh, dahi and kanjika are consumed unknowingly as, probiotic drinks, by local people. There are very few reports regarding isolation of LAB from Indian fermented foods available in the past; however, due to growing consciousness about potential health benefits of LAB, we now have scores of reports in this field. There is an abundant opportunity available for food microbiologists to explore the Indian fermented foods for the isolation of new LAB strains for their potential role in probiotic research.

  17. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation.

    PubMed

    Lee, Jae-Won; Rodrigues, Rita C L B; Kim, Hyun Joo; Choi, In-Gyu; Jeffries, Thomas W

    2010-06-01

    High yields of hemicellulosic and cellulosic sugars are critical in obtaining economical conversion of agricultural residues to ethanol. To optimize pretreatment conditions, we evaluated oxalic acid loading rates, treatment temperatures and times in a 2(3) full factorial design. Response-surface analysis revealed an optimal oxalic acid pretreatment condition to release sugar from the cob of Zea mays L. ssp. and for Pichia stipitis CBS 6054. To ferment the residual cellulosic sugars to ethanol following enzymatic hydrolysis, highest saccharification and fermentation yields were obtained following pretreatment at 180 degrees C for 50 min with 0.024 g oxalic acid/g substrate. Under these conditions, only 7.5% hemicellulose remained in the pretreated substrate. The rate of cellulose degradation was significantly less than that of hemicellulose and its hydrolysis was not as extensive. Subsequent enzymatic saccharification of the residual cellulose was strongly affected by the pretreatment condition with cellulose hydrolysis ranging between 26.0% and 76.2%. The residual xylan/lignin ratio ranged from 0.31 to 1.85 depending on the pretreatment condition. Fermentable sugar and ethanol were maximal at the lowest ratio of xylan/lignin and at high glucan contents. The model predicts optimal condition of oxalic acid pretreatment at 168 degrees C, 74 min and 0.027 g/g of oxalic acid. From these findings, we surmised that low residual xylan was critical in obtaining maximal glucose yields from saccharification.

  18. Core Fluxome and Metafluxome of Lactic Acid Bacteria under Simulated Cocoa Pulp Fermentation Conditions

    PubMed Central

    Adler, Philipp; Bolten, Christoph Josef; Dohnt, Katrin; Hansen, Carl Erik

    2013-01-01

    In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive 13C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel 13C studies with [13C6]glucose, [1,2-13C2]glucose, and [13C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity. PMID:23851099

  19. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols.

    PubMed

    Liu, Kan; Atiyeh, Hasan K; Stevenson, Bradley S; Tanner, Ralph S; Wilkins, Mark R; Huhnke, Raymond L

    2014-01-01

    Higher alcohols such as n-butanol and n-hexanol have higher energy density than ethanol, are more compatible with current fuel infrastructure, and can be upgraded to jet and diesel fuels. Several organisms are known to convert syngas to ethanol, but very few can produce higher alcohols alone. As a potential solution, mixed culture fermentation between the syngas fermenting Alkalibaculum bacchi strain CP15 and propionic acid producer Clostridium propionicum was studied. The monoculture of CP15 produced only ethanol from syngas without initial addition of organic acids to the fermentation medium. However, the mixed culture produced ethanol, n-propanol and n-butanol from syngas. The addition of propionic acid, butyric acid and hexanoic acid to the mixed culture resulted in a 50% higher conversion efficiency of these acids to their respective alcohols compared to CP15 monoculture. These findings illustrate the great potential of mixed culture syngas fermentation in production of higher alcohols.

  20. Dilute acid pretreatment of rapeseed straw for fermentable sugar generation.

    PubMed

    Castro, Eulogio; Díaz, Manuel J; Cara, Cristóbal; Ruiz, Encarnación; Romero, Inmaculada; Moya, Manuel

    2011-01-01

    The influence of the main pretreatment variables on fermentable sugar generation from rapeseed straw is studied using an experimental design approach. Low and high levels for pretreatment temperature (140-200 °C), process time (0-20 min) and concentration of sulfuric acid (0.5-2% w/v) were selected according to previous results. Glucose and xylose composition, as well as sugar degradation, were monitored and adjusted to a quadratic model. Non-sugar components of the hydrolysates were also determined. Enzymatic hydrolysis yields were used for assessing pretreatment performance. Optimization based on the mathematical model show that total conversion of cellulose from pretreated solids can be achieved at pretreatment conditions of 200 °C for 27 min and 0.40% free acid concentration. If optimization criteria were based on maximization of hemicellulosic sugars recovery in the hydrolysate along with cellulose preservation in the pretreated solids, milder pretreatment conditions of 144 °C, 6 min and 2% free acid concentration should be used.

  1. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.

    PubMed

    Oh, Euhlim; Lu, Mingshou; Park, Changhun; Park, Changhun; Oh, Han Bin; Lee, Sang Yup; Lee, Jinwon

    2011-02-01

    A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

  2. Preadaptation to Cold Stress in Salmonella enterica Serovar Typhimurium Increases Survival during Subsequent Acid Stress Exposure

    PubMed Central

    Shah, Jigna; Desai, Prerak T.; Chen, Dong; Stevens, John R.

    2013-01-01

    Salmonella is an important cause of bacterial food-borne gastroenteritis. Salmonella encounters multiple abiotic stresses during pathogen elimination methods used in food processing, and these stresses may influence its subsequent survivability within the host or in the environment. Upon ingestion, Salmonella is exposed to gastrointestinal acidity, a first line of the host innate defense system. This study tested the hypothesis that abiotic stresses encountered during food processing alter the metabolic mechanisms in Salmonella that enable survival and persistence during subsequent exposure to the host gastrointestinal acidic environment. Out of the four different abiotic stresses tested, viz., cold, peroxide, osmotic, and acid, preadaptation of the log-phase culture to cold stress (5°C for 5 h) significantly enhanced survival during subsequent acid stress (pH 4.0 for 90 min). The gene expression profile of Salmonella preadapted to cold stress revealed induction of multiple genes associated with amino acid metabolism, oxidative stress, and DNA repair, while only a few of the genes in the above-mentioned stress response and repair pathways were induced upon exposure to acid stress alone. Preadaptation to cold stress decreased the NAD+/NADH ratio and hydroxyl (OH·) radical formation compared with those achieved with the exposure to acid stress alone, indicating alteration of aerobic respiration and the oxidative state of the bacteria. The results from this study suggest that preadaptation to cold stress rescues Salmonella from the deleterious effect of subsequent acid stress exposure by induction of genes involved in stress response and repair pathways, by modification of aerobic respiration, and by redox modulation. PMID:24056458

  3. Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation

    SciTech Connect

    Castro, Yessica; Ellis, Joshua T.; Miller, Charles D.; Sims, Ronald C.

    2015-02-01

    Exploring and developing sustainable and efficient technologies for biofuel production are crucial for averting global consequences associated with fuel shortages and climate change. Optimization of sugar liberation from wastewater algae through acid hydrolysis was determined for subsequent fermentation to acetone, butanol, and ethanol (ABE) by Clostridium saccharoperbutylacetonicum N1-4. Acid concentration, retention time, and temperature were evaluated to determine optimal hydrolysis conditions by assessing the sugar and ABE yield as well as the associated costs. Sulfuric acid concentrations ranging from 0-1.5 M, retention times of 40-120 min, and temperatures from 23°C- 90°C were combined to form a full factorial experiment. Acid hydrolysis pretreatment of 10% dried wastewater microalgae using 1.0 M sulfuric acid for 120 min at 80-90°C was found to be the optimal parameters, with a sugar yield of 166.1 g for kg of dry algae, concentrations of 5.23 g/L of total ABE, and 3.74 g/L of butanol at a rate of USD $12.83 per kg of butanol.

  4. Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage

    PubMed Central

    Vieira, C. P.; Álvares, T. S.; Gomes, L. S.; Torres, A. G.; Paschoalin, V. M. F.; Conte-Junior, C. A.

    2015-01-01

    Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8g/100g fatty acids) and lower saturated fatty acid (72.7g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality. PMID:26444286

  5. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618.

    PubMed

    Mateo, Soledad; Puentes, Juan G; Moya, Alberto J; Sánchez, Sebastián

    2015-08-01

    Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively.

  6. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation.

    PubMed

    Zhu, Yuchen; Luo, Yinghua; Wang, Pengpu; Zhao, Mengyao; Li, Lei; Hu, Xiaosong; Chen, Fang

    2016-03-01

    Pu-erh ripened tea is produced through a unique microbial fermentation process from the sun-dried leaves of large-leaf tea species (Camellia sinensis (Linn.) var. assamica (Masters) Kitamura) in Yunnan province of China. In this study, the changes of amino acid profiles during fermentation of Pu-erh tea were investigated, based on the improved HPLC-UV method with PITC pre-column derivatization for the simultaneous determination of twenty free amino acids. Results showed that aspartic acid, glutamic acid, arginine, alanine, theanine and tyrosine were the major amino acids in tea samples. Fermentation significantly influenced on the amino acid profiles. The total free amino acid contents significantly decreased during fermentation (p<0.05). Meanwhile, low amount of acrylamide were detected. Its concentration increased after 7-days' fermentation and then decreased gradually. The results provided the useful information for the manipulation of fermentation process according to the changes of amino acids and acrylamide contents in Pu-erh ripened tea.

  7. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria.

    PubMed

    Wang, Yi-Chieh; Yu, Roch-Chui; Chou, Cheng-Chun

    2006-04-01

    To further the goal of developing a probiotic dietary adjunct using soymilk, soymilk is fermented with lactic acid bacteria (Lactobacillus acidophilus CCRC 14079 or Streptococcus thermophilus CCRC 14085) and bifidobacteria (Bifidobacterium infantis CCRC 14633 or Bifidobacterium longum B6) individually, and in conjunction. We investigate several antioxidative activities including the inhibition of ascorbate autoxidation, the scavenging effect of superoxide anion radicals and hydrogen peroxide, and the reducing activity exerted by different varieties of fermented soymilks. In addition, the effect of spray-drying and freeze-drying on changes in antioxidative activity is examined. We find that in fermented soymilk both the inhibition of ascorbate autoxidation, and the reducing activity and scavenging effect of superoxide anion radicals varied with the starters used, but nevertheless are significantly higher than those found in unfermented soymilk. In general, antioxidative activity in soymilk fermented with lactic acid bacteria and bifidobacteria simultaneously is significantly higher (P < 0.05) than that fermented with either individually. Moreover, antioxidative activity increases as the fermentation period is extended. However, unfermented soymilk shows an H2O2-scavenging effect, while there is no scavenging effect except for the accumulation of H2O2 in fermented soymilk. Finally, we find that freeze-drying causes a significantly lesser (P < 0.05) reduction in the antioxidative activity of soymilk than does spray-drying. Irrespective of the drying method and the starters used for fermentation. The antioxidative activity of fermented soymilk reduces after drying yet remains higher than that of dried unfermented soymilk.

  8. The effects of probiotics and prebiotics on the fatty acid profile and conjugated linoleic acid content of fermented cow milk.

    PubMed

    Manzo, Nadia; Pizzolongo, Fabiana; Montefusco, Immacolata; Aponte, Maria; Blaiotta, Giuseppe; Romano, Raffaele

    2015-05-01

    The ability of probiotic bacteria (Lactobacillus acidophilus La5 and Bifidobacterium animalis Bb12), to produce conjugated linoleic acid (CLA) in association with Streptococcus thermophilus and Lb. bulgaricus during milk fermentation has been evaluated in this study. Pasteurized cow milk and infant formula were used. Infant formula was selected for its high linoleic acid content, for being a source of CLA and for its prebiotic compounds, e.g. galacto-oligosaccharides. The microorganisms were not able to increase the CLA content of the fermented products under the given experimental conditions. No statistically significant differences (p > 0.05) occurred between the CLA content in milk and the fermented samples. The CLA contents of 10 commercial fermented milk products were determined. The highest CLA content was observed in fermented milk containing only Str. thermophilus and Lb. bulgaricus.

  9. Fermentation of Agave tequilana juice by Kloeckera africana: influence of amino-acid supplementations.

    PubMed

    Valle-Rodríguez, Juan Octavio; Hernández-Cortés, Guillermo; Córdova, Jesús; Estarrón-Espinosa, Mirna; Díaz-Montaño, Dulce María

    2012-02-01

    This study aimed to improve the fermentation efficiency of Kloeckera africana K1, in tequila fermentations. We investigated organic and inorganic nitrogen source requirements in continuous K. africana fermentations fed with Agave tequilana juice. The addition of a mixture of 20 amino-acids greatly improved the fermentation efficiency of this yeast, increasing the consumption of reducing sugars and production of ethanol, compared with fermentations supplemented with ammonium sulfate. The preference of K. africana for each of the 20 amino-acids was further determined in batch fermentations and we found that asparagine supplementation increased K. africana biomass production, reducing sugar consumption and ethanol production (by 30, 36.7 and 45%, respectively) over fermentations supplemented with ammonium sulfate. Therefore, asparagine appears to overcome K. africana nutritional limitation in Agave juice. Surprisingly, K. africana produced a high concentration of ethanol. This contrasts to poor ethanol productivities reported for other non-Saccharomyces yeasts indicating a relatively high ethanol tolerance for the K. africana K1 strain. Kloeckera spp. strains are known to synthesize a wide variety of volatile compounds and we have shown that amino-acid supplements influenced the synthesis by K. africana of important metabolites involved in the bouquet of tequila. The findings of this study have revealed important nutritional limitations of non-Saccharomyces yeasts fermenting Agave tequilana juice, and have highlighted the potential of K. africana in tequila production processes.

  10. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Franden, Mary Ann; Mc Millan, James D.; Finkelstein, Mark

    1998-01-01

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid.

  11. Effect of organic acids found in cottonseed hull hydrolysate on the xylitol fermentation by Candida tropicalis.

    PubMed

    Wang, Le; Wu, Dapeng; Tang, Pingwah; Yuan, Qipeng

    2013-08-01

    Five organic acids (acetic, ferulic, 4-hydroxybenzoic, formic and levulinic acids) typically associated in the hemicellulose hydrolysate were selected to study their effects on the xylitol fermentation. The effects of individual and combined additions were independently evaluated on the following parameters: inhibitory concentration; initial cell concentration; pH value; and membrane integrity. The results showed that the toxicities of organic acids were related to their hydrophobility and significantly affected by the fermentative pH value. In addition, it was revealed that the paired combinations of organic acids did not impose synergetic inhibition. Moreover, it was found that the fermentation inhibition could be alleviated with the simple manipulations by increasing the initial cell concentration, raising the initial pH value and minimizing furfural levels by evaporation during the concentration of hydrolysates. The proposed strategies for minimizing the negative effects could be adopted to improve the xylitol fermentation in the industrial applications.

  12. Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae.

    PubMed

    Zhang, Li; Li, Xin; Yong, Qiang; Yang, Shang-Tian; Ouyang, Jia; Yu, Shiyuan

    2016-03-01

    Inhibitors generated in the pretreatment and hydrolysis of corn stover and corn cob were identified. In general, they inhibited cell growth, lactate dehydrogenase, and lactic acid production but with less or no adverse effect on alcohol dehydrogenase and ethanol production in batch fermentation by Rhizopus oryzae. Furfural and 5-hydroxymethyl furfural (HMF) were highly toxic at 0.5-1 g L(-1), while formic and acetic acids at less than 4 g L(-1) and levulinic acid at 10 g L(-1) were not toxic. Among the phenolic compounds at 1 g L(-1), trans-cinnamic acid and syringaldehyde had the highest toxicity while syringic, ferulic and p-coumaric acids were not toxic. Although these inhibitors were present at concentrations much lower than their separately identified toxic levels, lactic acid fermentation with the hydrolysates showed much inferior performance compared to the control without inhibitor, suggesting synergistic or compounded effects of the lignocellulose-degraded compounds on inhibiting lactic acid fermentation.

  13. Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain.

    PubMed

    Song, Hyohak; Huh, Yun Suk; Lee, Sang Yup; Hong, Won Hi; Hong, Yeon Ki

    2007-12-01

    There have recently been much advances in the production of succinic acid, an important four-carbon dicarboxylic acid for many industrial applications, by fermentation of several natural and engineered bacterial strains. Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce succinic acid with high efficiency, but also produces acetic, formic and lactic acids just like other anaerobic succinic acid producers. We recently reported the development of an engineered M. succiniciproducens LPK7 strain which produces succinic acid as a major fermentation product while producing much reduced by-products. Having an improved succinic acid producer developed, it is equally important to develop a cost-effective downstream process for the recovery of succinic acid. In this paper, we report the development of a simpler and more efficient method for the recovery of succinic acid. For the recovery of succinic acid from the fermentation broth of LPK7 strain, a simple process composed of a single reactive extraction, vacuum distillation, and crystallization yielded highly purified succinic acid (greater than 99.5% purity, wt%) with a high yield of 67.05wt%. When the same recovery process or even multiple reactive extraction steps were applied to the fermentation broth of MBEL55E, lower purity and yield of succinic acid were obtained. These results suggest that succinic acid can be purified in a cost-effective manner by using the fermentation broth of engineered LPK7 strain, showing the importance of integrating the strain development, fermentation and downstream process for optimizing the whole processes for succinic acid production.

  14. Oleic acid content of a meal promotes oleoylethanolamide response and reduces subsequent energy intake in humans.

    PubMed

    Mennella, Ilario; Savarese, Maria; Ferracane, Rosalia; Sacchi, Raffaele; Vitaglione, Paola

    2015-01-01

    Animal data suggest that dietary fat composition may influence endocannabinoid (EC) response and dietary behavior. This study tested the hypothesis that fatty acid composition of a meal can influence the short-term response of ECs and subsequent energy intake in humans. Fifteen volunteers on three occasions were randomly offered a meal containing 30 g of bread and 30 mL of one of three selected oils: sunflower oil (SO), high oleic sunflower oil (HOSO) and virgin olive oil (VOO). Plasma EC concentrations and appetite ratings over 2 h and energy intake over 24 h following the experimental meal were measured. Results showed that after HOSO and VOO consumption the circulating oleoylethanolamide (OEA) was significantly higher than after SO consumption; a concomitantly significant reduction of energy intake was found. For the first time the oleic acid content of a meal was demonstrated to increase the post-prandial response of circulating OEA and to reduce energy intake at subsequent meals in humans.

  15. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis.

    PubMed

    Cheng, Chi; Zhou, Yipin; Lin, Meng; Wei, Peilian; Yang, Shang-Tian

    2017-01-01

    Polymalic acid (PMA) production by Aureobasidium pullulans ZX-10 from soybean hull hydrolysate supplemented with corn steep liquor (CSL) gave a malic acid yield of ∼0.4g/g at a productivity of ∼0.5g/L·h. ZX-10 can also ferment soy molasses, converting all carbohydrates including the raffinose family oligosaccharides to PMA, giving a high titer (71.9g/L) and yield (0.69g/g) at a productivity of 0.29g/L·h in fed-batch fermentation under nitrogen limitation. A higher productivity of 0.64g/L·h was obtained in repeated batch fermentation with cell recycle and CSL supplementation. Cost analysis for a 5000 MT plant shows that malic acid can be produced at $1.10/kg from soy molasses, $1.37/kg from corn, and $1.74/kg from soybean hull. At the market price of $1.75/kg, malic acid production from soy molasses via PMA fermentation offers an economically competitive process for industrial production of bio-based malic acid.

  16. Sequential generation of hydrogen and methane from glutamic acid through combined photo-fermentation and methanogenesis.

    PubMed

    Xia, Ao; Cheng, Jun; Lin, Richen; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2013-03-01

    Glutamic acid can hardly produce hydrogen via dark- or photo-fermentation without pretreatment. In this study, a novel process of acidogenic pretreatment with bacteria and zeolite treatment for NH4(+) removal was proposed to use glutamic acid as feedstock in photo-fermentation for efficient hydrogen production. Glutamic acid pretreated with acidogenic bacteria produces soluble metabolite products. After zeolite treatment, the acidulated solution, which mainly contains acetate, butyrate, and NH4(+), shows a decrease in NH4(+) concentration from 36.7mM to 3.2mM (NH4(+) removal efficiency of 91.1%). After NH4(+) removal, the treated solution is incubated with photosynthetic bacteria, exhibiting a maximum hydrogen yield of 292.9mL/g(-glutamic acid) during photo-fermentation. The residual solution from photo-fermentation is reused by methanogenic bacteria to produce a maximum methane yield of 102.7mL/g. The heating value conversion efficiency from glutamic acid to gas fuel significantly increases from 18.9% during photo-fermentation to 40.9% in the combined photo-fermentation and methanogenesis process.

  17. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation.

    PubMed

    Sawada, Kazutaka; Kitagaki, Hiroshi

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  18. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations.

    PubMed

    Rantsiou, Kalliopi; Dolci, Paola; Giacosa, Simone; Torchio, Fabrizio; Tofalo, Rosanna; Torriani, Sandra; Suzzi, Giovanna; Rolle, Luca; Cocolin, Luca

    2012-03-01

    In this study we investigated the possibility of using Candida zemplinina, as a partner of Saccharomyces cerevisiae, in mixed fermentations of must with a high sugar content, in order to reduce its acetic acid production. Thirty-five C. zemplinina strains, which were isolated from different geographic regions, were molecularly characterized, and their fermentation performances were determined. Five genetically different strains were selected for mixed fermentations with S. cerevisiae. Two types of inoculation were carried out: coinoculation and sequential inoculation. A balance between the two species was generally observed for the first 6 days, after which the levels of C. zemplinina started to decrease. Relevant differences were observed concerning the consumption of sugars, the ethanol and glycerol content, and acetic acid production, depending on which strain was used and which type of inoculation was performed. Sequential inoculation led to the reduction of about half of the acetic acid content compared to the pure S. cerevisiae fermentation, but the ethanol and glycerol amounts were also low. A coinoculation with selected combinations of S. cerevisiae and C. zemplinina resulted in a decrease of ~0.3 g of acetic acid/liter, while maintaining high ethanol and glycerol levels. This study demonstrates that mixed S. cerevisiae and C. zemplinina fermentation could be applied in sweet wine fermentation to reduce the production of acetic acid, connected to the S. cerevisiae osmotic stress response.

  19. Factors affecting alcohol fermentation of wood acid hydrolysate

    SciTech Connect

    Azhar, A.F.; Bery, M.K.; Colcord, A.R.; Roberts, R.S.; Corbitt, G.V.

    1981-01-01

    The inhibitory effects of ethanol and furfural on the growth of Saccharomyces cerevisiae and ethanol production, at different glucose and furfural concentrations, were examined. The data collected during the fermentation of glucose with no furfural present in the medium fitted the model system proposed by Aiba et al. Furfural disappeared rapidly from the medium at the early stages of fermentation, followed by a constant rate which continued throughout the experiment. The initial furfural concentration of 3 g/L decreased the cell multiplication and the fermentation rate to 59 and 33%, respectively. The furfural concentration in this medium reached 60% of its initial value after 27.5 h.

  20. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4

  1. High titer gluconic acid fermentation by Aspergillus niger from dry dilute acid pretreated corn stover without detoxification.

    PubMed

    Zhang, Hongsen; Zhang, Jian; Bao, Jie

    2016-03-01

    This study reported a high titer gluconic acid fermentation using dry dilute acid pretreated corn stover (DDAP) hydrolysate without detoxification. The selected fermenting strain Aspergillus niger SIIM M276 was capable of inhibitor degradation thus no detoxification on pretreated corn stover was required. Parameters of gluconic acid fermentation in corn stover hydrolysate were optimized in flasks and in fermentors to achieve 76.67 g/L gluconic acid with overall yield of 94.91%. The sodium gluconate obtained from corn stover was used as additive for extending setting time of cement mortar and similar function was obtained with starch based sodium gluconate. This study provided the first high titer gluconic acid production from lignocellulosic feedstock with potential of industrial applications.

  2. Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum.

    PubMed

    Wu, Zetang; Yang, Shang-Tian

    2003-04-05

    A novel extractive fermentation for butyric acid production from glucose, using immobilized cells of Clostridium tyrobutyricum in a fibrous bed bioreactor, was developed by using 10% (v/v) Alamine 336 in oleyl alcohol as the extractant contained in a hollow-fiber membrane extractor for selective removal of butyric acid from the fermentation broth. The extractant was simultaneously regenerated by stripping with NaOH in a second membrane extractor. The fermentation pH was self-regulated by a balance between acid production and removal by extraction, and was kept at approximately pH 5.5 throughout the study. Compared with conventional fermentation, extractive fermentation resulted in a much higher product concentration (>300 g/L) and product purity (91%). It also resulted in higher reactor productivity (7.37 g/L. h) and butyric acid yield (0.45 g/g). Without on-line extraction to remove the acid products, at the optimal pH of 6.0, the final butyric acid concentration was only approximately 43.4 g/L, butyric acid yield was 0.423 g/g, and reactor productivity was 6.77 g/L. h. These values were much lower at pH 5.5: 20.4 g/L, 0.38 g/g, and 5.11 g/L. h, respectively. The improved performance for extractive fermentation can be attributed to the reduced product inhibition by selective removal of butyric acid from the fermentation broth. The solvent was found to be toxic to free cells in suspension, but not harmful to cells immobilized in the fibrous bed. The process was stable and provided consistent long-term performance for the entire 2-week period of study.

  3. Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth.

    PubMed

    Prochaska, Krystyna; Staszak, Katarzyna; Woźniak-Budych, Marta Joanna; Regel-Rosocka, Magdalena; Adamczak, Michalina; Wiśniewski, Maciej; Staniewski, Jacek

    2014-09-01

    A novel approach based on a hybrid system allowing nanofiltration, bipolar electrodialysis and reactive extraction, was proposed to remove fumaric acid from fermentation broth left after bioconversion of glycerol. The fumaric salts can be concentrated in the nanofiltration process to a high yield (80-95% depending on pressure), fumaric acid can be selectively separated from other fermentation components, as well as sodium fumarate can be conversed into the acid form in bipolar electrodialysis process (stack consists of bipolar and anion-exchange membranes). Reactive extraction with quaternary ammonium chloride (Aliquat 336) or alkylphosphine oxides (Cyanex 923) solutions (yield between 60% and 98%) was applied as the final step for fumaric acid recovery from aqueous streams after the membrane techniques. The hybrid system permitting nanofiltration, bipolar electrodialysis and reactive extraction was found effective for recovery of fumaric acid from the fermentation broth.

  4. Determination of non-volatile and volatile organic acids in Korean traditional fermented soybean paste (Doenjang).

    PubMed

    Shukla, Shruti; Choi, Tae Bong; Park, Hae-Kyong; Kim, Myunghee; Lee, In Koo; Kim, Jong-Kyu

    2010-01-01

    Organic acids are formed in food as a result of metabolism of large molecular mass compounds. These organic acids play an important role in the taste and aroma of fermented food products. Doenjang is a traditional Korean fermented soybean paste product that provides a major source of protein. The quantitative data for volatile and non-volatile organic acid contents of 18 samples of Doenjang were determined by comparing the abundances of each peak by gas (GC) and high performance liquid chromatography (HPLC). The mean values of volatile organic acids (acetic acid, butyric acid, propionic acid and 3-methyl butanoic acid), determined in 18 Doenjang samples, were found to be 91.73, 29.54, 70.07 and 19.80 mg%, respectively, whereas the mean values of non-volatile organic acids, such as oxalic acid, citric acid, lactic acid and succinic acid, were noted to be 14.69, 5.56, 9.95 and 0.21 mg%, respectively. Malonic and glutaric acids were absent in all the tested samples of Doenjang. The findings of this study suggest that determination of organic acid contents by GC and HPLC can be considered as an affective approach to evaluate the quality characteristics of fermented food products.

  5. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation.

    PubMed

    Lee, Ji ye; Li, Pan; Lee, Jieun; Ryu, Hyun Jin; Oh, Kyeong Keun

    2013-01-01

    An extremely low acid (ELA) pretreatment using 0.06% (w/w) sulfuric acid at 170 °C for 15 min was employed to extract non-glucan components from Saccharina japonica, a brown macroalgae. Subsequent simultaneous saccharification and fermentation (SSF) was conducted using Saccharomyces cerevisiae DK 410362 and cellulase (15 FPU/g-glucan) and ß-glucosidase (70 pNPGU/g-glucan). Deionized water was used for making fermentation suspension. After the ELA pretreatment, a glucan content of 29.10% and an enzymatic digestibility of 83.96% was obtained for pretreated S. japonica. These values are 4.2- and 2.4-fold higher, respectively, than those of obtained with untreated S. japonica. In SSF, a bioethanol concentration of 6.65 g/L was obtained, corresponding to a glucose equivalent concentration of 13.01 g/L, which indicated an SSF yield of 67.41% based on the total available glucan of the pretreated S. japonica. The remaining separated liquid hydrolysate, which contains mannitol and alginate-derived oligosaccharides can be applied to other fermentations.

  6. Influence of Oleic Acid on Rumen Fermentation and Fatty Acid Formation In Vitro

    PubMed Central

    Tang, Shaoxun; Guan, Leluo; He, Zhixiong; Guan, Yongjuan; Tan, Zhiliang; Han, Xuefeng; Zhou, Chuanshe; Kang, Jinhe; Wang, Min

    2016-01-01

    A series of batch cultures were conducted to investigate the effects of oleic acid (OA) on in vitro ruminal dry matter degradability (IVDMD), gas production, methane (CH4) and hydrogen (H2) production, and proportion of fatty acids. Rumen fluid was collected from fistulated goats, diluted with incubation buffer, and then incubated with 500 mg Leymus chinensis meal supplemented with different amounts of OA (0, 20, 40, and 60 mg for the CON, OA20, OA40 and OA60 groups, respectively). Incubation was carried out anaerobically at 39°C for 48 h, and the samples were taken at 12, 24 and 48 h and subjected to laboratory analysis. Supplementation of OA decreased IVDMD, the cumulative gas production, theoretical maximum of gas production and CH4 production, but increased H2 production. However, no effect was observed on any parameters of rumen fermentation (pH, ammonia, production of acetate, propionate and butyrate and total volatile fatty acid production). The concentrations of some beneficial fatty acids, such as cis monounsaturated fatty acids and conjugated linoleic acid (CLA) were higher (P < 0.05) from OA groups than those from the control group at 12 h incubation. In summary, these results suggest that the OA supplementation in diet can reduce methane production and increase the amount of some beneficial fatty acids in vitro. PMID:27299526

  7. Production of fermentable sugars from corn fiber using soaking in aqueous ammonia (saa) pretreatment and fermentation to succinic acid by Escherichia coli afp184

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of corn fiber (CF), a by-product from the corn-to-ethanol conversion process, into fermentable sugar and succinic acid was investigated using soaking in aqueous ammonia (SAA) pretreatment followed by biological conversions including enzymatic hydrolysis and fermentation using genetically ...

  8. Common Amino Acid Subsequences in a Universal Proteome—Relevance for Food Science

    PubMed Central

    Minkiewicz, Piotr; Darewicz, Małgorzata; Iwaniak, Anna; Sokołowska, Jolanta; Starowicz, Piotr; Bucholska, Justyna; Hrynkiewicz, Monika

    2015-01-01

    A common subsequence is a fragment of the amino acid chain that occurs in more than one protein. Common subsequences may be an object of interest for food scientists as biologically active peptides, epitopes, and/or protein markers that are used in comparative proteomics. An individual bioactive fragment, in particular the shortest fragment containing two or three amino acid residues, may occur in many protein sequences. An individual linear epitope may also be present in multiple sequences of precursor proteins. Although recent recommendations for prediction of allergenicity and cross-reactivity include not only sequence identity, but also similarities in secondary and tertiary structures surrounding the common fragment, local sequence identity may be used to screen protein sequence databases for potential allergens in silico. The main weakness of the screening process is that it overlooks allergens and cross-reactivity cases without identical fragments corresponding to linear epitopes. A single peptide may also serve as a marker of a group of allergens that belong to the same family and, possibly, reveal cross-reactivity. This review article discusses the benefits for food scientists that follow from the common subsequences concept. PMID:26340620

  9. Inhibition of microbial xylitol production by acetic acid and its relation with fermentative parameters.

    PubMed

    Morita, T A; Silva, S S

    2000-01-01

    Precipitated sugarcane bagasse hemicellulosic hydrolysate containing acetic acid was fermented by Candida guilliermondii FTI20037 under different operational conditions (pH 4.0 and 7.0, three aeration rates). At pH 7.0 and kLa of 10 (0.75 vvm) and 22.5/h (3.0 vvm) the acetic acid had not been consumed until the end of the fermentations, whereas at the same pH and kLa of 35/h (4.5 vvm) the acid was rapidly consumed and acetic acid inhibition was not important. On the other hand, fermentations at an initial pH of 4.0 and kLa of 22.5 and 35/h required less time for the acid uptake than fermentations at kLa of 10/h. The acetic acid assimilation by the yeast indicates the ability of this strain to ferment in partially detoxified medium, making possible the utilization of the sugarcane bagasse hydrolysate in this bio-process. The effects on xylitol yield and production are reported.

  10. Kinetic modeling of lactic acid production from batch submerged fermentation of cheese whey

    SciTech Connect

    Tango, M.S.A.; Ghaly, A.E.

    1999-12-01

    A kinetic model for the production of lactic acid through batch submerged fermentation of cheese whey using Lactobacillus helveticus was developed. The model accounts for the effect of substrate limitation, substrate inhibition, lactic acid inhibition, maintenance energy and cell death on the cell growth, substrate utilization, and lactic acid production during the fermentation process. The model was evaluated using experimental data from Tango and Ghaly (1999). The predicted results obtained from the model compared well with experimental (R{sup 2} = 0.92--0.98). The model was also used to investigate the effect of the initial substrate concentration on the lag period, fermentation time, specific growth rate, and cell productivity during batch fermentation. The maximum specific growth rate ({micro}{sub m}), the saturation constant (K{sub S}), the substrate inhibition constant (K{sub IS}), and the lactic acid inhibition constant (K{sub IP}) were found to be 0.25h{sup {minus}1}, 0.9 g/L, 250.0 g/L, and 60.0 g/L, respectively. High initial lactose concentration in cheese whey reduced both the specific growth rate and substrate utilization rate due to the substrate inhibition phenomenon. The maximum lactic acid production occurred at about 100 g/L initial lactose concentration after 40 h of fermentation. The maximum lactic acid concentration above which Lactobacillus helveticus did not grow was found to be 80.0 g/L.

  11. Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici

    SciTech Connect

    Jin, Z.; Yang, S.T.

    1998-05-01

    An extractive fermentation process using an amine extractant and a hollow-fiber membrane extractor to selectively remove propionic acid from the fermentation broth was developed to produce propionate from lactose. Compared to the conventional batch fermentation, the extractive fermentation had a much higher productivity ({approximately}1 g/(L{center_dot}h) or 5-fold increase), higher propionate yield (up to 0.66 g/g or more than 20% increase), higher final product concentration (75 g/L or higher), and higher product purity ({approximately}90%). Meanwhile, acetate and succinate productions in the extractive fermentation were significantly reduced. The improved fermentation performance can be attributed to the reduced product inhibition and a possible metabolic pathway shift to favor more propionic but less acetic and succinic acid production. The process was stable and gave consistent long-term performance over the 1.5-month period studied. The effects of propionate concentration, pH, and amine content in the solvent on the extractive fermentation were also studied and are discussed in this paper.

  12. Modelling of Batch Lactic Acid Fermentation in
the Presence of Anionic Clay

    PubMed Central

    Jinescu, Cosmin; Aruş, Vasilica Alisa; Nistor, Ileana Denisa

    2014-01-01

    Summary Batch fermentation of milk inoculated with lactic acid bacteria was conducted in the presence of hydrotalcite-type anionic clay under static and ultrasonic conditions. An experimental study of the effect of fermentation temperature (t=38–43 °C), clay/milk ratio (R=1–7.5 g/L) and ultrasonic field (ν=0 and 35 kHz) on process dynamics was performed. A mathematical model was selected to describe the fermentation process kinetics and its parameters were estimated based on experimental data. A good agreement between the experimental and simulated results was achieved. Consequently, the model can be employed to predict the dynamics of batch lactic acid fermentation with values of process variables in the studied ranges. A statistical analysis of the data based on a 23 factorial experiment was performed in order to express experimental and model-regressed process responses depending on t, R and ν factors. PMID:27904318

  13. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation

    PubMed Central

    2010-01-01

    Background Gamma-aminobutyric acid is a major inhibitory neurotransmitter in mammalian brains, and has several well-known physiological functions. Lactic acid bacteria possess special physiological activities and are generally regarded as safe. Therefore, using lactic acid bacteria as cell factories for gamma-aminobutyric acid production is a fascinating project and opens up a vast range of prospects for making use of GABA and LAB. We previously screened a high GABA-producer Lactobacillus brevis NCL912 and optimized its fermentation medium composition. The results indicated that the strain showed potential in large-scale fermentation for the production of gamma-aminobutyric acid. To increase the yielding of GABA, further study on the fermentation process is needed before the industrial application in the future. In this article we investigated the impacts of pyridoxal-5'-phosphate, pH, temperature and initial glutamate concentration on gamma-aminobutyric acid production by Lactobacillus brevis NCL912 in flask cultures. According to the data obtained in the above, a simple and effective fed-batch fermentation method was developed to highly efficiently convert glutamate to gamma-aminobutyric acid. Results Pyridoxal-5'-phosphate did not affect the cell growth and gamma-aminobutyric acid production of Lb. brevis NCL912. Temperature, pH and initial glutamate concentration had significant effects on the cell growth and gamma-aminobutyric acid production of Lb. brevis NCL912. The optimal temperature, pH and initial glutamate concentration were 30-35°C, 5.0 and 250-500 mM. In the following fed-batch fermentations, temperature, pH and initial glutamate concentration were fixed as 32°C, 5.0 and 400 mM. 280.70 g (1.5 mol) and 224.56 g (1.2 mol) glutamate were supplemented into the bioreactor at 12 h and 24 h, respectively. Under the selected fermentation conditions, gamma-aminobutyric acid was rapidly produced at the first 36 h and almost not produced after then. The gamma

  14. Impact of gluconic fermentation of strawberry using acetic acid bacteria on amino acids and biogenic amines profile.

    PubMed

    Ordóñez, J L; Sainz, F; Callejón, R M; Troncoso, A M; Torija, M J; García-Parrilla, M C

    2015-07-01

    This paper studies the amino acid profile of beverages obtained through the fermentation of strawberry purée by a surface culture using three strains belonging to different acetic acid bacteria species (one of Gluconobacter japonicus, one of Gluconobacter oxydans and one of Acetobacter malorum). An HPLC-UV method involving diethyl ethoxymethylenemalonate (DEEMM) was adapted and validated. From the entire set of 21 amino acids, multiple linear regressions showed that glutamine, alanine, arginine, tryptophan, GABA and proline were significantly related to the fermentation process. Furthermore, linear discriminant analysis classified 100% of the samples correctly in accordance with the microorganism involved. G. japonicus consumed glucose most quickly and achieved the greatest decrease in amino acid concentration. None of the 8 biogenic amines were detected in the final products, which could serve as a safety guarantee for these strawberry gluconic fermentation beverages, in this regard.

  15. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects.

    PubMed

    Mondala, Andro H

    2015-04-01

    Various economic and environmental sustainability concerns as well as consumer preference for bio-based products from natural sources have paved the way for the development and expansion of biorefining technologies. These involve the conversion of renewable biomass feedstock to fuels and chemicals using biological systems as alternatives to petroleum-based products. Filamentous fungi possess an expansive portfolio of products including the multifunctional organic acids itaconic, fumaric, and malic acids that have wide-ranging current applications and potentially addressable markets as platform chemicals. However, current bioprocessing technologies for the production of these compounds are mostly based on submerged fermentation, which necessitates physicochemical pretreatment and hydrolysis of lignocellulose biomass to soluble fermentable sugars in liquid media. This review will focus on current research work on fungal production of itaconic, fumaric, and malic acids and perspectives on the potential application of solid-state fungal cultivation techniques for the consolidated hydrolysis and organic acid fermentation of lignocellulosic biomass.

  16. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis.

    PubMed

    Choi, Hwa-Young; Ryu, Hee-Kyoung; Park, Kyung-Min; Lee, Eun Gyo; Lee, Hongweon; Kim, Seon-Won; Choi, Eui-Sung

    2012-06-01

    Lactic acid fermentation of Jerusalem artichoke tuber was performed with strains of Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis prior to fermentation. Some strains of L. paracasei, notably KCTC13090 and KCTC13169, could ferment hot-water extract of Jerusalem artichoke tuber more efficiently compared with other Lactobacillus spp. such as L. casei type strain KCTC3109. The L. paracasei strains could utilize almost completely the fructo-oligosaccharides present in Jerusalem artichoke. Inulin-fermenting L. paracasei strains produced c.a. six times more lactic acid compared with L. casei KCTC3109. Direct lactic fermentation of Jerusalem artichoke tuber extract at 111.6g/L of sugar content with a supplement of 5 g/L of yeast extract by L. paracasei KCTC13169 in a 5L jar fermentor produced 92.5 ce:hsp sp="0.25"/>g/L of lactic acid with 16.8 g/L fructose equivalent remained unutilized in 72 h. The conversion efficiency of inulin-type sugars to lactic acid was 98% of the theoretical yield.

  17. Local domestication of lactic acid bacteria via cassava beer fermentation

    PubMed Central

    Meadow, James F.; Liebert, Melissa A.; Cepon-Robins, Tara J.; Gildner, Theresa E.; Urlacher, Samuel S.; Bohannan, Brendan J.M.; Snodgrass, J. Josh; Sugiyama, Lawrence S.

    2014-01-01

    Cassava beer, or chicha, is typically consumed daily by the indigenous Shuar people of the Ecuadorian Amazon. This traditional beverage made from cassava tuber (Manihot esculenta) is thought to improve nutritional quality and flavor while extending shelf life in a tropical climate. Bacteria responsible for chicha fermentation could be a source of microbes for the human microbiome, but little is known regarding the microbiology of chicha. We investigated bacterial community composition of chicha batches using Illumina high-throughput sequencing. Fermented chicha samples were collected from seven Shuar households in two neighboring villages in the Morona-Santiago region of Ecuador, and the composition of the bacterial communities within each chicha sample was determined by sequencing a region of the 16S ribosomal gene. Members of the genus Lactobacillus dominated all samples. Significantly greater phylogenetic similarity was observed among chicha samples taken within a village than those from different villages. Community composition varied among chicha samples, even those separated by short geographic distances, suggesting that ecological and/or evolutionary processes, including human-mediated factors, may be responsible for creating locally distinct ferments. Our results add to evidence from other fermentation systems suggesting that traditional fermentation may be a form of domestication, providing endemic beneficial inocula for consumers, but additional research is needed to identify the mechanisms and extent of microbial dispersal. PMID:25071997

  18. Inhibition effects on fermentation of hardwood extracted hemicelluloses by acetic acid and sodium.

    PubMed

    Walton, Sara; van Heiningen, Adriaan; van Walsum, Peter

    2010-03-01

    Extraction of hemicellulose from hardwood chips prior to pulping is a possible method for producing ethanol and acetic acid in an integrated forest bio-refinery, adding value to wood components normally relegated to boiler fuel. Hemicellulose was extracted from hardwood chips using green liquor, a pulping liquor intermediate consisting of aqueous NaOH, Na(2)CO(3), and Na(2)S, at 160 degrees C, held for 110 min in a 20 L rocking digester. The extracted liquor contained 3.7% solids and had a pH of 5.6. The organic content of the extracts was mainly xylo-oligosaccharides and acetic acid. Because it was dilute, the hemicellulose extract was concentrated by evaporation in a thin film evaporator. Concentrates from the evaporator reached levels of up to 10% solids. Inhibitors such as acetic acid and sodium were also concentrated by this method, presenting a challenge for the fermentation organisms. Fermentation experiments were conducted with Escherichia coli K011. The un-concentrated extract supported approximately 70% conversion of the initial sugars in 14 h. An extract evaporated down to 6% solids was also fermentable while a 10% solids extract was not initially fermentable. Strain conditioning was later found to enable fermentation at this level of concentration. Alternative processing schemes or inhibitor removal prior to fermentation are necessary to produce ethanol economically.

  19. Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions.

    PubMed

    Yuan, Yue; Peng, Yongzhen; Liu, Ye; Jin, Baodan; Wang, Bo; Wang, Shuying

    2014-12-01

    The change in pH during excess sludge (ES) fermentation of varying sludge concentrations was investigated in a series of reactors at alkaline, acidic, and neutral pHs. The results showed that the changes were significantly affected by fermentative conditions. Under different conditions, pH exhibited changing profiles. When ES was fermented under alkaline conditions, pH decreased in a range of (10±1). At the beginning of alkaline fermentation, pH dropped significantly, at intervals of 4h, 4h, and 5h with sludge concentrations of 8665.6mg/L, 6498.8mg/L, and 4332.5mg/L, then it would become moderate. However, under acidic conditions, pH increased from 4 to 5. Finally, under neutral conditions pH exhibited a decrease then an increase throughout entire fermentation process. Further study showed short-chain fatty acids (SCFAs), ammonia nitrogen and cations contributed to pH change under various fermentation conditions. This study presents a novel strategy based on pH change to predict whether SCFAs reach their stable stage.

  20. Fermentation of dilute acid pretreated Populus by Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis

    DOE PAGES

    Yee, Kelsey L.; Rodriguez, Jr., Miguel; Hamilton, Choo Yieng; ...

    2015-07-25

    Consolidated bioprocessing (CBP), which merges enzyme production, biomass hydrolysis, and fermentation into a single step, has the potential to become an efficient and economic strategy for the bioconversion of lignocellulosic feedstocks to transportation fuels or chemicals. In this study, we evaluated Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis, three , thermophilic,cellulolytic, mixed-acid fermenting candidate CBP microorganisms, for their fermentation capabilities using dilute acid pretreated Populus as a model biomass feedstock. Under pH controlled, anaerobic fermentation conditions, each candidate successfully digested a minimum of 75% of the cellulose from dilute acid pretreated Populus, as indicated by an increase in planktonic cellsmore » and end-product metabolites and a concurrent decrease in glucan content. C. thermocellum, which employs a cellulosomal approach to biomass degradation, required 120 hours to achieve 75% cellulose utilization. In contrast, the non-cellulosomal, secreted hydrolytic enzyme system of the Caldicellulosiruptor sp. required 300 hours to achieve similar results. End-point fermentation conversions for C. thermocellum, C. bescii, and C. obsidiansis were determined to be 0.29, 0.34, and 0.38 grams of total metabolites per gram of loaded glucan, respectively. This data provide a starting point for future strain engineering efforts that can serve to improve the biomass fermentation capabilities of these three promising candidate CBP platforms.« less

  1. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium sp. strain RPT-4213

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Clostridium sp. strain RPT-4213 was found producing butyrate under strict anaerobic conditions. This strain produced 9.47 g L-1 butyric acid from MRS media (0.48 g/g glucose). RPT-4213 was also used to ferment dilute acid pretreated hydrolysates including wheat straw (WSH), corn fiber (CFH...

  2. Propionic acid fermentation by Propionibacterium freudenreichii CCTCC M207015 in a multi-point fibrous-bed bioreactor.

    PubMed

    Feng, Xiao-Hai; Chen, Fei; Xu, Hong; Wu, Bo; Yao, Jun; Ying, Han-Jie; Ouyang, Ping-Kai

    2010-11-01

    Propionic acid was produced in a multi-point fibrous-bed (MFB) bioreactor by Propionibacterium freudenreichii CCTCC M207015. The MFB bioreactor, comprising spiral cotton fiber packed in a modified 7.5-l bioreactor, was effective for cell-immobilized propionic acid production compared with conventional free cell fermentation. Batch fermentations at various glucose concentrations were investigated in the MFB bioreactor. Based on analysis of the time course of production, a fed-batch strategy was applied for propionic acid production. The maximum propionic acid concentration was 67.05 g l(-1) after 496 h of fermentation, and the proportion of propionic acid to total organic acids was approximately 78.28% (w/w). The MFB bioreactor exhibited excellent production stability during batch fermentation and the propionic acid productivity remained high after 78 days of fermentation.

  3. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.

    PubMed

    Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi

    2016-12-01

    The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production.

  4. Effect of phosphoric acid as a catalyst on the hydrothermal pretreatment and acidogenic fermentation of food waste.

    PubMed

    Shen, Dongsheng; Wang, Kun; Yin, Jun; Chen, Ting; Yu, Xiaoqin

    2016-05-01

    The hydrothermal method was applied to food waste (FW) pretreatment with phosphoric acid as a catalyst. The content of soluble substances such as protein and carbohydrate in the FW increased after the hydrothermal pretreatment with phosphoric acid addition (⩽5%). The SCOD approached approximately 29.0g/L in 5% phosphoric acid group, which is almost 65% more than the original FW. The hydrothermal condition was 160°C for 10min, which means that at least 40% of energy and 60% of reaction time were saved to achieve the expected pretreatment effect. Subsequent fermentation tests showed that the optimal dosage of phosphoric acid was 3% with a VFA yield of 0.763g/gVSremoval, but the increase in salinity caused by phosphoric acid could adversely affect the acidogenesis. With an increase in the quantity of phosphoric acid, among the VFAs, the percentage of propionic acid decreased and that of butyric acid increased. The PCR-DGGE analysis indicated that the microbial diversity could decrease with excessive phosphoric acid, which resulted in a low VFA yield.

  5. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    PubMed

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  6. Production of L-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor.

    PubMed

    Wu, Xuefeng; Jiang, Shaotong; Liu, Mo; Pan, Lijun; Zheng, Zhi; Luo, Shuizhong

    2011-04-01

    Semicontinuous fermentation using pellets of Rhizopus oryzae has been recognized as a promising technology for L-lactic acid production. In this work, semicontinuous fermentation of R. oryzae AS 3.819 for L-lactic acid production has been developed with high L-lactic acid yield and volumetric productivity. The effects of factors such as inoculations, CaCO₃ addition time, and temperature on L-lactic acid yield and R. oryzae morphology were researched in detail. The results showed that optimal fermentation conditions for the first cycle were: inoculation with 4% spore suspension, CaCO₃ added to the culture medium at the beginning of culture, and culture temperature of 32-34 °C. In orthogonal experiments, high L-lactic acid yield was achieved when the feeding medium was (g/l): glucose, 100; (NH₄)₂SO₄, 2; KH₂PO₄, 0.1; ZnSO₄·7H₂O, 0.33; MgSO₄·7H₂O, 0.15; CaCO₃, 50. Twenty cycles of semicontinuous fermentation were carried out in flask culture. L: -lactic acid yield was 78.75% for the first cycle and 80-90% for the repeated cycles; the activities of lactate dehydrogenases (LDH) were 7.2-9.2 U/mg; fermentation was completed in 24 h for each repeated cycle. In a 7-l magnetically stirred fermentor, semicontinuous fermentation lasted for 25 cycles using pellets of R. oryzae AS 3.819 under the optimal conditions determined from flask cultures. The final L-lactic acid concentration (LLAC) reached 103.7 g/l, and the volumetric productivity was 2.16 g/(l·h) for the first cycle; in the following 19 repeated cycles, the final LLAC reached 81-95 g/l, and the volumetric productivities were 3.40-3.85 g/(l·h).

  7. Modulation of Acetone-Butanol-Ethanol Fermentation by Carbon Monoxide and Organic Acids

    PubMed Central

    Datta, Rathin; Zeikus, J. G.

    1985-01-01

    Metabolic modulation of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum with carbon monoxide (CO) and organic acids is described. CO, which is a known inhibitor of hydrogenase, was found to be effective in the concentration range of dissolved CO corresponding to a CO partial pressure of 0.1 to 0.2 atm. Metabolic modulation by CO was particularly effective when organic acids such as acetic and butyric acids were added to the fermentation as electron sinks. The uptake of organic acids was enhanced, and increases in butyric acid uptake by 50 to 200% over control were observed. Hydrogen production could be reduced by 50% and the ratio of solvents could be controlled by CO modulation and organic acid addition. Acetone production could be eliminated if desired. Butanol yield could be increased by 10 to 15%. Total solvent yield could be increased 1 to 3% and the electron efficiency to acetone-butanol-ethanol solvents could be increased from 73 to 78% for controls to 80 to 85% for CO- and organic acid-modulated fermentations. Based on these results, the dynamic nature of electron flow in this fermentation has been elucidated and mechanisms for metabolic control have been hypothesized. PMID:16346746

  8. Inhibition of Yeast Growth by Octanoic and Decanoic Acids Produced during Ethanolic Fermentation

    PubMed Central

    Viegas, Cristina A.; Rosa, M. Fernanda; Sá-Correia, Isabel; Novais, Júlio M.

