Science.gov

Sample records for acinar cell death

  1. Primary retroperitoneal acinar cell cystadenoma.

    PubMed

    Pesci, Anna; Castelli, Paola; Facci, Enrico; Romano, Luigi; Zamboni, Giuseppe

    2012-03-01

    In this report, we describe a case of hitherto unreported primary retroperitoneal acinar cell cystadenoma that morphologically and immunophenotypically resembled pancreatic acinar cell cystadenoma. Pancreatic acinar cell cystadenoma is a very uncommon benign lesion characterized by acinar cell differentiation, the evidence of pancreatic exocrine enzyme production, and the absence of cellular atypia. Our case occurred in a 55-year-old woman presenting a 10-cm multilocular cystic lesion in the retroperitoneum thought to be a mucinous cystic neoplasm. At laparotomy, the cystic mass, which showed no connection with any organ, was completely resected with a clinical diagnosis of cystic lymphangioma. The diagnosis of retroperitoneal acinar cell cystadenoma was based on the recognition of morphological acinar differentiation, the immunohistochemical demonstration of the acinar marker trypsin, and the absence of cellular atypia. These peculiar features can be used in the differential diagnosis with all the other cystic lesions of the retroperitoneum.

  2. The ryanodine receptor is expressed in human pancreatic acinar cells and contributes to acinar cell injury.

    PubMed

    Lewarchik, Christopher M; Orabi, Abrahim I; Jin, Shunqian; Wang, Dong; Muili, Kamaldeen A; Shah, Ahsan U; Eisses, John F; Malik, Adeel; Bottino, Rita; Jayaraman, Thottala; Husain, Sohail Z

    2014-09-01

    Physiological calcium (Ca(2+)) signals within the pancreatic acinar cell regulate enzyme secretion, whereas aberrant Ca(2+) signals are associated with acinar cell injury. We have previously identified the ryanodine receptor (RyR), a Ca(2+) release channel on the endoplasmic reticulum, as a modulator of these pathological signals. In the present study, we establish that the RyR is expressed in human acinar cells and mediates acinar cell injury. We obtained pancreatic tissue from cadaveric donors and identified isoforms of RyR1 and RyR2 by qPCR. Immunofluorescence staining of the pancreas showed that the RyR is localized to the basal region of the acinar cell. Furthermore, the presence of RyR was confirmed from isolated human acinar cells by tritiated ryanodine binding. To determine whether the RyR is functionally active, mouse or human acinar cells were loaded with the high-affinity Ca(2+) dye (Fluo-4 AM) and stimulated with taurolithocholic acid 3-sulfate (TLCS) (500 μM) or carbachol (1 mM). Ryanodine (100 μM) pretreatment reduced the magnitude of the Ca(2+) signal and the area under the curve. To determine the effect of RyR blockade on injury, human acinar cells were stimulated with pathological stimuli, the bile acid TLCS (500 μM) or the muscarinic agonist carbachol (1 mM) in the presence or absence of the RyR inhibitor ryanodine. Ryanodine (100 μM) caused an 81% and 47% reduction in acinar cell injury, respectively, as measured by lactate dehydrogenase leakage (P < 0.05). Taken together, these data establish that the RyR is expressed in human acinar cells and that it modulates acinar Ca(2+) signals and cell injury.

  3. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer.

    PubMed

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-08-21

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC.

  4. Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice

    PubMed Central

    Li, Ning; Wu, Xuefeng; Holzer, Ryan G.; Lee, Jun-Hee; Todoric, Jelena; Park, Eek-Joong; Ogata, Hisanobu; Gukovskaya, Anna S.; Gukovsky, Ilya; Pizzo, Donald P.; VandenBerg, Scott; Tarin, David; Atay, Çiǧdem; Arkan, Melek C.; Deerinck, Thomas J.; Moscat, Jorge; Diaz-Meco, Maria; Dawson, David; Erkan, Mert; Kleeff, Jörg; Karin, Michael

    2013-01-01

    Chronic pancreatitis is an inflammatory disease that causes progressive destruction of pancreatic acinar cells and, ultimately, loss of pancreatic function. We investigated the role of IκB kinase α (IKKα) in pancreatic homeostasis. Pancreas-specific ablation of IKKα (IkkαΔpan) caused spontaneous and progressive acinar cell vacuolization and death, interstitial fibrosis, inflammation, and circulatory release of pancreatic enzymes, clinical signs resembling those of human chronic pancreatitis. Loss of pancreatic IKKα causes defective autophagic protein degradation, leading to accumulation of p62-mediated protein aggregates and enhanced oxidative and ER stress in acinar cells, but none of these effects is related to NF-κB. Pancreas-specific p62 ablation prevented ER and oxidative stresses and attenuated pancreatitis in IkkαΔpan mice, suggesting that cellular stress induced by p62 aggregates promotes development of pancreatitis. Importantly, downregulation of IKKα and accumulation of p62 aggregates were also observed in chronic human pancreatitis. Our studies demonstrate that IKKα, which may control autophagic protein degradation through its interaction with ATG16L2, plays a critical role in maintaining pancreatic acinar cell homeostasis, whose dysregulation promotes pancreatitis through p62 aggregate accumulation. PMID:23563314

  5. Case report. Acinar cell carcinoma with fatty change arising from the pancreas.

    PubMed

    Chung, W-S; Park, M-S; Kim, D W; Kim, K W

    2011-12-01

    Acinar cell carcinoma of the pancreas is a rare malignant tumour developing from acinar cells, accounting for approximately 1% of pancreatic exocrine tumours. We experienced a case of an acinar cell carcinoma with fatty change. To the best of our knowledge, this is the first case report of an acinar cell carcinoma with fatty change in the clinical literature.

  6. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    SciTech Connect

    Yu, Ge; Wan, Rong; Hu, Yanling; Ni, Jianbo; Yin, Guojian; Xing, Miao; Shen, Jie; Tang, Maochun; Chen, Congying; Fan, Yuting; Xiao, Wenqin; Zhao, Yan; Wang, Xingpeng; and others

    2014-01-31

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.

  7. TGF-β1 promotes acinar to ductal metaplasia of human pancreatic acinar cells

    PubMed Central

    Liu, Jun; Akanuma, Naoki; Liu, Chengyang; Naji, Ali; Halff, Glenn A.; Washburn, William K.; Sun, Luzhe; Wang, Pei

    2016-01-01

    Animal studies suggest that pancreatitis-induced acinar-to-ductal metaplasia (ADM) is a key event for pancreatic ductal adenocarcinoma (PDAC) initiation. However, there has not been an adequate system to explore the mechanisms of human ADM induction. We have developed a flow cytometry-based, high resolution lineage tracing method and 3D culture system to analyse ADM in human cells. In this system, well-known mouse ADM inducers did not promote ADM in human cells. In contrast, TGF-β1 efficiently converted human acinar cells to duct-like cells (AD) in a SMAD-dependent manner, highlighting fundamental differences between the species. Functionally, AD cells gained transient proliferative capacity. Furthermore, oncogenic KRAS did not induce acinar cell proliferation, but did sustain the proliferation of AD cells, suggesting that oncogenic KRAS requires ADM-associated-changes to promote PDAC initiation. This ADM model provides a novel platform to explore the mechanisms involved in the development of human pancreatic diseases. PMID:27485764

  8. The MET Receptor Tyrosine Kinase Confers Repair of Murine Pancreatic Acinar Cells following Acute and Chronic Injury

    PubMed Central

    Gaziova, Ivana; Jackson, Daniel; Boor, Paul J.; Carter, Dwayne; Cruz-Monserrate, Zobeida; Elferink, Cornelis J.; Joshi, Aditya D.; Kaphalia, Bhupendra; Logsdon, Craig D.; Pereira de Castro, Karen; Soong, Lynn; Tao, Xinrong; Qiu, Suimin; Elferink, Lisa A.

    2016-01-01

    Acinar cells represent the primary target in necroinflammatory diseases of the pancreas, including pancreatitis. The signaling pathways guiding acinar cell repair and regeneration following injury remain poorly understood. The purpose of this study was to determine the importance of Hepatocyte Growth Factor Receptor/MET signaling as an intrinsic repair mechanism for acinar cells following acute damage and chronic alcohol-associated injury. Here, we generated mice with targeted deletion of MET in adult acinar cells (MET-/-). Acute and repetitive pancreatic injury was induced in MET-/- and control mice with cerulein, and chronic injury by feeding mice Lieber-DeCarli diets containing alcohol with or without enhancement of repetitive pancreatic injury. We examined the exocrine pancreas of these mice histologically for acinar death, edema, inflammation and collagen deposition and changes in the transcriptional program. We show that MET expression is relatively low in normal adult pancreas. However, MET levels were elevated in ductal and acinar cells in human pancreatitis specimens, consistent with a role for MET in an adaptive repair mechanism. We report that genetic deletion of MET in adult murine acinar cells was linked to increased acinar cell death, chronic inflammation and delayed recovery (regeneration) of pancreatic exocrine tissue. Notably, increased pancreatic collagen deposition was detected in MET knockout mice following repetitive injury as well alcohol-associated injury. Finally, we identified specific alterations of the pancreatic transcriptome associated with MET signaling during injury, involved in tissue repair, inflammation and endoplasmic reticulum stress. Together, these data demonstrate the importance of MET signaling for acinar repair and regeneration, a novel finding that could attenuate the symptomology of pancreatic injury. PMID:27798657

  9. Effects of Benzodiazepines on Acinar and Myoepithelial Cells

    PubMed Central

    Mattioli, Tatiana M. F.; Alanis, Luciana R. A.; Sapelli, Silvana da Silva; de Lima, Antonio A. S.; de Noronha, Lucia; Rosa, Edvaldo A. R.; Althobaiti, Yusuf S.; Almalki, Atiah H.; Sari, Youssef; Ignacio, Sergio A.; Johann, Aline C. B. R.; Gregio, Ana M. T.

    2016-01-01

    Background: Benzodiazepines (BZDs), the most commonly prescribed psychotropic drugs with anxiolytic action, may cause hyposalivation. It has been previously shown that BZDs can cause hypertrophy and decrease the acini cell number. In this study, we investigated the effects of BZDs and pilocarpine on rat parotid glands, specifically on acinar, ductal, and myoepithelial cells. Methods: Ninety male Wistar rats were divided into nine groups. Control groups received a saline solution for 30 days (C30) and 60 days (C60), and pilocarpine (PILO) for 60 days. Experimental groups received lorazepam (L30) and midazolam (M30) for 30 days. Another group (LS60 or MS60) received lorazepam or midazolam for 30 days, respectively, and saline for additional 30 days. Finally, other groups (LP60 or MP60) received either lorazepam or midazolam for 30 days, respectively, and pilocarpine for additional 30 days. The expression of calponin in myoepithelial cells and the proliferating cell nuclear antigen (PCNA) in acinar and ductal cells were evaluated. Results: Animals treated with lorazepam showed an increase in the number of positive staining cells for calponin as compared to control animals (p < 0.05). Midazolam administered with pilocarpine (MP60) induced an increase in the proliferation of acinar and ductal cells and a decrease in the positive staining cells for calponin as compared to midazolam administered with saline (MS60). Conclusion: We found that myoepithelial cells might be more sensitive to the effects of BZD than acinar and ductal cells in rat parotid glands. PMID:27445812

  10. Membrane Proteome Analysis of Cerulein-Stimulated Pancreatic Acinar Cells: Implication for Early Event of Acute Pancreatitis

    PubMed Central

    Lee, Jangwon; Seo, Ji Hye; Lim, Joo Weon

    2010-01-01

    Background/Aims Cerulein pancreatitis is similar to human edematous pancreatitis with dysregulation of the production and secretion of digestive enzymes, edema formation, cytoplasmic vacuolization and the death of acinar cells. We hypothesized that membrane proteins may be altered as the early event during the induction of acute pancreatitis. Present study aims to determine the differentially expressed proteins in the membranes of cerulein-treated pancreatic acinar cells. Methods Pancreatic acinar AR42J cells were treated with 10-8 M cerulein for 1 hour. Membrane proteins were isolated from the cells and separated by two-dimensional electrophoresis using pH gradients of 5-8. Membrane proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. The differentially expressed proteins, whose expression levels were more or less than three-fold in cerulein-treated cells, were analyzed. Results Two differentially expressed proteins (mannan-binding lectin-associated serine protease-2, heat shock protein 60) were up-regulated while four proteins (protein disulfide isomerase, γ-actin, isocitrate dehydrogenase 3, seven in absentia homolog 1A) were down-regulated by cerulein treatment in pancreatic acinar cells. These proteins are related to cell signaling, oxidative stress, and cytoskeleton arrangement. Conclusions Oxidative stress may induce cerulein-induced cell injury and disturbances in defense mechanism in pancreatic acinar cells. PMID:20479917

  11. Functional somatostatin receptors on a rat pancreatic acinar cell line

    SciTech Connect

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A. Mount Zion Hospital and Medical Center, San Francisco, CA Universite Libre de Bruxelles, Brussels )

    1988-07-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of {sup 125}I-(Tyr{sup 11})Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 {plus minus} 20 fmol/10{sup 6} cells. Somatostatin receptor structure was analyzed by covalently cross-linking {sup 125}I-(Tyr{sup 11})somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N{sub i} to inhibit adenylate cyclase.

  12. Duct Cells Contribute to Regeneration of Endocrine and Acinar Cells Following Pancreatic Damage in Adult Mice

    PubMed Central

    CRISCIMANNA, ANGELA; SPEICHER, JULIE A.; HOUSHMAND, GOLBAHAR; SHIOTA, CHIYO; PRASADAN, KRISHNA; Ji, BAOAN; LOGSDON, CRAIG D.; GITTES, GEORGE K.; ESNI, FARZAD

    2015-01-01

    BACKGROUND & AIMS There have been conflicting results on a cell of origin in pancreatic regeneration. These discrepancies predominantly stem from lack of specific markers for the pancreatic precursors/stem cells, as well as differences in the targeted cells and severity of tissue injury in the experimental models so far proposed. We attempted to create a model that used diphtheria toxin receptor (DTR) to ablate specific cell populations, control the extent of injury, and avoid induction of the inflammatory response. METHODS To target specific types of pancreatic cells, we crossed R26DTR or R26dtR/lacZ mice with transgenic mice that express the Cre recombinase in the pancreas, under control of the Pdx1 (global pancreatic) or elastase (acinar-specific) promoters. RESULTS Exposure of PdxCre;R26DTR mice to diphtheria toxin resulted in extensive ablation of acinar and endocrine tissues but not ductal cells. Surviving cells within the ductal compartment contributed to regeneration of endocrine and acinar cells via recapitulation of the embryonic pancreatic developmental program. However, following selective ablation of acinar tissue in ElaCre-ERT2;R26DTR mice, regeneration likely occurred by reprogramming of ductal cells to acinar lineage. CONCLUSIONS In the pancreas of adult mice, epithelial cells within the ductal compartment contribute to regeneration of endocrine and acinar cells. The severity of injury determines the regenerative mechanisms and cell types that contribute to this process. PMID:21763240

  13. Ca2+-activated K channels in parotid acinar cells

    PubMed Central

    Romanenko, Victor G; Thompson, Jill

    2010-01-01

    Fluid secretion relies on a close interplay between Ca2+-activated Cl and K channels. Salivary acinar cells contain both large conductance, BK, and intermediate conductance, IK1, K channels. Physiological fluid secretion occurs with only modest (<500 nM) increases in intracellular Ca2+ levels but BK channels in many cell types and in heterologous expression systems require very high concentrations for significant activation. We report here our efforts to understand this apparent contradiction. We determined the Ca2+ dependence of IK1 and BK channels in mouse parotid acinar cells. IK1 channels activated with an apparent Ca2+ affinity of about 350 nM and a hill coefficient near 3. Native parotid BK channels activated at similar Ca2+ levels unlike the BK channels in other cell types. Since the parotid BK channel is encoded by an uncommon splice variant, we examined this clone in a heterologous expression system. In contrast to the native parotid channel, activation of this expressed “parslo” channel required very high levels of Ca2+. In order to understand the functional basis for the special properties of the native channels, we analyzed the parotid BK channel in the context of the horrigan-Aldrich model of BK channel gating. We found that the shifted activation of parotid BK channels resulted from a hyperpolarizing shift of the voltage dependence of voltage sensor activation and channel opening and included a large change in the coupling of these two processes. PMID:20519930

  14. PNA lectin for purifying mouse acinar cells from the inflamed pancreas.

    PubMed

    Xiao, Xiangwei; Fischbach, Shane; Fusco, Joseph; Zimmerman, Ray; Song, Zewen; Nebres, Philip; Ricks, David Matthew; Prasadan, Krishna; Shiota, Chiyo; Husain, Sohail Z; Gittes, George K

    2016-02-17

    Better methods for purifying human or mouse acinar cells without the need for genetic modification are needed. Such techniques would be advantageous for the specific study of certain mechanisms, such as acinar-to-beta-cell reprogramming and pancreatitis. Ulex Europaeus Agglutinin I (UEA-I) lectin has been used to label and isolate acinar cells from the pancreas. However, the purity of the UEA-I-positive cell fraction has not been fully evaluated. Here, we screened 20 widely used lectins for their binding specificity for major pancreatic cell types, and found that UEA-I and Peanut agglutinin (PNA) have a specific affinity for acinar cells in the mouse pancreas, with minimal affinity for other major pancreatic cell types including endocrine cells, duct cells and endothelial cells. Moreover, PNA-purified acinar cells were less contaminated with mesenchymal and inflammatory cells, compared to UEA-I purified acinar cells. Thus, UEA-I and PNA appear to be excellent lectins for pancreatic acinar cell purification. PNA may be a better choice in situations where mesenchymal cells or inflammatory cells are significantly increased in the pancreas, such as type 1 diabetes, pancreatitis and pancreatic cancer.

  15. PNA lectin for purifying mouse acinar cells from the inflamed pancreas

    PubMed Central

    Xiao, Xiangwei; Fischbach, Shane; Fusco, Joseph; Zimmerman, Ray; Song, Zewen; Nebres, Philip; Ricks, David Matthew; Prasadan, Krishna; Shiota, Chiyo; Husain, Sohail Z.; Gittes, George K.

    2016-01-01

    Better methods for purifying human or mouse acinar cells without the need for genetic modification are needed. Such techniques would be advantageous for the specific study of certain mechanisms, such as acinar-to-beta-cell reprogramming and pancreatitis. Ulex Europaeus Agglutinin I (UEA-I) lectin has been used to label and isolate acinar cells from the pancreas. However, the purity of the UEA-I-positive cell fraction has not been fully evaluated. Here, we screened 20 widely used lectins for their binding specificity for major pancreatic cell types, and found that UEA-I and Peanut agglutinin (PNA) have a specific affinity for acinar cells in the mouse pancreas, with minimal affinity for other major pancreatic cell types including endocrine cells, duct cells and endothelial cells. Moreover, PNA-purified acinar cells were less contaminated with mesenchymal and inflammatory cells, compared to UEA-I purified acinar cells. Thus, UEA-I and PNA appear to be excellent lectins for pancreatic acinar cell purification. PNA may be a better choice in situations where mesenchymal cells or inflammatory cells are significantly increased in the pancreas, such as type 1 diabetes, pancreatitis and pancreatic cancer. PMID:26884345

  16. The role of Ca2+ influx in endocytic vacuole formation in pancreatic acinar cells

    PubMed Central

    Voronina, Svetlana; Collier, David; Chvanov, Michael; Middlehurst, Ben; Beckett, Alison J.; Prior, Ian A.; Criddle, David N.; Begg, Malcolm; Mikoshiba, Katsuhiko; Sutton, Robert; Tepikin, Alexei V.

    2014-01-01

    The inducers of acute pancreatitis trigger a prolonged increase in the cytosolic Ca2+ concentration ([Ca2+]c), which is responsible for the damage to and eventual death of pancreatic acinar cells. Vacuolization is an important indicator of pancreatic acinar cell damage. Furthermore, activation of trypsinogen occurs in the endocytic vacuoles; therefore the vacuoles can be considered as ‘initiating’ organelles in the development of the cell injury. In the present study, we investigated the relationship between the formation of endocytic vacuoles and Ca2+ influx developed in response to the inducers of acute pancreatitis [bile acid taurolithocholic acid 3-sulfate (TLC-S) and supramaximal concentration of cholecystokinin-8 (CCK)]. We found that the inhibitor of STIM (stromal interaction molecule)/Orai channels, GSK-7975A, effectively suppressed both the Ca2+ influx (stimulated by inducers of pancreatitis) and the formation of endocytic vacuoles. Cell death induced by TLC-S or CCK was also inhibited by GSK-7975A. We documented the formation of endocytic vacuoles in response to store-operated Ca2+ entry (SOCE) induced by thapsigargin [TG; inhibitor of sarcoplasmic/endoplasmic reticulum (ER) Ca2+ pumps] and observed strong inhibition of TG-induced vacuole formation by GSK-7975A. Finally, we found that structurally-unrelated inhibitors of calpain suppress formation of endocytic vacuoles, suggesting that this Ca2+-dependent protease is a mediator between Ca2+ elevation and endocytic vacuole formation. PMID:25370603

  17. Acinar cell carcinoma of exocrine pancreas in two horses.

    PubMed

    de Brot, S; Junge, H; Hilbe, M

    2014-05-01

    Two horses were presented with non-specific clinical signs of several weeks' duration and were humanely destroyed due to a poor prognosis. At necropsy examination, both horses had multiple small, white nodules replacing pancreatic tissue and involving the serosal surface of the abdominal cavity, the liver and the lung. Microscopically, neoplastic cells were organized in acini and contained abundant (case 1) or sparse (horse 2) intracytoplasmic zymogen granules. Immunohistochemically, both tumours expressed amylase and pan-cytokeratin, but not insulin or neuron-specific enolase. In case 2, a low percentage of neoplastic cells expressed glucagon and synaptophysin. The presence of zymogen granules was confirmed in both cases by electron microscopy and occasional fibrillary or glucagon granules were observed in cases 1 and 2, respectively. A diagnosis of pancreatic acinar cell carcinoma was established in both horses.

  18. Sulforaphane Protects Pancreatic Acinar Cell Injury by Modulating Nrf2-Mediated Oxidative Stress and NLRP3 Inflammatory Pathway

    PubMed Central

    Dong, Zhaojun; Shang, Haixiao; Chen, Yong Q.; Pan, Li-Long

    2016-01-01

    Acute pancreatitis (AP) is characterized by early activation of intra-acinar proteases followed by acinar cell death and inflammation. Cellular oxidative stress is a key mechanism underlying these pathological events. Sulforaphane (SFN) is a natural organosulfur antioxidant with undescribed effects on AP. Here we investigated modulatory effects of SFN on cellular oxidation and inflammation in AP. AP was induced by cerulean hyperstimulation in BALB/c mice. Treatment group received a single dose of 5 mg/kg SFN for 3 consecutive days before AP. We found that SFN administration attenuated pancreatic injury as evidenced by serum amylase, pancreatic edema, and myeloperoxidase, as well as by histological examination. SFN administration reverted AP-associated dysregulation of oxidative stress markers including pancreatic malondialdehyde and redox enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). In acinar cells, SFN treatment upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes including quinoneoxidoreductase-1, heme oxidase-1, SOD1, and GPx1. In addition, SFN selectively suppressed cerulein-induced activation of the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome, in parallel with reduced nuclear factor- (NF-) κB activation and modulated NF-κB-responsive cytokine expression. Together, our data suggested that SFN modulates Nrf2-mediated oxidative stress and NLRP3/NF-κB inflammatory pathways in acinar cells, thereby protecting against AP. PMID:27847555

  19. Pancreatic acinar cells: effects of micro-ionophoretic polypeptide application on membrane potential and resistance.

    PubMed

    Petersen, O H; Philpott, H G

    1979-05-01

    1. Acinar cell membrane potential and resistance were measured from superfused segments of mouse pancreas, in vitro, using intracellular glass micro-electrodes. One or two extracellular micropipettes containing caerulein, bombesin nonapeptide (Bn) or acetylcholine (ACh) were placed near to the surface of the impaled acinus. The secretagogues were ejected rapidly from the micropipettes by ionophoresis.2. Each secretagogue evoked a similar electrical response from the impaled acinar cell: membrane depolarization and a simultaneous reduction in input resistance. The duration of cell activation from caerulein ionophoresis was longer than that observed for ACh and Bn. The cell response to the peptide hormone applications could be repeated in the presence of atropine.3. The minimum interval before the onset of cell depolarization after caerulein ionophoresis was determined. Values ranged between 500 and 1000 msec. The minimum latencies after Bn ionophoresis were 500-1400 msec.4. With two electrodes inserted into electrically coupled acinar cells, direct measurements of the caerulein and Bn null potentials were made. At high negative membrane potentials an enhanced depolarization was evoked by caerulein ionophoresis. At low negative membrane potentials the caerulein stimulation produced a diminished depolarization, and at membrane potentials less than - 10 mV acinar cell hyperpolarizations were observed. A similar series of responses was obtained in experiments where Bn ionophoresis was used. The caerulein and the Bn null potentials were always contained within - 10 to - 15 mV.5. The results describe the almost identical electrical response of acinar cells to stimulation by ACh, caerulein and bombesin. All three secretagogues have similar null potentials and latencies of activation on acinar cells. The bombesin latency responses appear as short as those measured for caerulein and provide electro-physiological evidence that Bn acts directly on acinar cells. The findings

  20. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress

    PubMed Central

    Antonucci, Laura; Fagman, Johan B.; Kim, Ju Youn; Todoric, Jelena; Gukovsky, Ilya; Mackey, Mason; Ellisman, Mark H.; Karin, Michael

    2015-01-01

    Pancreatic acinar cells possess very high protein synthetic rates as they need to produce and secrete large amounts of digestive enzymes. Acinar cell damage and dysfunction cause malnutrition and pancreatitis, and inflammation of the exocrine pancreas that promotes development of pancreatic ductal adenocarcinoma (PDAC), a deadly pancreatic neoplasm. The cellular and molecular mechanisms that maintain acinar cell function and whose dysregulation can lead to tissue damage and chronic pancreatitis are poorly understood. It was suggested that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis, but it is unknown whether impaired autophagy is a cause or a consequence of pancreatitis. To address this question, we generated Atg7Δpan mice that lack the essential autophagy-related protein 7 (ATG7) in pancreatic epithelial cells. Atg7Δpan mice exhibit severe acinar cell degeneration, leading to pancreatic inflammation and extensive fibrosis. Whereas ATG7 loss leads to the expected decrease in autophagic flux, it also results in endoplasmic reticulum (ER) stress, accumulation of dysfunctional mitochondria, oxidative stress, activation of AMPK, and a marked decrease in protein synthetic capacity that is accompanied by loss of rough ER. Atg7Δpan mice also exhibit spontaneous activation of regenerative mechanisms that initiate acinar-to-ductal metaplasia (ADM), a process that replaces damaged acinar cells with duct-like structures. PMID:26512112

  1. Characterization of single potassium channels in mouse pancreatic acinar cells.

    PubMed Central

    Schmid, A; Schulz, I

    1995-01-01

    1. Single K(+)-selective channels with a conductance of about 48 pS (pipette, 145 mM KCl; bath, 140 mM NaCl + 4.7 mM KCl) were recorded in the patch-clamp whole-cell configuration in isolated mouse pancreatic acinar cells. 2. Neither application of the secretagogues acetylcholine (second messenger, inositol 1,4,5-trisphosphate) or secretin (second messenger, cAMP), nor addition of the catalytic subunit of protein kinase A to the pipette solution changed the activity of the 48 pS K+ channel. 3. Intracellular acidification with sodium propionate (20 mM) diminished activity of the 48 pS channel, whereas channel open probability was increased by cytosolic alkalization with 20 mM NH4Cl. 4. BaCl2 (5 mM), TEA (10 mM) or apamin (1 microM) added to the bath solution had no obvious effect on the kinetics of the 48 pS channel. Similarly, glibenclamide and diazoxide failed to influence the channel activity. 5. When extracellular NaCl was replaced by KCl, whole-cell recordings revealed an inwardly rectifying K+ current carried by a 17 pS K+ channel. 6. The inwardly rectifying K+ current was not pH dependent and could largely be blocked by Ba2+ but not by TEA. 7. Since the 48 pS K+ channel is neither Ca2+ nor cAMP regulated, we suggest that this channel could play a role in the maintenance of the negative cell resting potential. PMID:7623283

  2. Expression of claudin-5 in canine pancreatic acinar cell carcinoma - An immunohistochemical study.

    PubMed

    Jakab, Csaba; Rusvai, Miklós; Gálfi, Péter; Halász, Judit; Kulka, Janina

    2011-03-01

    Claudin-5 is an endothelium-specific tight junction protein. The aim of the present study was to detect the expression pattern of this molecule in intact pancreatic tissues and in well-differentiated and poorly differentiated pancreatic acinar cell carcinomas from dogs by the use of cross-reactive humanised anticlaudin-5 antibody. The necropsy samples taken from dogs included 10 nonneoplastic pancreatic tissues, 10 well-differentiated pancreatic acinar cell carcinomas, 10 poorly differentiated pancreatic acinar cell carcinomas, 5 intrahepatic metastases of well-differentiated and 5 intrahepatic metastases of poorly differentiated acinar cell carcinomas. A strong lateral membrane claudin-5 positivity was detected in exocrine cells in all intact pancreas samples. The endocrine cells of the islets of Langerhans and the epithelial cells of the ducts were negative for claudin-5. The endothelial cells of vessels and lymphatic channels in the stroma of the intact pancreas showed strong membrane positivity for this claudin. All well-differentiated exocrine pancreas carcinomas and all poorly-differentiated pancreatic acinar cell carcinoma samples showed a diffuse loss of claudin-5 expression. The claudin-5-positive peritumoural vessels and lymphatic channels facilitated the detection of vascular invasion of the claudin-5-negative cancer cells. In liver metastasis samples, the pancreatic carcinomas were negative for claudin-5. It seems that the loss of expression of claudin-5 may lead to carcinogenesis in canine exocrine pancreatic cells.

  3. Identification of miRNAs Involved in Reprogramming Acinar Cells into Insulin Producing Cells.

    PubMed

    Teichenne, Joan; Morró, Meritxell; Casellas, Alba; Jimenez, Veronica; Tellez, Noelia; Leger, Adrien; Bosch, Fatima; Ayuso, Eduard

    2015-01-01

    Reprogramming acinar cells into insulin producing cells using adenoviral (Ad)-mediated delivery of Pdx1, Ngn3 and MafA (PNM) is an innovative approach for the treatment of diabetes. Here, we aimed to investigate the molecular mechanisms involved in this process and in particular, the role of microRNAs. To this end, we performed a comparative study of acinar-to-β cell reprogramming efficiency in the rat acinar cell line AR42J and its subclone B13 after transduction with Ad-PNM. B13 cells were more efficiently reprogrammed than AR42J cells, which was demonstrated by a strong activation of β cell markers (Ins1, Ins2, IAPP, NeuroD1 and Pax4). miRNome panels were used to analyze differentially expressed miRNAs in acinar cells under four experimental conditions (i) non-transduced AR42J cells, (ii) non-transduced B13 cells, (iii) B13 cells transduced with Ad-GFP vectors and (iv) B13 cells transduced with Ad-PNM vectors. A total of 59 miRNAs were found to be differentially expressed between non-transduced AR42J and B13 cells. Specifically, the miR-200 family was completely repressed in B13 cells, suggesting that these cells exist in a less differentiated state than AR42J cells and as a consequence they present a greater plasticity. Adenoviral transduction per se induced dedifferentiation of acinar cells and 11 miRNAs were putatively involved in this process, whereas 8 miRNAs were found to be associated with PNM expression. Of note, Ad-PNM reprogrammed B13 cells presented the same levels of miR-137-3p, miR-135a-5p, miR-204-5p and miR-210-3p of those detected in islets, highlighting their role in the process. In conclusion, this study led to the identification of miRNAs that might be of compelling importance to improve acinar-to-β cell conversion for the future treatment of diabetes.

  4. Identification of miRNAs Involved in Reprogramming Acinar Cells into Insulin Producing Cells

    PubMed Central

    Teichenne, Joan; Morró, Meritxell; Casellas, Alba; Jimenez, Veronica; Tellez, Noelia; Leger, Adrien; Bosch, Fatima; Ayuso, Eduard

    2015-01-01

    Reprogramming acinar cells into insulin producing cells using adenoviral (Ad)-mediated delivery of Pdx1, Ngn3 and MafA (PNM) is an innovative approach for the treatment of diabetes. Here, we aimed to investigate the molecular mechanisms involved in this process and in particular, the role of microRNAs. To this end, we performed a comparative study of acinar-to-β cell reprogramming efficiency in the rat acinar cell line AR42J and its subclone B13 after transduction with Ad-PNM. B13 cells were more efficiently reprogrammed than AR42J cells, which was demonstrated by a strong activation of β cell markers (Ins1, Ins2, IAPP, NeuroD1 and Pax4). miRNome panels were used to analyze differentially expressed miRNAs in acinar cells under four experimental conditions (i) non-transduced AR42J cells, (ii) non-transduced B13 cells, (iii) B13 cells transduced with Ad-GFP vectors and (iv) B13 cells transduced with Ad-PNM vectors. A total of 59 miRNAs were found to be differentially expressed between non-transduced AR42J and B13 cells. Specifically, the miR-200 family was completely repressed in B13 cells, suggesting that these cells exist in a less differentiated state than AR42J cells and as a consequence they present a greater plasticity. Adenoviral transduction per se induced dedifferentiation of acinar cells and 11 miRNAs were putatively involved in this process, whereas 8 miRNAs were found to be associated with PNM expression. Of note, Ad-PNM reprogrammed B13 cells presented the same levels of miR-137-3p, miR-135a-5p, miR-204-5p and miR-210-3p of those detected in islets, highlighting their role in the process. In conclusion, this study led to the identification of miRNAs that might be of compelling importance to improve acinar-to-β cell conversion for the future treatment of diabetes. PMID:26690959

  5. Differentiation of pancreatic acinar carcinoma cells cultured on rat testicular seminiferous tubular basement membranes

    SciTech Connect

    Watanabe, T.K.; Hansen, L.J.; Reddy, N.K.; Kanwar, Y.S.; Reddy, J.K.

    1984-11-01

    The use of rat testicular seminiferous tubular basement membrane (STBM) segments as a model substratum for the in vitro maintenance of tumor cells dissociated from a transplantable pancreatic acinar rat carcinoma is described. Ultrastructurally pure, hollow tubular segments of STBM were prepared by mechanical disaggregation, DNase digestion, and deoxycholate treatment. Dissociated pancreatic acinar carcinoma cells adhered readily to STBM segments within 1 to 6 hr, and these STBM-tumor cell aggregates were maintained for up to 7 days in serum-free chemically defined medium supplemented with hydrocortisone, insulin, vitamin C, and soybean trypsin inhibitor. The tumor cells formed acinar-like clusters and displayed intercellular junctions and polarization of secretory granules toward the center of these clusters. By 4 days, virtually all cells of this acinar carcinoma maintained on STBM in supplemented chemically defined medium contained numerous secretory granules. Cell replication, as determined by (/sup 3/H)thymidine autoradiography, ceased within 18 hr of attachment of neoplastic cells to STBM; however, all cells incorporated (/sup 3/H)leucine as evidenced by light and electron microscopic autoradiography. In addition, two-dimensional analysis and fluorography of newly synthesized secretory proteins discharged by these cells in response to carbamylcholine revealed the presence of Mr 24,000 protein and 19 other secretory proteins characteristic of this tumor. The culture system utilizing STBM and supplemented chemically defined medium should allow investigation of the effects of a variety of factors on morphogenesis, cytodifferentiation, and gene expression in pancreatic acinar tumors.

  6. A Computer-Based Automated Algorithm for Assessing Acinar Cell Loss after Experimental Pancreatitis

    PubMed Central

    Eisses, John F.; Davis, Amy W.; Tosun, Akif Burak; Dionise, Zachary R.; Chen, Cheng; Ozolek, John A.; Rohde, Gustavo K.; Husain, Sohail Z.

    2014-01-01

    The change in exocrine mass is an important parameter to follow in experimental models of pancreatic injury and regeneration. However, at present, the quantitative assessment of exocrine content by histology is tedious and operator-dependent, requiring manual assessment of acinar area on serial pancreatic sections. In this study, we utilized a novel computer-generated learning algorithm to construct an accurate and rapid method of quantifying acinar content. The algorithm works by learning differences in pixel characteristics from input examples provided by human experts. HE-stained pancreatic sections were obtained in mice recovering from a 2-day, hourly caerulein hyperstimulation model of experimental pancreatitis. For training data, a pathologist carefully outlined discrete regions of acinar and non-acinar tissue in 21 sections at various stages of pancreatic injury and recovery (termed the “ground truth”). After the expert defined the ground truth, the computer was able to develop a prediction rule that was then applied to a unique set of high-resolution images in order to validate the process. For baseline, non-injured pancreatic sections, the software demonstrated close agreement with the ground truth in identifying baseline acinar tissue area with only a difference of 1%±0.05% (p = 0.21). Within regions of injured tissue, the software reported a difference of 2.5%±0.04% in acinar area compared with the pathologist (p = 0.47). Surprisingly, on detailed morphological examination, the discrepancy was primarily because the software outlined acini and excluded inter-acinar and luminal white space with greater precision. The findings suggest that the software will be of great potential benefit to both clinicians and researchers in quantifying pancreatic acinar cell flux in the injured and recovering pancreas. PMID:25343460

  7. Low-level (gallium-aluminum-arsenide) laser irradiation of Par-C10 cells and acinar cells of rat parotid gland.

    PubMed

    Onizawa, Katsuhiro; Muramatsu, Takashi; Matsuki, Miwako; Ohta, Kazumasa; Matsuzaka, Kenichi; Oda, Yutaka; Shimono, Masaki

    2009-03-01

    We investigated cell response, including cell proliferation and expression of heat stress protein and bcl-2, to clarify the influence of low-level [gallium-aluminum-arsenide (Ga-Al-As) diode] laser irradiation on Par-C10 cells derived from the acinar cells of rat parotid glands. Furthermore, we also investigated amylase release and cell death from irradiation in acinar cells from rat parotid glands. The number of Par-C10 cells in the laser-irradiated groups was higher than that in the non-irradiated group at days 5 and 7, and the difference was statistically significant (P < 0.01). Greater expression of heat shock protein (HSP)25 and bcl-2 was seen on days 1 and 3 in the irradiated group. Assay of the released amylase showed no significant difference statistically between the irradiated group and the non-irradiated group. Trypan blue exclusion assay revealed that there was no difference in the ratio of dead to live cells between the irradiated and the non-irradiated groups. These results suggest that low-level laser irradiation promotes cell proliferation and expression of anti-apoptosis proteins in Par-C10 cells, but it does not significantly affect amylase secretion and does not induce rapid cell death in isolated acinar cells from rat parotid glands.

  8. Effect of taurine on acinar cell apoptosis and pancreatic fibrosis in dibutyltin dichloride-induced chronic pancreatitis.