    1989-01-01

    The inhibition of growth by octanoic or decanoic acids, two subproducts of ethanolic fermentation, was evaluated in Saccharomyces cerevisiae and Kluyveromyces marxianus in association with ethanol, the main product of fermentation. In both strains, octanoic and decanoic acids, at concentrations up to 16 and 8 mg/liter, respectively, decreased the maximum specific growth rate and the biomass yield at 30°C as an exponential function of the fatty acid concentration and increased the duration of growth latency. These toxic effects increased with a decrease in pH in the range of 5.4 to 3.0, indicating that the undissociated form is the toxic molecule. Decanoic acid was more toxic than octanoic acid. The concentrations of octanoic and decanoic acids were determined during the ethanolic fermentation (30°C) of two laboratory media (mineral and complex) by S. cerevisiae and of Jerusalem artichoke juice by K. marxianus. Based on the concentrations detected (0.7 to 23 mg/liter) and the kinetics of growth inhibition, the presence of octanoic and decanoic acids cannot be ignored in the evaluation of the overall inhibition of ethanolic fermentation. PMID:16347826

  9. Pretreatment of corn stover with diluted acetic acid for enhancement of acidogenic fermentation.

    PubMed

    Zhao, Xu; Wang, Lijuan; Lu, Xuebin; Zhang, Shuting

    2014-04-01

    A Box-Behnken design of response surface method was used to optimize acetic acid-catalyzed hydrothermal pretreatment of corn stover, in respect to acid concentration (0.05-0.25%), treatment time (5-15 min) and reaction temperature (180-210°C). Acidogenic fermentations with different initial pH and hydrolyzates were also measured to evaluate the optimal pretreatment conditions for maximizing acid production. The results showed that pretreatment with 0.25% acetic acid at 191°C for 7.74 min was found to be the most optimal condition for pretreatment of corn stover under which the production of acids can reach the highest level. Acidogenic fermentation with the hydrolyzate of pretreatment at the optimal condition at the initial pH=5 was shown to be butyric acid type fermentation, producing 21.84 g acetic acid, 7.246 g propionic acid, 9.170 butyric acid and 1.035 g isovaleric acid from 100g of corn stover in 900 g of water containing 2.25 g acetic acid.

  10. Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites.

    PubMed

    Kumar, Mrinal Nishant; Gialleli, Angelika-Ioanna; Masson, Jean Bernard; Kandylis, Panagiotis; Bekatorou, Argyro; Koutinas, Athanasios A; Kanellaki, Maria

    2014-08-01

    Porous delignified cellulose (or tubular cellulose, abbr. TC) from Indian Mango (Mangifera indica) and Sal (Shorea robusta) wood and Rice husk, and TC/Ca-alginate/polylactic acid composites, were used as Lactobacillus bulgaricus immobilisation carriers leading to improvements in lactic acid fermentation of cheese whey and synthetic lactose media, compared to free cells. Specifically, shorter fermentation rates, higher lactic acid yields (g/g sugar utilised) and productivities (g/Ld), and higher amounts of volatile by-products were achieved, while no significant differences were observed on the performance of the different immobilised biocatalysts. The proposed biocatalysts are of food grade purity, cheap and easy to prepare, and they are attractive for bioprocess development based on immobilised cells. Such composite biocatalysts may be used for the co-immobilisation of different microorganisms or enzymes (in separate layers of the biocatalyst), to efficiently conduct different types of fermentations in the same bioreactor, avoiding inhibition problems of chemical or biological (competition) nature.

  11. Probiotic potential of noni juice fermented with lactic acid bacteria and bifidobacteria.

    PubMed

    Wang, Chung-Yi; Ng, Chang-Chai; Su, Hsuan; Tzeng, Wen-Sheng; Shyu, Yuan-Tay

    2009-01-01

    The present study assesses the feasibility of noni as a raw substrate for the production of probiotic noni juice by lactic acid bacteria (Lactobacilluscasei and Lactobacillus plantarum) and bifidobacteria (Bifidobacteriumlongum). Changes in pH, acidity, sugar content, cell survival and antioxidant properties during fermentation were monitored. All tested strains grew well on noni juice, reaching nearly 10⁹ colony-forming units/ml after 48 h fermentation. L.casei produced less lactic acid than B.longum and L. plantarum. After 4 weeks of cold storage at 4°C, B.longum and L. plantarum survived under low-pH conditions in fermented noni juice. In contrast, L.casei exhibited no cell viability after 3 weeks. Moreover, noni juice fermented with B.longum had a high antioxidant capacity that did not differ significantly (P <0.05) from that of lactic acid bacteria. Finally, we found that B.longum and L. plantarum are optimal probiotics for fermentation with noni juice.

  12. Fermentation of de-oiled algal biomass by Lactobacillus casei for production of lactic acid.

    PubMed

    Overbeck, Tom; Steele, James L; Broadbent, Jeff R

    2016-12-01

    De-oiled algal biomass (algal cake) generated as waste byproduct during algal biodiesel production is a promising fermentable substrate for co-production of value-added chemicals in biorefinery systems. We explored the ability of Lactobacillus casei 12A to ferment algal cake for co-production of lactic acid. Carbohydrate and amino acid availability were determined to be limiting nutritional requirements for growth and lactic acid production by L. casei. These nutritional requirements were effectively addressed through enzymatic hydrolysis of the algal cake material using α-amylase, cellulase (endo-1,4-β-D-glucanase), and pepsin. Results confirm fermentation of algal cake for production of value-added chemicals is a promising avenue for increasing the overall cost competiveness of the algal biodiesel production process.

  13. Source Tracking and Succession of Kimchi Lactic Acid Bacteria during Fermentation.

    PubMed

    Lee, Se Hee; Jung, Ji Young; Jeon, Che Ok

    2015-08-01

    This study aimed at evaluating raw materials as potential lactic acid bacteria (LAB) sources for kimchi fermentation and investigating LAB successions during fermentation. The bacterial abundances and communities of five different sets of raw materials were investigated using plate-counting and pyrosequencing. LAB were found to be highly abundant in all garlic samples, suggesting that garlic may be a major LAB source for kimchi fermentation. LAB were observed in three and two out of five ginger and leek samples, respectively, indicating that they can also be potential important LAB sources. LAB were identified in only one cabbage sample with low abundance, suggesting that cabbage may not be an important LAB source. Bacterial successions during fermentation in the five kimchi samples were investigated by community analysis using pyrosequencing. LAB communities in initial kimchi were similar to the combined LAB communities of individual raw materials, suggesting that kimchi LAB were derived from their raw materials. LAB community analyses showed that species in the genera Leuconostoc, Lactobacillus, and Weissella were key players in kimchi fermentation, but their successions during fermentation varied with the species, indicating that members of the key genera may have different acid tolerance or growth competitiveness depending on their respective species.

  14. Identification of didecyldimethylammonium salts and salicylic acid as antimicrobial compounds in commercial fermented radish kimchi.

    PubMed

    Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

    2015-03-25

    Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected.

  15. Screening of lactic acid bacteria and bifidobacteria for potential probiotic use in Iberian dry fermented sausages.

    PubMed

    Ruiz-Moyano, Santiago; Martín, Alberto; Benito, María José; Nevado, Francisco Pérez; de Guía Córdoba, María

    2008-11-01

    The purpose of this study was to select lactic acid bacteria and bifibobacteria strains as potential probiotic cultures during the processing of Iberian dry fermented sausages. A total of 1000 strains were isolated from Iberian dry fermented sausages (363), and human (337) and pig faeces (300) in different culture media. Around 30% of these strains, mainly isolated from Iberian dry fermented sausages in LAMVAB agar, were pre-selected for testing as potential probiotics by their ability to grow adequately at the pH values and NaCl concentrations of these meat products during the ripening process. Of the in vitro investigations used to predict the survival of a strain in conditions present in the gastro intestinal tract, exposure to pH 2.5 showed itself to be a highly discriminating factor with only 51 out of 312 pre-selected strains resisting adequately after 1.5h of exposure. All acid-resistant isolates identified as lactobacilli originated from human faeces (Lactobacillus casei and Lactobacillus fermentum) and pig faeces (Lactobacillus reuteri, Lactobacillus animalis, Lactobacillus murinus, and Lactobacillus vaginalis). Pediococcus acidilactici strains were isolated from Iberian dry fermented sausages and pig faeces, whereas the greatest number of Enterococcus strains were identified as Enterococcus faecium, with this species being isolated from Iberian dry fermented sausages, and human and pig faeces. Most of these strains are promising probiotic meat culture candidates suitable for Iberian dry fermented sausages.

  16. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review

    PubMed Central

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  17. High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy.

    PubMed

    Fu, Yong-Qian; Yin, Long-Fei; Zhu, Hua-Yue; Jiang, Ru

    2016-10-01

    In this study, lactic acid fermentation by Rhizopus oryzae was investigated using the two different fermentation strategies of one-step fermentation (OSF) and conventional fermentation (CF). Compared to CF, OSF reduced the demurrage of the production process and increased the production of lactic acid. However, the qp was significantly lower than during CF. Based on analysis of μ, qs and qp, a novel modified OSF strategy was proposed. This strategy aimed to achieve a high final concentration of lactic acid, and a high qp by R. oryzae. In this strategy, the maximum lactic acid concentration and productivity of the lactic acid production stage reached 158g/l and 5.45g/(lh), which were 177% and 366% higher, respectively, than the best results from CF. Importantly, the qp and yield did not decrease. This strategy is a convenient and economical method for l-lactic acid fermentation by R. oryzae.

  18. Fermentation of Acid-pretreated Corn Stover to Ethanol Without Detoxification Using Pichia stipitis

    NASA Astrophysics Data System (ADS)

    Agbogbo, Frank K.; Haagensen, Frank D.; Milam, David; Wenger, Kevin S.

    In this work, the effect of adaptation on P. stipitis fermentation using acidpretreated corn stover hydrolyzates without detoxification was examined. Two different types of adaptation were employed, liquid hydrolyzate and solid state agar adaptation. Fermentation of 12.5% total solids undetoxified acid-pretreated corn stover was performed in shake flasks at different rotation speeds. At low rotation speed (100 rpm), both liquid hydrolyzate and solid agar adaptation highly improved the sugar consumption rate as well as ethanol production rate compared to the wild-type strains. The fermentation rate was higher for solid agar-adapted strains compared to liquid hydrolyzate-adapted strains. At a higher rotation speed (150 rpm), there was a faster sugar consumption and ethanol production for both the liquid-adapted and the wild-type strains. However, improvements in the fermentation rate between the liquid-adapted and wild strains were less pronounced at the high rotation speed.

  19. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass.

    PubMed

    Huang, Jingang; Zhou, Rongbing; Chen, Jianjun; Han, Wei; Chen, Yi; Wen, Yue; Tang, Junhong

    2016-07-01

    Anaerobic co-fermentation of waste activated sludge (WAS) and henna plant biomass (HPB) for the enhanced production of volatile fatty acids (VFAs) was investigated. The results indicated that VFAs was the main constituents of the released organics; the accumulation of VFAs was much higher than that of soluble carbohydrates and proteins. HPB was an advantageous substrate compared to WAS for VFAs production; and the maximum VFAs concentration in an HPB mono-fermentation system was about 2.6-fold that in a WAS mono-fermentation system. In co-fermentation systems, VFAs accumulation was positively related to the proportion of HPB in the mixed substrate, and the accumulated VFAs concentrations doubled when HPB was increased from 25% to 75%. HPB not only adjust the C/N ratio; the associated and/or released lawsone might also have a positive electron-shuttling effect on VFAs production.

  20. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages

    PubMed Central

    Mokoena, Mduduzi Paul; Mutanda, Taurai; Olaniran, Ademola O.

    2016-01-01

    Diverse African traditional fermented foods and beverages, produced using different types of fermentation, have been used since antiquity because of their numerous nutritional values. Lactic acid bacteria (LAB) isolated from these products have emerged as a welcome source of antimicrobials and therapeutics, and are accepted as probiotics. Probiotics are defined as live microbial food supplements which beneficially affect the host by improving the intestinal microbial balance. Currently, popular probiotics are derived from fermented milk products. However, with the growing number of consumers with lactose intolerance that are affected by dietary cholesterol from milk products, there is a growing global interest in probiotics from other food sources. The focus of this review is to provide an overview of recent developments on the applications of probiotic LAB globally, and to specifically highlight the suitability of African fermented foods and beverages as a viable source of novel probiotics. PMID:26960543

  1. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages.

    PubMed

    Mokoena, Mduduzi Paul; Mutanda, Taurai; Olaniran, Ademola O

    2016-01-01

    Diverse African traditional fermented foods and beverages, produced using different types of fermentation, have been used since antiquity because of their numerous nutritional values. Lactic acid bacteria (LAB) isolated from these products have emerged as a welcome source of antimicrobials and therapeutics, and are accepted as probiotics. Probiotics are defined as live microbial food supplements which beneficially affect the host by improving the intestinal microbial balance. Currently, popular probiotics are derived from fermented milk products. However, with the growing number of consumers with lactose intolerance that are affected by dietary cholesterol from milk products, there is a growing global interest in probiotics from other food sources. The focus of this review is to provide an overview of recent developments on the applications of probiotic LAB globally, and to specifically highlight the suitability of African fermented foods and beverages as a viable source of novel probiotics.

  2. [Simultaneous determination of organic acids and saccharides in lactic acid fermentation broth from biomass using high performance liquid chromatography].

    PubMed

    Ma, Rui; Ouyang, Jia; Li, Xin; Lian, Zhina; Cai, Cong

    2012-01-01

    Abstract: A high performance liquid chromatographic method for the simultaneous determination of organic acids and saccharides in lactic acid fermentation broth from biomass was developed. A Bio-Rad Aminex HPX-87H column was used at 55 degrees C. The mobile phase was 5 mmol/L sulfuric acid solution at a flow rate of 0.6 mL/min. The samples were detected by a refractive index detector (RID). The results showed that six organic acids and three saccharides in fermentation broth were completely separated and determined in 17 min. The linear correlation coefficients were above 0.999 8 in the range of 0.15-5.19 g/L. Under the optimized conditions, the recoveries of the organic acids and saccharides in Rhizopus oryzae fermentation broth at two spiked levels were in the range of 96.91%-103.11% with the relative standard deviations (RSDs, n = 6) of 0.81%-4.61%. This method is fast and accurate for the quantitative analysis of the organic acids and saccharides in microbial fermentation broths.

  3. Comparative Proteome of Acetobacter pasteurianus Ab3 During the High Acidity Rice Vinegar Fermentation.

    PubMed

    Wang, Zhe; Zang, Ning; Shi, Jieyan; Feng, Wei; Liu, Ye; Liang, Xinle

    2015-12-01

    As a traditional Asian food for several centuries, vinegar is known to be produced by acetic acid bacteria. The Acetobacter species is the primary starter for vinegar fermentation and has evolutionarily acquired acetic acid resistance, in which Acetobacter pasteurianus Ab3 is routinely used for industrial production of rice vinegar with a high acidity (9 %, w/v). In contrast to the documented short-term and low acetic acid effects on A. pasteurianus, here we investigated the molecular and cellular signatures of long-term and high acetic acid responses by proteomic profiling with bidimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF/MS) analyses. Protein spots of interest were selected based on the threshold ANOVA p value of 0.05 and minimal twofold of differential expression, leading to the identification of 26 proteins that are functionally enriched in oxidoreductase activity, cell membrane, and metabolism. The alterations in protein functioning in respiratory chain and protein denaturation may underlay cellular modifications at the outer membrane. Significantly, we found that at higher acidity fermentation phase, the A. pasteurianus Ab3 cells would adapt to distinct physiological processes from that of an ordinary vinegar fermentation with intermediate acidity, indicating increasing energy requirement and dependency of membrane integrity during the transition of acetic acid production. Together, our study provided new insights into the adaptation mechanisms in A. pasteurianus to high acetic acid environments and yield novel regulators and key pathways during the development of acetic acid resistance.

  4. Kefir immobilized on corn grains as biocatalyst for lactic acid fermentation and sourdough bread making.

    PubMed

    Plessas, Stavros; Alexopoulos, Athanasios; Bekatorou, Argyro; Bezirtzoglou, Eugenia

    2012-12-01

    The natural mixed culture kefir was immobilized on boiled corn grains to produce an efficient biocatalyst for lactic acid fermentation with direct applications in food production, such as sourdough bread making. The immobilized biocatalyst was initially evaluated for its efficiency for lactic acid production by fermentation of cheese whey at various temperatures. The immobilized cells increased the fermentation rate and enhanced lactic acid production compared to free kefir cells. Maximum lactic acid yield (68.8 g/100 g) and lactic acid productivity (12.6 g/L per day) were obtained during fermentation by immobilized cells at 37 °C. The immobilized biocatalyst was then assessed as culture for sourdough bread making. The produced sourdough breads had satisfactory specific loaf volumes and good sensory characteristics. Specifically, bread made by addition of 60% w/w sourdough containing kefir immobilized on corn was more resistant regarding mould spoilage (appearance during the 11(th) day), probably due to higher lactic acid produced (2.86 g/Kg of bread) compared to the control samples. The sourdough breads made with the immobilized biocatalyst had aroma profiles similar to that of the control samples as shown by headspace SPME GC-MS analysis.

  5. Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens.

    PubMed

    Nowak, Adriana; Śliżewska, Katarzyna; Otlewska, Anna

    2015-12-01

    Dietary components such as lactic acid bacteria (LAB) and prebiotics can modulate the intestinal microbiota and are thought to be involved in the reduction of colorectal cancer risk. The presented study measured, using the comet assay, the antigenotoxic activity of both probiotic and non-probiotic LAB, as well as some prebiotics and the end-products of their fermentation, against fecal water (FW). The production of short chain fatty acids by the bacteria was quantified using HPLC. Seven out of the ten tested viable strains significantly decreased DNA damage induced by FW. The most effective of them were Lactobacillus mucosae 0988 and Bifidobacterium animalis ssp. lactis Bb-12, leading to a 76% and 80% decrease in genotoxicity, respectively. The end-products of fermentation of seven prebiotics by Lactobacillus casei DN 114-001 exhibited the strongest antigenotoxic activity against FW, with fermented inulin reducing genotoxicity by 75%. Among the tested bacteria, this strain produced the highest amounts of butyrate in the process of prebiotic fermentation, and especially from resistant dextrin (4.09 μM/mL). Fermented resistant dextrin improved DNA repair by 78% in cells pre-treated with 6.8 μM methylnitronitrosoguanidine (MNNG). Fermented inulin induced stronger DNA repair in cells pre-treated with mutagens (FW, 25 μM hydrogen peroxide, or MNNG) than non-fermented inulin, and the efficiency of DNA repair after 120 min of incubation decreased by 71%, 50% and 70%, respectively. The different degrees of genotoxicity inhibition observed for the various combinations of bacteria and prebiotics suggest that this effect may be attributable to carbohydrate type, SCFA yield, and the ratio of the end-products of prebiotic fermentation.

  6. Lack of kainic acid-induced gamma oscillations predicts subsequent CA1 excitotoxic cell death

    PubMed Central

    Jinde, Seiichiro; Belforte, Juan E.; Yamamoto, Jun; Wilson, Matthew A.; Tonegawa, Susumu; Nakazawa, Kazu

    2009-01-01

    Gamma oscillations are a prominent feature of hippocampal network activity, but their functional role remains debated, ranging from mere epiphenomenon to crucial for information processing. Similarly, persistent gamma oscillations sometimes appear prior to epileptic discharges in patients with mesial temporal sclerosis. However, the significance of this activity in hippocampal excitotoxicity is unclear. We assessed the relationship between kainic acid (KA)-induced gamma oscillations and excitotoxicity in genetically-engineered mice in which N-methyl-D-aspartic acid (NMDA) receptor deletion was confined to CA3 pyramidal cells. Mutants showed reduced CA3 pyramidal cell firing and augmented sharp wave-ripple activity, resulting in higher susceptibility to KA-induced seizures, and leading to strikingly selective neurodegeneration in the CA1 subfield. Interestingly, the KA-induced gamma-aminobutyric acid (GABA) level increases and persistent 30-50 Hz gamma oscillations observed in control mice prior to the first seizure discharge was abolished in the mutants. Consequently, on subsequent days, mutants manifested prolonged epileptiform activity and massive neurodegeneration of CA1 cells, including local GABAergic neurons. Remarkably, pretreatment with the potassium channel blocker α-dendrotoxin (DTX) increased GABA levels, restored gamma oscillations, and prevented CA1 degeneration in the mutants. These results demonstrate that emergence of low frequency gamma oscillations predicts increased resistance to KA-induced excitotoxicity, raising the possibility that gamma oscillations may have potential prognostic value for the treatment of epilepsy. PMID:19735292

  7. Phenyllactic acid production by simultaneous saccharification and fermentation of pretreated sorghum bagasse.

    PubMed

    Kawaguchi, Hideo; Teramura, Hiroshi; Uematsu, Kouji; Hara, Kiyotaka Y; Hasunuma, Tomohisa; Hirano, Ko; Sazuka, Takashi; Kitano, Hidemi; Tsuge, Yota; Kahar, Prihardi; Niimi-Nakamura, Satoko; Oinuma, Ken-ichi; Takaya, Naoki; Kasuga, Shigemitsu; Ogino, Chiaki; Kondo, Akihiko

    2015-04-01

    Dilute acid-pretreated sorghum bagasse, which was predominantly composed of glucan (59%) and xylose (7.2%), was used as a lignocellulosic feedstock for d-phenyllactic acid (PhLA) production by a recombinant Escherichia coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens. During fermentation with enzymatic hydrolysate of sorghum bagasse as a carbon source, the PhLA yield was reduced by 35% compared to filter paper hydrolysate, and metabolomics analysis revealed that NAD(P)H regeneration and intracellular levels of erythrose-4-phosphate and phosphoenolpyruvate for PhLA biosynthesis markedly reduced. Compared to separate hydrolysis and fermentation (SHF) with sorghum bagasse hydrolysate, simultaneous saccharification and fermentation (SSF) of sorghum bagasse under glucose limitation conditions yielded 4.8-fold more PhLA with less accumulation of eluted components, including p-coumaric acid and aldehydes, which inhibited PhLA fermentation. These results suggest that gradual enzymatic hydrolysis during SSF enhances PhLA production under glucose limitation and reduces the accumulation of fermentation inhibitors, collectively leading to increased PhLA yield.

  8. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives.

    PubMed

    John, Rojan P; Nampoothiri, K Madhavan; Pandey, Ashok

    2007-03-01

    The concept of utilizing excess biomass or wastes from agricultural and agro-industrial residues to produce energy, feeds or foods, and other useful products is not necessarily new. Recently, fermentation of biomass has gained considerable attention due to the forthcoming scarcity of fossil fuels and also due to the necessity of increasing world food and feed supplies. A cost-effective viable process for lactic acid production has to be developed for which several attempts have been initiated. Fermentation techniques result in the production of either D: (-) or L: (+) lactic acid, or a racemic mixture of both, depending on the type of organism used. The interest in the fermentative production of lactic acid has increased due to the prospects of environmental friendliness and of using renewable resources instead of petrochemicals. Amylolytic bacteria Lactobacillus amylovorus ATCC 33622 is reported to have the efficiency of full conversion of liquefied cornstarch to lactic acid with a productivity of 20 g l(-1) h(-1). A maximum of 35 g l(-1) h(-1) was reported using a high cell density of L. helveticus (27 g l(-1)) with a complete conversion of 55- to 60-g l(-1) lactose present in whey. Simultaneous saccharification and fermentation is proved to be best in the sense of high substrate concentration in lower reactor volume and low fermentation cost. In this review, a survey has been made to see how effectively the fermentation technology explored and exploited the cheaply available source materials for value addition with special emphasis on lactic acid production.

  9. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    PubMed

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  10. Production of fermented chestnut purees by lactic acid bacteria.

    PubMed

    Blaiotta, G; Di Capua, M; Coppola, R; Aponte, M

    2012-09-03

    The objective of this study was to develop a new chestnut-based puree, in order to seasonally adjust the offer and use the surplus of undersized production, providing, at the same time, a response to the growing demand for healthy and environmentally friendly products. Broken dried chestnuts have been employed to prepare purees to be fermented with six different strains of Lactobacillus (Lb.) rhamnosus and Lactobacillus casei. The fermented purees were characterized by a technological and sensorial point of view, while the employed strains were tested for their probiotic potential. Conventional in vitro tests have indicated the six lactobacilli strains as promising probiotic candidates; moreover, being the strains able to grow and to survive in chestnut puree at a population level higher than 8 log₁₀ CFU/mL along 40 days of storage at 4 °C, the bases for the production of a new food, lactose-free and with reduced fat content, have been laid.

  11. Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor.

    PubMed

    Jayaram, Vinay B; Cuyvers, Sven; Lagrain, Bert; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2013-01-15

    Fermenting yeast does not merely cause dough leavening, but also contributes to the bread aroma and might alter dough rheology. Here, the yeast carbon metabolism was mapped during bread straight-dough fermentation. The concentration of most metabolites changed quasi linearly as a function of fermentation time. Ethanol and carbon dioxide concentrations reached up to 60 mmol/100g flour. Interestingly, high levels of glycerol (up to 10 mmol/100g flour) and succinic acid (up to 1.6 mmol/100g flour) were produced during dough fermentation. Further tests showed that, contrary to current belief, the pH decrease in fermenting dough is primarily caused by the production of succinic acid by the yeast instead of carbon dioxide dissolution or bacterial organic acids. Together, our results provide a comprehensive overview of metabolite production during dough fermentation and yield insight into the importance of some of these metabolites for dough properties.

  12. γ-Aminobutyric Acid (GABA) Production and Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Containing Sea Tangle by the Co-Culture of Lactobacillus brevis with Aspergillus oryzae.

    PubMed

    Jang, Eun Kyeong; Kim, Nam Yeun; Ahn, Hyung Jin; Ji, Geun Eog

    2015-08-01

    To enhance the γ-aminobutyric acid (GABA) content, the optimized fermentation of soybean with added sea tangle extract was evaluated at 30°C and pH 5.0. The medium was first inoculated with Aspergillus oryzae strain FMB S46471 and fermented for 3 days, followed by the subsequent inoculation with Lactobacillus brevis GABA 100. After fermentation for 7 days, the fermented soybean showed approximately 1.9 g/kg GABA and exhibited higher ACE inhibitory activity than the traditional soybean product. Furthermore, several peptides in the fraction containing the highest ACE inhibitory activity were identified. The novel fermented soybean enriched with GABA and ACE inhibitory components has great pharmaceutical and functional food values.

  13. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation.

    PubMed

    Reale, Anna; Konietzny, Ursula; Coppola, Raffaele; Sorrentino, Elena; Greiner, Ralf

    2007-04-18

    Lactic acid fermentation of cereal flours resulted in a 100 (rye), 95-100 (wheat), and 39-47% (oat) reduction in phytate content within 24 h. The extent of phytate degradation was shown to be independent from the lactic acid bacteria strain used for fermentation. However, phytate degradation during cereal dough fermentation was positively correlated with endogenous plant phytase activity (rye, 6750 mU g(-1); wheat, 2930 mU g(-1); and oat, 23 mU g(-1)), and heat inactivation of the endogenous cereal phytases prior to lactic acid fermentation resulted in a complete loss of phytate degradation. Phytate degradation was restored after addition of a purified phytase to the liquid dough. Incubation of the cereal flours in buffered solutions resulted in a pH-dependent phytate degradation. The optimum of phytate degradation was shown to be around pH 5.5. Studies on phytase production of 50 lactic acid bacteria strains, previously isolated from sourdoughs, did not result in a significant production of intra- as well as extracellular phytase activity. Therefore, lactic acid bacteria do not participate directly in phytate degradation but provide favorable conditions for the endogenous cereal phytase activity by lowering the pH value.

  14. Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii.

    PubMed

    Wang, Zhongqiang; Yang, Shang-Tian

    2013-06-01

    Propionibacterium freudenreichii subsp. shermanii can ferment glucose and glycerol to propionic acid with acetic and succinic acids as two by-products. Propionic acid production from glucose was relatively fast (0.19 g/Lh) but gave low product yield (~0.39 g/g) and selectivity (P/A: ~2.6; P/S: ~4.8). In contrast, glycerol with a more reduced state gave a high propionic acid yield (~0.65 g/g) and selectivity (P/A: ~31; P/S: ~11) but low productivity (0.11 g/L h). On the other hand, co-fermentation of glycerol and glucose at an appropriate mass ratio gave both a high yield (0.54-0.65 g/g) and productivity (0.18-0.23 g/L h) with high product selectivity (P/A: ~14; P/S: ~10). The carbon flux distributions in the co-fermentation as affected by the ratio of glycerol/glucose were investigated. Finally, co-fermentation with cassava bagasse hydrolysate and crude glycerol in a fibrous-bed bioreactor was demonstrated, providing an efficient way for economic production of bio-based propionic acid.

  15. Taurocholic acid adsorption during non-starch polysaccharide fermentation: an in vitro study.

    PubMed

    Gelissen, I C; Eastwood, M A

    1995-08-01

    The association of radiolabelled taurocholic acid with the solid fraction of a faecal fermentation mixture was measured. A human faecal inoculum was incubated with [24-14C]taurocholic acid and several non-starch polysaccharide sources (pectin, wheat bran, ispaghula (Plantago ovata) husk and seed), glucose or a substrate-free control. Portions of fermentation mixture were taken at 0, 3, 6, 21 and 24 h and centrifuged to acquire a supernatant fraction and a pellet containing the fermentation residue. 14C was measured in supernatant fractions and pellets at all time points. Volatile fatty acids (VFA) were measured at 0 and 24 h to confirm bacterial growth. Radioactivity in the pellet increased over time for all substrates. Glucose resulted in the greatest incorporation of taurocholic acid into the pellet, followed by pectin. At 24 h the proportion of the total radioactivity found in the pellet was 92% for glucose, 79% for pectin, 60% for wheat bran, 59% for ispaghula seed, 53% for ispaghula husk and 26% for the control (mean of duplicates). Glucose and pectin produced the greatest quantity of VFA at 24 h. VFA production was highly correlated with radioactivity in the pellet (r0.976, P < 0.005). These results suggest that the bile acid binding capacity of a faecal culture mixture may be strongly influenced by the fermentability of the available substrate and hence related to bacterial metabolic activity.

  16. Fumaric Acid Production from Alkali-Pretreated Corncob by Fed-Batch Simultaneous Saccharification and Fermentation Combined with Separated Hydrolysis and Fermentation at High Solids Loading.

    PubMed

    Li, Xin; Zhou, Jin; Ouyang, Shuiping; Ouyang, Jia; Yong, Qiang

    2017-02-01

    Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.

  17. Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology (RSM).

    PubMed

    Zhang, Yun-jian; Li, Qiang; Zhang, Yu-xiu; Wang, Dan; Xing, Jian-min

    2012-02-01

    Succinic acid is considered as an important platform chemical. Succinic acid fermentation with Actinobacillus succinogenes strain BE-1 was optimized by central composite design (CCD) using a response surface methodology (RSM). The optimized production of succinic acid was predicted and the interactive effects between glucose, yeast extract, and magnesium carbonate were investigated. As a result, a model for predicting the concentration of succinic acid production was developed. The accuracy of the model was confirmed by the analysis of variance (ANOVA), and the validity was further proved by verification experiments showing that percentage errors between actual and predicted values varied from 3.02% to 6.38%. In addition, it was observed that the interactive effect between yeast extract and magnesium carbonate was statistically significant. In conclusion, RSM is an effective and useful method for optimizing the medium components and investigating the interactive effects, and can provide valuable information for succinic acid scale-up fermentation using A. succinogenes strain BE-1.

  18. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin; Liu, Weiguo

    2015-04-01

    The objective of this study was to get fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose from sugarcane bagasse. Hemicellulose could be easily hydrolyzed by dilute acid as sugars. The remained solid residue of acid hydrolysis was utilized to get levoglucosan by fast pyrolysis economically. Levoglucosan yield from crystalline cellulose could be as high as 61.47%. Dilute acid hydrolysis was also a promising pretreatment for levoglucosan production from lignocellulose. The dilute acid pretreated sugarcane bagasse resulted in higher levoglucosan yield (40.50%) in fast pyrolysis by micropyrolyzer, which was more effective than water washed (29.10%) and un-pretreated (12.84%). It was mainly ascribed to the effective removal of alkali and alkaline earth metals and the accumulation of crystalline cellulose. This strategy seems a promising route to achieve inexpensive fermentable sugars from lignocellulose for biorefinery.

  19. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  20. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    PubMed

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc.

  1. Lactic acid production from acidogenic fermentation of fruit and vegetable wastes.

    PubMed

    Wu, Yuanyuan; Ma, Hailing; Zheng, Mingyue; Wang, Kaijun

    2015-09-01

    This work focused on the lactic acid production from acidogenic fermentation of fruit and vegetable wastes treatment. A long term completely stirred tank reactor (CSTR) lasting for 50 days was operated at organic loading rate (OLR) of 11 gVS/(L d) and sludge retention time (SRT) of 3 days with pH controlled at 4.0 (1-24 day) and 5.0 (25-50 day). The results indicated that high amount of approximately 10-20 g/L lactic acid was produced at pH of 4.0 and the fermentation type converted from coexistence of homofermentation and heterofermentation into heterofermentation. At pH of 5.0, the hydrolysis reaction was improved and the total concentration of fermentation products increased up to 29.5 g COD/L. The heterofermentation was maintained, however, bifidus pathway by Bifidobacterium played an important role.

  2. Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice.

    PubMed

    Di Cagno, Raffaella; Filannino, Pasquale; Gobbetti, Marco

    2017-02-21

    Pomegranate juice (PJ) fermented with Lactobacillus plantarum C2, POM1, and LP09, unstarted-PJ, and raw-PJ were characterized for the profile of the volatile components (VOC) by PT-GC-MS. Lactic acid fermentation through selected strains enhanced the flavor profile of PJ. Concentrations of desired compounds (e.g., alcohols, ketones, and terpenes) were positively affected, whereas those of non-desired aldehydes decreased. Unstarted-PJ mainly differentiated from fermented PJs for the highest levels of aldehydes and sulfur compounds, and in lesser extent of furans, whereas alcohols, ketones, and alkenes followed by terpenes and benzene derivatives mainly differentiated fermented PJs. As expected, the lowest level of VOC was found in raw-PJ. VOC profile reflected on the sensory features of fermented PJs, unstarted-PJ, and raw-PJ, which were evaluated using a consensus modified flavor profile based on 13 attributes. Fermented PJs were mainly discriminated by the higher intensity of floral, fruity and anise notes than the controls.

  3. Improving the antioxidant activity and enriching salvianolic acids by the fermentation of Salvia miltiorrhizae with Geomyces luteus *

    PubMed Central

    Xing, Yun; Cai, Le; Yin, Tian-peng; Chen, Yang; Yu, Jing; Wang, Ya-rong; Ding, Zhong-tao

    2016-01-01

    The antioxidant activities and total phenolic content of fermented Salvia miltiorrhiza with fungus Geomyces luteus were investigated. The results revealed that G. luteus fermentation could significantly improve the antioxidant activity and total phenolic content of S. miltiorrhiza. The main antioxidant constituents were characterized by spectroscopic analysis as salvianolic acids. High-performance liquid chromatography (HPLC) quantification also showed the enhanced content of salvianolic acid B after fermentation. The present study suggests that G. luteus fermentations are effective in the S. miltiorrhiza salvianolic acids’ enrichment process. PMID:27143267

  4. A membrane-integrated fermentation reactor system: its effects in reducing the amount of sub-raw materials for D-lactic acid continuous fermentation by Sporolactobacillus laevolacticus.

    PubMed

    Mimitsuka, Takashi; Na, Kyungsu; Morita, Ken; Sawai, Hideki; Minegishi, Shinichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu

    2012-01-01

    Continuous fermentation by retaining cells with a membrane-integrated fermentation reactor (MFR) system was found to reduce the amount of supplied sub-raw material. If the amount of sub-raw material can be reduced, continuous fermentation with the MFR system should become a more attractive process for industrialization, due to decreased material costs and loads during the refinement process. Our findings indicate that the production rate decreased when the amount of the sub-raw material was reduced in batch fermentation, but did not decrease during continuous fermentation with Sporolactobacillus laevolacticus. Moreover, continuous fermentation with a reduced amount of sub-raw material resulted in a productivity of 11.2 g/L/h over 800 h. In addition, the index of industrial process applicability used in the MFR system increased by 6.3-fold as compared with the conventional membrane-based fermentation reactor previously reported, suggesting a potential for the industrialization of this D-lactic acid continuous fermentation process.

  5. Influence of yeast and lactic acid bacterium on the constituent profile of soy sauce during fermentation.

    PubMed

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2017-02-01

    Soy sauce is a Japanese traditional seasoning composed of various constituents that are produced by various microbes during a long-term fermentation process. Due to the complexity of the process, the investigation of the constituent profile during fermentation is difficult. Metabolomics, the comprehensive study of low molecular weight compounds in biological samples, is thought to be a promising strategy for deep understanding of the constituent contribution to food flavor characteristics. Therefore, metabolomics is suitable for the analysis of soy sauce fermentation. Unfortunately, only few and unrefined studies of soy sauce fermentation using metabolomics approach have been reported. Therefore, we investigated changes in low molecular weight hydrophilic and volatile compounds of soy sauce using gas chromatography/mass spectrometry (GC/MS)-based non-targeted metabolic profiling. The data were analyzed by statistical analysis to evaluate influences of yeast and lactic acid bacterium on the constituent profile. Consequently, our results suggested a novel finding that lactic acid bacterium affected the production of several constituents such as cyclotene, furfural, furfuryl alcohol and methional in the soy sauce fermentation process.

  6. Total volatile fatty acid concentrations are unreliable estimators of treatment effects on ruminal fermentation in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile fatty acid concentrations ([VFA], mM) have long been used to assess impact of dietary treatments on ruminal fermentation in vivo. However, discrepancies in statistical results between VFA and VFA pool size (VFAmol), possibly related to ruminal digesta liquid amount (LIQ, kg), suggest issues...

  7. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria.

    PubMed

    Rizzello, Carlo Giuseppe; Lorusso, Anna; Russo, Vito; Pinto, Daniela; Marzani, Barbara; Gobbetti, Marco

    2017-01-16

    Lactic acid bacteria strains, previously isolated from the same matrix, were used to ferment quinoa flour aiming at exploiting the antioxidant potential. As in vitro determined on DPPH and ABTS radicals, the scavenging activity of water/salt-soluble extracts (WSE) from fermented doughs was significantly (P<0.05) higher than that of non-inoculated doughs. The highest inhibition of linoleic acid autoxidation was found for the quinoa dough fermented with Lactobacillus plantarum T0A10. The corresponding WSE was subjected to Reverse Phase Fast Protein Liquid Chromatography, and 32 fractions were collected and subjected to in vitro assays. The most active fraction was resistant to further hydrolysis by digestive enzymes. Five peptides, having sizes from 5 to 9 amino acid residues, were identified by nano-Liquid Chromatography-Electrospray Ionisation-Mass Spectra/Mass Spectra. The sequences shared compositional features which are typical of antioxidant peptides. As shown by determining cell viability and radical scavenging activity (MTT and DCFH-DA assays, respectively), the purified fraction showed antioxidant activity on human keratinocytes NCTC 2544 artificially subjected to oxidative stress. This study demonstrated the capacity of autochthonous lactic acid bacteria to release peptides with antioxidant activity through proteolysis of native quinoa proteins. Fermentation of the quinoa flour with a selected starter might be considered suitable for novel applications as functional food ingredient, dietary supplement or pharmaceutical preparations.

  8. Culture-independent analysis of lactic acid bacteria diversity associated with mezcal fermentation.

    PubMed

    Narváez-Zapata, J A; Rojas-Herrera, R A; Rodríguez-Luna, I C; Larralde-Corona, C P

    2010-11-01

    Mezcal is an alcoholic beverage obtained from the distillation of fermented juices of cooked Agave spp. plant stalks (agave must), and each region in Mexico with denomination of origin uses defined Agave species to prepare mezcal with unique organoleptic characteristics. During fermentation to produce mezcal in the state of Tamaulipas, not only alcohol-producing yeasts are involved, but also a lactic acid bacterial community that has not been characterized yet. In order to address this lack of knowledge on this traditional Mexican beverage, we performed a DGGE-16S rRNA analysis of the lactic acid bacterial diversity and metabolite accumulation during the fermentation of a typical agave must that is rustically produced in San Carlos County (Tamaulipas, Mexico). The analysis of metabolite production indicated a short but important malolactic fermentation stage not previously described for mezcal. The denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA genes showed a distinctive lactic acid bacterial community composed mainly of Pediococcus parvulus, Lactobacillus brevis, Lactobacillus composti, Lactobacillus parabuchneri, and Lactobacillus plantarum. Some atypical genera such as Weissella and Bacillus were also found in the residual must. Our results suggest that the lactic acid bacteria could strongly be implicated in the organoleptic attributes of this traditional Mexican distilled beverage.

  9. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly isolated Clostridium sp. strain RPT-4213 was found to produce butyrate under anaerobic conditions. Fermentations using Lactobacilli MRS Broth produced 9.47 g L-1 butyric acid from glucose (0.48 g/g glucose). However, the strain was not capable of utilizing five carbon sugars. To assess the a...

  10. Contribution of Fermentation Yeast to Final Amino Acid Profile in DDGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One major factor affecting DDGS quality and market values is amino acid (AA) composition. DDGS proteins come from corn and yeast. Yet, the effect of fermentation yeast on DDGS protein quantity and quality (AA profile) has not been well documented. Based on literature review, there are at least 4 met...

  11. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Franden, M.A.; McMillan, J.D.; Finkelstein, M.

    1998-08-25

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid. 4 figs.

  12. Use of autochthonous lactic acid bacteria starters to ferment mango juice for promoting its probiotic roles.

    PubMed

    Liao, Xue-Yi; Guo, Li-Qiong; Ye, Zhi-Wei; Qiu, Ling-Yan; Gu, Feng-Wei; Lin, Jun-Fang

    2016-05-18

    Strains of Leuconostoc mesenteroides, Pediococcus pentosaceus, and Lactobacillus brevis were identified from mango fruits by partial 16S rDNA gene sequence. Based on the ability of producing mannitol and diacetyl, Leuconostoc mesenteroides MPL18 and MPL39 were selected within the lactic acid bacteria isolates, and used as mixed starters to ferment mango juice (MJ). Both the autochthonous strains grew well in fermented mango juice (FMJ) and remained viable at 9.81 log cfu mL(-1) during 30 days of storage at 4°C. The content of total sugar of FMJ was lower than that of MJ, while the concentration of mannitol was higher than that of MJ, and the concentration of diacetyl was 3.29 ± 0.12 mg L(-1). Among detected organic acids including citric acid, gallic acid, lactic acid, and acetic acid, only citric acid and gallic acid were found in MJ, while all detected organic acids were found in FMJ. The concentration of lactic acid of FMJ was the highest (78.62 ± 13.66 mM) among all detected organic acids. The DPPH radical scavenging capacity of FMJ was higher than that of MJ. Total phenolic compounds were better preserved in FMJ. The acidity and sweetness had a noticeable impact on the overall acceptance of the treated sample.

  13. Optimization of the integrated citric acid-methane fermentation process by air stripping and glucoamylase addition.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Wang, Ke; Tang, Lei; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-03-01

    To solve the problem of extraction wastewater in citric acid industry, an integrated citric acid-methane fermentation process was proposed. In the integrated process, extraction wastewater was treated by mesophilic anaerobic digestion and then reused to make mash for the next batch of citric acid fermentation. In this study, an Aspergillus niger mutant strain exhibiting resistance to high metal ions concentration was used to eliminate the inhibition of 200 mg/L Na(+) and 300 mg/L K(+) in anaerobic digestion effluent (ADE) and citric acid production increased by 25.0 %. Air stripping was used to remove ammonium, alkalinity, and part of metal ions in ADE before making mash. In consequence, citric acid production was significantly improved but still lower by 6.1 % than the control. Results indicated that metal ions in ADE synergistically inhibited the activity of glucoamylase, thus reducing citric acid production. When 130 U/g glucoamylase was added before fermentation, citric acid production was 141.5 g/L, which was even higher than the control (140.4 g/L). This process could completely eliminate extraction wastewater discharge and reduce water resource consumption.

  14. Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant.

    PubMed Central

    Lindén, T; Peetre, J; Hahn-Hägerdal, B

    1992-01-01

    From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose fermentation, even when galactose utilization was induced, i.e., when they were grown in the presence of galactose, prior to fermentation. Without acetic acid present, both baker's yeast and isolate 3 fermented glucose and galactose sequentially. Galactose fermentation with baker's yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5. The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some of the isolates as well as in two strains of S. cerevisiae (ATCC 24860 and baker's yeast) and Pichia stipitis CBS 6054. The S. cerevisiae strains manifested xylose reductase activity that was 2 orders of magnitude less than the corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein). Images PMID:1622236

  15. Optimization of lactobionic acid production by Acetobacter orientalis isolated from Caucasian fermented milk, "Caspian Sea yogurt".

    PubMed

    Kiryu, Takaaki; Yamauchi, Kouhei; Masuyama, Araki; Ooe, Kenichi; Kimura, Takashi; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2012-01-01

    We have reported that lactobionic acid is produced from lactose by Acetobacter orientalis in traditional Caucasian fermented milk. To maximize the application of lactobionic acid, we investigated favorable conditions for the preparation of resting A. orientalis cells and lactose oxidation. The resting cells, prepared under the most favorable conditions, effectively oxidized 2-10% lactose at 97.2 to 99.7 mol % yield.

  16. Lactic acid fermentation as a tool to enhance the functional features of Echinacea spp

    PubMed Central

    2013-01-01

    Background Extracts and products (roots and/or aerial parts) from Echinacea ssp. represent a profitable market sector for herbal medicines thanks to different functional features. Alkamides and polyacetylenes, phenols like caffeic acid and its derivatives, polysaccharides and glycoproteins are the main bioactive compounds of Echinacea spp. This study aimed at investigating the capacity of selected lactic acid bacteria to enhance the antimicrobial, antioxidant and immune-modulatory features of E. purpurea with the prospect of its application as functional food, dietary supplement or pharmaceutical preparation. Results Echinacea purpurea suspension (5%, wt/vol) in distilled water, containing 0.4% (wt/vol) yeast extract, was fermented with Lactobacillus plantarum POM1, 1MR20 or C2, previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum, was used as the control to investigate functional features. Echinacea suspension fermented with Lb. plantarum C2 exhibited a marked antimicrobial activity towards Gram-positive and -negative bacteria. Compared to control, the water-soluble extract from Echinacea suspension fermented with Lactobacillus plantarum 1MR20 showed twice time higher radical scavenging activity on DPPH. Almost the same was found for the inhibition of oleic acid peroxidation. The methanol extract from Echinacea suspension had inherent antioxidant features but the activity of extract from the sample fermented with strain 1MR20 was the highest. The antioxidant activities were confirmed on Balb 3T3 mouse fibroblasts. Lactobacillus plantarum C2 and 1MR20 were used in association to ferment Echinacea suspension, and the water-soluble extract was subjected to ultra-filtration and purification through RP-FPLC. The antioxidant activity was distributed in a large number of fractions and proportional to the peptide concentration. The antimicrobial activity was detected only in one fraction, further subjected to nano

  17. Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal.

    PubMed

    Vig, A P; Walia, A

    2001-07-01

    Solid state fermentation was employed using Rhizopus oligosporus to develop a fermented product from rapeseed meal (RSM). The contents of glucosinolates, thiooxazolidones, phytic acid and crude fibre declined by 43.1%, 34%, 42.4% and 25.5%, respectively, following inoculation with R. oligosporus. Fermentation also increased nitrogen and protein contents of the meal. This study may open a new prospective for a simple and cost effective technique for reduction of toxicants in RSM.

  18. Precultivation of Bacillus coagulans DSM2314 in the presence of furfural decreases inhibitory effects of lignocellulosic by-products during L(+)-lactic acid fermentation.

    PubMed

    van der Pol, Edwin; Springer, Jan; Vriesendorp, Bastienne; Weusthuis, Ruud; Eggink, Gerrit

    2016-12-01

    By-products resulting from thermo-chemical pretreatment of lignocellulose can inhibit fermentation of lignocellulosic sugars to lactic acid. Furfural is such a by-product, which is formed during acid pretreatment of lignocellulose. pH-controlled fermentations with 1 L starting volume, containing YP medium and a mixture of lignocellulosic by-products, were inoculated with precultures of Bacillus coagulans DSM2314 to which 1 g/L furfural was added. The addition of furfural to precultures resulted in an increase in L(+)-lactic acid productivity by a factor 2 to 1.39 g/L/h, an increase in lactic acid production from 54 to 71 g and an increase in conversion yields of sugar to lactic acid from 68 to 88 % W/W in subsequent fermentations. The improved performance was not caused by furfural consumption or conversion, indicating that the cells acquired a higher tolerance towards this by-product. The improvement coincided with a significant elongation of B. coagulans cells. Via RNA-Seq analysis, an upregulation of pathways involved in the synthesis of cell wall components such as bacillosamine, peptidoglycan and spermidine was observed in elongated cells. Furthermore, the gene SigB and genes promoted by SigB, such as NhaX and YsnF, were upregulated in the presence of furfural. These genes are involved in stress responses in bacilli.

  19. Identification of lactic acid bacteria constituting the predominating microflora in an acid-fermented condiment (tempoyak) popular in Malaysia.

    PubMed

    Leisner, J J; Vancanneyt, M; Rusul, G; Pot, B; Lefebvre, K; Fresi, A; Tee, L K

    2001-01-22

    Tempoyak is a traditional Malaysian fermented condiment made from the pulp of the durian fruit (Durio zibethinus). Salt is sometime added to proceed fermentation at ambient temperature. In various samples obtained from night markets, lactic acid bacteria (LAB) were the predominant microorganisms, ranging from log 8.4 to log 9.2 cfu g(-1). No other microorganisms were present to such a level. These samples contained reduced amount of saccharose, glucose and fructose but increased amount of D- and L-lactic acid and acetic acid compared with samples of non-fermented durian fruit. Sixty-four isolates of LAB were divided into five groups by use of a few phenotypic tests. A total of 38 strains of LAB were selected for comparison by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of their whole cell protein patterns with a SDS-PAGE database of LAB. These strains were also examined for their carbohydrate fermentation patterns by use of API 50 CH. Isolates belonging to the Lactobacillus plantarum group were shown to be the predominant members of the LAB flora. In addition, isolates belonging to the Lactobacillus brevis group, Leuconostoc mesenteroides, Lactobacillus mali, Lactobacilus fermentum and an unidentified Lactobacillus sp. were also observed. A high degree of diversity among isolates belonging to the Lb. plantarum group was demonstrated by analysis of their plasmid profiles.

  20. Fermentation of biomass-derived glucuronic acid by pet expressing recombinants of E. coli B

    SciTech Connect

    Lawford, H.G.; Rousseau, J.D.

    1997-12-31

    The economics of large-scale production of fuel ethanol from biomass and wastes requires the efficient utilization of all the sugars derived from the hydrolysis of the heteropolymeric hemicellulose component of lignocellulosic feedstocks. Glucuronic and 4-0-methyl-glucuronic acids are major side chains in xylans of the grasses and hardwoods that have been targeted as potential feedstocks for the production of cellulosic ethanol. The amount of these acids is similar to that of arabinose, which is now being viewed as another potential substrate in the production of biomass-derived ethanol. This study compared the end-product distribution associated with the fermentation of D-glucose (Glc) and D-glucuronic acid (GlcUA) (as sole carbon and energy sources) by Escherichia coli B (ATCC 11303) and two different ethanologenic recombinants--a strain in which pet expression was via a multicopy plasmid (pLOI297) and a chromosomally integrated construct, strain KO11. pH-stat batch fermentations were conducted using a modified LB medium with 2% (w/v) Glc or GlcUA with the set-point for pH control at either 6.3 or 7.0. The nontransformed host culture produced only lactic acid from glucose, but fermentation of GlcUA yielded a mixture of ethanol, acetic, and lactic acids, with acetic acid being the predominant end-product. 73 refs., 6 figs., 2 tabs.

  1. Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus.

    PubMed

    Wu, Chien-Hui; Chien, Wei-Chen; Chou, Han-Kai; Yang, Jungwoo; Lin, Hong-Ting Victor

    2014-09-01

    One-step sulfuric acid saccharification of the red alga Pterocladiella capillacea was optimized, and various detoxification methods (neutralization, overliming, and electrodialysis) of the acid hydrolysate were evaluated for fermentation with the thermotolerant yeast Kluyveromyces marxianus. A proximate composition analysis indicated that P. capillacea was rich in carbohydrates. A significant galactose recovery of 81.1 ± 5% was also achieved under the conditions of a 12% (w/v) biomass load, 5% (v/v) sulfuric acid, 121°C, and hydrolysis for 30 min. Among the various detoxification methods, electrodialysis was identified as the most suitable for fermentable sugar recovery and organic acid removal (100% reduction of formic and levulinic acids), even though it failed to reduce the amount of the inhibitor 5-HMF. As a result, K. marxianus fermentation with the electrodialyzed acid hydrolysate of P. capillacea resulted in the best ethanol levels and fermentation efficiency.

  2. Simulation of acid hydrolysis of lignocellulosic residues to fermentable sugars for bioethanol production

    NASA Astrophysics Data System (ADS)

    Sidiras, Dimitris

    2012-12-01

    The dilute acid hydrolysis of fir sawdust with sulfuric acid was undertaken in a batch reactor system (autoclave). The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemicelluloses hydrolysis, due to a rapid hydrolysis reaction for acid concentration 0.045 N at 160-180°C. It was found that significant sugar degradation occurred at these conditions. The optimum conditions gave a yield of 38% total fermentable sugars. The kinetics of dilute acid hydrolysis of cellulose and hemicelluloses (polysaccharides) were simulated using four pseudo-kinetic models. The reaction rate constants were calculated in each case.

  3. Whole slurry saccharification and fermentation of maleic acid-pretreated rice straw for ethanol production.

    PubMed

    Jung, Young Hoon; Park, Hyun Min; Kim, Kyoung Heon

    2015-09-01

    We evaluated the feasibility of whole slurry (pretreated lignocellulose) saccharification and fermentation for producing ethanol from maleic acid-pretreated rice straw. The optimized conditions for pretreatment were to treat rice straw at a high temperature (190 °C) with 1 % (w/v) maleic acid for a short duration (3 min ramping to 190 °C and 3 min holding at 190 °C). Enzymatic digestibility (based on theoretical glucose yield) of cellulose in the pretreated rice straw was 91.5 %. Whole slurry saccharification and fermentation of pretreated rice straw resulted in 83.2 % final yield of ethanol based on the initial quantity of glucan in untreated rice straw. These findings indicate that maleic acid pretreatment results in a high yield of ethanol from fermentation of whole slurry even without conditioning or detoxification of the slurry. Additionally, the separation of solids and liquid is not required; therefore, the economics of cellulosic ethanol fuel production are significantly improved. We also demonstrated whole slurry saccharification and fermentation of pretreated lignocellulose, which has rarely been reported.

  4. Lactic Acid Fermentation, Urea and Lime Addition: Promising Faecal Sludge Sanitizing Methods for Emergency Sanitation

    PubMed Central

    Anderson, Catherine; Malambo, Dennis Hanjalika; Gonzalez Perez, Maria Eliette; Nobela, Happiness Ngwanamoseka; de Pooter, Lobke; Spit, Jan; Hooijmans, Christine Maria; van de Vossenberg, Jack; Greya, Wilson; Thole, Bernard; van Lier, Jules B.; Brdjanovic, Damir

    2015-01-01

    In this research, three faecal sludge sanitizing methods—lactic acid fermentation, urea treatment and lime treatment—were studied for application in emergency situations. These methods were investigated by undertaking small scale field trials with pit latrine sludge in Blantyre, Malawi. Hydrated lime was able to reduce the E. coli count in the sludge to below the detectable limit within 1 h applying a pH > 11 (using a dosage from 7% to 17% w/w, depending faecal sludge alkalinity), urea treatment required about 4 days using 2.5% wet weight urea addition, and lactic acid fermentation needed approximately 1 week after being dosed with 10% wet weight molasses (2 g (glucose/fructose)/kg) and 10% wet weight pre-culture (99.8% pasteurised whole milk and 0.02% fermented milk drink containing Lactobacillus casei Shirota). Based on Malawian prices, the cost of sanitizing 1 m3 of faecal sludge was estimated to be €32 for lactic acid fermentation, €20 for urea treatment and €12 for hydrated lime treatment. PMID:26528995

  5. Lactic Acid Fermentation, Urea and Lime Addition: Promising Faecal Sludge Sanitizing Methods for Emergency Sanitation.

    PubMed

    Anderson, Catherine; Malambo, Dennis Hanjalika; Perez, Maria Eliette Gonzalez; Nobela, Happiness Ngwanamoseka; de Pooter, Lobke; Spit, Jan; Hooijmans, Christine Maria; de Vossenberg, Jack van; Greya, Wilson; Thole, Bernard; van Lier, Jules B; Brdjanovic, Damir

    2015-10-29

    In this research, three faecal sludge sanitizing methods-lactic acid fermentation, urea treatment and lime treatment-were studied for application in emergency situations. These methods were investigated by undertaking small scale field trials with pit latrine sludge in Blantyre, Malawi. Hydrated lime was able to reduce the E. coli count in the sludge to below the detectable limit within 1 h applying a pH > 11 (using a dosage from 7% to 17% w/w, depending faecal sludge alkalinity), urea treatment required about 4 days using 2.5% wet weight urea addition, and lactic acid fermentation needed approximately 1 week after being dosed with 10% wet weight molasses (2 g (glucose/fructose)/kg) and 10% wet weight pre-culture (99.8% pasteurised whole milk and 0.02% fermented milk drink containing Lactobacillus casei Shirota). Based on Malawian prices, the cost of sanitizing 1 m³ of faecal sludge was estimated to be €32 for lactic acid fermentation, €20 for urea treatment and €12 for hydrated lime treatment.

  6. Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar.

    PubMed

    Fu, Liang; Chen, Siqian; Yi, Jiulong; Hou, Zongxia

    2014-07-01

    A strain of acidogenic bacterium was isolated from the fermentation liquid of Cantonese-style rice vinegar produced by traditional surface fermentation. 16S rDNA identification confirmed the bacterium as Gluconacetobacter xylinus, which synthesizes bacterial cellulose, and the acid productivity of the strain was investigated. In the study, the effects of the membrane integrity and the comparison of the air-liquid interface membrane with immerged membrane on total acidity, cellulose production, alcohol dehydrogenase (ADH) activity and number of bacteria were investigated. The cellulose membrane and the bacteria were observed under SEM for discussing their relationship. The correlations between oxygen consumption and total acid production rate were compared in surface and shake flask fermentation. The results showed the average acid productivity of the strain was 0.02g/(100mL/h), and the integrity of cellulose membrane in surface fermentation had an important effect on total acidity and cellulose production. With a higher membrane integrity, the total acidity after 144 h of fermentation was 3.75 g/100 mL, and the cellulose production was 1.71 g/100 mL after 360 h of fermentation. However, when the membrane was crushed by mechanical force, the total acidity and the cellulose production were as low as 0.36 g/100 mL and 0.14 g/100 mL, respectively. When the cellulose membrane was forced under the surface of fermentation liquid, the total acid production rate was extremely low, but the activity of ADH in the cellulose membrane was basically the same with the one above the liquid surface. The bacteria were mainly distributed in the cellulose membrane during the fermentation. The bacterial counts in surface fermentation were more than in the shake flask fermentation and G. xylinus consumed the substrate faster, in surface fermentation than in shake flask fermentation. The oxygen consumption rate and total acid production rate of surface fermentation were respectively 26

  7. Lactic acid bacteria community dynamics and metabolite production of rye sourdough fermentations share characteristics of wheat and spelt sourdough fermentations.

    PubMed

    Weckx, Stefan; Van der Meulen, Roel; Maes, Dominique; Scheirlinck, Ilse; Huys, Geert; Vandamme, Peter; De Vuyst, Luc

    2010-12-01

    Four spontaneous rye sourdough fermentations were performed over a period of ten days with daily back-slopping. Samples taken at all refreshment steps were used for culture-dependent and culture-independent characterization of the microbiota present. Furthermore, an extensive metabolite target analysis was performed through a combination of various chromatographic methods, including liquid chromatography coupled to mass spectrometry (LC/MS) and gas chromatography coupled to mass spectrometry (GC/MS). Spearman's rank correlation coefficients were calculated and a principal component analysis (PCA) was performed on the data obtained in this study combined with data obtained previously for wheat and spelt sourdoughs. In general, the establishment of a stable microbial ecosystem occurred through a three-phase evolution, with mainly Lactobacillus plantarum and Lactobacillus fermentum dominating the rye sourdough ecosystems. PCA revealed that ornithine and mannitol were positively correlated with rye sourdoughs, contributing to bacterial competitiveness at the onset of sourdough production. Wheat and spelt sourdoughs showed a high degree of similarity, although certain compounds (e.g. indolelactic acid) appeared to be specific for spelt sourdoughs. The production of amino acid metabolites, mainly hydroxy acids (e.g. phenyllactic acid) and alcohols (e.g. 3-methyl-1-butanol), contributed to the equilibration of the redox balance and further enhanced the competitiveness of dominant species in stable sourdoughs.

  8. Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae.

    PubMed

    Wang, Damao; Yun, Eun Ju; Kim, Sooah; Kim, Do Hyoung; Seo, Nari; An, Hyun Joo; Kim, Jae-Han; Cheong, Nam Yong; Kim, Kyoung Heon

    2016-06-01

    This study was performed to evaluate the effectiveness of acidic pretreatment in increasing the enzymatic digestibility of alginate from brown macroalgae. Pretreatment with 1 % (w/v) sulfuric acid at 120 °C for 30 min produced oligosaccharides, mannuronic acid, and guluronic acid. Enzymatic saccharification of pretreated alginate by alginate lyases produced 52.2 % of the theoretical maximal sugar yield, which was only 7.5 % higher than the sugar yield obtained with unpretreated alginate. Mass spectrometric analyses of products of the two reactions revealed that acidic pretreatment and enzymatic saccharification produced saturated monomers (i.e., mannuronic and guluronic acid) with saturated oligosaccharides and unsaturated monomers (i.e., 4-deoxy-L-erythro-5-hexoseulose uronic acid; DEH), respectively. While DEH is further metabolized by microorganisms, mannuronic acid and guluronic acid are not metabolizable. Because of the poor efficacy in increasing enzymatic digestibility and owing to the formation of non-fermentable saturated monomers, acidic pretreatment cannot be recommended for enzymatic saccharification and fermentation of alginate.

  9. Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation.

    PubMed

    Redzepovic, S; Orlic, S; Majdak, A; Kozina, B; Volschenk, H; Viljoen-Bloom, M

    2003-05-25

    To produce a high-quality wine, it is important to obtain a fine balance between the various chemical constituents, especially between the sugar and acid content. The latter is more difficult to achieve in wines that have high acidity due to excess malic acid, since wine yeast in general cannot effectively degrade malic acid during alcoholic fermentation. An indigenous Saccharomyces paradoxus strain RO88 was able to degrade 38% of the malic acid in Chardonnay must and produced a wine of good quality. In comparison, Schizosaccharomyces pombe strain F effectively removed 90% of the malic acid, but did not produce a good-quality wine. Although commercially promoted as a malic-acid-degrading wine yeast strain, only 18% of the malic acid was degraded by Saccharomyces cerevisiae Lalvin strain 71B. Preliminary studies on the transcriptional regulation of the malic enzyme gene from three Saccharomyces strains, i.e. S. paradoxus RO88, S. cerevisiae 71B and Saccharomyces bayanus EC1118, were undertaken to elucidate the differences in their ability to degrade malic acid. Expression of the malic enzyme gene from S. paradoxus RO88 and S. cerevisiae 71B increased towards the end of fermentation once glucose was depleted, whereas no increase in transcription was observed for S. bayanus EC1118 which was also unable to effectively degrade malic acid.

  10. Microbiological study of lactic acid fermentation of Caper berries by molecular and culture-dependent methods.

    PubMed

    Pérez Pulido, Rubén; Ben Omar, Nabil; Abriouel, Hikmate; Lucas López, Rosario; Martínez Cañamero, Magdalena; Gálvez, Antonio

    2005-12-01

    Fermentation of capers (the fruits of Capparis sp.) was studied by molecular and culture-independent methods. A lactic acid fermentation occurred following immersion of caper berries in water, resulting in fast acidification and development of the organoleptic properties typical of this fermented food. A collection of 133 isolates obtained at different times of fermentation was reduced to 75 after randomly amplified polymorphic DNA (RAPD)-PCR analysis. Isolates were identified by PCR or 16S rRNA gene sequencing as Lactobacillus plantarum (37 isolates), Lactobacillus paraplantarum (1 isolate), Lactobacillus pentosus (5 isolates), Lactobacillus brevis (9 isolates), Lactobacillus fermentum (6 isolates), Pediococcus pentosaceus (14 isolates), Pediococcus acidilactici (1 isolate), and Enterococcus faecium (2 isolates). Cluster analysis of RAPD-PCR patterns revealed a high degree of diversity among lactobacilli (with four major groups and five subgroups), while pediococci clustered in two closely related groups. A culture-independent analysis of fermentation samples by temporal temperature gradient electrophoresis (TTGE) also indicated that L. plantarum is the predominant species in this fermentation, in agreement with culture-dependent results. The distribution of L. brevis and L. fermentum in samples was also determined by TTGE, but identification of Pediococcus at the species level was not possible. TTGE also allowed a more precise estimation of the distribution of E. faecium, and the detection of Enterococcus casseliflavus (which was not revealed by the culture-dependent analysis). Results from this study indicate that complementary data from molecular and culture-dependent analysis provide a more accurate determination of the microbial community dynamics during caper fermentation.

  11. Molecular identification and quantification of lactic acid bacteria in traditional fermented dairy foods of Russia.

    PubMed

    Yu, J; Wang, H M; Zha, M S; Qing, Y T; Bai, N; Ren, Y; Xi, X X; Liu, W J; Menghe, B L G; Zhang, H P

    2015-08-01

    Russian traditional fermented dairy foods have been consumed for thousands of years. However, little research has focused on exploiting lactic acid bacteria (LAB) resources and analyzing the LAB composition of Russian traditional fermented dairy foods. In the present study, we cultured LAB isolated from fermented mare and cow milks, sour cream, and cheese collected from Kalmykiya, Buryats, and Tuva regions of Russia. Seven lactobacillus species and the Bifidobacterium genus were quantified by quantitative PCR. The LAB counts in these samples ranged from 3.18 to 9.77 log cfu/mL (or per gram). In total, 599 LAB strains were obtained from these samples using de Man, Rogosa, and Sharpe agar and M17 agar. The identified LAB belonged to 7 genera and 30 species by 16S rRNA and murE gene sequencing and multiplex PCR assay. The predominant LAB isolates were Lactobacillus helveticus (176 strains) and Lactobacillus plantarum (63 strains), which represented 39.9% of all isolates. The quantitative PCR results revealed that counts of 7 lactobacilli species and Bifidobacterium spp. of 30 fermented cow milk samples ranged from 1.19±0.34 (Lactobacillus helveticus in Tuva) to 8.09±0.71 (Lactobacillus acidophilus in Kalmykiya) log cfu/mL of fermented cow milk (mean ± standard error). The numbers of Bifidobacterium spp., Lb. plantarum, Lb. helveticus, and Lb. acidophilus revealed no significant difference between the 3 regions; nevertheless, Lactobacillus paracasei, Lactobacillus fermentum, Lactobacillus sakei, and Lactobacillus delbrueckii ssp. bulgaricus exhibited different degrees of variation across 3 regions. The results demonstrate that traditional fermented dairy products from different regions of Russia have complex compositions of LAB species. The diversity of LAB might be related to the type of fermented dairy product, geographical origin, and manufacturing process.

  12. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages.

    PubMed

    Fraqueza, Maria João

    2015-11-06

    Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria.

  13. Release of free fatty acids from raw or processed soybeans and subsequent effects on fiber digestibilities.

    PubMed

    Reddy, P V; Morrill, J L; Nagaraja, T G

    1994-11-01

    Two in vitro experiments were conducted to determine the rates of lipolysis and the extent of biohydrogenation of fat from raw or processed soybeans and to examine the subsequent effects on fiber digestibilities. In Experiment 1, substrates containing soy oil, raw soybeans, extruded soybeans, and soybeans roasted at 132, 146, or 163 degrees C were incubated with ruminal contents for 2, 4, 6, 12, or 24 h; and release of FFA was measured. The FFA released from substrates containing soy oil, extruded soybeans, and raw or roasted soybeans reached maxima at incubations of 4, 6, and 12 h, respectively. As the roasting temperature increased from 132 to 163 degrees C, release of FFA decreased at incubations of 2, 12, and 24 h. Fatty acids in roasted soybeans were subjected to less biohydrogenation than those in raw or extruded soybeans, suggesting that FFA of roasted soybeans are partially protected from ruminal bacteria. In Experiment 2, ground alfalfa hay was added to substrates used previously to determine the effect of release rate of FFA on ADF and NDF digestibilities. At all incubation times, the substrates containing soy oil and extruded soybeans had lower digestibilities, and those containing raw or roasted soybeans had higher digestibilities of NDF and ADF.

  14. Understanding carbohydrate structures fermented or resistant to fermentation in broilers fed rapeseed (Brassica napus) meal to evaluate the effect of acid treatment and enzyme addition.

    PubMed

    Pustjens, Annemieke M; de Vries, Sonja; Schols, Henk A; Gruppen, Harry; Gerrits, Walter J J; Kabel, Mirjam A

    2014-04-01

    Unprocessed and acid-extruded rapeseed meal (RSM) was fed to broiler chickens, with and without addition of commercial pectolytic enzymes. Nonstarch polysaccharide (NSP) fermentability and unfermented NSP structures from RSM were studied in the excreta in detail. From unprocessed RSM, 24% of the nonglucose polysaccharides could be fermented. Acid treatment did not have a significant effect, but enzyme addition did improve fermentability to 38%. Most likely, the significant increase in NSP fermentability can be ascribed to the addition of pectolytic enzymes, which decreased branchiness of the water-soluble arabinan. Mainly xyloglucan, (glucurono-)xylan, (branched) arabinan, and cellulose remained in the excreta. The proportion of unextractable carbohydrates increased in excreta from broilers fed acid-extruded RSM. Probably, acid extrusion resulted in a less accessible NSP matrix, also decreasing the accessibility for pectolytic enzymes added in the diet. During alkaline extraction of the excreta, 39 to 52% (wt/wt) of the insoluble carbohydrates was released as glucosyl- and uronyl-rich carbohydrates, probably originally present via ester linkages or hydrogen bonding within the cellulose-lignin network. These linkages are expected to hinder complete NSP fermentation and indicate that digestibility of RSM may benefit substantially from an alkaline treatment or addition of esterases.

  15. Monitoring the lactic acid bacterial diversity during shochu fermentation by PCR-denaturing gradient gel electrophoresis.

    PubMed

    Endo, Akihito; Okada, Sanae

    2005-03-01

    The presence of lactic acid bacteria (LAB) during shochu fermentation was monitored by PCR-denaturing gradient gel electrophoresis (DGGE) and by bacteriological culturing. No LAB were detected from fermented mashes by PCR-DGGE using a universal bacterial PCR primer set. However, PCR-DGGE using a new primer specific for the 16S rDNA of Lactococcus, Streptococcus, Tetragenococcus, Enterococcus, and Vagococcus and two primers specific for the 16S rDNA of Lactobacillus, Pediococcus, Leuconostoc, and Weissella revealed that Enterococcus faecium, Lactobacillus casei, Lactobacillus fermentum, Lactobacillus nagelii, Lactobacillus plantarum, Lactococcus lactis, Leuconostoc citreum, Leuconostoc mesenteroides, and Weissella cibaria inhabited in shochu mashes. It was also found that the LAB community composition during shochu fermentation changed after the main ingredient and water were added during the fermentation process. Therefore, we confirmed that PCR-DGGE using all three primers specific for groups of LAB together was well suited to the study of the LAB diversity in shochu mashes. The results of DGGE profiles were similar to the results of bacteriological culturing. In conclusion, LAB are present during shochu fermentation but not dominant.

  16. Influence of thermally processed carbohydrate/amino acid mixtures on the fermentation by Saccharomyces cerevisiae.

    PubMed

    Tauer, Andreas; Elss, Sandra; Frischmann, Matthias; Tellez, Patricia; Pischetsrieder, Monika

    2004-04-07

    The production of alcoholic beverages such as Tequila, Mezcal, whiskey, or beer includes the fermentation of a mash containing Maillard reaction products. Because excessive heating of the mash can lead to complications during the following fermentation step, the impact of Maillard products on the metabolism of Saccharomyces cerevisiae was investigated. For this purpose, fermentation was carried out in a model system in the presence and absence of Maillard reaction products and formation of ethanol served as a marker for the progression of fermentation. We found that increasing amounts of Maillard products reduced the formation of ethanol up to 80%. This effect was dependent on the pH value during the Maillard reaction, reaction time, as well as the carbohydrate and amino acid component used for the generation of Maillard reaction products. Another important factor is the pH value during fermentation: The inhibitory effect of Maillard products was not detectable at a pH of 4 and increased with higher pH-values. These findings might be of relevance for the production of above-mentioned beverages.

  17. Downstream extraction process development for recovery of organic acids from a fermentation broth.

    PubMed

    Bekatorou, Argyro; Dima, Agapi; Tsafrakidou, Panagiotia; Boura, Konstantina; Lappa, Katerina; Kandylis, Panagiotis; Pissaridi, Katerina; Kanellaki, Maria; Koutinas, Athanasios A

    2016-11-01

    The present study focused on organic acids (OAs) recovery from an acidogenic fermentation broth, which is the main problem regarding the use of OAs for production of ester-based new generation biofuels or other applications. Specifically, 10 solvents were evaluated for OAs recovery from aqueous media and fermentation broths. The effects of pH, solvent/OAs solution ratios and application of successive extractions were studied. The 1:1 solvent/OAs ratio showed the best recovery rates in most cases. Butyric and isobutyric acids showed the highest recovery rates (80-90%), while lactic, succinic, and acetic acids were poorly recovered (up to 45%). The OAs recovery was significantly improved by successive 10-min extractions. Alcohols presented the best extraction performance. The process using repeated extractions with 3-methyl-1-butanol led to the highest OAs recovery. However, 1-butanol can be considered as the most cost-effective option taking into account its price and availability.

  18. Alcoholic beverages produced by alcoholic fermentation but not by distillation are powerful stimulants of gastric acid secretion in humans.

    PubMed Central

    Teyssen, S; Lenzing, T; González-Calero, G; Korn, A; Riepl, R L; Singer, M V

    1997-01-01

    BACKGROUND: The effect of commonly ingested alcoholic beverages on gastric acid output and release of gastrin in humans is unknown. AIM AND METHODS: In 16 healthy humans the effect of some commonly ingested alcoholic beverages produced by fermentation plus distillation (for example, whisky, cognac, calvados, armagnac, and rum) or by alcoholic fermentation (beer, wine, champagne, martini, and sherry) on gastric acid output and release of gastrin was studied. Gastric acid output was determined by the method of intragastric titration. Plasma gastrin was measured using a specific radioimmunoassay. RESULTS: None of the alcoholic beverages produced by fermentation plus distillation had any significant effect on gastric acid output and release of gastrin compared with control (isotonic glucose and distilled water). Alcoholic beverages produced only by fermentation significantly (p < 0.05) increased the gastric acid output by 57% to 95% of maximal acid output (MAO) and release of gastrin up to 5.1-fold compared with control. If beer, wine, and sherry were distilled, only their remaining parts increased gastric acid output by 53% to 76% of MAO and increased release of gastrin up to 4.3-fold compared with control. CONCLUSIONS: (1) Alcoholic beverages produced by fermentation but not by distillation are powerful stimulants of gastric acid output and release of gastrin; (2) the alcoholic beverage constituents that stimulate gastric acid output and release of gastrin are most probably produced during the process of fermentation and removed during the following process of distillation. PMID:9155575

  19. Food Waste Fermentation to Fumaric Acid by Rhizopus arrhizus RH7-13.

    PubMed

    Liu, Huan; Ma, Jingyuan; Wang, Meng; Wang, Weinan; Deng, Li; Nie, Kaili; Yue, Xuemin; Wang, Fang; Tan, Tianwei

    2016-12-01

    Fumaric acid as a four-carbon unsaturated dicarboxylic acid is widely used in the food and chemical industries. Food waste (FW), rich in carbohydrates and protein, is a promising potential feedstock for renewable bio-based chemicals. In this research, we investigated the capability of Rhizopus arrhizus RH7-13 in producing fumaric acid from FW. The liquid fraction of the FW (L-FW) was proven to be the best seed culture medium in our research. When it was however used to be fermentation medium, the yield of fumaric acid reached 32.68 g/L, at a volumetric production of 0.34 g/L h. The solid fraction of FW mixed with water (S-FW) could also be used as fermentation medium when a certain amount of glucose was added, and the yield of fumaric acid reached 31.26 g/L. The results indicated that both fractions of FW could be well utilized in fermentation process and it could replace a part of common carbon, nitrogen, and nutrient. The process has an application potential since reducing the costs of raw materials.

  20. Direct Capture of Organic Acids From Fermentation Media Using Ionic Liquids

    SciTech Connect

    Klasson, K.T.

    2004-11-03

    Several ionic liquids have been investigated for the extraction of organic acids from fermentation broth. Partitioning of representative organic acids (lactic, acetic, and succinic) between aqueous solution and nine hydrophobic ionic liquids was measured. The extraction efficiencies were strongly dependent on pH of the aqueous phase. Distribution coefficient was very good (approximately 60) at low succinic acid concentrations for one of the ionic liquids (trihexyltetradecylphosphonium methanesulfonate) at neutral pH. However, this ionic liquid had to be diluted with nonanol due to its high viscosity in order to be useful. A diluent (trioctylamine) was also added to this mixture. The results suggest that an extraction system based on ionic liquids may be feasible for succinic acid recovery from fermentation broth and that two ideal extraction stages are needed to reduce the concentration from 33 g/L to 1 g/L of succinic acid. Further studies are needed to evaluate other issues related to practical applications, including ionic liquid loss in the process, toxicity effects of ionic liquids during simultaneous fermentation and extractions.

  1. Diet structure, butyric acid, and fermentable carbohydrates influence growth performance, gut morphology, and cecal fermentation characteristics in broilers

    PubMed Central

    Qaisrani, S. N.; van Krimpen, M. M.; Kwakkel, R. P.; Verstegen, M. W. A.; Hendriks, W. H.

    2015-01-01

    An experiment with 288 male (Ross 308) 1-d-old broilers was conducted to test the hypothesis that a coarse diet supplemented with butyric acid (BA) and fermentable carbohydrates (FC) improves performance of broilers with a poorly digestible protein source. The interaction effects of diet structure (fine or coarse), FC supplementation (with or without), and BA supplementation (with or without) in a poorly digestible diet based on rapeseed meal (RSM) were tested in a factorial arrangement of 8 (2 × 2 × 2) dietary treatments. The coarseness of the diet affected feed intake (FI) (P < 0.001), BW gain (P = 0.001), and the feed conversion ratio (FCR) (P = 0.001) positively. Broilers fed the coarse diets had, on average, 14% heavier gizzards and 11, 7, 5, and 6% lower relative empty weights of the crop, duodenum, jejunum, and ileum, respectively, compared with those fed the fine diets. Dietary coarseness resulted in, on average, 6% greater ileal protein digestibility, 20% lower gizzard pH, 19% greater villus height, 18% lower crypt depth, and 23% reduced cecal branched chain fatty acids (BCFA) compared with chickens fed the fine diets. Broilers fed BA-supplemented diets had an improved FCR (P = 0.004) and decreased crypt depth (P < 0.001) compared with those fed diets without BA. Fermentable carbohydrate supplementation did not influence growth performance, gut development, or contents of total BCFA and total biogenic amines in the cecal digesta (P > 0.05). Supplementation with FC, however, decreased the cecal concentration of spermine by approximately 31% compared with broilers fed diets without FC (P = 0.002). In conclusion, feeding a coarse diet supplemented with BA improved performance of broilers fed a diet containing a poorly digestible protein source. The negative effects of a poorly digestible protein source can thus be partly counterbalanced by coarse grinding and BA supplementation in the diet. PMID:26175052

  2. Diet structure, butyric acid, and fermentable carbohydrates influence growth performance, gut morphology, and cecal fermentation characteristics in broilers.

    PubMed

    Qaisrani, S N; van Krimpen, M M; Kwakkel, R P; Verstegen, M W A; Hendriks, W H

    2015-09-01

    An experiment with 288 male (Ross 308) 1-d-old broilers was conducted to test the hypothesis that a coarse diet supplemented with butyric acid (BA) and fermentable carbohydrates (FC) improves performance of broilers with a poorly digestible protein source. The interaction effects of diet structure (fine or coarse), FC supplementation (with or without), and BA supplementation (with or without) in a poorly digestible diet based on rapeseed meal (RSM) were tested in a factorial arrangement of 8 (2×2×2) dietary treatments. The coarseness of the diet affected feed intake (FI) (P<0.001), BW gain (P=0.001), and the feed conversion ratio (FCR) (P=0.001) positively. Broilers fed the coarse diets had, on average, 14% heavier gizzards and 11, 7, 5, and 6% lower relative empty weights of the crop, duodenum, jejunum, and ileum, respectively, compared with those fed the fine diets. Dietary coarseness resulted in, on average, 6% greater ileal protein digestibility, 20% lower gizzard pH, 19% greater villus height, 18% lower crypt depth, and 23% reduced cecal branched chain fatty acids (BCFA) compared with chickens fed the fine diets. Broilers fed BA-supplemented diets had an improved FCR (P=0.004) and decreased crypt depth (P<0.001) compared with those fed diets without BA. Fermentable carbohydrate supplementation did not influence growth performance, gut development, or contents of total BCFA and total biogenic amines in the cecal digesta (P>0.05). Supplementation with FC, however, decreased the cecal concentration of spermine by approximately 31% compared with broilers fed diets without FC (P=0.002). In conclusion, feeding a coarse diet supplemented with BA improved performance of broilers fed a diet containing a poorly digestible protein source. The negative effects of a poorly digestible protein source can thus be partly counterbalanced by coarse grinding and BA supplementation in the diet.

  3. The Effect of Lactic Acid Bacteria-fermented Soybean Milk Products on Carrageenan-induced Tail Thrombosis in Rats

    PubMed Central

    KAMIYA, Seitaro; OGASAWARA, Masayoshi; ARAKAWA, Masayuki; HAGIMORI, Masayori

    2013-01-01

    Thrombosis is characterized by congenital and acquired procatarxis. Lactic acid bacteria-fermented soybean milk products (FS-LAB) inhibit hepatic lipid accumulation and prevent atherosclerotic plaque formation. However, the therapeutic efficacy of FS-LAB against thrombosis has yet to be investigated. In this study, FS-LAB were administered subcutaneously into the tails of rats, with the subsequent intravenous administration of κ-carrageenan 12 hr after the initial injection. In general, administration of κ-carrageenan induces thrombosis. The length of the infarcted tail regions was significantly shorter in the rats administered a single-fold or double-fold concentration of the FS-LAB solution compared with the region in control rats. Therefore, FS-LAB exhibited significant antithrombotic effects. Our study is the first to characterize the properties of FS-LAB and, by testing their efficacy on an in vivo rat model of thrombosis, demonstrate the potency of their antithrombotic effect. PMID:24936368

  4. Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid.

    PubMed

    Liang, Shaobo; Gliniewicz, Karol; Gerritsen, Alida T; McDonald, Armando G

    2016-05-01

    Mixed cultures fermentation can be used to convert organic wastes into various chemicals and fuels. This study examined the fermentation performance of four batch reactors fed with different agricultural (orange, banana, and potato (mechanical and steam)) peel wastes using mixed cultures, and monitored the interval variation of reactor microbial communities with 16S rRNA genes using Illumina sequencing. All four reactors produced similar chemical profile with lactic acid (LA) as dominant compound. Acetic acid and ethanol were also observed with small fractions. The Illumina sequencing results revealed the diversity of microbial community decreased during fermentation and a community of largely lactic acid producing bacteria dominated by species of Lactobacillus developed.

  5. End product yields from the extraruminal fermentation of various polysaccharide, protein and nucleic acid components of biofuels feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    “Extraruminal” fermentations, employing mixed ruminal bacterial consortia incubated in vitro, are capable of fermenting a complex array of biomass materials to mixtures of volatile fatty acids (VFA), methane, and carbon dioxide. Most of the potential energy in the biomass feedstock is retained in th...

  6. Inhibition of fructan-fermenting equine fecal bacteria and Streptococcus bovis by hops (Humulus lupulus L.) ß-acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The goals were to determine if the '-acid from hops (Humulus lupulus L.) could be used to control fructan fermentation by equine hindgut microorganisms, and to verify the antimicrobial mode of action on the Streptococcus bovis, which has been implicated in fructan fermentation, hindgut acidos...

  7. The effect of cocoa fermentation and weak organic acids on growth and ochratoxin A production by Aspergillus species.

    PubMed

    Copetti, Marina V; Iamanaka, Beatriz T; Mororó, Raimundo C; Pereira, José L; Frisvad, Jens C; Taniwaki, Marta H

    2012-04-16

    The acidic characteristics of cocoa beans have influence on flavor development in chocolate. Cocoa cotyledons are not naturally acidic, the acidity comes from organic acids produced by the fermentative microorganisms which grow during the processing of cocoa. Different concentrations of these metabolites can be produced according to the fermentation practices adopted in the farms, which could affect the growth and ochratoxin A production by fungi. This work presents two independent experiments carried out to investigate the effect of some fermentation practices on ochratoxin A production by Aspergillus carbonarius in cocoa, and the effect of weak organic acids such as acetic, lactic and citric at different pH values on growth and ochratoxin A production by A. carbonarius and Aspergillus niger in culture media. A statistical difference (ρ<0.05) in the ochratoxin A level in the cured cocoa beans was observed in some fermentation practices adopted. The laboratorial studies demonstrate the influence of organic acids on fungal growth and ochratoxin A production, with differences according to the media pH and the organic acid present. Acetic acid was the most inhibitory acid against A. carbonarius and A. niger. From the point of view of food safety, considering the amount of ochratoxin A produced, fermentation practices should be conducted towards the enhancement of acetic acid, although lactic and citric acids also have an important role in lowering the pH to improve the toxicity of acetic acid.

  8. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    PubMed

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus.

  9. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    PubMed

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals.

  10. The effect of delayed ensiling and application of a propionic acid-based additive on the fermentation of barley silage.

    PubMed

    Mills, J A; Kung, L

    2002-08-01

    Prolonged exposure to air can adversely affect the silage fermentation process. To investigate a possible method to overcome this problem, we determined if a buffered propionic acid-based additive, applied to chopped, whole-plant barley exposed to air before ensiling, would affect the subsequent fermentation. Wilted forage was chopped and treated with nothing, or with 0.1% (wt/wt wet forage) of a buffered propionic acid-based additive and ensiled immediately in quadruplicate 20-L laboratory silos. Portions of the chopped forage, untreated and treated, were left in loose piles in a barn for 24 h before ensiling. Another portion of the untreated silage exposed to air for 24 h was also treated with 0.1% of the additive just before ensiling. Prolonged exposure to air before ensiling increased the numbers of yeasts on forages by more than 1,000-fold. The concentrations of water-soluble carbohydrates decreased by more than 50%; the ammonia-N concentrations increased 40%, and pH increased by more than 1 unit as a result of exposure to air. These changes were less in forage that was treated with the additive at chopping. After 60 d, silages of forages that were exposed to air before ensiling had a higher pH, higher concentrations of ammonia-N and butyric acid, and lower concentrations of lactic and acetic acids than silages of forage that had been ensiled immediately after harvest. In situ DM digestibility was lowest in untreated silages that had been exposed to air before ensiling. In contrast, treatment with the additive, applied before or after exposure to air, prevented the reduction in in vitro digestion.

  11. pH-Uncontrolled lactic acid fermentation with activated carbon as an adsorbent.

    PubMed

    Gao, Min-Tian; Shimamura, Takashi; Ishida, Nobuhiro; Takahashi, Haruo

    2011-05-06

    In this paper, we presented a novel process involving activated carbon (AC) as an adsorbent for lactic acid fermentation, separation and oligomerization. It was found that pH has a significant effect on the adsorption of lactic acid on AC. The use of AC for in situ removal of lactic acid successfully decreased the inhibitory effect of lactic acid, resulting in significant increases in both productivity and yield. Acetone was used to desorb lactic acid and it was confirmed that the acetone treatment did not decrease the optical purity of the lactic acid, i.e., the optical purity was as high as 99.5% after desorption. Due to the presence of little materials influencing lactic acid oligomerization, oligomers with an optical purity of above 96% and a weight-average molecular weight (M(w)) of 2400 were obtained in the oligomerization process.

  12. Fermentation and alternative oxidase contribute to the action of amino acid biosynthesis-inhibiting herbicides.

    PubMed

    Zulet, Amaia; Gil-Monreal, Miriam; Zabalza, Ana; van Dongen, Joost T; Royuela, Mercedes

    2015-03-01

    Acetolactate synthase inhibitors (ALS-inhibitors) and glyphosate (GLP) are two classes of herbicide that act by the specific inhibition of an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. The physiological effects that are detected after application of these two classes of herbicides are not fully understood in relation to the primary biochemical target inhibition, although they have been well documented. Interestingly, the two herbicides' toxicity includes some common physiological effects suggesting that they kill the treated plants by a similar pattern despite targeting different enzymes. The induction of aerobic ethanol fermentation and alternative oxidase (AOX) are two examples of these common effects. The objective of this work was to gain further insight into the role of fermentation and AOX induction in the toxic consequences of ALS-inhibitors and GLP. For this, Arabidopsis T-DNA knockout mutants of alcohol dehydrogenase (ADH) 1 and AOX1a were used. The results found in wild-type indicate that both GLP and ALS-inhibitors reduce ATP production by inducing fermentation and alternative respiration. The main physiological effects in the process of herbicide activity upon treated plants were accumulation of carbohydrates and total free amino acids. The effects of the herbicides on these parameters were less pronounced in mutants compared to wild-type plants. The role of fermentation and AOX regarding pyruvate availability is also discussed.

  13. Application of Lactobacillus immobilized by Activated Carbon Fiber in Fermentation of Lactic Acid in Starch Wastewater

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Wang, Peng; Chi, Guoda; Huang, Chenyong

    2010-11-01

    Activated carbon fibers (ACF) as the carrier of Lactobacillus was introduced into fermenting system, and a method of modifying the surface of ACF by HNO3-Fe (III) was established. Factors that affect ACF carrier's effect on immobilization of Lactobacillus were studied. HCl, H2SO4, HNO3 and FeCl3 solutions were respectively used to modify the surface properties of ACF. The amount of Fe (III) carried on ACF surface was 0.1563 mol/kg after ACF surface was modified by HNO3 for 5 h and then by 0.1 mol/L FeCl3 for 4 h, when the thickness of Lactobacillus on a single silk of carrier reached 40 μm. When ACF modified by HNO3-Fe (III) was applied in the fermentation of lactic acid in starch industry wastewater, the fermentation period reduced by 8 h and the output of L-lactic acid was 65.5 g/L, which was 3.3% more than that fermented without the carrier.

  14. Biotechnological production of phenyllactic acid and biosurfactants from trimming vine shoot hydrolyzates by microbial coculture fermentation.

    PubMed

    Rodríguez-Pazo, Noelia; Salgado, José Manuel; Cortés-Diéguez, Sandra; Domínguez, José Manuel

    2013-04-01

    Coculture fermentations show advantages for producing food additives from agroindustrial wastes, considering that different specified microbial strains are combined to improve the consumption of mixed sugars obtained by hydrolysis. This technology dovetails with both the growing interest of consumers towards the use of natural food additives and with stricter legislations and concern in developed countries towards the management of wastes. The use of this technology allows valorization of both cellulosic and hemicellulosic fractions of trimming vine shoots for the production of lactic acid (LA), phenyllactic acid (PLA), and biosurfactants (BS). This work compares the study of the potential of hemicellulosic and cellulosic fractions of trimming vine shoots as cheaper and renewable carbon sources for PLA and BS production by independent or coculture fermentations. The highest LA and PLA concentrations, 43.0 g/L and 1.58 mM, respectively, were obtained after 144 h during the fermentation of hemicellulosic sugars and simultaneous saccharification and fermentation (SSF) carried out by cocultures of Lactobacillus plantarum and Lactobacillus pentosus. Additionally, cell-bond BS decreased the surface tension (ST) in 17.2 U; meanwhile, cell-free supernatants (CFS) showed antimicrobial activity against Salmonella enterica and Listeria monocytogenes with inhibition halos of 12.1±0.6 mm and 11.5±0.9 mm, respectively.

  15. Slight Fermentation with Lactobacillus fermentium Improves the Taste (Sugar:Acid Ratio) of Citrus (Citrus reticulata cv. chachiensis) Juice.

    PubMed

    Yu, Yuanshan; Xiao, Gengsheng; Xu, Yujuan; Wu, Jijun; Fu, Manqin; Wen, Jing

    2015-11-01

    The aim of this study was to evaluate the hypothesis that fermentation with Lactobacillus fermentium, which can metabolize citric acid, could be applied in improving the taste (sugar:acid ratio) of citrus juice. During fermentation, the strain of L. fermentium can preferentially utilize citric acid of citrus (Citrus reticulata cv. Chachiensis) juice to support the growth without the consumption of sugar. After 6 h of fermentation with L. fermentium at 30 °C, the sugar:acid ratio of citrus juice increased to 22:1 from 12:1, which resulted in that the hedonic scores of sweetness, acidity and overall acceptability of fermented-pasteurized citrus juice were higher than the unfermented-pasteurized citrus juice. Compared with unfermented-pasteurized citrus juice, the ORAC value and total amino acid showed a reduction, and no significant change (P > 0.05) in the L*, a*, b*, total soluble phenolics and ascorbic acid (Vc) content in the fermented-pasteurized citrus juice was observed as compared with unfermented-pasteurized citrus juice. Hence, slight fermentation with L. fermentium can be used for improving the taste (sugar:acid ratio) of citrus juice with the well retaining of quality.

  16. In vitro antioxidant and antibacterial properties of hydrolysed proteins of delimed tannery fleshings: comparison of acid hydrolysis and fermentation methods.

    PubMed

    Balakrishnan, Bijinu; Prasad, Binod; Rai, Amit Kumar; Velappan, Suresh Puthanveetil; Subbanna, Mahendrakar Namadev; Narayan, Bhaskar

    2011-04-01

    Proteins in delimed tannery fleshings were fermentatively hydrolysed using Enterococcus faecium NCIM5335 and also hydrolysed using mild organic acids (formic acid and propionic acid). The liquor portion containing hydrolysed proteins was spray dried, in both the cases, to obtain a powder. The spray dried powder was evaluated for in vitro antioxidant activities with respect to scavenging different free radicals and antibacterial properties against nine different pathogens. Fermentation and acid hydrolysates scavenged 83 and 75.3% of 2,2-azino-bis-3-ethyl-benzthiazoline-6-sulphonic acid (ABTS) radicals, respectively, at a protein concentration of 0.25 mg. Further, fermentation hydrolysate showed higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of 59% as compared to 56% scavenging by acid hydrolysate at a protein concentration of 5 mg. Acid hydrolysate exhibited lesser (82.3%) peroxy radical scavenging compared to hydrolysate from fermentation (88.2%) at a protein concentration of 10 mg. However, acid hydrolysate exhibited higher (89.2%) superoxide anion scavenging while its fermentation counterpart showed lower activity (85.4%) at 2.5 mg hydrolysate protein. Well as superoxide anion scavenging properties. All the in vitro antioxidant properties exhibited dose dependency. Fermentation hydrolysate exhibited maximum antagonistic activity against Salmonella typhi FB231, from among host of pathogens evaluated. Both the hydrolysates have potential to be ingredients in animal feeds and can help reduce oxidative stress in the animals.

  17. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  18. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  19. Lactic Acid Bacterial Starter Culture with Antioxidant and γ-Aminobutyric Acid Biosynthetic Activities Isolated from Flatfish-Sikhae Fermentation.

    PubMed

    Won, Yeong Geol; Yu, Hyun-Hee; Chang, Young-Hyo; Hwang, Han-Joon

    2015-12-01

    The aim of this study is to select a lactic acid bacterial strain as a starter culture for flatfish-Sikhae fermentation and to evaluate its suitability for application in a food system. Four strains of lactic acid bacteria isolated from commercial flatfish-Sikhae were identified and selected as starter culture candidates through investigation of growth rates, salt tolerance, food safety, and functional properties such as antioxidative and antimicrobial activities. The fermentation properties of the starter candidates were also examined in food systems prepared with these strains (candidate batch) in comparison with a spontaneous fermentation process without starter culture (control batch) at 15°C. The results showed that the candidate YG331 batch had better fermentation properties such as viable cell count, pH, and acidity than the other experimental batches, including the control batch. The results are expressed according to selection criteria based on a preliminary sensory evaluation and physiochemical investigation. Also, only a small amount of histamine was detected with the candidate YG331 batch. The radical scavenging activity of the candidate batches was better compared with the control batch, and especially candidate YG331 batch showed the best radical scavenging activity. Also, we isolated another starter candidate (identified as Lactobacillus brevis PM03) with γ-aminobutyric acid (GABA)-producing activity from commercial flatfish-Sikhae products. The sensory scores of the candidate YG331 batch were better than those of the other experimental batches in terms of flavor, color, and overall acceptance. In this study, we established selection criteria for the lactic acid bacterial starter for the flatfish-Sikhae production and finally selected candidate YG331 as the most suitable starter.

  20. Color identification and fuzzy reasoning based monitoring and controlling of fermentation process of branched chain amino acid

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning

    2009-11-01

    The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.

  1. Assessing physio-macromolecular effects of lactic acid on Zygosaccharomyces bailii cells during microaerobic fermentation.

    PubMed

    Kuanyshev, Nurzhan; Ami, Diletta; Signori, Lorenzo; Porro, Danilo; Morrissey, John P; Branduardi, Paola

    2016-08-01

    The ability of Zygosaccharomyces bailii to grow at low pH and in the presence of considerable amounts of weak organic acids, at lethal condition for Saccharomyces cerevisiae, increased the interest in the biotechnological potential of the yeast. To understand the mechanism of tolerance and growth effect of weak acids on Z. bailii, we evaluated the physiological and macromolecular changes of the yeast exposed to sub lethal concentrations of lactic acid. Lactic acid represents one of the important commodity chemical which can be produced by microbial fermentation. We assessed physiological effect of lactic acid by bioreactor fermentation using synthetic media at low pH in the presence of lactic acid. Samples collected from bioreactors were stained with propidium iodide (PI) which revealed that, despite lactic acid negatively influence the growth rate, the number of PI positive cells is similar to that of the control. Moreover, we have performed Fourier Transform Infra-Red (FTIR) microspectroscopy analysis on intact cells of the same samples. This technique has been never applied before to study Z. bailii under this condition. The analyses revealed lactic acid induced macromolecular changes in the overall cellular protein secondary structures, and alterations of cell wall and membrane physico-chemical properties.

  2. Effect of Varying Acid Hydrolysis Condition in Gracilaria Sp. Fermentation Using Sasad

    NASA Astrophysics Data System (ADS)

    Mansuit, H.; Samsuri, M. D. C.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.; Mansa, R.

    2015-04-01

    Macroalgae or seaweed is being considered as promising feedstock for bioalcohol production due to high polysaccharides content. Polysaccharides can be converted into fermentable sugar through acid hydrolysis pre-treatment. In this study, the potential of using carbohydrate-rich macroalgae, Gracilaria sp. as feedstock for bioalcohol production via various acid hydrolysis conditions prior to the fermentation process was investigated and evaluated. The seaweed used in this research was from the red algae group, using species of Gracilaria sp. which was collected from Sg. Petani Kedah, Malaysia. Pre-treatment of substrate was done using H2SO4 and HCl with molarity ranging from 0.2M to 0.8M. The pretreatment time were varied in the range of 15 to 30 minutes. Fermentation was conducted using Sasad, a local Sabahan fermentation agent as a starter culture. Alcohol extraction was done using a distillation unit. Reducing sugar analysis was done by Benedict test method. Alcohol content analysis was done using specific gravity test. After hydrolysis, it was found out that acid hydrolysis at 0.2M H2SO4 and pre-treated for 20 minutes at 121°C has shown the highest reducing sugar content which has yield (10.06 mg/g) of reducing sugar. It was followed by other samples hydrolysis using 0.4M HCl with 30 minutes pre-treatment and 0.2M H2SO4, 15 minutes pre-treatment with yield of 8.06 mg/g and 5.75 mg/g reducing sugar content respectively. In conclusion, acid hydrolysis of Gracilaria sp. can produce higher reducing sugar yield and thus it can further enhance the bioalcohol production yield. Hence, acid hydrolysis of Gracilaria sp. should be studied more as it is an important step in the bioalcohol production and upscaling process.

  3. Fatty acid composition and biogenic amines in acidified and fermented fish silage: a comparison study.

    PubMed

    Özyurt, Gülsün; Gökdoğan, Saadet; Şimşek, Ayşe; Yuvka, Ilknur; Ergüven, Merve; Kuley Boga, Esmeray

    2016-01-01

    In the presented study, ensiling of discard fish by acidification or fermentation was evaluated. Klunzinger's ponyfish which is a discard fish was used for the production of fish silage by acidification (3% formic acid for Method FA; 1.5% formic and 1.5% sulphuric acid for Method FASA) and fermentation (Lactobacillus plantarum for Method LP and Streptococcus thermophilus for Method ST). The chemical, microbiological and nutritional properties of the differently preserved fish silages were estimated during a storage period of 60 d at ambient temperature. Compared to the raw material, a slight increase in saturated fatty acids and a slight decrease in polyunsaturated fatty acids were observed in all silages. At the end of the storage period, the aerobic bacteria counts after applying Methods FA, FASA, LP and ST amounted to 2.35, 2.39, 5.77 and 5.43 log cfu/g, respectively. The analysis of thiobarbituric acid revealed that acidification of silages accelerated the lipid oxidation. Nine biogenic amines were found in raw fish and different silages. The initial histamine concentration in raw fish was 0.17 mg/100 g and in all silages it remained at low levels during the storage period. The initial tyramine content was found to be 1.56 mg/100 g in raw fish and increased significantly in all silages. The increase of the tyramine content in fermented silages was considerably higher than in acidified silages (23-48 mg/100 g and 5-10 mg/100 g, respectively). It can be concluded that acidified or fermented fish silage should be considered as potential feed component for animals because of its high nutritional value and appropriate microbiological and chemical quality.

  4. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology.

    PubMed

    Lee, Jae-Won; Rodrigues, Rita C L B; Jeffries, Thomas W

    2009-12-01

    Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 2(3) full factorial design with six axial points. Temperatures ranged from 132 to 180 degrees C, time from 10 to 90 min and oxalic acid loadings from 0.01 to 0.038 g/g solids. Separate maxima were found for enzymatic saccharification and hemicellulose fermentation, respectively, with the condition for maximum saccharification being significantly more severe. Ethanol production was affected by reaction temperature more than by oxalic acid and reaction time over the ranges examined. The effect of reaction temperature was significant at a 95% confidence level in its effect on ethanol production. Oxalic acid and reaction time were statistically significant at the 90% level. The highest ethanol concentration (20 g/l) was obtained after 48 h with an ethanol volumetric production rate of 0.42 g ethanol l(-1) h(-1). The ethanol yield after SSF with P. stipitis was significantly higher than predicted by sequential saccharification and fermentation of substrate pretreated under the same condition. This was attributed to the secretion of beta-glucosidase by P. stipitis. During SSF, free extracellular beta-glucosidase activity was 1.30 pNPG U/g with P. stipitis, while saccharification without the yeast was 0.66 pNPG U/g.

  5. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation.

    PubMed

    Cordente, Antonio G; Cordero-Bueso, Gustavo; Pretorius, Isak S; Curtin, Christopher D

    2013-02-01

    Acetic acid, a byproduct formed during yeast alcoholic fermentation, is the main component of volatile acidity (VA). When present in high concentrations in wine, acetic acid imparts an undesirable 'vinegary' character that results in a significant reduction in quality and sales. Previously, it has been shown that saké yeast strains resistant to the antifungal cerulenin produce significantly lower levels of VA. In this study, we used a classical mutagenesis method to isolate a series of cerulenin-resistant strains, derived from a commercial diploid wine yeast. Four of the selected strains showed a consistent low-VA production phenotype after small-scale fermentation of different white and red grape musts. Specific mutations in YAP1, a gene encoding a transcription factor required for oxidative stress tolerance, were found in three of the four low-VA strains. When integrated into the genome of a haploid wine strain, the mutated YAP1 alleles partially reproduced the low-VA production phenotype of the diploid cerulenin-resistant strains, suggesting that YAP1 might play a role in (regulating) acetic acid production during fermentation. This study offers prospects for the development of low-VA wine yeast starter strains that could assist winemakers in their effort to consistently produce wine to definable quality specifications.