    PubMed

    Matsushita, Koki; Mizushima, Takaaki; Shirahige, Akinori; Tanioka, Hiroaki; Sawa, Kiminari; Ochi, Koji; Tanimoto, Mitsune; Koide, Norio

    2012-01-01

    The relationship between pancreatic fibrosis and apoptosis of pancreatic acinar cells has not been fully elucidated. We reported that taurine had an anti-fibrotic effect in a dibutyltin dichloride (DBTC)-chronic pancreatitis model. However, the effect of taurine on apoptosis of pancreatic acinar cells is still unclear. Therefore, we examined apoptosis in DBTC-chronic pancreatitis and in the AR42J pancreatic acinar cell line with/without taurine. Pancreatic fibrosis was induced by a single administration of DBTC. Rats were fed a taurine-containing diet or a normal diet and were sacrificed at day 5. The AR42J pancreatic acinar cell line was incubated with/without DBTC with taurine chloramines. Apoptosis was determined by using terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) assay. The expression of Bad and Bcl-2 proteins in the AR42J cells lysates was detected by Western blot analysis. The apoptotic index of pancreatic acinar cells in DBTC-administered rats was significantly increased. Taurine treatment inhibited pancreatic fibrosis and apoptosis of acinar cells induced by DBTC. The number of TUNEL-positive cells in the AR42J pancreatic acinar cell lines was significantly increased by the addition of DBTC. Incubation with taurine chloramines ameliorated these changes. In conclusion, taurine inhibits apoptosis of pancreatic acinar cells and pancreatitis in experimental chronic pancreatitis.

  9. Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Liou, Geou-Yarh; Döppler, Heike; Braun, Ursula B.; Panayiotou, Richard; Scotti Buzhardt, Michele; Radisky, Derek C.; Crawford, Howard C.; Fields, Alan P.; Murray, Nicole R.; Wang, Q. Jane; Leitges, Michael; Storz, Peter

    2015-02-01

    The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.

  10. CFTR-Mediated Cl− Transport in the Acinar and Duct Cells of Rabbit Lacrimal Gland

    PubMed Central

    Lu, Michael; Ding, Chuanqing

    2013-01-01

    Purpose We investigated the role that the cystic fibrosis transmembrane conductance regulator (CFTR) may play in Cl− transport in the acinar and ductal epithelial cells of rabbit lacrimal gland (LG). Methods Primary cultured LG acinar cells were processed for whole-cell patch-clamp electrophysiological recording of Cl− currents by using perfusion media with high and low [Cl−], 10 μM forskolin and 100 μM 3-isobutyl-1-methylxanthine (IBMX), the non-specific Cl− channel blocker 4,4′-disothiocyanostilbene-2, 2′ sulphonic acid (DIDS; 100 μM) and CFTRinh-172 (10 μM), a specific blocker for CFTR. Ex vivo live cell imaging of [Cl−] changes in duct cells was performed on freshly dissected LG duct with a multiphoton confocal laser scanning microscope using a Cl− sensitive fluorescence dye, N-[ethoxycarbonylmethyl]-6-methoxy-quinolinium bromide. Results Whole-cell patch-clamp studies demonstrated the presence of Cl− current in isolated acinar cells and revealed that this Cl− current was mediated by CFTR channel. Live cell imaging also showed the presence of CFTR-mediated Cl− transport across the plasma membrane of duct cells. Conclusions Our previous data showed the presence of CFTR in all acinar and duct cells within the rabbit LG, with expression most prominent in the apical membranes of duct cells. The present study demonstrates that CFTR is actively involved in Cl− transport in both acinar cells and epithelial cells from duct segments, suggesting that CFTR may play a significant role in LG secretion. PMID:22578307

  11. Pancreatic ducts as an important route of tumor extension for acinar cell carcinoma of the pancreas.

    PubMed

    Ban, Daisuke; Shimada, Kazuaki; Sekine, Shigeki; Sakamoto, Yoshihiro; Kosuge, Tomoo; Kanai, Yae; Hiraoka, Nobuyoshi

    2010-07-01

    Acinar cell carcinoma (ACC) of the pancreas is very rare, which usually grows expansively. Recently, a variant of ACC with predominant growth in the pancreatic ducts has been proposed, and is speculated to have potentially less aggressive behavior. The aim of this study was to investigate how the pancreatic duct system is related to the growth and extension of ACC. We reviewed the detailed gross and histologic features of 13 cases of ACC, of which 7 (54%) showed intraductal polypoid growth (IPG) of the tumor in the large pancreatic ducts with a mean IPG length of 24.8 mm. Tumors with IPG were found to spread characteristically along the pancreatic ducts as extending polypoid projections, filling the ducts and destroying the duct walls, although tumors did not tend to extend beyond the pancreatic parenchyma. Comparison of the clinicopathologic characteristics showed that ACC with IPG had less infiltrative features including lymphatic, venous, and neural invasion, formation of tumor thrombus in the portal vein, nodal metastasis, and invasion beyond the pancreas to the surrounding organs; death in only 1 case (14%) of ACC with IPG was the result of ACC itself. In contrast, ACC without IPG frequently showed more infiltrative growth, and was the cause of death in 50% of patients with this type of tumor. Intraductal dissemination of ACC in pancreatic ducts was proven in 1 case of ACC with IPG. These findings suggest that a significant proportion of ACC shows IPG, which is potentially linked to less aggressive clinicopathologic characteristics.

  12. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells.

    PubMed

    Bhopale, Kamlesh K; Falzon, Miriam; Ansari, G A S; Kaphalia, Bhupendra S

    2014-04-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ∼1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol.

  13. Metabotropic glutamate receptor 1 disrupts mammary acinar architecture and initiates malignant transformation of mammary epithelial cells

    PubMed Central

    Teh, Jessica L. F.; Shah, Raj; La Cava, Stephanie; Dolfi, Sonia C.; Mehta, Madhura S.; Kongara, Sameera; Price, Sandy; Ganesan, Shridar; Reuhl, Kenneth R.; Hirshfield, Kim M.

    2016-01-01

    Metabotropic glutamate receptor 1 (mGluR1/Grm1) is a member of the G-protein-coupled receptor superfamily, which was once thought to only participate in synaptic transmission and neuronal excitability, but has more recently been implicated in non-neuronal tissue functions. We previously described the oncogenic properties of Grm1 in cultured melanocytes in vitro and in spontaneous melanoma development with 100 % penetrance in vivo. Aberrant mGluR1 expression was detected in 60–80 % of human melanoma cell lines and biopsy samples. As most human cancers are of epithelial origin, we utilized immortalized mouse mammary epithelial cells (iMMECs) as a model system to study the transformative properties of Grm1. We introduced Grm1 into iMMECs and isolated several stable mGluR1-expressing clones. Phenotypic alterations in mammary acinar architecture were assessed using three-dimensional morphogenesis assays. We found that mGluR1-expressing iMMECs exhibited delayed lumen formation in association with decreased central acinar cell death, disrupted cell polarity, and a dramatic increase in the activation of the mitogen-activated protein kinase pathway. Orthotopic implantation of mGluR1-expressing iMMEC clones into mammary fat pads of immunodeficient nude mice resulted in mammary tumor formation in vivo. Persistent mGluR1 expression was required for the maintenance of the tumorigenic phenotypes in vitro and in vivo, as demonstrated by an inducible Grm1-silencing RNA system. Furthermore, mGluR1 was found be expressed in human breast cancer cell lines and breast tumor biopsies. Elevated levels of extracellular glutamate were observed in mGluR1-expressing breast cancer cell lines and concurrent treatment of MCF7 xenografts with glutamate release inhibitor, riluzole, and an AKT inhibitor led to suppression of tumor progression. Our results are likely relevant to human breast cancer, highlighting a putative role of mGluR1 in the pathophysiology of breast cancer and the potential

  14. Aspirin Protects against Acinar Cells Necrosis in Severe Acute Pancreatitis in Mice

    PubMed Central

    Lu, Guotao; Tong, Zhihui; Ding, Yanbing; Liu, Jinjiao; Pan, Yiyuan; Gao, Lin; Tu, Jianfeng; Liu, George

    2016-01-01

    Aspirin has a clear anti-inflammatory effect and is used as an anti-inflammatory agent for both acute and long-term inflammation. Previous study has indicated that aspirin alleviated acute pancreatitis induced by caerulein in rat. However, the role of aspirin on severe acute pancreatitis (SAP) and the necrosis of pancreatic acinar cell are not yet clear. The aim of this study was to determine the effects of aspirin treatment on a SAP model induced by caerulein combined with Lipopolysaccharide. We found that aspirin reduced serum amylase and lipase levels, decreased the MPO activity, and alleviated the histopathological manifestations of pancreas and pancreatitis-associated lung injury. Proinflammatory cytokines were decreased and the expression of NF-κB p65 in acinar cell nuclei was suppressed after aspirin treatment. Furthermore, aspirin induced the apoptosis of acinar cells by TUNEL assay, and the expression of Bax and caspase 3 was increased and the expression of Bcl-2 was decreased. Intriguingly, the downregulation of critical necrosis associated proteins RIP1, RIP3, and p-MLKL was observed; what is more, we additionally found that aspirin reduced the COX level of pancreatic tissue. In conclusion, our data showed that aspirin could protect pancreatic acinar cell against necrosis and reduce the severity of SAP. Clinically, aspirin may potentially be a therapeutic intervention for SAP. PMID:28119929

  15. Acinar Cell Apoptosis in Serpini2-Deficient Mice Models Pancreatic Insufficiency

    PubMed Central

    Loftus, Stacie K; Cannons, Jennifer L; Incao, Arturo; Pak, Evgenia; Chen, Amy; Zerfas, Patricia M; Bryant, Mark A; Biesecker, Leslie G; Schwartzberg, Pamela L; Pavan, William J

    2005-01-01

    Pancreatic insufficiency (PI) when left untreated results in a state of malnutrition due to an inability to absorb nutrients. Frequently, PI is diagnosed as part of a larger clinical presentation in cystic fibrosis or Shwachman–Diamond syndrome. In this study, a mouse model for isolated exocrine PI was identified in a mouse line generated by a transgene insertion. The trait is inherited in an autosomal recessive pattern, and homozygous animals are growth retarded, have abnormal immunity, and have reduced life span. Mice with the disease locus, named pequeño (pq), exhibit progressive apoptosis of pancreatic acinar cells with severe exocrine acinar cell loss by 8 wk of age, while the islets and ductal tissue persist. The mutation in pq/pq mice results from a random transgene insertion. Molecular characterization of the transgene insertion site by fluorescent in situ hybridization and genomic deletion mapping identified an approximately 210-kb deletion on Chromosome 3, deleting two genes. One of these genes, Serpini2, encodes a protein that is a member of the serpin family of protease inhibitors. Reintroduction of only the Serpini2 gene by bacterial artificial chromosome transgenic complementation corrected the acinar cell defect as well as body weight and immune phenotypes, showing that deletion of Serpini2 causes the pequeño phenotype. Dietary supplementation of pancreatic enzymes also corrected body size, body weight, and immunodeficiency, and increased the life span of Serpini2-deficient mice, despite continued acinar cell loss. To our knowledge, this study describes the first characterized genetic animal model for isolated PI. Genetic complementation of the transgene insertion mutant demonstrates that Serpini2 deficiency directly results in the acinar cell apoptosis, malabsorption, and malnutrition observed in pq/pq mice. The rescue of growth retardation, immunodeficiency, and mortality by either Serpini2 bacterial artificial chromosome transgenic expression

  16. The effect of hyposmotic and isosmotic cell swelling on the intracellular [Ca2+] in lactating rat mammary acinar cells.

    PubMed

    Shennan, D B; Grant, A C G; Gow, I F

    2002-04-01

    The effect of hyposmotic and isosmotic cell swelling on the free intracellular calcium concentration ([Ca2+]i) in rat mammary acinar cells has been examined using the fura-2 dye technique. Ahyposmotic shock (40% reduction) increased the [Ca2+]i in rat mammary acinar cells in a fashion which was transient; the [Ca2+]i returned to a value similar to that found under isomotic conditions within 180 sec. The increase in the [Ca2+]i was dependent upon the extent of the osmotic shock. The hyposmotically-activated increase in the [Ca2+]i could not be attributed to a reduction in extracellular Na+ or a change in the ionic strength of the incubation medium. Thapsigargin (1 microM) enhanced the hyposmotically-activated increase in the [Ca2+]i. Isosmotic swelling of rat mammary acinar cells, using urea, had no significant effect on the [Ca2+]i. Similarly, a hyperosmotic shock did not affect the [Ca2+]i in rat mammary acinar cells. It appears that the effect of cell swelling on the [Ca2+]i in rat mammary acinar cells depends on how the cells are swollen (hyposmotic vs. isosmotic). This finding may have important physiological implications given that it is predicted that mammary cell volume will change in vivo under isomotic conditions.

  17. Intracellular mediators of Na -K pump activity in guinea pig pancreatic acinar cells

    SciTech Connect

    Hootman, S.R.; Ochs, D.L.; Williams, J.A.

    1985-10-01

    The involvement of CaS and cyclic nucleotides in neurohormonal regulation of Na -K -ATPase (Na -K pump) activity in guinea pig pancreatic acinar cells was investigated. Changes in Na+-K+ pump activity elicited by secretagogues were assessed by (3H)ouabain binding and by ouabain-sensitive YWRb uptake. Carbachol (CCh) and cholecystokinin octapeptide (CCK-8) each stimulated both ouabain-sensitive 86Rb+ uptake and equilibrium binding of (TH)ouabain by approximately 60%. Secretin increased both indicators of Na+-K+ pump activity by approximately 40% as did forskolin, 8-bromo- and dibutyryl cAMP, theophylline, and isobutylmethylxanthine. Incubation of acinar cells in CaS -free HEPES-buffered Ringer (HR) with 0.5 mM EGTA reduced the stimulatory effects of CCh and CCK-8 by up to 90% but caused only a small reduction in the effects of secretin, forskolin, and cAMP analogues. In addition, CCh, CCK-8, secretin, and forskolin each stimulated ouabain-insensitive 86Rb+ uptake by acinar cells. The increase elicited by CCh and CCK-8 was greatly reduced in the absence of extracellular CaS , while that caused by the latter two agents was not substantially altered. The effects of secretagogues on free CaS levels in pancreatic acinar cells also were investigated with quin-2, a fluorescent CaS chelator. Basal intracellular CaS concentration ((CaS )i) was 161 nM in resting cells and increased to 713 and 803 nM within 15 s after addition of 100 microM CCh or 10 nM CCK-8, respectively.

  18. Sudden disappearance of the blood flow in a case of pancreatic acinar cell carcinoma.

    PubMed

    Kanno, Atsushi; Masamune, Atsushi; Hamada, Shin; Kikuta, Kazuhiro; Kume, Kiyoshi; Hirota, Morihisa; Shima, Kentaro; Okada, Takaho; Motoi, Fuyuhiko; Fujishima, Fumiyoshi; Ishida, Kazuyuki; Unno, Michiaki; Shimosegawa, Tooru

    2014-01-01

    A 55-year-old man was referred to our hospital for a further examination of a pancreatic cystic tumor with a solid component exhibiting vascularity. A few days later, the patient was admitted with a complaint of sudden severe epigastric pain. Enhanced CT showed the loss of vascularity in the tumor. In particular, contrast-enhanced endoscopic ultrasonography (EUS) clearly demonstrated the disappearance of the blood flow, and a histological examination revealed acinar cell carcinoma with central necrosis. To our knowledge, this is the first case in the literature of acinar cell carcinoma associated with the sudden disappearance of vascularity. In this case, contrast-enhanced harmonic EUS was especially useful for assessing the degree of vascularity.

  19. Loss of Ifnar1 in Pancreatic Acinar Cells Ameliorates the Disease Course of Acute Pancreatitis

    PubMed Central

    Miller, Katharina J.; Raulefs, Susanne; Kong, Bo; Steiger, Katja; Regel, Ivonne; Gewies, Andreas; Kleeff, Jörg; Michalski, Christoph W.

    2015-01-01

    Type I interferon constitutes an essential component of the combinational therapy against viral disease. Acute pancreatitis is one side effect of type I interferon-based therapy, implying that activation of type I interferon signaling affects the homeostasis and integrity of pancreatic acinar cells. Here, we investigated the role of type I interferon signaling in pancreatic acinar cells using a caerulein-induced murine model of acute pancreatitis. Pancreas-specific ablation of interferon (alpha and beta) receptor 1 (Ifnar1) partially protected animals from caerulein-induced pancreatitis, as demonstrated by reduced tissue damage. Profiling of infiltrating immune cells revealed that this dampened tissue damage response correlated with the number of macrophages in the pancreas. Pharmacologic depletion of macrophages reversed the protective effect of Ifnar1 deficiency. Furthermore, expression of chemokine (C-C motif) ligand 2 (Ccl2), a potent factor for macrophage recruitment, was significantly increased in the Ifnar1-deficient pancreas. Thus, type I interferon signaling in pancreatic acinar cells controls pancreatic homeostasis by affecting the macrophage-mediated inflammatory response in the pancreas. PMID:26618925

  20. Altered Gene Expression in Cerulein-Stimulated Pancreatic Acinar Cells: Pathologic Mechanism of Acute Pancreatitis

    PubMed Central

    Yu, Ji Hoon; Lim, Joo Weon

    2009-01-01

    Acute pancreatitis is a multifactorial disease associated with the premature activation of digestive enzymes. The genes expressed in pancreatic acinar cells determine the severity of the disease. The present study determined the differentially expressed genes in pancreatic acinar cells treated with cerulein as an in vitro model of acute pancreatitis. Pancreatic acinar AR42J cells were stimulated with 10-8 M cerulein for 4 h, and genes with altered expression were identified using a cDNA microarray for 4,000 rat genes and validated by real-time PCR. These genes showed a 2.5-fold or higher increase with cerulein: lithostatin, guanylate cyclase, myosin light chain kinase 2, cathepsin C, progestin-induced protein, and pancreatic trypsin 2. Stathin 1 and ribosomal protein S13 showed a 2.5-fold or higher decreases in expression. Real-time PCR analysis showed time-dependent alterations of these genes. Using commercially available antibodies specific for guanylate cyclase, myosin light chain kinase 2, and cathepsin C, a time-dependent increase in these proteins were observed by Western blotting. Thus, disturbances in proliferation, differentiation, cytoskeleton arrangement, enzyme activity, and secretion may be underlying mechanisms of acute pancreatitis. PMID:20054485

  1. Early acinar cell changes in caerulein-induced interstitial acute pancreatitis in the rat.

    PubMed

    Grönroos, J M; Aho, H J; Hietaranta, A J; Nevalainen, T J

    1991-01-01

    Early ultrastructural and immunohistochemical changes caused by supramaximal secretory stimulation with caerulein were studied in the rat pancreas. The morphological basis for the earlier reported decrease of pancreatic juice secretion after supramaximal caerulein was the appearance of swollen and irregular zymogen-like material containing structures with short segments of budding bristle-coated membranes in the apical parts of acinar cells. Images of exocytosis of zymogen granules were only few. Later, marked vacuolization and signs of autophagocytosis are seen in the basal cytoplasm. Immunohistochemistry showed that the large zymogen containing structures were intensively labelled for trypsin at the early stages of the experiment (4-30 min). Later (1-2 h), the vacuoles were empty or contained occasional, small-labelled granules only. The pancreozymin-receptor antagonist proglumide as well as cycloleucine that inhibits protein synthesis by inhibiting the synthesis of S-adenosylmethionine, effectively prevented the caerulein induced acinar cell changes. The irregular zymogen containing structures with coated pits on their surface indicate disturbed zymogen granule formation leading to the accumulation of large lakes of zymogen material and finally to marked autophagocytosis in acinar cells. The effects of caerulein are receptor-mediated and depend on the process of methylation in the formation of zymogen granules.

  2. Encapsulation of primary salivary gland cells in enzymatically degradable poly(ethylene glycol) hydrogels promotes acinar cell characteristics.

    PubMed

    Shubin, Andrew D; Felong, Timothy J; Schutrum, Brittany E; Joe, Debria S L; Ovitt, Catherine E; Benoit, Danielle S W

    2017-03-01

    Radiation therapy for head and neck cancers leads to permanent xerostomia due to the loss of secretory acinar cells in the salivary glands. Regenerative treatments utilizing primary submandibular gland (SMG) cells show modest improvements in salivary secretory function, but there is limited evidence of salivary gland regeneration. We have recently shown that poly(ethylene glycol) (PEG) hydrogels can support the survival and proliferation of SMG cells as multicellular spheres in vitro. To further develop this approach for cell-based salivary gland regeneration, we have investigated how different modes of PEG hydrogel degradation affect the proliferation, cell-specific gene expression, and epithelial morphology within encapsulated salivary gland spheres. Comparison of non-degradable, hydrolytically-degradable, matrix metalloproteinase (MMP)-degradable, and mixed mode-degradable hydrogels showed that hydrogel degradation by any mechanism is required for significant proliferation of encapsulated cells. The expression of acinar phenotypic markers Aqp5 and Nkcc1 was increased in hydrogels that are MMP-degradable compared with other hydrogel compositions. However, expression of secretory acinar proteins Mist1 and Pip was not maintained to the same extent as phenotypic markers, suggesting changes in cell function upon encapsulation. Nevertheless, MMP- and mixed mode-degradability promoted organization of polarized cell types forming tight junctions and expression of the basement membrane proteins laminin and collagen IV within encapsulated SMG spheres. This work demonstrates that cellularly remodeled hydrogels can promote proliferation and gland-like organization by encapsulated salivary gland cells as well as maintenance of acinar cell characteristics required for regenerative approaches. Investigation is required to identify approaches to further enhance acinar secretory properties.

  3. Transplantable pancreatic acinar carcinoma

    SciTech Connect

    Warren, J.R.; Reddy, J.K.

    1981-03-15

    Fragments of the nafenopin-induced pancreatic acinar cell carcinoma of rat have been examined in vitro for patterns of intracellular protein transport and carbamylcholine-induced protein discharge. Continuous incubation of the fragments with (3H)-leucine for 60 minutes resulted in labeling of rough endoplasmic reticulum, Golgi cisternae, and mature zymogen granules, revealed by electron microscope autoradiography. This result indicates transport of newly synthesized protein from the rough endoplasmic reticulum to mature zymogen granules in approximately 60 minutes. The secretagogue carbamylcholine induced the discharge of radioactive protein by carcinoma fragments pulse-chase labeled with (3H)-leucine. A maximal effective carbamylcholine concentration of 10(-5) M was determined. The acinar carcinoma resembles normal exocrine pancreas in the observed rate of intracellular protein transport and effective secretagogue concentration. However, the acinar carcinoma fragments demonstrated an apparent low rate of carbamylcholine-induced radioactive protein discharge as compared with normal pancreatic lobules or acinar cells. It is suggested that the apparent low rate of radioactive protein discharge reflects functional immaturity of the acinar carcinoma. Possible relationships of functional differentiation to the heterogeneous cytodifferentiation of the pancreatic acinar carcinoma are discussed.

  4. Insulin Protects Pancreatic Acinar Cells from Palmitoleic Acid-induced Cellular Injury*

    PubMed Central

    Samad, Aysha; James, Andrew; Wong, James; Mankad, Parini; Whitehouse, John; Patel, Waseema; Alves-Simoes, Marta; Siriwardena, Ajith K.; Bruce, Jason I. E.

    2014-01-01

    Acute pancreatitis is a serious and sometimes fatal inflammatory disease where the pancreas digests itself. The non-oxidative ethanol metabolites palmitoleic acid (POA) and POA-ethylester (POAEE) are reported to induce pancreatitis caused by impaired mitochondrial metabolism, cytosolic Ca2+ ([Ca2+]i) overload and necrosis of pancreatic acinar cells. Metabolism and [Ca2+]i are linked critically by the ATP-driven plasma membrane Ca2+-ATPase (PMCA) important for maintaining low resting [Ca2+]i. The aim of the current study was to test the protective effects of insulin on cellular injury induced by the pancreatitis-inducing agents, ethanol, POA, and POAEE. Rat pancreatic acinar cells were isolated by collagenase digestion and [Ca2+]i was measured by fura-2 imaging. An in situ [Ca2+]i clearance assay was used to assess PMCA activity. Magnesium green (MgGreen) and a luciferase-based ATP kit were used to assess cellular ATP depletion. Ethanol (100 mm) and POAEE (100 μm) induced a small but irreversible Ca2+ overload response but had no significant effect on PMCA activity. POA (50–100 μm) induced a robust Ca2+ overload, ATP depletion, inhibited PMCA activity, and consequently induced necrosis. Insulin pretreatment (100 nm for 30 min) prevented the POA-induced Ca2+ overload, ATP depletion, inhibition of the PMCA, and necrosis. Moreover, the insulin-mediated protection of the POA-induced Ca2+ overload was partially prevented by the phosphoinositide-3-kinase (PI3K) inhibitor, LY294002. These data provide the first evidence that insulin directly protects pancreatic acinar cell injury induced by bona fide pancreatitis-inducing agents, such as POA. This may have important therapeutic implications for the treatment of pancreatitis. PMID:24993827

  5. Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells

    PubMed Central

    Yoon, Mi Na; Kim, Dong Kwan; Kim, Se Hoon

    2017-01-01

    Intracellular calcium (Ca2+) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide (H2O2) on intracellular Ca2+ accumulation in mouse pancreatic acinar cells. Perfusion of H2O2 at 300 µM resulted in additional elevation of intracellular Ca2+ levels and termination of oscillatory Ca2+ signals induced by carbamylcholine (CCh) in the presence of normal extracellular Ca2+. Antioxidants, catalase or DTT, completely prevented H2O2-induced additional Ca2+ increase and termination of Ca2+ oscillation. In Ca2+-free medium, H2O2 still enhanced CCh-induced intracellular Ca2+ levels and thapsigargin (TG) mimicked H2O2-induced cytosolic Ca2+ increase. Furthermore, H2O2-induced elevation of intracellular Ca2+ levels was abolished under sarco/endoplasmic reticulum Ca2+ ATPase-inactivated condition by TG pretreatment with CCh. H2O2 at 300 µM failed to affect store-operated Ca2+ entry or Ca2+ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial Ca2+ uniporter blocker, failed to attenuate H2O2-induced intracellular Ca2+ elevation. These results provide evidence that excessive generation of H2O2 in pathological conditions could accumulate intracellular Ca2+ by attenuating refilling of internal Ca2+ stores rather than by inhibiting Ca2+ extrusion to extracellular fluid or enhancing Ca2+ mobilization from extracellular medium in mouse pancreatic acinar cells. PMID:28280417

  6. Pancreatic panniculitis as a paraneoplastic phenomenon of a pancreatic acinar cell carcinoma.

    PubMed

    Naeyaert, Charlotte; de Clerck, Frederik; De Wilde, Vincent

    2016-12-01

    We present the case of a 59-year-old patient admitted with extreme painful erythematous subcutaneous nodules of the lower extremities in association with arthritis and peripheral eosinophilia. Upon skin biopsy, the diagnosis of pancreatic panniculitis was made. On further investigation, an underlying acinar cell type pancreas carcinoma was revealed. This clinical case does illustrate how a seemingly innocuous skin condition may herald an underlying malignant disease. The presence of pancreatic panniculitis should trigger clinicians to undertake further thorough diagnostic investigation of the pancreas.

  7. Glycyrrhizin down-regulates CCL2 and CXCL2 expression in cerulein-stimulated pancreatic acinar cells

    PubMed Central

    Panahi, Yaser; Fakhari, Shohreh; Mohammadi, Mehdi; Rahmani, Mohammad Reza; Hakhamaneshi, Mohammad Saeid; Jalili, Ali

    2015-01-01

    Many inflammatory chemokines release from leukocytes and pancreatic acinar cells which play important roles in pathophysiology of acute pancreatitis (AP). Of interests, CXCL2 and CCL2 have been shown elevated in the plasma of patients with AP. We have recently found that Glycyrrhizin (GZ) attenuates AP in mice model. In this study, we aimed to investigate the direct effect of GZ on expression levels of CCL2 and CXCl2 in isolated pancreatic acinar cells. Isolated acinar cells were isolated from the pancreas of healthy C57BL/6 mice, stimulated with cerulein (10-7 M) and then treated with either PBS or different doses of GZ. The levels of CCL2 and CXCL2 expression at mRNA were assessed by qRT-PCR. Conditioned media from supernatants of each cells culture condition were collected for detection of CCL2 and CXCL2 levels by ELISA. First, we observed that cerulein significantly upregulates both cytokines expression in acinar cells. Moreover, we treated the acinar cells with GZ and found that GZ significantly downregulates CCL2 and CXCL2 expression at mRNA levels in a dose-dependent manner. Consistently, the conditioned media of GZ-treated cells contained a significant lower levels of CCL2 and CXCL2 (p<0.05). In conclusion, our data demonstrate for the first time that GZ directly downregulates CCL2 and CXCL2 levels in cerulein-stimulated acinar cells which may explain the mechanism of therapeutic effects of GZ in cerulein-induced AP in mice. PMID:26155433

  8. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    NASA Astrophysics Data System (ADS)

    Pradhan, Swati

    Xerostomia, a condition resulting from irradiation of the head and neck, affects over 40,000 cancer patients each year in the United States. Direct radiation damage of the acinar cells that secrete fluid and protein results in salivary gland hypofunction. Present medical management for xerostomia for patients treated for upper respiratory cancer is largely ineffective. Patients who have survived their terminal diagnosis are often left with a diminished quality of life and are unable to enjoy the simple pleasures of eating and drinking. This project aims to ultimately reduce human suffering by developing a functional implantable artificial salivary gland. The goal was to create an extracellular matrix (ECM) modified hyaluronic acid (HA) based hydrogel culture system that allows for the growth and differentiation of salivary acinar cells into functional acini-like structures capable of secreting large amounts of protein and fluid unidirectionally and to ultimately engineer a functional artificial salivary gland that can be implanted into an animal model. A tissue collection protocol was established and salivary gland tissue was obtained from patients undergoing head and neck surgery. The tissue specimen was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Hematoxylin and eosin staining confirmed normal glandular tissue structures including intercalated ducts, striated ducts and acini. alpha-Amylase and periodic acid schiff stain, used for structures with a high proportion of carbohydrate macromolecules, preferentially stained acinar cells in the tissue. Intercalated and striated duct structures were identified using cytokeratins 19 and 7 staining. Myoepithelial cells positive for cytokeratin 14 were found wrapped around the serous and mucous acini. Tight junction components including ZO-1 and E-cadherin were present between both ductal and acinar cells. Ductal and acinar

  9. The econobiology of pancreatic acinar cells granule inventory and the stealthy nano-machine behind it.

    PubMed

    Hammel, Ilan; Meilijson, Isaac

    2016-03-01

    The pancreatic gland secretes most of the enzymes and many other macromolecules needed for food digestion in the gastrointestinal tract. These molecules play an important role in digestion, host defense and lubrication. The secretion of pancreatic proteins ensures the availability of the correct mix of proteins when needed. This review describes model systems available for the study of the econobiology of secretory granule content. The secretory pancreatic molecules are stored in large dense-core secretory granules that may undergo either constitutive or evoked secretion, and constitute the granule inventory of the cell. It is proposed that the Golgi complex functions as a distribution center for secretory proteins in pancreatic acinar cells, packing the newly formed secretory molecules into maturing secretory granules, also known functionally as condensing vacuoles. Mathematical modelling brings forward a process underlying granule inventory maintenance at various physiological states of condensation and aggregation by homotypic fusion. These models suggest unique but simple mechanisms accountable for inventory buildup and size, as well as for the distribution of secretory molecules into different secretory pathways in pancreatic acinar cells.

  10. Hepcidin knockout mice spontaneously develop chronic pancreatitis owing to cytoplasmic iron overload in acinar cells.

    PubMed

    Lunova, Mariia; Schwarz, Peggy; Nuraldeen, Renwar; Levada, Kateryna; Kuscuoglu, Deniz; Stützle, Michael; Vujić Spasić, Maja; Haybaeck, Johannes; Ruchala, Piotr; Jirsa, Milan; Deschemin, Jean-Christophe; Vaulont, Sophie; Trautwein, Christian; Strnad, Pavel

    2017-01-01

    Iron is both an essential and a potentially toxic element, and its systemic homeostasis is controlled by the iron hormone hepcidin. Hepcidin binds to the cellular iron exporter ferroportin, causes its degradation, and thereby diminishes iron uptake from the intestine and the release of iron from macrophages. Given that hepcidin-resistant ferroportin mutant mice show exocrine pancreas dysfunction, we analysed pancreata of aging hepcidin knockout (KO) mice. Hepcidin and Hfe KO mice were compared with wild-type (WT) mice kept on standard or iron-rich diets. Twelve-month-old hepcidin KO mice were subjected to daily minihepcidin PR73 treatment for 1 week. Six-month-old hepcidin KO mice showed cytoplasmic acinar iron overload and mild pancreatitis, together with elevated expression of the iron uptake mediators DMT1 and Zip14. Acinar atrophy, massive macrophage infiltration, fatty changes and pancreas fibrosis were noted in 1-year-old hepcidin KO mice. As an underlying mechanism, 6-month-old hepcidin KO mice showed increased pancreatic oxidative stress, with elevated DNA damage, apoptosis and activated nuclear factor-κB (NF-κB) signalling. Neither iron overload nor pancreatic damage was observed in WT mice fed iron-rich diet or in Hfe KO mice. Minihepcidin application to hepcidin KO mice led to an improvement in general health status and to iron redistribution from acinar cells to macrophages. It also resulted in decreased NF-κB activation and reduced DNA damage. In conclusion, loss of hepcidin signalling in mice leads to iron overload-induced chronic pancreatitis that is not seen in situations with less severe iron accumulation. The observed tissue injury can be reversed by hepcidin supplementation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Label retaining cells (LRCs) with myoepithelial characteristic from the proximal acinar region define stem cells in the sweat gland.

    PubMed

    Leung, Yvonne; Kandyba, Eve; Chen, Yi-Bu; Ruffins, Seth; Kobielak, Krzysztof

    2013-01-01

    Slow cycling is a common feature shared among several stem cells (SCs) identified in adult tissues including hair follicle and cornea. Recently, existence of unipotent SCs in basal and lumenal layers of sweat gland (SG) has been described and label retaining cells (LRCs) have also been localized in SGs; however, whether these LRCs possess SCs characteristic has not been investigated further. Here, we used a H2BGFP LRCs system for in vivo detection of infrequently dividing cells. This system allowed us to specifically localize and isolate SCs with label-retention and myoepithelial characteristics restricted to the SG proximal acinar region. Using an alternative genetic approach, we demonstrated that SG LRCs expressed keratin 15 (K15) in the acinar region and lineage tracing determined that K15 labeled cells contributed long term to the SG structure but not to epidermal homeostasis. Surprisingly, wound healing experiments did not activate proximal acinar SG cells to participate in epidermal healing. Instead, predominantly non-LRCs in the SG duct actively divided, whereas the majority of SG LRCs remained quiescent. However, when we further challenged the system under more favorable isolated wound healing conditions, we were able to trigger normally quiescent acinar LRCs to trans-differentiate into the epidermis and adopt its long term fate. In addition, dissociated SG cells were able to regenerate SGs and, surprisingly, hair follicles demonstrating their in vivo plasticity. By determining the gene expression profile of isolated SG LRCs and non-LRCs in vivo, we identified several Bone Morphogenetic Protein (BMP) pathway genes to be up-regulated and confirmed a functional requirement for BMP receptor 1A (BMPR1A)-mediated signaling in SG formation. Our data highlight the existence of SG stem cells (SGSCs) and their primary importance in SG homeostasis. It also emphasizes SGSCs as an alternative source of cells in wound healing and their plasticity for regenerating

  12. Bromoenol lactone enhances the permeabilization of rat submandibular acinar cells by P2X7 agonists

    PubMed Central

    Chaïb, N; Kabré, E; Alzola, E; Pochet, S; Dehaye, J P

    2000-01-01

    The permeabilizing effect of P2X7 agonists was tested in rat submandibular acinar cells using the uptake of ethidium bromide as an index. The uptake of ethidium bromide by acini incubated at 37°C in the presence of 1 mM ATP increased with time and reached after 5 min about 10% of maximal uptake measured in the presence of digitonin. The response to ATP was dose-dependent (half-maximal concentration around 40 μM) and it was decreased when the temperature was lowered to 25°C. Benzoyl-ATP reproduced the response to ATP (half-maximal concentration around 10 μM). UTP or 2-methylthioATP had no effect. The permeabilization in response to ATP was blocked by oxidized ATP and by magnesium and inhibited by Coomassie blue. ATP increased the activity of a calcium-insensitive phospholipase A2 (iPLA2). Bromoenol lactone (BEL) inhibited the iPLA2 stimulated by ATP but potentiated the uptake of ethidium bromide in response to the purinergic agonist. From these results it is concluded that the activation of P2X7 receptors permeabilizes rat submandibular acinar cells. The pore-forming activity of the receptor might be negatively regulated by the concomitant activation of the iPLA2 by the receptor. PMID:10683195

  13. Rhein Induces a Necrosis-Apoptosis Switch in Pancreatic Acinar Cells

    PubMed Central

    Zhao, Xianlin; Li, Juan; Zhu, Shifeng; Liu, Yiling; Zhao, Jianlei; Wan, Meihua; Tang, Wenfu

    2014-01-01

    Objectives. The Chinese herbal medicine Da-Cheng-Qi decoction can regulate a necrosis-apoptosis switch in injured pancreatic acinar cells. This study investigated the effects of rhein, a component of this medicine, on a necrosis-apoptosis switch in pancreatic rat AR42J cells. Methods. Cerulein-treated AR42J cells were used. After pretreatment with 479, 119.8, or 29.9 μg/L rhein, cells were cocultured with rhein and cerulein (10−8 M) for 4, 8, or 16 h. Apoptosis and necrosis were examined using annexin V and propidium iodide costaining. Mitochondria-dependent apoptosis-associated proteins were examined using enzyme-linked immunosorbent assays and western blotting. Results. Few cells died in untreated samples. The number was significantly higher in 16-h-cerulein-treated samples and treatment with 479 μg/L rhein most effectively increased the apoptotic-to-necrotic cell ratio (P < 0.05). In cerulein-treated cells, rhein increased the concentrations of p53, cytochrome C, and caspase-3, and increased the Bax/Bcl-2 ratio in a time- and dose-dependent manner, with the maximum effect in cells treated with 479 μg/L rhein for 16 h (P < 0.05). Conclusions. Rhein induces the necrosis-apoptosis switch in injured pancreatic acinar cells in a time- and dose-dependent manner. Mitochondria-dependent apoptosis signaling pathways might play an important role in this effect. PMID:24959186

  14. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells

    PubMed Central

    Fernández-Sánchez, Marcela; del Castillo-Vaquero, Angel; Salido, Ginés M; González, Antonio

    2009-01-01

    Background A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Results Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS) production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 μM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. Conclusion ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis. PMID:19878551

  15. Polyethylenimine-mediated expression of transgenes in the acinar cells of rats salivary glands in vivo

    PubMed Central

    Sramkova, Monika; Parente, Laura; Wigand, Timothy; Aye, Myo-Pale'; Shitara, Akiko; Weigert, Roberto

    2015-01-01

    Non viral-mediated transfection of plasmid DNA provides a fast and reliable way to express various transgenes in selected cell populations in live animals. Here, we show an improvement of a previously published method that is based on injecting plasmid DNA into the ductal system of the salivary glands in live rats. Specifically, using complexes between plasmid DNA and polyethyleneimine (PEI) we show that the expression of the transgenes is directed selectively to the salivary acinar cells. PEI does not affect the ability of cells to undergo regulated exocytosis, which was one of the main drawbacks of the previous methods. Moreover PEI does not affect the proper localization and targeting of transfected proteins, as shown for the apical plasma membrane water channel aquaporin 5 (AQP5). Overall, this approach, coupled with the use of intravital microscopy, permits to conduct localization and functional studies under physiological conditions, in a rapid, reliable, and affordable fashion. PMID:25621283

  16. Effect of glucagon on digestive enzyme synthesis, transport and secretion in mouse pancreatic acinar cells.

    PubMed Central

    Singh, M

    1980-01-01

    1. Effect of glucagon on amylase secretion and lactic dehydrogenase (LDH) release from functionally intact dissociated pancreatic acinar cells and acini was studied. 2. In dissociated rat pancreatic acinar cells, the rate of amylase secretion was increased by 70% with bethanechol (maximally effective concentration, 10(-4) M) and 125% with A23187 (10(-5) M), but the response to cholecystokinin-pancreozymin (CCK-PZ) was inconsistent. In dissociated cells from mouse pancreas, the increases amounted to 78% with bethanechol (10(-4) M), 134% with A23187 (10(-5) M) and 82% with CCK-PZ (maximally effective concentration, 0 . 01 u. ml.-1). Glucagon in concentrations ranging from 10(-7) to 10(-4) M increased amylase secretion by 3, 26, 67 and 80%, whereas secretin (10(-8)--10(-5) M) increased amylase secretion by 8, 39, 88 and 138%. LDH release was increased with A23187 in concentrations greater than 10(-6) M. 3. CCK-PZ, bethanechol and A23187 used in maximal concentrations potentiated the effect of a submaximal dose of glucagon whereas secretin did not have an additive or a potentiating effect. 4. Pancreatic acini were approximately 3 times more responsive to secretagogues than cells. The dose--response curves to bethanechol, glucagon and CCK-PZ for increase in amylase secretion were similar. LDH release was not increased by these agents. Cytochalasin B (5 microgram ml.-1) which is known to disrupt the integrity of luminal membrane inhibited the amylase secretion stimulated by glucagon, bethanechol and CCK-PZ. 5. Glucagon inhibited incorporation of a mixture of fifteen 14C-labelled amino acids (algal profile, Schwarz Mann) into perchloric acid precipitable proteins in dissociated mouse pancreatic acini within 30 min. 6. In 'pulse-chase' experiments, glucagon decreased the specific activity of zymogen granules isolated by differential centrifugation, from pancreatic lobules (120 min) and increased the specific activity of radiolabelled proteins in the medium (60 and 120 min

  17. The relation between apoptosis of acinar cells and nitric oxide during acute rejection of pancreas transplantation in rats.