  6. Plant-based Paste Fermented by Lactic Acid Bacteria and Yeast: Functional Analysis and Possibility of Application to Functional Foods

    PubMed Central

    Kuwaki, Shinsuke; Nakajima, Nobuyoshi; Tanaka, Hidehiko; Ishihara, Kohji

    2012-01-01

    A plant-based paste fermented by lactic acid bacteria and yeast (fermented paste) was made from various plant materials. The paste was made of fermented food by applying traditional food-preservation techniques, that is, fermentation and sugaring. The fermented paste contained major nutrients (carbohydrates, proteins, and lipids), 18 kinds of amino acids, and vitamins (vitamin A, B1, B2, B6, B12, E, K, niacin, biotin, pantothenic acid, and folic acid). It contained five kinds of organic acids, and a large amount of dietary fiber and plant phytochemicals. Sucrose from brown sugar, used as a material, was completely resolved into glucose and fructose. Some physiological functions of the fermented paste were examined in vitro. It was demonstrated that the paste possessed antioxidant, antihypertensive, antibacterial, anti-inflammatory, anti-allergy and anti-tyrosinase activities in vitro. It was thought that the fermented paste would be a helpful functional food with various nutrients to help prevent lifestyle diseases. PMID:25114554

  7. Identification of Bacillus species occurring in Kantong, an acid fermented seed condiment produced in Ghana.

    PubMed

    Kpikpi, Elmer Nayra; Thorsen, Line; Glover, Richard; Dzogbefia, Victoria Pearl; Jespersen, Lene

    2014-06-16

    Kantong is a condiment produced in Ghana by the spontaneous fermentation of kapok tree (Ceiba pentandra) seeds with cassava flour as an additive. Fermentation is over a 48h period followed by a drying and a kneading process. Although lactic acid bacteria (LAB) have previously been identified other micro-organisms may also be involved in the fermentation process. In this study we examined the occurrence of aerobic endospore-forming bacteria (AEB) in raw materials, during fermentation and in the final product at 2 production sites in Northern Ghana. Total aerobic mesophilic bacterial counts increased from 5.4±0.1log10CFU/g in the raw materials to 8.9±0.1log10CFU/g in the final products, with the AEB accounting for between 23% and 80% of the total aerobic mesophilic (TAM) counts. A total of 196 AEB were identified at a species/subspecies level by the use of phenotypic tests and genotypic methods including M13-PCR typing, 16S rRNA and gyrA gene sequencing. Bacillus subtilis subsp. subtilis (63% of the AEB), Bacillus safensis (26% of the AEB) and Bacillus amyloliquefaciens subsp. plantarum/Bacillus methylotrophicus (9% of the AEB) were the predominant Bacillus species during fermentation and in the final products. B. amyloliquefaciens/B. methylotrophicus originated from cassava flour, B. safensis from seeds and cassava flour, while the origin of B. subtilis was less clear. Brevibacillus agri and Peanibacillus spp. occurred sporadically. Further investigations are required to elucidate the role of AEB occurring in high numbers, in the fermentation of Kantong.

  8. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH

    PubMed Central

    Davis, C. R.; Wibowo, D. J.; Lee, T. H.; Fleet, G. H.

    1986-01-01

    Commercially produced red wines were adjusted to pH 3.0, 3.2, 3.5, 3.7, or 4.0 and examined during and after malolactic fermentation for growth of lactic acid bacteria and changes in the concentrations of carbohydrates, organic acids, amino acids, and acetaldehyde. With one exception, Leuconostoc oenos conducted the malolactic fermentation in all wines and was the only species to occur in wines at pH below 3.5. Malolactic fermentation by L. oenos was accompanied by degradation of malic, citric, and fumaric acids and production of lactic and acetic acids. The concentrations of arginine, histidine, and acetaldehyde also decreased at this stage, but the behavior of hexose and pentose sugars was complicated by other factors. Pediococcus parvulus conducted the malolactic fermentation in one wine containing 72 mg of total sulfur dioxide per liter. Fumaric and citric acids were not degraded during this malolactic fermentation, but hexose sugars were metabolized. P. parvulus and species of Lactobacillus grew after malolactic fermentation in wines with pH adjusted above 3.5. This growth was accompanied by the utilization of wine sugars and production of lactic and acetic acids. PMID:16347015

  9. Fatty acid profile, trans-octadecenoic, α-linolenic and conjugated linoleic acid contents differing in certified organic and conventional probiotic fermented milks.

    PubMed

    Florence, Ana Carolina R; Béal, Catherine; Silva, Roberta C; Bogsan, Cristina S B; Pilleggi, Ana Lucia O S; Gioielli, Luiz Antonio; Oliveira, Maricê N

    2012-12-15

    Development of dairy organic probiotic fermented products is of great interest as they associate ecological practices and benefits of probiotic bacteria. As organic management practices of cow milk production allow modification of the fatty acid composition of milk (as compared to conventional milk), we studied the influence of the type of milk on some characteristics of fermented milks, such as acidification kinetics, bacterial counts and fatty acid content. Conventional and organic probiotic fermented milks were produced using Bifidobacterium animalis subsp. lactis HN019 in co-culture with Streptococcus thermophilus TA040 and Lactobacillus delbrueckii subsp. bulgaricus LB340. The use of organic milk led to a higher acidification rate and cultivability of Lactobacillus bulgaricus. Fatty acids profile of organic fermented milks showed higher amounts of trans-octadecenoic acid (C18:1, 1.6 times) and polyunsaturated fatty acids, including cis-9 trans-11, C18:2 conjugated linoleic (CLA-1.4 times), and α-linolenic acids (ALA-1.6 times), as compared to conventional fermented milks. These higher levels were the result of both initial percentage in the milk and increase during acidification, with no further modification during storage. Finally, use of bifidobacteria slightly increased CLA relative content in the conventional fermented milks, after 7 days of storage at 4°C, whereas no difference was seen in organic fermented milks.

  10. Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield.

    PubMed

    Mimitsuka, Takashi; Sawai, Kenji; Kobayashi, Koji; Tsukada, Takeshi; Takeuchi, Norihiro; Yamada, Katsushige; Ogino, Hiroyasu; Yonehara, Tetsu

    2015-01-01

    Poly d-lactic acid is an important polymer because it improves the thermostability of poly l-lactic acid by stereo complex formation. To demonstrate potency of continuous fermentation using a membrane-integrated fermentation reactor (MFR) system, continuous fermentation using genetically modified Saccharomyces cerevisiae which produces d-lactic acid was performed at the low pH and microaerobic conditions. d-Lactic acid continuous fermentation using the MFR system by genetically modified yeast increased production rate by 11-fold compared with batch fermentation. In addition, the carbon yield of d-lactic acid in continuous fermentation was improved to 74.6 ± 2.3% compared to 39.0 ± 1.7% with batch fermentation. This dramatic improvement in carbon yield could not be explained by a reduction in carbon consumption to form cells compared to batch fermentation. Further detailed analysis at batch fermentation revealed that the carbon yield increased to 76.8% at late stationary phase. S. cerevisiae, which exhibits the Crabtree-positive effect, demonstrated significant changes in metabolic activities at low sugar concentrations (Rossignol et al., Yeast, 20, 1369-1385, 2003). Moreover, lactate-producing S. cerevisiae requires ATP supplied not only from the glycolytic pathway but also from the TCA cycle (van Maris et al., Appl. Environ. Microbiol., 70, 2898-2905, 2004). Our finding was revealed that continuous fermentation, which can maintain the conditions of both a low sugar concentration and air supply, results in Crabtree-positive and lactate-producing S. cerevisiae for suitable conditions of d-lactic acid production with respect to redox balance and ATP generation because of releasing the yeast from the Crabtree effect.

  11. Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt.

    PubMed

    Jia, Ru; Chen, Han; Chen, Hui; Ding, Wu

    2016-01-01

    The effect of fermentation with Lactobacillus rhamnosus GG on the product quality of goat milk yogurt using traditional yogurt starter was studied through single-factor experiments and orthogonal experiments. The optimum fermentation condition was evaluated by the titratable acidity of goat milk yogurt, water-retaining capability, sensory score, and texture properties; the fatty acids of the fermented goat milk were determined by a gas chromatograph. Results indicate that high product quality of goat milk yogurt can be obtained and the content of short-chain and medium-chain fatty acids can be decreased significantly when amount of sugar added was 7%, inoculation amount was 3%, the ratio of 3 lactic acid bacteria--Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, and L. rhamnosus GG--was 1:1:3, and fermentation temperature was 42°C.

  12. Improvement of l-lactic acid productivity from sweet sorghum juice by repeated batch fermentation coupled with membrane separation.

    PubMed

    Wang, Yong; Meng, Hongyu; Cai, Di; Wang, Bin; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    In order to efficiently produce l-lactic acid from non-food feedstocks, sweet sorghum juice (SSJ), which is rich of fermentable sugars, was directly used for l-lactic acid fermentation by Lactobacillus rhamnosus LA-04-1. A membrane integrated repeated batch fermentation (MIRB) was developed for productivity improvement. High-cell-density fermentation was achieved with a final cell density (OD620) of 42.3, and the CCR effect was overcomed. When SSJ (6.77gL(-1) glucose, 4.51gL(-1) fructose and 50.46gL(-1) sucrose) was used as carbon source in MIRB process, l-lactic acid productivity was increased significantly from 1.45gL(-1)h(-1) (batch 1) to 17.55gL(-1)h(-1) (batch 6). This process introduces an effective way to produce l-lactic acid from SSJ.

  13. Isolation and Characterization of Acid-Tolerant, Thermophilic Bacteria for Effective Fermentation of Biomass-Derived Sugars to Lactic Acid

    PubMed Central

    Patel, Milind A.; Ou, Mark S.; Harbrucker, Roberta; Aldrich, Henry C.; Buszko, Marian L.; Ingram, Lonnie O.; Shanmugam, K. T.

    2006-01-01

    Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals by the appropriate microbes. Due to the differences in the optimum conditions for the activity of the fungal cellulases that are required for depolymerization of cellulose to fermentable sugars and the growth and fermentation characteristics of the current industrial microbes, simultaneous saccharification and fermentation (SSF) of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity, leading to a higher-than-required cost of cellulase in SSF. We have isolated bacterial strains that grew and fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to l(+)-lactic acid at 50°C and pH 5.0, conditions that are also optimal for fungal cellulase activity. Xylose was metabolized by these new isolates through the pentose-phosphate pathway. As expected for the metabolism of xylose by the pentose-phosphate pathway, [13C]lactate accounted for more than 90% of the total 13C-labeled products from [13C]xylose. Based on fatty acid profile and 16S rRNA sequence, these isolates cluster with Bacillus coagulans, although the B. coagulans type strain, ATCC 7050, failed to utilize xylose as a carbon source. These new B. coagulans isolates have the potential to reduce the cost of SSF by minimizing the amount of fungal cellulases, a significant cost component in the use of biomass as a renewable resource, for the production of fuels and chemicals. PMID:16672461

  14. Succinic acid production from duckweed (Landoltia punctata) hydrolysate by batch fermentation of Actinobacillus succinogenes GXAS137.

    PubMed

    Shen, Naikun; Wang, Qingyan; Zhu, Jing; Qin, Yan; Liao, Siming; Li, Yi; Zhu, Qixia; Jin, Yanling; Du, Liqin; Huang, Ribo

    2016-07-01

    Duckweed is potentially an ideal succinic acid (SA) feedstock due to its high proportion of starch and low lignin content. Pretreatment methods, substrate content and nitrogen source were investigated to enhance the bioconversion of duckweed to SA and to reduce the costs of production. Results showed that acid hydrolysis was an effective pretreatment method because of its high SA yield. The optimum substrate concentration was 140g/L. The optimum substrate concentration was 140g/L. Corn steep liquor powder could be considered a feasible and inexpensive alternative to yeast extract as a nitrogen source. Approximately 57.85g/L of SA was produced when batch fermentation was conducted in a 1.3L stirred bioreactor. Therefore, inexpensive duckweed can be a promising feedstock for the economical and efficient production of SA through fermentation by Actinobacillus succinogenes GXAS137.

  15. Fermentative production of L: -(+)-lactic acid by an alkaliphilic marine microorganism.

    PubMed

    Calabia, Buenaventurada P; Tokiwa, Yutaka; Aiba, Seiichi

    2011-07-01

    Of six strains of lactic acid-producing alkaliphilic microorganisms, Halolactibacillus halophilus was most efficient. It produced the highest concentration and yield of lactic acid, with minimal amounts of acetic and formic acid when sucrose and glucose were used as substrate. Mannose and xylose were poorly utilized. In batch fermentation at 30°C, pH 9 with 4 and 8% (w/v) sucrose, lactic acid was produced at 37.7 and 65.8 g l(-1), with yields of 95 and 83%, respectively. Likewise, when 4 and 8% (w/v) glucose were used, 33.4 and 59.6 g lactic acid l(-1) were produced with 85 and 76% yields, respectively. L: -(+)-lactic acid had an optical purity of 98.8% (from sucrose) and 98.3% (from glucose).

  16. Influence of pretreatment condition on the fermentable sugar production and enzymatic hydrolysis of dilute acid-pretreated mixed softwood.

    PubMed

    Lim, Woo-Seok; Lee, Jae-Won

    2013-07-01

    In this study, the effects of different acid catalysts and pretreatment factors on the hydrolysis of mixed softwood were investigated over a range of thermochemical pretreatments. Maleic, oxalic, and sulfuric acids were each used, under different pretreatment conditions. The most influential factor for fermentable sugar production in the dicarboxylic acid pretreatment of softwood was the pH. Reaction temperature was the next significant factor. However, during sulfuric acid pretreatment, fermentable sugar production was more dependent on reaction temperature, than time or pH. Enzymatic hydrolysis yields differed, depending on acid catalyst and pretreatment factor, regardless of lignin content in pretreated biomass. The highest enzymatic hydrolysis yield was found following maleic acid pretreatment, which reached 61.23%. The trend in enzymatic hydrolysis yields that were detected concomitantly with pretreatment condition or type of acid catalyst was closely related to the fermentable sugar production in the hydrolysate.

  17. Evolution of the Lactic Acid Bacterial Community during Malt Whisky Fermentation: a Polyphasic Study

    PubMed Central

    van Beek, Sylvie; Priest, Fergus G.

    2002-01-01

    The development of the lactic acid bacterial community in a commercial malt whisky fermentation occurred in three broad phases. Initially, bacteria were inhibited by strong yeast growth. Fluorescence microscopy and environmental scanning electron microscopy revealed, in this early stage, both cocci and rods that were at least partly derived from the wort and yeast but also stemmed from the distillery plant. Denaturing gradient gel electrophoresis (DGGE) of partial 16S rRNA genes and sequence analysis revealed cocci related to Streptococcus thermophilus or Saccharococcus thermophilus, Lactobacillus brevis, and Lactobacillus fermentum. The middle phase began 35 to 40 h after yeast inoculation and was characterized by exponential growth of lactobacilli and residual yeast metabolism. Lactobacillus casei or Lactobacillus paracasei, L. fermentum, and Lactobacillus ferintoshensis were detected in samples of fermenting wort examined by DGGE during this stage. Bacterial growth was accompanied by the accumulation of acetic and lactic acids and the metabolism of residual maltooligosaccharides. By 70 h, two new PCR bands were detected on DGGE gels, and the associated bacteria were largely responsible for the final phase of the fermentation. The bacteria were phylogenetically related to Lactobacillus acidophilus and Lactobacillus delbrueckii, and strains similar to the former had previously been recovered from malt whisky fermentations in Japan. These were probably obligately homofermentative bacteria, required malt wort for growth, and could not be cultured on normal laboratory media, such as MRS. Their metabolism during the last 20 to 30 h of fermentation was associated with yeast death and autolysis and further accumulation of lactate but no additional acetate. PMID:11772639

  18. Bacteriophages of lactic acid bacteria and their impact on milk fermentations

    PubMed Central

    2011-01-01

    Every biotechnology process that relies on the use of bacteria to make a product or to overproduce a molecule may, at some time, struggle with the presence of virulent phages. For example, phages are the primary cause of fermentation failure in the milk transformation industry. This review focuses on the recent scientific advances in the field of lactic acid bacteria phage research. Three specific topics, namely, the sources of contamination, the detection methods and the control procedures will be discussed. PMID:21995802

  19. Whey fermentation by thermophilic lactic acid bacteria: evolution of carbohydrates and protein content.

    PubMed

    Pescuma, Micaela; Hébert, Elvira María; Mozzi, Fernanda; Font de Valdez, Graciela

    2008-05-01

    Whey, a by-product of the cheese industry usually disposed as waste, is a source of biological and functional valuable proteins. The aim of this work was to evaluate the potentiality of three lactic acid bacteria strains to design a starter culture for developing functional whey-based drinks. Fermentations were performed at 37 and 42 degrees C for 24h in reconstituted whey powder (RW). Carbohydrates, organic acids and amino acids concentrations during fermentation were evaluated by RP-HPLC. Proteolytic activity was measured by the o-phthaldialdehyde test and hydrolysis of whey proteins was analyzed by Tricine SDS-PAGE. The studied strains grew well (2-3log cfu/ml) independently of the temperature used. Streptococcus thermophilus CRL 804 consumed 12% of the initial lactose concentration and produced the highest amount of lactic acid (45 mmol/l) at 24h. Lactobacillus delbrueckii subsp. bulgaricus CRL 454 was the most proteolytic (91 microg Leu/ml) strain and released the branched chain amino acids Leu and Val. In contrast, Lactobacillus acidophilus CRL 636 and S. thermophilus CRL 804 consumed most of the amino acids present in whey. The studied strains were able to degrade the major whey proteins, alpha-lactalbumin being degraded in a greater extent (2.2-3.4-fold) than beta-lactoglobulin. Two starter cultures were evaluated for their metabolic and proteolytic activities in RW. Both cultures acidified and reduced the lactose content in whey in a greater extent than the strains alone. The amino acid release was higher (86 microg/ml) for the starter SLb (strains CRL 804+CRL 454) than for SLa (strains CRL 804+CRL 636, 37 microg/ml). Regarding alpha-lactalbumin and beta-lactoglobulin degradation, no differences were observed as compared to the values obtained with the single cultures. The starter culture SLb showed high potential to be used for developing fermented whey-based beverages.

  20. Antioxidant properties of fermented mango leaf extracts.

    PubMed

    Park, Anna; Ku, Taekyu; Yoo, Ilsou

    2015-01-01

    Antioxidant properties of mango (Mangifera indica) leaves were evaluated. Hydroalcoholic leaf extracts that were lyophilized were subsequently fermented with either Lactobacillus casei or effective microorganisms (EM) such as probiotic bacteria and/or other anaerobic organisms. Antioxidant properties were measured as a function of the mango leaf extract concentration in the fermentation broth. Tests for radical scavenging using the 1,1-diphenyl-2-picrylhydrazyl radical showed higher antioxidant activity for Lactobacillus- and EM-fermented mango leaf extracts than for the synthetic antioxidant butylated hydroxytoluene. Antioxidant activity generally increased with increasing fermented extract concentration as did the fermented extracts' polyphenol and flavonoid contents. Fermented extracts reduced reactive oxygen species generation by lipopolysaccharide in RAW 264.7 cells when measured via fluorescence of dichlorodihydrofluorescein acetate treated cells using flow cytometry. RAW 264.7 cells also showed a concentration-dependent cytotoxic effect of the fermented extracts using the 3-(4,5-dimethylthialol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Inhibition of mushroom tyrosinase activity as well as nitrite scavenging by the fermented extracts increased as fermented extract concentrations increased. Tyrosinase activity was assayed with 3,4-dihydroxyphenylalanine as substrate. Nitrite scavenging was assessed via measurement of inhibition of chromophore production from nitrite-naphthylamine-sulfanilic acid mixtures. The antioxidant properties of fermented mango leaf extracts suggest the fermented extracts may be useful in developing health food and fermentation-based beauty products.

  1. Characteristic of phenolic compound and antioxidant activity of fermented broccoli (Brassica oleracea L. ssp.) beverage by lactic acid bacteria (LAB)

    NASA Astrophysics Data System (ADS)

    Maryati, Yati; Susilowati, Agustine; Melanie, Hakiki; Lotulung, Puspa D.

    2017-01-01

    Broccoli (Brassica oleracea L. ssp.) has a relatively high nutrient content, especially as a source of vitamins, minerals and fiber and contain bioactive compounds that act as antioxidants. In order to increase the nutritional value and innovate new products, fermentation process involving rich-antioxidants lactic acid bacteria (LAB) was done. The aim of this study is to determine the content of bioactive components, such as total polyphenols, total acid and antioxidant activity of the mixed culture of LAB (L. bulgaricus, S. thermophulus, L. acidophilus, Bd. bifidum)-fermented broccoli extracts. Ratio of fermented broccoli extract and concentration of starter cultureLAB was varied in the range of 5, 10, 15 and 20% (v/v), and the alterations of characteristics of the fermented broccoli extract, before and after fermentation (0 and 24 hours), were evaluated. The results showed that fermentation functional beverage broccoli with different concentrations of LAB cultures affect the antioxidant activity, total polyphenols, total acid and total cell of LAB generated. The optimum conditions obtained for the highest antioxidant activity of 6.74%, at aculture concentration of 20% during fermentation time of 24 h with a pH value of 4.29, total sugar of 10.89%, total acids of 0.97%, total polyphenols of 0.076%, and total LAB of 13.02 + 0.05 log cfu /ml.

  2. Optimal Cultivation Time for Yeast and Lactic Acid Bacteria in Fermented Milk and Effects of Fermented Soybean Meal on Rumen Degradability Using Nylon Bag Technique

    PubMed Central

    Polyorach, S.; Poungchompu, O.; Wanapat, M.; Kang, S.; Cherdthong, A.

    2016-01-01

    The objectives of this study were to determine an optimal cultivation time for populations of yeast and lactic acid bacteria (LAB) co-cultured in fermented milk and effects of soybean meal fermented milk (SBMFM) supplementation on rumen degradability in beef cattle using nylon bag technique. The study on an optimal cultivation time for yeast and LAB growth in fermented milk was determined at 0, 4, 8, 24, 48, 72, and 96 h post-cultivation. After fermenting for 4 days, an optimal cultivation time of yeast and LAB in fermented milk was selected and used for making the SBMFM product to study nylon bag technique. Two ruminal fistulated beef cattle (410±10 kg) were used to study on the effect of SBMFM supplementation (0%, 3%, and 5% of total concentrate substrate) on rumen degradability using in situ method at incubation times of 0, 2, 4, 6, 12, 24, 48, and 72 h according to a Completely randomized design. The results revealed that the highest yeast and LAB population culture in fermented milk was found at 72 h-post cultivation. From in situ study, the soluble fractions at time zero (a), potential degradability (a+b) and effective degradability of dry matter (EDDM) linearly (p<0.01) increased with the increasing supplemental levels and the highest was in the 5% SBMFM supplemented group. However, there was no effect of SBMFM supplement on insoluble degradability fractions (b) and rate of degradation (c). In conclusion, the optimal fermented time for fermented milk with yeast and LAB was at 72 h-post cultivation and supplementation of SBMFM at 5% of total concentrate substrate could improve rumen degradability of beef cattle. However, further research on effect of SBMFM on rumen ecology and production performance in meat and milk should be conducted using in vivo both digestion and feeding trials. PMID:26954119

  3. Evaluation of phytic acid utilization by S. cerevisiae strains used in fermentation processes and biomass production.

    PubMed

    Mikulski, Dawid; Kłosowski, Grzegorz

    2017-01-01

    Saccharomyces cerevisiae is a well-studied yeast species used mainly in fermentation processes, bakery, and for SCP (Single Cell Protein) acquisition. The aim of the study was to analyze the possibility of phytic acid utilization as one of the hydrolysis processes carried out by yeast. The analysis of 30 yeast strains used in fermentation and for biomass production, that were grown in media containing phytic acid, revealed a high variability in the biomass production rate and the capability to hydrolyze phytates. No correlation between a high biomass concentration and a high level of phytate hydrolysis was found. Only four analyzed strains (Bayanus IOC Efficience, Sano, PINK EXCEL, FINAROME) were able to reduce the phytic acid concentration by more than 33.5%, from the initial concentration 103.0 ± 2.1 μg/ml to the level below 70 μg/ml. The presented results suggest that the selected wine and fodder yeast can be used as in situ source of phosphohydrolases in fermentation processes, and especially in the production of fodder proteins. However, further studies aimed at the optimization of growing parameters, such as the maximization of phytase secretion, and a comprehensive analysis of the catalytic activity of the isolated phosphohydrolases, are necessary.

  4. Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption.

    PubMed

    Jeong, So-Yeon; Trinh, Ly Thi Phi; Lee, Hong-Joo; Lee, Jae-Won

    2014-01-01

    A two-step detoxification process consisting of electrodialysis and adsorption was performed to improve the fermentability of oxalic acid hydrolysates. The constituents of the hydrolysate differed significantly between mixed hardwood and softwood. Acetic acid and furfural concentrations were high in the mixed hardwood, whereas 5-hydroxymethylfurfural (HMF) concentration was relatively low compared with that of the mixed softwood. The removal efficiency of acetic acid reached 100% by electrodialysis (ED) process in both hydrolysates, while those of furfural and HMF showed very low, due to non-ionizable properties. Most of the remaining inhibitors were removed by XAD-4 resin. In the mixed hardwood hydrolysate without removal of the inhibitors, ethanol fermentation was not completed. Meanwhile, both ED-treated hydrolysates successfully produced ethanol with 0.08 and 0.15 g/Lh ethanol productivity, respectively. The maximum ethanol productivity was attained after fermentation with 0.27 and 0.35 g/Lh of detoxified hydrolysates, which were treated by ED, followed by XAD-4 resin.

  5. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    PubMed

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites.

  6. Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01.

    PubMed

    Ouyang, Jia; Cai, Cong; Chen, Hai; Jiang, Ting; Zheng, Zhaojuan

    2012-12-01

    Xylose is the major pentose and the second most abundant sugar in lignocellulosic feedstock. Its efficient utilization is regarded as a technical barrier to the commercial production of bulk chemicals from lignocellulosic biomass. This work aimed at evaluating the lactic acid production from the biomass-derived xylose using non-sterilized fermentation by Bacillus coagulans NL01. A maximum lactic acid concentration of about 75 g/L was achieved from xylose of 100 g/L after 72 h batch fermentation. Acetic acid and levulinic acid were identified as important inhibitors in xylose fermentation, which markedly reduced lactic acid productivity at 15 and 1.0 g/L, respectively. But low concentrations of formic acid (<2 g/L) exerted a stimulating effect on the lactic acid production. When prehydrolysate containing total 25.45 g/L monosaccharide was fermented with B. coagulans NL01, the same preference for glucose, xylose, and arabinose was observed and18.2 g/L lactic acid was obtained after 48 h fermentation. These results proved that B. coagulans NL01 was potentially well-suited for producing lactic acid from underutilized xylose-rich prehydrolysates.

  7. Phenotypic identification and technological attributes of native lactic acid bacteria present in fermented bamboo shoot products from North-East India.

    PubMed

    Sonar, Nitin R; Halami, Prakash M

    2014-12-01

    Fermented bamboo shoots such as Soibum, Soidon, Eup, Hirring, Hecche and Ekung etc. are non-salted acidic products obtained by natural fermentation predominantly with lactic acid bacteria (LAB). In this study, we have characterized 11-representative LAB that includes, Lactobacillus sp. (n = 2), Lactobacillus plantarum (n = 3), and one each of Lactobacillus fermentum, Lactococcus sp., Lactobacillus brevis, Lactobacillus curvatus, Leuconostoc sp. and Lactobacillus xylosus. Subsequently, these cultures were studied for their technological and functional properties. Different isolates exhibited variation in their activities. L. brevis showed maximum phytic acid degradation ability (19.33 U ml (-1) ). L. xylosus had highest protease activity (64.2 nmol/ml) and also exhibited lipolytic activity. In addition, degree of cell hydrophobicity among these cultures ranged between 12.5 and 93.48 % with L. plantarum (SM2) showing highest degree of activity. Lactobacillus plantarum was the most common species found in the product studied. Results indicated that most of the LABs showed putative probiotic as well as antagonistic properties against the selected pathogenic bacteria. Characteristic aroma, flavour and texture in the fermented bamboo shoot products could be attributed to presence of these new LAB isolates.

  8. Short communication: Change of naturally occurring benzoic acid during skim milk fermentation by commercial cheese starters.

    PubMed

    Han, Noori; Park, Sun-Young; Kim, Sun-Young; Yoo, Mi-Young; Paik, Hyun-Dong; Lim, Sang-Dong

    2016-11-01

    This study sought to investigate the change of naturally occurring benzoic acid (BA) during skim milk fermentation by 4 kinds of commercial cheese starters used in domestic cheese. The culture was incubated at 3-h intervals for 24h at 30, 35, and 40°C. The BA content during fermentation by Streptococcus thermophilus STB-01 was detected after 12h at all temperatures, sharply increasing at 30°C. In Lactobacillus paracasei LC431, BA was detected after 9h at all temperatures, sharply increasing until 18h and decreasing after 18h at 30 and 35°C. In the case of R707 (consisting of Lactococcus lactis ssp. lactis and Lactococcus lactis ssp. cremoris), BA increased from 6h to 15h and decreased after 15h at 40°C. The BA during STB-01 and CHN-11 (1:1; mixture of S. thermophilus, Lc. lactis ssp. lactis, Lc. lactis ssp. cremoris, Lc. lactis ssp. diacetylactis, Leuconostoc mesenteroides ssp. cremoris) fermentation was detected after 3h at 35 and 40°C, sharply increasing up to 12h and decreasing after 15h at 35°C, and after 6h, increasing up to 9h at 30°C. After 3h, it steadily decreased at 40°C. The highest amount of BA was found during the fermentation by R707 at 30°C; 15h with 12.46mg/kg.

  9. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.

    PubMed

    Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han

    2014-11-01

    Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (⩽200 °C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 °C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 °C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 °C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method.

  10. Nutritional quality of lupine (Lupinus albus cv. Multolupa) as affected by lactic acid fermentation.

    PubMed

    Camacho, L; Sierra, C; Marcus, D; Guzmán, E; Campos, R; von Bäer, D; Trugo, L

    1991-12-01

    The effects of selected NRRL strains of Lactobacillus acidophilus, L. buchneri, L. cellobiosus and L. fermentum upon oligosaccharide, phytate and alkaloid contents, as well as on the nutritive value of lupine, were investigated. Lupine was processed to a 12% total solids suspension, inoculated with 1% (v/v) cultures and fermented until a final desired pH of 4.5. L. acidophilus B-2092 and L. buchneri B-1837 growth was related to a significant sucrose breakdown and decreases of phytates, whereas L. acidophilus B-1910 and L. fermentum B-585 reduced the content of flatulence oligosaccharides. The activity of L. acidophilus B-1910 was particularly associated with lowering of alkaloids and increase of riboflavin. Lactic acid fermentation produced slight changes in lysine and methionine contents. No significant differences in net protein ratio values and protein digestibility were found between fermented and unfermented lupine (P less than 0.05). A 1:1 ratio mixture of B-1910 and B-2092 strains of L. acidophilus lead to a final fermented lupine with nutritional advantages to those given by the individual cultures.

  11. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification.

    PubMed

    Cara, Cristóbal; Ruiz, Encarnación; Oliva, José Miguel; Sáez, Felicia; Castro, Eulogio

    2008-04-01

    The production of fermentable sugars from olive tree biomass was studied by dilute acid pretreatment and further saccharification of the pretreated solid residues. Pretreatment was performed at 0.2%, 0.6%, 1.0% and 1.4% (w/w) sulphuric acid concentrations while temperature was in the range 170-210 degrees C. Attention is paid to sugar recovery both in the liquid fraction issued from pretreatment (prehydrolysate) and that in the water-insoluble solid (WIS). As a maximum, 83% of hemicellulosic sugars in the raw material were recovered in the prehydrolysate obtained at 170 degrees C, 1% sulphuric acid concentration, but the enzyme accessibility of the corresponding pretreated solid was not very high. In turn, the maximum enzymatic hydrolysis yield (76.5%) was attained from a pretreated solid (at 210 degrees C, 1.4% acid concentration) in which cellulose solubilization was detected; moreover, sugar recovery in the prehydrolysate was the poorest one among all the experiments performed. To take account of fermentable sugars generated by pretreatment and the glucose released by enzymatic hydrolysis, an overall sugar yield was calculated. The maximum value (36.3 g sugar/100 g raw material) was obtained when pretreating olive tree biomass at 180 degrees C and 1% sulphuric acid concentration, representing 75% of all sugars in the raw material. Dilute acid pretreatment improves results compared to water pretreatment.

  12. Exopolysaccharides Isolated from Milk Fermented with Lactic Acid Bacteria Prevent Ultraviolet-Induced Skin Damage in Hairless Mice

    PubMed Central

    Morifuji, Masashi; Kitade, Masami; Fukasawa, Tomoyuki; Yamaji, Taketo; Ichihashi, Masamitsu

    2017-01-01

    Background: We studied the mechanism by which fermented milk ameliorates UV-B-induced skin damage and determined the active components in milk fermented with lactic acid bacteria by evaluating erythema formation, dryness, epidermal proliferation, DNA damage and cytokine mRNA levels in hairless mice exposed to acute UV-B irradiation. Methods: Nine week-old hairless mice were given fermented milk (1.3 g/kg BW/day) or exopolysaccharide (EPS) concentrate (70 mg/kg BW/day) orally for ten days. Seven days after fermented milk or EPS administration began, the dorsal skin of the mice was exposed to a single dose of UV-B (20 mJ/cm2). Results: Ingestion of either fermented milk or EPS significantly attenuated UV-B-induced erythema formation, dryness and epidermal proliferation in mouse skin. Both fermented milk and EPS were associated with a significant decrease in cyclobutane pyrimidine dimers and upregulated mRNA levels of xeroderma pigmentosum complementation group A (XPA), which is involved in DNA repair. Furthermore, administration of either fermented milk or EPS significantly suppressed increases in the ratio of interleukin (IL)-10/IL-12a and IL-10/interferon-gamma mRNA levels. Conclusion: Together, these results indicate that EPS isolated from milk fermented with lactic acid bacteria enhanced DNA repair mechanisms and modulated skin immunity to protect skin against UV damage. PMID:28098755

  13. Anaerobic Growth of Corynebacterium glutamicum via Mixed-Acid Fermentation

    PubMed Central

    Michel, Andrea; Koch-Koerfges, Abigail; Krumbach, Karin; Brocker, Melanie

    2015-01-01

    Corynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions to l-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, sucrose, or ribose as a carbon and energy source but not with gluconate, pyruvate, lactate, propionate, or acetate. Supplementation of glucose minimal medium with tryptone strongly enhanced growth up to a final optical density at 600 nm (OD600) of 12, whereas tryptone alone did not allow growth. Amino acids with a high ATP demand for biosynthesis and amino acids of the glutamate family were particularly important for growth stimulation, indicating ATP limitation and a restricted carbon flux into the oxidative tricarboxylic acid cycle toward 2-oxoglutarate. Anaerobic cultivation in a bioreactor with constant nitrogen flushing disclosed that CO2 is required to achieve maximal growth and that the pH tolerance is reduced compared to that under aerobic conditions, reflecting a decreased capability for pH homeostasis. Continued growth under anaerobic conditions indicated the absence of an oxygen-requiring reaction that is essential for biomass formation. The results provide an improved understanding of the physiology of C. glutamicum under anaerobic conditions. PMID:26276118

  14. Fermentation of alfalfa wet-fractionation liquids to volatile fatty acids by Streptococcus bovis and Megasphaera elsdenii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A “green juice”, obtained by squeezing freshly harvested alfalfa leaves amended with a commercial lactic acid bacterial inoculant, was readily fermented by 7- to 21-d incubation at room temperature to obtain lactic acid at concentrations of 12-46 g l-1, along with additional acetic and succinic acid...

  15. Essential fatty acid supplementation during lactation is required to maximize the subsequent reproductive performance of the modern sow.

    PubMed

    Rosero, David S; Boyd, R Dean; McCulley, Mark; Odle, Jack; van Heugten, Eric

    2016-05-01

    This study was conducted to investigate the effects of supplemental essential fatty acids (EFA) on sow reproductive efficiency and to estimate the concentrations of EFA required by the lactating sow for maximum subsequent reproduction. Data were collected on 480 sows (PIC Camborough) balanced by parity, with 241 and 239 sows representing Parity 1, and 3-5 (P3+), respectively. Sows were assigned randomly, within parity, to a 3 × 3 factorial arrangement plus a control diet without added lipids. Factors included linoleic (2.1%, 2.7%, and 3.3%) and α-linolenic acid (0.15%, 0.30%, and 0.45%), obtained by adding 4% of different mixtures of canola, corn and flaxseed oils to diets. Diets were corn-soybean meal based with 12% wheat middlings. The benefits of supplemental EFA were more evident for the subsequent reproduction of mature P3+ sows. For these sows, supplemental α-linolenic acid improved the proportion of sows that farrowed relative to sows weaned (linear P=0.080; 82.8, 80.5, and 92.8% for sows fed 0.15%, 0.30%, and 0.45% α-linolenic acid, respectively). In addition, supplemental linoleic acid, fed to Parity 1 and P3+ sows, tended to increase subsequent litter size (linear P=0.074; 13.2, 13.8 and 14.0 total pigs born for 2.1%, 2.7% and 3.3% linoleic acid, respectively). These results demonstrate that a minimum dietary intake of both α-linolenic and linoleic acid is required for the modern lactating sow to achieve a maximum reproductive outcome through multiple mechanisms that include rapid return to estrus, increased maintenance of pregnancy and improved subsequent litter size.

  16. Impact of an acid fungal protease in high gravity fermentation for ethanol production using Indian sorghum as a feedstock.

    PubMed

    Gohel, V; Duan, G; Maisuria, V B

    2013-01-01

    This study evaluated the conventional jet cooking liquefaction process followed by simultaneous saccharification and fermentation (SSF) at 30% and 35% dry solids (DS) concentration of Indian sorghum feedstock for ethanol production, with addition of acid fungal protease or urea. To evaluate the efficacy of thermostable α-amylase in liquefaction at 30% and 35% DS concentration of Indian sorghum, liquefact solubility, higher dextrins, and fermentable sugars were analyzed at the end of the process. The liquefact was further subjected to SSF using yeast. In comparison with urea, addition of an acid fungal protease during SSF process was observed to accelerate yeast growth (μ), substrate consumption (Q(s)), ultimately ethanol yield based on substrate (Y(p/s)) and ethanol productivity based on fermentation time (Q(p)). The fermentation efficiency and ethanol recovery were determined for both concentrations of Indian sorghum and found to be increased with use of acid fungal protease in SSF process.

  17. Bacteriocin-Producing Lactic Acid Bacteria Isolated from Traditional Fermented Food

    PubMed Central

    Kormin, Salasiah; Rusul, Gulam; Radu, Son; Ling, Foo Hooi

    2001-01-01

    Lactic Acid Bacteria (LAB) isolated from several traditional fermented foods such as “tempeh”, “tempoyak” and “tapai” were screened for the production of bacteriocin. One strain isolated from “tempeh” gives an inhibitory activity against several LAB. The strain was later identified as Lactobacillus plantarum BS2. Study shows that the inhibitory activity was not caused by hydrogen peroxide, organic acids or bacteriophage. The bacteriocin production was maximum after 10 hours of incubation with an activity of 200 AU/ml. The bacteriocin was found to be sensitive towards trypsin, α-chymotrypsin, β-chymotrypsin, α-amylase and lysozyme. PMID:22973159

  18. [Determination of organic acids in fermentation broth of spiramycin by high performance liquid chromatography].

    PubMed

    Li, You-yuan; Chen, Chang-hua; Tao, Ping

    2002-01-01

    A method for determining organic acids in spiramycin fermentation broth by high performance liquid chromatography is described. The operating conditions were Zorbax 300-SB C18 column (5 microns, 4.6 mm i.d. x 15 cm) at 35 degrees C, 0.01 mol/L phosphoric acid buffer solution (pH 2.32) and methanol as mobile phase at a flow rate of 0.6 mL/min and UV detection at 210 nm. The relative standard deviations were 0.33%-0.10% and the recoveries were 99.95%-100.08%. It's a simple, rapid and accurate method.

  19. Fermentation of wet-exploded corn stover for the production of volatile fatty acids.

    PubMed

    Murali, Nanditha; Fernandez, Sebastian; Ahring, Birgitte Kiaer

    2017-03-01

    Volatile fatty acids (VFA) have been used as platform molecules for production of biofuels and bioproducts. In the current study, we examine the VFA production from wet-exploded corn stover through anaerobic fermentation using rumen bacteria. The total VFA yield (acetic acid equivalents) was found to increase from 22.8g/L at 2.5% total solids (TS) to 40.8g/L at 5% TS. It was found that the acetic acid concentration increased from 10g/L to 22g/L at 2.5% and 5% TS, respectively. An increased propionic acid production was seen between day 10 and 20 at 5% TS. Valeric acid (4g/L) was produced at 5% TS and not at 2.5% TS. Composition analysis showed that 50% of the carbohydrates were converted to VFA at 5% TS and 33% at 2.5% TS. Our results show that rumen fermentation of lignocellulosic biomass after wet explosion can produce high concentrations of VFA without addition of external enzymes of importance for the process economics of lignocellulosic biorefineries.

  20. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid.

    PubMed

    Alrumman, Sulaiman A

    2016-01-01

    The bioconversion of cellulosic wastes into high-value bio-products by saccharification and fermentation processes is an important step that can reduce the environmental pollution caused by agricultural wastes. In this study, enzymatic saccharification of treated and untreated date palm cellulosic wastes by the cellulases from Geobacillus stearothermophilus was optimized. The alkaline pre-treatment of the date palm wastes was found to be effective in increasing the saccharification percentage. The maximum rate of saccharification was found at a substrate concentration of 4% and enzyme concentration of 30 FPU/g of substrate. The optimum pH and temperature for the bioconversions were 5.0 and 50°C, respectively, after 24h of incubation, with a yield of 31.56mg/mL of glucose at a saccharification degree of 71.03%. The saccharification was increased to 94.88% by removal of the hydrolysate after 24h by using a two-step hydrolysis. Significant lactic acid production (27.8mg/mL) was obtained by separate saccharification and fermentation after 72h of incubation. The results indicate that production of fermentable sugar and lactic acid is feasible and may reduce environmental pollution by using date palm wastes as a cheap substrate.

  1. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid

    PubMed Central

    Alrumman, Sulaiman A.

    2016-01-01

    The bioconversion of cellulosic wastes into high-value bio-products by saccharification and fermentation processes is an important step that can reduce the environmental pollution caused by agricultural wastes. In this study, enzymatic saccharification of treated and untreated date palm cellulosic wastes by the cellulases from Geobacillus stearothermophilus was optimized. The alkaline pre-treatment of the date palm wastes was found to be effective in increasing the saccharification percentage. The maximum rate of saccharification was found at a substrate concentration of 4% and enzyme concentration of 30 FPU/g of substrate. The optimum pH and temperature for the bioconversions were 5.0 and 50 °C, respectively, after 24 h of incubation, with a yield of 31.56 mg/mL of glucose at a saccharification degree of 71.03%. The saccharification was increased to 94.88% by removal of the hydrolysate after 24 h by using a two-step hydrolysis. Significant lactic acid production (27.8 mg/mL) was obtained by separate saccharification and fermentation after 72 h of incubation. The results indicate that production of fermentable sugar and lactic acid is feasible and may reduce environmental pollution by using date palm wastes as a cheap substrate. PMID:26887233

  2. Isolation, characterisation and identification of lactic acid bacteria from bushera: a Ugandan traditional fermented beverage.

    PubMed

    Muyanja, C M B K; Narvhus, J A; Treimo, J; Langsrud, T

    2003-02-15

    One hundred and thirteen strains of lactic acid bacteria (LAB) were selected from 351 isolates from 15 samples of traditionally fermented household bushera from Uganda and also from laboratory-prepared bushera. Isolates were phenotypically characterised by their ability to ferment 49 carbohydrates using API 50 CHL kits and additional biochemical tests. Coliforms, yeasts and LAB were enumerated in bushera. The pH, volatile organic compounds and organic acids were also determined. The LAB counts in household bushera varied between 7.1 and 9.4 log cfu ml(-1). The coliform counts varied between < 1 and 5.2 log cfu ml(-1). The pH of bushera ranged from 3.7 to 4.5. Ethanol (max, 0.27%) was the major volatile organic compound while lactic acid (max, 0.52%) was identified as the dominant organic acid in household bushera. The initial numbers of LAB and coliforms in laboratory-fermented bushera were similar; however, the LAB numbers increased faster during the first 24 h. LAB counts increased from 5.5 to 9.0 log cfu ml(-1) during the laboratory fermentation. Coliform counts increased from 5.9 to 7.8 log cfu ml(-1) at 24 h, but after 48 h, counts were less 4 log cfu ml(-1). Yeasts increased from 4.3 to 7.7 log cfu ml(-1) at 48 h, but thereafter decreased slightly. The pH declined from 7.0 to around 4.0. Lactic acid and ethanol increased from zero to 0.75% and 0.20%, respectively. Lactic acid bacteria isolated from household bushera belonged to Lactobacillus, Streptococcus and Enterococcus genera. Tentatively, Lactobacillus isolates were identified as Lactobacillus plantarum, L. paracasei subsp. paracasei, L. fermentum, L. brevis and L. delbrueckii subsp. delbrueckii. Streptococcus thermophilus strains were also identified in household bushera. LAB isolated from bushera produced in the laboratory belonged to five genera (Lactococcus, Leuconostoc, Lactobacillus, Weissella and Enterococcus. Eight isolates were able to produce acid from starch and were identified as Lactococcus

  3. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain.

    PubMed

    Qureshi, Abdul Sattar; Zhang, Jian; Bao, Jie

    2015-01-01

    Ethanol fermentation was investigated at the high solids content of the dry dilute sulfuric acid pretreated corn stover feedstock using an evolutionary adapted Saccharomyces cerevisiae DQ1 strain. The evolutionary adaptation was conducted by successively transferring the S. cerevisiae DQ1 cells into the inhibitors containing corn stover hydrolysate every 12h and finally a stable yeast strain was obtained after 65 days' continuous adaptation. The ethanol fermentation performance using the adapted strain was significantly improved with the high ethanol titer of 71.40 g/L and the high yield of 80.34% in the simultaneous saccharification and fermentation (SSF) at 30% solids content. No wastewater was generated from pretreatment to fermentation steps. The results were compared with the published cellulosic ethanol fermentation cases, and the obvious advantages of the present work were demonstrated not only at the high ethanol titer and yield, but also the significant reduction of wastewater generation and potential cost reduction.

  4. Variations in prebiotic oligosaccharide fermentation by intestinal lactic acid bacteria.

    PubMed

    Endo, Akihito; Nakamura, Saki; Konishi, Kenta; Nakagawa, Junichi; Tochio, Takumi

    2016-01-01

    Prebiotic oligosaccharides confer health benefits on the host by modulating the gut microbiota. Intestinal lactic acid bacteria (LAB) are potential targets of prebiotics; however, the metabolism of oligosaccharides by LAB has not been fully characterized. Here, we studied the metabolism of eight oligosaccharides by 19 strains of intestinal LAB. Among the eight oligosaccharides used, 1-kestose, lactosucrose and galactooligosaccharides (GOSs) led to the greatest increases in the numbers of the strains tested. However, mono- and disaccharides accounted for more than half of the GOSs used, and several strains only metabolized the mono- and di-saccharides in GOSs. End product profiles indicated that the amounts of lactate produced were generally consistent with the bacterial growth recorded. Oligosaccharide profiling revealed the interesting metabolic manner in Lactobacillus paracasei strains, which metabolized all oligosaccharides, but left sucrose when cultured with fructooligosaccharides. The present study clearly indicated that the prebiotic potential of each oligosaccharide differs.

  5. Glycerol/glucose co-fermentation: one more proficient process to produce propionic acid by Propionibacterium acidipropionici.

    PubMed

    Liu, Yin; Zhang, Yong-Guang; Zhang, Ru-Bing; Zhang, Fan; Zhu, Jianhang

    2011-01-01

    Cosubstrates fermentation is such an effective strategy for increasing subject metabolic products that it could be available and studied in propionic acid production, using glycerol and glucose as carbon resources. The effects of glycerol, glucose, and their mixtures on the propionic acid production by Propionibacterium acidipropionici CGMCC1.2225 (ATCC4965) were studied, with the aim of improving the efficiency of propionic acid production. The propionic acid yield from substrate was improved from 0.475 and 0.303 g g(-1) with glycerol and glucose alone, respectively, to 0.572 g g(-1) with co-fermentation of a glycerol/glucose mixture of 4/1 (mol/mol). The maximal propionic acid and substrate conversion rate were 21.9 g l(-1) and 57.2% (w/w), respectively, both significantly higher than for a sole carbon source. Under optimized conditions of fed-batch fermentation, the maximal propionic acid yield and substrate conversion efficiency were 29.2 g l(-1) and 54.4% (w/w), respectively. These results showed that glycerol/glucose co-fermentation could serve as an excellent alternative to conventional propionic acid fermentation.

  6. Isolation, screening and characterization of bacteriocin-producing lactic acid bacteria isolated from traditional fermented food.

    PubMed

    El-Shafei, H A; Abd-El-Sabour, H; Ibrahim, N; Mostafa, Y A

    2000-03-01

    100 lactic acid bacterial strains isolated from traditional fermented foods (yoghurt, milk cream, sour dough and milk) were screened for bacteriocin production. Twenty six strains producing a nisin-like bacteriocin were selected. Most of these isolates gave only a narrow inhibitory spectrum, although one showed a broad inhibitory spectrum against the indicator strains tested, this strain was determined as Lactococcus lactis. The influence of several parameters on the fermentative production of nisin by Lactococcus lactis was studied. Production of nisin was optimal at 30 degrees C and in the pH range 5.5-6.3. The effect of different sulphur and nitrogen sources on Lactococcus lactis growth and nisin production was studied. Magnesium sulfate and manganese sulfate were found to be the best sulphur sources while triammonium citrate was the best inorganic nitrogen source and meat extract, peptone and yeast extract were the best organic nitrogen source for nisin production.

  7. Alcohol fermentation of sweet potato. 1. Acid hydrolysis and factors involved

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-04-01

    Factors affecting acid hydrolysis of sweet potato powder (SPP) to fermentable sugars were examined. These include HCl concentration, temperature, time, and levels of SPP. Maximum reducing sugar, reported as dextrose equivalent (DE), was detected after 24 min hydrolysis (1% SPP) in 0.034N HCl heated at 154 degrees celcius. These samples also had 3.43% hydroxymethylfurfural (HMF) based on dry weight. A high level of HMF (9.2%) was detected in 1% SPP heated at 154 degrees C in 0.10N HCl for 18 min. The lowest concentration of HMF formed (1.8%), at maximal DE of 61%, was established in samples containing 5% SPP and heated at 154 degrees C in 0.034N HCl for 48 min. Aqueous extracts of uncured SPP, examined by HPLC, contained glucose, fructose and sucrose, butdegreaded SPP had only glucose and fructose. Products of degraded SPP, under appropriate conditions, could be used for alcohol fermentation. (Refs. 18).

  8. Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation.

    PubMed

    Mas, Albert; Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Cerezo, Ana B; Troncoso, Ana M; Garcia-Parrilla, M Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  9. Economic and environmental assessment of propionic acid production by fermentation using different renewable raw materials.

    PubMed

    Tufvesson, Pär; Ekman, Anna; Sardari, Roya R R; Engdahl, Kristina; Tufvesson, Linda

    2013-12-01

    Production of propionic acid by fermentation of glycerol as a renewable resource has been suggested as a means for developing an environmentally-friendly route for this commodity chemical. However, in order to quantify the environmental benefits, life cycle assessment of the production, including raw materials, fermentation, upstream and downstream processing is required. The economic viability of the process also needs to be analysed to make sure that any environmental savings can be realised. In this study an environmental and economic assessment from cradle-to-gate has been conducted. The study highlights the need for a highly efficient bioprocess in terms of product titre (more than 100g/L and productivity more than 2g/(L · h)) in order to be sustainable. The importance of the raw materials and energy production for operating the process to minimize emissions of greenhouse gases is also shown.

  10. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    PubMed Central

    Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623

  11. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production.

    PubMed

    Lian, Jieni; Garcia-Perez, Manuel; Coates, Ralph; Wu, Hongwei; Chen, Shulin

    2012-08-01

    The presence of very reactive C1-C4 molecules adversely affects the quality bio-oils produced from the pyrolysis of lignocellulosic materials. In this paper a scheme to produce lipids with Cryptococcus curvatus from the carboxylic acids in the pyrolytic aqueous phase collected in fractional condensers is proposed. The capacities of three oleaginous yeasts C. curvatus, Rhodotorula glutinis, Lipomyces starkeyi to ferment acetate, formate, hydroxylacat-aldehyde, phenol and acetol were investigated. While acetate could be a good carbon source for lipid production, formate provides additional energy and contributes to yeast growth and lipid production as auxiliary energy resource. Acetol could slightly support yeast growth, but it inhibits lipid accumulation. Hydroxyacetaldehyde and phenols showed high yeast growth and lipid accumulation inhibition. A pyrolytic aqueous phase with 20 g/L acetate was fermented with C. curvatus, after neutralization and detoxification to produce 6.9 g/L dry biomass and 2.2 g/L lipid.

  12. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01

    SciTech Connect

    Zaldivar, J.; Ingram, L.O.

    1999-07-01

    Hemicellulose residues can be hydrolyzed into a sugar syrup using dilute mineral acids. Although this syrup represents a potential feedstock for biofuel production, toxic compounds generated during hydrolysis limit microbial metabolism. Escherichia coli LY01, an ethanologenic biocatalyst engineered to ferment the mixed sugars in hemicellulose syrups, has been tested for resistance to selected organic acids that re present in hemicellulose hydrolysates. Compounds tested include aromatic acids derived from lignin (ferulic, gallic, 4-hydroxybenzoic, syringic, and vanillic acids), acetic acid from the hydrolysis of acetylxylan, and others derived from sugar destruction (furoic, formic, levulinic, and caproic acids). Toxicity was related to hydrophobicity. Combinations of acids were roughly additive as inhibitors of cell growth. When tested at concentrations that inhibited growth by 80%, none appeared to strongly inhibit glycolysis and energy generation, or to disrupt membrane integrity. Toxicity was not markedly affected by inoculum size or incubation temperature. The toxicity of all acids except gallic acid was reduced by an increase in initial pH (from pH 6.0 to pH 7.0 to pH 8.0). Together, these results are consistent with the hypothesis that both aliphatic and mononuclear organic acids inhibit growth and ethanol production in LY01 by collapsing ion gradients and increasing internal anion concentrations.

  13. Metabolite changes during natural and lactic acid bacteria fermentations in pastes of soybeans and soybean–maize blends

    PubMed Central

    Ng'ong'ola-Manani, Tinna Austen; Østlie, Hilde Marit; Mwangwela, Agnes Mbachi; Wicklund, Trude

    2014-01-01

    The effect of natural and lactic acid bacteria (LAB) fermentation processes on metabolite changes in pastes of soybeans and soybean–maize blends was studied. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and were fermented by lactic acid bacteria (LFP). LAB fermentation processes were facilitated through back-slopping using a traditional fermented gruel, thobwa as an inoculum. Naturally fermented pastes were designated 100S, 90S, and 75S, while LFP were designated 100SBS, 90SBS, and 75SBS. All samples, except 75SBS, showed highest increase in soluble protein content at 48 h and this was highest in 100S (49%) followed by 90SBS (15%), while increases in 100SBS, 90S, and 75S were about 12%. Significant (P < 0.05) increases in total amino acids throughout fermentation were attributed to cysteine in 100S and 90S; and methionine in 100S and 90SBS. A 3.2% increase in sum of total amino acids was observed in 75SBS at 72 h, while decreases up to 7.4% in 100SBS at 48 and 72 h, 6.8% in 100S at 48 h and 4.7% in 75S at 72 h were observed. Increases in free amino acids throughout fermentation were observed in glutamate (NFP and 75SBS), GABA and alanine (LFP). Lactic acid was 2.5- to 3.5-fold higher in LFP than in NFP, and other organic acids detected were acetate and succinate. Maltose levels were the highest among the reducing sugars and were two to four times higher in LFP than in NFP at the beginning of the fermentation, but at 72 h, only fructose levels were significantly (P < 0.05) higher in LFP than in NFP. Enzyme activities were higher in LFP at 0 h, but at 72 h, the enzyme activities were higher in NFP. Both fermentation processes improved nutritional quality through increased protein and amino acid solubility and degradation of phytic acid (85% in NFP and 49% in LFP by 72 h). PMID:25493196

  14. Enhancement of l-lactic acid production via synergism in open co-fermentation of Sophora flavescens residues and food waste.

    PubMed

    Zheng, Jin; Gao, Ming; Wang, Qunhui; Wang, Juan; Sun, Xiaohong; Chang, Qiang; Tashiro, Yukihiro

    2017-02-01

    In this study, Sophora flavescens residues (SFR) were used for l-lactic acid production and were mixed with food waste (FW) to assess the effects of different compositions of SFR and FW. Positive synergistic effects of mixed substrates were achieved with co-fermentation. Co-fermentation increased the proportion of l-lactic acid by decreasing the co-products of ethanol and other organic acids. A maximum l-lactic acid concentration of 48.4g/L and l-lactic acid conversion rate of 0.904g/g total sugar were obtained through co-fermentation of SFR and FW at the optimal ratio of 1:1.5. These results were approximately 6-fold those obtained during mono-fermentation of SFR. Co-fermentation of SFR and FW provides a suitable C/N ratio and pH for effective open fermentative production of l-lactic acid.

  15. Impacts of hydrophilic colanic acid on bacterial attachment to microfiltration membranes and subsequent membrane biofouling.

    PubMed

    Yoshida, Keitaro; Tashiro, Yosuke; May, Thithiwat; Okabe, Satoshi

    2015-06-01

    In order to examine the interactions between physicochemical properties of specific extracellular polymeric substances (EPS) and membrane biofouling, we investigated the impacts of hydrophilic colanic acid, as a model extracellular polysaccharide component, on initial bacterial attachment to different microfiltration (MF) membranes and membrane biofouling by using Escherichia coli strains producing different amounts of colanic acid. In a newly designed microtiter plate assay, the bacterial attachment by an E. coli strain RcsF(+), which produces massive amounts of colanic acid, decreased only to a hydrophobic membrane because the colanic acid made cell surfaces more hydrophilic, resulting in low cell attachment to hydrophobic membranes. The bench-scale cross-flow filtration tests followed by filtration resistance measurement revealed that RcsF(+) caused severe irreversible membrane fouling (i.e., pore-clogging), whereas less extracellular polysaccharide-producing strains caused moderate but reversible fouling to all membranes used in this study. Further cross-flow filtration tests indicated that colanic acid liberated in the bulk phase could rapidly penetrate pre-accumulated biomass layers (i.e., biofilms) and then directly clogged membrane pores. These results indicate that colanic acid, a hydrophilic extracellular polysaccharide, and possible polysaccharides with similar characteristics with colanic acid are considered as a major cause of severe irreversible membrane fouling (i.e., pore-clogging) regardless of biofilm formation (dynamic membrane).

  16. Simultaneous and successive inoculations of yeasts and lactic acid bacteria on the fermentation of an unsulfited Tannat grape must

    PubMed Central

    Muñoz, Viviana; Beccaria, Bruno; Abreo, Eduardo

    2014-01-01

    Interactions between yeasts and lactic acid bacteria are strain specific, and their outcome is expected to change in simultaneous alcoholic - malolactic fermentations from the pattern observed in successive fermentations. One Oenococcus oeni strain Lalvin VP41™ was inoculated with two Saccharomyces cerevisiae strains either simultaneously, three days after the yeast inoculation, or when alcoholic fermentation was close to finish. Early bacterial inoculations with each yeast strain allowed for the growth of the bacterial populations, and the length of malolactic fermentation was reduced to six days. Alcoholic fermentation by Lalvin ICV D80® yeast strain left the highest residual sugar, suggesting a negative effect of the bacterial growth and malolactic activity on its performance. In sequential inoculations the bacterial populations did not show actual growth with either yeast strain. In this strategy, both yeast strains finished the alcoholic fermentations, and malolactic fermentations took longer to finish. Lalvin ICV D80® allowed for higher viability and activity of the bacterial strain than Fermicru UY4® under the three inoculation strategies. This was beneficial for the sequential completion of both fermentations, but negatively affected the completion of alcoholic fermentation by Lalvin ICV D80® in the early bacteria additions. Conversely, Fermicru UY4®, which was rather inhibitory towards the bacteria, favored the timely completion of both fermentations simultaneously. As bacteria in early inoculations with low or no SO2 addition can be expected to multiply and interact with fermenting yeasts, not only are the yeast-bacterium strains combination and time point of the inoculation to be considered, but also the amount of bacteria inoculated. PMID:24948914

  17. Monitoring of the fermentation media of citric acid by the trimethylsilyl derivatives of the organic acids formed.

    PubMed

    Ghassempour, Alireza; Nojavan, Saeed; Talebpour, Zahra; Amiri, Ali Asghar; Najafi, Nahid Mashkouri

    2004-10-20

    In this approach, a derivatization method is described for monitoring of organic acids in fermentation media without any separation step. The aqueous phase of fermentation media was evaporated and heated in a silylation reagent to form trimethylsilyl (TMS) derivatives. The silylated compounds are analyzed by 29Si nuclear magnetic resonance (29Si NMR) and gas chromatography-mass spectrometry (GC-MS). 29Si NMR can qualitatively monitor the components produced in the Krebs cycle. Quantification of these compounds is investigated by using selected ion monitoring mode of mass spectrometry. In this mode, mass to charge (m/z) values of their [M - 15]+ ions, which are 465, 275, 247, 221, 335, 251, and 313 of TMS derivatives of citric, alpha-ketoglutaric, succinic, fumaric, l-malic, oxaloacetic, and palmitic (as an internal standard), acids, respectively, are used. The limit of detection and the linear working range for derivatized citric acid were found to be 0.1 mg L(-1) and 10-3 x 10(4) mg L(-1). The relative standard deviation of the method for five replicates was 2.1%. The average recovery efficiency for citric acid added to culture media was approximately 97.2%. Quantitative results of GC-MS are compared with those obtained by an ultraviolet-visible method.

  18. Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Zendo, Takeshi; Shibata, Keisuke; Sonomoto, Kenji

    2011-02-01

    Effective utilisation of cellulosic biomasses for economical lactic acid production requires a microorganism with potential ability to utilise efficiently its major components, glucose and cellobiose. Amongst 631 strains isolated from different environmental samples, strain QU 25 produced high yields of l-(+)-lactic acid of high optical purity from cellobiose. The QU 25 strain was identified as Enterococcus mundtii based on its sugar fermentation pattern and 16S rDNA sequence. The production of lactate by fermentation was optimised for the E. mundtii QU25 strain. The optimal pH and temperature for batch culturing were found to be 7.0°C and 43°C, respectively. E. mundtii QU 25 was able to metabolise a mixture of glucose and cellobiose simultaneously without apparent carbon catabolite repression. Moreover, under the optimised culture conditions, production of optically pure l-lactic acid (99.9%) increased with increasing cellobiose concentrations. This indicates that E. mundtii QU 25 is a potential candidate for effective lactic acid production from cellulosic hydrolysate materials.

  19. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria.

    PubMed

    Panagou, Efstathios Z; Schillinger, Ulrich; Franz, Charles M A P; Nychas, George-John E

    2008-04-01

    The effect of controlled fermentation processes on the microbial association and biochemical profile of cv. Conservolea naturally black olives processed by the traditional anaerobic method was studied. The different treatments included (a) inoculation with a commercial starter culture of Lactobacillus pentosus, (b) inoculation with a strain of Lactobacillus plantarum isolated from a fermented cassava product and (c) uninoculated spontaneous process. Microbial growth, pH, titratable acidity, organic acids and volatile compounds were monitored throughout the fermentation. The initial microbiota consisted of Gram-negative bacteria, lactic acid bacteria and yeasts. Inhibition of Gram-negative bacteria was evident in all processes. Both starter cultures were effective in establishing an accelerated fermentation process and reduced the survival period of Gram-negative bacteria by 5 days compared with the spontaneous process, minimizing thus the likelihood of spoilage. Higher acidification of the brines was observed in inoculated processes without any significant difference between the two selected starter cultures (113.5 and 117.6mM for L. plantarum and L. pentosus, respectively). L. pentosus was also determined as the major species present during the whole process of spontaneous olive fermentation. It is characteristic that lactic acid fermentation was also initiated rapidly in the spontaneous process, as the conditions of fermentation, mainly the low salt level (6%, w/v) favored the dominance of lactic acid bacteria over yeasts. Lactic, acetic and propionic were the organic acids detected by HPLC in considerable amounts, whereas citric and malic acids were also present at low levels and degraded completely during the processes. Ethanol, methanol, acetaldehyde, ethyl acetate were the major volatile compounds identified by GC. Their concentrations varied among the different treatments, reflecting varying degrees of microbial activity in the brines. The results obtained

  20. Degradation of dissolved organic monomers and short-chain fatty acids in sandy marine sediment by fermentation and sulfate reduction

    NASA Astrophysics Data System (ADS)

    Valdemarsen, Thomas; Kristensen, Erik

    2010-03-01

    The decay of a wide range of organic monomers (short-chain volatile fatty acids (VFA's), amino acids, glucose and a pyrimidine) was studied in marine sediments using experimental plug flow-through reactors. The reactions were followed in the presence and absence of 10 mM SO 42-. Degradation stoichiometry of individual monomers (inflow concentration of 6 mM organic C) was traced by measuring organic (VFA's, amino acids) and inorganic (CO 2, NH 4+, SO 42-) compounds in the outflow. Fermentation of amino acids was efficient and complete during passage through anoxic sediment reactors. Aliphatic amino acids (alanine, serine and glutamate) were primarily recovered as CO 2 (24-34%), formate (3-22%) and acetate (41-83%), whereas only ˜1/3 of the aromatic amino acid (tyrosine) was recovered as CO 2 (13%) and acetate (20%). Fermentation of glucose and cytosine was also efficient (78-86%) with CO 2 (30-35%), formate (3%) and acetate (28-33%) as the primary products. Fermentation of VFA's (acetate, propionate and butyrate), on the other hand, appeared to be product inhibited. The presence of SO 42- markedly stimulated VFA degradation (29-45% efficiency), and these compounds were recovered as CO 2 (17% for butyrate to 100% for acetate) and acetate (51% and 82% for propionate and butyrate, respectively). When reaction stoichiometry during fermentation is compared with compound depletion during sulfate reduction, the higher proportion CO 2 recovery is consistent with lower acetate and formate accumulation. Our results therefore suggest that fermentation reactions mediate the initial degradation of added organic compounds, even during active sulfate reduction. Fermentative degradation stoichiometry also suggested significant H 2 production, and >50% of sulfate reduction appeared to be fuelled by H 2. Furthermore, our results suggest that fermentation was the primary deamination step during degradation of the amino acids and cytosine.

  1. Equimolar CO2 capture by N-substituted amino acid salts and subsequent conversion.

    PubMed

    Liu, An-Hua; Ma, Ran; Song, Chan; Yang, Zhen-Zhen; Yu, Ao; Cai, Yu; He, Liang-Nian; Zhao, Ya-Nan; Yu, Bing; Song, Qing-Wen

    2012-11-05

    Steric bulk controls CO(2) absorption: N-substituted amino acid salts in poly(ethylene glycol) reversibly absorb CO(2) in nearly 1:1 stoichiometry. Carbamic acid is thought to be the absorbed form of CO(2); this was supported by NMR and in situ IR spectroscopy, and DFT calculations. The captured CO(2) could be converted directly into oxazolidinones and thus CO(2) desorption could be sidestepped.

  2. Hematite Reduction Buffers Acid Generation and Enhances Nutrient Uptake by a Fermentative Iron Reducing Bacterium, Orenia metallireducens Strain Z6.

    PubMed

    Dong, Yiran; Sanford, Robert A; Chang, Yun-Juan; McInerney, Michael J; Fouke, Bruce W

    2017-01-03

    Fermentative iron-reducing organisms have been identified in a variety of environments. Instead of coupling iron reduction to respiration, they have been consistently observed to use ferric iron minerals as an electron sink for fermentation. In the present study, a fermentative iron reducer, Orenia metallireducens strain Z6, was shown to use iron reduction to enhance fermentation not only by consuming electron equivalents, but also by generating alkalinity that effectively buffers the pH. Fermentation of glucose by this organism in the presence of a ferric oxide mineral, hematite (Fe2O3), resulted in enhanced glucose decomposition compared with fermentation in the absence of an iron source. Parallel evidence (i.e., genomic reconstruction, metabolomics, thermodynamic analyses, and calculation of electron transfer) suggested hematite reduction as a proton-consuming reaction effectively consumed acid produced by fermentation. The buffering effect of hematite was further supported by a greater extent of glucose utilization by strain Z6 in media with increasing buffer capacity. Such maintenance of a stable pH through hematite reduction for enhanced glucose fermentation complements the thermodynamic interpretation of interactions between microbial iron reduction and other biogeochemical processes. This newly discovered feature of iron reducer metabolism also has significant implications for groundwater management and contaminant remediation by providing microbially mediated buffering systems for the associated microbial and/or chemical reactions.

  3. Phytate degrading activities of lactic acid bacteria isolated from traditional fermented food

    NASA Astrophysics Data System (ADS)

    Damayanti, Ema; Ratisiwi, Febiyani Ndaru; Istiqomah, Lusty; Sembiring, Langkah; Febrisiantosa, Andi

    2017-03-01

    The objective of this study was to determine the potential of LAB with phytate degrading activity from fermented traditional food grain-based and legume-based. Lactic acid bacteria were isolated from different sources of traditional fermented food from Gunungkidul Yogyakarta Indonesia such as gembus tempeh (tofu waste), soybean tempeh, lamtoro tempeh (Leucaena bean) and kara tempeh. Isolation of LAB was performed using Total Plate Count (TPC) on de Man Rogosa Sharpe Agar (MRSA) medium supplemented with CaCO3. They were screened for their ability to degrade myo-inositol hexaphosphate or IP6 by using qualitative streak platemethod with modified de Man Rogosa-MorpholinoPropanesulfonic Acid Sharpe (MRS-MOPS) medium contained sodium salt of phytic acid as substrate and cobalt chloride staining (plate assay) method. The selected isolates were further assayed for phytase activities using quantitative method with spectrophotometer and the two selected isolates growth were optimized. Furthermore, thhe isolates that shown the highest phytase activity was characterized and identified using API 50 CH kitand 16S rRNA gene sequencing. The results showed that there were 18 LAB isolates obtained from samplesand 13 isolates were able to degrade sodium phytate based on qualitative screening. According to quantitative assay, the highest phytate degrading activities were found in TG-2(23.562 U/mL) and TG-1 (19.641 U/mL) isolated from gembus tempeh. The phytate activity of TG-2 was optimum at 37 °C with agitation, while the phytate activity of TG-1 was optimum at 45 °C without agitation. Characterization and identification of TG-2 isolate with the highest phytate degrading activity using API 50 CH and 16S rRNA showed that TG-2had homology with Lactobacillus fermentum. It could be concluded that LAB from from fermented traditional food grain-based and legume-based produced the extracellular phytase. Keywords: lactic acid bacteria, tempeh, phytatedegrading activity

  4. Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation.

    PubMed

    Yesil, H; Tugtas, A E; Bayrakdar, A; Calli, B

    2014-01-01

    Anaerobic fermentation of organic municipal solid waste was investigated using a leach-bed reactor (LBR) to assess the volatile fatty acid (VFA) production efficiency. The leachate recycle rate in the LBR affected the VFA composition of the leachate. A six-fold increase in the recycle rate resulted in an increase of the acetic acid fraction of leachate from 24.7 to 43.0%. The separation of VFAs via leachate replacement resulted in higher total VFA production. VFA separation from synthetic VFA mix and leachate of a fermented organic waste was assessed via a counter-current flow polytetrafluoroethylene (PTFE) membrane contactor. Acetic and propionic acid permeation fluxes of 13.12 and 14.21 g/m(2).h were obtained at low feed pH values when a synthetic VFA mix was used as a feed solution. The highest selectivity was obtained for caproic acid compared to that of other VFAs when synthetic VFA mix or leachate was used as a feed solution. High pH values and the presence of suspended solids in the leachate adversely affected the permeation rate.

  5. Production of propionic acid-enriched volatile fatty acids from co-fermentation liquid of sewage sludge and food waste using Propionibacterium acidipropionici.

    PubMed

    Li, Xiang; Mu, Hui; Chen, Yinguang; Zheng, Xiong; Luo, Jingyang; Zhao, Shu

    2013-01-01

    Volatile fatty acids (VFA), derived from sludge fermentation, have been used as one effective carbon source for biological nutrient removal, especially favorable with VFA containing with high levels of propionic acid. In this paper, a new fermentation method was employed to significantly produce the propionic acid-enriched VFA from the co-fermentation liquid of sewage sludge and food waste: including (1) mixing food waste with sludge in the anaerobic digester (the first stage) and (2) separating the mixture, sterilizing the first stage liquid and fermenting it after inoculation with Propionibacterium acidipropionici (the second stage). The effect of the key parameters including pH, the mixing ratio of the food waste and sludge, fermentation time and temperature of the first stage on the propionic acid-enriched VFA production (the second stage) was individually discussed. By the molecular weight distribution analysis, the comparison of the solubilisation and hydrolysis process in difference parameters was fully elaborated. The optimal combination of the parameters was then obtained. Finally, the propionic acid-enriched VFA fermentation was successfully conducted in a semi-continuous reactor using the first stage liquid from the optimal condition.

  6. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of "Shanxi aged vinegar", a traditional Chinese vinegar.

    PubMed

    Wu, Jia Jia; Ma, Ying Kun; Zhang, Fen Fen; Chen, Fu Sheng

    2012-05-01

    Shanxi aged vinegar is a famous traditional Chinese vinegar made from several kinds of cereal by spontaneous solid-state fermentation techniques. In order to get a comprehensive understanding of culturable microorganism's diversity present in its fermentation, the indigenous microorganisms including 47 yeast isolates, 28 lactic acid bacteria isolates and 58 acetic acid bacteria isolates were recovered in different fermenting time and characterized based on a combination of phenotypic and genotypic approaches including inter-delta/PCR, PCR-RFLP, ERIC/PCR analysis, as well as 16S rRNA and 26S rRNA partial gene sequencing. In the alcoholic fermentation, the dominant yeast species Saccharomyces (S.) cerevisiae (96%) exhibited low phenotypic and genotypic diversity among the isolates, while Lactobacillus (Lb.) fermentum together with Lb. plantarum, Lb. buchneri, Lb. casei, Pediococcus (P.) acidilactici, P. pentosaceus and Weissella confusa were predominated in the bacterial population at the same stage. Acetobacter (A.) pasteurianus showing great variety both in genotypic and phenotypic tests was the dominant species (76%) in the acetic acid fermentation stage, while the other acetic acid bacteria species including A. senegalensis, A. indonesiensis, A. malorum and A. orientalis, as well as Gluconobacter (G.) oxydans were detected at initial point of alcoholic and acetic acid fermentation stage respectively.

  7. Solid-state fermentation of whole oats to yield a synbiotic food rich in lactic acid bacteria and prebiotics.

    PubMed

    Zhang, Nan; Li, Dan; Zhang, XiQing; Shi, Yan; Wang, HaiKuan

    2015-08-01

    This study developed a synbiotic food through the fermentation of whole oat flour with Lactobacillus plantarum TK9 and Bifidobacterium animalis subsp. lactis V9. The physicochemical properties, changes in ingredients and peptide molecular weight distributions were determined during the whole oat fermentation. The highest viable counts of the fermented oats were 2.85 × 10(9) CFU g(-1) (L. plantarum TK9) and 3.17 × 10(8) CFU g(-1) (Bif. animalis subsp. lactis V9), with the titratable acidity increased to 10.01 and 8.40 mL at the end of the fermentation. By comparing the nutrition compositions between the fermented and non-fermented oat flour, we found that there was almost no change in the soluble dietary fiber and β-glucan content. However, the amounts of free amino nitrogen increased from 110.84 to 154.62 mg per 100 g (L. plantarum TK9) and 82.16 to 104.83 mg per 100 g (Bif. animalis subsp. lactis V9). The levels of oat peptides with molecular weights less than 6000 Da increased by 4.4 and 5.96%, respectively. The results suggest that the fermented whole oat flour has good potential for application in the production of a novel synbiotic food rich in lactic acid bacteria and β-glucan prebiotics.

  8. Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products.

    PubMed

    Song, Y-S; Frias, J; Martinez-Villaluenga, C; Vidal-Valdeverde, C; de Mejia, E Gonzalez

    2008-05-15

    Food allergy has become a public health problem that continues to challenge both the consumer and the food industry. The objectives of this study were to evaluate the reduction of immunoreactivity by natural and induced fermentation of soybean meal (SBM) with Lactobacillus plantarum, Bifidobacterium lactis, Saccharomyces cereviseae, and to assess the effect on amino acid concentration. Immunoreactivity of commercially available fermented soybean products and ingredients was also evaluated. ELISA and western blot were used to measure IgE immunoreactivity using plasma from soy sensitive individuals. Commercial soy products included tempeh, miso and yogurt. Fermented SBM showed reduced immunoreactivity to human plasma, particularly if proteins were <20kDa. S. cereviseae and naturally fermented SBM showed the highest reduction in IgE immunoreactivity, up to 89% and 88%, respectively, against human pooled plasma. When SBM was subjected to fermentation with different microorganisms, most of the total amino acids increased significantly (p<0.05) and only few of them suffered a decrease depending on the type of fermentation. All commercial soy containing products tested showed very low immunoreactivity. Thus, fermentation can decrease soy immunoreactivity and can be optimized to develop nutritious hypoallergenic soy products. However, the clinical relevance of these findings needs to be determined by human challenge studies.

  9. Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici.

    PubMed

    Chen, Yinguang; Li, Xiang; Zheng, Xiong; Wang, Dongbo

    2013-02-01

    Volatile fatty acids (VFA) can be used as the additional carbon source of biological nutrient removal (BNR), and the increase of propionic acid percentage in VFA has been reported to facilitate the performance of BNR. In this study a new method for significantly improving the propionic acid fraction in VFA derived from waste activated sludge was reported, which included (1) mixing food waste with sludge and pre-fermenting the mixture (first stage), and (2) separating the mixture, sterilizing the pre-fermentation liquid and fermenting it after inoculating Propionibacterium acidipropionici (second stage). By optimizing the first stage with response surface methodology, a propionic acid content of 68.4% with propionic acid concentration of 7.13 g COD/L could be reached in the second stage, which was much higher than that reported previously. Lactic acid was found to be the most abundant product of the first stage and it served as the substrate for propionic acid production in the second stage. Further investigation showed that during the first stage the addition of food waste to the pre-fermentation system of sludge significantly increased the generation of lactic acid due to the synergistic effect, which resulted in the improvement of propionic acid production in the second stage. Finally, the use of propionic acid-enriched VFA as a superior carbon source of BNR was tested, and its performance was observed to be much better than using acetic acid-enriched VFA derived from sludge by the previously documented method.

  10. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production.

    PubMed

    Berlowska, Joanna; Cieciura, Weronika; Borowski, Sebastian; Dudkiewicz, Marta; Binczarski, Michal; Witonska, Izabela; Otlewska, Anna; Kregiel, Dorota

    2016-10-17

    Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.

  11. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.

    PubMed

    Kwon, Oh-Min; Kim, Sung-Koo; Jeong, Gwi-Taek

    2016-07-01

    This study combined phosphoric acid-catalyzed pretreatment and enzymatic hydrolysis to produce biosugars from Gracilaria verrucosa as a potential renewable resource for bioenergy applications. We optimized phosphoric acid-catalyzed pretreatment conditions to 1:10 solid-to-liquid ratio, 1.5 % phosphoric acid, 140 °C, and 60 min reaction time, producing a 32.52 ± 0.06 % total reducing sugar (TRS) yield. By subsequent enzymatic hydrolysis, a 68.61 ± 0.90 % TRS yield was achieved. These results demonstrate the potential of phosphoric acid to produce biosugars for biofuel and biochemical production applications.

  12. Glucose respiration and fermentation in Zygosaccharomyces bailii and Saccharomyces cerevisiae express different sensitivity patterns to ethanol and acetic acid.

    PubMed

    Fernandes, L; Côrte-Real, M; Loureiro, V; Loureiro-Dias, M C; Leão, C

    1997-10-01

    In the yeast Zygosaccharomyces bailii ISA 1307, respiration and fermentation of glucose were exponentially inhibited by ethanol, both processes displaying similar sensitivity to the alcohol. Moreover, the degree of inhibition on fermentation was of the same magnitude as that reported for Saccharomyces cerevisiae. Acetic acid also inhibited these two metabolic processes in Z. bailii, with the kinetics of inhibition again being exponential. However, inhibition of fermentation was much less pronounced than in S. cerevisiae. The values estimated with Z. bailii for the minimum inhibitory concentration of acetic acid ranged from 100 to 240 mmol 1(-1) total acetic acid compared with values of near zero reported for S. cerevisiae. The inhibitory effects of acetic acid on Z. bailii were not significantly potentiated by ethanol.

  13. Changes in the activity of the general amino acid permease from Saccharomyces cerevisiae var. ellipsoideus during fermentation.

    PubMed

    Lglesias, R; Ferreras, J M; Arias, F J; Muñoz, R; Girbès, T

    1990-10-20

    The evolution of the activity of the general amino acid permease and ethanol and glucose concentrations in the medium were studied in a mild fermentation process carried out by a wine strain of Saccharomyces cerevisiae var. ellipsoideus isolated from grape musts in spontaneous fermentation. The cells displayed a reduction in the activity of the general amino acid permease parallel to the increase of ethanol in the medium. This ethanol increase was not enough to promote a substantial inhibition on the total polypeptide synthesis measured as polyuridylic-acid-directed polyphenylalanine synthesis.

  14. Screening of indigenous oxalate degrading lactic acid bacteria from human faeces and South Indian fermented foods: assessment of probiotic potential.

    PubMed

    Gomathi, Sivasamy; Sasikumar, Ponnusamy; Anbazhagan, Kolandaswamy; Sasikumar, Sundaresan; Kavitha, Murugan; Selvi, M S; Selvam, Govindan Sadasivam

    2014-01-01

    Lactic acid bacteria (LAB) have the potential to degrade intestinal oxalate and this is increasingly being studied as a promising probiotic solution to manage kidney stone disease. In this study, oxalate degrading LAB were isolated from human faeces and south Indian fermented foods, subsequently assessed for potential probiotic property in vitro and in vivo. Based on preliminary characteristics, 251 out of 673 bacterial isolates were identified as LAB. A total of 17 strains were found to degrade oxalate significantly between 40.38% and 62.90% and were subjected to acid and bile tolerance test. Among them, nine strains exhibited considerable tolerance up to pH 3.0 and at 0.3% bile. These were identified as Lactobacillus fermentum and Lactobacillus salivarius using 16S rDNA sequencing. Three strains, Lactobacillus fermentum TY5, Lactobacillus fermentum AB1, and Lactobacillus salivarius AB11, exhibited good adhesion to HT-29 cells and strong antimicrobial activity. They also conferred resistance to kanamycin, rifampicin, and ampicillin, but were sensitive to chloramphenicol and erythromycin. The faecal recovery rate of these strains was observed as 15.16% (TY5), 6.71% (AB1), and 9.3% (AB11) which indicates the colonization ability. In conclusion, three efficient oxalate degrading LAB were identified and their safety assessments suggest that they may serve as good probiotic candidates for preventing hyperoxaluria.

  15. Screening of Indigenous Oxalate Degrading Lactic Acid Bacteria from Human Faeces and South Indian Fermented Foods: Assessment of Probiotic Potential

    PubMed Central

    Kavitha, Murugan; Selvi, M. S.; Selvam, Govindan Sadasivam

    2014-01-01

    Lactic acid bacteria (LAB) have the potential to degrade intestinal oxalate and this is increasingly being studied as a promising probiotic solution to manage kidney stone disease. In this study, oxalate degrading LAB were isolated from human faeces and south Indian fermented foods, subsequently assessed for potential probiotic property in vitro and in vivo. Based on preliminary characteristics, 251 out of 673 bacterial isolates were identified as LAB. A total of 17 strains were found to degrade oxalate significantly between 40.38% and 62.90% and were subjected to acid and bile tolerance test. Among them, nine strains exhibited considerable tolerance up to pH 3.0 and at 0.3% bile. These were identified as Lactobacillus fermentum and Lactobacillus salivarius using 16S rDNA sequencing. Three strains, Lactobacillus fermentum TY5, Lactobacillus fermentum AB1, and Lactobacillus salivarius AB11, exhibited good adhesion to HT-29 cells and strong antimicrobial activity. They also conferred resistance to kanamycin, rifampicin, and ampicillin, but were sensitive to chloramphenicol and erythromycin. The faecal recovery rate of these strains was observed as 15.16% (TY5), 6.71% (AB1), and 9.3% (AB11) which indicates the colonization ability. In conclusion, three efficient oxalate degrading LAB were identified and their safety assessments suggest that they may serve as good probiotic candidates for preventing hyperoxaluria. PMID:24723820

  16. Monitoring of wheat lactic acid bacteria from the field until the first step of dough fermentation.

    PubMed

    Alfonzo, Antonio; Miceli, Claudia; Nasca, Anna; Franciosi, Elena; Ventimiglia, Giusi; Di Gerlando, Rosalia; Tuohy, Kieran; Francesca, Nicola; Moschetti, Giancarlo; Settanni, Luca

    2017-04-01

    The present work was carried out to retrieve the origin of lactic acid bacteria (LAB) in sourdough. To this purpose, wheat LAB were monitored from ear harvest until the first step of fermentation for sourdough development. The influence of the geographical area and variety on LAB species/strain composition was also determined. The ears of four Triticum durum varieties (Duilio, Iride, Saragolla and Simeto) were collected from several fields located within the Palermo province (Sicily, Italy) and microbiologically investigated. In order to trace the transfer of LAB during the consecutive steps of manipulation, ears were transformed aseptically and, after threshing, milling and fermentation, samples of kernels, semolinas and doughs, respectively, were analysed. LAB were not found to dominate the microbial communities of the raw materials. In general, kernels harboured lower levels of microorganisms than ears and ears than semolinas. Several samples showing no development of LAB colonies acidified the enrichment broth suggesting the presence of LAB below the detection limit. After fermentation, LAB loads increased consistently for all doughs, reaching levels of 7.0-7.5 Log CFU/g on M17. The values of pH (5.0) and TTA (5.6 mL NaOH/10 g of dough) indicated the occurrence of the acidification process for several doughs. LAB were phenotypically and genotypically differentiated by randomly amplified polymorphic DNA (RAPD)-PCR into eight groups including 51 strains belonging to the species Lactobacillus brevis, Lactobacillus coryniformis, Lactobacillus plantarum, Lactococcus lactis, Lactococcus garvieae, Enterococcus casseliflavus, Enterococcus faecium, Leuconostoc citreum, and Pediococcus pentosaceus. Lactobacilli constituted a minority the LAB community, while lactococci represented more than 50% of strains. Lower LAB complexity was found on kernels, while a richer biodiversity was observed in semolinas and fermented doughs. For broader microbiota characterisation in

  17. Carbon isotope effects associated with mixed-acid fermentation of saccharides by Clostridium papyrosolvens

    NASA Astrophysics Data System (ADS)

    Penning, Holger; Conrad, Ralf

    2006-05-01

    In anoxic environments, microbial fermentation is the first metabolic process in the path of organic matter degradation. Since little is known about carbon isotope fractionation during microbial fermentation, we studied mixed-acid fermentation of different saccharides (glucose, cellobiose, and cellulose) in Clostridium papyrosolvens. The bacterium was grown anaerobically in batch under different growth conditions, both in pure culture and in co-culture with Methanobacterium bryantii utilizing H 2/CO 2 or Methanospirillum hungatei utilizing both H 2/CO 2 and formate. Fermentation products were acetate, lactate, ethanol, formate, H 2, and CO 2 (and CH 4 in methanogenic co-culture), with acetate becoming dominant at low H 2 partial pressures. After complete conversion of the saccharides, acetate was 13C-enriched ( αsacc/ac = 0.991-0.997), whereas lactate ( αsacc/lac = 1.001-1.006), ethanol ( αsacc/etoh = 1.007-1.013), and formate ( αsacc/form = 1.007-1.011) were 13C-depleted. The total inorganic carbon produced was only slightly enriched in 13C, but was more enriched, when formate was produced in large amounts, as 12CO 2 was preferentially converted with H 2 to formate. During biomass formation, 12C was slightly preferred ( αsacc/biom ≈ 1.002). The observations in batch culture were confirmed in glucose-limited chemostat culture at growth rates of 0.02-0.15 h -1 at both low and high hydrogen partial pressures. Our experiments showed that the carbon flow at metabolic branch points in the fermentation path governed carbon isotope fractionation to the accumulated products. During production of pyruvate, C isotopes were not fractionated when using cellulose, but were fractionated to different extents depending on growth conditions when using cellobiose or glucose. At the first catabolic branch point (pyruvate), the produced lactate was depleted in 13C, whereas the alternative product acetyl-CoA was 13C enriched. At the second branch point (acetyl-CoA), the ethanol

  18. Key volatile aroma compounds of lactic acid fermented malt based beverages - impact of lactic acid bacteria strains.

    PubMed

    Nsogning Dongmo, Sorelle; Sacher, Bertram; Kollmannsberger, Hubert; Becker, Thomas

    2017-08-15

    This study aims to define the aroma composition and key aroma compounds of barley malt wort beverages produced from fermentation using six lactic acid bacteria (LAB) strains. Gas chromatography mass spectrometry-olfactometry and flame ionization detection was employed; key aroma compounds were determined by means of aroma extract dilution analysis. Fifty-six detected volatile compounds were similar among beverages. However, significant differences were observed in the concentration of individual compounds. Key aroma compounds (flavor dilution (FD) factors ≥16) were β-damascenone, furaneol, phenylacetic acid, 2-phenylethanol, 4-vinylguaiacol, sotolon, methional, vanillin, acetic acid, nor-furaneol, guaiacol and ethyl 2-methylbutanoate. Furthermore, acetaldehyde had the greatest odor activity value of up to 4266. Sensory analyses revealed large differences in the flavor profile. Beverage from L. plantarum Lp. 758 showed the highest FD factors in key aroma compounds and was correlated to fruity flavors. Therefore, we suggest that suitable LAB strain selection may improve the flavor of malt based beverages.

  19. Optimum design and operation of primary sludge fermentation schemes for volatile fatty acids production.

    PubMed

    Chanona, J; Ribes, J; Seco, A; Ferrer, J

    2006-01-01

    This paper presents a model-knowledge based algorithm for optimising the primary sludge fermentation process design and operation. This is a recently used method to obtain the volatile fatty acids (VFA), needed to improve biological nutrient removal processes, directly from the raw wastewater. The proposed algorithm consists in a heuristic reasoning algorithm based on the expert knowledge of the process. Only effluent VFA and the sludge blanket height (SBH) have to be set as design criteria, and the optimisation algorithm obtains the minimum return sludge and waste sludge flow rates which fulfil those design criteria. A pilot plant fed with municipal raw wastewater was operated in order to obtain experimental results supporting the developed algorithm groundwork. The experimental results indicate that when SBH was increased, higher solids retention time was obtained in the settler and VFA production increased. Higher recirculation flow-rates resulted in higher VFA production too. Finally, the developed algorithm has been tested by simulating different design conditions with very good results. It has been able to find the optimal operation conditions in all cases on which preset design conditions could be achieved. Furthermore, this is a general algorithm that can be applied to any fermentation-elutriation scheme with or without fermentation reactor.

  20. Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods.

    PubMed

    Grosu-Tudor, Silvia-Simona; Stancu, Mihaela-Marilena; Pelinescu, Diana; Zamfir, Medana

    2014-09-01

    Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.

  1. Fermentation parameter optimization of microbial oxalic acid production from cashew apple juice.

    PubMed

    Betiku, Eriola; Emeko, Harrison A; Solomon, Bamidele O

    2016-02-01

    The potential of cashew apple juice (CAJ) as a carbon source for oxalic acid (OA) production via fermentation process was investigated in this study. The effects and interactions of CAJ concentration, time, pH, NaNO3 concentration and methanol concentration on OA production were determined in a central composite design (CCD) and the process was modelled and optimized using response surface methodology (RSM). The results showed that OA fermentation can be described significantly (p < 0.05) by a quadratic model giving regression coefficient (R (2)) of 0.9964. NaNO3 concentration was the most significant positive variable while methanol was not a significant variable. A maximum OA concentration of 122.68 g/l could be obtained using the optimum levels of CAJ of 150.0 g/l, pH of 5.4, time of 7.31 days, NaNO3 of 2 g/l and methanol of 1% volume. The production of OA was found to increase from 106.75 to 122.68 g/l using the statistically design optimization. This study revealed that CAJ could serve as an inexpensive and abundant feedstock for fermentative OA production, the resulting model could be used in the design of a typical pilot plant for a scale up production.

  2. L-(-)-malic acid production by Saccharomyces spp. during the alcoholic fermentation of wine (1).

    PubMed

    Yéramian, N; Chaya, C; Suárez Lepe, J A

    2007-02-07

    In an attempt to increase the acidity of wine by biological means, malate-producing yeasts were selected from a collection of 282 strains isolated in different parts of Spain. Only 4% of these strains (all of which belonged to Saccharomyces cerevisiae) produced l-(-)-malic acid in the range of 0.5-1 g/L. This was formed between days 2 and 6 of alcoholic fermentation, reaching a maximum on days 3 and 4; the concentration remained stable from day 7. Malic acid production was favored by temperatures in the 18-25 degrees C range and by musts with a high pH and low concentrations of sugar, initial malic acid, and yeast-assimilable nitrogen. Oxaloacetic acid, a precursor of malic acid, had no influence on malate production. The precursors pyruvic and fumaric acid did, however, have a significant effect on the production of this acid in some strains. No direct relation between pyruvate and malate metabolism was observed.

  3. Chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage.

    PubMed

    Babaeinasab, Y; Rouzbehan, Y; Fazaeli, H; Rezaei, J

    2015-09-01

    The aim of this study was to determine the effect of molasses and lactic acid bacteria (LAB) on the chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of an ensiled potato-wheat straw mixture in a completely randomized design with 4 replicates. Wheat straw was harvested at full maturity and potato tuber when the leaves turned yellowish. The potato-wheat straw (57:43 ratio, DM basis) mixture was treated with molasses, LAB, or a combination. Lalsil Fresh LB (Lallemand, France; containing NCIMB 40788) or Lalsil MS01 (Lallemand, France; containing MA18/5U and MA126/4U) were each applied at a rate of 3 × 10 cfu/g of fresh material. Treatments were mixed potato-wheat straw silage (PWSS) without additive, PWSS inoculated with Lalsil Fresh LB, PWSS inoculated with Lalsil MS01, PWSS + 5% molasses, PWSS inoculated with Lalsil Fresh LB + 5% molasses, PWSS inoculated with Lalsil MS01 + 5% molasses, and corn silage (CS). The compaction densities of PWSS treatments and CS were approximately 850 and 980 kg wet matter/m, respectively. After anaerobic storage for 90 d, chemical composition, silage fermentation characteristics, in vitro gas production (GP), estimated OM disappearance (OMD), ammonia-N, VFA, microbial CP (MCP) production, and cellulolytic bacteria count were determined. Compared to CS, PWSS had greater ( < 0.001) values of DM, ADL, water-soluble carbohydrates, pH, and ammonia-N but lower ( < 0.05) values of CP, ash free-NDF (NDFom), ash, nitrate, and lactic, acetic, propionic, and butyric acids concentrations. When PWSS was treated with molasses, LAB, or both, the contents of CP and lactic and acetic acids increased, whereas NDFom, ammonia-N, and butyric acid decreased ( < 0.05). Based on in vitro ruminal experiments, PWSS had greater ( < 0.05) values of GP, OMD, and MCP but lower ( < 0.05) VFA and acetic acid compared to CS. With adding molasses alone or in combination with LAB inoculants to PWSS, the values of GP

  4. Long term storage of dilute acid pretreated corn stover feedstock and ethanol fermentability evaluation.

    PubMed

    Zhang, Jian; Shao, Shuai; Bao, Jie

    2016-02-01

    This study reported a new solution of lignocellulose feedstock storage based on the distributed pretreatment concept. The dry dilute sulfuric acid pretreatment (DDAP) was conducted on corn stover feedstock, instead of ammonia fiber explosion pretreatment. Then the dry dilute acid pretreated corn stover was stored for three months during summer season with high temperature and humidity. No negative aspects were found on the physical property, composition, hydrolysis yield and ethanol fermentability of the long term stored pretreated corn stover, plus the additional merits including no chemicals recovery operation, anti-microbial contaminant environment from stronger acid and inhibitor contents, as well as the mild and slow hydrolysis in the storage. The new pretreatment method expanded the distributed pretreatment concept of feedstock storage with potential for practical application.

  5. Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans.

    PubMed

    Bischoff, Kenneth M; Liu, Siqing; Hughes, Stephen R; Rich, Joseph O

    2010-06-01

    A strain of Bacillus coagulans that converted mixed sugars of glucose, xylose, and arabinose to L: -lactic acid with 85% yield at 50 degrees C was isolated from composted dairy manure. The strain was tolerant to aldehyde growth inhibitors at 2.5 g furfural/l, 2.5 g 5-hydroxymethylfurfural/l, 2.5 g vanillin/l, and 1.2 g p-hydroxybenzaldehyde/l. In a simultaneous saccharification and fermentation process, the strain converted a dilute-acid hydrolysate of 100 g corn fiber/l to 39 g lactic acid/l in 72 h at 50 degrees C. Because of its inhibitor tolerance and ability to fully utilize pentose sugars, this strain has potential to be developed as a biocatalyst for the conversion of agricultural residues into valuable chemicals.

  6. 1,3-Propanediol Made From Fermentation-Derived Malonic Acid: Office of Industrial Technologies (OIT) Agriculture Project Fact Sheet

    SciTech Connect

    Carde, T.

    2001-09-12

    1,3-Propanediol is one of two ingredients used in producing polytrimethylene terephthalate (PTT), a polymer which can be used in polyester and nylon applications. Researchers are developing a process to ferment biomass feedstock to malonic acid using filamentous fungi and then catalytically convert malonic acid to 1,3-propanediol.

  7. Glycerine and levulinic acid: renewable co-substrates for the fermentative synthesis of short-chain poly(hydroxyalkanoate) biopolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerine and levulinic acid were used alone and in combination for the fermentative synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/V) biopolymers. Shake-flask cultures of Pseudomonas oleovorans NRRL B-14682 containing different glycerine:levulinic acid ratios (1%, w/v total carbon ...

  8. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales.

    PubMed

    Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-10-01

    In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121°C for 30min in presence of 0.18molL(-1) H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (gL(-1)) glucose (20-30), xylose (15-25), sucrose (5-11) and arabinose (0.7-10). Fermentations were carried out at laboratory (2L) and pilot (50L) scales in presence of 10gL(-1) yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78gg(-1), respectively. The productivity was 4.02gL(-1)h(-1). Downstream processing resulted in a pure formulation containing 937gL(-1)l(+)-lactic acid with an optical purity of 99.7%.

  9. Production of conjugated linoleic acids by Lactobacillus plantarum strains isolated from naturally fermented Chinese pickles*

    PubMed Central

    Liu, Pei; Shen, Sheng-rong; Ruan, Hui; Zhou, Qian; Ma, Liu-liu; He, Guo-qing

    2011-01-01

    Naturally fermented pickles harbour many lactic acid bacteria (LAB). Forty-three LAB strains with conjugated linoleic acid (CLA)-producing ability were isolated from three naturally fermented pickle brines. Of these isolates, lp15 identified as Lactobacillus plantarum by API 50 CHL system and full-length 16S rDNA sequence analysis exhibited the highest CLA-producing ability (26.1% conversion) at 48 h in de Man Rogosa Sharpe (MRS) broth in the presence of 100 µg/ml of linoleic acid (LA). Compared to other strains, L. plantarum strain lp15 showed the highest tolerance upon increased levels of LA in the medium, i.e., up to 600 µg/ml. This strain converted about 25% of LA into CLA isomers [predominantly cis-9, trans-11 CLA (9-CLA) and trans-10, cis-12 CLA (10-CLA)], of which 75% was 9-CLA. Interestingly, though the conversion rate of LA into CLA by lp15 remained stable between 100 to 600 µg/ml LA levels in the medium, it dropped sharply at 1000 µg/ml. Taken together, the lp15 strain displayed relatively high LA tolerance with higher conversion rate, which implies that this strain is a valuable candidate for enhancing the CLA content in food-sources like pickles. PMID:22042657

  10. Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation processes.

    PubMed

    McIntosh, S; Vancov, T; Palmer, J; Morris, S

    2014-12-01

    Cotton ginning trash (CGT) collected from Australian cotton gins was evaluated for bioethanol production. CGT composition varied between ginning operations and contained high levels of extractives (26-28%), acid-insoluble material (17-22%) and holocellulose (42-50%). Pretreatment conditions of time (4-20 min), temperature (160-220 °C) and sulfuric acid concentration (0-2%) were optimised using a central composite design. Response surface modelling revealed that CGT fibre pretreated at 180 °C in 0.8% H2SO4 for 12 min was optimal for maximising enzymatic glucose recoveries and achieved yields of 89% theoretical, whilst the total accumulated levels of furans and acetic acid remained relatively low at <1 and 2 g/L respectively. Response surface modelling also estimated maximum xylose recovery in pretreated liquors (87% theoretical) under the set conditions of 150 °C in 1.9% H2SO4 for 23.8 min. Yeast fermentations yielded high ethanol titres of 85%, 88% and 70% theoretical from glucose generated from: (a) enzymatic hydrolysis of washed pretreated fibres, (b) enzymatic hydrolysis of whole pretreated slurries and (c) simultaneous saccharification fermentations, respectively.

  11. Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs.

    PubMed

    Moroni, Alice V; Arendt, Elke K; Dal Bello, Fabio

    2011-05-01

    In this study, four different laboratory scale gluten-free (GF) sourdoughs were developed from buckwheat or teff flours. The fermentations were initiated by the spontaneous biota of the flours and developed under two technological conditions (A and B). Sourdoughs were propagated by continuous back-slopping until the stability was reached. The composition of the stable biota occurring in each sourdough was assessed using both culture-dependent and -independent techniques. Overall, a broad spectrum of lactic acid bacteria (LAB) and yeasts species, belonging mainly to the genera Lactobacillus, Pediococcus, Leuconostoc, Kazachstania and Candida, were identified in the stable sourdoughs. Buckwheat and teff sourdoughs were dominated mainly by obligate or facultative heterofermentative LAB, which are commonly associated with traditional wheat or rye sourdoughs. However, the spontaneous fermentation of the GF flours resulted also in the selection of species which are not consider endemic to traditional sourdoughs, i.e. Pediococcus pentosaceus, Leuconostoc holzapfelii, Lactobacillus gallinarum, Lactobacillus vaginalis, Lactobacillus sakei, Lactobacillus graminis and Weissella cibaria. In general, the composition of the stable biota was strongly affected by the fermentation conditions, whilst Lactobacillus plantarum dominated in all buckwheat sourdoughs. Lactobacillus pontis is described for the first time as dominant species in teff sourdough. Among yeasts, Saccharomyces cerevisiae and Candida glabrata dominated teff sourdoughs, whereas the solely Kazachstania barnetti was isolated in buckwheat sourdough developed under condition A. This study allowed the identification and isolation of LAB and yeasts species which are highly competitive during fermentation of buckwheat or teff flours. Representatives of these species can be selected as starters for the production of sourdough destined to GF bread production.

  12. 1. Appetite suppressant activity of supplemental dietary amino acids and subsequent compensatory growth of broilers.

    PubMed

    Acar, N; Patterson, P H; Barbato, G F

    2001-08-01

    This study was conducted to take advantage of the appetite-suppressant effect of excessive dietary amino acids in reducing feed intake and, in turn, restricting the early rapid growth of broilers to minimize metabolic disorders. Dietary amino acids were supplemented to a basal diet to yield a total of 1.57, 2.57, and 3.57% His; 2.7, 4.3, and 5.9% Lys; 1.36, 2.16, and 2.96% Met; 2.8, 3.8, and 4.8% Thr; and 1.27, 2.27, and 3.27% Trp and were fed to 408 chicks from 4 to 11 d of age. Fifteen dietary treatments of His, Lys, Met, Thr, and Trp were compared to the basal diet. Feed consumption was measured daily. Body weight measurements were taken at 0, 4, 7, 11, 14, and 21 d. At 21 d, pectoralis major and minor muscles, liver, and abdominal fat pad were weighed. High levels of Met and His caused the greatest depression in appetite from 4 to 11 d, and Thr, Trp, and Lys were found to be less potent. The exponential growth rate (EGR) of birds from 4 to 11 d of age was significantly reduced by the intermediate and high levels of the amino acid supplementation. From 11 to 14 d, EGR was greatest with high levels of Met or Trp, indicating more potential compensatory growth realized with these treatments. The high level of His decreased the percentage of pectoralis minor muscle yield, whereas the high level of Lys and Met increased the percentage of liver compared to those fed the basal diet. These results indicate that it is possible to use excessive individual amino acids in diets to suppress the appetite and early rapid growth to alleviate or minimize metabolic disorders.

  13. Simultaneous saccharification and fermentation and a consolidated bioprocessing for Hinoki cypress and Eucalyptus after fibrillation by steam and subsequent wet-disk milling.

    PubMed

    Kumagai, Akio; Kawamura, Shunsuke; Lee, Seung-Hwan; Endo, Takashi; Rodriguez, Miguel; Mielenz, Jonathan R

    2014-06-01

    An advanced pretreatment method that combines steam treatment (ST) with wet disk milling (WDM) was evaluated using two different species of woods, viz., Hinoki cypress (softwood) and Eucalyptus (hardwood). Bioconversion of the pretreated products was performed using enzymatic saccharification via a commercial cellulase mixture and two types of fermentation processing, i.e., yeast-based simultaneous saccharification and fermentation (SSF) and Clostridium thermocellum-based consolidated bioprocessing (CBP). A higher yield of glucose was obtained in the enzymatic saccharification and fermentation products from SSF and CBP with pretreatment consisting of WDM after ST, as compared to either ST or WDM alone. Maximum ethanol production via SSF and CBP were 359.3 and 79.4 mg/g-cellulose from Hinoki cypress, and 299.5 and 73.1 mg/g-cellulose from Eucalyptus, respectively. While the main fermentation product generated in CBP was acetate, the total products yield was 319.9 and 262.0 mg/g-cellulose from Hinoki cypress and Eucalyptus, respectively.