    PubMed

    Xiaoguang, Ni; Zhong, Liu; Hailong, Chen; Ping, Zhao; Xiaofeng, Bai; Fenglin, Guan

    2003-01-01

    Apoptosis is an important mechanism of immune-mediated graft damage. Nitric oxide (NO) generated by inducible NO synthase (iNOS) has been demonstrated to induce apoptosis. This study investigated whether apoptosis occurs during pancreas allograft rejection and examined the relationship of apoptosis of acinar cells and NO. The rats were divided into three groups: untreated isograft group, untreated allograft group and aminoguanidine (AG)-treated group. The pancreatic grafts were harvested on the post-transplantation day 3, 5 and 7 and were used to detect the histopathological rejection grade, the expression of iNOS and the apoptotic index (AI) of the graft. iNOS presented faint positive in the acinar cells of untreated isografts and did not change greatly after transplantation (P>0.05), the level of iNOS in the untreated allografts increased progressively (P<0.01) and at the same time point was significantly higher than that of untreated isograft group and AG-treated group (P<0.01). The transferase-mediated dUTP nick end labeling showed that the apoptotic cells were mainly acinar cells. A significant correlation between AI and iNOS was noted (P<0.01, r=0.611). Therefore, NO-mediated apoptosis of acinar cells plays an important role in acute rejection of pancreas transplantation, AG can mitigate the damage of pancreas allografts.

  18. A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation

    PubMed Central

    Metzler, Melissa A.; Venkatesh, Srirangapatnam G.; Lakshmanan, Jaganathan; Carenbauer, Anne L.; Perez, Sara M.; Andres, Sarah A.; Appana, Savitri; Brock, Guy N.; Wittliff, James L.; Darling, Douglas S.

    2015-01-01

    Objective The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process. Methodology A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM) was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation. Results Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a) progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1Mist1 promoter. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp) gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation. Conclusion This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a

  19. Variations in the expression and distribution pattern of AQP5 in acinar cells of patients with sialadenosis.

    PubMed

    Teymoortash, Afshin; Wiegand, Susanne; Borkeloh, Martin; Bette, Michael; Ramaswamy, Annette; Steinbach-Hundt, Silke; Neff, Andreas; Werner, Jochen A; Mandic, Robert

    2012-01-01

    Previously, we pointed out on a possible role of aquaporin 5 (AQP5) in the development of sialadenosis. The goal of the present study was to further assess the association of AQP5 in the development of this salivary gland disease. The acinar diameter and mean surface area appeared elevated in sialadenosis tissues, which is a typical observation in this disease. AQP5 expression was evaluated by immunohistochemistry using tissue samples derived from salivary glands of patients with confirmed sialadenosis either as a primary diagnosis or as a secondary diagnosis within the framework of other salivary gland diseases. Normal salivary gland tissue served as a control. In sialadenosis tissues, the AQP5 signal at the apical plasma membrane of acinar cells frequently appeared stronger compared with that in normal salivary glands. In addition, the distribution of AQP5 at the apical region seemed to differ between normal and sialadenosis tissues, where AQP5 frequently was diffusely distributed near or at the apical plasma membrane of the acinar cells in contrast to normal controls where the AQP5 signal was strictly confined to the apical plasma membrane. These observations suggest that sialadenosis is associated with a different AQP5 expression and distribution pattern in salivary acinar cells.

  20. Chronic alcohol exposure inhibits biotin uptake by pancreatic acinar cells: possible involvement of epigenetic mechanisms.

    PubMed

    Srinivasan, Padmanabhan; Kapadia, Rubina; Biswas, Arundhati; Said, Hamid M

    2014-11-01

    Chronic exposure to alcohol affects different physiological aspects of pancreatic acinar cells (PAC), but its effect on the uptake process of biotin is not known. We addressed this issue using mouse-derived pancreatic acinar 266-6 cells chronically exposed to alcohol and wild-type and transgenic mice (carrying the human SLC5A6 5'-promoter) fed alcohol chronically. First we established that biotin uptake by PAC is Na(+) dependent and carrier mediated and involves sodium-dependent multivitamin transporter (SMVT). Chronic exposure of 266-6 cells to alcohol led to a significant inhibition in biotin uptake, expression of SMVT protein, and mRNA as well as in the activity of the SLC5A6 promoter. Similarly, chronic alcohol feeding of wild-type and transgenic mice carrying the SLC5A6 promoter led to a significant inhibition in biotin uptake by PAC, as well as in the expression of SMVT protein and mRNA and the activity of the SLC5A6 promoters expressed in the transgenic mice. We also found that chronic alcohol feeding of mice is associated with a significant increase in the methylation status of CpG islands predicted to be in the mouse Slc5a6 promoters and a decrease in the level of expression of transcription factor KLF-4, which plays an important role in regulating SLC5A6 promoter activity. These results demonstrate, for the first time, that chronic alcohol exposure negatively impacts biotin uptake in PAC and that this effect is exerted (at least in part) at the level of transcription of the SLC5A6 gene and may involve epigenetic/molecular mechanisms.

  1. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca2+ oscillations in mouse pancreatic acinar cells

    PubMed Central

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P.; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca2+ signals may protect pancreatic acinar cells against Ca2+ overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca2+ signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca2+ oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca2+ oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca2+ oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca2+ oscillations and L-arginine-induced enhancement of Ca2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  2. FK506 induces biphasic Ca2+ release from microsomal vesicles of rat pancreatic acinar cells.

    PubMed

    Ozawa, Terutaka

    2006-07-01

    The effect of the immunosuppressant drug FK506 on microsomal Ca2+ release was investigated in rat pancreatic acinar cells. When FK506 (0.1-200 microM) was added to the microsomal vesicles at a steady state of ATP-dependent 45Ca2+ uptake, FK506 caused a dose-dependent and a biphasic release of 45Ca2+. Almost 10% of total 45Ca2+ uptake was released at FK506 concentrations up to 10 microM (Km=0.47 microM), and 60% of total 45Ca2+ uptake was released at FK506 concentrations over 10 microM (Km=55 microM). Preincubation of the vesicles with cyclic ADP-ribose (cADPR, 0.5 microM) increased the FK506 (< or =10 microM)-induced 45Ca2+ release (Ozawa T, Biochim Biophys Acta 1693: 159-166, 2004). Preincubation with heparin (200 microg/ml) resulted in significant inhibition of the FK506 (30 microM)-induced 45Ca2+ release. Subsequent addition of inositol 1,4,5-trisphosphate (IP3, 5 microM) after FK506 (100 microM)-induced 45Ca2+ release did not cause any release of 45Ca2+. These results indicate that two types of FK506-induced Ca2+ release mechanism operate in the endoplasmic reticulum of rat pancreatic acinar cells: a high-affinity mechanism of Ca2+ release, which involves activation of the ryanodine receptor, and a low-affinity mechanism of Ca2+ release, which involves activation of the IP3 receptor.

  3. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini

    PubMed Central

    Gaiko-Shcherbak, Aljona; Fabris, Gloria; Dreissen, Georg; Merkel, Rudolf; Hoffmann, Bernd; Noetzel, Erik

    2015-01-01

    The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa) experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN) without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function. PMID:26674091

  4. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    PubMed

    Gaiko-Shcherbak, Aljona; Fabris, Gloria; Dreissen, Georg; Merkel, Rudolf; Hoffmann, Bernd; Noetzel, Erik

    2015-01-01

    The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa) experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN) without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  5. Interaction of bombesin and litorin with specific membrane receptors on pancreatic acinar cells

    PubMed Central

    Jensen, R. T.; Moody, T.; Pert, C.; Rivier, J. E.; Gardner, J. D.

    1978-01-01

    We have prepared 125I-labeled [Tyr4]bombesin and have examined the kinetics, stoichiometry, and chemical specificity with which the labeled peptide binds to dispersed acini from guinea pig pancreas. Binding of 125I-labeled [Tyr4]-bombesin was saturable, temperature-dependent, and reversible and reflected interaction of the labeled peptide with a single class of binding sites on the plasma membrane of pancreatic acinar cells. Each acinar cell possessed approximately 5000 binding sites, and binding of the tracer to these sites could be inhibited by [Tyr4]bombesin [concentration for half-maximal effect (Kd), 2 nM], bombesin (Kd, 4 nM), or litorin (Kd, 40 nM) but not by eledoisin, physalemin, somatostatin, carbachol, atropine, secretin, vasocative intestinal peptide, neurotensin, or bovine pancreatic polypeptide. At high concentrations (>0.1 μM), cholecystokinin and caerulein each caused a small (15-20%) reduction in binding of lableled [Tyr4]bombesin. With bombesin, litorin, and [Tyr4]bombesin, there was a close correlation between the relative potency for inhibition of binding of labeled [Tyr4]bombesin and that for stimulation of amylase secretion. For a given peptide, however, a 10-fold higher concentration was required for half-maximal inhibition of binding than for half-maximal stimulation of amylase secretion, calcium outflux, or cyclic GMP accumulation. These results indicate that dispersed acini from guinea pig pancreas possess a single class of receptors that interact with [Tyr4]bombesin, bombesin, and litorin and that occupation of 25% of these receptors will cause a maximal biological response. PMID:216015

  6. Protein Kinase D Regulates Cell Death Pathways in Experimental Pancreatitis

    PubMed Central

    Yuan, Jingzhen; Liu, Yannan; Tan, Tanya; Guha, Sushovan; Gukovsky, Ilya; Gukovskaya, Anna; Pandol, Stephen J.

    2012-01-01

    Inflammation and acinar cell necrosis are two major pathological responses of acute pancreatitis, a serious disorder with no current therapies directed to its molecular pathogenesis. Serine/threonine protein kinase D family, which includes PKD/PKD1, PKD2, and PKD3, has been increasingly implicated in the regulation of multiple physiological and pathophysiological effects. We recently reported that PKD/PKD1, the predominant PKD isoform expressed in rat pancreatic acinar cells, mediates early events of pancreatitis including NF-κB activation and inappropriate intracellular digestive enzyme activation. In current studies, we investigated the role and mechanisms of PKD/PKD1 in the regulation of necrosis in pancreatic acinar cells by using two novel small molecule PKD inhibitors CID755673 and CRT0066101 and molecular approaches in in vitro and in vivo experimental models of acute pancreatitis. Our results demonstrated that both CID755673 and CRT0066101 are PKD-specific inhibitors and that PKD/PKD1 inhibition by either the chemical inhibitors or specific PKD/PKD1 siRNAs attenuated necrosis while promoting apoptosis induced by pathological doses of cholecystokinin-octapeptide (CCK) in pancreatic acinar cells. Conversely, up-regulation of PKD expression in pancreatic acinar cells increased necrosis and decreased apoptosis. We further showed that PKD/PKD1 regulated several key cell death signals including inhibitors of apoptotic proteins, caspases, receptor-interacting protein kinase 1 to promote necrosis. PKD/PKD1 inhibition by CID755673 significantly ameliorated necrosis and severity of pancreatitis in an in vivo experimental model of acute pancreatitis. Thus, our studies indicate that PKD/PKD1 is a key mediator of necrosis in acute pancreatitis and that PKD/PKD1 may represent a potential therapeutic target in acute pancreatitis. PMID:22470346

  7. Comparison of several radiation effects in human MCF10A mammary epithelial cells cultured as 2D monolayers or 3D acinar stuctures in matrigel.

    PubMed

    Lin, Yu-Fen; Nagasawa, Hatsumi; Peng, Yuanlin; Chuang, Eric Y; Bedford, Joel S

    2009-06-01

    It has been argued that the cell-cell and cell-matrix interaction networks in normal tissues are disrupted by radiation and that this largely controls many of the most important cellular radiation responses. This has led to the broader assertion that individual cells in normal tissue or a 3D normal-tissue-like culture will respond to radiation very differently than the same cells in a 2D monolayer culture. While many studies have shown that, in some cases, cell-cell contact in spheroids of transformed or tumor cell lines can alter radiation responses relative to those for the same cells in monolayer cultures, a question remains regarding the possible effect of the above-mentioned disruption of signaling networks that operate more specifically for cells in normal tissues or in a 3D tissue-like context. To test the generality of this notion, we used human MCF-10A cells, an immortalized mammary epithelial cell line that produces acinar structures in culture with many properties of human mammary ducts. We compared the dose responses for these cells in the 2D monolayer and in 3D ductal or acinar structures. The responses examined were reproductive cell death, induction of chromosomal aberrations, and the levels of gamma-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 h of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose responses of these cells in 2D or 3D growth conditions. While this does not mean that such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur.

  8. Apoptotic Mechanisms of Peroxisome Proliferator–Activated Receptor-γ Activation in Acinar Cells During Acute Pancreatitis

    PubMed Central

    Xu, Ping; Lou, Xiao-Li; Chen, Cheng

    2016-01-01

    Objective The objective of this study was to determine the mechanism by which activation of peroxisome proliferator–activated receptor-γ promotes apoptosis of acinar cells in pancreatitis. Methods AR42j cells pretreated with the peroxisome proliferator–activated receptor-γ agonist pioglitazone were activated by cerulein as an in vitro model of acute pancreatitis. Inflammatory cytokines and amylase were detected by enzyme-linked immunosorbent assay. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis was measured by flow cytometry and terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling staining. Activity of caspases was determined. Bax and Bcl-2 levels were assayed by Western blot. Results Cytokines, amylase, and cellular proliferation decreased in pioglitazone-pretreated cells. Pioglitazone increased the activity of caspases 3, 8, and 9 in cerulein-activated AR42j cells as well as in the pancreas of rats 3 hours after induction of severe acute pancreatitis. Acinar cell apoptosis was induced by reducing the mitochondrial membrane potential in the pioglitazone group. Pioglitazone increased expression of proapoptotic Bax proteins and decreased antiapoptotic Bcl-2 in cerulein-induced AR42j cells and decreased Bcl-2 levels in pancreatic tissue of severe acute pancreatitis rats 1 and 3 hours after induction. Conclusion Pioglitazone may promote apoptosis of acinar cells through both intrinsic and extrinsic apoptotic pathways in acute pancreatitis. PMID:26495791

  9. Reversal of diabetes in rats using GLP-1-expressing adult pancreatic duct-like precursor cells transformed from acinar to ductal cells.

    PubMed

    Lee, Jieun; Wen, Jing; Park, Jeong Youp; Kim, Sun-A; Lee, Eun Jig; Song, Si Young

    2009-09-01

    Pancreatic injury induces replacement of exocrine acinar cells with ductal cells. These ductal cells have the potential to regenerate the pancreas, but their origin still remains unknown. It has been reported that adult pancreatic acinar cells have the potential to transdifferentiate to ductal progenitor cells. In this regards, we established novel adult pancreatic duct-like progenitor cell lines YGIC4 and YGIC5 and assessed the usefulness of these ductal progenitors in the cell therapy of diabetic rats. Acinar cells were cultured from pancreata of male Sprague Dawley rats and gradually attained ductal cell characteristics, such as expression of CK19 and CFTR with a concomitant down-regulation of amylase expression over time, suggesting transdifferentiation from acinar to ductal cells. During cell culture, the expression of Pdx-1, c-Kit, and vimentin peaked and then decreased, suggesting that transdifferentiation recapitulated embryogenesis. Overexpression of pancreas development regulatory genes and CK19, as well as the ability to differentiate into insulin-producing cells, suggests that the YGIC5 cells had characteristics of pancreatic progenitor cells. Finally, YGIC5 cells coexpressing Green fluorescent protein (GFP) and glucagon-like peptide (GLP)-1 under the activation of a zinc-inducible metallothionein promoter were intravenously infused to STZ-induced diabetic rats. Hyperglycemia was ameliorated with elevation of plasma insulin, and GFP-positive donor cells were colocalized in the acinar and islet areas of recipient pancreata following zinc treatment. In conclusion, after establishing pancreatic progenitor cell lines YGIC4 and YGIC5 under the concept of acinar to ductal transdifferentiation in vitro, we demonstrate how these adult pancreatic stem/progenitor cells can be used to regulate adult pancreatic differentiation toward developing therapy for pancreatic disease such as diabetes mellitus.

  10. The role of alpha 6 beta 1 integrin and EGF in normal and malignant acinar morphogenesis of human prostatic epithelial cells.

    PubMed

    Bello-DeOcampo, D; Kleinman, H K; Webber, M M

    2001-09-01

    Complex multiple interactions between cells and extracellular matrix occur during acinar morphogenesis involving integrin receptors and growth factors. Changes in these interactions occur during carcinogenesis as cells progress from a normal to a malignant, invasive phenotype. We have developed human prostatic epithelial cell lines of the same lineage, which represent multiple steps in carcinogenesis, similar to prostatic intraepithelial neoplasia and subsequent tumor progression. The non-tumorigenic, RWPE-1 and the tumorigenic WPE1-NB27 and WPE1-NB26 cell lines were used to examine their ability to undergo acinar morphogenesis in a 3-D cell culture model and its relationship to invasion, integrin expression and EGF presence. An inverse relationship between the degree of acinar formation and invasive ability was observed. The non-tumorigenic, non-invasive RWPE-1 and the low tumorigenic, low invasive, WPE1-NB27 cells show high and decreased acinar forming ability, respectively, while the more invasive WPE1-NB26 cells show a loss of acinar formation. While RWPE-1 acini show basal expression of alpha 6 beta 1 integrin, which correlates with their ability to polarize and form acini, WPE1-NB27 cells lack alpha 6 but show basal, but weaker expression of beta 1 integrin. WPE1-NB26 cells show loss alpha 6 and abnormal, diffused beta 1 integrin expression. A dose-dependent decrease in acinar formation was observed in RWPE-1 cells when cell proliferation was induced by EGF. Anti-functional antibody to EGF caused an increase in acinar formation in RWPE-1 cells. These results suggest that malignant cells lose the ability to undergo acinar morphogenesis and that the degree of this loss appears to be related to invasive ability, EGF levels and alterations in laminin-specific integrin expression. This model system mimics different steps in prostate carcinogenesis and has applications in the secondary and tertiary prevention of prostate cancer.

  11. TNF-α inhibits aquaporin 5 expression in human salivary gland acinar cells via suppression of histone H4 acetylation.

    PubMed

    Yamamura, Yoshiko; Motegi, Katsumi; Kani, Kouichi; Takano, Hideyuki; Momota, Yukihiro; Aota, Keiko; Yamanoi, Tomoko; Azuma, Masayuki

    2012-08-01

    Sjögren's syndrome is a systemic autoimmune disease characterized by reductions in salivary and lacrimal secretions. The mechanisms underlying these reductions remain unclear. We have previously shown that TNF-α plays an important role in the destruction of acinar structures. Here we examined TNF-α's function in the expression of aquaporin (AQP) 5 in human salivary gland acinar cells. Immortalized human salivary gland acinar (NS-SV-AC) cells were treated with TNF-α, and then the expression levels of AQP5 mRNA and protein were analysed. In addition, the mechanisms underlying the reduction of AQP5 expression by TNF-α treatment were investigated. TNF-α-treatment of NS-SV-AC cells significantly suppressed the expression levels of AQP5 mRNA and protein, and reduced the net fluid secretion rate. We examined the expression and activation levels of DNA methyltransferases (Dnmts) in NS-SV-AC cells treated with TNF-α. However, no significant changes were observed in the expression or activation levels of Dnmt1, Dnmt3a or Dnmt3b. Although we also investigated the role of NF-κB activity in the TNF-α-induced suppression of AQP5 expression in NS-SV-AC cells, we detected similar TNF-α suppression of AQP5 expression in non-transfected cells and in a super-repressor form of IκBα cDNA-transfected cell clones. However, interestingly, chromatin immunoprecipitation analysis demonstrated a remarkable decrease in levels of acetylated histone H4 associated with the AQP5 gene promoter after treatment with TNF-α in NS-SV-AC cells. Therefore, our results may indicate that TNF-α inhibition of AQP5 expression in human salivary gland acinar cells is due to the epigenetic mechanism by suppression of acetylation of histone H4.

  12. Dictyostelium cell death

    PubMed Central

    Levraud, Jean-Pierre; Adam, Myriam; Luciani, Marie-Françoise; de Chastellier, Chantal; Blanton, Richard L.; Golstein, Pierre

    2003-01-01

    Cell death in the stalk of Dictyostelium discoideum, a prototypic vacuolar cell death, can be studied in vitro using cells differentiating as a monolayer. To identify early events, we examined potentially dying cells at a time when the classical signs of Dictyostelium cell death, such as heavy vacuolization and membrane lesions, were not yet apparent. We observed that most cells proceeded through a stereotyped series of differentiation stages, including the emergence of “paddle” cells showing high motility and strikingly marked subcellular compartmentalization with actin segregation. Paddle cell emergence and subsequent demise with paddle-to-round cell transition may be critical to the cell death process, as they were contemporary with irreversibility assessed through time-lapse videos and clonogenicity tests. Paddle cell demise was not related to formation of the cellulose shell because cells where the cellulose-synthase gene had been inactivated underwent death indistinguishable from that of parental cells. A major subcellular alteration at the paddle-to-round cell transition was the disappearance of F-actin. The Dictyostelium vacuolar cell death pathway thus does not require cellulose synthesis and includes early actin rearrangements (F-actin segregation, then depolymerization), contemporary with irreversibility, corresponding to the emergence and demise of highly polarized paddle cells. PMID:12654899

  13. Involvement of thrombopoietin in acinar cell necrosis in L-arginine-induced acute pancreatitis in mice.

    PubMed

    Shen, Jiaqing; Wan, Rong; Hu, Guoyong; Wang, Feng; Shen, Jie; Wang, Xingpeng

    2012-10-01

    Thrombopoietin (TPO) plays an important role in injuries of different tissues. However, the role of TPO in acute pancreatitis (AP) is not yet known. The aim of the study was to determine the involvement of TPO in AP. Serum TPO was assayed in necrotizing pancreatitis induced by L-arginine in mice. Recombinant TPO and anti-TPO antibody were given to mice with necrotizing pancreatitis. Amylase, lipase, lactate dehydrogenase, myeloperoxidase activity and pancreatic water content were assayed in serum and tissue samples. Pancreas and lung tissue samples were also collected for histological evaluation. Immunohistochemistry of amylase α and PCNA were applied for the study of acinar regeneration and TUNEL assay for the detection of apoptosis in the pancreas. Increased levels of serum TPO were found in necrotizing pancreatitis. After TPO administration, more severe acinar necrosis was found and blockade of TPO reduced the acinar necrosis in this AP model. Acinar regeneration and apoptosis in the pancreas were affected by TPO and antibody treatment in necrotizing pancreatitis. The severity of pancreatitis-associated lung injury was worsened after TPO treatment, but attenuated after Anti-TPO antibody treatment. In conclusion, serum TPO is up-regulated in the necrotizing pancreatitis induced by L-arginine in mice and may be a risk factor for the pancreatic acinar necrosis in AP. As a pro-necrotic factor, blockade of TPO can attenuate the acinar necrosis in AP and may be a possible therapeutic intervention for AP.

  14. Programmed cell death

    SciTech Connect

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  15. Long-term dexamethasone treatment alters the histomorphology of acinar cells in rat parotid and submandibular glands

    PubMed Central

    Bighetti, Bruna B; Assis, Gerson F d; Vieira, Danilo C; Violato, Natalia M; Cestari, Tania M; Taga, Rumio; Bosqueiro, José R; Rafacho, Alex

    2014-01-01

    Glucocorticoids (GCs) induce insulin resistance (IR), a condition known to alter oral homeostasis. This study investigated the effects of long-term dexamethasone administration on morphofunctional aspects of salivary glands. Male Wistar rats received daily injections of dexamethasone [0.1 mg/kg body weight (b.w.), intraperitoneally] for 10 days (DEX), whereas control rats received saline. Subsequently, glycaemia, insulinaemia, insulin secretion and salivary flow were analysed. The parotid and submandibular glands were collected for histomorphometric evaluation and Western blot experiments. The DEX rats were found to be normoglycaemic, hyperinsulinaemic, insulin resistant and glucose intolerant (P < 0.05). DEX rat islets secreted more insulin in response to glucose (P < 0.05). DEX rats had significant reductions in the masses of the parotid (29%) and submandibular (16%) glands (P < 0.05) that was associated with reduced salivary flux rate. The hypotrophy in both glands observed in the DEX group was associated with marked reduction in the volume of the acinar cells in these glands of 50% and 26% respectively (P < 0.05). The total number of acinar cells was increased in the submandibular glands of the DEX rats (P < 0.05) but not in the parotid glands. The levels of proteins related to insulin and survival signalling in both glands did not differ between the groups. In conclusion, the long-term administration of dexamethasone caused IR, which was associated with significant reductions in both mass and flux rate of the salivary glands. The parotid and submandibular glands exhibited reduced acinar cell volume; however, the submandibular glands displayed acinar hyperplasia, indicating a gland-specific response to GCs. Our data emphasize that GC-based therapies and insulin-resistant states have a negative impact on salivary gland homeostasis. PMID:25186305

  16. Pancreatic panniculitis associated with acinar cell carcinoma of the pancreas: a case report.

    PubMed

    Zheng, Zhen Jiang; Gong, Jun; Xiang, Guang Ming; Mai, Gang; Liu, Xu Bao

    2011-05-01

    Pancreatic panniculitis is a rare type of disorder associated with pancreatic diseases. We describe here a case of 54-year-old man who was admitted to the Department of Dermatology with the diagnosis of erythema nodosum. The patient presented with a 9-month history of painful erythematous nodules on the extremities, joint pain and swelling, and weight loss. A highly elevated level of pancreatic lipase was found on the laboratory examinations. The biopsy specimens from the skin lesions showed subcutaneous fat necrosis. Abdominal computed tomography (CT) revealed a large mass with central necrosis in the body and tail of the pancreas. Distal pancreatectomy, splenectomy and partial transverse colectomy were successfully performed on day 17 of the hospitalization. The histopathologic findings supported the diagnosis of acinar cell carcinoma of the pancreas (ACCP). Postoperatively, the level of serum lipase returned to normal, and the skin lesions and joint manifestations gradually regressed. However, the swelling did not significantly resolve in the left knee. In view of the non-specific clinical presentation of this disease, clinicians should be alert and have a high index of suspicion for pancreatic panniculitis.

  17. [Protein malnutrition and response of pancreatic acinar cells to stimulation by cholecystokinin].

    PubMed

    Prost, J; Belleville, J

    1988-01-01

    Pancreatic lobules were isolated from 2 groups of male Wistar rats after 23 days of diet. A control group (C) fed on a 20% protein diet (16% gluten + 4% casein) and an experimental group (E) on a 5% protein diet (4% gluten + 1% casein). After isolation, lobules were preincubated 10 min with 10 muCi [3H]-leucine, washed, then incubate within Krebs Ringer bicarbonate Hepes. Basal secretion, then stimulated secretion (50 pM of cholecystokinin (CCK] of radioactive and non-radioactive protein and amylase outputs were measured. During basal secretion, in (E) group, lobules secreted more proteins than (C) one, the same outputs of amylase and radioactive protein were observed in both groups. The stimulated secretion by CCK increased the outputs of non-radioactive protein and amylase of lobules (T) (2-3 fold), but was without effect on lobule (E) outputs. Therefore, a low-protein diet involved a decrease of CCK sensibility on acinar cells, this fact might be mediated by a decreasing number and/or affinity of their CCK receptors.

  18. Ca²⁺ signaling and regulation of fluid secretion in salivary gland acinar cells.

    PubMed

    Ambudkar, Indu S

    2014-06-01

    Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca(2+) signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca(2+) is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca(2+)] ([Ca(2+)]i) triggered by IP3-induced release of Ca(2+) from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca(2+)]i signal in the cell. However, Ca(2+) entry into the cell is required to sustain the elevation of [Ca(2+)]i and fluid secretion. This Ca(2+) influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca(2+) entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca(2+) signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca(2+) signal can be ascribed to the polarized arrangement of the Ca(2+) channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca(2+) signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca(2+) signals in the regulation of fluid secretion.

  19. Classification of cell death

    PubMed Central

    Kroemer, G; Galluzzi, L; Vandenabeele, P; Abrams, J; Alnemri, ES; Baehrecke, EH; Blagosklonny, MV; El-Deiry, WS; Golstein, P; Green, DR; Hengartner, M; Knight, RA; Kumar, S; Lipton, SA; Malorni, W; Nuñez, G; Peter, ME; Tschopp, J; Yuan, J; Piacentini, M; Zhivotovsky, B; Melino, G

    2009-01-01

    Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like ‘percentage apoptosis’ and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that ‘autophagic cell death’ is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including ‘entosis’, ‘mitotic catastrophe’, ‘necrosis’, ‘necroptosis’ and ‘pyroptosis’. PMID:18846107

  20. Carbachol activates a K+ channel of very small conductance in the basolateral membrane of rat pancreatic acinar cells.

    PubMed

    Köttgen, M; Hoefer, A; Kim, S J; Beschorner, U; Schreiber, R; Hug, M J; Greger, R

    1999-10-01

    Secretion of Cl- requires the presence of a K+ conductance to hyperpolarize the cell, and to provide the driving force for Cl- exit via luminal Cl- channels. In the exocrine pancreas Cl- secretion is mediated by an increase in cytosolic Ca2+ ([Ca2+]i). Two types of Ca2+-activated K+ channels could be shown in pancreatic acinar cells of different species. However, there are no data on Ca2+-activated K+ channels in rat pancreatic acini. Here we examine the basolateral K+ conductance of freshly isolated rat pancreatic acinar cells in cell-attached and cell-excised patch-clamp experiments. Addition of carbachol (CCH, 1 micromol/l) to the bath led to the activation of very small conductance K+ channels in cell-attached patches (n=27), producing a noisy macroscopic outward current. The respective outward conductance increased significantly by a factor of 2.1+/-0.1 (n=27). Noise analysis revealed a Lorentzian noise component with a corner frequency (f(c)) of 30.3+/-3.5 Hz (n=19), consistent with channel activity in these patches. The estimated single-channel conductance was 1.5+/-0.4 pS (n=19). In cell-excised patches (inside out) from cells previously stimulated with CCH, channel activity was only observed in the presence of K+ in the bath solution. Under these conditions f(c) was 47.6+/-11.9 Hz (estimated single-channel conductance 1.1+/-0.2 pS, n=20). The current/voltage relationship of the noise showed weak inward rectification and the reversal potential shifted towards E(K+) when Na+ in the bath was replaced by K+. Channel activity in cell-excised patches was slightly reduced by 10 mmol/l Ba2+ (23.6+/-2.1% of the total outward current) and was completely absent when K+ in the bath was replaced by Na+. Reduction of the [Ca2+]i from 1 mmol/l to 1 micromol/l in cell-excised experiments decreased the current by 52.3+/-12.3% (n=5). Expression of K(v)LQT1, one of the possible candidates for a small-conductance K+ channel in rat pancreatic acinar cells, was shown by reverse

  1. Atp2c2 Is Transcribed From a Unique Transcriptional Start Site in Mouse Pancreatic Acinar Cells.

    PubMed

    Fenech, Melissa A; Sullivan, Caitlin M; Ferreira, Lucimar T; Mehmood, Rashid; MacDonald, William A; Stathopulos, Peter B; Pin, Christopher L

    2016-12-01

    Proper regulation of cytosolic Ca(2+) is critical for pancreatic acinar cell function. Disruptions in normal Ca(2+) concentrations affect numerous cellular functions and are associated with pancreatitis. Membrane pumps and channels regulate cytosolic Ca(2+) homeostasis by promoting rapid Ca(2+) movement. Determining how expression of Ca(2+) modulators is regulated and the cellular alterations that occur upon changes in expression can provide insight into initiating events of pancreatitis. The goal of this study was to delineate the gene structure and regulation of a novel pancreas-specific isoform for Secretory Pathway Ca(2+) ATPase 2 (termed SPCA2C), which is encoded from the Atp2c2 gene. Using Next Generation Sequencing of RNA (RNA-seq), chromatin immunoprecipitation for epigenetic modifications and promoter-reporter assays, a novel transcriptional start site was identified that promotes expression of a transcript containing the last four exons of the Atp2c2 gene (Atp2c2c). This region was enriched for epigenetic marks and pancreatic transcription factors that promote gene activation. Promoter activity for regions upstream of the ATG codon in Atp2c2's 24th exon was observed in vitro but not in in vivo. Translation from this ATG encodes a protein aligned with the carboxy terminal of SPCA2. Functional analysis in HEK 293A cells indicates a unique role for SPCA2C in increasing cytosolic Ca(2+) . RNA analysis indicates that the decreased Atp2c2c expression observed early in experimental pancreatitis reflects a global molecular response of acinar cells to reduce cytosolic Ca(2+) levels. Combined, these results suggest SPCA2C affects Ca(2+) homeostasis in pancreatic acinar cells in a unique fashion relative to other Ca(2+) ATPases. J. Cell. Physiol. 231: 2768-2778, 2016. © 2016 Wiley Periodicals, Inc.

  2. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells.

    PubMed

    Li, Weida; Cavelti-Weder, Claudia; Zhang, Yingying; Zhang, Yinying; Clement, Kendell; Donovan, Scott; Gonzalez, Gabriel; Zhu, Jiang; Stemann, Marianne; Xu, Ke; Hashimoto, Tatsu; Yamada, Takatsugu; Nakanishi, Mio; Zhang, Yuemei; Zeng, Samuel; Gifford, David; Meissner, Alexander; Weir, Gordon; Zhou, Qiao

    2014-12-01

    Direct lineage conversion is a promising approach to generate therapeutically important cell types for disease modeling and tissue repair. However, the survival and function of lineage-reprogrammed cells in vivo over the long term has not been examined. Here, using an improved method for in vivo conversion of adult mouse pancreatic acinar cells toward beta cells, we show that induced beta cells persist for up to 13 months (the length of the experiment), form pancreatic islet-like structures and support normoglycemia in diabetic mice. Detailed molecular analyses of induced beta cells over 7 months reveal that global DNA methylation changes occur within 10 d, whereas the transcriptional network evolves over 2 months to resemble that of endogenous beta cells and remains stable thereafter. Progressive gain of beta-cell function occurs over 7 months, as measured by glucose-regulated insulin release and suppression of hyperglycemia. These studies demonstrate that lineage-reprogrammed cells persist for >1 year and undergo epigenetic, transcriptional, anatomical and functional development toward a beta-cell phenotype.