  14. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    PubMed

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  15. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    PubMed

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation.

  16. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.

    PubMed

    Bellissimi, Eleonora; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2009-05-01

    Acetic acid, an inhibitor released during hydrolysis of lignocellulosic feedstocks, has previously been shown to negatively affect the kinetics and stoichiometry of sugar fermentation by (engineered) Saccharomyces cerevisiae strains. This study investigates the effects of acetic acid on S. cerevisiae RWB 218, an engineered xylose-fermenting strain based on the Piromyces XylA (xylose isomerase) gene. Anaerobic batch cultures on synthetic medium supplemented with glucose-xylose mixtures were grown at pH 5 and 3.5, with and without addition of 3 g L(-1) acetic acid. In these cultures, consumption of the sugar mixtures followed a diauxic pattern. At pH 5, acetic acid addition caused increased glucose consumption rates, whereas specific xylose consumption rates were not significantly affected. In contrast, at pH 3.5 acetic acid had a strong and specific negative impact on xylose consumption rates, which, after glucose depletion, slowed down dramatically, leaving 50% of the xylose unused after 48 h of fermentation. Xylitol production was absent (<0.10 g L(-1)) in all cultures. Xylose fermentation in acetic -acid-stressed cultures at pH 3.5 could be restored by applying a continuous, limiting glucose feed, consistent with a key role of ATP regeneration in acetic acid tolerance.

  17. Efficient arachidonic acid-rich oil production by Mortierella alpina through a repeated fed-batch fermentation strategy.

    PubMed

    Ji, Xiao-Jun; Zhang, Ai-Hui; Nie, Zhi-Kui; Wu, Wen-Jia; Ren, Lu-Jing; Huang, He

    2014-10-01

    Arachidonic acid (ARA)-rich oil production by Mortierella alpina is a long fermentation period needed process due to the low growth rate of the filamentous fungus used. This causes the low productivity of ARA-rich oil and hinders its industrial mass scale production. In the present study, different fed-batch strategies were conducted to shorten the fermentation period. The result showed that compared with the batch culture, the fermentation period was shortened from 7days to 5days with the productivity of ARA-rich oil increased from 0.9g/(L·d) to 1.3g/(L·d) by using the fed-batch fermentation strategy. Furthermore, repeated fed-batch fermentation strategy was adopted to achieve the purpose of continuous production. By using this strategy, the fermentation period was shortened from 40days to 26days in a four cycle repeated fed-batch fermentation. This strategy proved to be convenient and economical for ARA-rich oil commercial production process.

  18. The effect of SO2 on the production of ethanol, acetaldehyde, organic acids, and flavor volatiles during industrial cider fermentation.

    PubMed

    Herrero, Mónica; García, Luis A; Díaz, Mario

    2003-05-21

    SO(2) is widely used in cider fermentation but also in other alcoholic beverages such as wine. Although the authorized limit is 200 ppm total SO(2), the International Organizations recommend its total elimination or at least reduction due to health concerns. Addition of SO(2) to apple juice at levels frequently used in industrial cidermaking (100 mg/L) induced significantly higher acetaldehyde production by yeast than that obtained without SO(2). Although the practical implications of acetaldehyde evolution under cidermaking conditions has been overcome by research and few data are available, this compound reached levels in two 2000 L bioreactors that may have prevented the occurrence of simultaneous alcoholic and malolactic fermentation. It was observed that malolactic fermentation had a positive effect promoting reduction of acetaldehyde levels in cider fermented with juice, SO(2)-treated or not. The addition of SO(2) clearly delayed malolactic fermentation comparing to the control, affecting not the onset of the malolactic fermentation but the rate of malic acid degradation. This compound, however, had a stimulatory effect on alcoholic fermentation.

  19. Improving volatile fatty acids production by exploiting the residual substrates in post-fermented sludge: Protease catalysis of refractory protein.

    PubMed

    Yin, Bo; Liu, Hongbo; Wang, Yuanyuan; Bai, Jie; Liu, He; Fu, Bo

    2016-03-01

    The real cause to the low yield of volatile fatty acids (VFAs), from inhibition or low biodegradation, is uncertain in sludge anaerobic fermentation. In this study, poor biodegradability of proteins and fast decrease of the indigenous hydrolase activity in the residual post-fermented sludge were found to be the major reasons. With the addition of trypsin or alkaline protease in residual post-fermented sludge after primary alkaline fermentation, degradation efficiency of refractory protein increased by 33.6% and 34.8%, respectively. Accordingly, the VFAs yields were improved by 69.7% and 106.1%, respectively. Furthermore, the activities of added trypsin and alkaline protease could maintain at 13.52 U/mL and 19.11 U/mL in the alkaline fermentation process. This study demonstrated that exploiting the refractory proteins in residual post-fermented sludge by protease addition seems to be a very promising way for improving VFAs yield of conventional alkaline fermentations with waste activated sludge.

  20. Effects of worts treated with proteases on the assimilation of free amino acids and fermentation performance of lager yeast.

    PubMed

    Lei, Hongjie; Zheng, Liye; Wang, Chenxia; Zhao, Haifeng; Zhao, Mouming

    2013-02-01

    The objective of this study was to investigate the changes in free amino acids (FAA) composition by supplementing three commercial proteases (Neutrase, Flavorzyme and Protamex) at the beginning of wort mashing, and monitoring the effects on the assimilation pattern of FAA and fermentation performance of lager yeast (Saccharomyces pastorianus) during normal and high gravity fermentations. Proteases supplementation significantly improved the extract yield and FAA level of mashed worts. Normal gravity worts treated with Flavorzyme and Neutrase exhibited higher fermentability, ethanol production and flavor volatiles concentration compared to the control worts, while these beneficial effects were observed in high gravity worts treated with Protamex and Neutrase. The reason for the above results is proposed to be the change in the assimilation pattern of FAA in lager yeast with increased wort gravity, especially for the improved assimilation ratios of Leu, Arg, Phe, His, Asp and Val. In normal gravity fermentations, there were strong correlations between the assimilation amounts of Lys, Leu, Arg and His and fermentability, while in high gravity fermentations, these good correlations were found with only Lys and His. The present study suggested that optimizing the composition of FAA by supplementing proteases during wort mashing was beneficial to beer brewing for improving fermentation performance of lager yeast and flavor volatiles formation.

  1. Usefulness of trehalose fermentation and L-glutamic acid decarboxylation for identification of biochemically aberrant Providencia stuartii strains.

    PubMed

    Fischer, R; Penner, J L; Zurinaga, G; Riddle, C; Sämisch, W; Brenner, D J

    1989-09-01

    A total of 849 Providencia isolates were collected during a 4-year period when an increased incidence of nosocomial Providencia stuartii infection was noted in urologic wards. Of these isolates, 630 were identified as P. stuartii, 206 were identified as Providencia rettgeri, and 1 was identified as Providencia alcalifaciens. Twelve inositol-positive isolates from 10 patients (10 strains) resembled P. stuartii in fermenting trehalose but resembled P. rettgeri in fermenting D-arabitol or meso-erythritol or both. The latter traits, however, were not stable in all cases. These aberrant strains were identified as P. stuartii on the basis of their O antigens and DNA hybridization experiments. All isolates were tested for L-glutamic acid decarboxylase activity by a qualitative thin-layer chromatography method. All P. stuartii isolates, including the aberrant ones, were trehalose positive and L-glutamic acid decarboxylase negative. None of the P. rettgeri isolates fermented trehalose, while 99.0% of them and the single P. alcalifaciens strain were L-glutamic acid decarboxylase positive. Thus, trehalose fermentation and L-glutamic acid decarboxylation are more useful for separating P. stuartii from P. rettgeri than are D-arabitol and meso-erythritol fermentation.

  2. Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation.

    PubMed

    Cheng, Jun; Ding, Lingkan; Xia, Ao; Lin, Richen; Li, Yuyou; Zhou, Junhu; Cen, Kefa

    2015-03-01

    The biological hydrogen production from amino acids obtained by protein degradation was comprehensively investigated to increase heating value conversion efficiency. The five amino acids (i.e., alanine, serine, aspartic acid, arginine, and leucine) produced limited hydrogen (0.2-16.2 mL/g) but abundant soluble metabolic products (40.1-84.0 mM) during dark-fermentation. The carbon conversion efficiencies of alanine (85.3%) and serine (94.1%) during dark-fermentation were significantly higher than those of other amino acids. Residual dark-fermentation solutions treated with zeolite for NH4(+) removal were inoculated with photosynthetic bacteria to further produce hydrogen during photo-fermentation. The hydrogen yields of alanine and serine through combined dark- and photo-fermentation were 418.6 and 270.2 mL/g, respectively. The heating value conversion efficiency of alanine to hydrogen was 25.1%, which was higher than that of serine (21.2%).

  3. Changes in fatty acid composition and lipid profile during koji fermentation and their relationships with soy sauce flavour.

    PubMed

    Feng, Yunzi; Chen, Zhiyao; Liu, Ning; Zhao, Haifeng; Cui, Chun; Zhao, Mouming

    2014-09-01

    Evolution of lipids during koji fermentation and the effect of lipase supplementation on the sensory properties of soy sauce were investigated. Results showed that total lipids of the koji samples were in the range of 16-21%. The extracted lipid of initial koji consisted mainly of triacylglycerols (TAGs, >98%), followed by phospholipids (PLs), diglycerides (DAGs), monoacylglycerols (MAGs) and free fatty acids (FFAs). As the fermentation proceeded, peroxide value of the lipids decreased while carbonyl value increased (p<0.05). Linoleic acid was utilised fastest according to the fatty acid composition of total lipids, and preferential degradation of PLs to liberate FFAs was also observed. Moreover, phospholipase supplementation had significant influence on the sensory characteristics of soy sauce, especially enhanced (p<0.05) scores for the umami and kokumi taste attributes. All these results indicated that the control of PLs utilisation during fermentation was a potential method to improve soy sauce's characteristic taste.

  4. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    PubMed

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles.

  5. Relationships between milk fatty acids composition in early lactation and subsequent reproductive performance in Czech Fleckvieh cows.

    PubMed

    Stádník, L; Ducháček, J; Beran, J; Toušová, R; Ptáček, M

    2015-04-01

    Increase of milk yield after calving causes changes in milk fatty acids (FA) composition and simultaneously corresponds with reproduction performance decrease. The objective of this study was to evaluate the relationships between milk FA group composition (SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; and PUFA, polyunsaturated fatty acids) during the first 5 lactation weeks and subsequent reproductive results (INT, calving to first service interval; NUM, number of services per conception, and DO, days open) in Czech Fleckvieh cows. A total of 1231 individual milk samples from 382 cows were collected and subsequently analyzed. Simultaneously, body condition score (BCS) was weekly evaluated as well. Software SAS 9.1 was used for statistical analysis. Daily milk yields increased whereas BCS, milk fat and protein contents decreased during period observed. The reduction of basic milk components (% of fat, % of protein) was associated with increased SFA and decreased MUFA, respectively PUFA contents. Significant (P<0.01-0.05 days) increase in NUM (+0.15 to +0.29 AI dose) and DO (+8.16 to 15.44 days) were detected in cows with the lowest SFA content. On the contrary, cows with the highest content of MUFA presented significantly (P<0.01-0.05) higher values of NUM (+0.13 to +0.30) and DO (+7.26 to +15.35 days). Milk FA groups composition in early lactation potentially used as NEB indicators, especially SFA and MUFA proportion, affected subsequent reproductive results of Czech Fleckvieh cows. Therefore, its post-partum values could serve as predictors of potential fertility of dairy cows.

  6. Effects of Branched-chain Amino Acids on In vitro Ruminal Fermentation of Wheat Straw

    PubMed Central

    Zhang, Hui Ling; Chen, Yong; Xu, Xiao Li; Yang, Yu Xia

    2013-01-01

    This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine) on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA), and ammonia nitrogen (NH3-N) in the ruminal fluid were determined. Dry matter (DM) and neutral detergent fiber (NDF) degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields (p≤0.001). However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001). The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05). Moreover, the proportions of propionate and butyrate decreased (p<0.01) with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001) by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001) increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L) allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L. PMID:25049818

  7. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells

    PubMed Central

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells. PMID:27602272

  8. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis.

    PubMed

    Ma, Kedong; Ruan, Zhiyong; Shui, Zongxia; Wang, Yanwei; Hu, Guoquan; He, Mingxiong

    2016-03-01

    The aim of present study was to develop a process for open ethanol fermentation from food waste using an acid-tolerant mutant of Zymomonas mobilis (ZMA7-2). The mutant showed strong tolerance to acid condition of food waste hydrolysate and high ethanol production performance. By optimizing fermentation parameters, ethanol fermentation with initial glucose concentration of 200 g/L, pH value around 4.0, inoculum size of 10% and without nutrient addition was considered as best conditions. Moreover, the potential of bench scales fermentation and cell reusability was also examined. The fermentation in bench scales (44 h) was faster than flask scale (48 h), and the maximum ethanol concentration and ethanol yield (99.78 g/L, 0.50 g/g) higher than that of flask scale (98.31 g/L, 0.49 g/g). In addition, the stable cell growth and ethanol production profile in five cycles successive fermentation was observed, indicating the mutant was suitable for industrial ethanol production.

  9. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    PubMed

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-02

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated.

  10. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    PubMed

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-04

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product.

  11. Fermentation characteristics and lactic Acid bacteria succession of total mixed ration silages formulated with peach pomace.

    PubMed

    Hu, Xiaodong; Hao, Wei; Wang, Huili; Ning, Tingting; Zheng, Mingli; Xu, Chuncheng

    2015-04-01

    The objective of this study was to assess the use of peach pomace in total mixed ration (TMR) silages and clarify the differences in aerobic stability between TMR and TMR silages caused by lactic acid bacteria (LAB). The TMR were prepared using peach pomace, alfalfa hay or Leymus chinensis hay, maize meal, soybean meal, cotton meal, limestone, a vitamin-mineral supplement, and salt in a ratio of 6.0:34.0:44.4:7.0:5.0:2.5:1.0:0.1 on a dry matter (DM) basis. Fermentation quality, microbial composition, and the predominant LAB were examined during ensiling and aerobic deterioration. The results indicated that the TMR silages with peach pomace were well fermented, with low pH and high lactic acid concentrations. The aerobic stability of TMR silages were significantly higher than that of TMR. Compared with TMR silages with alfalfa hay, TMR silage with Leymus chinensis hay was much more prone to deterioration. Although the dominant LAB were not identical in TMR, the same dominant species, Lactobacillus buchneri and Pediococcus acidilactici, were found in both types of TMR silages after 56 d of ensiling, and they may play an important role in the aerobic stability of TMR silages.

  12. Effects of lactic acid bacteria isolated from fermented mustard on lowering cholesterol

    PubMed Central

    Wang, Shu Chen; Chang, Chen Kai; Chan, Shu Chang; Shieh, Jiunn Shiuh; Chiu, Chih Kwang; Duh, Pin-Der

    2014-01-01

    Objective To evaluate the ability of lactic acid bacteria (LAB) strains isolated from fermented mustard to lower the cholesterol in vitro. Methods The ability of 50 LAB strains isolated from fermented mustard on lowering cholesterol in vitro was determined by modified o-phtshalaldehyde method. The LAB isolates were analyzed for their resistance to acid and bile salt. Strains with lowering cholesterol activity, were determined adherence to Caco-2 cells. Results Strain B0007, B0006 and B0022 assimilated more cholesterol than BCRC10474 and BCRC 17010. The isolated strains showed tolerance to pH 3.0 for 3 h despite variations in the degree of viability and bile-tolerant strains, with more than 108 CFU/mL after incubation for 24 h at 1% oxigall in MRS. In addition, strain B0007 and B0022 identified as Lactobacillus plantarum with 16S rDNA sequences were able to adhere to the Caco-2 cell lines. Conclusions These strains B0007 and B0022 may be potential functional sources for cholesterol-lowering activities as well as adhering to Caco-2 cell lines. PMID:25183271

  13. Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese* #

    PubMed Central

    Azat, Ramila; Liu, Yan; Li, Wei; Kayir, Abdurihim; Lin, Ding-bo; Zhou, Wen-wen; Zheng, Xiao-dong

    2016-01-01

    Six lactic acid bacterial (LAB) strains were isolated from traditionally fermented Xinjiang cheese and evaluated for functional and probiotic properties and potentials as starter cultures. The isolated six LAB strains comprised Lactobacillus rhamnosus (one strain), Lactobacillus helveticus (one strain), and Enterococcus hirae (four strains). All of the six strains were tolerant to acidic and bile salt conditions. Among which, the L. rhamnosus R4 strain showed more desirable antimicrobial, auto-aggregation, and hydrophobic activity. In addition, the strain L. rhamnosus R4 exhibited the highest level of free radical scavenging activity (53.78% of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals and 45.79% of hydroxyl radicals). L. rhamnosus R4 also demonstrated cholesterol and triglyceride degradation by 50.97% and 28.92%, respectively. To further examine the health-promoting effects of these LAB strains on host lifespan, Caenorhabditis elegans was used as an in vivo model. Worms fed LAB as a food source had significant differences in lifespan compared to those fed Escherichia coli OP50 (as a negative control). Feeding of L. rhamnosus R4 extended the mean lifespan of C. elegans by up to 36.1% compared to that of the control. The results suggest that the strains isolated from Xinjiang fermented dairy products have high potential as starter cultures in the cheese industry. PMID:27487805

  14. Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese.

    PubMed

    Azat, Ramila; Liu, Yan; Li, Wei; Kayir, Abdurihim; Lin, Ding-Bo; Zhou, Wen-Wen; Zheng, Xiao-Dong

    2016-08-01

    Six lactic acid bacterial (LAB) strains were isolated from traditionally fermented Xinjiang cheese and evaluated for functional and probiotic properties and potentials as starter cultures. The isolated six LAB strains comprised Lactobacillus rhamnosus (one strain), Lactobacillus helveticus (one strain), and Enterococcus hirae (four strains). All of the six strains were tolerant to acidic and bile salt conditions. Among which, the L. rhamnosus R4 strain showed more desirable antimicrobial, auto-aggregation, and hydrophobic activity. In addition, the strain L. rhamnosus R4 exhibited the highest level of free radical scavenging activity (53.78% of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals and 45.79% of hydroxyl radicals). L. rhamnosus R4 also demonstrated cholesterol and triglyceride degradation by 50.97% and 28.92%, respectively. To further examine the health-promoting effects of these LAB strains on host lifespan, Caenorhabditis elegans was used as an in vivo model. Worms fed LAB as a food source had significant differences in lifespan compared to those fed Escherichia coli OP50 (as a negative control). Feeding of L. rhamnosus R4 extended the mean lifespan of C. elegans by up to 36.1% compared to that of the control. The results suggest that the strains isolated from Xinjiang fermented dairy products have high potential as starter cultures in the cheese industry.

  15. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.

    PubMed

    Li, Hui; Kim, Nag-Jong; Jiang, Min; Kang, Jong Won; Chang, Ho Nam

    2009-07-01

    Bermudagrass, reed and rapeseed were pretreated with phosphoric acid-acetone and used for ethanol production by means of simultaneous saccharification and fermentation (SSF) with a batch and fed-batch mode. When the batch SSF experiments were conducted in a 3% low effective cellulose, about 16 g/L of ethanol were obtained after 96 h of fermentation. When batch SSF experiments were conducted with a higher cellulose content (10% effective cellulose for reed and bermudagrass and 5% for rapeseed), higher ethanol concentrations and yields (of more than 93%) were obtained. The fed-batch SSF strategy was adopted to increase the ethanol concentration further. When a higher water-insoluble solid (up to 36%) was applied, the ethanol concentration reached 56 g/L of an inhibitory concentration of the yeast strain used in this study at 38 degrees C. The results show that the pretreated materials can be used as good feedstocks for bioethanol production, and that the phosphoric acid-acetone pretreatment can effectively yield a higher ethanol concentration.

  16. Fermentation Characteristics and Lactic Acid Bacteria Succession of Total Mixed Ration Silages Formulated with Peach Pomace

    PubMed Central

    Hu, Xiaodong; Hao, Wei; Wang, Huili; Ning, Tingting; Zheng, Mingli; Xu, Chuncheng

    2015-01-01

    The objective of this study was to assess the use of peach pomace in total mixed ration (TMR) silages and clarify the differences in aerobic stability between TMR and TMR silages caused by lactic acid bacteria (LAB). The TMR were prepared using peach pomace, alfalfa hay or Leymus chinensis hay, maize meal, soybean meal, cotton meal, limestone, a vitamin-mineral supplement, and salt in a ratio of 6.0:34.0:44.4:7.0:5.0:2.5:1.0:0.1 on a dry matter (DM) basis. Fermentation quality, microbial composition, and the predominant LAB were examined during ensiling and aerobic deterioration. The results indicated that the TMR silages with peach pomace were well fermented, with low pH and high lactic acid concentrations. The aerobic stability of TMR silages were significantly higher than that of TMR. Compared with TMR silages with alfalfa hay, TMR silage with Leymus chinensis hay was much more prone to deterioration. Although the dominant LAB were not identical in TMR, the same dominant species, Lactobacillus buchneri and Pediococcus acidilactici, were found in both types of TMR silages after 56 d of ensiling, and they may play an important role in the aerobic stability of TMR silages. PMID:25656205

  17. Analysis of Bacterial Diversity During Acetic Acid Fermentation of Tianjin Duliu Aged Vinegar by 454 Pyrosequencing.

    PubMed

    Peng, Qian; Yang, Yanping; Guo, Yanyun; Han, Ye

    2015-08-01

    The vinegar pei harbors complex bacterial communities. Prior studies revealing the bacterial diversity involved were mainly conducted by culture-dependent methods and PCR-DGGE. In this study, 454 pyrosequencing was used to investigate the bacterial communities in vinegar pei during the acetic acid fermentation (AAF) of Tianjin Duliu aged vinegar (TDAV). The results showed that there were 7 phyla and 24 families existing in the vinegar pei, with 2 phyla (Firmicutes, Protebacteria) and 4 families (Lactobacillaceae, Acetobacteracae, Enterobacteriaceae, Chloroplast) predominating. The genus-level identification revealed that 9 genera were the relatively stable, consistent components in different stages of AAF, including the most abundant genus Lactobacillus followed by Acetobacter and Serratia. Additionally, the bacterial community in the early fermentation stage was more complex than those in the later stages, indicating that the accumulation of organic acids provided an appropriate environment to filter unwanted bacteria and to accelerate the growth of required ones. This study provided basic information of bacterial patterns in vinegar pei and relevant changes during AAF of TDAV, and could be used as references in the following study on the implementation of starter culture as well as the improvement of AAF process.

  18. A peculiar stimulatory effect of acetic and lactic acid on growth and fermentative metabolism of Zygosaccharomyces bailii.

    PubMed

    Dang, T D T; Vermeulen, A; Ragaert, P; Devlieghere, F

    2009-05-01

    Stimulatory or protective effects of organic acids at low concentrations, e.g. acetic and lactic acid, on microorganisms have previously been reported. Especially in case of Zygosaccharomyces bailii, a peculiar growth stimulation by these two acids has recently been noticed. In order to elucidate this interesting phenomenon, growth and fermentative metabolism of Z. bailii was investigated in media with low pH (pH 4.0), high sugar (15% (w/v)) and different acetic and lactic acid concentrations. At both experimental temperatures (7 and 30 degrees C), a growth stimulation in the presence of 2.5% (v/v) lactic acid was observed. Furthermore at 7 degrees C, the yeast exhibited another unusual behaviour as it grew much faster in media containing 1.25% (v/v) acetic acid than in the control (without any acid). Production of fermentative metabolites was also increased together with the enhanced growth at both temperatures. These possible stimulatory effects of acetic and lactic acid should be taken into consideration when the acids are used at low doses for food preservative purpose. Presence of the acids may stimulate Z. bailii growth and fermentative metabolism, particularly at refrigeration temperature, consequently resulting in an earlier spoilage.

  19. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain

    PubMed Central

    Baroi, G N; Baumann, I; Westermann, P; Gavala, H N

    2015-01-01

    Butyric acid is a valuable building-block for the production of chemicals and materials and nowadays it is produced exclusively from petroleum. The aim of this study was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces butyric acid at a high yield and selectivity from lignocellulosic biomasses. Pretreated (by wet explosion) and enzymatically hydrolysed wheat straw (PHWS), rich in C6 and C5 sugars (71.6 and 55.4 g l−1 of glucose and xylose respectively), was used as substrate. After one year of serial selections, an adapted strain of C. tyrobutyricum was developed. The adapted strain was able to grow in 80% (v v−1) PHWS without addition of yeast extract compared with an initial tolerance to less than 10% PHWS and was able to ferment both glucose and xylose. It is noticeable that the adapted C. tyrobutyricum strain was characterized by a high yield and selectivity to butyric acid. Specifically, the butyric acid yield at 60–80% PHWS lie between 0.37 and 0.46 g g−1 of sugar, while the selectivity for butyric acid was as high as 0.9–1.0 g g−1 of acid. Moreover, the strain exhibited a robust response in regards to growth and product profile at pH 6 and 7. PMID:26230610

  20. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate.

    PubMed

    Wang, Juan; Wang, Qunhui; Xu, Zhong; Zhang, Wenyu; Xiang, Juan

    2015-01-01

    Four types of straw, namely, soybean, wheat, corn, and rice, were investigated for use in lactic acid production. These straws were mainly composed of cellulose, hemicellulose, and lignin. After pretreatment with ammonia, the cellulose content increased, whereas the hemicellulose and lignin contents decreased. Analytical results also showed that the liquid enzymatic hydrolysates were primarily composed of glucose, xylose, and cellobiose. Preliminary experiments showed that a higher lactic acid concentration could be obtained from the wheat and soybean straw. However, soybean straw was chosen as the substrate for lactic acid production owing to its high protein content. The maximum lactic acid yield (0.8 g/g) and lactic acid productivity (0.61 g/(l/h)) were obtained with an initial reducing sugar concentration of 35 g/l at 30°C when using Lactobacillus casei (10% inoculum) for a 42 h fermentation period. Thus, the experimental results demonstrated the feasibility of using a soybean straw enzymatic hydrolysate as a substrate for lactic acid production.

  1. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.

    PubMed

    Aschenbach, J R; Penner, G B; Stumpff, F; Gäbel, G

    2011-04-01

    Highly fermentable diets are rapidly converted to organic acids [i.e., short-chain fatty acids (SCFA) and lactic acid] within the rumen. The resulting release of protons can constitute a challenge to the ruminal ecosystem and animal health. Health disturbances, resulting from acidogenic diets, are classified as subacute and acute acidosis based on the degree of ruminal pH depression. Although increased acid production is a nutritionally desired effect of increased concentrate feeding, the accumulation of protons in the rumen is not. Consequently, mechanisms of proton removal and their quantitative importance are of major interest. Saliva buffers (i.e., bicarbonate, phosphate) have long been identified as important mechanisms for ruminal proton removal. An even larger proportion of protons appears to be removed from the rumen by SCFA absorption across the ruminal epithelium, making efficiency of SCFA absorption a key determinant for the individual susceptibility to subacute ruminal acidosis. Proceeding initially from a model of exclusively diffusional absorption of fermentation acids, several protein-dependent mechanisms have been discovered over the last 2 decades. Although the molecular identity of these proteins is mostly uncertain, apical acetate absorption is mediated, to a major degree, via acetate-bicarbonate exchange in addition to another nitrate-sensitive, bicarbonate-independent transport mechanism and lipophilic diffusion. Propionate and butyrate also show partially bicarbonate-dependent transport modes. Basolateral efflux of SCFA and their metabolites has to be mediated primarily by proteins and probably involves the monocarboxylate transporter (MCT1) and anion channels. Although the ruminal epithelium removes a large fraction of protons from the rumen, it also recycles protons to the rumen via apical sodium-proton exchanger, NHE. The latter is stimulated by ruminal SCFA absorption and salivary Na(+) secretion and protects epithelial integrity. Finally

  2. Ileal digestibility of nutrients and amino acids in unfermented, fermented soybean meal and canola meal for weaning pigs.

    PubMed

    Upadhaya, Santi D; Kim, In Ho

    2015-04-01

    Apparent ileal digestibility (AID) of energy, dry matter, nitrogen and amino acids and standardized ileal digestibility (SID) of nitrogen and amino acids were evaluated in six weanling pigs ((Landrace × Yorkshire) × Duroc)) fed unfermented soybean meal (SM), yeast fermented soybean meal (SMY), bacillus fermented soybean meal (SMB), yeast and bacillus fermented soybean meal (SMYB), canola meal (CM) and nitrogen-free diet. Pigs having body weights 17.00 ± 0.3 kg were surgically equipped with T-cannulas of approximately 15 cm prior to the ileo-cecal junction and randomly allotted to one of five dietary treatments and a nitrogen-free diet in 6 × 6 Latin squares. AID and SID of nitrogen (N) was greater (P < 0.05) in SMYB and SMB compared with SM and CM. AID and SID of amino acids such as, Lys (lysine) and Phe (phenylalanine) as well as total essential amino acids were greater (P < 0.05) in SMB and tended to be low in CM compared with SM. AID and SID of aspartic acid (Asp) and glycine (Gly) tended to be higher in SMB compared with SM and other diets except CM. In conclusion, fermentation of soybean meal by Bacillus showed better digestibility of amino acid and nutrients.

  3. Effect of dilute acid pretreatment on the conversion of barley straw with grains to fermentable sugars.

    PubMed

    Yang, Ming; Kuittinen, Suvi; Zhang, Junhua; Keinänen, Markku; Pappinen, Ari

    2013-10-01

    This study investigated the effects of pretreatment conditions, dilute sulfuric acid concentration and treatment time, on the carbohydrate solubility of a mixture of barley straw and grain. The conditions were expressed as combined severity (CS) to evaluate sugar recovery from pretreated samples. Enzymatic hydrolysates from the lignocellulose pretreatment residues were also included to the results. CS was positively correlating with glucose recovery in all conditions, but in higher acid concentrations CS did not predict xylose recovery. It appeared that the residual xylan better indicate the xylose release. An optimal fermentable sugar yield from the mixture of barley straw and grain was obtained by maintaining the CS at around 1.38, corresponding to an overall glucose yield of 96% and a xylose yield of 57%.

  4. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.

    PubMed

    Ventimiglia, Giusi; Alfonzo, Antonio; Galluzzo, Paola; Corona, Onofrio; Francesca, Nicola; Caracappa, Santo; Moschetti, Giancarlo; Settanni, Luca

    2015-10-01

    Fifteen sourdoughs produced in western Sicily (southern Italy) were analysed by classical methods for their chemico-physical characteristics and the levels of lactic acid bacteria (LAB). pH and total titratable acidity (TTA) were mostly in the range commonly reported for similar products produced in Italy, but the fermentation quotient (FQ) of the majority of samples was above 4.0, due to the low concentration of acetic acid estimated by high performance liquid chromatography (HPLC). Specific counts of LAB showed levels higher than 10(8) CFU g(-1) for many samples. The colonies representing various morphologies were isolated and, after the differentiation based on phenotypic characteristics, divided into 10 groups. The most numerous group was composed of facultative heterofermentative isolates, indicating a relevance of this bacterial group during fermentation. The genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR, 16S rRNA gene sequencing and species-specific PCRs identified 33 strains as Lactobacillus plantarum, Lactobacillus curvatus and Lactobacillus graminis. Due to the consistent presence of L. plantarum, it was concluded that this species codominates with obligate heterofermentative LAB in sourdough production in this geographical area. In order to evaluate the performances at the basis of their fitness, the 29 L. plantarum strains were investigated for several technological traits. Twelve cultures showed good acidifying abilities in vitro and L. plantarum PON100148 produced the highest concentrations of organic acids. Eleven strains were positive for extracellular protease activity. Bacteriocin-like inhibitory substances (BLIS) production and antifungal activity was scored positive for several strains, included L. plantarum PON100148 which was selected as starter for experimental sourdough production. The characteristics of the sourdoughs and the resulting breads indicated that the best productions were obtained in presence of L

  5. Studies on potential effects of fumaric acid on rumen microbial fermentation, methane production and microbial community.

    PubMed

    Riede, Susanne; Boguhn, Jeannette; Breves, Gerhard

    2013-01-01

    The greenhouse gas methane (CH4) contributes substantially to global climate change. As a potential approach to decrease ruminal methanogenesis, the effects of different dosages of fumaric acid (FA) on ruminal microbial metabolism and on the microbial community (archaea, bacteria) were studied using a rumen simulation technique (RUSITEC). FA acts as alternative hydrogen acceptor diverting 2H from methanogenesis of archaea towards propionate formation of bacteria. Three identical trials were conducted with 12 fermentation vessels over a period of 14 days. In each trial, four fermentation vessels were assigned to one of the three treatment groups differing in FA dosage: low fumaric acid (LFA), high fumaric acid (HFA) and without FA (control). FA was continuously infused with the buffer. Grass silage and concentrate served as substrate. FA led to decreases in pH and to higher production rates of total short chain fatty acids (SCFA) mediated by increases in propionate for LFA of 1.69 mmol d(-1) and in propionate and acetate production for HFA of 4.49 and 1.10 mmol d(-1), respectively. Concentrations of NH3-N, microbial crude protein synthesis, their efficiency, degradation of crude nutrients and detergent fibre fraction were unchanged. Total gas and CH4 production were not affected by FA. Effects of FA on structure of microbial community by means of single strand conformation polymorphism (SSCP) analyses could not be detected. Given the observed increase in propionate production and the unaffected CH4 production it can be supposed that the availability of reduction equivalents like 2H was not limited by the addition of FA in this study. It has to be concluded from the present study that the application of FA is not an appropriate approach to decrease the ruminal CH4 production.

  6. A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age.

    PubMed

    Bering, Stine; Suchdev, Seema; Sjøltov, Laila; Berggren, Anna; Tetens, Inge; Bukhave, Klaus

    2006-07-01

    Lactic acid-fermented foods have been shown to increase Fe absorption in human subjects, possibly by lowering pH, activation of phytases, and formation of soluble complexes of Fe and organic acids. We tested the effect of an oat gruel fermented with Lactobacillus plantarum 299v on non-haem Fe absorption from a low-Fe bioavailability meal compared with a pasteurised, fermented oat gruel and non-fermented oat gruels. In a cross-over trial twenty-four healthy women with a mean age of 25 (sd 4) years were served (A) fermented gruel, (B) pasteurised fermented gruel, (C) pH-adjusted non-fermented gruel, and (D) non-fermented gruel with added organic acids. The meals were extrinsically labelled with 55Fe or 59Fe and consumed on 4 consecutive days, for example, in the order ABBA or BAAB followed by CDDC or DCCD in a second period. Fe absorption was determined from isotope activities in blood samples. The fermented gruel with live L. plantarum 299v increased Fe absorption significantly (P < 0.0001) compared with the pasteurised and non-fermented gruels. The lactic acid concentration in the fermented gruel was 19 % higher than in the pasteurised gruel, but the Fe absorption was increased by 50 %. In the gruel with organic acids, the lactic acid concentration was 52 % lower than in the pasteurised gruel, with no difference in Fe absorption. The fermented gruel increased non-haem Fe absorption from a phytate-rich meal in young women, indicating a specific effect of live L. plantarum 299v and not only an effect of the organic acids.

  7. Elevated First-Trimester Total Bile Acid is Associated with the Risk of Subsequent Gestational Diabetes

    PubMed Central

    Hou, Wolin; Meng, Xiyan; Zhao, Weijing; Pan, Jiemin; Tang, Junling; Huang, Yajuan; Tao, Minfang; Liu, Fang; Jia, Weiping

    2016-01-01

    The aim of the current study is to assess whether total bile acid (TBA) level in first trimester pregnancy is associated with gestational diabetes mellitus (GDM). Biochemical parameters including serum TBA of 742 pregnant women were collected within 12 weeks of gestation and compared. At 24–28th weeks of gestation, 75 g oral glucose tolerance test (OGTT) was performed. The perinatal data of 330 women were collected. The results demonstrated women with GDM (n = 268) had higher first-trimester serum levels of TBA compared with healthy subjects (n = 474) (2.3 ± 1.4 μmol/L vs. 1.9 ± 1.0 μmol/L, P < 0.001). TBA was independently associated with GDM [adjusted odds ratio (AOR), 1.38; 95% confidence interval (CI), 1.18–1.61, P < 0.001]. Compared to the first category of TBA, women in the highest category had a marked increase in risk for GDM (AOR, 7.72; 95% CI, 3.22–18.50, P < 0.001). In conclusion, higher first-trimester TBA levels, even within normal range, may help indicate increased risk of GDM. PMID:27667090

  8. Effect of applying lactic acid bacteria and propionic acid on fermentation quality and aerobic stability of oats-common vetch mixed silage on the Tibetan plateau.

    PubMed

    Zhang, Jie; Guo, Gang; Chen, Lei; Li, Junfeng; Yuan, Xianjun; Yu, Chengqun; Shimojo, Masataka; Shao, Tao

    2015-06-01

    The objective of this study was to evaluate effects of lactic acid bacteria and propionic acid on the fermentation quality and aerobic stability of oats-common vetch mixed silage by using a small-scale fermentation system on the Tibetan plateau. (i) An inoculant (Lactobacillus plantarum) (L) or (ii) propionic acid (P) or (iii) inoculant + propionic acid (PL) were used as additives. After fermenting for 60 days, silos were opened and the aerobic stability was tested for the following 15 days. The results showed that all silages were well preserved with low pH and NH3 -N, and high lactic acid content and V-scores. L and PL silages showed higher (P < 0.05) lactic acid and crude protein content than the control silage. P silage inhibited lactic acid production. Under aerobic conditions, L silage had similar yeast counts as the control silage (> 10(5) cfu/g fresh matter (FM)); however, it numerically reduced aerobic stability for 6 h. P and PL silages showed fewer yeasts (< 10(5) cfu/g FM) (P < 0.05) and markedly improved the aerobic stability (> 360 h). The result suggested that PL is the best additive as it could not only improved fermentation quality, but also aerobic stability of oats-common vetch mixed silage on the Tibetan plateau.

  9. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    PubMed

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  10. Selection of lactic acid bacteria isolated from Tunisian cereals and exploitation of the use as starters for sourdough fermentation.

    PubMed

    Mamhoud, Asma; Nionelli, Luana; Bouzaine, Taroub; Hamdi, Moktar; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2016-05-16

    Wheat bread is the most popular staple food consumed in Tunisia and, despite the niche production of some typical breads (e.g. Tabouna, Mlawi, Mtabga), the major part is currently produced with baker's yeast at industrial or, mainly, at artisanal level, while the use of sourdough fermentation is rarely reported. Considering the growing national demand for cereal baked goods, it can be hypothesized that sourdough fermentation through the use of selected lactic acid bacteria as starters could improve the overall quality and the diversification of local products. Different cereal grains were collected from the regions of Ariana, Bizerta, Beja Nabeul, and Seliana, and the autochthonous lactic acid bacteria were isolated, identified, characterized and selected on the basis of the kinetics of acidification, the proteolytic activity, and the quotient of fermentation. Lactobacillus curvatus MA2, Pediococcus pentosaceus OA2, and Pediococcus acidilactici O1A1 were used together as mixed starter to obtain a selected sourdough. According to the backslopping procedure, a type I sourdough was made from a Tunisian flour (spontaneous sourdough). Compared to the use of the spontaneous sourdough, the one obtained with selected and mixed starters by a unique fermentation step, favored the increase of the concentrations of organic acids, phenols, and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities, that increased ca. 20% compared to the control. Moreover, the selected starters improved the in vitro protein digestibility (ca. 82% when selected sourdough was used), textural and sensory features of the breads, as determined by textural profile analysis and panel test, respectively. This study aimed at exploiting the potential of selected autochthonous lactic acid bacteria and extending the use of a sourdough (type II), thanks to the set-up of a two-step fermentation protocol designed for application at the

  11. Potency of microfiltration membrane process in purifying broccoli (Brassica oleracea L.) fermented by lactic acid bacteria (LAB) as functional food

    NASA Astrophysics Data System (ADS)

    Susilowati, Agustine; Aspiyanto, Maryati, Yati; Melanie, Hakiki; Lotulung, Puspa D.

    2017-01-01

    Purifying broccoli (Brassica oleracea L.) fermented by Lactic Acid Bacteria (LAB) using mixture of L. bulgaricus, S. thermopillus, L. acidophillusand Bifidobacteriumbifidum and fructooligosaccharides (FOS) as carbon source have been performed to recover biomass concentrate for probiotic and antioxidant. Purification of fermented broccoli was conducted through microfiltration (MF) membrane of 0.15 µm at stirrer rotation speed 400 rpm, room temperature and pressure 40 psia for 30 minutes. Fermented broccoli produced via fermentation process with fermentation time 0 (initial) and 48 hours, and LAB concentration 10% and 20% (v/v) represented as biomass of A, B, C and D. The experimental result showed that based on selectivity of total organic acids, separating optimization was achieved at biomass D (fermentation time 48 hours and mixed LAB culture concentration 20%). Concentrate composition produced in this condition were total acids 6.04%, total solids 24.31%, total polyphenol 0.0252%, reducing sugar 68.25 mg/mL, total sugars 30.89 mg/mL, and dissolved protein 28.54 mg/mL with pH 3.94. In this condition, recovery of biomass concentrate of D for total acids 5.64 folds, total solids 1.82 folds, total polyphenol 3.03 folds, reducing sugar 1.16 folds, total sugars 1.19 folds, and dissolved protein 0.67 folds compared with feed (initial process). Identification of monomer of biomass concentrate D as polyphenol derivatives at T2,01 and T3.01 gave monomer with molecular weight (MW) 192.78 Dalton (Da.), and monomer with MW 191.08, 191.49 and 192.07 Da., while lactic acid derivatives showed MW 251.13, 251.6 and 252.14, and monomer with MW 250.63, 252.14 and 254.22 Da.

  12. Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production.

    PubMed

    Neu, Anna-Katrin; Pleissner, Daniel; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-07-01

    In this study, mucilage, a residue from coffee production, was investigated as substrate in fermentative l(+)-lactic acid production. Mucilage was provided as liquid suspension consisting glucose, galactose, fructose, xylose and sucrose as free sugars (up to 60gL(-1)), and used directly as medium in Bacillus coagulans batch fermentations carried out at 2 and 50L scales. Using mucilage and 5gL(-1) yeast extract as additional nitrogen source, more than 40gL(-1) lactic acid was obtained. Productivity and yield were 4-5gL(-1)h(-1) and 0.70-0.77g lactic acid per g of free sugars, respectively, irrespective the scale. Similar yield was found when no yeast extract was supplied, the productivity, however, was 1.5gL(-1)h(-1). Down-stream processing of culture broth, including filtration, electrodialysis, ion exchange chromatography and distillation, resulted in a pure lactic acid formulation containing 930gL(-1)l(+)-lactic acid. Optical purity was 99.8%.

  13. Evaluation of the Fermentation Potential of Pulp Mill Residue to Produce D(-)-Lactic Acid by Separate Hydrolysis and Fermentation Using Lactobacillus coryniformis subsp. torquens.

    PubMed

    de Oliveira Moraes, Anelize; Ramirez, Ninoska Isabel Bojorge; Pereira, Nei

    2016-12-01

    Lactic acid is widely used in chemical, pharmaceutical, cosmetic, and food industries, besides it is the building block to produce polylactic acid, which is a sustainable alternative biopolymer to synthetic plastic due to its biodegradability. Aiming at producing an optically pure isomer, the present work evaluated the potential of pulp mill residue as feedstock to produce D(-)-lactic acid by a strain of the bacterium Lactobacillus coryniformis subsp. torquens using separate hydrolysis and fermentation process. Enzymatic hydrolysis, optimized through response surface methodology for 1 g:4 mL solid/liquid ratio and 24.8 FPU/gcellulose enzyme loading, resulted in 140 g L(-1) total reducing sugar and 110 g L(-1) glucose after 48 h, leading to 61 % of efficiency. In instrumented bioreactor, 57 g L(-1) of D(-)-lactic acid was achieved in 20 h of fermentation, while only 0.5 g L(-1) of L(+)-lactic acid was generated. Furthermore, product yield of 0.97 g/g and volumetric productivity of 2.8 g L(-1) h(-1) were obtained.

  14. Ruminal fermentation, microbial growth and amino acid flow in single-flow continuous culture fermenters fed a diet containing olive leaves.

    PubMed

    Molina-Alcaide, E; Martín-García, A I; Moumen, A; Carro, M D

    2010-04-01

    Six single-flow continuous culture fermenters were used to determine fermentation profile, microbial growth and amino acid (AA) flow promoted by olive leaves supplemented with barley grains and faba beans (OLSUP), and alfalfa hay (AH). Two incubation runs were carried out with three fermenters inoculated with ruminal fluid from wethers and three from goats. The inoculum source did not affect (p = 0.059 to 0.980) any of the parameters. Daily volatile fatty acid (VFA) production and carbohydrate digestibility were greater (p = 0.009 and 0.024, respectively) for AH, therefore the pH values were lower (p = 0.015) than for OLSUP. Acetate was greater (p < 0.001) and isobutyrate, isovalerate and caproate lower (p < 0.001 to 0.006) for AH with greater acetate/propionate (p = 0.014) and 'VFA/digested carbohydrate' (p = 0.026) ratios. Daily microbial N flow and efficiency were greater (p = 0.016 and p = 0.041) for diet AH. Individual AA flows were greater (p < 0.001 to 0.016) for AH, but microbial essential AA proportion was greater for OLSUP (p = 0.015). The results indicate that OLSUP promoted lower bacterial growth and AA flow than AH, which could have been partially due to a limitation of N availability to ruminal microbes.

  15. Screening of Burkholderia sp. WGB31 producing anisic acid from anethole and optimization of fermentation conditions.

    PubMed

    Shen, Peihong; Song, Zhangyang; Zhang, Zhenyong; Zeng, Huahe; Tang, Xianlai; Jiang, Chengjian; Li, Junfang; Wu, Bo

    2014-11-01

    Anisic acid, the precursor of a variety of food flavors and industrial raw materials, can be bioconversed from anethole which extracted from star anise fruits. WGB31 strain with anisic acid molar production rate of 10.25% was isolated and identified as Burkholderia sp. Three significant influential factors, namely, glucose concentration, initial pH value, and medium volume were selected and their effects were evaluated by Box-Behnken Design (BBD). Regression analysis was performed to determine response surface methodology and the significance was tested to obtain the process model of optimal conditions for producing anisic acid. The fermentation conditions at the stable point of the model were obtained: glucose 6 g L(-1) , pH 6.2, culture medium volume 61 mL in a triangular flask with 250 ml volume. Verification test indicated that the production rate of anisic acid was 30.7%, which was three times of that before optimizing. The results provide a basis and reference for producing anisic acid by microbial transformation.

  16. Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits.

    PubMed

    Wang, Ying; Tashiro, Yukihiro; Sonomoto, Kenji

    2015-01-01

    The development and implementation of renewable materials for the production of versatile chemical resources have gained considerable attention recently, as this offers an alternative to the environmental problems caused by the petroleum industry and the limited supply of fossil resources. Therefore, the concept of utilizing biomass or wastes from agricultural and industrial residues to produce useful chemical products has been widely accepted. Lactic acid plays an important role due to its versatile application in the food, medical, and cosmetics industries and as a potential raw material for the manufacture of biodegradable plastics. Currently, the fermentative production of optically pure lactic acid has increased because of the prospects of environmental friendliness and cost-effectiveness. In order to produce lactic acid with high yield and optical purity, many studies focus on wild microorganisms and metabolically engineered strains. This article reviews the most recent advances in the biotechnological production of lactic acid mainly by lactic acid bacteria, and discusses the feasibility and potential of various processes.

  17. Analysis of mixtures of fatty acids and fatty alcohols in fermentation broth.

    PubMed

    Liu, Yilan; Chen, Ting; Yang, Maohua; Wang, Caixia; Huo, Weiyan; Yan, Daojiang; Chen, Jinjin; Zhou, Jiemin; Xing, Jianmin

    2014-01-03

    Microbial production of fatty acids and fatty alcohols has attracted increasing concerns because of energy crisis and environmental impact of fossil fuels. Therefore, simple and efficient methods for the extraction and quantification of these compounds become necessary. In this study, a high-performance liquid chromatography-refractive index detection (HPLC-RID) method was developed for the simultaneous quantification of fatty acids and fatty alcohols in these samples. The optimum chromatographic conditions are C18 column eluted with methanol:water:acetic acid (90:9.9:0.1, v/v/v); column temperature, 26°C; flow rate, 1.0mL/min. Calibration curves of all selected analytes showed good linearity (r(2)≥0.9989). The intra-day and inter-day relative standard deviations (RSDs) of the 10 compounds were less than 4.46% and 5.38%, respectively, which indicated that the method had good repeatability and precision. Besides, a method for simultaneous extraction of fatty acids and fatty alcohols from fermentation broth was optimized by orthogonal design. The optimal extraction conditions were as follows: solvent, ethyl acetate; solvent to sample ratio, 0.5:1; rotation speed, 2min at 260rpm; extraction temperature, 10°C. This study provides simple and fast methods to simultaneously extract and quantify fatty acids and fatty alcohols for the first time. It will be useful for the study of microbial production of these products.

  18. Design of experiments for amino acid extraction from tobacco leaves and their subsequent determination by capillary zone electrophoresis.

    PubMed

    Hodek, Ondřej; Křížek, Tomáš; Coufal, Pavel; Ryšlavá, Helena

    2017-03-01

    In this study, we optimized a method for the determination of free amino acids in Nicotiana tabacum leaves. Capillary electrophoresis with contactless conductivity detector was used for the separation of 20 proteinogenic amino acids in acidic background electrolyte. Subsequently, the conditions of extraction with HCl were optimized for the highest extraction yield of the amino acids because sample treatment of plant materials brings some specific challenges. Central composite face-centered design with fractional factorial design was used in order to evaluate the significance of selected factors (HCl volume, HCl concentration, sonication, shaking) on the extraction process. In addition, the composite design helped us to find the optimal values for each factor using the response surface method. The limits of detection and limits of quantification for the 20 proteinogenic amino acids were found to be in the order of 10(-5) and 10(-4) mol l(-1), respectively. Addition of acetonitrile to the sample was tested as a method commonly used to decrease limits of detection. Ambiguous results of this experiment pointed out some features of plant extract samples, which often required specific approaches. Suitability of the method for metabolomic studies was tested by analysis of a real sample, in which all amino acids, except for L-methionine and L-cysteine, were successfully detected. The optimized extraction process together with the capillary electrophoresis method can be used for the determination of proteinogenic amino acids in plant materials. The resulting inexpensive, simple, and robust method is well suited for various metabolomic studies in plants. As such, the method represents a valuable tool for research and practical application in the fields of biology, biochemistry, and agriculture.

  19. Preservation of hatchery waste by lactic acid fermentation. 2. Large-scale fermentation and feeding trial to evaluate feeding value.

    PubMed

    Deshmukh, A C; Patterson, P H

    1997-09-01

    Two waste streams from a Leghorn hatchery were preserved and recycled by fermentation with a by-product carbohydrate and extrusion processing into new feed ingredients that were evaluated with broiler chickens. Cockerel chicks (CC) and a 60:40 ratio of CC:shell waste (CC:SW) were fermented in 189-L barrels for 21 d following grinding, then mixing with a liquid culture (0.2%) and carbohydrate source at 15 and 16.66%, respectively. At 2 wk, pH was 4.44 and 5.09 for the CC and CC:SW products compared with higher values of 6.54 and 6.98 for the raw ingredients at the onset. Negligible hydrogen sulfide and no ammonia gas were recorded during the fermentation period. At 21 d, the fermented CC and CC:SW were extruded, dried, and ground to meals containing CP and TMEn levels of 47.4%, 3,187 kcal/kg, and 33.1%, 2,696 kcal/kg, respectively. Broiler chickens were fed a control diet and the CC (5 and 10%) and CC:SW (2.5 and 5%) ingredient diets with corn and soybean meal for 6 wk to evaluate feeding value and carcass yield. Body weight, gain and feed conversion at 42 d for birds fed diets supplemented with CC or CC:SW at all levels were comparable to those of the control. Diets supplemented with hatchery by-product had no negative effect on carcass measurements except ready to cook carcass and wing yield, which were significantly greater for the 10% CC:SW birds than for the control. These data indicate that nutrient dense hatchery by-products can be preserved with fermentation up to 21 d and support broiler live performance and carcass yield as dietary ingredients equal to or better than a corn-soybean meal control.

  20. Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacter oxydans.

    PubMed

    Zhang, Hongsen; Han, Xushen; Wei, Chengxiang; Bao, Jie

    2017-01-01

    An oxidative production process of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth was designed, experimentally investigated, and evaluated. Dry dilute acid pretreated and biodetoxified corn stover was simultaneously saccharified and fermented into 59.80g/L of ethanol (no xylose utilization). 65.39g/L of xylose was obtained in the distillation stillage without any concentrating step after ethanol was distillated. Then the xylose was completely converted into 66.42g/L of xylonic acid by Gluconobacter oxydans. The rigorous Aspen Plus modeling shows that the wastewater generation and energy consumption was significantly reduced comparing to the previous xylonic acid production process using xylose in pretreatment liquid. This study provided a practical process option for xylonic acid production from lignocellulose feedstock with significant reduction of wastewater and energy consumption.

  1. Effects of acid pre-treatment on bio-hydrogen production and microbial communities during dark fermentation.

    PubMed

    Lee, Myoung-Joo; Song, Ji-Hyeon; Hwang, Sun-Jin

    2009-02-01

    Optimal conditions for acid pre-treatment were investigated for the enrichment of hydrogen-producing bacteria (HPB) in a mixed culture using three strong acids: HCl, HNO(3), and H2SO4 x HCl was selected as a suitable acid for the enrichment of HPB in the fermentation process. The volume of bio-hydrogen produced when the mixed culture was pre-treated using HCl at pH 2 was 3.2 times higher than that obtained without acid pre-treatment. Changes in the microbial community during acid pre-treatment were monitored using images obtained by the fluorescent in situ hybridization (FISH) method and the Live/Dead cell viability test. The tests clearly indicated that the Clostridium species of cluster I were the predominant strains involved in bio-H(2) fermentation, and could be selectively enriched by HCl pre-treatment.

  2. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2006-07-11

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  3. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  4. Natural populations of lactic acid bacteria isolated from vegetable residues and silage fermentation.

    PubMed

    Yang, J; Cao, Y; Cai, Y; Terada, F

    2010-07-01

    Natural populations of lactic acid bacteria (LAB) and silage fermentation of vegetable residues were studied. Fifty-two strains of LAB isolated from cabbage, Chinese cabbage, and lettuce residues were identified and characterized. The LAB strains were gram-positive and catalase-negative bacteria, which were divided into 6 groups (A to F) according to morphological and biochemical characteristics. The strains in group A were rods that did not produce gas from glucose and formed the d and l isomers of lactate. Groups B and C were homofermentative cocci that formed l-lactic acid. Groups D, E, and F were heterofermentative cocci that formed d-lactic acid. Based on 16S rDNA gene sequence analysis, group A to F strains were identified as Lactobacillus plantarum, Lactococcus piscium, Lactococcus lactis, Leuconostoc citreum, Weissella soli and Leuconostoc gelidum, respectively. The prevalent LAB, predominantly homofermentative lactobacilli, consisted of Lactobacillus plantarum (34.6%), Weissella soli (19.2%), Leuconostoc gelidum (15.4%), Leuconostoc citreum (13.5%), Lactococcus lactis (9.6%), and Lactococcus piscium (7.7%). Lactobacillus plantarum was the dominant member of the LAB population in 3 types of vegetable residues. These vegetable residues contained a high level of crude protein (20.2 to 28.4% of dry matter). These silages prepared by using a small-scale fermentation system were well preserved, with low pH and a relatively high content of lactate. This study suggests that the vegetable residues contain abundant LAB species and nutrients, and that they could be well preserved by making silage, which is a potentially good vegetable protein source for livestock diets.

  5. Assessment of selected antioxidants in tomato pomace subsequent to treatment with the edible oyster mushroom, Pleurotus ostreatus, under solid-state fermentation.

    PubMed

    Assi, Jamal A; King, Annie J

    2007-10-31

    Tomato pomace, delignified by the edible oyster mushroom, Pleurotus ostreatus, could be used as a poultry feed ingredient to provide alpha-tocopherol for retardation of lipid oxidation in postmortem meat if the antioxidant were retained in pomace after fungal fermentation. Experiments were conducted to investigate changes in the content of alpha-tocopherol, lycopene, and beta-carotene in tomato pomace after sterilization and treatment with P. ostreatus from 0 to 104 days. alpha-Tocopherol (39.26 to 31.15 microg/g) and lycopene (17.42 to 11.19 microg/g) significantly decreased during sterilization while beta-carotene (42.56 to 35.44 microg/g) did not. The content of carotenoids decreased by day 26 as compared to 0 day for the control and for treated samples. alpha-Tocopherol decreased during fungal fermentation at day 26 as compared to 0 day for the control and increased during the same period for treated samples. By 104 days, only alpha-tocopherol in control pomace was present in a significant amount. The alpha-tocopherol content of mushroom fruit grown in pomace (74.10 microg/g) and in wheat straw (51.36 microg/g) was not significantly different. Tomato pomace could be used as a substrate to successfully grow edible mushrooms; however, the initial level of selected antioxidants and their reduction during fungal fermentation must be considered when delignified pomace is utilized for selected nutrient content in animal feed or products for human consumption.

  6. Improving arachidonic acid fermentation by Mortierella alpina through multistage temperature and aeration rate control in bioreactor.

    PubMed

    Gao, Min-Jie; Wang, Cheng; Zheng, Zhi-Yong; Zhu, Li; Zhan, Xiao-Bei; Lin, Chi-Chung

    2016-05-18

    Effective production of arachidonic acid (ARA) using Mortierella alpina was conducted in a 30-L airlift bioreactor. Varying the aeration rate and temperature significantly influenced cell morphology, cell growth, and ARA production, while the optimal aeration rate and temperature for cell growth and product formation were quite different. As a result, a two-stage aeration rate control strategy was constructed based on monitoring of cell morphology and ARA production under various aeration rate control levels (0.6-1.8 vvm). Using this strategy, ARA yield reached 4.7 g/L, an increase of 38.2% compared with the control (constant aeration rate control at 1.0 vvm). Dynamic temperature-control strategy was implemented based on the fermentation performance at various temperatures (13-28°C), with ARA level in total cellular lipid increased by 37.1% comparing to a constant-temperature control (25°C). On that basis, the combinatorial fermentation strategy of two-stage aeration rate control and dynamic temperature control was applied and ARA production achieved the highest level of 5.8 g/L.

  7. An improved HPLC-DAD method for clavulanic acid quantification in fermentation broths of Streptomyces clavuligerus.

    PubMed

    Ramirez-Malule, Howard; Junne, Stefan; López, Carlos; Zapata, Julian; Sáez, Alex; Neubauer, Peter; Rios-Estepa, Rigoberto

    2016-02-20

    Clavulanic acid (CA) is an important secondary metabolite commercially produced by cultivation of Streptomyces clavuligerus (Sc). It is a potent inhibitor of bacterial β-lactamases. In this work, a specific and improved high performance liquid chromatography (HPLC) method, using a C-18 reversed phase column, diode array detector and gradient elution for CA quantification in fermentation broths of Sc, was developed and successfully validated. Samples were imidazole-derivatized for the purpose of creating a stable chromophore (clavulanate-imidazole). The calibration curve was linear over a typical range of CA concentration between 0.2 and 400mg/L. The detection and quantification limits were 0.01 and 0.02mg/L, respectively. The precision of the method was evaluated for CA spiked into production media and a recovery of 103.8%, on average, was obtained. The clavulanate-imidazole complex was not stable when the samples were not cooled during the analysis. The recovery rate was 39.3% on average. This assay was successfully tested for CA quantification in samples from Sc fermentation, using both, a chemically defined and a complex medium.

  8. Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota.

    PubMed

    Kwan, Tsz Him; Hu, Yunzi; Lin, Carol Sze Ki

    2016-10-01

    Food waste recycling via fungal hydrolysis and lactic acid (LA) fermentation has been investigated. Hydrolysates derived from mixed food waste and bakery waste were rich in glucose (80.0-100.2gL(-1)), fructose (7.6gL(-1)) and free amino nitrogen (947-1081mgL(-1)). In the fermentation with Lactobacillus casei Shirota, 94.0gL(-1) and 82.6gL(-1) of LA were produced with productivity of 2.61gL(-1)h(-1) and 2.50gL(-1)h(-1) for mixed food waste and bakery waste hydrolysate, respectively. The yield was 0.94gg(-1) for both hydrolysates. Similar results were obtained using food waste powder hydrolysate, in which 90.1gL(-1) of LA was produced with a yield and productivity of 0.92gg(-1) and 2.50gL(-1)h(-1). The results demonstrate the feasibility of an efficient bioconversion of food waste to LA and a decentralized approach of food waste recycling in urban area.

  9. Lactic acid production from submerged fermentation of broken rice using undefined mixed culture.

    PubMed

    Nunes, Luiza Varela; de Barros Correa, Fabiane Fernanda; de Oliva Neto, Pedro; Mayer, Cassia Roberta Malacrida; Escaramboni, Bruna; Campioni, Tania Sila; de Barros, Natan Roberto; Herculano, Rondinelli Donizetti; Fernández Núñez, Eutimio Gustavo

    2017-04-01

    The present work aimed to characterize and optimize the submerged fermentation of broken rice for lactic acid (LA) production using undefined mixed culture from dewatered activated sludge. A microorganism with amylolytic activity, which also produces LA, Lactobacillus amylovorus, was used as a control to assess the extent of mixed culture on LA yield. Three level full factorial designs were performed to optimize and define the influence of fermentation temperature (20-50 °C), gelatinization time (30-60 min) and broken rice concentration in culture medium (40-80 g L(-1)) on LA production in pure and undefined mixed culture. LA production in mixed culture (9.76 g L(-1)) increased in sixfold respect to pure culture in optimal assessed experimental conditions. The optimal conditions for maximizing LA yield in mixed culture bioprocess were 31 °C temperature, 45 min gelatinization time and 79 g L(-1) broken rice concentration in culture medium. This study demonstrated the positive effect of undefined mixed culture from dewatered activated sludge to produce LA from culture medium formulated with broken rice. In addition, this work establishes the basis for an efficient and low-cost bioprocess to manufacture LA from this booming agro-industrial by-product.

  10. The formate channel FocA exports the products of mixed-acid fermentation.

    PubMed

    Lü, Wei; Du, Juan; Schwarzer, Nikola J; Gerbig-Smentek, Elke; Einsle, Oliver; Andrade, Susana L A

    2012-08-14

    Formate is a major metabolite in the anaerobic fermentation of glucose by many enterobacteria. It is translocated across cellular membranes by the pentameric ion channel/transporter FocA that, together with the nitrite channel NirC, forms the formate/nitrite transporter (FNT) family of membrane transport proteins. Here we have carried out an electrophysiological analysis of FocA from Salmonella typhimurium to characterize the channel properties and assess its specificity toward formate and other possible permeating ions. Single-channel currents for formate, hypophosphite and nitrite revealed two mechanistically distinct modes of gating that reflect different types of structural rearrangements in the transport channel of each FocA protomer. Moreover, FocA did not conduct cations or divalent anions, but the chloride anion was identified as further transported species, along with acetate, lactate and pyruvate. Formate, acetate and lactate are major end products of anaerobic mixed-acid fermentation, the pathway where FocA is predominantly required, so that this channel is ideally adapted to act as a multifunctional export protein to prevent their intracellular accumulation. Because of the high degree of conservation in the residues forming the transport channel among FNT family members, the flexibility in conducting multiple molecules is most likely a general feature of these proteins.

  11. Volatile fatty acids production from sewage organic matter by combined bioflocculation and anaerobic fermentation.

    PubMed

    Khiewwijit, Rungnapha; Keesman, Karel J; Rijnaarts, Huub; Temmink, Hardy

    2015-10-01

    This work aims at exploring the feasibility of a combined process bioflocculation to concentrate sewage organic matter and anaerobic fermentation to produce volatile fatty acids (VFA). Bioflocculation, using a high-loaded aerobic membrane bioreactor (HL-MBR), was operated at an HRT of 1h and an SRT of 1 day. The HL-MBR process removed on average 83% of sewage COD, while only 10% of nitrogen and phosphorus was removed. During anaerobic fermentation of HL-MBR concentrate at an SRT of 5 days and 35 °C, specific VFA production rate of 282 mg VFA-COD/g VSS could be reached and consisted of 50% acetate, 40% propionate and 10% butyrate. More than 75% of sewage COD was diverted to the concentrate, but only 15% sewage COD was recovered as VFA, due to incomplete VSS degradation at the short treatment time applied. This shows that combined process for the VFA production is technologically feasible and needs further optimization.

  12. Alcohol fermentation of sweet potato - 1. Acid hydrolysis and factors involved

    SciTech Connect

    Azhar, A.; Hamdy, M.K.

    1981-04-01

    Factors affecting acid hydrolysis of sweet potato powder (SPP) to fermentable sugars were examined. These include HCl concentration, temperature, time, and levels of SPP. Maximum reducing sugar, reported as dextrose equivalent (DE), was detected after 24 min hydrolysis (1% SPP) in 0.034N HCl heated at 154/degree/C. These samples also had 3.43% hydroxymethylfurfural (HMF) based on dry weight. A high level of HMF (9.2%) was detected in 1% SPP heated at 154/degree/C in 0.10N HCl for 18 min. The lowest concentration of HMF formed (1.8%), at maximal DE of 61%, was established in samples containing 5% SPP and heated at 154/degree/C in 0.034N HCl for 48 min. Aqueous extracts of uncured SPP, examined by High Performance Liquid Chromatography, contained glucose, fructose and sucrose, but degraded SPP had only glucose and fructose. Products of degraded SPP, Under appropriate conditions, could be used for alcohol fermentation. 18 refs.

  13. Atherosclerosis-preventing activity of lactic acid bacteria-fermented milk-soymilk supplemented with Momordica charantia.

    PubMed

    Tsai, Tsung-Yu; Chu, Li-Han; Lee, Chun-Lin; Pan, Tzu-Ming

    2009-03-11

    In this study, the milk-soymilk and milk-soymilk supplemented with Momordica charantia , a common oriental vegetable possessing medicinal activities, were fermented by lactic bacteria. The objective of this study was to investigate the effects of milk-soymilk and fermented milk-soymilk with or without M. charantia on atherosclerosis in hyperlipidemic hamsters. Fermented 25% milk and 75% soymilk combinations, supplemented with 1% M. charantia solution, can improve the acceptability of the fermented beverage. A total of 72 male Golden Syrian hamsters were divided into 9 groups (n = 8/group), and experimental diets were provided with a normal diet for the normal group and a high-cholesterol diet for others. The milk-soymilk and fermented milk-soymilk with or without M. charantia were administrated for 8 weeks. The milk-soymilk and fermented milk-soymilk with and without M. charantia were able to significantly decrease (p < 0.05) the serum cholesterol and the atherosclerotic plaque in aorta based on the comparison to the high-cholesterol diet (H) group. The groups on fermented milk-soymilk by Lactobacillus plantarum NTU 102 with or without M. charantia could significantly decrease (p < 0.05) the ratio of low-density lipoprotein cholesterol (LDL-C) to high-density lipoprotein cholesterol (HDL-C). The femented milk-soymilk by Lactobacillus paracasei subsp. paracasei NTU 101 supplemented with M. charantia had an anti-atherosclerotic activity by increasing superoxide dismutase (SOD) and total antioxidant status (TAS) activity of the blood and relieving the degree of thiobarbituric acid reactive substances (TBARS) compared to the other treatments. It is concluded that the milk-soymilk and the fermented milk-soymilk supplemented with or without M. charantia by L. paracasei subsp. paracasei NTU 101 are effective in preventing and retarding the hyperlipidemia-induced oxidative stress and atherosclerosis.

  14. Isolating and evaluating lactic acid bacteria strains for effectiveness of Leymus chinensis silage fermentation.

    PubMed

    Zhang, Q; Li, X J; Zhao, M M; Yu, Z

    2014-10-01

    Five LAB strains were evaluated using the acid production ability test, morphological observation, Gram staining, physiological, biochemical and acid tolerance tests. All five strains (LP1, LP2, LP3, LC1 and LC2) grew at pH 4·0, and LP1 grew at 15°C. Strains LP1, LP2 and LP3 were identified as Lactobacillus plantarum, whereas LC1 and LC2 were classified as Lactobacillus casei by sequencing 16S rDNA. The five isolated strains and two commercial inoculants (PS and CL) were added to native grass and Leymus chinensis (Trin.) Tzvel. for ensiling. All five isolated strains decreased the pH and ammonia nitrogen content, increased the lactic acid content and LP1, LP2 and LP3 increased the acetic content and lactic/acetic acid ratio of L. chinensis silage significantly. The five isolated strains and two commercial inoculants decreased the butyric acid content of the native grass silage. LP2 treatment had lower butyric acid content and ammonia nitrogen content than the other treatments. The five isolated strains improved the quality of L. chinensis silage. The five isolated strains and the two commercial inoculants were not effective in improving the fermentation quality of the native grass silage, but LP2 performed better comparatively. Significance and impact of the study: Leymus chinensis is an important grass in China and Russia, being the primary grass of the short grassland 'steppe' regions of central Asia. However, it has been difficult to make high-quality silage of this species because of low concentration of water-soluble carbohydrates (WSC). Isolating and evaluating lactic acid bacteria strains will be helpful for improving the silage quality of this extensively grown species.

  15. Selected Lactic Acid Bacteria Synthesize Antioxidant Peptides during Sourdough Fermentation of Cereal Flours

    PubMed Central

    Coda, Rossana; Pinto, Daniela; Gobbetti, Marco

    2012-01-01

    A pool of selected lactic acid bacteria was used for the sourdough fermentation of various cereal flours with the aim of synthesizing antioxidant peptides. The radical-scavenging activity of water/salt-soluble extracts (WSE) from sourdoughs was significantly (P < 0.05) higher than that of chemically acidified doughs. The highest activity was found for whole wheat, spelt, rye, and kamut sourdoughs. Almost the same results were found for the inhibition of linoleic acid autoxidation. WSE were subjected to reverse-phase fast protein liquid chromatography. Thirty-seven fractions were collected and assayed in vitro. The most active fractions were resistant to further hydrolysis by digestive enzymes. Twenty-five peptides of 8 to 57 amino acid residues were identified by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry. Almost all of the sequences shared compositional features which are typical of antioxidant peptides. All of the purified fractions showed ex vivo antioxidant activity on mouse fibroblasts artificially subjected to oxidative stress. This study demonstrates the capacity of sourdough lactic acid bacteria to release peptides with antioxidant activity through the proteolysis of native cereal proteins. PMID:22156436

  16. Influence of Turning and Environmental Contamination on the Dynamics of Populations of Lactic Acid and Acetic Acid Bacteria Involved in Spontaneous Cocoa Bean Heap Fermentation in Ghana▿

    PubMed Central

    Camu, Nicholas; González, Ángel; De Winter, Tom; Van Schoor, Ann; De Bruyne, Katrien; Vandamme, Peter; Takrama, Jemmy S.; Addo, Solomon K.; De Vuyst, Luc

    2008-01-01

    The influence of turning and environmental contamination on six spontaneous cocoa bean heap fermentations performed in Ghana was studied through a multiphasic approach, encompassing both microbiological (culture-dependent and culture-independent techniques) and metabolite target analyses. A sensory analysis of chocolate made from the fermented, dried beans was performed as well. Only four clusters were found among the isolates of acetic acid bacteria (AAB) identified: Acetobacter pasteurianus, Acetobacter ghanensis, Acetobacter senegalensis, and a potential new Acetobacter lovaniensis-like species. Two main clusters were identified among the lactic acid bacteria (LAB) isolated, namely, Lactobacillus plantarum and Lactobacillus fermentum. No differences in biodiversity of LAB and AAB were seen for fermentations carried out at the farm and factory sites, indicating the cocoa pod surfaces and not the general environment as the main inoculum for spontaneous cocoa bean heap fermentation. Turning of the heaps enhanced aeration and increased the relative population size of AAB and the production of acetic acid. This in turn gave a more sour taste to chocolate made from these beans. Bitterness was reduced through losses of polyphenols and alkaloids upon fermentation and cocoa bean processing. PMID:17993565

  17. Techno-economics of carbon preserving butanol production using a combined fermentative and catalytic approach.

    PubMed

    Nilsson, Robert; Bauer, Fredric; Mesfun, Sennai; Hulteberg, Christian; Lundgren, Joakim; Wännström, Sune; Rova, Ulrika; Berglund, Kris Arvid

    2014-06-01

    This paper presents a novel process for n-butanol production which combines a fermentation consuming carbon dioxide (succinic acid fermentation) with subsequent catalytic reduction steps to add hydrogen to form butanol. Process simulations in Aspen Plus have been the basis for the techno-economic analyses performed. The overall economy for the novel process cannot be justified, as production of succinic acid by fermentation is too costly. Though, succinic acid price is expected to drop drastically in a near future. By fully integrating the succinic acid fermentation with the catalytic conversion the need for costly recovery operations could be reduced. The hybrid process would need 22% less raw material than the butanol fermentation at a succinic acid fermentation yield of 0.7g/g substrate. Additionally, a carbon dioxide fixation of up to 13ktonnes could be achieved at a plant with an annual butanol production of 10ktonnes.

  18. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production.

    PubMed

    Zheng, Xiong; Su, Yinglong; Li, Xiang; Xiao, Naidong; Wang, Dongbo; Chen, Yinguang

    2013-05-07

    Short-chain fatty acids (SCFAs) have been regarded as the excellent carbon source of wastewater biological nutrient removal, and sludge alkaline (pH 10) fermentation has been reported to achieve highly efficient SCFAs production. In this study, the underlying mechanisms for the improved SCFAs production at pH 10 were investigated by using 454 pyrosequencing and fluorescent in situ hybridization (FISH) to analyze the microbial community structures in sludge fermentation reactors. It was found that sludge fermentation at pH 10 increased the abundances of Pseudomonas sp. and Alcaligenes sp., which were able to excrete extracellular proteases and depolymerases, and thus enhanced the hydrolysis of insoluble sludge protein and polyhydroxyalkanoates (PHA). Meanwhile, the abundance of acid-producing bacteria (such as Clostridium sp.) in the reactor of pH 10 was also higher than that of uncontrolled pH, which benefited the acidification of soluble organic substrates. Further study indicated that sludge fermentation at pH 10 significantly decreased the number of methanogenic archaea, resulting in lower SCFAs consumption and lower methane production. Therefore, anaerobic sludge fermentation under alkaline conditions increased the abundances of bacteria involved in sludge hydrolysis and acidification, and decreased the abundance of methanogenic archaea, which favored the competition of bacteria over methanogens and resulted in the efficient production of SCFAs.

  19. Effects of lauric acid on ruminal protozoal numbers and fermentation pattern and milk production in lactating dairy cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to evaluate lauric acid (LA) as a practical agent to suppress ruminal protozoa (RP), and to assess the effects of RP suppression on fermentation patterns and milk production in dairy cows. In experiment 1, six Holstein cows fitted with ruminal cannulae were used in ...

  20. Escherichia coli O157:H7 bacteriophage (phi)241 isolated from an industrial cucumber fermentation at high acidity and salinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel phage, (phi)241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH less than or equal to 3.7) and salinity (greater than or equal to 5% NaCl) were high. The phage belongs to the Myoviridae family. Its latent period was 15 min a...

  1. Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler.

    PubMed

    Shi, Xinchi; Chen, Yong; Ren, Hengfei; Liu, Dong; Zhao, Ting; Zhao, Nan; Ying, Hanjie

    2014-12-01

    An immobilized fermentation system, using cassava bagasse hydrolysate (CBH) and mixed alkalis, was developed to achieve economical succinic acid production by Corynebacterium glutamicum. The C. glutamicum strains were immobilized in porous polyurethane filler (PPF). CBH was used efficiently as a carbon source instead of more expensive glucose. Moreover, as a novel method for regulating pH, the easily decomposing NaHCO3 was replaced by mixed alkalis (NaOH and Mg(OH)2) for succinic acid production by C. glutamicum. Using CBH and mixed alkalis in the immobilized batch fermentation system, succinic acid productivity of 0.42gL(-1)h(-1) was obtained from 35gL(-1) glucose of CBH, which is similar to that obtained with conventional free-cell fermentation with glucose and NaHCO3. In repeated batch fermentation, an average of 22.5gL(-1) succinic acid could be obtained from each batch, which demonstrated the enhanced stability of the immobilized C. glutamicum cells.

  2. Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression.

    PubMed

    Abdel-Rahman, Mohamed Ali; Xiao, Yaotian; Tashiro, Yukihiro; Wang, Ying; Zendo, Takeshi; Sakai, Kenji; Sonomoto, Kenji

    2015-02-01

    There has been tremendous growth in the production of optically pure l-lactic acid from lignocellulose-derived sugars. In this study, Enterococcus mundtii QU 25 was used to ferment a glucose/xylose mixture to l-lactic acid. Maintenance of the xylose concentration at greater than 10 g/L achieved homo-lactic acid fermentation and reduced the formation of byproducts. Furthermore, carbon catabolite repression (CCR) was avoided by maintaining the glucose concentration below 25 g/L; therefore, initial concentrations of 25 g/L glucose and 50 g/L xylose were selected. Supplementation with 5 g/L yeast extract enhanced the maximum xylose consumption rate and consequently increased lactic acid production and productivity. Finally, a 129 g/L lactic acid without byproducts was obtained with a maximum lactic acid productivity of 5.60 g/(L·h) in fed-batch fermentation with feeding a glucose/xylose mixture using ammonium hydroxide as the neutralizing agent. These results indicate a potential for lactic acid production from glucose and xylose as the main components of lignocellulosic biomasses.

  3. Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro- and micro-algae.

    PubMed

    Xia, Ao; Jacob, Amita; Tabassum, Muhammad Rizwan; Herrmann, Christiane; Murphy, Jerry D

    2016-04-01

    Algae may be fermented to produce hydrogen. However micro-algae (such as Arthrospira platensis) are rich in proteins and have a low carbon/nitrogen (C/N) ratio, which is not ideal for hydrogen fermentation. Co-fermentation with macro-algae (such as Laminaria digitata), which are rich in carbohydrates with a high (C/N) ratio, improves the performance of hydrogen production. Algal biomass, pre-treated with 2.5% dilute H2SO4 at 135°C for 15min, effected a total yield of carbohydrate monomers (CMs) of 0.268g/g volatile solids (VS). The CMs were dominating by glucose and mannitol and most (ca. 95%) were consumed by anaerobic fermentative micro-organisms during subsequent fermentation. An optimal specific hydrogen yield (SHY) of 85.0mL/g VS was obtained at an algal C/N ratio of 26.2 and an algal concentration of 20g VS/L. The overall energy conversion efficiency increased from 31.3% to 54.5% with decreasing algal concentration from 40 to 5 VS g/L.

  4. Controlled fed-batch fermentations of dilute-acid hydrolysate in pilot development unit scale.

    PubMed

    Rudolf, Andreas; Galbe, Mats; Lidén, Gunnar

    2004-01-01

    Inhibitors formed during wood hydrolysis constitute a major problem in fermenting dilute-acid hydrolysates. By applying a fed-batch technique, the levels of inhibitory compounds may be held low, enabling high ethanol productivity. In this study, a previously developed fed-batch strategy was modified and implemented for use in pilot development unit (PDU) scale. The rate of total gas formation, measured with a mass flow meter, was used as input variable in the control algorithm. The feed rate in the PDU-scale experiments could be properly controlled based on the gas evolution from the reactor. In fed-batch experiments utilizing TMB 3000, an inhibitor-tolerant strain of Saccharomyces cerevisiae, close to 100% of the hexoses in the hydrolysate was converted.

  5. Effect of trace elements on citric acid fermentation by Aspergillus niger.

    PubMed

    Sánchez-Marroquín, A; Carreño, R; Ledezma, M

    1970-12-01

    Citric acid yields of 98.7% (sugar consumption basis) were reached in shaker flasks with mutant UV-ET-71-15 of Aspergillus niger in a resin-treated sucrose medium of the following composition (g/100 ml): sucrose, 14.0; NH(4)NO(3), 0.20; KH(2)PO(4), 0.10; MgSO(4).7H(2)O, 0.025; and (mg/liter): FeSO(4), 0.15 to 0.75; ZnSO(4), 0.10; and CuSO(4), 0.01. Yields of 75% were obtained in medium with resin-treated clarified syrup and 68% with ferrocyanide-treated blackstrap molasses. Optimal conditions included selection of appropriate pellets as inoculum at 3%, pH of 4.5, temperature at 30 C, agitation at 250 rev/min, and fermentation time of 8 days. The mutant tolerated high concentrations of trace elements.

  6. Metabolic Engineering of Escherichia coli for Production of Mixed-Acid Fermentation End Products

    PubMed Central

    Förster, Andreas H.; Gescher, Johannes

    2014-01-01

    Mixed-acid fermentation end products have numerous applications in biotechnology. This is probably the main driving force for the development of multiple strains that are supposed to produce individual end products with high yields. The process of engineering Escherichia coli strains for applied production of ethanol, lactate, succinate, or acetate was initiated several decades ago and is still ongoing. This review follows the path of strain development from the general characteristics of aerobic versus anaerobic metabolism over the regulatory machinery that enables the different metabolic routes. Thereafter, major improvements for broadening the substrate spectrum of E. coli toward cheap carbon sources like molasses or lignocellulose are highlighted before major routes of strain development for the production of ethanol, acetate, lactate, and succinate are presented. PMID:25152889

  7. Fermentation of lactose in direct-acid-set cottage cheese whey

    SciTech Connect

    Demott, B.J.; Draughon, F.A.; Herald, P.J.

    1981-01-01

    Kluyveromyces fragilis was more suitable than Candida pseudotropicalis or K. lactis for production of EtOH from whey. Direct-acid-set cottage cheese whey and the supernatant fluid resulting from heat treatment of the whey at 95 degrees for 20 min showed similar rates of fermentation when inoculated with K. fragilis. Inoculation rates of 10, 12 and 14 mL of active K. fragilis culture/100 mL of media were not different in rate of EtOH production. Samples incubated with K. fragilis at 35, 37, 40 and 42 degrees showed more rapid reduction in specific gravity than samples incubated at room temperature or 30 degrees. Lactose conversion in whey was 83% complete and in whey supernatant fluid, 77%.

  8. L-lactic acid production from apple pomace by sequential hydrolysis and fermentation.

    PubMed

    Gullón, Beatriz; Yáñez, Remedios; Alonso, José Luis; Parajó, J C

    2008-01-01

    The potential of apple pomace (a solid waste from cider and apple juice making factories) as a source of sugars and other compounds for fermentation was evaluated. The effect of the cellulase-to-solid ratio (CSR) and the liquor-to-solid ratio (LSR) on the kinetics of glucose and total monosaccharide generation was studied. Mathematical models suitable for reproducing and predicting the hydrolyzate composition were developed. When samples of apple pomace were subjected to enzymatic hydrolysis, the glucose and fructose present in the raw material as free monosaccharides were extracted at the beginning of the process. Using low cellulase and cellobiase charges (8.5 FPU/g-solid and 8.5 IU/g-solid, respectively), 79% of total glucan was saccharified after 12 h, leading to solutions containing up to 43.8 g monosaccharides/L (glucose, 22.8 g/L; fructose, 14.8 g/L; xylose+mannose+galactose, 2.5 g/L; arabinose+rhamnose, 2.8g/L). These results correspond to a monosaccharide/cellulase ratio of 0.06 g/FPU and to a volumetric productivity of 3.65 g of monosaccharides/L h. Liquors obtained under these conditions were used for fermentative lactic acid production with Lactobacillus rhamnosus CECT-288, leading to media containing up to 32.5 g/L of L-lactic acid after 6 h (volumetric productivity=5.41 g/L h, product yield=0.88 g/g).

  9. Population dynamics and metabolite target analysis of lactic acid bacteria during laboratory fermentations of wheat and spelt sourdoughs.

    PubMed

    Van der Meulen, Roel; Scheirlinck, Ilse; Van Schoor, Ann; Huys, Geert; Vancanneyt, Marc; Vandamme, Peter; De Vuyst, Luc

    2007-08-01

    Four laboratory sourdough fermentations, initiated with wheat or spelt flour and without the addition of a starter culture, were prepared over a period of 10 days with daily back-slopping. Samples taken at all refreshment steps were used for determination of the present microbiota. Furthermore, an extensive metabolite target analysis of more than 100 different compounds was performed through a combination of various chromatographic methods including liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. The establishment of a stable microbial ecosystem occurred through a three-phase evolution within a week, as revealed by both microbiological and metabolite analyses. Strains of Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus rossiae, Lactobacillus brevis, and Lactobacillus paraplantarum were dominating some of the sourdough ecosystems. Although the heterofermentative L. fermentum was dominating one of the wheat sourdoughs, all other sourdoughs were dominated by a combination of obligate and facultative heterofermentative taxa. Strains of homofermentative species were not retrieved in the stable sourdough ecosystems. Concentrations of sugar and amino acid metabolites hardly changed during the last days of fermentation. Besides lactic acid, ethanol, and mannitol, the production of succinic acid, erythritol, and various amino acid metabolites, such as phenyllactic acid, hydroxyphenyllactic acid, and indolelactic acid, was shown during fermentation. Physiologically, they contributed to the equilibration of the redox balance. The biphasic approach of the present study allowed us to map some of the interactions taking place during sourdough fermentation and helped us to understand the fine-tuned metabolism of lactic acid bacteria, which allows them to dominate a food ecosystem.

  10. In situ extractive fermentation for the production of hexanoic acid from galactitol by Clostridium sp. BS-1.

    PubMed

    Jeon, Byoung Seung; Moon, Chuloo; Kim, Byung-Chun; Kim, Hyunook; Um, Youngsoon; Sang, Byoung-In

    2013-08-15

    Clostridium sp. BS-1 produces hexanoic acid as a metabolite using galactitol and enhanced hexanoic acid production was obtained by in situ extractive fermentation with Clostridium sp. BS-1 under an optimized medium composition. For medium optimization, five ingredients were selected as variables, and among them yeast extract, tryptone, and sodium butyrate were selected as significant variables according to a fractional factorial experimental design, a steepest ascent experimental design, and a Box-Behnken experimental design. The optimized medium had the following compositions in modified Clostridium acetobutyricum (mCAB) medium: 15.5gL(-1) of yeast extract, 10.13gL(-1) of tryptone, 0.04gL(-1) of FeSO4·7H2O, 0.85gL(-1) of sodium acetate, and 6.47gL(-1) of sodium butyrate. The predicted concentration of hexanoic acid with the optimized medium was 6.98gL(-1), and this was validated experimentally by producing 6.96gL(-1) of hexanoic acid with Clostridium sp. BS-1 under the optimized conditions. In situ extractive fermentation for hexanoic acid removal was then applied in a batch culture system with the optimized medium and 10% (v/v) alamine 336 in oleyl alcohol as an extractive solvent. The pH of the culture in the extractive fermentation was maintained at 5.4-5.6 by an acid balance between production and retrieval by extraction. During a 16 day culture, the hexanoic acid concentration in the solvent increased to 32gL(-1) while it was maintained in a range of 1-2gL(-1) in the medium. The maximum rate of hexanoic acid production was 0.34gL(-1)h(-1) in in situ extractive fermentation.

  11. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016.

  12. Vegetable fiber fermentation by human fecal bacteria: cell wall polysaccharide disappearance and short-chain fatty acid production during in vitro fermentation and water-holding capacity of unfermented residues.

    PubMed

    Bourquin, L D; Titgemeyer, E C; Fahey, G C

    1993-05-01

    Dietary fiber from eight vegetables (broccoli, carrot, cauliflower, celery, cucumber, lettuce, onion and radish) was analyzed for chemical composition and potential in vitro fermentation by human fecal bacteria. Total dietary fiber concentration of substrates ranged from 34.9 (broccoli) to 5.8 (cucumber) g/kg edible matter. Substrate fiber fractions were composed primarily of pectic substances and cellulose with smaller concentrations of hemicelluloses and lignin. Total dietary fiber residues isolated from substrates were fermented in vitro for 24 h with fecal bacteria obtained from each of three human volunteers. Substrate dry matter disappearance during fermentation was highest for carrot (63.7%) and lowest for cucumber (49.4%). Averaged across all substrates, disappearances of arabinose, galactose, glucose, mannose, xylose and uronic acids during fermentation were 96, 90, 54, 68, 51 and 97%, respectively. Short-chain fatty acid (SCFA) production during substrate fermentation averaged 10.5 mmol SCFA/g dry matter fermented. Averaged across all substrates, production of the major SCFA, acetate, propionate and butyrate, occurred in the molar ratio 76:14:10. Potential water-holding capacity of substrates was not influenced by fiber source and averaged 2.04 g H2O/g original substrate dry matter. Extent of substrate fermentation, SCFA production and substrate potential water-holding capacity were significantly different among inoculum donors, indicating that considerable inter-individual variation exists in the potential in vivo fermentation of vegetable fiber.

  13. Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids.

    PubMed

    Lai, YenJung Sean; Parameswaran, Prathap; Li, Ang; Aguinaga, Alyssa; Rittmann, Bruce E

    2016-02-01

    Biofuels derived from microalgae have promise as carbon-neutral replacements for petroleum. However, difficulty extracting microalgae-derived lipids and the co-extraction of non-lipid components add major costs that detract from the benefits of microalgae-based biofuel. Selective fermentation could alleviate these problems by managing microbial degradation so that carbohydrates and proteins are hydrolyzed and fermented, but lipids remain intact. We evaluated selective fermentation of Scenedesmus biomass in batch experiments buffered at pH 5.5, 7, or 9. Carbohydrates were fermented up to 45% within the first 6 days, protein fermentation followed after about 20 days, and lipids (measured as fatty acid methyl esters, FAME) were conserved. Fermentation of the non-lipid components generated volatile fatty acids, with acetate, butyrate, and propionate being the dominant products. Selective fermentation of Scenedesmus biomass increased the amount of extractable FAME and the ratio of FAME to crude lipids. It also led to biohydrogenation of unsaturated FAME to more desirable saturated FAME (especially to C16:0 and C18:0), and the degree of saturation was inversely related to the accumulation of hydrogen gas after fermentation. Moreover, the microbial communities after selective fermentation were enriched in bacteria from families known to perform biohydrogenation, i.e., Porphyromonadaceae and Ruminococcaceae. Thus, this study provides proof-of-concept that selective fermentation can improve the quantity and quality of lipids that can be extracted from Scenedesmus.

  14. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology.

    PubMed

    Yu, Hyung-Seok; Lee, Na-Kyoung; Jeon, Hye-Lin; Eom, Su Jin; Yoo, Mi-Young; Lim, Sang-Dong; Paik, Hyun-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

  15. Nitrate reduction pathway in an anaerobic acidification reactor and its effect on acid fermentation.

    PubMed

    Xie, Li; Ji, Chi; Wang, Rui; Zhou, Qi

    2015-01-01

    This study investigated the performance of a reactor in which denitrification was integrated into the anaerobic acidogenic process. Industrial wastewater cassava stillage was used as the carbon source, and the nitrate reduction pathway and its effects on acid fermentation were examined. Results from batch and semi-continuous tests showed that the presence of nitrate did not inhibit anaerobic acidification but altered the distribution of volatile fatty acid (VFA) species. Nitrate reduction was attributable to denitrification and to dissimilatory nitrate reduction to ammonia (DNRA). The ratio of DNRA to denitrification was proportional to the ratio of [Formula: see text] . After 130 days of semi-continuous operation, denitrification removal efficiency accounted for about 60% at a [Formula: see text] of 50. The proportional distribution of VFAs was acetate, followed by propionate and then butyrate. The polymerase chain reaction-denaturing gradient gel electrophoresis results confirmed the contributions of denitrification and DNRA in the nitrate-amended reactor and showed that the addition of nitrate enriched the structure of the bacterial community, but did not suppress the activity of acid-producing bacteria.

  16. Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products.

    PubMed

    Vinderola, C G; Mocchiutti, P; Reinheimer, J A

    2002-04-01

    Interactions among lactic acid starter and probiotic bacteria were investigated to establish adequate combinations of strains to manufacture probiotic dairy products. For this aim, a total of 48 strains of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis, Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium spp. (eight of each) were used. The detection of bacterial interactions was carried out using the well-diffusion agar assay, and the interactions found were further characterized by growth kinetics. A variety of interactions was demonstrated. Lb. delbrueckii subsp. bulgaricus was found to be able to inhibit S. thermophilus strains. Among probiotic cultures, Lb. acidophilus was the sole species that was inhibited by the others (Lb. casei and Bifidobacterium). In general, probiotic bacteria proved to be more inhibitory towards lactic acid bacteria than vice versa since the latter did not exert any effect on the growth of the former, with some exceptions. The study of interactions by growth kinetics allowed the setting of four different kinds of behaviors between species of lactic acid starter and probiotic bacteria (stimulation, delay, complete inhibition of growth, and no effects among them). The possible interactions among the strains selected to manufacture a probiotic fermented dairy product should be taken into account when choosing the best combination/s to optimize their performance in the process and their survival in the products during cold storage.

  17. Evaluation of γ- aminobutyric acid, phytate and antioxidant activity of tempeh-like fermented oats (Avena sativa L.) prepared with different filamentous fungi.

    PubMed

    Cai, Shengbao; Gao, Fengyi; Zhang, Xudong; Wang, Ou; Wu, Wei; Zhu, Songjie; Zhang, Di; Zhou, Feng; Ji, Baoping

    2014-10-01

    Tempeh is a popular traditional fermented food in Asia. Many tempeh-like foods are made from cereal grains. However, the information of γ-aminobutyric acid (GABA) accumulation in those tempeh-like cereal grains during fermentation is lacking. Meanwhile, little information is available on the anti-nutrient contents and antioxidant activity of tempeh-like fermented oats. The aim of the present work was to study the changes of GABA, phytate, natural antioxidants and antioxidant activity of tempeh-like fermented oats. As fermentation time progressed, the GABA, total phenolics content (TPC) and flavonoids increased rapidly. The Aspergillus oryzae-fermented oats had the highest GABA, whereas Rhizopus oryzae-fermented oats had the highest TPC. Phytate, an anti-nutrient component, was dramatically reduced in the fermented oats, especially those by A. oryzae (reduced by about 63 %). The antioxidant activities of fermented oats were also significantly enhanced after 72 h fermentation (p < 0.05). This study demonstrated that oats fermented by generally recognized as safe (GRAS) fungi can be recommended as tempeh-like functional foods with higher GABA, more natural antioxidants and lower phytate compared with native oats.

  18. Molecular characterization of lactic acid bacteria and in situ amylase expression during traditional fermentation of cereal foods.

    PubMed

    Oguntoyinbo, Folarin Anthony; Narbad, Arjan

    2012-09-01

    Lactic acid bacteria play an important role in traditional fermented foods consumed in different countries. Study of their taxonomic structure and diversity is necessary for starter culture selection, improved safety and nutritional enhancement. To achieve these objectives, microbial genomic typing methods were used to study genetic differences of autochthonous bacteria and their distribution in two traditional African fermented cereal foods. A total of 85 predominant bacterial species were isolated from ogi and kunu-zaki obtained from Northern and Southern geographical region of Nigeria. They were identified using combination of 16S rRNA gene sequencing, multilocus sequence analysis (MLSA) based on rpoA, pheS and atpA genes as well as M13-PCR gel fingerprints. The results showed that Lactobacillus fermentum was the most frequently isolated species in ogi (71.4%) and kunu-zaki (84.5%). Other species of lactic acid bacteria (LAB) identified were Lactobacillus plantarum, Streptococcus gallolyticus subsp. macedonicus and Pediococcus pentosaceus. Non lactic acid bacteria isolated from these foods were species belonging to the Bacillus and Staphylococcus. Non-metric multidimensional scaling (nMDS) analysis of the M13-PCR fingerprints for LAB strains showed clonal diversity among strains of the same species. In vitro and in situ expression of amylase gene during fermentation by amylolytic L. plantarum ULAG11 was detected, indicating the potential usefulness of such species for development of starter cultures and for controlled fermentation processes.

  19. In Situ Production of Exopolysaccharides during Sourdough Fermentation by Cereal and Intestinal Isolates of Lactic Acid Bacteria

    PubMed Central

    Tieking, Markus; Korakli, Maher; Ehrmann, Matthias A.; Gänzle, Michael G.; Vogel, Rudi F.

    2003-01-01

    EPS formed by lactobacilli in situ during sourdough fermentation may replace hydrocolloids currently used as texturizing, antistaling, or prebiotic additives in bread production. In this study, a screening of >100 strains of cereal-associated and intestinal lactic acid bacteria was performed for the production of exopolysaccharides (EPS) from sucrose. Fifteen strains produced fructan, and four strains produced glucan. It was remarkable that formation of glucan and fructan was most frequently found in intestinal isolates and strains of the species Lactobacillus reuteri, Lactobacillus pontis, and Lactobacillus frumenti from type II sourdoughs. By the use of PCR primers derived from conserved amino acid sequences of bacterial levansucrase genes, it was shown that 6 of the 15 fructan-producing lactobacilli and none of 20 glucan producers or EPS-negative strains carried a levansucrase gene. In sourdough fermentations, it was determined whether those strains producing EPS in MRS medium modified as described by Stolz et al. (37) and containing 100 g of sucrose liter−1 as the sole source of carbon also produce the same EPS from sucrose during sourdough fermentation in the presence of 12% sucrose. For all six EPS-producing strains evaluated in sourdough fermentations, in situ production of EPS at levels ranging from 0.5 to 2 g/kg of flour was demonstrated. Production of EPS from sucrose is a metabolic activity that is widespread among sourdough lactic acid bacteria. Thus, the use of these organisms in bread production may allow the replacement of additives. PMID:12571016

  20. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat.

    PubMed

    Kang, Guozhang; Li, Gezi; Xu, Wei; Peng, Xiaoqi; Han, Qiaoxia; Zhu, Yunji; Guo, Tiancai

    2012-12-07

    Pretreatment with 0.5 mM salicylic acid (SA) for 3 days significantly enhanced the growth and tolerance to subsequent drought stress (PEG-6000, 15%) in wheat seedlings, manifesting as increased shoot and root dry weights, and decreased lipid peroxidation. Total proteins from wheat leaves exposed to (i) 0.5 mM SA pretreatment, (ii) drought stress, and (iii) 0.5 mM SA treatment plus drought-stress treatments were analyzed using a proteomics method. Eighty-two stress-responsive protein spots showed significant changes, of which 76 were successfully identified by MALDI-TOF-TOF. Analysis of protein expression patterns revealed that proteins associated with signal transduction, stress defense, photosynthesis, carbohydrate metabolism, protein metabolism, and energy production could by involved in SA-induced growth and drought tolerance in wheat seedlings. Furthermore, the SA-responsive protein interaction network revealed 35 key proteins, suggesting that these proteins are critical for SA-induced tolerance.

  1. Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release.

    PubMed

    Dang, Tan; Mosley, Luke M; Fitzpatrick, Rob; Marschner, Petra

    2016-12-01

    When previously oxidised acid sulphate soils are leached, they can release large amounts of protons and metals, which threaten the surrounding environment. To minimise the impact of the acidic leachate, protons and metals have to be retained before the drainage water reaches surrounding waterways. One possible amelioration strategy is to pass drainage water through permeable reactive barriers. The suitability of organic materials for such barriers was tested. Eight organic materials including two plant residues, compost and five biochars differing in feedstock and production temperature were finely ground and filled into PVC cores at 3.5 g dry wt/core. Field-collected acidic drainage water (pH 3, Al 22 mg L(-1) and Fe 48 mg L(-1)) was applied in six leaching events followed by six leaching events with reverse osmosis (RO) water (45 mL/event). Compost and biochars increased the leachate pH by up to 4.5 units and had a high retention capacity for metals. The metal and proton release during subsequent leaching with RO water was very small, cumulatively only 0.05-0.8 % of retained metals and protons. Retention was lower in the two plant residues, particularly wheat straw, which raised leachate pH by 2 units only in the first leaching event with drainage water, but had little effect on leachate pH in the following leaching events. It can be concluded that organic materials and particularly biochars and compost have the potential to be used in acid drainage treatment to remove and retain protons and metals.

  2. Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria.

    PubMed

    Mani-López, E; Palou, E; López-Malo, A

    2014-05-01

    Currently, the food industry wants to expand the range of probiotic yogurts but each probiotic bacteria offers different and specific health benefits. Little information exists on the influence of probiotic strains on physicochemical properties and sensory characteristics of yogurts and fermented milks. Six probiotic yogurts or fermented milks and 1 control yogurt were prepared, and we evaluated several physicochemical properties (pH, titratable acidity, texture, color, and syneresis), microbial viability of starter cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and probiotics (Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus reuteri) during fermentation and storage (35 d at 5°C), as well as sensory preference among them. Decreases in pH (0.17 to 0.50 units) and increases in titratable acidity (0.09 to 0.29%) were observed during storage. Only the yogurt with S. thermophilus, L. delbrueckii ssp. bulgaricus, and L. reuteri differed in firmness. No differences in adhesiveness were determined among the tested yogurts, fermented milks, and the control. Syneresis was in the range of 45 to 58%. No changes in color during storage were observed and no color differences were detected among the evaluated fermented milk products. Counts of S. thermophilus decreased from 1.8 to 3.5 log during storage. Counts of L. delbrueckii ssp. bulgaricus also decreased in probiotic yogurts and varied from 30 to 50% of initial population. Probiotic bacteria also lost viability throughout storage, although the 3 probiotic fermented milks maintained counts ≥ 10(7)cfu/mL for 3 wk. Probiotic bacteria had variable viability in yogurts, maintaining counts of L. acidophilus ≥ 10(7) cfu/mL for 35 d, of L. casei for 7d, and of L. reuteri for 14 d. We found no significant sensory preference among the 6 probiotic yogurts and fermented milks or the control. However, the yogurt and fermented milk made with L. casei were better accepted. This

  3. Exploitation of sweet cherry (Prunus avium L.) puree added of stem infusion through fermentation by selected autochthonous lactic acid bacteria.

    PubMed

    Di Cagno, Raffaella; Surico, Rosalinda Fortunata; Minervini, Giovanna; Rizzello, Carlo Giuseppe; Lovino, Raffaella; Servili, Maurizio; Taticchi, Agnese; Urbani, Sefania; Gobbetti, Marco

    2011-08-01

    Strains of Lactobacillus plantarum, Pediococcus acidilactici, Pediococcus pentosaceus and Leuconostoc mesenteroides subsp. mesenteroides were identified from 8 cultivars of sweet cherry by partial 16S rRNA gene sequence and subjected to typing by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) analysis. Representative isolates from each species and each cultivar were screened based on the kinetics of growth on cherry puree added of (10%, v/v) stem infusion (CP-SI). A protocol for processing and storage of CP-SI, which included fermentation by selected autochthonous P. pentosaceus SWE5 and L. plantarum FP3 (started CP-SI) or spontaneous fermentation (unstarted CP-SI), was set up. Starters grew and remained viable at elevated cell numbers (ca. 9.0 log cfu g(-1)) during 60 days of storage at 4 °C. The number of presumptive lactic acid bacteria of the unstarted CP-SI did not exceed the value of ca. 3.0 log cfu g(-1). Consumption of carbohydrates (e.g., glucose and fructose) by starter lactic acid bacteria was limited as well as it was the lactic acid fermentation. Consumption of organic acids (e.g., malic acid) and free amino acids was evident, especially, throughout storage. Compared to CP-SI before processing, the concentrations of total phenolic compounds and anthocyanins did not vary in the started CP-SI. The concentration of anthocyanins slightly decreased in the unstarted CP-SI. The antioxidant activity, expressed as the scavenging activity toward DPPH radical, was found at highest level in the started CP-SI which approached that found in CP-SI before processing. During storage, viscosity and, especially, color indexes of started CP-SI were higher than those found in the unstarted CP-SI. Fermentation by autochthonous lactic acid bacteria seemed to also positively interfere with the sensory attributes of CP-SI.

  4. Effects of carbohydrate, branched-chain amino acids, and arginine in recovery period on the subsequent performance in wrestlers

    PubMed Central

    2011-01-01

    Many athletes need to participate in multiple events in a single day. The efficient post-exercise glycogen recovery may be critical for the performance in subsequent exercise. This study examined whether post-exercise carbohydrate supplementation could restore the performance in the subsequent simulated wrestling match. The effect of branched-chain amino acids and arginine on glucose disposal and performance was also investigated. Nine well-trained male wrestlers participated in 3 trials in a random order. Each trial contained 3 matches with a 1-hr rest between match 1 and 2, and a 2-hr rest between match 2 and 3. Each match contained 3 exercise periods interspersed with 1-min rests. The subjects alternated 10-s all-out sprints and 20-s rests in each exercise period. At the end of match 2, 3 different supplementations were consumed: 1.2 g/kg glucose (CHO trial), 1 g/kg glucose + 0.1 g/kg Arg + 0.1 g/kg BCAA (CHO+AA trial), or water (placebo trial). The peak and average power in the 3 matches was similar in the 3 trials. After the supplementation, CHO and CHO+AA trial showed significantly higher glucose and insulin, and lower glycerol and non-esterified fatty acid concentrations than the placebo trial. There was no significant difference in these biochemical parameters between the CHO and CHO+AA trials. Supplementation of carbohydrate with or without BCAA and arginine during the post-match period had no effect on the performance in the following simulated match in wrestlers. In addition, BCAA and arginine did not provide additional insulinemic effect. PMID:22107883

  5. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus.