  3. ptf1a+, ela3l− cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae

    PubMed Central

    Schmitner, Nicole; Kohno, Kenji

    2017-01-01

    ABSTRACT The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b. In

  4. Calcium and pancreatic secretion-dynamics of subcellur calcium pools in resting and stimulated acinar cells.

    PubMed Central

    Clemente, F; Meldolesi, J

    1975-01-01

    1 Pulse-chase experiments were carried out on pancreatic tissue lobules incubated in vitro, with 45Ca as the tracer, in order to shed some light on the functional significance of the calcium pools associated with the various cell organelles of the acinar cell, especially in relation to stimulus-secretion coupling. 2 The kinetics of tracer uptake and release which were observed in the intact lobules suggest the existence of a number of intracellular pools, whose rate of exchange is slower than that across teh plasmalemma. 3 The various subcellular fractions accumulate the tracer in different amounts: some (rough microsomes and postmicrosomal supernatant) showed little radioactivity and some (smooth microsomes and zymogen granule membranes) were heavily labelled; mitochondria and zymogen granules showed intermediate values. 4 The fractions are heterogeneous also in relation to the time course of uptake and release of the tracer: in rough and smooth microsomes and, especially, in the postmicrosomal supernatant both rates were fast; zymogen granules and zymogen granule membranes showed slow rates of uptake and little release during chase; intermediate rates were found in mitochondria. 5 In agreement with previous findings we observed that in 45Ca preloaded lobules, stimulation of secretion (brought about by the secretagogue polypeptide caerulein) results in an increase of the tracer release which seems to be due primarily to the rise of the intracellular concentration of free Ca2+ and to the consequent increase of the transmembrane Ca2+ efflux. Among the cell fractions isolated from stimulated lobules only the mitochondria exhibited a significantly lower 45Ca level relative to the unstimulated controls. 6 It is concluded that, of the organelle-bound calcium pools, that associated with the mitochondria might be involved in the regulation of the calcium-dependent functions, including stimulus-secretion coupling; the calcium associated with the zymogen granule content

  5. Inhibitory effects of sho-seiryu-to on acetylcholine-induced responses in nasal gland acinar cells.

    PubMed

    Ikeda, K; Wu, D Z; Ishigaki, M; Sunose, H; Takasaka, T

    1994-01-01

    Sho-seiryu-to, a traditional Japanese herbal medicine, has been used extensively in the treatment of allergic rhinitis. The effects of Sho-seiryu-to on electrical responses induced by acetylcholine in dissociated nasal gland acinar cells were investigated using patch-clamp and microfluorimetric imaging techniques. The application of Sho-seiryu-to inhibited both K+ and Cl- currents augmented by acetylcholine. The elevation of intracellular Ca2+ and Na+ concentrations induced by acetylcholine was also inhibited by Sho-seriyu-to. These findings suggest that Sho-seiryu-to attenuated the secretion of water and electrolytes from the nasal glands through an anti-cholinergic effect.

  6. DNA quantification as prognostic factor in a case of acinar cell carcinoma of the parotid gland, diagnosed by FNA.

    PubMed

    Azúa-Romeo, Javier; Sánchez-Garnica, Juan Carlos; Azúa-Blanco, Javier; Tovar-Lázaro, Mayte

    2005-01-01

    Hereby we present a case of a 43-years-old male who complained of a three years history preauricular painful mass. Fine needle aspiration cytology was performed, diagnosing of compatible with acinar cell carcinoma, thus DNA quantification by image cytometry was carried out. Biological parameters studied (ploidy, S-phase, 5-c exceeding rate) showed that it is a low grade of malignancy lesion. Total parotidectomy conservative of facial nerve was recommended, without regional lymphadenectomy. Patient remains, one year later, asymptomatic and free of disease.

  7. Cell death and tendinopathy.

    PubMed

    Yuan, Jun; Wang, Min-Xia; Murrell, George A C

    2003-10-01

    Apoptosis and necrosis are presently recognized as the two major types of physiological and pathological cell death. Apoptosis is a tightly regulated cell deletion process that differs morphologically and biochemically from necrotic cell death. Tendinopathy is defined as a tendon injury that originates from intrinsic and extrinsic etiological factors. Excessive apoptosis has recently been described in degenerative tendon. The increased number of apoptotic tendon cells in degenerative tendon tissue could affect the rate of collagen synthesis and repair. Impaired or dysfunctional protein synthesis may lead to weaker tendon tissue and eventually increase the risk for tendon rupture. Clearly, there are many details to insert into this pathway, but there is hope that if the fine details of the pathway can be fleshed out, then strategies may be able to be developed to break the cycle at one or more points and prevent or treat tendinopathy more effectively.

  8. Beneficial effect of the bioflavonoid quercetin on cholecystokinin-induced mitochondrial dysfunction in isolated rat pancreatic acinar cells.

    PubMed

    Weber, Heike; Jonas, Ludwig; Wakileh, Michael; Krüger, Burkhard

    2014-03-01

    The pathogenesis of acute pancreatitis (AP) is still poorly understood. Thus, a reliable pharmacological therapy is currently lacking. In recent years, an impairment of the energy metabolism of pancreatic acinar cells, caused by Ca(2+)-mediated depolarization of the inner mitochondrial membrane and a decreased ATP supply, has been implicated as an important pathological event. In this study, we investigated whether quercetin exerts protection against mitochondrial dysfunction. Following treatment with or without quercetin, rat pancreatic acinar cells were stimulated with supramaximal cholecystokinin-8 (CCK). CCK caused a decrease in the mitochondrial membrane potential (MMP) and ATP concentration, whereas the mitochondrial dehydrogenase activity was significantly increased. Quercetin treatment before CCK application exerted no protection on MMP but increased ATP to a normal level, leading to a continuous decrease in the dehydrogenase activity. The protective effect of quercetin on mitochondrial function was accompanied by a reduction in CCK-induced changes to the cell membrane. Concerning the molecular mechanism underlying the protective effect of quercetin, an increased AMP/ATP ratio suggests that the AMP-activated protein kinase system may be activated. In addition, quercetin strongly inhibited CCK-induced trypsin activity. The results indicate that the use of quercetin may be a therapeutic strategy for reducing the severity of AP.

  9. Incorporation of (/sup 35/S)sulfate in normal and neoplastic rat pancreatic acinar cells in relationship to cytodifferentiation

    SciTech Connect

    Kanwar, Y.S.; Rao, M.S.; Longnecker, D.S.; Reddy, J.K.

    1984-11-01

    The rates of (/sup 35/S)sulfate incorporation in highly differentiated acinar cells from normal pancreas, moderately differentiated cells of nafenopin-induced transplantable pancreatic carcinoma, and poorly differentiated cells from azaserine-induced transplantable pancreatic carcinoma were examined in an attempt to determine if sulfation is a property of acinar cells with well-developed secretory granules. The cells were dissociated, pulsed with (/sup 35/S)sulfate (specific activity, approximately 1000 Ci/mmol) for 10 and 60 min, and chased with medium containing 100 X excess of cold inorganic sulfate for 0, 15, 60, and 120 min. The cells were then processed for determining their pool size and light and electron microscopic autoradiography. No significant differences among their pool sizes were observed. However, the light microscopic autoradiograms revealed the (/sup 35/S)sulfate incorporation as follows: azaserine-induced transplantable pancreatic carcinoma greater than nafenopin-induced transplantable pancreatic carcinoma greater than normal pancreas. Electron microscopic autoradiograms revealed similar trends. The grain densities (concentration of radiation) were highest in the Golgi regions immediately postpulse (0 min) and gradually shifted toward the secretory granules over a 120-min period. In addition, the grain density values of the secretory granule-rich cells of nafenopin-induced transplantable pancreatic carcinoma were relatively similar to the cells of normal pancreas, whereas the grain density values of secretory granule-deficient cells from this tumor were similar to those of poorly differentiated neoplastic cells of azaserine-induced transplantable pancreatic carcinoma. These results show that poorly differentiated neoplastic cells incorporate more (/sup 35/S)sulfate than do the well-differentiated cells, but the reasons for this unexpected differential incorporation are at present unknown.

  10. Insulation of a G protein-coupled receptor on the plasmalemmal surface of the pancreatic acinar cell

    PubMed Central

    1995-01-01

    Receptor desensitization is a key process for the protection of the cell from continuous or repeated exposure to high concentrations of an agonist. Well-established mechanisms for desensitization of guanine nucleotide-binding protein (G protein)-coupled receptors include phosphorylation, sequestration/internalization, and down-regulation. In this work, we have examined some mechanisms for desensitization of the cholecystokinin (CCK) receptor which is native to the pancreatic acinar cell, and have found the predominant mechanism to be distinct from these recognized processes. Upon fluorescent agonist occupancy of the native receptor, it becomes "insulated" from the effects of acid washing and becomes immobilized on the surface of the plasma membrane in a time- and temperature-dependent manner. This localization was assessed by ultrastructural studies using a colloidal gold conjugate of CCK, and lateral mobility of the receptor was assessed using fluorescence recovery after photobleaching. Of note, recent application of the same morphologic techniques to a CCK receptor-bearing Chinese hamster ovary cell line demonstrated prominent internalization via the clathrin-dependent endocytic pathway, as well as entry into caveolae (Roettger, B.F., R.U. Rentsch, D. Pinon, E. Holicky, E. Hadac, J.M. Larkin, and L.J. Miller, 1995, J. Cell Biol. 128: 1029-1041). These organelles are not observed to represent prominent compartments for the same receptor to traverse in the acinar cell, although fluorescent insulin is clearly internalized in these cells via receptor-mediated endocytosis. In this work, the rate of lateral mobility of the CCK receptor is observed to be similar in both cell types (1-3 x 10(-10) cm2/s), while the fate of the agonist-occupied receptor is quite distinct in each cell. This supports the unique nature of desensitization processes which occur in a cell-specific manner. A plasmalemmal site of insulation of this important receptor on the pancreatic acinar cell

  11. Lycopene protects pancreatic acinar cells against severe acute pancreatitis by abating the oxidative stress through JNK pathway.

    PubMed

    Lv, J C; Wang, G; Pan, S H; Bai, X W; Sun, B

    2015-02-01

    This study investigated the anti-oxidative and anti-inflammatory effects of lycopene on severe acute pancreatitis (SAP) in both in vivo and in vitro models. Utilizing a rat model, we found that lycopene administration protected against SAP, as indicated by the decreased levels of serum amylase and C-reactive protein. Pathological changes were alleviated by pretreatment with lycopene. The serum levels of tumor necrosis factor-α, interleukin-6, macrophage inflammatory protein-1α, and monocyte chemotactic protein-1 were decreased by lycopene. The decreased reactive oxygen species (ROS) content in the pancreatic tissues of the lycopene-treated group were indirectly evaluated by measuring the levels of myeloperoxidase, lipid peroxidase, and superoxide dismutase. Lycopene protected acinar cells against necrosis and apoptosis by relieving the mitochondrial and endoplasmic stress caused by ROS which was shown in electron microscopy and immunohistochemistry staining of active nuclear factor-κB p65. The protective effect was also observed in a simulated SAP model in a rat acinar cell line. ROS and apoptotic staining were compared between groups. Lycopene exerts protective effects against SAP in rats that may be related to its anti-inflammatory property through inhibiting the expression of damage-associated molecular patterns, and anti-oxidative property which can thus maintain cellular homeostasis and prevent the phosphorylation of JNK pathway.

  12. Postnatal Pancreas of Mice Contains Tripotent Progenitors Capable of Giving Rise to Duct, Acinar, and Endocrine Cells In Vitro.

    PubMed

    Ghazalli, Nadiah; Mahdavi, Alborz; Feng, Tao; Jin, Liang; Kozlowski, Mark T; Hsu, Jasper; Riggs, Arthur D; Tirrell, David A; Ku, H Teresa

    2015-09-01

    Postnatal pancreas is a potential source for progenitor cells to generate endocrine β-cells for treating type 1 diabetes. However, it remains unclear whether young (1-week-old) pancreas harbors multipotent progenitors capable of differentiating into duct, acinar, and endocrine cells. Laminin is an extracellular matrix (ECM) protein important for β-cells' survival and function. We established an artificial extracellular matrix (aECM) protein that contains the functional IKVAV (Ile-Lys-Val-Ala-Val) sequence derived from laminin (designated aECM-lam). Whether IKVAV is necessary for endocrine differentiation in vitro is unknown. To answer these questions, we cultured single cells from 1-week-old pancreas in semi-solid media supplemented with aECM-lam, aECM-scr (which contains a scrambled sequence instead of IKVAV), or Matrigel. We found that colonies were generated in all materials. Individual colonies were examined by microfluidic reverse transcription-polymerase chain reaction, immunostaining, and electron microscopy analyses. The majority of the colonies expressed markers for endocrine, acinar, and ductal lineages, demonstrating tri-lineage potential of individual colony-forming progenitors. Colonies grown in aECM-lam expressed higher levels of endocrine markers Insulin1, Insulin2, and Glucagon compared with those grown in aECM-scr and Matrigel, indicating that the IKVAV sequence enhances endocrine differentiation. In contrast, Matrigel was inhibitory for endocrine gene expression. Colonies grown in aECM-lam displayed the hallmarks of functional β-cells: mature insulin granules and glucose-stimulated insulin secretion. Colony-forming progenitors were enriched in the CD133(high) fraction and among 230 micro-manipulated single CD133(high) cells, four gave rise to colonies that expressed tri-lineage markers. We conclude that young postnatal pancreas contains multipotent progenitor cells and that aECM-lam promotes differentiation of β-like cells in vitro.

  13. Massive acinar cell apoptosis with secondary necrosis, origin of ducts in atrophic lobules and failure to regenerate in cyanohydroxybutene pancreatopathy in rats

    PubMed Central

    Kelly, Lyndell; Reid, Lynne; Walker, Neal I

    1999-01-01

    Cyanohydroxybutene (CHB), a glycosinolate breakdown product, causes pancreatic injury when given to animals in large amounts. To determine the course of CHB-induced pancreatopathy, rats were given a single subcutaneous dose of CHB and the pancreas weighed and examined by light and electron microscopy and immunohistochemistry at intervals from 2 h to 28 days. The pancreatic lesion was unusual in that there was marked early oedema with limited inflammatory cell infiltration, rapid synchronous onset of acinar cell apoptosis and early advanced atrophy engendering only a limited regenerative response. Acinar cell apoptosis was atypical in that cell fragmentation was limited and phagocytosis delayed, resulting in extensive secondary necrosis. As ducts were unaffected by CHB, the crowded ducts making up the epithelial component of atrophic lobules could be clearly shown to derive from their condensation and proliferation, not the redifferentiation of pre-existing acinar cells, widely held to produce this lesion. Although the basis of CHB selectivity and toxicity for pancreatic acinar cells remains unknown, the potential therapeutic benefit of such an agent in patients with pancreatitis or pancreatic tumours warrants further investigation. PMID:10583631

  14. Distinct contributions by ionotropic purinoceptor subtypes to ATP-evoked calcium signals in mouse parotid acinar cells

    PubMed Central

    Bhattacharya, Sumit; Verrill, Douglas S; Carbone, Kristopher M; Brown, Stefanie; Yule, David I; Giovannucci, David R

    2012-01-01

    There is emerging consensus that P2X4 and P2X7 ionotropic purinoceptors (P2X4R and P2X7R) are critical players in regulating [Ca2+]i dynamics and fluid secretion in the salivary gland. In contrast, details regarding their compartmentalization and selective activation, contributions to the spatiotemporal properties of intracellular signals and roles in regulating protein exocytosis and ion channel activity have remained largely undefined. To address these concerns, we profiled mouse parotid acinar cells using live-cell imaging to follow the spatial and temporal features of ATP-evoked Ca2+ dynamics and exocytotic activity. Selective activation of P2X7Rs revealed an apical-to-basal [Ca2+]i signal that initiated at the sub-luminal border and propagated with a wave speed estimated at 17.3 ± 4.3 μm s−1 (n = 6). The evoked Ca2+ spike consisted of Ca2+ influx and Ca2+-induced Ca2+ release from intracellular Ca2+ channels. In contrast, selective activation of P2X4Rs induced a Ca2+ signal that initiated basally and propagated toward the lumen with a wave speed of 4.3 ± 0.2 μm s−1 (n = 8) that was largely independent of intracellular Ca2+ channel blockade. Consistent with these observations, P2X7R expression was enriched in the sub-luminal regions of acinar cells while P2X4R appeared localized to basal areas. In addition, we showed that P2X4R and P2X7R activation evokes exocytosis in parotid acinar cells. Our studies also demonstrate that the P2X4R-mediated [Ca2+]i rise and subsequent protein exocytosis was enhanced by ivermectin (IVR). Thus, in addition to furthering our understanding of salivary gland physiology, this study identifies P2X4R as a potential target for treatment of salivary hypofunction diseases. PMID:22451435

  15. Agonist activation of arachidonate-regulated Ca2+-selective (ARC) channels in murine parotid and pancreatic acinar cells.

    PubMed

    Mignen, Olivier; Thompson, Jill L; Yule, David I; Shuttleworth, Trevor J

    2005-05-01

    ARC channels (arachidonate-regulated Ca(2+)-selective channels) are a novel type of highly Ca(2+)-selective channel that are specifically activated by low concentrations of agonist-induced arachidonic acid. This activation occurs in the absence of any depletion of internal Ca(2+) stores (i.e. they are 'non-capacitative'). Previous studies in HEK293 cells have shown that these channels provide the predominant pathway for the entry of Ca(2+) seen at low agonist concentrations where oscillatory [Ca(2+)](i) signals are typically produced. In contrast, activation of the more widely studied store-operated Ca(2+) channels (e.g. CRAC channels) is only seen at higher agonist concentrations where sustained 'plateau-type'[Ca(2+)](i) responses are observed. We have now demonstrated the presence of ARC channels in both parotid and pancreatic acinar cells and shown that, again, they are specifically activated by the low concentrations of appropriate agonists (carbachol in the parotid, and both carbachol and cholecystokinin in the pancreas) that are associated with oscillatory [Ca(2+)](i) signals in these cells. Uncoupling the receptor-mediated activation of cytosolic phospholipase A(2) (cPLA(2)) with isotetrandrine reduces the activation of the ARC channels by carbachol and, correspondingly, markedly inhibits the [Ca(2+)](i) signals induced by low carbachol concentrations, whilst those signals seen at high agonist concentrations are essentially unaffected. Interestingly, in the pancreatic acinar cells, activation by cholecystokinin induces a current through the ARC channels that is only approximately 60% of that seen with carbachol. This is consistent with previous reports indicating that carbachol-induced [Ca(2+)](i) signals in these cells are much more dependent on Ca(2+) entry than are the cholecystokinin-induced responses.

  16. The effects of sigma ligands on protein release from lacrimal acinar cells: a potential agonist/antagonist assay.

    PubMed

    Schoenwald, R D; Barfknecht, C F; Shirolkar, S; Xia, E

    1995-03-03

    Sigma receptor antagonists have been proposed as leading clinical candidates for use in various psychotic disorders. Prior to clinical testing, it is imperative that a new agent be correctly identified as an antagonist and not an agonist since the latter may worsen the psychosis. For sigma-ligands many behavioral and pharmacological assays have been developed in an attempt to classify agonist/antagonist activity. These assays evaluate a response or a behavior in an animal model that can be related to clinical efficacy. However, is the action by the presumed antagonist a consequence of sigma-receptor activity? Previously we have identified sigma-receptors in acinar cells of the main lacrimal gland of the New Zealand white rabbit and have measured protein release after the addition of various N,N-disubstituted phenylalkylamine derivatives known to be sigma-ligands by receptor binding studies. Although protein release from acinar cells has been attributed to either muscarinic or alpha-adrenergic stimulation, protein release from sigma-receptor stimulation was also confirmed. In the reported studies here, we isolated and incubated acinar cells with varying concentrations of known sigma-ligands and measured protein concentration. A knowledge of the receptor profile for the disubstituted phenylalkylamines permitted experiments to be designed in which various alpha, muscarinic, serotonergic, and dopaminergic antagonists could be added in equimolar concentrations. Under the conditions of these experiments, statistically significant increases in protein release for sigma-ligands could be attributed to stimulation of sigma-receptors. Haloperidol, an apparent sigma-antagonist, caused a statistically significant decrease in protein release and also inhibited protein release when tested with a known sigma-ligand, AF2975 [N,N-dimethyl-2-phenylethylamine]. In this system, stimulation and inhibition of protein release were defined as agonist and antagonist behavior, respectively

  17. Collagen type IV stimulates an increase in intracellular Ca2+ in pancreatic acinar cells via activation of phospholipase C.

    PubMed Central

    Somogyi, L; Lasić, Z; Vukicević, S; Banfić, H

    1994-01-01

    Intracellular Ca2+ responses to extracellular matrix molecules were studied in suspensions of pancreatic acinar cells loaded with Fura-2. Collagen type I, laminin, fibrinogen and fibronectin were unable to raise cytosolic free Ca2+ concentration ([Ca2+]i), whereas collagen type IV, at concentrations from 5 to 50 micrograms/ml, significantly increased it. The effect of collagen type IV was not due to possible contamination with type-I transforming growth factor beta or plasminogen, as neither of these agents was able to increase [Ca2+]i. Using highly specific mass assays, concentrations of inositol lipids, 1,2-diacylglycerol (DAG) and Ins(1,4,5) P3 were measured in pancreatic acinar cells stimulated with collagen type IV. A decrease in the concentrations of PtdIns(4,5) P2 and PtdIns4 P with a concomitant increase in the concentrations of DAG and InsP3 mass were observed, showing that collagen type IV increases [Ca2+]i by activation of phospholipase C. The observed [Ca2+]i signals had two components, the first resulting from Ca2+ release from the intracellular stores, and the second resulting from Ca2+ flux from the extracellular medium through the verapamil-insensitive channels. A tyrosine kinase inhibitor (tyrphostine) was able to block inositol lipid signalling caused by collagen type IV, which together with the insensitivity of this pathway to cholera toxin and pertussis toxin or to preactivation of protein kinase C, the longer duration of the increase in [Ca2+]i and a longer lag period needed for observation of increases in DAG and InsP3 concentration with collagen type IV than with carbachol (50 mM) suggest that activation of phospholipase C by collagen type IV is caused by tyrosine kinase activation. Inositol lipid signalling and increases in [Ca2+]i were also observed with Arg-Gly-Asp (RGD)-containing peptide but not with Arg-Asp-Gly (RDG)-containing peptide. Collagen type IV and RGD-containing peptide, but not carbachol, competed in increasing [Ca2+]i and

  18. Role of protein kinase C in caerulein induced expression of substance P and neurokinin-1-receptors in murine pancreatic acinar cells

    PubMed Central

    Koh, Yung-Hua; Tamizhselvi, Ramasamy; Moochhala, Shabbir; Bian, Jin-Song; Bhatia, Madhav

    2011-01-01

    Substance P (SP) is involved in the pathophysiology of acute pancreatitis (AP) via binding to its high-affinity receptor, neurokinin-1-receptor (NK1R). An up-regulation of SP and NK1R expression was observed in experimental AP and in caerulein-stimulated pancreatic acinar cells. However, the mechanisms that lead to this up-regulation are not fully understood. In this study, we showed the role of protein kinase C (PKC) in caerulein-induced SP and NK1R production in isolated mouse pancreatic acinar cells. Caerulein (10−7 M) stimulation rapidly activated the conventional PKC-α and novel PKC-δ as observed by the phosphorylation of these molecules. Pre-treatment of pancreatic acinar cells with Gö6976 (1–10 nM) and rottlerin (1–10 μM) inhibited PKC-α and PKC-δ phosphorylation, respectively, but not the other way round. At these concentrations used, PKC-α and PKC-δ inhibition reversed the caerulein-induced up-regulation of SP and NK1R, indicating an important role of PKCs in the modulation of SP and NK1R expression. Further experiments looking into signalling mechanisms showed that treatment of pancreatic acinar cells with both Gö6976 and rottlerin inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Inhibition of PKC-α or PKC-δ also affected caerulein-induced transcription factor activation, as represented by nuclear factor-κB and AP-1 DNA-binding activity. The findings in this study suggested that PKC is upstream of the mitogen-activated protein kinases and transcription factors, which then lead to the up-regulation of SP/NK1R expression in caerulein-treated mouse pancreatic acinar cells. PMID:20973912

  19. Role of protein kinase C in caerulein induced expression of substance P and neurokinin-1-receptors in murine pancreatic acinar cells.

    PubMed

    Koh, Yung-Hua; Tamizhselvi, Ramasamy; Moochhala, Shabbir; Bian, Jin-Song; Bhatia, Madhav

    2011-10-01

    Substance P (SP) is involved in the pathophysiology of acute pancreatitis (AP) via binding to its high-affinity receptor, neurokinin-1-receptor (NK1R). An up-regulation of SP and NK1R expression was observed in experimental AP and in caerulein-stimulated pancreatic acinar cells. However, the mechanisms that lead to this up-regulation are not fully understood. In this study, we showed the role of protein kinase C (PKC) in caerulein-induced SP and NK1R production in isolated mouse pancreatic acinar cells. Caerulein (10(-7) M) stimulation rapidly activated the conventional PKC-α and novel PKC-δ as observed by the phosphorylation of these molecules. Pre-treatment of pancreatic acinar cells with Gö6976 (1-10 nM) and rottlerin (1-10 μM) inhibited PKC-α and PKC-δ phosphorylation, respectively, but not the other way round. At these concentrations used, PKC-α and PKC-δ inhibition reversed the caerulein-induced up-regulation of SP and NK1R, indicating an important role of PKCs in the modulation of SP and NK1R expression. Further experiments looking into signalling mechanisms showed that treatment of pancreatic acinar cells with both Gö6976 and rottlerin inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Inhibition of PKC-α or PKC-δ also affected caerulein-induced transcription factor activation, as represented by nuclear factor-κB and AP-1 DNA-binding activity. The findings in this study suggested that PKC is upstream of the mitogen-activated protein kinases and transcription factors, which then lead to the up-regulation of SP/NK1R expression in caerulein-treated mouse pancreatic acinar cells.

  20. Cell Proliferation, Cell Death, and Size Regulation

    DTIC Science & Technology

    1998-10-01

    Cell Death , and Size Regulation PRINCIPAL INVESTIGATOR: Nicholas E. Baker, Ph.D. CONTRACTING ORGANIZATION: Albert Einstein College of Medicine of Yeshiva...SUBTITLE 5. FUNDING NUMBERS Cell Proliferation, Cell Death , and Size Regulation DAMD17-97-1-7034 6. AUTHOR(S) Nicholas E. Baker, Ph.D. 7. PERFORMING...Contains unpublished data 5 CELL PROLIFERATION, CELL DEATH , AND SIZE REGULATION INTRODUCTION Cell proliferation and cell death come to attention through

  1. Dead Cert: Measuring Cell Death.

    PubMed

    Crowley, Lisa C; Marfell, Brooke J; Scott, Adrian P; Boughaba, Jeanne A; Chojnowski, Grace; Christensen, Melinda E; Waterhouse, Nigel J

    2016-12-01

    Many cells in the body die at specific times to facilitate healthy development or because they have become old, damaged, or infected. Defects in cells that result in their inappropriate survival or untimely death can negatively impact development or contribute to a variety of human pathologies, including cancer, AIDS, autoimmune disorders, and chronic infection. Cell death may also occur following exposure to environmental toxins or cytotoxic chemicals. Although this is often harmful, it can be beneficial in some cases, such as in the treatment of cancer. The ability to objectively measure cell death in a laboratory setting is therefore essential to understanding and investigating the causes and treatments of many human diseases and disorders. Often, it is sufficient to know the extent of cell death in a sample; however, the mechanism of death may also have implications for disease progression, treatment, and the outcomes of experimental investigations. There are a myriad of assays available for measuring the known forms of cell death, including apoptosis, necrosis, autophagy, necroptosis, anoikis, and pyroptosis. Here, we introduce a range of assays for measuring cell death in cultured cells, and we outline basic techniques for distinguishing healthy cells from apoptotic or necrotic cells-the two most common forms of cell death. We also provide personal insight into where these assays may be useful and how they may or may not be used to distinguish apoptotic cell death from other death modalities.

  2. Effects of Baicalin on inflammatory mediators and pancreatic acinar cell apoptosis in rats with sever acute pancreatitis

    PubMed Central

    Xiping, Zhang; Hua, Tian; Hanqing, Chen; Li, Chen; Binyan, Yu; Jing, Ma

    2009-01-01

    BACKGROUND: To investigate the effects of Baicalin and Octreotide on inflammatory mediators and pancreatic acinar cells apoptosis of rats with severe acute pancreatitis (SAP). METHODS: SD rats were randomly divided into sham operated group (I group), model control group (II group), Baicalin treated group (III group) and Octreotide treated group (IV group). Each group was also divided into subgroup of 3, 6 and 12 h (n = 15). The mortality rate, ascites/body weight ratio as well as the level of endotoxin, NO and ET-1 in blood were measured. The pathological severity score of pancreas, apoptotic indexes, and expression levels of Bax and Bcl-2 proteins in each group were investigated. RESULTS: The survival rate of III and IV group has a significant difference compared with II group (P12 h < 0.05). The ascites volume, contents of inflammatory mediators in blood and pathological severity score of pancreas of III and IV group declined at different degrees compared to II group (P < 0.05, P < 0.01 or P < 0.001). Apoptotic index in III group was significantly higher than that in II group at 3 and 6 h (P3, 6 h < 0.05). Apoptotic index in IV group was significantly higher than that in II group at pancreatic tail at 6 h (P6 h < 0.05). Expression level of Bax in III group was significantly higher than that in II group (pancreatic head P3 h,6 h < 0.01, pancreatic tail P3 h < 0.001). CONCLUSIONS: Compared with Octreotide in the treatment of SAP, the protective mechanisms of Baicalin include reducing the excessive inflammatory mediators’ release, inducing the pancreatic acinar cells apoptosis. PMID:21772857

  3. Acinar autolysis and mucous extravasation in human sublingual glands: a microscopic postmortem study

    PubMed Central

    AZEVEDO-ALANIS, Luciana Reis; TOLENTINO, Elen de Souza; de ASSIS, Gerson Francisco; CESTARI, Tânia Mary; LARA, Vanessa Soares; DAMANTE, José Humberto

    2015-01-01

    Although some morphological investigations on aged human sublingual glands (HSG) found eventual phenomena identified as autolysis and mucous extravasation, the exact meaning of these findings has not been elucidated. Objective The aim of this work is to investigate whether acinar autolysis and mucous extravasation are related to the aging process in human sublingual glands. We also speculate if autolytic changes may assist forensic pathologists in determining time of death. Material and Methods 186 cadavers’ glands were allocated to age groups: I (0–30 years); II (31–60), and III (61–90). Time and mode of death were also recorded. Acinar autolysis and mucous extravasation were classified as present or absent. Ultrastructural analysis was performed using transmission electron microscopy (TEM). Data were compared using Mann-Whitney U, Spearman’s correlation coefficient, Kruskal-Wallis, and Dunn tests (p<0.05). Results There was correlation between age and acinar autolysis (r=0.38; p=0.0001). However, there was no correlation between autolysis and time of death. No differences were observed between genders. TEM showed mucous and serous cells presenting nuclear and membrane alterations and mucous cells were more susceptible to autolysis. Conclusion Acinar autolysis occurred in all age groups and increased with age while mucous extravasation was rarely found. Both findings are independent. Autolysis degrees in HSG could not be used to determine time of death. PMID:26537715

  4. Expression pattern of REIC/Dkk-3 in various cell types and the implications of the soluble form in prostatic acinar development.

    PubMed

    Zhang, Kai; Watanabe, Masami; Kashiwakura, Yuji; Li, Shun-Ai; Edamura, Kohei; Huang, Peng; Yamaguchi, Ken; Nasu, Yasutomo; Kobayashi, Yasuyuki; Sakaguchi, Masakiyo; Ochiai, Kazuhiko; Yamada, Hiroshi; Takei, Kohji; Ueki, Hideo; Huh, Nam-Ho; Li, Ming; Kaku, Haruki; Na, Yanqun; Kumon, Hiromi

    2010-12-01

    The tumor suppressor REIC/Dkk-3 is a secretory protein which was originally identified to be downregulated in human immortalized cells. In the present study, we investigated the expression pattern of REIC/Dkk-3 in various cell types to characterize its physiological functions. We first examined the expression level of REIC/Dkk-3 in a broad range of cancer cell types and confirmed that it was significantly downregulated in all of the cell types. We also examined the tissue distribution pattern in a variety of normal mouse organs. Ubiquitous REIC/Dkk-3 protein expression was observed in the organs. The expression was abundant in the liver, heart and brain tissue, but was absent in the spleen and peripheral blood mononuclear cells. The immunohistochemical analyses revealed that the subcellular localization of REIC/Dkk-3 had a punctate pattern around the nucleus, indicating its association with secretory vesicles. In cancer cells stably transfected with REIC/Dkk-3, the protein was predominantly localized to the endoplasmic reticulum (ER) under observation with confocal microscopy. Because REIC/Dkk-3 was found to be abundantly expressed in the acinar epithelial cells of the mouse prostate, we analyzed the effects of recombinant REIC/Dkk-3 protein on the acinar morphogenesis of RWPE-1 cells, which are derived from human normal prostate epithelium. Statistically significant acinar growth was observed in the culture condition with 10 µg/ml REIC/Dkk-3 protein, implicating the soluble form in prostatic acinar development. Current results suggest that REIC/Dkk-3 may play a role in regulating the morphological process of normal tissue architecture through an autocrine and/or paracrine manner.

  5. Metastatic pancreatic acinar cell carcinoma in a younger male with marked AFP production: A potential pitfall on fine needle aspiration biopsy.

    PubMed

    Valente, Kari; Yacoub, George; Cappellari, James O; Parks, Graham

    2017-02-01

    A 30-year-old male presented to his doctor with complaints of abdominal pain and was found to have retroperitoneal as well as multiple hepatic masses. A serum alpha-fetoprotein (AFP) level was significantly elevated (17,373 ng mL(-1) ), raising suspicions for a metastatic germ cell tumor. Fine needle aspiration biopsy of the pancreatic lesion revealed atypical epithelioid cells with round nuclei, large prominent nucleoli, and granular cytoplasm. The morphologic differential diagnosis included pancreatic neoplasm, metastatic germ cell tumor, other metastatic carcinoma, and melanoma. An extensive panel of immunohistochemical stains confirmed the diagnosis of acinar cell carcinoma. The diagnosis of acinar cell carcinoma could be confounded by the markedly increased AFP level, particularly in the setting of a retroperitoneal mass in a younger male. The increased AFP level in the setting of an acinar cell tumor is a potential pitfall to correct diagnosis by cytology. As the treatment for these two entities differs considerably, acute awareness of the phenomenon is important. We present a case of pancreatic ACC with an increased AFP level diagnosed on a cytology specimen. Diagn. Cytopathol. 2017;45:133-136. © 2016 Wiley Periodicals, Inc.

  6. Endoscopic ultrasound in the diagnosis of acinar cell carcinoma of the pancreas: contrast-enhanced endoscopic ultrasound, endoscopic ultrasound elastography, and pathological correlation.

    PubMed

    Chantarojanasiri, Tanyaporn; Hirooka, Yoshiki; Kawashima, Hiroki; Ohno, Eizaburo; Yamamura, Takeshi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Ishigami, Masatoshi; Watanabe, Osamu; Nakaguro, Masato; Shimoyama, Yoshie; Nakamura, Shigeo; Goto, Hidemi

    2016-11-01

    We report a case series of five patients with pancreatic acinar cell carcinoma who received surgical treatment and compared the preoperative contrast-enhanced endoscopic ultrasound (EUS) and EUS elastography patterns with the surgical specimens. The contrast-enhanced EUS indicated vascular tumors with gradual enhancement in four patients and a hypovascular tumor in one patient. The elastography indicated an elastic score of 3 (hard lesion with softer border) in two patients and a score of 5 (hard lesion, which included the surrounding area) in two patients. In tumors with an elastic score of 5, the pathology exhibited abundant hyalinizing fibrous stroma or massive tumor invasion to the surrounding tissue. We concluded that acinar cell carcinoma of the pancreas has various patterns of EUS contrast-enhancement and elastography, depending on the pathologic phenotype.

  7. Endoscopic ultrasound in the diagnosis of acinar cell carcinoma of the pancreas: contrast-enhanced endoscopic ultrasound, endoscopic ultrasound elastography, and pathological correlation

    PubMed Central

    Chantarojanasiri, Tanyaporn; Hirooka, Yoshiki; Kawashima, Hiroki; Ohno, Eizaburo; Yamamura, Takeshi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Ishigami, Masatoshi; Watanabe, Osamu; Nakaguro, Masato; Shimoyama, Yoshie; Nakamura, Shigeo; Goto, Hidemi

    2016-01-01

    We report a case series of five patients with pancreatic acinar cell carcinoma who received surgical treatment and compared the preoperative contrast-enhanced endoscopic ultrasound (EUS) and EUS elastography patterns with the surgical specimens. The contrast-enhanced EUS indicated vascular tumors with gradual enhancement in four patients and a hypovascular tumor in one patient. The elastography indicated an elastic score of 3 (hard lesion with softer border) in two patients and a score of 5 (hard lesion, which included the surrounding area) in two patients. In tumors with an elastic score of 5, the pathology exhibited abundant hyalinizing fibrous stroma or massive tumor invasion to the surrounding tissue. We concluded that acinar cell carcinoma of the pancreas has various patterns of EUS contrast-enhancement and elastography, depending on the pathologic phenotype. PMID:27853750

  8. Successful Salvage Chemotherapy with FOLFIRINOX for Recurrent Mixed Acinar Cell Carcinoma and Ductal Adenocarcinoma of the Pancreas in an Adolescent Patient.

    PubMed

    Pfrommer, Sarah; Weber, Achim; Dutkowski, Philipp; Schäfer, Niklaus G; Müllhaupt, Beat; Bourquin, Jean-Pierre; Breitenstein, Stefan; Pestalozzi, Bernhard C; Stenner, Frank; Renner, Christoph; D'Addario, Giannicola; Graf, Hans-Jörg; Knuth, Alexander; Clavien, Pierre-Alain; Samaras, Panagiotis

    2013-01-01

    Pancreatic tumors are rare in children and adolescents. Here, we report the case of a 15-year-old boy who presented with a mixed acinar cell carcinoma/ductal adenocarcinoma with blastomatous components. He received multimodal treatment including various chemotherapy regimens and multistep surgery including liver transplantation. Introduction of FOLFIRINOX after relapse repeatedly achieved a durable metabolic and clinical response with good quality of life.

  9. Successful Salvage Chemotherapy with FOLFIRINOX for Recurrent Mixed Acinar Cell Carcinoma and Ductal Adenocarcinoma of the Pancreas in an Adolescent Patient

    PubMed Central

    Pfrommer, Sarah; Weber, Achim; Dutkowski, Philipp; Schäfer, Niklaus G.; Müllhaupt, Beat; Bourquin, Jean-Pierre; Breitenstein, Stefan; Pestalozzi, Bernhard C.; Stenner, Frank; Renner, Christoph; D'Addario, Giannicola; Graf, Hans-Jörg; Knuth, Alexander; Clavien, Pierre-Alain; Samaras, Panagiotis

    2013-01-01

    Pancreatic tumors are rare in children and adolescents. Here, we report the case of a 15-year-old boy who presented with a mixed acinar cell carcinoma/ductal adenocarcinoma with blastomatous components. He received multimodal treatment including various chemotherapy regimens and multistep surgery including liver transplantation. Introduction of FOLFIRINOX after relapse repeatedly achieved a durable metabolic and clinical response with good quality of life. PMID:24163668

  10. E-cadherin-negative acinar cell carcinoma of the pancreas: report of a case showing a solid pseudopapillary growth pattern.

    PubMed

    Tajima, Shogo; Waki, Michihiko; Azuma, Masaki; Koda, Kenji; Ohata, Akihiko

    2016-09-01

    E-cadherin expression patterns in acinar cell carcinomas (ACCs) of the pancreas have not been well documented. Herein, we present a hitherto undescribed case of E-cadherin-negative ACC with a solid pseudopapillary growth pattern in a 65-year-old man. We used an antibody against the extracellular domain of E-cadherin. As a further unusual status in ACC, faint β-catenin expression was observed in the cytoplasm of carcinoma cells. Morphological distinction from a solid pseudopapillary neoplasm (SPN) of the pancreas might be problematic in such a case, because of their similarities concerned with the growth pattern and E-cadherin negativity. Without nuclear accumulation of β-catenin, a diagnosis of SPN was almost excluded. Immunoreactivity for trypsin and BCL10 made an accurate diagnosis of ACC to this case. The tumor recurred 10 months post-surgery as rapidly enlarging masses in the liver, presumably indicating the aggressiveness of the E-cadherin-negative phenotype among ACCs.

  11. Pancreatic Fat Accumulation, Fibrosis, and Acinar Cell Injury in the Zucker Diabetic Fatty Rat Fed a Chronic High-Fat Diet

    PubMed Central

    Matsuda, Akiko; Makino, Naohiko; Tozawa, Tomohiro; Shirahata, Nakao; Honda, Teiichiro; Ikeda, Yushi; Sato, Hideyuki; Ito, Miho; Kakizaki, Yasuharu; Akamatsu, Manabu; Ueno, Yoshiyuki; Kawata, Sumio

    2014-01-01

    Objective The histological alteration of the exocrine pancreas in obesity has not been clarified. In the present study, we investigated biochemical and histological changes in the exocrine pancreas of obese model rats. Methods Zucker lean rats were fed a standard diet, and Zucker diabetic fatty (ZDF) rats were divided into 2 groups fed a standard diet and a high-fat diet, respectively. These experimental groups were fed each of the diets from 6 weeks until 12, 18, 24 weeks of age. We performed blood biochemical assays and histological analysis of the pancreas. Results In the ZDF rats fed a high-fat diet, the ratio of accumulated pancreatic fat area relative to exocrine gland area was increased significantly at 18 weeks of age in comparison with the other 2 groups (P < 0.05), and lipid droplets were observed in acinar cells. Subsequently, at 24 weeks of age in this group, pancreatic fibrosis and the serum exocrine pancreatic enzyme levels were increased significantly relative to the other 2 groups (P < 0.01). Conclusions In ZDF rats fed a chronic high-fat diet, fat accumulates in pancreatic acinar cells, and this fatty change seems to be related to subsequent pancreatic fibrosis and acinar cell injury. PMID:24717823

  12. RAS inhibitors decrease apoptosis of acinar cells and increase elimination of pancreatic stellate cells after in the course of experimental chronic pancreatitis induced by dibutyltin dichloride.

    PubMed

    Madro, A; Korolczuk, A; Czechowska, G; Celiński, K; Słomka, M; Prozorow-Król, B; Korobowicz, E

    2008-08-01

    Chronic pancreatitis (CP) is a progressive disease, in which the exocrine function of the gland is gradually lost and fibrosis develops due to repeated episodes of acute pancreatitis. The aim of the study was to investigate the effects of RAS inhibitors on the apoptosis of acinar cells and pancreatic stellate cells (PSCs) elimination in experimental CP induced by dibutyltin dichloride (DBTC). CP was induced by administration of DBTC to the femoral vein. Simultaneously captopril, losartan, enalapril and lisinopril were administered intraperitoneally. The rats were decapitated after 60 days and tissue of pancreas was collected. In rats treated by DBTC the features of inflammatory infiltration, ductal lumen dilatation, fibrosis were found. Strong reactivity with caspase2(L) and clusterin-beta antibodies was observed in areas of fibrosis. In animals treated with RAS inhibitors inflammatory changes and fibrosis were less severe. In groups of rats treated with DBTC and RAS inhibitors immunoreactivity of caspase(2L) and clusterin-beta was weak. Positive immunostaining against smooth muscle actine and desmin was observed in the elongated cells (PSC-s). This reaction was weak in groups of rat treated with DBTC and RAS inhibitors. Treatment of CP rats with RAS inhibitors alleviate apoptosis of pancreatic acinar cells and induces PSCs elimination.

  13. TP53 alterations in pancreatic acinar cell carcinoma: new insights into the molecular pathology of this rare cancer.

    PubMed

    La Rosa, Stefano; Bernasconi, Barbara; Frattini, Milo; Tibiletti, Maria Grazia; Molinari, Francesca; Furlan, Daniela; Sahnane, Nora; Vanoli, Alessandro; Albarello, Luca; Zhang, Lizhi; Notohara, Kenji; Casnedi, Selenia; Chenard, Marie-Pierre; Adsay, Volkan; Asioli, Sofia; Capella, Carlo; Sessa, Fausto

    2016-03-01

    The molecular alterations of pancreatic acinar cell carcinomas (ACCs) are poorly understood and have been reported as being different from those in ductal adenocarcinomas. Loss of TP53 gene function in the pathogenesis of ACCs is controversial since contradictory findings have been published. A comprehensive analysis of the different possible genetic and epigenetic mechanisms leading to TP53 alteration in ACC has never been reported and hence the role of TP53 in the pathogenesis and/or progression of ACC remains unclear. We investigated TP53 alterations in 54 tumor samples from 44 patients, including primary and metastatic ACC, using sequencing analysis, methylation-specific multiplex ligation probe amplification, fluorescence in situ hybridization, and immunohistochemistry. TP53 mutations were found in 13 % of primary ACCs and in 31 % of metastases. Primary ACCs and metastases showed the same mutational profile, with the exception of one case, characterized by a wild-type sequence in the primary carcinoma and a mutation in the corresponding metastasis. FISH analysis revealed deletion of the TP53 region in 53 % of primary ACCs and in 50 % of metastases. Promoter hypermethylation was found in one case. The molecular alterations correlated well with the immunohistochemical findings. A statistically significant association was found between the combination of mutation of one allele and loss of the other allele of TP53 and worse survival.

  14. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    SciTech Connect

    Lee, Jingu; Park, Sangkyu; Roh, Sangho

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.

  15. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation

    SciTech Connect

    Tateishi, Yoshihisa Sasabe, Eri; Ueta, Eisaku; Yamamoto, Tetsuya

    2008-02-08

    Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by {gamma}-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10 Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment.

  16. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades.

    PubMed

    Sancho, Veronica; Berna, Marc J; Thill, Michelle; Jensen, R T

    2011-12-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal (GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin (CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA was present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCK(A)-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125(FAK) and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ's direct association with AKT, RafA, RafC and Lyn. These results show for the first time the PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth).

  17. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades

    PubMed Central

    Sancho, Veronica; Berna, Marc J.; Thill, Michelle; Jensen, R. T.

    2011-01-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal(GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin(CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA were present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCKA-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125FAK and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ’s direct association with AKT, RafA, RafC and Lyn. These results show for the first time PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth). PMID:21810446

  18. Damage to pancreatic acinar cells and preservation of islets of Langerhans in a rat model of acute pancreatitis induced by Karwinskia humboldtiana (buckthorn).

    PubMed

    Carcano-Diaz, Katya; Garcia-Garcia, Aracely; Segoviano-Ramirez, Juan Carlos; Rodriguez-Rocha, Humberto; Loera-Arias, Maria de Jesus; Garcia-Juarez, Jaime

    2016-09-01

    Karwinskia humboldtiana (Kh) is a poisonous plant that grows in some regions of the American continent. Consuming large amounts of Kh fruit results in acute intoxication leading to respiratory failure, culminating in death within days. There is evidence of histological damage to the lungs, liver, and kidneys following accidental and experimental Kh intoxication. To date, the microscopic effect of Kh consumption on the pancreas has not been described. We examined the early effects of Kh fruit on pancreatic tissue at different stages of acute intoxication in the Wistar rat. We found progressive damage confined to the exocrine pancreas, starting with a reduction in the number of zymogen granules, loss of acinar architecture, the presence of autophagy-like vesicles, apoptosis and inflammatory infiltrate. The pancreatic pathology culminated in damaged acini characterized by necrosis and edema, with a complete loss of lobular architecture. Interestingly, the morphology of the islets of Langerhans was conserved throughout our evaluations. Taken together, our results indicate the damage induced by a high dose of Kh fruit in the Wistar rat is consistent with an early acute necrotizing pancreatitis that exclusively affects the exocrine pancreas. Therefore, this system might be useful as an animal model to study the treatment of pancreatic diseases. More importantly, as the islets of Langerhans were preserved, the active compounds of Kh fruit could be utilized for the treatment of acinar pancreatic cancer. Further studies might provide insight into the severity of acute Kh intoxication in humans and influence the design of treatments for pancreatic diseases and acinar pancreatic cancer.

  19. Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin) Uptake by Pancreatic Acinar Cells.

    PubMed

    Srinivasan, Padmanabhan; Thrower, Edwin C; Loganathan, Gopalakrishnan; Balamurugan, A N; Subramanian, Veedamali S; Gorelick, Fred S; Said, Hamid M

    2015-01-01

    Thiamin (vitamin B1), a member of the water-soluble family of vitamins, is essential for normal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunction. Pancreatic acinar cells (PAC) obtain thiamin from the circulation using a specific carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and THTR-2; encoded by the SLC19A2 and SLC19A3 genes, respectively). The aim of the current study was to examine the effect of chronic exposure of mouse PAC in vivo and human PAC in vitro to nicotine (a major component of cigarette smoke that has been implicated in pancreatic diseases) on thiamin uptake and to delineate the mechanism involved. The results showed that chronic exposure of mice to nicotine significantly inhibits thiamin uptake in murine PAC, and that this inhibition is associated with a marked decrease in expression of THTR-1 and THTR-2 at the protein, mRNA and hnRNAs level. Furthermore, expression of the important thiamin-metabolizing enzyme, thiamin pyrophosphokinase (TPKase), was significantly reduced in PAC of mice exposed to nicotine. Similarly, chronic exposure of cultured human PAC to nicotine (0.5 μM, 48 h) significantly inhibited thiamin uptake, which was also associated with a decrease in expression of THTR-1 and THTR-2 proteins and mRNAs. This study demonstrates that chronic exposure of PAC to nicotine impairs the physiology and the molecular biology of the thiamin uptake process. Furthermore, the study suggests that the effect is, in part, mediated through transcriptional mechanism(s) affecting the SLC19A2 and SLC19A3 genes.

  20. [Pathophysiologic programming of cell death].

    PubMed

    Dobryszycka, W

    1998-01-01

    In multicellular organisms homeostasis depends on a balance between cell proliferation and cell death. In this review principles of the physiology of programmed cell death (apoptosis), i.e. biochemical features, involved genes and proteolytic enzymes, are described. Alterations in apoptosis contribute to the pathogenesis of a number of human diseases, including cancer, viral infections, inflammation, hematopoietic and immunological system defects (e.g. AIDS), neurodegenerative disorders. Specific effect on regulation of apoptosis might lead to new possibilities for treatment. Methods of quantitative determinations of apoptosis are discussed.

  1. Chronic alcohol exposure affects pancreatic acinar mitochondrial thiamin pyrophosphate uptake: studies with mouse 266-6 cell line and primary cells

    PubMed Central

    Srinivasan, Padmanabhan; Nabokina, Svetlana

    2015-01-01

    Thiamin is essential for normal metabolic activity of all mammalian cells, including those of the pancreas. Cells obtain thiamin from their surroundings and enzymatically convert it into thiamin pyrophosphate (TPP) in the cytoplasm; TPP is then taken up by mitochondria via a specific carrier the mitochondrial TPP transporter (MTPPT; product of the SLC25A19 gene). Chronic alcohol exposure negatively impacts the health of pancreatic acinar cells (PAC), but its effect on physiological/molecular parameters of MTPPT is not known. We addressed this issue using mouse pancreatic acinar tumor cell line 266-6 and primary PAC of wild-type and transgenic mice carrying the SLC25A19 promoter that were fed alcohol chronically. Chronic alcohol exposure of 266-6 cells (but not to its nonoxidative metabolites ethyl palmitate and ethyl oleate) led to a significant inhibition in mitochondrial TPP uptake, which was associated with a decreased expression of MTPPT protein, mRNA, and activity of the SLC25A19 promoter. Similarly, chronic alcohol feeding of mice led to a significant inhibition in expression of MTPPT protein, mRNA, heterogeneous nuclear RNA, as well as in activity of SLC25A19 promoter in PAC. While chronic alcohol exposure did not affect DNA methylation of the Slc25a19 promoter, a significant decrease in histone H3 euchromatin markers and an increase in H3 heterochromatin marker were observed. These findings show, for the first time, that chronic alcohol exposure negatively impacts pancreatic MTPPT, and that this effect is exerted, at least in part, at the level of Slc25a19 transcription and appears to involve epigenetic mechanism(s). PMID:26316591

  2. Pancreatic β Cell Mass Death

    PubMed Central

    Marrif, Husnia I.; Al-Sunousi, Salma I.

    2016-01-01

    Type two diabetes (T2D) is a challenging metabolic disorder for which a cure has not yet been found. Its etiology is associated with several phenomena, including significant loss of insulin-producing, beta cellcell) mass via progressive programmed cell death and disrupted cellular autophagy. In diabetes, the etiology of β cell death and the role of mitochondria are complex and involve several layers of mechanisms. Understanding the dynamics of those mechanisms could permit researchers to develop an intervention for the progressive loss of β cells. Currently, diabetes research has shifted toward rejuvenation and plasticity technology and away from the simplified approach of hormonal compensation. Diabetes research is currently challenged by questions such as how to enhance cell survival, decrease apoptosis and replenish β cell mass in diabetic patients. In this review, we discuss evidence that β cell development and mass formation are guided by specific signaling systems, particularly hormones, transcription factors, and growth factors, all of which could be manipulated to enhance mass growth. There is also strong evidence that β cells are dynamically active cells, which, under specific conditions such as obesity, can increase in size and subsequently increase insulin secretion. In certain cases of aggressive or advanced forms of T2D, β cells become markedly impaired, and the only alternatives for maintaining glucose homeostasis are through partial or complete cell grafting (the Edmonton protocol). In these cases, the harvesting of an enriched population of viable β cells is required for transplantation. This task necessitates a deep understanding of the pharmacological agents that affect β cell survival, mass, and function. The aim of this review is to initiate discussion about the important signals in pancreatic β cell development and mass formation and to highlight the process by which cell death occurs in diabetes. This review also examines the

  3. Autophagy in pancreatic acinar cells in caerulein-treated mice: immunolocalization of related proteins and their potential as markers of pancreatitis.

    PubMed

    Zhang, Leshuai; Zhang, Jun; Shea, Katherine; Xu, Lin; Tobin, Grainne; Knapton, Alan; Sharron, Stewart; Rouse, Rodney

    2014-01-01

    Drug-induced pancreatitis (DIP) is an underdiagnosed condition that lacks sensitive and specific biomarkers. To better understand the mechanisms of DIP and to identify potential tissue biomarkers, we studied experimental pancreatitis induced in male C57BL/6 mice by intraperitoneal injection of caerulein (10 or 50 μg/kg) at 1-hr intervals for a total of 7 injections. Pancreata from caerulein-treated mice exhibited consistent acinar cell autophagy and apoptosis with infrequent necrosis. Kinetic assays for serum amylase and lipase also showed a dose-dependent increase. Terminal deoxynucleotidyl transferase-mediated biotin-dNTP nick labeling (TUNEL) detected dose-dependent acinar cell apoptosis. By light microscopy, autophagy was characterized by the formation of autophagosomes and autolysosomes (ALs) within the cytoplasm of acinar cells. Immunohistochemical studies with specific antibodies for proteins related to autophagy and pancreatic stress were conducted to evaluate these proteins as potential biomarkers of pancreatitis. Western blots were used to confirm immunohistochemical results using pancreatic lysates from control and treated animals. Autophagy was identified as a contributing process in caerulein-induced pancreatitis and proteins previously associated with autophagy were upregulated following caerulein treatment. Autophagosomes and ALs were found to be a common pathway, in which cathepsins, lysosome-associated membrane protein 2, vacuole membrane protein 1, microtubule-associated protein 1 light chain 3 (LC3), autophagy-related protein 9, Beclin1, and pancreatitis-associated proteins were simultaneously involved in response to caerulein stimulus. Regenerating islet-derived 3 gamma (Reg3γ), a pancreatic acute response protein, was dose-dependently induced in caerulein-treated mice and colocalized with the autophagosomal marker, LC3. This finding supports Reg3γ as a candidate biomarker for pancreatic injury.

  4. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology.

    PubMed

    Marciniak, Anja; Cohrs, Christian M; Tsata, Vasiliki; Chouinard, Julie A; Selck, Claudia; Stertmann, Julia; Reichelt, Saskia; Rose, Tobias; Ehehalt, Florian; Weitz, Jürgen; Solimena, Michele; Slak Rupnik, Marjan; Speier, Stephan

    2014-12-01

    Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.

  5. Alternative Cell Death Pathways and Cell Metabolism

    PubMed Central

    Fulda, Simone

    2013-01-01

    While necroptosis has for long been viewed as an accidental mode of cell death triggered by physical or chemical damage, it has become clear over the last years that necroptosis can also represent a programmed form of cell death in mammalian cells. Key discoveries in the field of cell death research, including the identification of critical components of the necroptotic machinery, led to a revised concept of cell death signaling programs. Several regulatory check and balances are in place in order to ensure that necroptosis is tightly controlled according to environmental cues and cellular needs. This network of regulatory mechanisms includes metabolic pathways, especially those linked to mitochondrial signaling events. A better understanding of these signal transduction mechanisms will likely contribute to open new avenues to exploit our knowledge on the regulation of necroptosis signaling for therapeutic application in the treatment of human diseases. PMID:23401689

  6. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    SciTech Connect

    Loo, Jr., Billy W.

    2000-06-01

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  7. Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, acinar cell damage, and systemic inflammation in acute pancreatitis.

    PubMed

    Seyhun, Ersin; Malo, Antje; Schäfer, Claus; Moskaluk, Christopher A; Hoffmann, Ralf-Thorsten; Göke, Burkhard; Kubisch, Constanze H

    2011-11-01

    In acute pancreatitis, endoplasmic reticulum (ER) stress prompts an accumulation of malfolded proteins inside the ER, initiating the unfolded protein response (UPR). Because the ER chaperone tauroursodeoxycholic acid (TUDCA) is known to inhibit the UPR in vitro, this study examined the in vivo effects of TUDCA in an acute experimental pancreatitis model. Acute pancreatitis was induced in Wistar rats using caerulein, with or without prior TUDCA treatment. UPR components were analyzed, including chaperone binding protein (BiP), phosphorylated protein kinase-like ER kinase (pPERK), X-box binding protein (XBP)-1, phosphorylated c-Jun NH(2)-terminal kinase (pJNK), CCAAT/enhancer binding protein homologues protein, and caspase 12 and 3 activation. In addition, pancreatitis biomarkers were measured, such as serum amylase, trypsin activation, edema formation, histology, and the inflammatory reaction in pancreatic and lung tissue. TUDCA treatment reduced intracellular trypsin activation, edema formation, and cell damage, while leaving amylase levels unaltered. The activation of myeloperoxidase was clearly reduced in pancreas and lung. Furthermore, TUDCA prevented caerulein-induced BiP upregulation, reduced XBP-1 splicing, and caspase 12 and 3 activation. It accelerated the downregulation of pJNK. In controls without pancreatitis, TUDCA showed cytoprotective effects including pPERK signaling and activation of downstream targets. We concluded that ER stress responses activated in acute pancreatitis are grossly attenuated by TUDCA. The chaperone reduced the UPR and inhibited ER stress-associated proapoptotic pathways. TUDCA has a cytoprotective potential in the exocrine pancreas. These data hint at new perspectives for an employment of chemical chaperones, such as TUDCA, in prevention of acute pancreatitis.

  8. Cell Proliferation, Cell Death, and Size Regulation

    DTIC Science & Technology

    2000-10-01

    predicted to encode a novel 582 amino acid protein, perhaps interacting with molybdopterin. It is possible that the pie gene encodes a novel enzyme protecting against cell death during growth and development.

  9. Programmed Cell Death in Breast Cancer

    DTIC Science & Technology

    1998-10-01

    Programmed cell death , or apoptosis, is a genetically regulated process through which a cell is active in bringing about its own death for the sake...delays and inhibits the cell death response, so that the breast cancer cell lines are much less susceptible to thapsigargin-induced apoptosis than...lymphoid cell lines, an observation that parallels the differential susceptibility of breast cancer and lymphomas to chemotherapy-induced cell death in

  10. Stimulus-secretion coupling in pancreatic acinar cells: inhibitory effects of calcium removal and manganese addition on pancreozymin-induced amylase release.

    PubMed Central

    Kanno, T; Nishimura, O

    1976-01-01

    The role of Ca ions in stimulus-secretion coupling has been analysed in the isolated and perfused rat pancreas. 2. The omission of [Ca2+]O diminished but did not abolish the release of amylase in response to continuous stimulation with 5 m-u. pancreozymin (Pz)/ml. The addition of Mn2+ (1-0 mM) to this Ca-deficient environment abolished the residual release of amylase. This was followed by a complete recovery of amylase output when the control [Ca2+]O was reestablished. 3. The addition of Mn2+ (1-0 mM) to the extracellular environment containing 2-5 mM-Ca2+ reversibly inhibited the Pz-induced release of amylase. 4. A kinetic scheme based on competition of Ca and Mn at a carrier in the acinar cell membrane could quantitatively explain the effects of Ca and Mn upon the Pz-induced amylase release. 5. These results support the view that the Ca2+ influx into the acinar cells is the major contributor to the rise in [Ca2+]i which, in turn, mediates the processes in the stimulus-secretion coupling in the exocrine pancreas, and suggest that the mode of Ca influx is a facilitated diffusion. PMID:950596

  11. Programmed cell death in aging.

    PubMed

    Tower, John

    2015-09-01

    Programmed cell death (PCD) pathways, including apoptosis and regulated necrosis, are required for normal cell turnover and tissue homeostasis. Mis-regulation of PCD is increasingly implicated in aging and aging-related disease. During aging the cell turnover rate declines for several highly-mitotic tissues. Aging-associated disruptions in systemic and inter-cell signaling combined with cell-autonomous damage and mitochondrial malfunction result in increased PCD in some cell types, and decreased PCD in other cell types. Increased PCD during aging is implicated in immune system decline, skeletal muscle wasting (sarcopenia), loss of cells in the heart, and neurodegenerative disease. In contrast, cancer cells and senescent cells are resistant to PCD, enabling them to increase in abundance during aging. PCD pathways limit life span in fungi, but whether PCD pathways normally limit adult metazoan life span is not yet clear. PCD is regulated by a balance of negative and positive factors, including the mitochondria, which are particularly subject to aging-associated malfunction.

  12. Cell death in the nervous system

    PubMed Central

    Bredesen, Dale E.; Rao, Rammohan V.; Mehlen, Patrick

    2014-01-01

    Neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease trigger neuronal cell death through endogenous suicide pathways. Surprisingly, although the cell death itself may occur relatively late in the course of the degenerative process, the mediators of the underlying cell-death pathways have shown promise as potential therapeutic targets. PMID:17051206

  13. Programmed cell death in Giardia.

    PubMed

    Bagchi, Susmita; Oniku, Abraham E; Topping, Kate; Mamhoud, Zahra N; Paget, Timothy A

    2012-06-01

    Programmed cell death (PCD) has been observed in many unicellular eukaryotes; however, in very few cases have the pathways been described. Recently the early divergent amitochondrial eukaryote Giardia has been included in this group. In this paper we investigate the processes of PCD in Giardia. We performed a bioinformatics survey of Giardia genomes to identify genes associated with PCD alongside traditional methods for studying apoptosis and autophagy. Analysis of Giardia genomes failed to highlight any genes involved in apoptotic-like PCD; however, we were able to induce apoptotic-like morphological changes in response to oxidative stress (H2O2) and drugs (metronidazole). In addition we did not detect caspase activity in induced cells. Interestingly, we did observe changes resembling autophagy when cells were starved (staining with MDC) and genome analysis revealed some key genes associated with autophagy such as TOR, ATG1 and ATG 16. In organisms such as Trichomonas vaginalis, Entamoeba histolytica and Blastocystis similar observations have been made but no genes have been identified. We propose that Giardia possess a pathway of autophagy and a form of apoptosis very different from the classical known mechanism; this may represent an early form of programmed cell death.

  14. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system.

    PubMed

    Lee, Jingu; Park, Sangkyu; Roh, Sangho

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage.

  15. Direct Imaging of RAB27B-Enriched Secretory Vesicle Biogenesis in Lacrimal Acinar Cells Reveals Origins on a Nascent Vesicle Budding Site

    PubMed Central

    Chiang, Lilian; Karvar, Serhan; Hamm-Alvarez, Sarah F.

    2012-01-01

    This study uses YFP-tagged Rab27b expression in rabbit lacrimal gland acinar cells, which are polarized secretory epithelial cells, to characterize early stages of secretory vesicle trafficking. Here we demonstrate the utility of YFP-Rab27b to delineate new perspectives on the mechanisms of early vesicle biogenesis in lacrimal gland acinar cells, where information is significantly limited. Protocols were developed to deplete the mature YFP-Rab27b-enriched secretory vesicle pool in the subapical region of the cell, and confocal fluorescence microscopy was used to track vesicle replenishment. This analysis revealed a basally-localized organelle, which we termed the “nascent vesicle site,” from which nascent vesicles appeared to emerge. Subapical vesicular YFP-Rab27b was co-localized with p150Glued, a component of the dynactin cofactor of cytoplasmic dynein. Treatment with the microtubule-targeted agent, nocodazole, did not affect release of mature secretory vesicles, although during vesicle repletion it significantly altered nascent YFP-Rab27b-enriched secretory vesicle localization. Instead of moving to the subapical region, these vesicles were trapped at the nascent vesicle site which was adjacent to, if not a sub-compartment of, the trans-Golgi network. Finally, YFP-Rab27b-enriched secretory vesicles which reached the subapical cytoplasm appeared to acquire the actin-based motor protein, Myosin 5C. Our findings show that Rab27b enrichment occurs early in secretory vesicle formation, that secretory vesicles bud from a visually discernable nascent vesicle site, and that transport from the nascent vesicle site to the subapical region requires intact microtubules. PMID:22363735

  16. Promoting effect of arachidonic acid supplementation on N-methyl-N-nitrosourea-induced pancreatic acinar cell hyperplasia in young Lewis rats.

    PubMed

    Yoshizawa, Katsuhiko; Uehara, Norihisa; Kimura, Ayako; Emoto, Yuko; Kinoshita, Yuichi; Yuri, Takashi; Takada, Hideho; Moriguchi, Toru; Hamazaki, Tomohito; Tsubura, Airo

    2013-01-01

    Arachidonic acid (AA) is naturally found in human breast milk. AA, together with docosahexaenoic acid, is commonly added as a functional food ingredient to commercial infant formula worldwide, in accordance with the international standard of Codex Alimentarius. However, few studies have been performed that are concerned with the possible carcinogenic effects of AA supplementation during neonatal life. The effect of dietary AA supplementation in dams, during gestation and lactation, was investigated in N-methyl-N-nitrosourea (MNU)-induced preneoplastic lesions in the exocrine pancreas of young Lewis rats. Dams were fed either an AA (2.0% AA) or a basal (<0.01% AA) diet. On postnatal day 0 (at birth), male and female pups received a single intraperitoneal injection of either 35 mg/kg MNU or vehicle. The morphology and proliferating activity of the exocrine pancreas were examined by proliferative cell nuclear antigen immunohistochemistry 7, 14, 21, 28 and/or 60 days post-MNU. Histopathologically, acinar cell hyperplasia (ACH) occurred in the MNU-treated groups 60 days after MNU injection, irrespecitive of whether the rats had been fed an AA diet. Morphometrically, the number and area of ACH per 1 mm(2) in MNU-treated rats increased significantly in the AA diet-fed rats, compared with basal diet-fed rats. The number of proliferative cell nuclear antigen-positive acinar cells in both the normal and hyperplastic areas of MNU-treated rats increased significantly in the AA diet-fed rats. In conclusion, providing dams with an AA-rich diet during gestation and lactation promotes MNU-induced pancreatic ACH in young Lewis rats.

  17. Effects of the type of dietary fat on acetylcholine-evoked amylase secretion and calcium mobilization in isolated rat pancreatic acinar cells.

    PubMed

    Yago, María D; Díaz, Ricardo J; Martínez, María A; Audi, Nama'a; Naranjo, José A; Martínez-Victoria, Emilio; Mañas, Mariano

    2006-04-01

    Olive oil is a major component of the Mediterranean diet, and its role in human health is being actively debated. This study aimed to clarify the mechanism of pancreatic adaptation to dietary fat. For this purpose, we examined whether dietary-induced modification of pancreatic membranes affects acinar cell function in response to the secretagogue acetylcholine (ACh). Weaning male Wistar rats were assigned to one of two experimental groups and fed for 8 weeks with a commercial chow (C) or a semisynthetic diet containing virgin olive oil as dietary fat (OO). The fatty acid composition of pancreatic plasma membranes was determined by gas-liquid chromatography. For assessment of secretory function, viable acini were incubated with ACh and amylase of supernatant was further assayed with a substrate reagent. Changes in cytosolic Ca(2+) concentration in response to ACh were measured by fura-2 AM fluorimetry. Compared to C rats, pancreatic cell membranes of OO rats had a higher level of monounsaturated fatty acids and a lower level of both saturated and polyunsaturated fatty acids, thus, reflecting the type of dietary fat given. Net amylase secretion in response to ACh was greatly enhanced after OO feeding, although this was not paralleled by enhancement of ACh-evoked Ca(2+) peak increases. In conclusion, chronic intake of diets that differ in the fat type influences not only the fatty acid composition of rat pancreatic membranes but also the responsiveness of acinar cells to ACh. This mechanism may be, at least in part, responsible for the adaptation of the exocrine pancreas to the type of fat available.

  18. Role of programmed cell death in development.

    PubMed

    Ranganath, R M; Nagashree, N R

    2001-01-01

    Programmed cell death (PCD) is an integral part of both animal and plant development. In animals, model systems such as Caenorhabditis elegans, Drosophila melanogaster, and mice have shown a general cell death profile of induction, caspase mediation, cell death, and phagocytosis. Tremendous strides have been made in cell death research in animals in the past decade. The ordering of the C. elegans genes Ced-3, 4 and 9, identification of caspase-activated DNase that degrades nuclear DNA during PCD, identification of signal transduction modules involving caspases as well as the caspase-independent pathway, and the involvement of mitochondria are some of the findings of immense value in understanding animal PCDs. Similarly, the caspase inactivation mechanisms of infecting viruses to stall host cell death give a new dimension to the viral infection process. However, plant cell death profiles provide an entirely different scenario. The presence of a cell wall that cannot be phagocytosed, absence of the hallmarks of animal PCDs such as DNA laddering, formation of apoptotic bodies, a cell-death-specific nuclease, a biochemical machinery of killer enzymes such as caspases all point to novel ways of cell elimination. Large gaps in our understanding of plant cell death have prompted speculative inferences and comparisons with animal cell death mechanisms. This paper deals with both animals and plants for a holistic view on cell death in eukaryotes.

  19. Metabolic Regulation of Ovarian Cancer Cell Death

    DTIC Science & Technology

    2012-07-01

    Following treatment with chemotherapeutic agents, responsive ovarian cancer cells undergo apoptotic cell death . Several groups have shown that the...apoptotic protease, caspase 2 (C2), is an essential activator of cell death in ovarian cancer cells treated with cisplatin and we have found, by knock

  20. Programmed Cell Death in Breast Cancer.

    DTIC Science & Technology

    1996-10-01

    TITLE: Programmed Cell Death in Breast Cancer PRINCIPAL INVESTIGATOR: Clark W. Distelhorst, M.D. CONTRACTING ORGANIZATION: Case Western Reserve...Programmed Cell Death in Breast Cancer DAMD17-94-J-4451 6. AUTHOR(S) Clark W. Distelhorst, M.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...cell death , apoptosis, in breast cancer cells has been developed. This model is based on induction of apoptosis by the selective endoplasmic reticulum

  1. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012

    PubMed Central

    Galluzzi, L; Vitale, I; Abrams, J M; Alnemri, E S; Baehrecke, E H; Blagosklonny, M V; Dawson, T M; Dawson, V L; El-Deiry, W S; Fulda, S; Gottlieb, E; Green, D R; Hengartner, M O; Kepp, O; Knight, R A; Kumar, S; Lipton, S A; Lu, X; Madeo, F; Malorni, W; Mehlen, P; Nuñez, G; Peter, M E; Piacentini, M; Rubinsztein, D C; Shi, Y; Simon, H-U; Vandenabeele, P; White, E; Yuan, J; Zhivotovsky, B; Melino, G; Kroemer, G

    2012-01-01

    In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including ‘apoptosis', ‘necrosis' and ‘mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features. PMID:21760595

  2. Cell biology. Metabolic control of cell death.

    PubMed

    Green, Douglas R; Galluzzi, Lorenzo; Kroemer, Guido

    2014-09-19

    Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.

  3. Deoxycholic acid inhibited proliferation and induced apoptosis and necrosis by regulating the activity of transcription factors in rat pancreatic acinar cell line AR42J.

    PubMed

    Zhang, Guixin; Zhang, Jingwen; Shang, Dong; Qi, Bing; Chen, Hailong

    2015-09-01

    The objective of this study is to investigate the effect of deoxycholic acid (DCA) on rat pancreatic acinar cell line AR42J and the functional mechanisms of DCA on AR42J cells. AR42J cells were treated with various concentrations of DCA for 24 h and also treated with 0.4 mmol/L DCA for multiple times, and then, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to detect the AR42J cell survival rate. Flow cytometric was used to detect the cell apoptosis and necrosis in AR42J cells treated with 0.4 mmol/L and 0.8 mmol/L DCA. The cells treated with phosphate buffer saline (PBS) were served as control. In addition, the DNA-binding activity assays of transcription factors (TFs) in nuclear proteins of cells treated with DCA were determined using Panomics Procarta Transcription Factor Assay Kit. The relative survival rates were markedly decreased (P < 0.05) in a dose- and time-dependent manner. Compared with control group, the cell apoptosis and necrosis ratio were both significantly elevated in 0.4 mmol/L DCA and 0.8 mmol/L DCA groups (P < 0.01). A significant increase (P < 0.05) in the activity of transcription factor 2 (ATF2), interferon-stimulated response element (ISRE), NKX-2.5, androgen receptor (AR), p53, and hypoxia-inducible factor-1 (HIF-1) was observed, and the activity of peroxisome proliferator-activated receptor (PPAR), activator protein 1 (AP1), and E2F1 was reduced (P < 0.05). In conclusion, DCA inhibited proliferation and induced apoptosis and necrosis in AR42J cells. The expression changes of related genes regulated by TFs might be the molecular mechanism of AR42J cell injury.

  4. Nonthermal-plasma-mediated animal cell death

    NASA Astrophysics Data System (ADS)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Gyoo-Cheon; Kim, Kyong-Tai

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood.

  5. Acinar neoplasms of the pancreas-A summary of 25 years of research.

    PubMed

    Klimstra, David S; Adsay, Volkan

    2016-09-01

    Our understanding about the family of acinar neoplasms of the pancreas has grown substantially over the past 25 years. The prototype is acinar cell carcinoma, an uncommon variant of pancreatic carcinoma that demonstrates production of pancreatic exocrine enzymes, verifiable using immunohistochemistry, and exhibits characteristic histologic features. Related neoplasms include mixed acinar carcinomas such as mixed acinar neuroendocrine carcinoma and mixed acinar ductal carcinoma. In the pediatric age group, pancreatoblastoma is also closely related. Cystic and extrapancreatic forms have been described. These neoplasms share molecular alterations that are distinct from the more common ductal and neuroendocrine neoplasms of the pancreas. Although there is a broad range of genetic findings, a number of potential therapeutic targets have emerged. This review explores the clinical and pathologic features of pancreatic acinar neoplasms along with their more common molecular phenotypes. The differential diagnosis with other pancreatic neoplasms is explored as well.

  6. Pancreatic Acinar Cells Employ miRNAs as Mediators of Intercellular Communication to Participate in the Regulation of Pancreatitis-Associated Macrophage Activation

    PubMed Central

    Zhao, Yong; Wang, Hao; Qiao, Xin; Sun, Bei

    2016-01-01

    Macrophage activation plays an important role in the inflammatory response in acute pancreatitis. In the present study, the activation of AR42J pancreatic acinar cells was induced by taurolithocholate treatment. The results showed that the culture medium from the activated AR42J cells significantly enhanced NFκB activation in the macrophages compared to that without taurolithocholate treatment. Additionally, the precipitates obtained from ultracentrifugation of the culture media that were rich in exosomes were markedly more potent in activating macrophages compared with the supernatant fraction lacking exosomes. The results indicated that the mediators carried by the exosomes played important roles in macrophage activation. Exosomal miRNAs were extracted and examined using microarrays. A total of 115 differentially expressed miRNAs were identified, and 30 showed upregulated expression, while 85 displayed downregulated expression. Target genes of the differentially expressed miRNAs were predicted using TargetScan, MiRanda, and PicTar software programs. The putative target genes were subjected to KEGG functional analysis. The functions of the target genes were primarily enriched in MAPK pathways. Specifically, the target genes regulated macrophage activation through the TRAF6-TAB2-TAK1-NIK/IKK-NFκB pathway. As the mediators of signal transduction, miRNAs and their predicted target mRNAs regulate every step in the MAPK pathway. PMID:27546996

  7. Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas.

    PubMed

    Saponara, Enrica; Grabliauskaite, Kamile; Bombardo, Marta; Buzzi, Raphael; Silva, Alberto B; Malagola, Ermanno; Tian, Yinghua; Hehl, Adrian B; Schraner, Elisabeth M; Seleznik, Gitta M; Zabel, Anja; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-12-01

    The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone-stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation-mediated tissue injury. Specifically, lack of serotonin resulted in delayed up-regulation of progenitor genes and delayed the formation of acinar-to-ductal metaplasia and defective acinar cell proliferation. We identified serotonin-dependent acinar secretion as a key step in progenitor-based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1-Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells.

  8. Programmed cell death 50 (and beyond)

    PubMed Central

    Lockshin, R A

    2016-01-01

    In the 50 years since we described cell death as ‘programmed,' we have come far, thanks to the efforts of many brilliant researchers, and we now understand the mechanics, the biochemistry, and the genetics of many of the ways in which cells can die. This knowledge gives us the resources to alter the fates of many cells. However, not all cells respond similarly to the same stimulus, in either sensitivity to the stimulus or timing of the response. Cells prevented from dying through one pathway may survive, survive in a crippled state, or die following a different pathway. To fully capitalize on our knowledge of cell death, we need to understand much more about how cells are targeted to die and what aspects of the history, metabolism, or resources available to individual cells determine how each cell reaches and crosses the threshold at which it commits to death. PMID:26564398

  9. Cytoplasmic vacuolization in cell death and survival

    PubMed Central

    Komissarov, Alexey A.; Rafieva, Lola M.; Kostrov, Sergey V.