    PubMed Central

    Chen, G J; Russell, J B

    1988-01-01

    A monensin-sensitive ruminal peptostreptococcus was able to grow rapidly (growth rate of 0.5/h) on an enzymatic hydrolysate of casein, but less than 23% of the amino acid nitrogen was ever utilized. When an acid hydrolysate was substituted for the enzymatic digest, more than 31% of the nitrogen was converted to ammonia and cell protein. Coculture experiments and synergisms with peptide-degrading strains of Bacteroides ruminicola and Streptococcus bovis indicated that the peptostreptococcus was unable to transport certain peptides or hydrolyze them extracellularly. Leucine, serine, phenylalanine, threonine, and glutamine were deaminated at rates of 349, 258, 102, 95, and 91 nmol/mg of protein per min, respectively. Deamination rates for some other amino acids were increased when the amino acids were provided as pairs of oxidized and reduced amino acids (Stickland reactions), but these rates were still less than 80 nmol/mg of protein per min. In continuous culture (dilution rate of 0.1/h), bacterial dry matter and ammonia production decreased dramatically at a pH of less than 6.0. When dilution rates were increased from 0.08 to 0.32/h (pH 7.0), ammonia production increased while production of bacterial dry matter and protein decreased. These rather peculiar kinetics resulted in a slightly negative estimate of maintenance energy and could not be explained by a change in fermentation products. Approximately 80% of the cell dry matter was protein. When corrections were made for cell composition, the yield of ATP was higher than the theoretical maximum value. It is possible that mechanisms other than substrate-level phosphorylation contributed to the energetics of growth. PMID:2975156

  6. Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids.

    PubMed

    Shen, Dongsheng; Yin, Jun; Yu, Xiaoqin; Wang, Meizhen; Long, Yuyang; Shentu, Jiali; Chen, Ting

    2017-03-01

    In this study, tofu and egg white, representing typical protein-rich substrates in food waste based on vegetable and animal protein, respectively, were investigated for producing volatile fatty acids (VFAs) by acidogenic fermentation. VFA production, composition, conversion pathways and microbial communities in acidogenesis from tofu and egg white with and without hydrothermal (HT) pretreatment were compared. The results showed HT pretreatment could improve the VFA production of tofu but not for egg white. The optimum VFA yields were 0.46g/gVS (tofu with HT) and 0.26g/gVS (egg white without HT), respectively. Tofu could directly produce VFAs through the Stickland reaction, while egg white was converted to lactate and VFAs simultaneously. About 30-40% of total protein remained in all groups after fermentation. Up to 50% of the unconverted soluble protein in the HT groups was protease. More lactate-producing bacteria, mainly Leuconostoc and Lactobacillus, were present during egg white fermentation.

  7. Effect of particle size reduction, hydrothermal and fermentation treatments on phytic acid content and some physicochemical properties of wheat bran.

    PubMed

    Majzoobi, Mahsa; Pashangeh, Safoora; Farahnaky, Asgar; Eskandari, Mohammad Hadi; Jamalian, Jalal

    2014-10-01

    With the aim of reducing phytic acid content of wheat bran, particle size reduction (from 1,200 to 90 μm), hydrothermal (wet steeping in acetate buffer at pH 4.8 at 55 °C for 60 min) and fermentation (using bakery yeast for 8 h at 30 °C) and combination of these treatments with particle size reduction were applied and their effects on some properties of the bran were studied. Phytic acid content decreased from 50.1 to 21.6, 32.8 and 43.9 mg/g after particle size reduction, hydrothermal and fermentation, respectively. Particle size reduction along with these treatments further reduced phytic acid content up to 76.4 % and 57.3 %, respectively. Hydrothermal and fermentation decreased, while particle size reduction alone or in combination increased bran lightness. With reducing particle size, total, soluble and insoluble fiber content decreased from 69.7 to 32.1 %, 12.2 to 7.9 % and 57.4 to 24.3 %, respectively. The highest total (74.4 %) and soluble (21.4 %) and the lowest insoluble fiber (52.1 %) content were determined for the hydrothermaled bran. Particle size reduction decreased swelling power, water solubility and water holding capacity. Swelling power and water holding capacity of the hydrothermaled and fermented brans were lower, while water solubility was higher than the control. The amount of Fe(+2), Zn(+2) and Ca(+2) decreased with reducing particle size. Fermentation had no effect on Fe(+2)and Zn(+2) but slightly reduced Ca(+2). The hydrothermal treatment slightly decreased these elements. Amongst all, hydrothermal treatment along with particle size reduction resulted in the lowest phytic acid and highest fiber content.

  8. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation.

    PubMed

    Hou, Guangying; Hao, Xiaoyan; Zhang, Rui; Wang, Jing; Liu, Rutao; Liu, Chunguang

    2016-07-01

    Many research indicate antibiotics show adverse effect on methane fermentation, while few research focus on their effect on hydrogen fermentation. The present study aimed to gain insight of the effect of antibiotics on hydrogen fermentation with waste sludge and corn straw as substrate. For this purpose, tetracycline, as a model, was investigated with regard to tetracycline removal, hydrogen production, interaction with extracellular polymeric substances (EPSs) of substrate and volatile fatty acids (VFAs) on concentration and composition. Results show that tetracycline could be removed efficiently by hydrogen fermentation, and relative low-dose tetracycline (200mg/l) exposure affects little on hydrogen production. While tetracycline exposure could change hydrogen fermentation from butyric acid-type to propionic acid-type depending on tetracycline level. Based upon three-dimensional excitation-emission matrix fluorescence spectroscopy and UV-vis tetracycline changed the component and content of EPSs, and static quenching was the main mechanism between EPSs with tetracycline.

  9. Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki).

    PubMed

    Hidalgo, C; Mateo, E; Mas, A; Torija, M J

    2012-05-01

    Persimmon (Diospyros kaki) is a seasonal fruit with important health benefits. In this study, persimmon use in wine and condiment production was investigated using molecular methods to identify the yeast and acetic acid bacteria (AAB) isolated from the alcoholic fermentation and acetification of the fruit. Alcoholic fermentation was allowed to occur either spontaneously, or by inoculation with a commercial Saccharomyces cerevisiae wine strain, while acetification was always spontaneous; all these processes were performed in triplicates. Non-Saccharomyces yeast species were particularly abundant during the initial and mid-alcoholic fermentation stages, but S. cerevisiae became dominant toward the end of these processes. During spontaneous fermentation, S. cerevisiae Sc1 was the predominant strain isolated throughout, while the commercial strain of S. cerevisiae was the most common strain isolated from the inoculated fermentations. The main non-Saccharomyces strains isolated included Pichia guilliermondii, Hanseniaspora uvarum, Zygosaccharomyces florentinus and Cryptococcus sp. A distinct succession of AAB was observed during the acetification process. Acetobacter malorun was abundant during the initial and mid-stages, while Gluconacetobacter saccharivorans was the main species during the final stages of these acetifications. Four additional AAB species, Acetobacter pasteurianus, Acetobacter syzygii, Gluconacetobacter intermedius and Gluconacetobacter europaeus, were also detected. We observed 28 different AAB genotypes, though only 6 of these were present in high numbers (between 25%-60%), resulting in a high biodiversity index.

  10. Production of reuterin in a fermented milk product by Lactobacillus reuteri: Inhibition of pathogens, spoilage microorganisms, and lactic acid bacteria.

    PubMed

    Ortiz-Rivera, Y; Sánchez-Vega, R; Gutiérrez-Méndez, N; León-Félix, J; Acosta-Muñiz, C; Sepulveda, D R

    2017-03-22

    We assessed the antimicrobial activity of reuterin produced in vitro in glycerol aqueous solutions in situ by Lactobacillus reuteri ATCC 53608 as part of a fermented milk product against starter (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus), spoilage (Penicillium expansum), pathogenic (Staphylococcus aureus, Salmonella enterica ssp. enterica, and Listeria monocytogenes), and pathogen surrogate (Escherichia coli DH5α) microorganisms. We also assayed the influence of cold storage (28 d at 4°C) and reuterin on the color and rheology of the fermented milk product. We obtained maximum reuterin concentrations of 107.5 and 33.97 mM in glycerol aqueous solution and fermented milk product, respectively. Reuterin was stable throughout its refrigerated shelf life. Gram-positive microorganisms were more resistant to reuterin than gram-negative microorganisms. Penicillium expansum and Lactobacillus reuteri ATCC 53608 survived at concentrations up to 10 and 8.5 mM, respectively. Escherichia coli DH5α was the most sensitive to reuterin (0.9 mM). The presence of reuterin did not cause relevant changes in the quality parameters of the fermented milk product, including pH, acidity, soluble solids, color, and rheological aspects (storage and loss moduli and viscosity). This study demonstrated the viability of using Lactobacillus reuteri ATCC 53608 as a biopreservative in a fermented milk product through reuterin synthesis, without drastically modifying its quality parameters.

  11. Novel method based on chromogenic media for discrimination and selective enumeration of lactic acid bacteria in fermented milk products.

    PubMed

    Galat, Anna; Dufresne, Jérôme; Combrisson, Jérôme; Thépaut, Jérôme; Boumghar-Bourtchai, Leyla; Boyer, Mickaël; Fourmestraux, Candice

    2016-05-01

    Microbial analyses of fermented milk products require selective methods to discriminate between close species simultaneously present in high amounts. A culture-based method combining novel chromogenic agar media and appropriate incubation conditions was developed to enumerate lactic acid bacteria (LAB) strains in fermented milk. M1 agar, containing two chromogenic substrates, allowed selective enumeration of Lactobacillus rhamnosus, two strains of Lactobacillus paracasei subsp. paracasei and Streptococcus salivarius subsp. thermophilus based on differential β-galactosidase and β-glucosidase activities. Depending on the presence of some or all of the above strains, M1 agar was supplemented with L-rhamnose or vancomycin and incubations were carried out at 37 °C or 44 °C to increase selectivity. A second agar medium, M2, containing one chromogenic substrates was used to selectively enumerate β-galactosidase producing Lactobacillus delbrueckii subsp. bulgaricus at 47 °C. By contrast with the usual culture media, the chromogenic method allowed unambiguous enumeration of each species, including discrimination between the two L. paracasei, up to 10(9) CFU/g of fermented milk. In addition, the relevance of the method was approved by enumerating reference ATCC strains in pure cultures and fermented milk product. The method could also be used for enumerations on non-Danone commercial fermented milk products containing strains different from those used in this study, showing versatility of the method. To our knowledge, this is the first description of a chromogenic culture method applied to selective enumeration of LAB.

  12. Nutritional Properties and Antinutritional Factors of Corn Paste (Kutukutu) Fermented by Different Strains of Lactic Acid Bacteria

    PubMed Central

    Roger, Tchikoua; Ngouné Léopold, Tatsadjieu; Carl Moses Funtong, Mbofung

    2015-01-01

    The aim of this study is to reduce antinutritional factors and to improve the nutritional properties of Kutukutu during fermentation with Lactic Acid Bacteria (LAB). For that, Kutukutu (700 g) was prepared in the laboratory and inoculated with pure cultures of LAB (109 CFU/mL). Then, preparation was incubated for 120 h. Every 24 h, Kutukutu were collected, dried at 45°C for 24 h, and analyzed. The results showed that Lactobacillus brevis G25 increased reducing sugars content to 80.7% in Kutukutu after 96 h of fermentation. Lactobacillus fermentum N33 reduced the starch content to 73.2%, while Lactobacillus brevis G11, L. brevis G25, and Lactobacillus cellobiosus M41 rather increased the protein content to 18.9%. The bioavailability of Mg and Fe increased, respectively, to 50.5% and 70.6% in the Kutukutu fermented with L. brevis G25. L. plantarum A6 reduced the tannin content to 98.8% and L. buchneri M11 reduced the phytate content to 95.5%. The principal component analysis (PCA) shows that, for a best reduction of antinutrients factors and improvement of protein content and minerals, Kutukutu must be fermented by L. brevis G25 and L. fermentum N33, respectively. These starter cultures could be used to ameliorate nutritional proprieties of Kutukutu during the fermentation. PMID:26904660

  13. Nutritional Properties and Antinutritional Factors of Corn Paste (Kutukutu) Fermented by Different Strains of Lactic Acid Bacteria.

    PubMed

    Roger, Tchikoua; Ngouné Léopold, Tatsadjieu; Carl Moses Funtong, Mbofung

    2015-01-01

    The aim of this study is to reduce antinutritional factors and to improve the nutritional properties of Kutukutu during fermentation with Lactic Acid Bacteria (LAB). For that, Kutukutu (700 g) was prepared in the laboratory and inoculated with pure cultures of LAB (10(9) CFU/mL). Then, preparation was incubated for 120 h. Every 24 h, Kutukutu were collected, dried at 45°C for 24 h, and analyzed. The results showed that Lactobacillus brevis G25 increased reducing sugars content to 80.7% in Kutukutu after 96 h of fermentation. Lactobacillus fermentum N33 reduced the starch content to 73.2%, while Lactobacillus brevis G11, L. brevis G25, and Lactobacillus cellobiosus M41 rather increased the protein content to 18.9%. The bioavailability of Mg and Fe increased, respectively, to 50.5% and 70.6% in the Kutukutu fermented with L. brevis G25. L. plantarum A6 reduced the tannin content to 98.8% and L. buchneri M11 reduced the phytate content to 95.5%. The principal component analysis (PCA) shows that, for a best reduction of antinutrients factors and improvement of protein content and minerals, Kutukutu must be fermented by L. brevis G25 and L. fermentum N33, respectively. These starter cultures could be used to ameliorate nutritional proprieties of Kutukutu during the fermentation.

  14. Capillary electrophoresis with laser-induced fluorescence detection for studying amino acid uptake by yeast during beer fermentation.

    PubMed

    Turkia, Heidi; Sirén, Heli; Penttilä, Merja; Pitkänen, Juha-Pekka

    2015-01-01

    The amino acid composition of cultivation broth is known to affect the biomass accumulation, productivity, and vitality of yeast during cultivation. A separation method based on capillary electrophoresis with laser-induced fluorescence (LIF) detection was developed for the determination of amino acid consumption by Saccharomyces cerevisiae during beer fermentation. Intraday relative standard deviations were less than 2.1% for migration times and between 2.9% and 9.9% for peak areas. Interday relative standard deviations were less than 2.5% for migration times and between 4.4% and 18.9% for peak areas. The quantification limit was even as low as 62.5 pM which equals to below attomole level detection. The method was applied to study the rate of amino acid utilization during beer fermentation.

  15. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread.

    PubMed

    Black, Brenna A; Zannini, Emanuele; Curtis, Jonathan M; Gänzle, Michael G

    2013-03-01

    Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli grown in modified De Man Rogosa Sharpe medium or sourdough were assayed for antifungal activity. Lactobacillus hammesii exhibited increased antifungal activity upon the addition of linoleic acid as a substrate. Bioassay-guided fractionation attributed the antifungal activity of L. hammesii to a monohydroxy C(18:1) fatty acid. Comparison of its antifungal activity to those of other hydroxy fatty acids revealed that the monohydroxy fraction from L. hammesii and coriolic (13-hydroxy-9,11-octadecadienoic) acid were the most active, with MICs of 0.1 to 0.7 g liter(-1). Ricinoleic (12-hydroxy-9-octadecenoic) acid was active at a MIC of 2.4 g liter(-1). L. hammesii accumulated the monohydroxy C(18:1) fatty acid in sourdough to a concentration of 0.73 ± 0.03 g liter(-1) (mean ± standard deviation). Generation of hydroxy fatty acids in sourdough also occurred through enzymatic oxidation of linoleic acid to coriolic acid. The use of 20% sourdough fermented with L. hammesii or the use of 0.15% coriolic acid in bread making increased the mold-free shelf life by 2 to 3 days or from 2 to more than 6 days, respectively. In conclusion, L. hammesii converts linoleic acid in sourdough and the resulting monohydroxy octadecenoic acid exerts antifungal activity in bread.

  16. Structural properties of pretreated biomass from different acid pretreatments and their effects on simultaneous saccharification and ethanol fermentation.

    PubMed

    Lim, Woo-Seok; Kim, Jae-Young; Kim, Ho-Yong; Choi, Joon-Weon; Choi, In-Gyu; Lee, Jae-Won

    2013-07-01

    The aim of this study was to investigate the effects of different acid pretreatments on the hydrolysis of biomass and ethanol production. Maleic, oxalic, and sulfuric acids were used individually as catalysts. The fermentable sugar concentration in hydrolysate was high at more than 30 g/L, which obtained at the dicarboxylic acid pretreatment. On the structural change of pretreated biomass, the S/G ratio ranged from 1.7 to 2.0, which was lower than that of raw material. The amount of phenolic OH group was significantly increased by acid pretreatment, which ranged 17.5-32.8%, compared to 4.7% of the raw material. The amounts of phenolic OH group in lignin sensitively affected simultaneous saccharification and fermentation. The maleic acid pretreated biomass, which included 17.5% of the phenolic OH group, was very effective for attaining high glucose yields and ethanol yield, after simultaneous saccharification and fermentation. At the same time, the highest ethanol yield was 0.48.

  17. Anaerobic thermophilic fermentation for carboxylic acid production from in-storage air-lime-treated sugarcane bagasse.

    PubMed

    Fu, Zhihong; Holtzapple, Mark T

    2011-06-01

    Wet storage and in situ lime pretreatment (50 °C, 1-atm air, 56 days, excess lime loading of 0.3 g Ca(OH)(2)/g dry biomass) of sugarcane bagasse (4,000 g dry weight) was performed in a bench-scale pile pretreatment system. Under thermophilic conditions (55 °C, NH(4)HCO(3) buffer, methane inhibitors), air-lime-treated bagasse (80 wt.%) and chicken manure (20 wt.%) were anaerobically co-digested in 1-L rotary fermentors by a mixed culture of marine microorganisms (Galveston, TX). During four-stage countercurrent fermentation, the resulting carboxylic acids consisted of primarily acetate (average 87.7 wt.%) and butyrate (average 9.0 wt.%). The experimental fermentation trains had the highest yield (0.47 g total acids/g volatile solids (VS) fed) and highest selectivity (0.79 g total acids/g VS digested) at a total acid concentration of 28.3 g/L, which is equivalent to an ethanol yield of 105.2 gal/(tonne VS fed). Both high total acid concentrations (>44.7 g/L) and high substrate conversions (>77.5%) are predicted for countercurrent fermentations of bagasse at commercial scale, allowing for an efficient conversion of air-lime-treated biomass to liquid transportation fuels and chemicals via the carboxylate platform.

  18. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.

    PubMed

    Thitiprasert, Sitanan; Sooksai, Sarintip; Thongchul, Nuttha

    2011-08-01

    Rhizopus oryzae is becoming more important due to its ability to produce an optically pure L: -lactic acid. However, fermentation by Rhizopus usually suffers from low yield because of production of ethanol as a byproduct. Limiting ethanol production in living immobilized R. oryzae by inhibition of alcohol dehydrogenase (ADH) was observed in shake flask fermentation. The effects of ADH inhibitors added into the medium on the regulation of ADH and lactate dehydrogenase (LDH) as well as the production of cell biomass, lactic acid, and ethanol were elucidated. 1,2-diazole and 2,2,2-trifluroethanol were found to be the effective inhibitors used in this study. The highest lactic acid yield of 0.47 g/g glucose was obtained when 0.01 mM 2,2,2-trifluoroethanol was present during the production phase of the pregrown R. oryzae. This represents about 38% increase in yield as compared with that from the simple glucose fermentation. Fungal metabolism was suppressed when iodoacetic acid, N-ethylmaleimide, 4,4'-dithiodipyridine, or 4-hydroxymercury benzoic acid were present. Dramatic increase in ADH and LDH activities but slight change in product yields might be explained by the inhibitors controlling enzyme activities at the pyruvate branch point. This showed that in living R. oryzae, the inhibitors regulated the flux through the related pathways.

  19. Genotypic characterization and safety assessment of lactic acid bacteria from indigenous African fermented food products

    PubMed Central

    2012-01-01

    Background Indigenous fermented food products play an essential role in the diet of millions of Africans. Lactic acid bacteria (LAB) are among the predominant microbial species in African indigenous fermented food products and are used for different applications in the food and biotechnology industries. Numerous studies have described antimicrobial susceptibility profiles of LAB from different parts of the world. However, there is limited information on antimicrobial resistance profiles of LAB from Africa. The aim of this study was to characterize 33 LAB previously isolated from three different African indigenous fermented food products using (GTG)5-based rep-PCR, sequencing of the 16S rRNA gene and species-specific PCR techniques for differentiation of closely related species and further evaluate their antibiotic resistance profiles by the broth microdilution method and their haemolytic activity on sheep blood agar plates as indicators of safety traits among these bacteria. Results Using molecular biology based methods and selected phenotypic tests such as catalase reaction, CO2 production from glucose, colonies and cells morphology, the isolates were identified as Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus ghanensis, Lactobacillus plantarum, Lactobacillus salivarius, Leuconostoc pseudomesenteroides, Pediococcus acidilactici, Pediococcus pentosaceus and Weissella confusa. The bacteria were susceptible to ampicillin, chloramphenicol, clindamycin and erythromycin but resistant to vancomycin, kanamycin and streptomycin. Variable sensitivity profiles to tetracycline and gentamicin was observed among the isolates with Lb. plantarum, Lb. salivarius, W. confusa (except strain SK9-5) and Lb. fermentum strains being susceptible to tetracycline whereas Pediococcus strains and Lb. ghanensis strains were resistant. For gentamicin, Leuc. pseudomesenteroides, Lb. ghanensis and Ped. acidilactici strains were resistant to 64 mg/L whereas some W. confusa

  20. Effects of lactic acid fermentation and gamma irradiation of barley on antinutrient contents and nutrient digestibility in mink (Mustela vison) with and without dietary enzyme supplement.

    PubMed

    Skrede, Anders; Sahlstrøm, Stefan; Ahlstrøm, Oystein; Connor, Kirsti Hjelme; Skrede, Grete

    2007-06-01

    The experiment was conducted to study the effects of fermentation of barley, using two different strains of lactic acid bacteria, a Lactobacillus plantarum/pentosus strain isolated from spontaneously fermented rye sourdough (AD2) and a starch-degrading Lactobacillus plantarum (AM4), on contents of mixed-linked (1 --> 3) (1 --> 4)-beta-glucans, alpha-amylase inhibitor activity, inositol phosphates, and apparent digestibility of macronutrients in mink. Effects of fermentation were compared with effects of gamma irradiation (gamma-irradiation: 60Co gamma-rays at 25 kGy). The diets were fed to mink with and without a supplementary enzyme preparation. Both lactic acid fermentation and gamma-irradiation followed by soaking and incubation, reduced concentrations of soluble beta-glucans, phytate and alpha-amylase inhibitor activity. Dietary enzyme supplementation increased significantly digestibility of crude protein, fat, starch and crude carbohydrate (CHO). Fermentation of the barley increased digestibility of starch and CHO. Fermentation with lactic acid bacteria AD2 resulted in higher starch and CHO digestibility than strain AM4, and had greater effect than gamma-irradiation, soaking and incubation. The highest digestibility of starch and CHO was obtained after AD2 fermentation followed by enzyme supplementation. It is concluded that both lactic acid fermentation of barley and enzyme supplementation have positive nutritional implications in the mink by limiting the effects of antinutrients and improving digestibility and energy utilization.

  1. Isolation of thermophilic L-lactic acid producing bacteria showing homo-fermentative manner under high aeration condition.

    PubMed

    Tongpim, Saowanit; Meidong, Ratchanu; Poudel, Pramod; Yoshino, Satoshi; Okugawa, Yuki; Tashiro, Yukihiro; Taniguchi, Masayuki; Sakai, Kenji

    2014-03-01

    By applying non-sterile open fermentation of food waste, various thermotolerant l-lactic acid-producing bacteria were isolated and identified. The predominant bacterial isolates showing higher accumulation of l-lactic acid belong to 3 groups of Bacillus coagulans, according to their 16S rRNA gene sequence similarities. B. coagulans strains M21 and M36 produced high amounts of l-lactic acid of high optical purity and lactic acid selectivity in model kitchen refuse medium and glucose-yeast extract-peptone medium. Other thermotolerant isolates resembling to Bacillus humi, B. ruris, B. subtilis, B. niacini and B. soli were also identified. These bacteria produced low amounts of l-lactic acid of more than 99% optical purity. All isolated strains showed the highest growth rate at temperatures around 55-60°C. They showed unique responses to various oxygen supply conditions. The majority of isolates produced l-lactic acid at a low overall oxygen transfer coefficient (KLa); however, acetic acid was produced instead of l-lactic acid at a high KLa. B. coagulans M21 was the only strain that produced high, consistent, and reproducible amounts of optically pure l-lactic acid (>99% optical purity) under high and low KLa conditions in a homo-fermentative manner.

  2. Cytofluorometric detection of wine lactic acid bacteria: application of malolactic fermentation to the monitoring.

    PubMed

    Salma, Mohammad; Rousseaux, Sandrine; Sequeira-Le Grand, Anabelle; Alexandre, Hervé

    2013-01-01

    In this study we report for the first time a rapid, efficient and cost-effective method for the enumeration of lactic acid bacteria (LAB) in wine. Indeed, up to now, detection of LAB in wine, especially red wine, was not possible. Wines contain debris that cannot be separated from bacteria using flow cytometry (FCM). Furthermore, the dyes tested in previous reports did not allow an efficient staining of bacteria. Using FCM and a combination of BOX/PI dyes, we were able to count bacteria in wines. The study was performed in wine inoculated with Oenococcus oeni (10(6) CFU ml(-1)) stained with either FDA or BOX/PI and analyzed by FCM during the malolactic fermentation (MLF). The analysis show a strong correlation between the numbers of BOX/PI-stained cells determined by FCM and the cell numbers determined by plate counts (red wine: R (2) ≥ 0.97, white wine R (2) ≥ 0.965). On the other hand, we found that the enumeration of O. oeni labeled with FDA was only possible in white wine (R (2) ≥ 0.97). Viable yeast and LAB populations can be rapidly discriminated and quantified in simultaneous malolactic-alcoholic wine fermentations using BOX/PI and scatter parameters in a one single measurement. This rapid procedure is therefore a suitable method for monitoring O. oeni populations during winemaking, offers a detection limit of <10(4) CFU ml(-1) and can be considered a useful method for investigating the dynamics of microbial growth in wine and applied for microbiological quality control in wineries.

  3. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  4. Effects of different vegetable oils on rumen fermentation and conjugated linoleic acid concentration in vitro

    PubMed Central

    Roy, Amitava; Mandal, Guru Prasad; Patra, Amlan Kumar

    2017-01-01

    Aim: The objective of this study was to investigate the effect of different vegetable oils on rumen fermentation and concentrations of beneficial cis-9 trans-11 C18:2 conjugated linoleic acid (CLA) and trans-11 C18:1 fatty acid (FA) in the rumen fluid in an in vitro condition. Materials and Methods: Six vegetable oils including sunflower, soybean, sesame, rice bran, groundnut, and mustard oils were used at three dose levels (0%, 3% and 4% of substrate dry matter [DM] basis) in three replicates for each treatment in a completely randomized design using 6 × 3 factorial arrangement. Rumen fluid for microbial culture was collected from four goats fed on a diet of concentrate mixture and berseem hay at a ratio of 60:40 on DM basis. The in vitro fermentation was performed in 100 ml conical flakes containing 50 ml of culture media and 0.5 g of substrates containing 0%, 3% and 4% vegetable oils. Results: Oils supplementation did not affect (p>0.05) in vitro DM digestibility, and concentrations of total volatile FAs and ammonia-N. Sunflower oil and soybean oil decreased (p<0.05) protozoal numbers with increasing levels of oils. Other oils had less pronounced effect (p>0.05) on protozoal numbers. Both trans-11 C18:1 FA and cis-9, trans-11 CLA concentrations were increased (p<0.05) by sunflower and soybean oil supplementation at 4% level with the highest concentration observed for sunflower oil. The addition of other oils did not significantly (p>0.05) increase the trans-11 C18:1 FA and cis-9, trans-11 CLA concentrations as compared to the control. The concentrations of stearic, oleic, linoleic, and linolenic acids were not altered (p>0.05) due to the addition of any vegetable oils. Conclusion: Supplementation of sunflower and soybean oils enhanced beneficial trans-11 C18:1 FA and cis-9, trans-11 CLA concentrations in rumen fluid, while sesame, rice bran, groundnut, and mustard oils were ineffective in this study. PMID:28246442

  5. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)).

  6. Anti-diabetic Effect of Fermented Milk Containing Conjugated Linoleic Acid on Type II Diabetes Mellitus

    PubMed Central

    Yang, Hee-Sun; Lee, Sang-Cheon; Huh, Chang-Ki

    2016-01-01

    Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of conjugated dienoic derivatives of linoleic acid. CLA has been reported to be able to reduce body fat. In this study, we investigated the antidiabetic effect of fermented milk (FM) containing CLA on type II diabetes db/db mice. Mice were treated with 0.2% low FM, 0.6% high FM, or Glimepiride (GLM) for 6 wk. Our results revealed that the body weight and the levels of fasting blood glucose, serum insulin, and leptin were significantly decreased in FM fed mice compared to db/db mice. Oral glucose tolerance and insulin tolerance were significantly ameliorated in FM fed mice compared to db/db mice. Consistent with these results, the concentrations of serum total cholesterol, triglycerides, and LDL cholesterol were also significantly decreased in FM fed mice compared to db/db mice. However, the concentration of HDL cholesterol was significantly higher in FM fed mice compared to db/db mice. These results were similar to those of GLM, a commercial anti-diabetic drug. Therefore, our results suggest that FM has anti-diabetic effect as a functional food to treat type II diabetes mellitus. PMID:27194924

  7. Use of virginiamycin to control the growth of lactic acid bacteria during alcohol fermentation.

    PubMed

    Hynes, S H; Kjarsgaard, D M; Thomas, K C; Ingledew, W M

    1997-04-01

    The antibiotic virginiamycin was investigated for its effects on growth and lactic acid production by seven strains of lactobacilli during the alcoholic fermentation of wheat mash by yeast. The lowest concentration of virginiamycin tested (0.5 mg Lactrol kg-1 mash), was effective against most of the lactic acid bacteria under study, but Lactobacillus plantarum was not significantly inhibited at this concentration. The use of virginiamycin prevented or reduced potential yield losses of up to 11% of the produced ethanol due to the growth and metabolism of lactobacilli. However, when the same concentration of virginiamycin was added to mash not inoculated with yeast, Lactobacillus rhamnosus and L. paracasei grew after an extensive lag of 48 h and L. plantarum grew after a similar lag even in the presence of 2 mg virginiamycin kg-1 mash. Results showed a variation in sensitivity to virginiamycin between the different strains tested and also a possible reduction in effectiveness of virginiamycin over prolonged incubation in wheat mash, especially in the absence of yeast.

  8. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation.

    PubMed

    Parmar, Indu; Rupasinghe, H P Vasantha

    2013-02-01

    Enzymatic hydrolysis of cellulose present in apple pomace was investigated using process variables such as enzyme activity of commercial cellulase, pectinase and β-glucosidase, temperature, pH, time, pre-treatments and end product separation. The interaction of enzyme activity, temperature, pH and time had a significant effect (P<0.05) on release of glucose. Optimal conditions of enzymatic saccharification were: enzyme activity of cellulase, 43units; pectinase, 183units; β-glucosidase, 41units/g dry matter (DM); temperature, 40°C; pH 4.0 and time, 24h. The sugars were fermented using Saccharomyces cerevisae yielding 19.0g ethanol/100g DM. Further bio-conversion using Acetobacter aceti resulted in the production of acetic acid at a concentration of 61.4g/100g DM. The present study demonstrates an improved process of enzymatic hydrolysis of apple pomace to yield sugars and concomitant bioconversion to produce ethanol and acetic acid.

  9. Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation.

    PubMed

    Xia, Jun; Xu, Jiaxing; Hu, Lei; Liu, Xiaoyan

    2016-11-16

    Poly(L-malic acid) (PMA) is a natural polyester with many attractive properties for biomedical application. However, the cost of PMA production is high when glucose is used as a carbon source. To solve this problem, cane molasses as a low-cost feedstock was applied for the production of PMA. Six pretreatment methods were applied to cane molasses before fermentation. Pretreatment with combined tricalcium phosphate, potassium ferrocyanide, and sulfuric acid (TPFSA) removed significant amounts of metal ions from cane molasses. The PMA concentration increased from 5.4 g/L (untreated molasses) to 36.9 g/L (TPFSA-pretreated molasses) after fermentation in shake flasks. A fed-batch fermentation strategy was then developed. In this method, TPFSA-pretreated cane molasses solution was continuously fed into the fermentor to maintain the total sugar concentration at 20 g/L. This technique generated approximately 95.4 g/L PMA with a productivity of 0.57 g/L/hr. The present study indicated that fed-batch fermentation using pretreated cane molasses is a feasible technique for producing high amounts of PMA.

  10. Effect of milk fermentation by kefir grains and selected single strains of lactic acid bacteria on the survival of Mycobacterium bovis BCG.

    PubMed

    Macuamule, C L S; Wiid, I J; van Helden, P D; Tanner, M; Witthuhn, R C

    2016-01-18

    Mycobacterium bovis that causes Bovine tuberculosis (BTB) can be transmitted to humans thought consumption of raw and raw fermented milk products from diseased animals. Lactic acid bacteria (LAB) used in popular traditional milk products in Africa produce anti-microbial compounds that inhibit some pathogenic and spoilage bacteria. M. bovis BCG is an attenuated non-pathogenic vaccine strain of M. bovis and the aim of the study was to determine the effect of the fermentation process on the survival of M. bovis BCG in milk. M. bovis BCG at concentrations of 6 log CFU/ml was added to products of kefir fermentation. The survival of M. bovis BCG was monitored at 12-h intervals for 72 h by enumerating viable cells on Middlebrook 7H10 agar plates enriched with 2% BD BACTEC PANTA™. M. bovis BCG was increasingly reduced in sterile kefir that was fermented for a period of 24h and longer. In the milk fermented with kefir grains, Lactobacillus paracasei subsp. paracasei or Lactobacillus casei, the viability of M. bovis BCG was reduced by 0.4 logs after 24h and by 2 logs after 48 h of fermentation. No viable M. bovis BCG was detected after 60 h of fermentation. Results from this study show that long term fermentation under certain conditions may have the potential to inactivate M. bovis BCG present in the milk. However, to ensure safety of fermented milk in Africa, fermentation should be combined with other hurdle technologies such as boiling and milk pasteurisation.

  11. Influence of sodium chloride concentration on the controlled lactic acid fermentation of "Almagro" eggplants.

    PubMed

    Ballesteros, C; Palop, L; Sánchez, I

    1999-12-01

    The effect of a commercial Lactobacillus starter and sodium chloride concentration on the fermentation of "Almagro" eggplants (Solanum melongena L. var. esculentum depressum) was studied. The results of fermentation using added starter and varying salt concentrations (4, 6, and 10% w/v) in brine were compared with the results of spontaneous fermentation taking place in brine with a salt concentration of 4%. Fresh fruits, medium in size (34-44 g), were used in all cases; all fruits were blanched under identical conditions. Temperature in the fermenters was 32+/-2 degrees C. The results obtained indicate that addition of a suitable starter shortened the fermentation process, provided the salt concentration in the brine did not exceed 6%. In the conditions tested, the eggplants obtained after fermentation were found to be of good quality though somewhat bitter which may explained by the starter employed.

  12. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid.

    PubMed

    Harner, Nicole K; Bajwa, Paramjit K; Habash, Marc B; Trevors, Jack T; Austin, Glen D; Lee, Hung

    2014-01-01

    A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol.

  13. Dry fermented sausages of Southern Italy: a comparison of free amino acids and biogenic amines between industrial and homemade products.

    PubMed

    Leggio, Antonella; Belsito, Emilia L; De Marco, Rosaria; Di Gioia, Maria L; Liguori, Angelo; Siciliano, Carlo; Spinella, Mariagiovanna

    2012-04-01

    This paper compares some important parameters and the free amino acid and biogenic amine contents of cured industrial and homemade meat products. To this aim, industrial and homemade "soppressata" and "salsiccia", typical dry fermented sausages produced in Southern Italy, were analyzed. The homemade sausages showed a higher level of free biogenic amines than that manufactured industrially, most likely because biogenic amine formation in industrial products is limited by the use of starter cultures. The industrial sausages are characterized by a higher total free amino acid content than the homemade products. Overall, free amino acid and biogenic amine contents demonstrated that appreciable differences exist between homemade and industrial sausages.

  14. Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula.

    PubMed

    Tang, Jialing; Wang, Xiaochang C; Hu, Yisong; Zhang, Yongmei; Li, Yuyou

    2017-01-01

    Effect of acidic pH (4, 5, 6 and uncontrolled) on lactic acid (LA) fermentation from food waste was investigated by batch fermentation experiments using methanogenic sludge, fresh food waste and anaerobic activated sludge as inocula. Results showed that due to the increase of hydrolysis, substrate degradation rate and enzyme activity, the optimal LA concentration and yield were obtained at pH 5, regardless of the inoculum used. The highest LA concentration (28.4g/L) and yield (0.46g/g-TS) were obtained with fresh food waste as inoculum. Moreover, after the substrate was completely utilized, the lactic acid bacteria population sharply decreased, and the LA produced was converted to volatile fatty acids (VFAs) at pH 6 within a short period. The VFA components varied with the inoculum supplied. Microbial community analysis using high-throughput pyrosequencing revealed that diversity decreased and a high abundance of Lactobacillus (83.4-98.5%) accumulated during fermentation with all inocula.

  15. [Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology].

    PubMed

    Shen, Naikun; Qin, Yan; Wang, Qingyan; Xie, Nengzhong; Mi, Huizhi; Zhu, Qixia; Liao, Siming; Huang, Ribo

    2013-10-01

    Succinic acid is an important C4 platform chemical in the synthesis of many commodity and special chemicals. In the present work, different compounds were evaluated for succinic acid production by Actinobacillus succinogenes GXAS 137. Important parameters were screened by the single factor experiment and Plackeet-Burman design. Subsequently, the highest production of succinic acid was approached by the path of steepest ascent. Then, the optimum values of the parameters were obtained by Box-Behnken design. The results show that the important parameters were glucose, yeast extract and MgCO3 concentrations. The optimum condition was as follows (g/L): glucose 70.00, yeast extract 9.20 and MgCO3 58.10. Succinic acid yield reached 47.64 g/L at the optimal condition. Succinic acid increased by 29.14% than that before the optimization (36.89 g/L). Response surface methodology was proven to be a powerful tool to optimize succinic acid production.

  16. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge.

    PubMed

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; Zeng, Guangming

    2015-07-01

    Alkaline condition (especially pH 10) has been demonstrated to be a promising method for short-chain fatty acid (SCFA) production from waste activated sludge anaerobic fermentation, because it can effectively inhibit the activities of methanogens. However, due to the limit of sludge solubilization rate, long fermentation time is required but SCFA yield is still limited. This paper reports a new pretreatment method for alkaline fermentation, i.e., using free nitrous acid (FNA) to pretreat sludge for 2 d, by which the fermentation time is remarkably shortened and meanwhile the SCFA production is significantly enhanced. Experimental results showed the highest SCFA production of 370.1 mg COD/g VSS (volatile suspended solids) was achieved at 1.54 mg FNA/L pretreatment integration with 2 d of pH 10 fermentation, which was 4.7- and 1.5-fold of that in the blank (uncontrolled) and sole pH 10 systems, respectively. The total time of this integration system was only 4 d, whereas the corresponding time was 15 d in the blank and 8 d in the sole pH 10 systems. The mechanism study showed that compared with pH 10, FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. After FNA pretreatment, pH 10 treatment (1 d) caused 38.0% higher substrate solubilization than the sole FNA, which indicated that FNA integration with pH 10 could cause positive synergy on sludge solubilization. It was also observed that this integration method benefited hydrolysis and acidification processes. Therefore, more SCFA was produced, but less fermentation time was required in the integrated system.

  17. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V

    2015-06-01

    Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics.

  18. Effect of low pH start-up on continuous mixed-culture lactic acid fermentation of dairy effluent.

    PubMed

    Choi, Gyucheol; Kim, Jaai; Lee, Changsoo

    2016-12-01

    Mixed-culture fermentation that does not require an energy-intensive sterilization process is a viable approach for the economically feasible production of lactic acid (LA) due to the potential use of organic waste as feedstock. This study investigated mixed-culture LA fermentation of whey, a high-strength organic wastewater, in continuous mode. Variations in the hydraulic retention time (HRT) from 120 to 8 h under different pH regimes in two thermophilic reactors (55 °C) were compared for their fermentation performance. One reactor was maintained at a low pH (pH 3.0) during operation at HRTs of 120 to 24 h and then adjusted to pH 5.5 in the later phases of fermentation at HRTs of 24 to 8 h (R1), while the second reactor was maintained at pH 5.5 throughout the experiment (R2). Although the LA production in R1 was negligible at low pH, it increased dramatically after the pH was raised to 5.5 and exceeded that in R2 when stabilized at HRTs of 8 and 12 h. The maximum yield (0.62 g LA/g substrate fed as the chemical oxygen demand (COD) equivalent), the production rate (11.5 g/L day), and the selectivity (95 %) of LA were all determined at a 12-h HRT in R1. Additionally, molecular and statistical analyses revealed that changes in the HRT and the pH significantly affected the bacterial community structure and thus the fermentation characteristics of the experimental reactors. Bacillus coagulans was likely the predominant LA producer in both reactors. The overall results suggest that low pH start-up has a positive effect on yield and selectivity in mixed-culture LA fermentation.

  19. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.

    PubMed

    Pérez-García, Fernando; Max Risse, Joe; Friehs, Karl; Wendisch, Volker F

    2017-02-07

    Corynebacterium glutamicum is used for the million-ton scale production of amino acids and has recently been engineered for production of the cyclic non-proteinogenic amino acid L-pipecolic acid (L-PA). In this synthetic pathway L-lysine was converted to L-PA by oxidative deamination, dehydration and reduction by L-lysine 6-dehydrogenase (deaminating) from Silicibacter pomeroyi and pyrroline 5-carboxylate reductase from C. glutamicum. However, production of L-PA occurred as by-product of L-lysine production only. Here, the author show that abolishing L-lysine export by the respective gene deletion resulted in production of L-PA as major product without concomitant lysine production while the specific growth rate was reduced due to accumulation of high intracellular lysine concentrations. Increasing expression of the genes encoding L-lysine 6-dehydrogenase and pyrroline 5-carboxylate reductase in C. glutamicum strain PIPE4 increased the L-PA titer to 3.9 g L(-1) , and allowed faster growth and, thus, a higher volumetric productivity of 0.08 ± 0.00 g L(-1) h(-1) respectively. Secondly, expression of heterologous genes for utilization of glycerol, xylose, glucosamine, and starch in strain PIPE4 enabled L-PA production from these alternative carbon sources. Third, in a glucose/sucrose-based fed-batch fermentation with C. glutamicum PIPE4 L-PA was produced to a titer of 14.4 g L(-1) with a volumetric productivity of 0.21 g L(-1) h(-1) and an overall yield of 0.20 g g(-1) .

  20. A Clostridium Group IV Species Dominates and Suppresses a Mixed Culture Fermentation by Tolerance to Medium Chain Fatty Acids Products

    PubMed Central

    Andersen, Stephen J.; De Groof, Vicky; Khor, Way Cern; Roume, Hugo; Props, Ruben; Coma, Marta; Rabaey, Korneel

    2017-01-01

    A microbial community is engaged in a complex economy of cooperation and competition for carbon and energy. In engineered systems such as anaerobic digestion and fermentation, these relationships are exploited for conversion of a broad range of substrates into products, such as biogas, ethanol, and carboxylic acids. Medium chain fatty acids (MCFAs), for example, hexanoic acid, are valuable, energy dense microbial fermentation products, however, MCFA tend to exhibit microbial toxicity to a broad range of microorganisms at low concentrations. Here, we operated continuous mixed population MCFA fermentations on biorefinery thin stillage to investigate the community response associated with the production and toxicity of MCFA. In this study, an uncultured species from the Clostridium group IV (related to Clostridium sp. BS-1) became enriched in two independent reactors that produced hexanoic acid (up to 8.1 g L−1), octanoic acid (up to 3.2 g L−1), and trace concentrations of decanoic acid. Decanoic acid is reported here for the first time as a possible product of a Clostridium group IV species. Other significant species in the community, Lactobacillus spp. and Acetobacterium sp., generate intermediates in MCFA production, and their collapse in relative abundance resulted in an overall production decrease. A strong correlation was present between the community composition and both the hexanoic acid concentration (p = 0.026) and total volatile fatty acid concentration (p = 0.003). MCFA suppressed species related to Clostridium sp. CPB-6 and Lactobacillus spp. to a greater extent than others. The proportion of the species related to Clostridium sp. BS-1 over Clostridium sp. CPB-6 had a strong correlation with the concentration of octanoic acid (p = 0.003). The dominance of this species and the increase in MCFA resulted in an overall toxic effect on the mixed community, most significantly on the Lactobacillus spp., which resulted in a decrease in total

  1. The Use of Lactic Acid Bacteria Starter Cultures during the Processing of Fermented Cereal-based Foods in West Africa: A Review

    PubMed Central

    Soro-Yao, Amenan Anastasie; Brou, Kouakou; Amani, Georges; Thonart, Philippe; Djè, Koffi Marcelin

    2014-01-01

    Lactic acid bacteria (LAB) are the primary microorganisms used to ferment maize-, sorghum- or millet-based foods that are processed in West Africa. Fermentation contributes to desirable changes in taste, flavour, acidity, digestibility and texture in gruels (ogi, baca, dalaki), doughs (agidi, banku, komé) or steam-cooked granulated products (arraw, ciacry, dégué). Similar to other fermented cereal foods that are available in Africa, these products suffer from inconsistent quality. The use of LAB starter cultures during cereal dough fermentation is a subject of increasing interest in efforts to standardise this step and guaranty product uniformity. However, their use by small-scale processing units or small agro-food industrial enterprises is still limited. This review aims to illustrate and discuss major issues that influence the use of LAB starter cultures during the processing of fermented cereal foods in West Africa. PMID:27073601

  2. Propagated fixed-bed mixed-acid fermentation: Part I: Effect of volatile solid loading rate and agitation at high pH.

    PubMed

    Golub, Kristina W; Forrest, Andrea K; Mercy, Kevin L; Holtzapple, Mark T

    2011-11-01

    Countercurrent fermentation is a high performing process design for mixed-acid fermentation. However, there are high operating costs associated with moving solids, which is an integral component of this configuration. This study investigated the effect of volatile solid loading rate (VSLR) and agitation in propagated fixed-bed fermentation, a configuration which may be more commercially viable. To evaluate the role of agitation on fixed-bed configuration performance, continuous mixing was compared with periodic mixing. VSLR was also varied and not found to affect acid yields. However, increased VSLR and liquid retention time did result in higher conversions, productivity, acid concentrations, but lower selectivities. Agitation was demonstrated to be important for this fermentor configuration, the periodically-mixed fermentation had the lowest conversion and yields. Operating at a high pH (∼9) contributed to the high selectivity to acetic acid, which might be industrially desirable but at the cost of lower yield compared to a neutral pH.

  3. Solid-state fermentation for gluconic acid production from sugarcane molasses by Aspergillus niger ARNU-4 employing tea waste as the novel solid support.

    PubMed

    Sharma, Amit; Vivekanand, V; Singh, Rajesh P

    2008-06-01

    Solid-state fermentation (SSF) was evaluated to produce gluconic acid by metal resistant Aspergillus niger (ARNU-4) strain using tea waste as solid support and with molasses based fermentation medium. Various crucial parameters such as moisture content, temperature, aeration and inoculum size were derived; 70% moisture level, 30 degrees C temperature, 3% inoculum size and an aeration volume of 2.5l min(-1) was suited for maximal (76.3 gl(-1)) gluconic acid production. Non-clarified molasses based fermentation media was utilized by strain ARNU-4 and maximum gluconic acid production was observed following 8-12 days of fermentation cycle. Different concentrations of additives viz. oil cake, soya oil, jaggary, yeast extract, cheese whey and mustard oil were supplemented for further enhancement of the production ability of microorganism. Addition of yeast extract (0.5%) was observed inducive for enhanced (82.2 gl(-1)) gluconic acid production.

  4. Protective effects of antioxidants on linoleic acid-treated bovine oocytes during maturation and subsequent embryo development.

    PubMed

    Khalil, Wael A; Marei, Waleed F A; Khalid, Muhammad

    2013-07-15

    Linoleic acid (LA; n-6, 18:2) is the most abundant polyunsaturated fatty acid in the ovarian follicular fluid and is known to inhibit oocyte maturation and its subsequent development. In the present study, we investigated how its effects on cumulus cell expansion, oocyte nuclear maturation, and blastocyst development are altered by supplementation of the media with vitamin E (VE; 100 μM) and glutathione peroxidase (GPx; 1 μM) either alone or in combination, and whether it has any effect on the mRNA expression of GPx1, GPx4, or superoxide dismutase (SOD2) in the bovine cumulus oocyte complexes (COCs). LA supplementation of the culture media significantly (P ≤ 0.05) reduced the percentage of COCs exhibiting full cumulus cell expansion and the percentage of oocytes reaching metaphase II stage, and lowered the blastocyst rate compared with controls. And these inhibitory effects were associated with a reduction in the relative mRNA expression of GPx1 and SOD2 but not of GPx4 compared with controls. However, VE and GPx, both alone and in combination, completely abrogated the inhibitory effects of LA on nuclear maturation of oocytes and blastocyst rate but failed to do so for cumulus cell expansion. In conclusion, these data suggest that the detrimental effects of LA on oocyte developmental competence are mediated, at least in part, by a reduction in GPx1 and SOD2 mRNA expression. Moreover, VE and GPx may provide protection to most of the inhibitory effects of LA.

  5. An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid.

    PubMed

    Li, Xiaoming; Zhao, Jianwei; Wang, Dongbo; Yang, Qi; Xu, Qiuxiang; Deng, Yongchao; Yang, Weiqiang; Zeng, Guangming

    2016-02-01

    Short-chain fatty acid (SCFA) production from waste activated sludge (WAS) anaerobic fermentation is often limited by the slow hydrolysis rate and poor substrate availability, thus a long fermentation time is required. This paper reports a new pretreatment approach, i.e., using free nitrous acid (FNA) to pretreat sludge, for significantly enhanced SCFA production. Experimental results showed the highest SCFA production occurred at 1.8 mg FNA/L with time of day 6, which was 3.7-fold of the blank at fermentation time of day 12. Mechanism studies revealed that FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. It was also found that FNA pretreatment benefited hydrolysis and acidification processes but inhibited the activities of methanogens, thereby promoting the yield of SCFA. In addition, the FNA pretreatment substantially stimulated the activities of key enzymes responsible for hydrolysis and acidification, which were consistent with the improvement of solubilization, hydrolysis and acidification of WAS anaerobic fermentation.

  6. Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth.

    PubMed

    Wu, Jinglan; Peng, Qijun; Arlt, Wolfgang; Minceva, Mirjana

    2009-12-11

    One of the conventional processes used for the recovery of citric acid from its fermentation broth is environmentally harmful and cost intensive. In this work an innovative benign process, which comprises simulated moving bed (SMB) technology and use of a tailor-made tertiary poly(4-vinylpyridine) (PVP) resin as a stationary phase is proposed. This paper focuses on a model-based design of the operation conditions for an existing pilot-scale SMB plant. The SMB unit is modeled on the basis of experimentally determined hydrodynamics, thermodynamics and mass transfer characteristics in a single chromatographic column. Three mathematical models are applied and validated for the prediction of the experimentally attained breakthrough and elution profiles of citric acid and the main impurity component (glucose). The transport dispersive model was selected for the SMB simulation and design studies, since it gives a satisfactory prediction of the elution profiles within acceptable computational time. The equivalent true moving bed (TMB) and SMB models give a good prediction of the experimentally attained SMB separation performances, obtained with a real clarified and concentrated fermentation broth as a feed mixture. The SMB separation requirements are set to at least 99.8% citric acid purity and 90% citric acid recovery in the extract stream. The complete regeneration in sections 1 and 4 is unnecessary. Therefore the net flow rates in all four SMB sections have been considered in the unit design. The influences of the operating conditions (the flow rate in each section, switching time and unit configuration) on the SMB performances were investigated systematically. The resulting SMB design provides 99.8% citric acid purity and 97.2% citric acid recovery in the extract. In addition the citric acid concentration in the extract is a half of its concentration in the pretreated fermentation broth (feed).

  7. Effect of acid whey and freeze-dried cranberries on lipid oxidation and fatty acid composition of nitrite-/nitrate-free fermented sausage made from deer meat

    PubMed Central

    Karwowska, Małgorzata; Dolatowski, Zbigniew J.

    2017-01-01

    Objective This study evaluated the effect of acid whey and freeze-dried cranberries on the physicochemical characteristics, lipid oxidation and fa