    2016-01-01

    Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival. PMID:27331412

  10. Programmed cell death in plant reproduction.

    PubMed

    Wu, H M; Cheun, A Y

    2000-10-01

    Reproductive development is a rich arena to showcase programmed cell death in plants. After floral induction, the first act of reproductive development in some plants is the selective killing of cells destined to differentiate into an unwanted sexual organ. Production of functional pollen grains relies significantly on deterioration and death of the anther tapetum, a tissue whose main function appears to nurture and decorate the pollen grains with critical surface molecules. Degeneration and death in a number of anther tissues result ultimately in anther rupture and dispersal of pollen grains. Female sporogenesis frequently begins with the death of all but one of the meiotic derivatives, with surrounding nucellar cells degenerating in concert with embryo sac expansion. Female tissues that interact with pollen undergo dramatic degeneration, including death, to ensure the encounter of compatible male and female gametes. Pollen and pistil interact to kill invading pollen from an incompatible source. Most observations on cell death in reproductive tissues have been on the histological and cytological levels. We discuss various cell death phenomena in reproductive development with a view towards understanding the biochemical and molecular mechanisms that underlie these processes.

  11. Cell Cycle Regulators and Cell Death in Immunity

    PubMed Central

    Zebell, Sophia G.; Dong, Xinnian

    2015-01-01

    Summary Various cell death mechanisms are integral to host defense in both plants and mammals. Plant defense against biotrophic pathogens is associated with programmed cell death (PCD) of the infected cell. This effector-triggered PCD is partly analogous to pyroptosis, an inflammatory host cell death process that plays a crucial role in defense against microbial infections in mammals. Plant effector-triggered PCD also shares with mammalian apoptosis the involvement of cell cycle regulators as signaling components. Here we explore the similarities between these different cell death programs as they relate to host defense and their relationship to the cell-cycle. PMID:26468745

  12. Immune activation: death, danger and dendritic cells.

    PubMed

    Pulendran, Bali

    2004-01-06

    Dendritic cells are critical for host immunity, and sense microbes with pathogen recognition receptors. New evidence indicates that these cells also sense uric acid crystals in dead cells, suggesting that the immune system is conscious not only of pathogens, but also of death and danger.

  13. Regulation of VDAC trafficking modulates cell death

    PubMed Central

    Dubey, Ashvini K; Godbole, Ashwini; Mathew, M K

    2016-01-01

    The voltage-dependent anion channel (VDAC) and mitochondria-associated hexokinase (HxK) have crucial roles in both cell survival and death. Both the individual abundances and their ratio seem to influence the balance of survival and death and are thus critical in scenarios, such as neurodegeneration and cancer. Elevated levels of both VDAC and HxK have been reported in cancerous cells. Physical interaction is surmised and specific residues or regions involved have been identified, but details of the interaction and the mechanism by which it modulates survival are yet to be elucidated. We and others have shown that heterologous expression of VDAC can induce cell death, which can be mitigated by concomitant overexpression of HxK. We have also observed that upon overexpression, fluorescently tagged VDAC is distributed between the cytosol and mitochondria. In this study, we show that cell death ensues only when the protein, which is synthesized on cytoplasmic ribosomes, migrates to the mitochondrion. Further, coexpression of rat HxK II (rHxKII) can delay the translocation of human VDAC1 (hVDAC1) protein to mitochondria and thereby inhibit VDAC-induced cell death. Variation in the level of HxK protein as seen endogenously in different cell lines, or as experimentally manipulated by silencing and overexpression, can lead to differential VDAC translocation kinetics and related cell death. The N-terminal region of HxK and the Glu73 residue of hVDAC1, which have previously been implicated in a physical interaction, are required for cytosolic retention of VDAC. Finally, we show that, in otherwise unperturbed cells in culture, there is a small but significant amount of soluble VDAC in the cytosol present in a complex with HxK. This complex could well determine how a cell is poised with respect to incoming thanatopic signals, thereby tilting the survival/death balance in pharmacologically interesting situations, such as neurodegeneration and cancer. PMID:28028442

  14. Novel Lipophilic Probe for Detecting Near-Membrane Reactive Oxygen Species Responses and Its Application for Studies of Pancreatic Acinar Cells: Effects of Pyocyanin and L-Ornithine

    PubMed Central

    Chvanov, Michael; Huang, Wei; Jin, Tao; Wen, Li; Armstrong, Jane; Elliot, Vicky; Alston, Ben; Burdyga, Alex; Criddle, David N.; Sutton, Robert

    2015-01-01

    Abstract Aims: The aim of this study was to develop a fluorescent reactive oxygen species (ROS) probe, which is preferentially localized in cellular membranes and displays a strong change in fluorescence upon oxidation. We also aimed to test the performance of this probe for detecting pathophysiologically relevant ROS responses in isolated cells. Results: We introduced a novel lipophilic ROS probe dihydrorhodamine B octadecyl ester (H2RB-C18). We then applied the new probe to characterize the ROS changes triggered by inducers of acute pancreatitis in pancreatic acinar cells. We resolved ROS changes produced by L-ornithine, L-arginine, cholecystokinin-8, acetylcholine, taurolithocholic acid 3-sulfate, palmitoleic acid ethyl ester, and the bacterial toxin pyocyanin. Particularly prominent ROS responses were induced by pyocyanin and L-ornithine. These ROS responses were accompanied by changes in cytosolic Ca2+concentration ([Ca2+]i), mitochondrial membrane potential (ΔΨ), and NAD(P)H concentration. Innovation: The study describes a novel sensitive lipophilic ROS probe. The probe is particularly suitable for detecting ROS in near-membrane regions and therefore for reporting the ROS environment of plasma membrane channels and pumps. Conclusions: In our experimental conditions, the novel probe was more sensitive than 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein (CM-H2DCF) and dihydrorhodamine123 (H2R123) and allowed us to resolve ROS responses to secretagogues, pyocyanin, and L-ornithine. Changes in the fluorescence of the new probe were particularly prominent in the peripheral plasma membrane-associated regions. Our findings suggest that the new probe will be a useful tool in studies of the contribution of ROS to the pathophysiology of exocrine pancreas and other organs/tissues. Antioxid. Redox Signal. 22, 451–464. PMID:24635199

  15. Cell death and cell death responses in liver disease: mechanisms and clinical relevance.

    PubMed

    Luedde, Tom; Kaplowitz, Neil; Schwabe, Robert F

    2014-10-01

    Hepatocellular death is present in almost all types of human liver disease and is used as a sensitive parameter for the detection of acute and chronic liver disease of viral, toxic, metabolic, or autoimmune origin. Clinical data and animal models suggest that hepatocyte death is the key trigger of liver disease progression, manifested by the subsequent development of inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Modes of hepatocellular death differ substantially between liver diseases. Different modes of cell death such as apoptosis, necrosis, and necroptosis trigger specific cell death responses and promote progression of liver disease through distinct mechanisms. In this review, we first discuss molecular mechanisms by which different modes of cell death, damage-associated molecular patterns, and specific cell death responses contribute to the development of liver disease. We then review the clinical relevance of cell death, focusing on biomarkers; the contribution of cell death to drug-induced, viral, and fatty liver disease and liver cancer; and evidence for cell death pathways as therapeutic targets.

  16. Pathology and genetics of pancreatic neoplasms with acinar differentiation.

    PubMed

    Wood, Laura D; Klimstra, David S

    2014-11-01

    Pancreatic neoplasms with acinar differentiation, including acinar cell carcinoma, pancreatoblastoma, and carcinomas with mixed differentiation, are distinctive pancreatic neoplasms with a poor prognosis. These neoplasms are clinically, pathologically, and genetically unique when compared to other more common pancreatic neoplasms. Most occur in adults, although pancreatoblastomas usually affect children under 10 years old. All of these neoplasms exhibit characteristic histologic features including a solid or acinar growth pattern, dense neoplastic cellularity, uniform nuclei with prominent nucleoli, and granular eosinophilic cytoplasm. Exocrine enzymes are detectable by immunohistochemistry and, for carcinomas with mixed differentiation, neuroendocrine or ductal lineage markers are also expressed. The genetic alterations of this family of neoplasms largely differ from conventional ductal adenocarcinomas, with only rare mutations in TP53, KRAS, and p16, but no single gene or neoplastic pathway is consistently altered in acinar neoplasms. Instead, there is striking genomic instability, and a subset of cases has mutations in the APC/β-catenin pathway, mutations in SMAD4, RAF gene family fusions, or microsatellite instability. Therapeutically targetable mutations are often present. This review summarizes the clinical and pathologic features of acinar neoplasms and reviews the current molecular data on these uncommon tumors.

  17. Epidermal cell death in frogs with chytridiomycosis

    PubMed Central

    Roberts, Alexandra A.; Skerratt, Lee F.; Berger, Lee

    2017-01-01

    Background Amphibians are declining at an alarming rate, and one of the major causes of decline is the infectious disease chytridiomycosis. Parasitic fungal sporangia occur within epidermal cells causing epidermal disruption, but these changes have not been well characterised. Apoptosis (planned cell death) can be a damaging response to the host but may alternatively be a mechanism of pathogen removal for some intracellular infections. Methods In this study we experimentally infected two endangered amphibian species Pseudophryne corroboree and Litoria verreauxii alpina with the causal agent of chytridiomycosis. We quantified cell death in the epidermis through two assays: terminal transferase-mediated dUTP nick end-labelling (TUNEL) and caspase 3/7. Results Cell death was positively associated with infection load and morbidity of clinically infected animals. In infected amphibians, TUNEL positive cells were concentrated in epidermal layers, correlating to the localisation of infection within the skin. Caspase activity was stable and low in early infection, where pathogen loads were light but increasing. In animals that recovered from infection, caspase activity gradually returned to normal as the infection cleared. Whereas, in amphibians that did not recover, caspase activity increased dramatically when infection loads peaked. Discussion Increased cell death may be a pathology of the fungal parasite, likely contributing to loss of skin homeostatic functions, but it is also possible that apoptosis suppression may be used initially by the pathogen to help establish infection. Further research should explore the specific mechanisms of cell death and more specifically apoptosis regulation during fungal infection. PMID:28168107

  18. Calcium imaging in neuron cell death.

    PubMed

    Calvo, María; Villalobos, Carlos; Núñez, Lucía

    2015-01-01

    Intracellular Ca2+ is involved in control of a large variety of cell functions including apoptosis and neuron cell death. For example, intracellular Ca2+ overload is critical in neuron cell death induced by excitotoxicity. Thus, single cell monitoring of intracellular Ca2+ concentration ([Ca2+]cyt ) in neurons concurrently with apoptosis and neuron cell death is widely required. Procedures for culture and preparation of primary cultures of hippocampal rat neurons and fluorescence imaging of cytosolic Ca2+ concentration in Fura2/AM -loaded neurons are described. We also describe a method for apoptosis detection by immunofluorescence imaging. Finally, a simple method for concurrent measurements of [Ca2+]cyt and apoptosis in the same neurons is described.

  19. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion

    PubMed Central

    Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra

    2015-01-01

    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression. PMID:25723869

  20. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion.

    PubMed

    Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra

    2015-01-01

    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression.

  1. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  2. The Src kinase Yes is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters, but not pancreatic growth factors, which stimulate its association with numerous other signaling molecules.

    PubMed

    Sancho, Veronica; Nuche-Berenguer, Bernardo; Jensen, R T

    2012-08-01

    For growth factors, cytokines, G-protein-coupled receptors and numerous other stimuli, the Src Family of kinases (SFK) play a central signaling role. SFKs also play an important role in pancreatic acinar cell function including metabolism, secretion, endocytosis, growth and cytoskeletal integrity, although the specific SFKs involved are not fully known. In the present study we used specific antibodies for the SFK, Yes, to determine its presence, activation by pancreatic secretagogues or growth factors, and interaction with cellular signaling cascades mediated by CCK in which Yes participates in to cause acinar cell responses. Yes was identified in acini and secretagogues known to activate phospholipase C (PLC) [CCK, carbachol, bombesin] as well as post-receptor stimulants activating PKC [TPA] or mobilizing cellular calcium [thapsigargin/calcium ionophore (A23187)] each activated Yes. Secretin, which activates adenylate cyclase did not stimulate Yes, nor did pancreatic growth factors. CCK activation of Yes required both high- and low-affinity CCK(1)-receptor states. TPA-/CCK-stimulated Yes activation was completely inhibited by thapsigargin and the PKC inhibitor, GF109203X. CCK/TPA stimulated the association of Yes with focal adhesion kinases (Pyk2, FAK) and its autophosphorylated forms (pY397FAK, pY402Pyk2). Moreover, CCK/TPA stimulated Yes interacted with a number of other signaling proteins, including Shc, PKD, p130(Cas), PI3K and PTEN. This study demonstrates that in rat pancreatic acini, the SFK member Yes is expressed and activated by CCK and other gastrointestinal hormones/neurotransmitters. Because its activation results in the direct activation of many cellular signaling cascades that have been shown to mediate CCK's effect in acinar cell function our results suggest that it is one of the important pancreatic SFKs mediating these effects.

  3. Viral subversion of immunogenic cell death.

    PubMed

    Kepp, Oliver; Senovilla, Laura; Galluzzi, Lorenzo; Panaretakis, Theocharis; Tesniere, Antoine; Schlemmer, Frederic; Madeo, Frank; Zitvogel, Laurence; Kroemer, Guido

    2009-03-15

    While physiological cell death is non-immunogenic, pathogen induced cell death can be immunogenic and hence stimulate an immune response against antigens that derive from dying cells and are presented by dendritic cells (DCs). The obligate immunogenic "eat-me" signal generated by dying cells consists in the exposure of calreticulin (CRT) at the cell surface. This particular "eat-me" signal, which facilitates engulfment by DCs, can only be found on cells that succumb to immunogenic apoptosis, while it is not present on cells dying in an immunologically silent fashion. CRT normally resides in the lumen of the endoplasmic reticulum (ER), yet can translocate to the plasma membrane surface through a complex pathway that involves elements of the ER stress response (e.g., the eIF2alpha-phosphorylating kinase PERK), the apoptotic machinery (e.g., caspase-8 and its substrate BAP31, Bax, Bak), the anterograde transport from the ER to the Golgi apparatus, and SNARE-dependent exocytosis. A large panoply of viruses encodes proteins that inhibit eIF2alpha kinases, catalyze the dephosphorylation of eIF2alpha, bind to caspase-8, Bap31, Bax or Bak, or perturb exocytosis. We therefore postulate that obligate intracellular pathogens have developed a variety of strategies to subvert CRT exposure, thereby avoiding immunogenic cell death.

  4. The deaths of a cell: how language and metaphor influence the science of cell death.

    PubMed

    Reynolds, Andrew S

    2014-12-01

    Multicellular development and tissue maintenance involve the regular elimination of damaged and healthy cells. The science of this genetically regulated cell death is particularly rich in metaphors: 'programmed cell death' or 'cell suicide' is considered an 'altruistic' act on the part of a cell for the benefit of the organism as a whole. It is also considered a form of 'social control' exerted by the body/organism over its component cells. This paper analyzes the various functions of these metaphors and critical discussion about them within the scientific community. Bodies such as the Nomenclature Committee on Cell Death (NCCD) have been charged with bringing order to the language of cell death to facilitate scientific progress. While the NCCD recommends adopting more objective biochemical terminology to describe the mechanisms of cell death, the metaphors in question retain an important function by highlighting the broader context within which cell death occurs. Scientific metaphors act as conceptual 'tools' which fulfill various roles, from highlighting a phenomenon as of particular interest, situating it in a particular context, or suggesting explanatory causal mechanisms.

  5. Cell death pathways associated with PDT

    NASA Astrophysics Data System (ADS)

    Kessel, David; Reiners, John J., Jr.

    2006-02-01

    Photodynamic therapy leads to both direct and indirect tumor cell death. The latter also involves the consequences of vascular shut-down and immunologic effects. While these factors are a major factor in tumor eradication, there is usually an element of direct cell killing that can reduce the cell population by as much as 2-3 logs. Necrosis was initially believed to represent the predominant PDT death mechanism. An apoptotic response to PDT was first reported by Oleinick in 1991, using a sensitizer that targets the anti-apoptotic protein Bcl-2. Apoptosis leads to fragmentation of DNA and of cells into apoptotic bodies that are removed by phagocytosis. Inflammatory effects are minimized, and the auto- catalytic elements of the process can amplify the death signal. In this study, we examined consequences of Bcl-2 photodamage by a porphycene sensitizer that targets the ER and causes photodamage to the anti-apoptotic protein Bcl-2. Death patterns after Bcl-2 inactivation by a small-molecular antagonist were also assessed. In addition to apoptosis, we also characterized a hitherto undescribed PDT effect, the initiation of autophagy. Autophagy was initially identified as a cell survival pathway, allowing the recycling of components as nutrients become scarce. We propose that autophagy can also represent both a potential survival pathway after PDT damage to cellular organelles, as well as a cell-death pathway. Recent literature reports indicate that autophagy, as well as apoptosis, can be evoked after down-regulation of Bcl-2, a result consistent with results reported here.

  6. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009.

    PubMed

    Kroemer, G; Galluzzi, L; Vandenabeele, P; Abrams, J; Alnemri, E S; Baehrecke, E H; Blagosklonny, M V; El-Deiry, W S; Golstein, P; Green, D R; Hengartner, M; Knight, R A; Kumar, S; Lipton, S A; Malorni, W; Nuñez, G; Peter, M E; Tschopp, J; Yuan, J; Piacentini, M; Zhivotovsky, B; Melino, G

    2009-01-01

    Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like 'percentage apoptosis' and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that 'autophagic cell death' is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including 'entosis', 'mitotic catastrophe', 'necrosis', 'necroptosis' and 'pyroptosis'.

  7. Programmed cell death in seeds of angiosperms.

    PubMed

    López-Fernández, María Paula; Maldonado, Sara

    2015-12-01

    During the diversification of angiosperms, seeds have evolved structural, chemical, molecular and physiologically developing changes that specially affect the nucellus and endosperm. All through seed evolution, programmed cell death (PCD) has played a fundamental role. However, examples of PCD during seed development are limited. The present review examines PCD in integuments, nucellus, suspensor and endosperm in those representative examples of seeds studied to date.

  8. Nanomaterials Toxicity and Cell Death Modalities

    PubMed Central

    De Stefano, Daniela; Carnuccio, Rosa; Maiuri, Maria Chiara

    2012-01-01

    In the last decade, the nanotechnology advancement has developed a plethora of novel and intriguing nanomaterial application in many sectors, including research and medicine. However, many risks have been highlighted in their use, particularly related to their unexpected toxicity in vitro and in vivo experimental models. This paper proposes an overview concerning the cell death modalities induced by the major nanomaterials. PMID:23304518

  9. Lysosomal cell death mechanisms in aging.

    PubMed

    Gómez-Sintes, Raquel; Ledesma, María Dolores; Boya, Patricia

    2016-12-01

    Lysosomes are degradative organelles essential for cell homeostasis that regulate a variety of processes, from calcium signaling and nutrient responses to autophagic degradation of intracellular components. Lysosomal cell death is mediated by the lethal effects of cathepsins, which are released into the cytoplasm following lysosomal damage. This process of lysosomal membrane permeabilization and cathepsin release is observed in several physiopathological conditions and plays a role in tissue remodeling, the immune response to intracellular pathogens and neurodegenerative diseases. Many evidences indicate that aging strongly influences lysosomal activity by altering the physical and chemical properties of these organelles, rendering them more sensitive to stress. In this review we focus on how aging alters lysosomal function and increases cell sensitivity to lysosomal membrane permeabilization and lysosomal cell death, both in physiological conditions and age-related pathologies.

  10. Hemoglobins, programmed cell death and somatic embryogenesis.

    PubMed

    Hill, Robert D; Huang, Shuanglong; Stasolla, Claudio

    2013-10-01

    Programmed cell death (PCD) is a universal process in all multicellular organisms. It is a critical component in a diverse number of processes ranging from growth and differentiation to response to stress. Somatic embryogenesis is one such process where PCD is significantly involved. Nitric oxide is increasingly being recognized as playing a significant role in regulating PCD in both mammalian and plant systems. Plant hemoglobins scavenge NO, and evidence is accumulating that events that modify NO levels in plants also affect hemoglobin expression. Here, we review the process of PCD, describing the involvement of NO and plant hemoglobins in the process. NO is an effector of cell death in both plants and vertebrates, triggering the cascade of events leading to targeted cell death that is a part of an organism's response to stress or to tissue differentiation and development. Expression of specific hemoglobins can alter this response in plants by scavenging the NO, thus, interrupting the death process. Somatic embryogenesis is used as a model system to demonstrate how cell-specific expression of different classes of hemoglobins can alter the embryogenic process, affecting hormone synthesis, cell metabolite levels and genes associated with PCD and embryogenic competence. We propose that plant hemoglobins influence somatic embryogenesis and PCD through cell-specific expression of a distinct plant hemoglobin. It is based on the premise that both embryogenic competence and PCD are strongly influenced by cellular NO levels. Increases in cellular NO levels result in elevated Zn(2+) and reactive-oxygen species associated with PCD, but they also result in decreased expression of MYC2, a transcription factor that is a negative effector of indoleacetic acid synthesis, a hormone that positively influences embryogenic competence. Cell-specific hemoglobin expression reduces NO levels as a result of NO scavenging, resulting in cell survival.

  11. PP2C phosphatase activity is coupled to cAMP-mediated pathway in rat parotid acinar cells.

    PubMed

    Yokoyama, N; Kobayashi, T; Tamura, S; Sugiya, H

    1995-07-01

    A 26 kDa particulate protein is phosphorylated during stimulation of amylase secretion by a beta-adrenergic agonist in the rat parotid gland. Previous study has shown that PP2C phosphatase is involved in dephosphorylation of this 26 kDa protein [Yokoyama, N. et al. (1994) Biochem. Biophys. Res. Commun. 200, 497-503]. In this study, immunotransblot analysis using anti-PP2C phosphatase antibody showed that PP2C phosphatase was found prominently in the cystolic fractions and less in secretory granule membranes. When cells were stimulated by isoproterenol, cytosolic PP2C phosphatase activity increased to 145% at 5 min and returned to basal level at 30 min. Forskolin increased PP2C phosphatase activity. H89 inhibited increase of PP2C phosphatase activity following beta-adrenergic stimulation. These results suggest that PP2C phosphatase activity is regulated by cAMP-mediated signaling following beta-adrenergic stimulation and participates in dephosphorylation of this 26 kDa protein.

  12. Programmed cell death in the plant immune system.

    PubMed

    Coll, N S; Epple, P; Dangl, J L

    2011-08-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.

  13. Cell Death and Autophagy in TB

    PubMed Central

    Moraco, Andrew H.; Kornfeld, Hardy

    2014-01-01

    Mycobacterium tuberculosis has succeeded in infecting one third of the human race though inhibition or evasion of innate and adaptive immunity. The pathogen is a facultative intracellular parasite that uses the niche provided by mononuclear phagocytes for its advantage. Complex interactions determine whether the bacillus will or will not be delivered to acidified lysosomes, whether the host phagocyte will survive infection or die, and whether the timing and mode of cell death works to the advantage of the host or the pathogen. Here we discuss cell death and autophagy in TB. These fundamental processes of cell biology feature in all aspects of TB pathogenesis and may be exploited to the treatment or prevention of TB disease. PMID:25453227

  14. ER stress-induced cell death mechanisms

    PubMed Central

    Sano, Renata; Reed, John C.

    2013-01-01

    The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. PMID:23850759

  15. Paraptosis-like cell death in Wistar rat granulosa cells.

    PubMed

    Torres-Ramírez, Nayeli; Escobar, María L; Vázquez-Nin, Gerardo H; Ortiz, Rosario; Echeverría, Olga M

    2016-10-01

    Follicular atresia, a common process present in all mammals, involves apoptotic and autophagic cell death. However, the participation of paraptosis, a type of caspase-independent cell death, during follicular atresia is unknown. This study found swollen endoplasmic reticulum in the granulosa cells of adult Wistar rats. Calnexin was used as a marker of the endoplasmic reticulum at the ultrastructural and optical levels. The cells with swelling of the endoplasmic reticulum were negative to the TUNEL assay and active caspase-3 immunodetection, indicating that this swelling is not part of any apoptotic or autophagic process. Additionally, immunodetection of the CHOP protein was used as a marker of endoplasmic reticulum stress, and this confirmed the presence of the paraptosis process. These data suggest that paraptosis-like cell death is associated with the death of granulosa cells during follicular atresia in adult Wistar rats.

  16. Tumor cell "dead or alive": caspase and survivin regulate cell death, cell cycle and cell survival.

    PubMed

    Suzuki, A; Shiraki, K

    2001-04-01

    Cell death and cell cycle progression are two sides of the same coin, and these two different phenomenons are regulated moderately to maintain the cellular homeostasis. Tumor is one of the disease states produced as a result of the disintegrated regulation and is characterized as cells showing an irreversible progression of cell cycle and a resistance to cell death signaling. Several investigations have been performed for the understanding of cell death or cell cycle, and cell death research has remarkably progressed in these 10 years. Caspase is a nomenclature referring to ICE/CED-3 cysteine proteinase family and plays a central role during cell death. Recently, several investigations raised some possible hypotheses that caspase is also involved in cell cycle regulation. In this issue, therefore, we review the molecular basis of cell death and cell cycle regulated by caspase in tumor, especially hepatocellular carcinoma cells.

  17. Role of polyphenols in cell death control.

    PubMed

    Giovannini, Claudio; Masella, Roberta

    2012-05-01

    Dietary consumption of fruit, vegetables, fish, and olive oil has been demonstrated to exert beneficial effects on human health. This finding may be due to the high content of antioxidant compounds including polyphenols. Current evidence strongly supports a contribution of polyphenols to the prevention of several chronic degenerative diseases such as cancer, atherosclerosis and cardiovascular diseases, central nervous system disorders, as well as aging. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathologic processes, leading to proliferative or degenerative diseases. Polyphenols can interact with specific steps and/or proteins regulating the apoptotic process in different ways depending on their concentration, the cell system, the type or stage of the pathological process. Because of their ability to modulate cell death, polyphenols have been proposed as chemopreventive and therapeutic agents. This paper reviews and discusses the last 3-year findings related to the principal molecular mechanisms involved in the control of the balance between apoptosis and cell proliferation exerted by polyphenols.

  18. Programmed cell death during quinoa perisperm development

    PubMed Central

    Maldonado, Sara

    2013-01-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucleases and caspase-like proteases in nucleus dismantling, were evaluated; morphological changes in cytoplasm included subcellular aspects related to starch accumulation. This study proved that, following fertilization, the perisperm of quinoa simultaneously accumulates storage reserves and degenerates, both processes mediated by a programme of developmentally controlled cell death. The novel findings regarding perisperm development provide a starting point for further research in the Amaranthaceae genera, such as comparing seeds with and without perisperm, and specifying phylogeny and evolution within this taxon. Wherever possible and appropriate, differences between quinoa perisperm and grass starchy endosperm—a morphologically and functionally similar, although genetically different tissue—were highlighted and discussed. PMID:23833197

  19. Programmed cell death during quinoa perisperm development.

    PubMed

    López-Fernández, María Paula; Maldonado, Sara

    2013-08-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucleases and caspase-like proteases in nucleus dismantling, were evaluated; morphological changes in cytoplasm included subcellular aspects related to starch accumulation. This study proved that, following fertilization, the perisperm of quinoa simultaneously accumulates storage reserves and degenerates, both processes mediated by a programme of developmentally controlled cell death. The novel findings regarding perisperm development provide a starting point for further research in the Amaranthaceae genera, such as comparing seeds with and without perisperm, and specifying phylogeny and evolution within this taxon. Wherever possible and appropriate, differences between quinoa perisperm and grass starchy endosperm--a morphologically and functionally similar, although genetically different tissue--were highlighted and discussed.

  20. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  1. Ferroptosis is an autophagic cell death process.

    PubMed

    Gao, Minghui; Monian, Prashant; Pan, Qiuhui; Zhang, Wei; Xiang, Jenny; Jiang, Xuejun

    2016-09-01

    Ferroptosis is an iron-dependent form of regulated necrosis. It is implicated in various human diseases, including ischemic organ damage and cancer. Here, we report the crucial role of autophagy, particularly autophagic degradation of cellular iron storage proteins (a process known as ferritinophagy), in ferroptosis. Using RNAi screening coupled with subsequent genetic analysis, we identified multiple autophagy-related genes as positive regulators of ferroptosis. Ferroptosis induction led to autophagy activation and consequent degradation of ferritin and ferritinophagy cargo receptor NCOA4. Consistently, inhibition of ferritinophagy by blockage of autophagy or knockdown of NCOA4 abrogated the accumulation of ferroptosis-associated cellular labile iron and reactive oxygen species, as well as eventual ferroptotic cell death. Therefore, ferroptosis is an autophagic cell death process, and NCOA4-mediated ferritinophagy supports ferroptosis by controlling cellular iron homeostasis.

  2. Metabolic Regulation of Ovarian Cancer Cell Death

    DTIC Science & Technology

    2013-07-01

    2013 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER Metabolic Regulation of Ovarian Cancer cell death 5b. GRANT NUMBER W81XWH-10-1...Introduction 3 2. Keywords 3 3. Overall Project Summary 3-6 4 . Key Research Accomplishments 6-7 5. Conclusion 7 6. Publications, Abstracts, and...synthase inhibitors Fig. 4 ). We were slightly delayed in submitting this work for publication as the first author had to finish his PhD thesis and

  3. Cell Death and Deubiquitinases: Perspectives in Cancer

    PubMed Central

    Bhattacharya, Seemana

    2014-01-01

    The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge both in vitro and in vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes. PMID:25121098

  4. Neuronal cell death in hepatic encephalopathy.

    PubMed

    Butterworth, Roger F

    2007-12-01

    It is generally assumed that neuronal cell death is minimal in liver failure and is insufficient to account for the neuropsychiatric symptoms characteristic of hepatic encephalopathy. However, contrary to this assumption, neuronal cell damage and death are well documented in liver failure patients, taking the form of several distinct clinical entities namely acquired (non-Wilsonian) hepatocerebral degeneration, cirrhosis-related Parkinsonism, post-shunt myelopathy and cerebellar degeneration. In addition, there is evidence to suggest that liver failure contributes to the severity of neuronal loss in Wernicke's encephalopathy. The long-standing nature of the thalamic and cerebellar lesions, over 80% of which are missed by routine clinical evaluation, together with the probability that they are nutritional in origin, underscores the need for careful nutritional management (adequate dietary protein, Vitamin B(1)) in liver failure patients. Mechanisms identified with the potential to cause neuronal cell death in liver failure include NMDA receptor-mediated excitotoxicity, lactic acidosis, oxidative/nitrosative stress and the presence of pro-inflammatory cytokines. The extent of neuronal damage in liver failure may be attenuated by compensatory mechanisms that include down-regulation of NMDA receptors, hypothermia and the presence of neuroprotective steroids such as allopregnanolone. These findings suggest that some of the purported "sequelae" of liver transplantation (gait ataxia, memory loss, confusion) could reflect preexisting neuropathology.

  5. Programmed Cell Death of Dendritic Cells in Immune Regulation

    PubMed Central

    Chen, Min; Wang, Jin

    2010-01-01

    Summary Programmed cell death is essential for the maintenance of lymphocyte homeostasis and immune tolerance. Dendritic cells (DCs), the most efficient antigen presenting cells, represent a small cell population in the immune system. However, DCs play major roles in the regulation of both innate and adaptive immune responses. Programmed cell death in DCs is essential for regulating DC homeostasis and consequently, the scope of immune responses. Interestingly, different DC subsets show varied turnover rates in vivo. The conventional DCs are relatively short-lived in most lymphoid organs, while plasmacytoid DCs are long-lived cells. Mitochondrion-dependent programmed cell death plays an important role in regulating spontaneous DC turnover. Antigen-specific T cells are also capable of killing DCs, thereby providing a mechanism for negative feedback regulation of immune responses. It has been shown that a surplus of DCs due to defects in programmed cell death leads to overactivation of lymphocytes and the onset of autoimmunity. Studying programmed cell death in DCs will shed light on the roles for DC turnover in the regulation of the duration and magnitude of immune responses in vivo, and in the maintenance of immune tolerance. PMID:20636805

  6. Molecular Theories of Cell Life and Death.

    DTIC Science & Technology

    1987-07-27

    AD-A195 524 MOLECULAR THEORIES OF CELL LIFE AND DETH(U) RUTGERS - / TH STATE UNIV PI CATAWAY NJ DEPT OF PHARMACOLOGY AND TOXICOLOGY S JI 27 JUL 87...6448 ELEMENT NO. NO. NO. ACCESSION NO0. 61102F 2312 A5 11. TITLE (Include Security Classification) M0=M2UAR THEORIES OF CM IFE= AND DEATH 12. PERSONAL...7/27I49 16. SUPPLEMENTARY NOTATION The lectures given in the symposium are being assembled into a book entitled, "Molecular Theories of Cell Life and

  7. Cell Death in Chondrocytes, Osteoblasts, and Osteocytes

    PubMed Central

    Komori, Toshihisa

    2016-01-01

    Cell death in skeletal component cells, including chondrocytes, osteoblasts, and osteocytes, plays roles in skeletal development, maintenance, and repair as well as in the pathogenesis of osteoarthritis and osteoporosis. Chondrocyte proliferation, differentiation, and apoptosis are important steps for endochondral ossification. Although the inactivation of P53 and RB is involved in the pathogenesis of osteosarcomas, the deletion of p53 and inactivation of Rb are insufficient to enhance chondrocyte proliferation, indicating the presence of multiple inhibitory mechanisms against sarcomagenesis in chondrocytes. The inflammatory processes induced by mechanical injury and chondrocyte death through the release of danger-associated molecular patterns (DAMPs) are involved in the pathogenesis of posttraumatic osteoarthritis. The overexpression of BCLXL increases bone volume with a normal structure and maintains bone during aging by inhibiting osteoblast apoptosis. p53 inhibits osteoblast proliferation and enhances osteoblast apoptosis, thereby reducing bone formation, but also exerts positive effects on osteoblast differentiation through the Akt–FoxOs pathway. Apoptotic osteocytes release ATP, which induces the receptor activator of nuclear factor κ-B ligand (Rankl) expression and osteoclastogenesis, from pannexin 1 channels. Osteocyte death ultimately results in necrosis; DAMPs are released to the bone surface and promote the production of proinflammatory cytokines, which induce Rankl expression, and osteoclastogenesis is further enhanced. PMID:27929439

  8. Mechanisms Involved in Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2001-09-01

    We are using experimental infection with reoviruses as a model to study how viruses induce cell death (apoptosis) and cause dysregulation of the cell...and their ligand (TRAIL). Apoptosis involves both death-receptor (DR) and mitochondrial-associated cell death pathways, and leads to the early

  9. Comparison of Types of Cell Death: Apoptosis and Necrosis.

    ERIC Educational Resources Information Center

    Manning, Francis; Zuzel, Katherine

    2003-01-01

    Cell death is an essential factor in many biological processes including development. Discusses two types of cell death: (1) necrosis (induced by sodium azide); and (2) apoptosis (induced by sodium chromate). Illustrates key features that differ between these two types of cells death including loss of membrane integrity and internucleosomal DNA…

  10. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  11. Apoptosis, oncosis, and necrosis. An overview of cell death.

    PubMed Central

    Majno, G.; Joris, I.

    1995-01-01

    The historical development of the cell death concept is reviewed, with special attention to the origin of the terms necrosis, coagulation necrosis, autolysis, physiological cell death, programmed cell death, chromatolysis (the first name of apoptosis in 1914), karyorhexis, karyolysis, and cell suicide, of which there are three forms: by lysosomes, by free radicals, and by a genetic mechanism (apoptosis). Some of the typical features of apoptosis are discussed, such as budding (as opposed to blebbing and zeiosis) and the inflammatory response. For cell death not by apoptosis the most satisfactory term is accidental cell death. Necrosis is commonly used but it is not appropriate, because it does not indicate a form of cell death but refers to changes secondary to cell death by any mechanism, including apoptosis. Abundant data are available on one form of accidental cell death, namely ischemic cell death, which can be considered an entity of its own, caused by failure of the ionic pumps of the plasma membrane. Because ischemic cell death (in known models) is accompanied by swelling, the name oncosis is proposed for this condition. The term oncosis (derived from ónkos, meaning swelling) was proposed in 1910 by von Reckling-hausen precisely to mean cell death with swelling. Oncosis leads to necrosis with karyolysis and stands in contrast to apoptosis, which leads to necrosis with karyorhexis and cell shrinkage. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7856735

  12. Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics.

    PubMed

    Dawson, Ted M; Dawson, Valina L

    2017-01-06

    Mitochondria lie at the crossroads of neuronal survival and cell death. They play important roles in cellular bioenergetics, control intracellular Ca(2+) homeostasis, and participate in key metabolic pathways. Mutations in genes involved in mitochondrial quality control cause a myriad of neurodegenerative diseases. Mitochondria have evolved strategies to kill cells when they are not able to continue their vital functions. This review provides an overview of the role of mitochondria in neurologic disease and the cell death pathways that are mediated through mitochondria, including their role in accidental cell death, the regulated cell death pathways of apoptosis and parthanatos, and programmed cell death. It details the current state of parthanatic cell death and discusses potential therapeutic strategies targeting initiators and effectors of mitochondrial-mediated cell death in neurologic disorders.

  13. Programmed Cell Death in Unicellular Phytoplankton.

    PubMed

    Bidle, Kay D

    2016-07-11

    Unicellular, planktonic, prokaryotic and eukaryotic photoautotrophs (phytoplankton) have an ancient evolutionary history on Earth during which time they have played key roles in the regulation of marine food webs, biogeochemical cycles, and Earth's climate. Since they represent the basis of aquatic ecosystems, the manner in which phytoplankton die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining nutrient flow. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of abiotic (nutrient, light, osmotic) and biotic (virus infection, allelopathy) environmental stresses, have an integral grip on cell fate, and have shaped the ecological success and evolutionary trajectory of diverse phytoplankton lineages. A combination of physiological, biochemical, and genetic techniques in model algal systems has demonstrated a conserved molecular and mechanistic framework of stress surveillance, signaling, and death activation pathways, involving collective and coordinated participation of organelles, redox enzymes, metabolites, and caspase-like proteases. This mechanistic understanding has provided insight into the integration of sensing and transduction of stress signals into cellular responses, and the mechanistic interfaces between PCD, cell stress and virus infection pathways. It has also provided insight into the evolution of PCD in unicellular photoautotrophs, the impact of PCD on the fate of natural phytoplankton assemblages and its role in aquatic biogeochemical cycles.

  14. Antioxidant gene therapy against neuronal cell death

    PubMed Central

    Navarro-Yepes, Juliana; Zavala-Flores, Laura; Annadurai, Anandhan; Wang, Fang; Skotak, Maciej; Chandra, Namas; Li, Ming; Pappa, Aglaia; Martinez-Fong, Daniel; Razo, Luz Maria Del; Quintanilla-Vega, Betzabet; Franco, Rodrigo

    2014-01-01

    Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy. PMID:24333264

  15. Interdigital cell death function and regulation: new insights on an old programmed cell death model.

    PubMed

    Hernández-Martínez, Rocío; Covarrubias, Luis

    2011-02-01

    Interdigital cell death (ICD) is the oldest and best-studied model of programmed cell death (PCD) in vertebrates. The classical view of ICD function is the separation of digits by promotion of tissue regression. However, in addition, ICD can contribute to digit individualization by restricting interdigital tissue growth. Depending on the species, the relative contribution of either regression or growth-restricting functions of ICD to limb morphogenesis may differ. Under normal conditions, most cells appear to die by apoptosis during ICD. Accordingly, components of the apoptotic machinery are found in the interdigits, though their role in the initiation and execution of cell death is yet to be defined. Fgf8 has been identified as a survival factor for the distal mesenchymal cells of the limb such that ICD can initiate following specific downregulation of Fgf8 expression in the ectoderm overlying the interdigital tissue. On the other hand, Bmps may promote cell death directly by acting on the interdigital tissue, or indirectly by downregulating Fgf8 expression in the ectoderm. In addition, retinoic acid can activate ICD directly or through a Bmp-mediated mechanism. Interactions at different levels between these factors establish the spatiotemporal patterning of ICD activation. Defining the regulatory network behind ICD activation will greatly advance our understanding of the mechanisms controlling PCD in general.

  16. Live pancreatic acinar imaging of exocytosis using syncollin-pHluorin.

    PubMed

    Fernandez, Nestor A; Liang, Tao; Gaisano, Herbert Y

    2011-06-01

    In this report, a novel live acinar exocytosis imaging technique is described. An adenovirus was engineered, encoding for an endogenous zymogen granule (ZG) protein (syncollin) fused to pHluorin, a pH-dependent green fluorescent protein (GFP). Short-term culture of mouse acini infected with this virus permits exogenous adenoviral protein expression while retaining acinar secretory competence and cell polarity. The syncollin-pHluorin fusion protein was shown to be correctly localized to ZGs, and the pH-dependent fluorescence of pHluorin was retained. Coupled with the use of a spinning disk confocal microscope, the syncollin-pHluorin fusion protein exploits the ZG luminal pH changes that occur during exocytosis to visualize exocytic events of live acinar cells in real-time with high spatial resolution in three dimensions. Apical and basolateral exocytic events were observed on stimulation of acinar cells with maximal and supramaximal cholecystokinin concentrations, respectively. Sequential exocytic events were also observed. Coupled with the use of transgenic mice and/or adenovirus-mediated protein expression, this syncollin-pHluorin imaging method offers a superior approach to studying pancreatic acinar exocytosis. This assay can also be applied to acinar disease models to elucidate the mechanisms implicated in pancreatitis.

  17. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies

    PubMed Central

    Krampe, Britta

    2010-01-01

    Cell death is a fundamentally important problem in cell lines used by the biopharmaceutical industry. Environmental stress, which can result from nutrient depletion, by-product accumulation and chemical agents, activates through signalling cascades regulators that promote death. The best known key regulators of death process are the Bcl-2 family proteins which constitute a critical intracellular checkpoint of apoptosis cell death within a common death pathway. Engineering of several members of the anti-apoptosis Bcl-2 family genes in several cell types has extended the knowledge of their molecular function and interaction with other proteins, and their regulation of cell death. In this review, we describe the various modes of cell death and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of anti-apoptotic engineering strategies to inhibit cell death and increase productivity in mammalian cell culture. PMID:20502964

  18. Normal development, oncogenesis and programmed cell death.

    PubMed

    Liebermann, D A

    1998-09-10

    Meeting's Report -- June 2, 1998, Sugarload Estate Conference Center, Philadelphia, Pennsylvania, USA. A symposium on Normal Development, Oncogenesis and Programmed Cell Death, was held at the Sugarload Estate Conference Center, Philadelphia, Pennsylvania, USA sponsored by the Fels Cancer Institute, Temple University School of Medicine, with the support of the Alliance Pharmaceutical Corporation. The symposium was organized by Drs Dan A Liebermann and Barbara Hoffman at the Fels. Invited speakers included: Dr Andrei V Gudkov (University of Illinois) who started the symposium talking about 'New cellular factors modulating the tumor suppressor function of p53'; Dr Yuri Lazebnik (Cold Spring Harbor Laboratories) spoke about 'Caspases considered as enemies within'; Dr E Premkumar Reddy (Fels Institute, Temple University) talked about recent exciting findings in his laboratory regarding 'JAK-STATs dedicated signaling pathways'; Dr Michael Greenberg (Harvard University) spoke about 'Signal transduction pathways that regulate differentiation and survival in the developing nervous system'; Dr Richard Kolesnick's (Memorial Sloan-Kettering Cancer Center) talk has been focused at 'Stress signals for apoptosis, including Ceramide and c-Jun Kinase/Stress-activated Protein Kinase'; Dr Barbara Hoffman (Fels Institute, Temple University) described research, conducted in collaboration with Dr Dan A Liebermann, aimed at deciphering the roles of 'myc, myb, and E2F as negative regulators of terminal differentiation', using hematopoietic cells as model system. Dr Daniel G Tenen (Harvard Medical School), described studies aimed at understanding the 'Regulation of hematopoietic cell development by lineage specific transcription regulators'. Dr George C Prendergast (The Wistar Institute) talked about the 'Myc-Bin1 signaling pathway in cell death and differentiation. Dr Ruth J Muschel (University of Pennsylvania) spoke about work, conducted in collaboration with Dr WG McKenna, aimed at

  19. Cell Death Signaling and Anticancer Therapy

    PubMed Central

    Galluzzi, Lorenzo; Vitale, Ilio; Vacchelli, Erika; Kroemer, Guido

    2011-01-01

    For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G1 phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis, and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis, and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents. PMID:22655227

  20. Cell death signaling and anticancer therapy.

    PubMed

    Galluzzi, Lorenzo; Vitale, Ilio; Vacchelli, Erika; Kroemer, Guido

    2011-01-01

    For a long time, it was commonly believed that efficient anticancer regimens would either trigger the apoptotic demise of tumor cells or induce a permanent arrest in the G(1) phase of the cell cycle, i.e., senescence. The recent discovery that necrosis can occur in a regulated fashion and the increasingly more precise characterization of the underlying molecular mechanisms have raised great interest, as non-apoptotic pathways might be instrumental to circumvent the resistance of cancer cells to conventional, pro-apoptotic therapeutic regimens. Moreover, it has been shown that some anticancer regimens engage lethal signaling cascades that can ignite multiple oncosuppressive mechanisms, including apoptosis, necrosis, and senescence. Among these signaling pathways is mitotic catastrophe, whose role as a bona fide cell death mechanism has recently been reconsidered. Thus, anticancer regimens get ever more sophisticated, and often distinct strategies are combined to maximize efficacy and minimize side effects. In this review, we will discuss the importance of apoptosis, necrosis, and mitotic catastrophe in the response of tumor cells to the most common clinically employed and experimental anticancer agents.

  1. Invariant NKT cells increase drug-induced osteosarcoma cell death

    PubMed Central

    Fallarini, S; Paoletti, T; Orsi Battaglini, N; Lombardi, G

    2012-01-01

    BACKGROUND AND PURPOSE In osteosarcoma (OS) patients, only a limited number of drugs are active and the regimens currently in use include a combination of at least two of these drugs: doxorubicin, cisplatin, methotrexate and ifosfamide. Today, 30–40% of patients still die of OS highlighting the urgent need for new treatments. Invariant NKT (iNKT) cells are a lymphocyte lineage with features of both T and NK cells, playing important roles in tumour suppression. Our aim was to test whether the cytoxicity induced by cisplatin, doxorubicin and methotrexate against OS cells can be enhanced by iNKT cell treatment. EXPERIMENTAL APPROACH iNKT cells were purified from human peripheral blood mononuclear cells by cell sorting (Vα24Vβ11+ cells) and used as effector cells against OS cells (U2-OS, HOS, MG-63). Cell death (calcein-AM method), perforin/granzyme B and Fas/FasL expressions were determined by flow cytometry. CD1d expression was analysed at both the gene and protein level. KEY RESULTS iNKT cells were cytotoxic against OS cells through a CD1d-dependent mechanism. This activity was specific for tumour cells, because human CD1d+ mesenchymal stem cells and CD1d- osteoblasts were not affected. iNKT cell treatment enhanced drug-induced OS cell death in a concentration-dependent manner and this effect was reduced in CD1d-silenced OS cells. CONCLUSION AND IMPLICATIONS iNKT cells kill malignant, but not non-malignant, cells. iNKT cell treatment enhances the cytotoxicity of anti-neoplastic drugs against OS cells in a CD1d-dependent manner. The present data encourage further studies on the use of iNKT cells in OS therapy. PMID:22817659

  2. Activating Cell Death Ligand Signaling Through Proteasome Inhibition

    DTIC Science & Technology

    2009-05-01

    Activating Cell Death Ligand Signaling Through Proteasome Inhibition PRINCIPAL INVESTIGATOR: Steven R Schwarze...SUBTITLE Activating Cell Death Ligand Signaling Through 5a. CONTRACT NUMBER Proteasome Inhibition 5b. GRANT NUMBER W81XWH-08-1-0392 5c...proteasome inhibition can act as an anti-neoplastic agent in vivo by sensitizing cancer cells to cell death ligands in the tumor microenvironment

  3. Sulfur dioxide induced programmed cell death in Vicia guard cells.

    PubMed

    Yi, Huilan; Yin, Jingjing; Liu, Xin; Jing, Xiuqing; Fan, Sanhong; Zhang, Hufang

    2012-04-01

    Sulfur dioxide (SO(2)) induced nuclear condensation and nuclear fragmentation and rapid loss of guard cell viability in detached epidermis of Vicia leaves at concentrations of 1 mM and higher (3 h exposure). Caspase inhibitors Z-Asp-CH(2)-DCB (0.1 mM) and TLCK (0.1 mM) markedly suppressed SO(2)-induced cell death. The typical nuclear morphological changes and the inhibition effects of caspase inhibitors suggest the activation of a programmed cell death (PCD) pathway. SO(2)-induced cell death can be blocked by either antioxidants (0.1 mM AsA or 200 U/mL CAT) or Ca(2+) antagonists (0.1mM EGTA or LaCl(3)). AsA and CAT also blocked SO(2)-induced ROS production and [Ca(2+)](cyt) increase. However, EGTA and LaCl(3) can inhibit SO(2)-induced [Ca(2+)](cyt) increase, but cannot suppress SO(2)-induced ROS production. Our results indicate that high concentrations of SO(2) induce guard cell death via a PCD pathway through ROS mediating [Ca(2+)](cyt) elevation, which causes harmful effects to plants.

  4. Myc inhibits JNK-mediated cell death in vivo.

    PubMed

    Huang, Jiuhong; Feng, Yu; Chen, Xinhong; Li, Wenzhe; Xue, Lei

    2017-04-01

    The proto-oncogene Myc is well known for its roles in promoting cell growth, proliferation and apoptosis. However, in this study, we found from a genetic screen that Myc inhibits, rather than promotes, cell death triggered by c-Jun N-terminal kinase (JNK) signaling in Drosophila. Firstly, expression of Drosophila Myc (dMyc) suppresses, whereas loss of dMyc enhances, ectopically activated JNK signaling-induced cell death. Secondly, dMyc impedes physiologically activated JNK pathway-mediated cell death. Thirdly, loss of dMyc triggers JNK pathway activation and JNK-dependent cell death. Finally, the mammalian cMyc gene, when expressed in Drosophila, impedes activated JNK signaling-induced cell death. Thus, besides its well-studied apoptosis promoting function, Myc also antagonizes JNK-mediated cell death in Drosophila, and this function is likely conserved from fly to human.

  5. Methods for assessing autophagy and autophagic cell death.

    PubMed

    Tasdemir, Ezgi; Galluzzi, Lorenzo; Maiuri, M Chiara; Criollo, Alfredo; Vitale, Ilio; Hangen, Emilie; Modjtahedi, Nazanine; Kroemer, Guido

    2008-01-01

    Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.

  6. Parasitic inhibition of cell death facilitates symbiosis.

    PubMed

    Pannebakker, Bart A; Loppin, Benjamin; Elemans, Coen P H; Humblot, Lionel; Vavre, Fabrice

    2007-01-02

    Symbiotic microorganisms have had a large impact on eukaryotic evolution, with effects ranging from parasitic to mutualistic. Mitochondria and chloroplasts are prime examples of symbiotic microorganisms that have become obligate for their hosts, allowing for a dramatic extension of suitable habitats for life. Out of the extraordinary diversity of bacterial endosymbionts in insects, most are facultative for their hosts, such as the ubiquitous Wolbachia, which manipulates host reproduction. Some endosymbionts, however, have become obligatory for host reproduction and/or survival. In the parasitoid wasp Asobara tabida the presence of Wolbachia is necessary for host oogenesis, but the mechanism involved is yet unknown. We show that Wolbachia influences programmed cell death processes (a host regulatory feature typically targeted by pathogens) in A. tabida, making its presence essential for the wasps' oocytes to mature. This suggests that parasite strategies, such as bacterial regulation of host apoptosis, can drive the evolution of host dependence, allowing for a swift transition from parasitism to mutualism.

  7. Cell death by autophagy: facts and apparent artefacts.

    PubMed

    Denton, D; Nicolson, S; Kumar, S

    2012-01-01

    Autophagy (the process of self-digestion by a cell through the action of enzymes originating within the lysosome of the same cell) is a catabolic process that is generally used by the cell as a mechanism for quality control and survival under nutrient stress conditions. As autophagy is often induced under conditions of stress that could also lead to cell death, there has been a propagation of the idea that autophagy can act as a cell death mechanism. Although there is growing evidence of cell death by autophagy, this type of cell death, often called autophagic cell death, remains poorly defined and somewhat controversial. Merely the presence of autophagic markers in a cell undergoing death does not necessarily equate to autophagic cell death. Nevertheless, studies involving genetic manipulation of autophagy in physiological settings provide evidence for a direct role of autophagy in specific scenarios. This article endeavours to summarise these physiological studies where autophagy has a clear role in mediating the death process and discusses the potential significance of cell death by autophagy.

  8. Anticancer metal drugs and immunogenic cell death.

    PubMed

    Terenzi, Alessio; Pirker, Christine; Keppler, Bernhard K; Berger, Walter

    2016-12-01

    Conventional chemotherapeutics, but also innovative precision anticancer compounds, are commonly perceived to target primarily the cancer cell compartment. However, recently it was discovered that some of these compounds can also exert immunomodulatory activities which might be exploited to synergistically enhance their anticancer effects. One specific phenomenon of the interplay between chemotherapy and the anticancer immune response is the so-called "immunogenic cell death" (ICD). ICD was discovered based on a vaccination effect exerted by cancer cells dying from pretreatment with certain chemotherapeutics, termed ICD inducers, in syngeneic transplantation mouse models. Interestingly, only a minority of drugs is able to trigger ICD without a clear-cut relation to chemical structures or their primary modes-of-action. Nevertheless, generation of reactive oxygen species (ROS) and induction of endoplasmic reticulum (ER) stress are clearly linked to ICD. With regard to metal drugs, oxaliplatin but not cisplatin is considered a bona fide ICD inducer. Taken into account that several experimental metal compounds are efficient ROS and ER stress mediators, presence of potent ICD inducers within the plethora of novel metal complexes seems feasible and has occasionally been reported. In the light of recent successes in cancer immunotherapy, here we review existing literature regarding anticancer metal drugs and ICD induction. We recommend a more profound investigation of the immunogenic features of experimental anticancer metal drugs.

  9. Cell block eleven, looking from the "Death Row" exercise yard, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block eleven, looking from the "Death Row" exercise yard, facing north (note cell block fifteen to the right and cell block fourteen in the distance_ - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  10. Mechanisms of Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2003-09-01

    We are using experimental infection with reoviruses to study how viruses induce cell death . (apoptosis), and the significance of apoptosis in the...pathogenesis of viral infection. We have developed one of the best-characterized experimental models for investigating and manipulating viral cell death pathways...We have shown that apoptosis is a major mechanism of reovirus-induced cell death in murine models of key human viral infections including

  11. Bacterial Programmed Cell Death as a Population Phenomenon

    DTIC Science & Technology

    2013-06-11

    Moving in for the kil:Activation of an endoribonuclease toxin by quorum sensing peptide, Molecular Cell, (03 2011): . doi: 06/11/2013 11.00...shown that E. coli mazEF-mediated cell death is a population phenomenon requiring the E. coli quorum sensing factor EDF (Extracellular Death Factor... quorum - sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318: 652-655. 7) Kolodkin-Gal I, Engelberg-Kulka, H (2008

  12. Light regulation of cadmium-induced cell death in Arabidopsis

    PubMed Central

    Smith, Sarah J; Wang, Yun; Slabas, Antoni R; Chivasa, Stephen

    2014-01-01

    Cadmium is an environmental pollutant with deleterious effects on both prokaryotic and eukaryotic organisms. In plants, the effects of cadmium toxicity are concentration dependent; lower doses destabilize many physiological processes and inhibit cell growth and multiplication, while higher doses evoke a more severe response that triggers activation of cell death. We recently investigated the effects of light on cadmium toxicity in Arabidopsis using a cell suspension culture system. Although not affecting the inhibitory effects on cell multiplication, we found that light is a powerful regulator of Cd-induced cell death. A very specific proteomic response, which was clearly controlled by light, preceded cell death. Here we discuss the implications of these findings and highlight similarities between the regulation of cell death triggered by Cd and fumonisin B1. We consider how both compounds could be useful tools in dissecting plant cell death signaling. PMID:24398567

  13. Programmed cell death for defense against anomaly and tumor formation

    SciTech Connect

    Kondo, Sohei; Norimura, Toshiyuki; Nomura, Taisei

    1995-12-31

    Cell death after exposure to low-level radiation is often considered evidence that radiation is poisonous, however small the dose. Evidence has been accumulating to support the notion that cell death after low-level exposure to radiation results from activation of suicidal genes {open_quote}programmed cell death{close_quote} or {open_quote}apoptosis{close_quote} - for the health of the whole body. This paper gives experimental evidence that embryos of fruit flies and mouse fetuses have potent defense mechanisms against teratogenic or tumorigenic injury caused by radiation and carcinogens, which function through programmed cell death.

  14. Total pancreatectomy for metachronous mixed acinar-ductal carcinoma in a remnant pancreas.

    PubMed

    Shonaka, Tatsuya; Inagaki, Mitsuhiro; Akabane, Hiromitsu; Yanagida, Naoyuki; Shomura, Hiroki; Yanagawa, Nobuyuki; Oikawa, Kensuke; Nakano, Shiro

    2014-09-07

    In October 2009, a 71-year-old female was diagnosed with a cystic tumor in the tail of the pancreas with an irregular dilatation of the main pancreatic duct in the body and tail of the pancreas. A distal pancreatectomy with splenectomy, and partial resection of the duodenum, jejunum and transverse colon was performed. In March 2011, a follow-up computed tomography scan showed a low density mass at the head of the remnant pancreas. We diagnosed it as a recurrence of the tumor and performed a total pancreatectomy for the remnant pancreas. In the histological evaluation of the resected specimen of the distal pancreas, the neoplastic cells formed an acinar and papillary structure that extended into the main pancreatic duct. Mucin5AC, α1-antitrypsin (α-AT) and carcinoembryonic antigen (CEA) were detected in the tumor cells by immunohistochemistry. In the resected head of the pancreas, the tumor was composed of both acinar and ductal elements with a mottled pattern. The proportions of each element were approximately 40% and 60%, respectively. Strongly positive α-AT cells were detected in the acinar element. Some tumor cells were also CEA positive. However, the staining for synaptophysin and chromogranin A was negative in the tumor cells. Ultimately, we diagnosed the tumor as a recurrence of mixed acinar-ductal carcinoma in the remnant pancreas. In conclusion, we report here a rare case of repeated pancreatic resection for multicentric lesions of mixed acinar-ductal carcinoma of the pancreas.

  15. Understanding cell death in Parkinson's disease.

    PubMed

    Jenner, P; Olanow, C W

    1998-09-01

    Current concepts of the cause of Parkinson's disease (PD) suggest a role for both genetic and environmental influences. Common to a variety of potential causes of nigral cell degeneration in PD is the involvement of oxidative stress. Postmortem analysis shows increased levels of iron, decreased complex I activity, and a decrease in reduced glutathione (GSH) levels. The decrease in GSH levels may be a particularly important component of the cascade of events leading to cell death because it occurs in the presymptomatic stage of PD and may directly induce nigral cell degeneration or render neurons susceptible to the actions of toxins. There is evidence suggesting that oxidative stress might originate in glial cells rather than in neurons, and alterations in glial function may be an important contributor to the pathologic process that occurs in PD. Oxidative damage occurs in the brain in PD, as shown by increased lipid peroxidation and DNA damage in the substantia nigra. Increased protein oxidation is also apparent, but this occurs in many areas of the brain and raises the specter of a more widespread pathologic process occurring in PD to which the substantia nigra is particularly vulnerable. The inability of the substantia nigra to handle damaged or mutant (eg, alpha-synuclein) proteins may lead to their aggregation and deposition and to the formation of Lewy bodies. Indeed, Lewy bodies stain for both alpha-synuclein and nitrated proteins. Current evidence enables us to hypothesize that a failure to process structurally modified proteins in regions of the brain exhibiting oxidative stress is a cause of both familial and sporadic PD.

  16. Predictive Efficacy Biomarkers of Programmed Cell Death 1/Programmed Cell Death 1 Ligand Blockade Therapy.

    PubMed

    Fang, Xiao-Na; Fu, Li-Wu

    2016-01-01

    Inhibitors of immune check-point molecule, programmed cell death 1 (PD-1) and its ligand, programmed cell death ligand 1 (PD-L1) have attracted much attention in cancer immunotherapy recently due to their durable antitumor effects in various malignances, especially the advanced ones. Unfortunately, only a fraction of patients with advanced tumors could benefit from anti-PD-1/PD-L1 therapy, while others still worsened. The key to this point is that there are no efficient biomarkers for screening anti-PD-1/PD-L1-sensitive patients. In this review, we aim at summarizing the latest advances of anti-PD-1/PDL1 immunotherapy and the potential predictive efficacy biomarkers to provide evidences for identifying anti-PD-1/PDL1- sensitive patients. The present article also includes the patent review coverage on this topic.

  17. Photoreceptor cell death and rescue in retinal detachment and degenerations

    PubMed Central

    Murakami, Yusuke; Notomi, Shoji; Hisatomi, Toshio; Nakazawa, Toru; Ishibashi, Tatsuro; Miller, Joan W.; Vavvas, Demetrios G.

    2013-01-01

    Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss. PMID:23994436

  18. Death-associated protein kinase-mediated cell death modulated by interaction with DANGER.

    PubMed

    Kang, Bingnan N; Ahmad, Abdullah S; Saleem, Sofiyan; Patterson, Randen L; Hester, Lynda; Doré, Sylvain; Snyder, Solomon H

    2010-01-06

    Death-associated protein kinase (DAPK) is a key player in multiple cell death signaling pathways. We report that DAPK is regulated by DANGER, a partial MAB-21 domain-containing protein. DANGER binds directly to DAPK and inhibits DAPK catalytic activity. DANGER-deficient mouse embryonic fibroblasts and neurons exhibit greater DAPK activity and increased sensitivity to cell death stimuli than do wild-type control cells. In addition, DANGER-deficient mice manifest more severe brain damage after acute excitotoxicity and transient cerebral ischemia than do control mice. Accordingly, DANGER may physiologically regulate the viability of neurons and represent a potential therapeutic target for stroke and neurodegenerative diseases.

  19. Elucidation of a Novel Cell Death Mechanism in Prostate Epithelial Cells

    DTIC Science & Technology

    2002-12-01

    surface. Galectin-1 binds to saccharide ligands on susceptible LNCaP cells to trigger cell death . Susceptibility to galectin-1 appears to depend on the...induced LNCaP cell death . Resistance to galectin-1 induced death correlates with markedly decreased expression of a specific glycosyltransferase, the...galectin-1 induced death, indicating that a common glycosylation pathway may control cell death in epithelial and lymphoid cells. Identification of a

  20. Elucidation of a Novel Cell Death Mechanism in Prostate Epithelial Cells

    DTIC Science & Technology

    2003-12-01

    surface. Galectin-1 binds to saccharide ligands on suscepibel LNCaP cells to trigger cell death . Susceptibility to galectin-1 appears to depend on the...induced LNcaP cell death . Resistance to galectin-1 induced death correlates with markedly decreased expression of a specific glycosyltransferase, the...galectin-1 induced death, indicating that a common glycosylation pathway may control cell death in epithelial and lymphoid cells. Identification of a

  1. Interleukin-8 enhances the effect of colchicine on cell death.

    PubMed

    Yokoyama, Chikako; Yajima, Chika; Machida, Tetsuro; Kawahito, Yuji; Uchida, Marie; Hisatomi, Hisashi

    2017-03-25

    Pro-inflammatory cytokines are known to be generated in tumors and play important roles in angiogenesis, mitosis, and tumor progression. However, few studies have investigated the synergistic effects of pro-inflammatory cytokines and anticancer drugs on cell death. In the present study, we examined the combined effects of pro-inflammatory cytokines and colchicine on cell death of cancer cells. Colchicine induces G2/M arrest in the cell cycle by binding to tubulin, one of the main constituents of microtubules. SUIT-2 human pancreatic cancer cell line cells overexpressing pro-inflammatory cytokines, including interleukin (IL)-1β, IL-8, and tumor necrosis factor (TNF)-α, were treated with colchicine. The effect of colchicine on cell death was enhanced in cells overexpressing IL-8. Moreover, the effect of colchicine on cell death was enhanced in cells overexpressing two IL-8 up-regulators, NF-κB and IL-6, but not in cells overexpressing an IL-8 down-regulator, splicing factor proline/glutamine-rich (SFPQ). Synergistic effects of IL-8 and colchicine were also observed in cells overexpressing IL-8 isoforms lacking the signal peptide. Therefore, IL-8 appeared to function as an enhancer of cell death in cancer cells treated with colchicine. The present results suggest a new role for IL-8 related to cell death of cancer cells.

  2. Cell-in-Cell Death Is Not Restricted by Caspase-3 Deficiency in MCF-7 Cells

    PubMed Central

    Wang, Shan; He, Meifang; Li, Linmei; Liang, Zhihua; Zou, Zehong

    2016-01-01

    Purpose Cell-in-cell structures are created by one living cell entering another homotypic or heterotypic living cell, which usually leads to the death of the internalized cell, specifically through caspase-dependent cell death (emperitosis) or lysosome-dependent cell death (entosis). Although entosis has attracted great attention, its occurrence is controversial, because one cell line used in its study (MCF-7) is deficient in caspase-3. Methods We investigated this issue using MCF-7 and A431 cell lines, which often display cell-in-cell invasion, and have different levels of caspase-3 expression. Cell-in-cell death morphology, microstructures, and signaling pathways were compared in the two cell lines. Results Our results confirmed that MCF-7 cells are caspase-3 deficient with a partial deletion in the CASP-3 gene. These cells underwent cell death that lacked typical apoptotic properties after staurosporine treatment, whereas caspase-3-sufficient A431 cells displayed typical apoptosis. The presence of caspase-3 was related neither to the lysosome-dependent nor to the caspase-dependent cell-in-cell death pathway. However, the existence of caspase-3 was associated with a switch from lysosome-dependent cell-in-cell death to the apoptotic cell-in-cell death pathway during entosis. Moreover, cellular hypoxia, mitochondrial swelling, release of cytochrome C, and autophagy were observed in internalized cells during entosis. Conclusion The occurrence of caspase-independent entosis is not a cell-specific process. In addition, entosis actually represents a cellular self-repair system, functioning through autophagy, to degrade damaged mitochondria resulting from cellular hypoxia in cell-in-cell structures. However, sustained autophagy-associated signal activation, without reduction in cellular hypoxia, eventually leads to lysosome-dependent intracellular cell death. PMID:27721872

  3. Actin as Deathly Switch? How Auxin Can Suppress Cell-Death Related Defence

    PubMed Central

    Chang, Xiaoli; Riemann, Michael; Liu, Qiong; Nick, Peter

    2015-01-01

    Plant innate immunity is composed of two layers – a basal immunity, and a specific effector-triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of cell death depends on a complex network of signalling pathways. The phytohormone auxin as central regulator of plant growth and development represents an important component for the modulation of plant defence. In our previous work, we showed that cell death is heralded by detachment of actin from the membrane. Both, actin response and cell death, are triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated, whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since actin organisation is dependent upon auxin, we used different auxins to suppress actin bundling. Extracellular alkalinisation and transcription of defence genes as the basal immunity were examined as well as cell death. Furthermore, organisation of actin was observed in response to pharmacological manipulation of reactive oxygen species and phospholipase D. We find that induction of defence genes is independent of auxin. However, auxin can suppress harpin-induced cell death and also counteract actin bundling. We integrate our findings into a model, where harpin interferes with an auxin dependent pathway that sustains dynamic cortical actin through the activity of phospholipase D. The antagonism between growth and defence is explained by mutual competition for signal molecules such as superoxide and phosphatidic acid. Perturbations of the auxin-actin pathway might be used to detect disturbed integrity of the plasma membrane and channel defence signalling towards programmed cell death. PMID:25933033

  4. Actin as deathly switch? How auxin can suppress cell-death related defence.

    PubMed

    Chang, Xiaoli; Riemann, Michael; Liu, Qiong; Nick, Peter

    2015-01-01

    Plant innate immunity is composed of two layers--a basal immunity, and a specific effector-triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of cell death depends on a complex network of signalling pathways. The phytohormone auxin as central regulator of plant growth and development represents an important component for the modulation of plant defence. In our previous work, we showed that cell death is heralded by detachment of actin from the membrane. Both, actin response and cell death, are triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated, whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since actin organisation is dependent upon auxin, we used different auxins to suppress actin bundling. Extracellular alkalinisation and transcription of defence genes as the basal immunity were examined as well as cell death. Furthermore, organisation of actin was observed in response to pharmacological manipulation of reactive oxygen species and phospholipase D. We find that induction of defence genes is independent of auxin. However, auxin can suppress harpin-induced cell death and also counteract actin bundling. We integrate our findings into a model, where harpin interferes with an auxin dependent pathway that sustains dynamic cortical actin through the activity of phospholipase D. The antagonism between growth and defence is explained by mutual competition for signal molecules such as superoxide and phosphatidic acid. Perturbations of the auxin-actin pathway might be used to detect disturbed integrity of the plasma membrane and channel defence signalling towards programmed cell death.

  5. Fas Protects Breast Cancer Stem Cells from Death

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0301 TITLE: Fas Protects Breast Cancer Stem Cells from Death PRINCIPAL INVESTIGATOR: Paolo Ceppi CONTRACTING...sensitive to Fas-mediated apoptosis, while the BCSCs part is more sensitive to the death induced by the elimination of CD95 (a phenomenon we have recently...identification of novel molecular targets for the treatment of breast cancer. I have in fact observed a significant enhancement of cancer cell death by

  6. The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma

    PubMed Central

    Krah, Nathan M; De La O, Jean-Paul; Swift, Galvin H; Hoang, Chinh Q; Willet, Spencer G; Chen Pan, Fong; Cash, Gabriela M; Bronner, Mary P; Wright, Christopher VE; MacDonald, Raymond J; Murtaugh, L Charles

    2015-01-01

    Understanding the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) may provide therapeutic strategies for this deadly disease. Recently, we and others made the surprising finding that PDAC and its preinvasive precursors, pancreatic intraepithelial neoplasia (PanIN), arise via reprogramming of mature acinar cells. We therefore hypothesized that the master regulator of acinar differentiation, PTF1A, could play a central role in suppressing PDAC initiation. In this study, we demonstrate that PTF1A expression is lost in both mouse and human PanINs, and that this downregulation is functionally imperative in mice for acinar reprogramming by oncogenic KRAS. Loss of Ptf1a alone is sufficient to induce acinar-to-ductal metaplasia, potentiate inflammation, and induce a KRAS-permissive, PDAC-like gene expression profile. As a result, Ptf1a-deficient acinar cells are dramatically sensitized to KRAS transformation, and reduced Ptf1a greatly accelerates development of invasive PDAC. Together, these data indicate that cell differentiation regulators constitute a new tumor suppressive mechanism in the pancreas. DOI: http://dx.doi.org/10.7554/eLife.07125.001 PMID:26151762

  7. Wallenda regulates JNK-mediated cell death in Drosophila

    PubMed Central

    Ma, X; Xu, W; Zhang, D; Yang, Y; Li, W; Xue, L

    2015-01-01

    The c-Jun N-terminal kinase (JNK) pathway plays essential roles in regulating a variety of cellular processes including proliferation, migration and survival. Previous genetic studies in Drosophila have identified numerous cell death regulating genes, providing new insights into the mechanisms for related diseases. Despite the known role of the small GTPase Rac1 in regulating cell death, the downstream components and underlying mechanism remain largely elusive. Here, we show that Rac1 promotes JNK-dependent cell death through Wallenda (Wnd). In addition, we find that Wnd triggers JNK activation and cell death via its kinase domain. Moreover, we show that both MKK4 and Hep are critical for Wnd-induced cell death. Furthermore, Wnd is essential for ectopic Egr- or Rho1-induced JNK activation and cell death. Finally, Wnd is physiologically required for loss of scribble-induced JNK-dependent cell death. Thus, our data suggest that wnd encodes a novel essential cell death regulator in Drosophila. PMID:25950467

  8. Programmed cell death as a defence against infection.

    PubMed

    Jorgensen, Ine; Rayamajhi, Manira; Miao, Edward A

    2017-03-01

    Eukaryotic cells can die from physical trauma, which results in necrosis. Alternatively, they can die through programmed cell death upon the stimulation of specific signalling pathways. In this Review, we discuss the role of different cell death pathways in innate immune defence against bacterial and viral infection: apoptosis, necroptosis, pyroptosis and NETosis. We describe the interactions that interweave different programmed cell death pathways, which create complex signalling networks that cross-guard each other in the evolutionary 'arms race' with pathogens. Finally, we describe how the resulting cell corpses - apoptotic bodies, pore-induced intracellular traps (PITs) and neutrophil extracellular traps (NETs) - promote the clearance of infection.

  9. Radial transport along the human acinar tree.

    PubMed

    Henry, F S; Tsuda, A

    2010-10-01

    A numerical model of an expanding asymmetric alveolated duct was developed and used to investigate lateral transport between the central acinar channel and the surrounding alveoli along the acinar tree. Our results indicate that some degree of recirculation occurs in all but the terminal generations. We found that the rate of diffusional transport of axial momentum from the duct to the alveolus was by far the largest contributor to the resulting momentum in the alveolar flow but that the magnitude of the axial momentum is critical in determining the nature of the flow in the alveolus. Further, we found that alveolar flow rotation, and by implication chaotic mixing, is strongest in the entrance generations. We also found that the expanding alveolus provides a pathway by which particles with little intrinsic motion can enter the alveoli. Thus, our results offer a possible explanation for why submicron particles deposit preferentially in the acinar-entrance region.

  10. RADIAL TRANSPORT ALONG THE HUMAN ACINAR TREE

    PubMed Central

    Henry, F.S.; Tsuda, A.

    2013-01-01

    A numerical model of an expanding asymmetric alveolated duct was developed and used to investigate lateral transport between the central acinar channel and the surrounding alveoli along the acinar tree. Our results indicate that some degree of recirculation occurs in all but the terminal generations. We found that the rate of diffusional transport of axial momentum, from the duct to the alveolus, was by far the largest contributor to the resulting momentum in the alveolar flow but that the magnitude of the axial momentum is critical in determining the nature of the flow in the alveolus. Further, we found that alveolar flow rotation, and by implication chaotic mixing, are strongest in the entrance generations. We also found that the expanding alveolus provides a pathway by which particles with little intrinsic motion can enter the alveoli. Thus, our results offer a possible explanation for why submicron particles deposit preferentially in acinar entrance region. PMID:20887011

  11. Heat stress induces ferroptosis-like cell death in plants.

    PubMed

    Distéfano, Ayelén Mariana; Martin, María Victoria; Córdoba, Juan Pablo; Bellido, Andrés Martín; D'Ippólito, Sebastián; Colman, Silvana Lorena; Soto, Débora; Roldán, Juan Alfredo; Bartoli, Carlos Guillermo; Zabaleta, Eduardo Julián; Fiol, Diego Fernando; Stockwell, Brent R; Dixon, Scott J; Pagnussat, Gabriela Carolina

    2017-02-01

    In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)-induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient.

  12. Non-Canonical Cell Death Induced by p53

    PubMed Central

    Ranjan, Atul; Iwakuma, Tomoo

    2016-01-01

    Programmed cell death is a vital biological process for multicellular organisms to maintain cellular homeostasis, which is regulated in a complex manner. Over the past several years, apart from apoptosis, which is the principal mechanism of caspase-dependent cell death, research on non-apoptotic forms of programmed cell death has gained momentum. p53 is a well characterized tumor suppressor that controls cell proliferation and apoptosis and has also been linked to non-apoptotic, non-canonical cell death mechanisms. p53 impacts these non-canonical forms of cell death through transcriptional regulation of its downstream targets, as well as direct interactions with key players involved in these mechanisms, in a cell type- or tissue context-dependent manner. In this review article, we summarize and discuss the involvement of p53 in several non-canonical modes of cell death, including caspase-independent apoptosis (CIA), ferroptosis, necroptosis, autophagic cell death, mitotic catastrophe, paraptosis, and pyroptosis, as well as its role in efferocytosis which is the process of clearing dead or dying cells. PMID:27941671

  13. Non-Canonical Cell Death Induced by p53.

    PubMed

    Ranjan, Atul; Iwakuma, Tomoo

    2016-12-09

    Programmed cell death is a vital biological process for multicellular organisms to maintain cellular homeostasis, which is regulated in a complex manner. Over the past several years, apart from apoptosis, which is the principal mechanism of caspase-dependent cell death, research on non-apoptotic forms of programmed cell death has gained momentum. p53 is a well characterized tumor suppressor that controls cell proliferation and apoptosis and has also been linked to non-apoptotic, non-canonical cell death mechanisms. p53 impacts these non-canonical forms of cell death through transcriptional regulation of its downstream targets, as well as direct interactions with key players involved in these mechanisms, in a cell type- or tissue context-dependent manner. In this review article, we summarize and discuss the involvement of p53 in several non-canonical modes of cell death, including caspase-independent apoptosis (CIA), ferroptosis, necroptosis, autophagic cell death, mitotic catastrophe, paraptosis, and pyroptosis, as well as its role in efferocytosis which is the process of clearing dead or dying cells.

  14. Changing sensitivity to cell death during development of retinal photoreceptors.

    PubMed

    Chiarini, Luciana B; Leal-Ferreira, Mona Lisa; de Freitas, Fabíola G; Linden, Rafael

    2003-12-15

    Photoreceptor cell death occurs during both normal and pathological retinal development. We tested for selective induction and blockade of cell death in either retinal photoreceptors or their precursors. Organotypical retinal explants from rats at postnatal days 3-11 were treated in vitro for 24 hr with thapsigargin, okadaic acid, etoposide, anisomycin, or forskolin. Explant sections were examined for cell death, and identification of either photoreceptors or proliferating/immediate postmitotic cells followed imunohistochemistry for either rhodopsin or bromodeoxyuridine and proliferating cell nuclear antigen, respectively. Photoreceptor cell death was selectively induced by either thapsigargin or okadaic acid, whereas death of proliferating/immediate postmitotic cells was induced by etoposide. Prelabeling of proliferating precursors allowed direct demonstration of changing sensitivity of photoreceptors to various chemicals. Degeneration of both photoreceptors and proliferating/immediate postmitotic cells depended on protein synthesis. Increase of intracellular cyclic AMP blocked degeneration of postmitotic, but not of proliferating, photoreceptor precursors. The selective induction and blockade of cell death show that developing photoreceptors undergo progressive changes in mechanisms of programmed cell death associated with phenotypic differentiation.

  15. BID links ferroptosis to mitochondrial cell death pathways.

    PubMed

    Neitemeier, Sandra; Jelinek, Anja; Laino, Vincenzo; Hoffmann, Lena; Eisenbach, Ina; Eying, Roman; Ganjam, Goutham K; Dolga, Amalia M; Oppermann, Sina; Culmsee, Carsten

    2017-03-09

    Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the Xc(-) system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by Xc(-) inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death.

  16. Colourful death: six-parameter classification of cell death by flow cytometry--dead cells tell tales.

    PubMed

    Munoz, Luis E; Maueröder, Christian; Chaurio, Ricardo; Berens, Christian; Herrmann, Martin; Janko, Christina

    2013-08-01

    The response of the immune system against dying and dead cells strongly depends on the cell death phenotype. Beside other forms of cell death, two clearly distinct populations, early apoptotic and secondary necrotic cells, have been shown to induce anti-inflammation/tolerance and inflammation/immune priming, respectively. Cytofluorometry is a powerful technique to detect morphological and phenotypical changes occurring during cell death. Here, we describe a new technique using AnnexinA5, propidiumiodide, DiIC1(5) and Hoechst 33342 to sub-classify populations of apoptotic and/or necrotic cells. The method allows the fast and reliable identification of several different phases and pathways of cell death by analysing the following cell death associated changes in a single tube: cellular granularity and shrinkage, phosphatidylserine exposure, ion selectivity of the plasma membrane, mitochondrial membrane potential, and DNA content. The clear characterisation of cell death is of major importance for instance in immunization studies, in experimental therapeutic settings, and in the exploration of cell-death associated diseases. It also enables the analysis of immunological properties of distinct populations of dying cells and the pathways involved in this process.

  17. Synchronized renal tubular cell death involves ferroptosis.

    PubMed

    Linkermann, Andreas; Skouta, Rachid; Himmerkus, Nina; Mulay, Shrikant R; Dewitz, Christin; De Zen, Federica; Prokai, Agnes; Zuchtriegel, Gabriele; Krombach, Fritz; Welz, Patrick-Simon; Weinlich, Ricardo; Vanden Berghe, Tom; Vandenabeele, Peter; Pasparakis, Manolis; Bleich, Markus; Weinberg, Joel M; Reichel, Christoph A; Bräsen, Jan Hinrich; Kunzendorf, Ulrich; Anders, Hans-Joachim; Stockwell, Brent R; Green, Douglas R; Krautwald, Stefan

    2014-11-25

    Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia-reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury. In contrast, iron-dependent ferroptosis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy in models of IRI and oxalate crystal-induced acute kidney injury. To suppress ferroptosis in vivo, we generated a novel third-generation ferrostatin (termed 16-86), which we demonstrate to be more stable, to metabolism and plasma, and more potent, compared with the first-in-class compound ferrostatin-1 (Fer-1). Even in conditions with extraordinarily severe IRI, 16-86 exerts strong protection to an extent which has not previously allowed survival in any murine setting. In addition, 16-86 further potentiates the strong protective effect on IRI mediated by combination therapy with necrostatins and compounds that inhibit mitochondrial permeability transition. Renal tubules thus represent a tissue that is not sensitized to necroptosis by loss of FADD or caspase-8. Finally, ferroptosis mediates postischemic and toxic renal necrosis, which may be therapeutically targeted by ferrostatins and by combination therapy.

  18. Ferroptosis: an iron-dependent form of nonapoptotic cell death.

    PubMed

    Dixon, Scott J; Lemberg, Kathryn M; Lamprecht, Michael R; Skouta, Rachid; Zaitsev, Eleina M; Gleason, Caroline E; Patel, Darpan N; Bauer, Andras J; Cantley, Alexandra M; Yang, Wan Seok; Morrison, Barclay; Stockwell, Brent R

    2012-05-25

    Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration.

  19. Independent controls for neocortical neuron production and histogenetic cell death

    NASA Technical Reports Server (NTRS)

    Verney, C.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.; Caviness, V. S. Jr

    2000-01-01

    We estimated the proportion of cells eliminated by histogenetic cell death during the first 2 postnatal weeks in areas 1, 3 and 40 of the mouse parietal neocortex. For each layer and for the subcortical white matter in each neocortical area, the number of dying cells per mm(2) was calculated and the proportionate cell death for each day of the 2-week interval was estimated. The data show that cell death proceeds essentially uniformly across the neocortical areas and layers and that it does not follow either the spatiotemporal gradient of cell cycle progression in the pseudostratified ventricular epithelium of the cerebral wall, the source of neocortical neurons, or the 'inside-out' neocortical neuronogenetic sequence. Therefore, we infer that the control mechanisms of neocortical histogenetic cell death are independent of mechanisms controlling neuronogenesis or neuronal migration but may be associated with the ingrowth, expansion and a system-wide matching of neuronal connectivity. Copyright 2000 S. Karger AG, Basel.

  20. Stem cell death and survival in heart regeneration and repair

    PubMed Central

    Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-01-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function. PMID:26687129

  1. Killing Prostate Cancer Cells and Endothelial Cells with a VEGF-Triggered Cell Death Receptor

    DTIC Science & Technology

    2005-06-01

    The goal of this project was to test a novel chimeric cell death receptor (termed R2Fas) that is triggered by vascular endothelial growth factor...cells that overexpress VEGF activates apoptotic signaling and induces cell death ; (iii) we demonstrated that adenoviral-mediated expression of R2Fas in

  2. ENERGY REQUIREMENT FOR THYMINELESS DEATH IN CELLS OF ESCHERICHIA COLI.

    PubMed

    FREIFELDER, D; MAALOE, O

    1964-10-01

    Freifelder, David (University of California, Berkeley), and Ole Maaløe. Energy requirement for thymineless death in cells of Escherichia coli. J. Bacteriol. 88:987-990. 1964.-Thymineless death in thymine-requiring Escherichia coli is arrested immediately and reversibly by nitrogenation if the bacterial population is growing in a medium containing a carbon source that can only be metabolized aerobically. The mechanism of death, therefore, involves a metabolic process.

  3. ENERGY REQUIREMENT FOR THYMINELESS DEATH IN CELLS OF ESCHERICHIA COLI

    PubMed Central

    Freifelder, David; Maaløe, Ole

    1964-01-01

    Freifelder, David (University of California, Berkeley), and Ole Maaløe. Energy requirement for thymineless death in cells of Escherichia coli. J. Bacteriol. 88:987–990. 1964.—Thymineless death in thymine-requiring Escherichia coli is arrested immediately and reversibly by nitrogenation if the bacterial population is growing in a medium containing a carbon source that can only be metabolized aerobically. The mechanism of death, therefore, involves a metabolic process. PMID:14219063

  4. Molecular Mechanisms of Sulfur Mustard Vesicant-Induced Cell Death: Early and Late Cell Responses

    DTIC Science & Technology

    2005-10-01

    Mechanisms of Sulfur Mustard Vesicant-Induced Cell Death : Early and late cell responses 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...It possess mutagenic, carcinogenic, cytotoxic, vesicating effects, and results in cell death . However, the biomedical mechanism of cell death induced... cell death via apoptosis: • In early stage, It induces JNK activity and then triggers apoptosis pathway. • In late stage, sulphur mustard attacks the

  5. SWCNTs induced autophagic cell death in human bronchial epithelial cells.

    PubMed

    Park, Eun-Jung; Zahari, Nur Elida M; Lee, Eun-Woo; Song, Jaewhan; Lee, Jae-Hyeok; Cho, Myung-Haing; Kim, Jae-Ho

    2014-04-01

    Carbon nanotubes are being actively introduced in electronics, computer science, aerospace, and other industries. Thus, the urgent need for toxicological studies on CNTs is mounting. In this study, we investigated the alterations in cellular response with morphological changes induced by single-walled carbon nanotubes (SWCNTs) in BEAS-2B cells, a human bronchial epithelial cell line. At 24h after exposure, SWCNTs rapidly decreased ATP production and cell viability as well a slight increase in the number of cells in the subG1 and G1 phases. In addition, SWCNTs increased the expression of superoxide dismutase (SOD)-1, but not SOD-2, and the number of cells generating ROS. The concentration of Cu and Zn ions also increased in a dose-dependent manner in cells exposed to SWCNTs. SWCNTs significantly enhanced the release of nitric oxide, interleukin (IL)-6, and IL-8 and up-regulated the expression of chemokine- and cytokine-related genes. Furthermore, the levels of autophagy-related genes, especially the DRAM1 gene, and the autophagosome formation-related proteins, were clearly up-regulated together with an increase of autophagosome-like vacuoles. Based on these results, we suggest that SWCNTs induce autophagic cell death through mitochondrial dysfunction and cytosolic damage in human bronchial epithelial cells.

  6. Purification and characterization of protein phosphatase 2C in rat parotid acinar cells: two forms of Mg(2+)-activated histone phosphatase and phosphorylation by cAMP-dependent protein kinase.

    PubMed

    Yokoyama, N; Kobayashi, T; Tamura, S; Sugiya, H

    1996-07-01

    Two forms of Mg(2+)-activated histone phosphatase activities were partially purified from rat parotid acinar cells using Mono Q and gel filtration chromatography. Both enzymes activities were dependent on the presence of Mg2+, showing little activity in the presence of EDTA. The activities fractionated on the Mono Q column into two peaks: the first was a minor peak of histone phosphatase activity; the second was a major peak. These two peaks eluted at distinct positions on the gel filtration column. The molecular masses of the two peak fractions corresponded to 46 and 55 kDa, respectively on SDS-gels. The first 46-kDa peak immunoreacted with anti-PP2Calpha phosphatase antibody and like PP2Calpha phosphatase could be phosphorylated by cAMP-dependent protein kinase. The second 55-kDa peak showed neither reactivity with anti-PP2Calpha phosphatase antibody nor phosphorylability by cAMP-dependent protein kinase, but retained a Mg2+ or Mn2+ dependence for its histone phosphatase activity. Ca2+ showed a strong inhibition on this activity. On the basis of these observations, we have identified the first peak enzyme as PP2Calpha phosphatase and the second peak as a novel PP2C-like phosphatase.

  7. Ceramide mediates caspase-independent programmed cell death.

    PubMed

    Thon, Lutz; Möhlig, Heike; Mathieu, Sabine; Lange, Arne; Bulanova, Elena; Winoto-Morbach, Supandi; Schütze, Stefan; Bulfone-Paus, Silvia; Adam, Dieter

    2005-12-01

    Although numerous studies have implicated the sphingolipid ceramide in the induction of cell death, a causative function of ceramide in caspase-dependent apoptosis remains a highly debated issue. Here, we show that ceramide is a key mediator of a distinct route to programmed cell death (PCD), i.e., caspase-independent PCD. Under conditions where apoptosis is either not initiated or actively inhibited, TNF induces caspase-independent PCD in L929 fibrosarcoma cells, NIH3T3 fibroblasts, human leukemic Jurkat T cells, and lung fibroblasts by increasing intracellular ceramide levels prior to the onset of cell death. Survival is significantly enhanced when ceramide accumulation is prevented, as demonstrated in fibroblasts genetically deficient for acid sphingomyelinase, in L929 cells overexpressing acid ceramidase, by pharmacological intervention, or by RNA interference. Jurkat cells deficient for receptor-interacting protein 1 (RIP1) do not accumulate ceramide and therefore are fully resistant to caspase-independent PCD whereas Jurkat cells overexpressing the mitochondrial protein Bcl-2 are partially protected, implicating RIP1 and mitochondria as components of the ceramide death pathway. Our data point to a role of caspases (but not cathepsins) in suppressing the ceramide death pathway under physiological conditions. Moreover, clonogenic survival of tumor cells is clearly reduced by induction of the ceramide death pathway, promising additional options for the development of novel tumor therapies.

  8. Ferroptosis is Involved in Acetaminophen Induced Cell Death.

    PubMed

    Lőrincz, Tamás; Jemnitz, Katalin; Kardon, Tamás; Mandl, József; Szarka, András

    2015-09-01

    The recently described form of programmed cell death, ferroptosis can be induced by agents causing GSH depletion or the inhibition of GPX4. Ferroptosis clearly shows distinct morphologic, biochemical and genetic features from apoptosis, necrosis and autophagy. Since NAPQI the highly reactive metabolite of the widely applied analgesic and antipyretic, acetaminophen induces a cell death which can be characterized by GSH depletion, GPX inhibition and caspase independency the involvement of ferroptosis in acetaminophen induced cell death has been investigated. The specific ferroptosis inhibitor ferrostatin-1 failed to elevate the viability of acetaminophen treated HepG2 cells. It should be noticed that these cells do not form NAPQI due to the lack of phase I enzyme expression therefore GSH depletion cannot be observed. However in the case of acetaminophen treated primary mouse hepatocytes the significant elevation of cell viability could be observed upon ferrostatin-1 treatment. Similar to ferrostatin-1 treatment, the addition of the RIP1 kinase inhibitor necrostatin-1 could also elevate the viability of acetaminophen treated primary hepatocytes. Ferrostatin-1 has no influence on the expression of CYP2E1 or on the cellular GSH level which suggest that the protective effect of ferrostatin-1 in APAP induced cell death is not based on the reduced metabolism of APAP to NAPQI or on altered NAPQI conjugation by cellular GSH. Our results suggest that beyond necroptosis and apoptosis a third programmed cell death, ferroptosis is also involved in acetaminophen induced cell death in primary hepatocytes.

  9. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    PubMed Central

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  10. Sickle cell trait and sudden death--bringing it home.

    PubMed Central

    Mitchell, Bruce L.

    2007-01-01

    Sickle cell trait continues to be the leading cause of sudden death for young African Americans in military basic training and civilian organized sports. The syndrome may have caused the death of up to 10 college football players since 1974 and, as recently as 2000, was suspected as the cause of death of three U.S. Army recruits. The penal military-style boot camps in the United States and the recent death of two teenagers with sickle cell trait merits renewed vigor in the education of athletic instructors, the military and the public about conditions associated with sudden death in individuals with sickle cell trait. Images Figure 1 Figure 2 PMID:17393956

  11. Pancreatic (acinar) metaplasia of the gastric mucosa. Histology, ultrastructure, immunocytochemistry, and clinicopathologic correlations of 101 cases.

    PubMed

    Doglioni, C; Laurino, L; Dei Tos, A P; De Boni, M; Franzin, G; Braidotti, P; Viale, G

    1993-11-01

    The occasional finding within the gastric mucosa of unidentified epithelial cells with morphological features closely resembling those of pancreatic acinar cells has prompted us to investigate a retrospective series of 8,430 consecutive gastric biopsies and of 126 surgical specimens of gastric resection and total gastrectomy. The aims of the study were to morphologically and immunocytochemically characterize these cells, to define their actual prevalence in a large series of unselected cases, and to assess the clinicopathologic correlates of their occurrence. Pancreatic acinar-like cells characterized by abundant cytoplasm, which was acidophilic and finely granular in the apical and middle portions and basophilic in the basal compartment, have been identified in 101 cases (84 gastric biopsies and 17 gastrectomies). These cells, arranged in nests or in variably sized lobules among the gastric glands, were morphologically indistinguishable from pancreatic acinar cells, both by light and by electron microscopy. Furthermore, they were consistently immunoreactive for pancreatic lipase and trypsinogen and, in 75% of the cases, for pancreatic alpha-amylase. The appearance of these cells within the gastric mucosa was correlated significantly with chronic gastritis (p = 0.032) and with the simultaneous occurrence of intestinal and pyloric types of gastric metaplasia (p = 0.021). The findings indicate that this is a previously unrecognized pancreatic (acinar) metaplasia of the gastric mucosa, clinically and morphologically distinct from pancreatic heterotopia.

  12. Modelling radiation-induced cell death and tumour re-oxygenation: local versus global and instant versus delayed cell death

    NASA Astrophysics Data System (ADS)

    Gago-Arias, Araceli; Aguiar, Pablo; Espinoza, Ignacio; Sánchez-Nieto, Beatriz; Pardo-Montero, Juan

    2016-02-01

    The resistance of hypoxic cells to radiation, due to the oxygen dependence of radiosensitivity, is well known and must be taken into account to accurately calculate the radiation induced cell death. A proper modelling of the response of tumours to radiation requires deriving the distribution of oxygen at a microscopic scale. This usually involves solving the reaction-diffusion equation in tumour voxels using a vascularization distribution model. Moreover, re-oxygenation arises during the course of radiotherapy, one reason being the increase of available oxygen caused by cell killing, which can turn hypoxic tumours into oxic. In this work we study the effect of cell death kinetics in tumour oxygenation modelling, analysing how it affects the timing of re-oxygenation, surviving fraction and tumour control. Two models of cell death are compared, an instantaneous cell killing, mimicking early apoptosis, and a delayed cell death scenario in which cells can die shortly after being damaged, as well as long after irradiation. For each of these scenarios, the decrease in oxygen consumption due to cell death can be computed globally (macroscopic voxel average) or locally (microscopic). A re-oxygenation model already used in the literature, the so called full re-oxygenation, is also considered. The impact of cell death kinetics and re-oxygenation on tumour responses is illustrated for two radiotherapy fractionation schemes: a conventional schedule, and a hypofractionated treatment. The results show large differences in the doses needed to achieve 50% tumour control for the investigated cell death models. Moreover, the models affect the tumour responses differently depending on the treatment schedule. This corroborates the complex nature of re-oxygenation, showing the need to take into account the kinetics of cell death in radiation response models.

  13. Modelling radiation-induced cell death and tumour re-oxygenation: local versus global and instant versus delayed cell death.

    PubMed

    Gago-Arias, Araceli; Aguiar, Pablo; Espinoza, Ignacio; Sánchez-Nieto, Beatriz; Pardo-Montero, Juan

    2016-02-07

    The resistance of hypoxic cells to radiation, due to the oxygen dependence of radiosensitivity, is well known and must be taken into account to accurately calculate the radiation induced cell death. A proper modelling of the response of tumours to radiation requires deriving the distribution of oxygen at a microscopic scale. This usually involves solving the reaction-diffusion equation in tumour voxels using a vascularization distribution model. Moreover, re-oxygenation arises during the course of radiotherapy, one reason being the increase of available oxygen caused by cell killing, which can turn hypoxic tumours into oxic. In this work we study the effect of cell death kinetics in tumour oxygenation modelling, analysing how it affects the timing of re-oxygenation, surviving fraction and tumour control. Two models of cell death are compared, an instantaneous cell killing, mimicking early apoptosis, and a delayed cell death scenario in which cells can die shortly after being damaged, as well as long after irradiation. For each of these scenarios, the decrease in oxygen consumption due to cell death can be computed globally (macroscopic voxel average) or locally (microscopic). A re-oxygenation model already used in the literature, the so called full re-oxygenation, is also considered. The impact of cell death kinetics and re-oxygenation on tumour responses is illustrated for two radiotherapy fractionation schemes: a conventional schedule, and a hypofractionated treatment. The results show large differences in the doses needed to achieve 50% tumour control for the investigated cell death models. Moreover, the models affect the tumour responses differently depending on the treatment schedule. This corroborates the complex nature of re-oxygenation, showing the need to take into account the kinetics of cell death in radiation response models.

  14. Deletion Of XIAP reduces the severity of acute pancreatitis via regulation of cell death and nuclear factor-κB activity.

    PubMed

    Liu, Yong; Chen, Xiao-Dong; Yu, Jiang; Chi, Jun-Lin; Long, Fei-Wu; Yang, Hong-Wei; Chen, Ke-Ling; Lv, Zhao-Ying; Zhou, Bin; Peng, Zhi-Hai; Sun, Xiao-Feng; Li, Yuan; Zhou, Zong-Guang

    2017-03-16

    Severe acute pancreatitis (SAP) still remains a clinical challenge, not only for its high mortality but the uncontrolled inflammatory progression from acute pancreatitis (AP) to SAP. Cell death, including apoptosis and necrosis are critical pathology of AP, since the severity of pancreatitis correlates directly with necrosis and inversely with apoptosis Therefore, regulation of cell death from necrosis to apoptosis may have practicably therapeutic value. X-linked inhibitor of apoptosis protein (XIAP) is the best characterized member of the inhibitor of apoptosis proteins (IAP) family, but its function in AP remains unclear. In the present study, we investigated the potential role of XIAP in regulation of cell death and inflammation during acute pancreatitis. The in vivo pancreatitis model was induced by the administration of cerulein with or without lipopolysaccharide (LPS) or by the administration of l-arginine in wild-type or XIAP-deficient mice, and ex vivo model was induced by the administration of cerulein+LPS in AR42J cell line following XIAP inhibition. The severity of acute pancreatitis was determined by serum amylase activity and histological grading. XIAP deletion on cell apoptosis, necrosis and inflammatory response were examined. Caspases activities, nuclear factor-κB (NF-κB) activation and receptor-interacting protein kinase1 (RIP1) degradation were assessed by western blot. Deletion of XIAP resulted in the reduction of amylase activity, decrease of NF-κB activation and less release of TNF-α and IL-6, together with increased caspases activities and RIP1 degradation, leading to enhanced apoptosis and reduced necrosis in pancreatic acinar cells and ameliorated the severity of acute pancreatitis. Our results indicate that deletion of XIAP switches cell death away from necrosis to apoptosis and decreases the inflammatory response, effectively attenuating the severity of AP/SAP. The critical role of XIAP in cell death and inflammation suggests that

  15. Detecting cell death with optical coherence tomography and envelope statistics

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-02-01

    Currently no standard clinical or preclinical noninvasive method exists to monitor cell death based on morphological changes at the cellular level. In our past work we have demonstrated that quantitative high frequency ultrasound imaging can detect cell death in vitro and in vivo. In this study we apply quantitative methods previously used with high frequency ultrasound to optical coherence tomography (OCT) to detect cell death. The ultimate goal of this work is to use these methods for optically-based clinical and preclinical cancer treatment monitoring. Optical coherence tomography data were acquired from acute myeloid leukemia cells undergoing three modes of cell death. Significant increases in integrated backscatter were observed for cells undergoing apoptosis and mitotic arrest, while necrotic cells induced a decrease. These changes appear to be linked to structural changes observed in histology obtained from the cell samples. Signal envelope statistics were analyzed from fittings of the generalized gamma distribution to histograms of envelope intensities. The parameters from this distribution demonstrated sensitivities to morphological changes in the cell samples. These results indicate that OCT integrated backscatter and first order envelope statistics can be used to detect and potentially differentiate between modes of cell death in vitro.

  16. Octylphenol induces vitellogenin production and cell death in fish hepatocytes

    SciTech Connect

    Toomey, B.H.; Monteverdi, G.H.; Di Giulio, R.T.

    1999-04-01

    The effects of octylphenol (OP) on vitellogenin production and cell death in hepatocytes from brown bullhead catfish (Americurus nebulosus) were studied. Production of vitellogenin was induced in hepatocytes exposed to 10 to 50 {micro}M OP, whereas a higher concentration of OP (100 {micro}M) induced apoptotic cell death. By 3 h after the addition of 100 {micro}M OP, dying cells showed chromatin condensation and DNA fragmentation as determined by fluorescence microscopy and gel electrophoresis. Later stages of cell death (nuclear membrane breakdown and cell fragmentation into apoptotic bodies) were identified in cells exposed to OP for at least 6 h. Hepatocytes exposed to 100 {micro}M OP also produced less vitellogenin than cells exposed to 50 {micro}M OP. An estrogen receptor antagonist, tamoxifen, greatly decreased vitellogenin production in OP-exposed hepatocytes from male fish but did not decrease cell death in these cells. Thus, although the ability of OP to induce vitellogenin production is likely mediated through interactions with the estrogen receptor, the induction of apoptotic cell death by OP does not appear to be dependent on its estrogenic activity but may be a more general toxic effect.

  17. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death.

    PubMed

    Kwon, Min-Young; Park, Eunhee; Lee, Seon-Jin; Chung, Su Wol

    2015-09-15

    The oncogenic RAS-selective lethal small molecule Erastin triggers a unique iron-dependent form of nonapoptotic cell death termed ferroptosis. Ferroptosis is dependent upon the production of intracellular iron-dependent reactive oxygen species (ROS), but not other metals. However, key regulators remain unknown. The heme oxygenase (HO) is a major intracellular source of iron. In this study, the role of heme oxygenase in Erastin-triggered ferroptotic cancer cell death has been investigated. Zinc protoporphyrin IX (ZnPP), a HO-1 inhibitor, prevented Erastin-triggered ferroptotic cancer cell death. Furthermore, Erastin induced the protein and mRNA levels of HO-1 in HT-1080 fibrosarcoma cells. HO-1+/+ and HO-1-/- fibroblast, HO-1 overexpression, and chycloheximide-treated experiments revealed that the expression of HO-1 has a decisive effects in Erastin-triggered cell death. Hemin and CO-releasing molecules (CORM) promote Erastin-induced ferroptotic cell death, not by biliverdin and bilirubin. In addition, hemin and CORM accelerate the HO-1 expression in the presence of Erastin and increase membranous lipid peroxidation. Thus, HO-1 is an essential enzyme for iron-dependent lipid peroxidation during ferroptotic cell death.

  18. Analysis of Cell Death Induction in Intestinal Organoids In Vitro.

    PubMed

    Grabinger, Thomas; Delgado, Eugenia; Brunner, Thomas

    2016-01-01

    The intestinal epithelium has an important function in the absorption of nutrients contained in the food. Furthermore, it also has an important barrier function, preventing luminal pathogens from entering the bloodstream. This single cell layer epithelium is quite sensitive to various cell death-promoting triggers, including drugs, irradiation, and TNF family members, leading to loss of barrier integrity, epithelial erosion, inflammation, malabsorption, and diarrhea. In order to assess the intestinal epithelium-damaging potential of treatments and substances specific test systems are required. As intestinal tumor cell lines are a poor substitute for primary intestinal epithelial cells, and in vivo experiments in mice are costly and often unethical, the use of intestinal organoids cultured from intestinal crypts provide an ideal tool to study cell death induction and mechanisms in primary intestinal epithelial cells. This protocol describes the isolation and culture of intestinal organoids from murine small intestinal crypts, and the quantitative assessment of cell death induction in these organoids.

  19. Biochemical evidence for programmed cell death in rabbit uterine epithelium.

    PubMed Central

    Rotello, R. J.; Hocker, M. B.; Gerschenson, L. E.

    1989-01-01

    Uterine epithelial cell proliferation, differentiation, and death are known to be regulated by estrogen and progesterone. The authors investigated a specific pattern of cell death called apoptosis, or programmed cell death, which is biochemically characterized by a specific pattern of DNA degradation. DNA isolated from endometrium of ovariectomized pseudopregnant rabbits showed a pattern of DNA cleavage at internucleosomal locations. In comparison, DNA from the endometrium of non-ovariectomized animals, as well as several other organs, did not exhibit that pattern. This biochemical evidence supports previous and present morphologic data and correlates with it. Under the experimental conditions used, only the uterine epithelial compartment of the endometrium shows apoptotic cell death, which is absent in the stromal compartment. Images Figure 1 Figure 2 PMID:2923180

  20. HSPA5 Regulates Ferroptotic Cell Death in Cancer Cells.

    PubMed

    Zhu, Shan; Zhang, Qiuhong; Sun, Xiaofan; Zeh, Herbert J; Lotze, Michael T; Kang, Rui; Tang, Daolin

    2017-01-27

    Ferroptosis is a form of regulated cell death driven by oxidative injury promoting lipid peroxidation, although detailed molecular regulators are largely unknown. Here, we show that heatshock 70-kDa protein 5 (HSPA5) negatively regulates ferroptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. Mechanistically, activating transcription factor 4 (ATF4) resulted in the induction of HSPA5, which in turn bound glutathione peroxidase 4 (GPX4) and protected against GPX4 protein degradation and subsequent lipid peroxidation. Importantly, the HSPA5-GPX4 pathway mediated ferroptosis resistance, limiting the anticancer activity of gemcitabine. Genetic or pharmacologic inhibition of the HSPA5-GPX4 pathway enhanced gemcitabine sensitivity by disinhibiting ferroptosis in vitro and in both subcutaneous and orthotopic animal models of PDAC. Collectively, these findings identify a novel role of HSPA5 in ferroptosis and suggest a potential therapeutic strategy for overcoming gemcitabine resistance. Cancer Res; 77(8); 1-14. ©2017 AACR.

  1. Apoptotic Cell Death of Human Interstitial Cells of Cajal

    PubMed Central

    De Giorgio, Roberto; Faussone Pellegrini, Maria Simonetta; Garrity-Park, Megan M.; Miller, Steven M.; Schmalz, Philip F.; Young-Fadok, Tonia M.; Larson, David W.; Dozois, Eric J.; Camilleri, Michael; Stanghellini, Vincenzo; Szurszewski, Joseph H.; Farrugia, Gianrico

    2008-01-01

    Interstitial cells of Cajal (ICC) are specialized mesenchyme-derived cells that regulate contractility and excitability of many smooth muscles with loss of ICC seen in a variety of gut motility disorders. Maintenance of ICC numbers is tightly regulated, with several factors known to regulate proliferation. In contrast, the fate of ICC is not established. The aim of this study was to investigate whether apoptosis plays a role in the regulation of ICC numbers in the normal colon. ICC were identified by immunolabeling for the c-Kit receptor tyrosine kinase and by electron microscopy. Apoptosis was detected in colon tissue by immunolabeling for activated caspase-3, terminal dUTP nucleotide end labeling, and ultrastructural changes in the cells. Apoptotic ICC were identified and counted in double labeled tissue sections. Apoptotic ICC were identified in all layers of the colonic muscle. In the muscularis propria 1.5 ± 0.2% of ICC were positive for activated caspase-3 and in the circular muscle layer 2.1 ± 0.9% of ICC were positive for TUNEL. Apoptotic ICC were identified by electron microscopy. Apoptotic cell death is ongoing in ICC. The level of apoptosis in ICC in healthy colon indicates that these cells must be continually regenerated to maintain intact networks. PMID:18798796

  2. Statins, Bcl-2, and apoptosis: cell death or cell protection?

    PubMed

    Wood, W Gibson; Igbavboa, Urule; Muller, Walter E; Eckert, Gunter P

    2013-10-01

    Statins have proven their effectiveness in the treatment of cardiovascular disease. This class of drugs has also attracted attention as a potential treatment for dissimilar diseases such as certain types of cancers and neurodegenerative diseases. What appears to be a contradiction is that, in the case of cancer, it has been suggested that statins increase apoptosis and alter levels of Bcl-2 family members (e.g., reduce Bcl-2 and increase Bax), whereas studies mainly using noncancerous cells report opposite effects. This review examined studies reporting on the effects of statins on Bcl-2 family members, apoptosis, cell death, and cell protection. Much, but not all, of the evidence supporting the pro-apoptotic effects of statins is based on data in cancer cell lines and the use of relatively high drug concentrations. Studies indicating an anti-apoptotic effect of statins are fewer in number and generally used much lower drug concentrations and normal cells. Those conclusions are not definitive, and certainly, there is a need for additional research to determine if statin repositioning is justified for noncardiovascular diseases.

  3. Snail1 is required for the maintenance of the pancreatic acinar phenotype

    PubMed Central

    Loubat-Casanovas, Jordina; Peña, Raúl; Gonzàlez, Núria; Alba-Castellón, Lorena; Rosell, Santi; Francí, Clara; Navarro, Pilar; de Herreros, Antonio García

    2016-01-01

    The Snail1 transcriptional factor is required for correct embryonic development, yet its expression in adult animals is very limited and its functional roles are not evident. We have now conditionally inactivated Snail1 in adult mice and analyzed the phenotype of these animals. Snail1 ablation rapidly altered pancreas structure: one month after Snail1 depletion, acinar cells were markedly depleted, and pancreas accumulated adipose tissue. Snail1 expression was not detected in the epithelium but was in pancreatic mesenchymal cells (PMCs). Snail1 ablation in cultured PMCs downregulated the expression of several β-catenin/Tcf-4 target genes, modified the secretome of these cells and decreased their ability to maintain acinar markers in cultured pancreas cells. Finally, Snail1 deficiency modified the phenotype of pancreatic tumors generated in transgenic mice expressing c-myc under the control of the elastase promoter. Specifically, Snail1 depletion did not significantly alter the size of the tumors but accelerated acinar-ductal metaplasia. These results demonstrate that Snail1 is expressed in PMCs and plays a pivotal role in maintaining acinar cells within the pancreas in normal and pathological conditions. PMID:26735179

  4. Surviving apoptosis: life-death signaling in single cells

    PubMed Central

    Flusberg, Deborah A.; Sorger, Peter K.

    2015-01-01

    Tissue development and homeostasis are regulated by opposing pro-survival and pro-death signals. An interesting feature of the Tumor Necrosis Factor (TNF) family of ligands is that they simultaneously activate opposing signals within a single cell via the same ligand-receptor complex. The magnitude of pro-death events such as caspase activation and pro-survival events such as NF-κB activation vary not only from one cell type to the next but also among individual cells of the same type due to intrinsic and extrinsic noise. The molecules involved in these pro-survival/pro-death pathways, and the different phenotypes that result from their activities, have been recently reviewed. Here we focus on the impact of cell-to-cell variability in the strength of these opposing signals on shaping cell fate decisions. PMID:25920803

  5. Mechanisms of Growth Factor Attenuation of Cell Death in Chemotherapy Treated Breast Cancer Cells

    DTIC Science & Technology

    2003-08-01

    cells treated with chemotherapy or radiation. To this end, we have focused on the survival kinase, Akt and also the kinase which conveys cell death messages...these cells are resistant to the cell death pathway that is typically activated with chemotherapy and radiation treatment. Therefore, we are currently...studying new mechanisms for Akt mediated cell survival. Our work to identify how JNK conveys cell death signals in response to UV or chemotherapy

  6. Understanding Cone Photoreceptor Cell Death in Achromatopsia.

    PubMed

    Carvalho, Livia S; Vandenberghe, Luk H

    2016-01-01

    Colour vision is only achieved in the presence of healthy and functional cone photoreceptors found in the retina. It is an essential component of human vision and usually the first complaint patients undergoing vision degeneration have is the loss of daylight colour vision. Therefore, an understanding of the biology and basic mechanisms behind cone death under the degenerative state of retinal dystrophies and how the activation of the apoptotic pathway is triggered will provide valuable knowledge. It will also have broader applications for a spectrum of visual disorders and will be critical for future advances in translational research.

  7. Transcriptomics and Functional Genomics of ROS-Induced Cell Death Regulation by RADICAL-INDUCED CELL DEATH1

    PubMed Central

    Salojärvi, Jarkko; Cui, Fuqiang; Sipari, Nina; Leppälä, Johanna; Lamminmäki, Airi; Tomai, Gloria; Narayanasamy, Shaman; Reddy, Ramesha A.; Keinänen, Markku; Overmyer, Kirk; Kangasjärvi, Jaakko

    2014-01-01

    Plant responses to changes in environmental conditions are mediated by a network of signaling events leading to downstream responses, including changes in gene expression and activation of cell death programs. Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1) has been proposed to regulate plant stress responses by protein-protein interactions with transcription factors. Furthermore, the rcd1 mutant has defective control of cell death in response to apoplastic reactive oxygen species (ROS). Combining transcriptomic and functional genomics approaches we first used microarray analysis in a time series to study changes in gene expression after apoplastic ROS treatment in rcd1. To identify a core set of cell death regulated genes, RCD1-regulated genes were clustered together with other array experiments from plants undergoing cell death or treated with various pathogens, plant hormones or other chemicals. Subsequently, selected rcd1 double mutants were constructed to further define the genetic requirements for the execution of apoplastic ROS induced cell death. Through the genetic analysis we identified WRKY70 and SGT1b as cell death regulators functioning downstream of RCD1 and show that quantitative rather than qualitative differences in gene expression related to cell death appeared to better explain the outcome. Allocation of plant energy to defenses diverts resources from growth. Recently, a plant response termed stress-induced morphogenic response (SIMR) was proposed to regulate the balance between defense and growth. Using a rcd1 double mutant collection we show that SIMR is mostly independent of the classical plant defense signaling pathways and that the redox balance is involved in development of SIMR. PMID:24550736

  8. Targeting Cell Survival Proteins for Cancer Cell Death

    PubMed Central

    Pandey, Manoj K.; Prasad, Sahdeo; Tyagi, Amit Kumar; Deb, Lokesh; Huang, Jiamin; Karelia, Deepkamal N.; Amin, Shantu G.; Aggarwal, Bharat B.

    2016-01-01

    Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise. PMID:26927133

  9. Neurogenin 3-directed cre deletion of Tsc1 gene causes pancreatic acinar carcinoma.

    PubMed

    Ding, Li; Han, Lingling; Li, Yin; Zhao, Jing; He, Ping; Zhang, Weizhen

    2014-11-01

    The role of tuberous sclerosis complex (TSC) in the pathogenesis of pancreatic cancers remains largely unknown. The present study shows that neurogenin 3 directed Cre deletion of Tsc1 gene induces the development of pancreatic acinar carcinoma. By cross-breeding the Neurog3-cre mice with Tsc1 (loxp/loxp) mice, we generated the Neurog3-Tsc1-/- transgenic mice in which Tsc1 gene is deleted and mTOR signaling activated in the pancreatic progenitor cells. All Neurog3-Tsc1-/- mice developed notable adenocarcinoma-like lesions in pancreas starting from the age of 100 days old. The tumor lesions are composed of cells with morphological and molecular resemblance to acinar cells. Metastasis of neoplasm to liver and lung was detected in 5% of animals. Inhibition of mTOR signaling by rapamycin significantly attenuated the growth of the neoplasm. Relapse of the neoplasm occurred within 14 days upon cessation of rapamycin treatment. Our studies indicate that activation of mTOR signaling in the pancreatic progenitor cells may trigger the development of acinar carcinoma. Thus, mTOR may serve as a potential target for treatment of pancreatic acinar carcinoma.

  10. Acetaminophen Induces Human Neuroblastoma Cell Death through NFKB Activation

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Ceña, Valentín

    2012-01-01

    Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-xL did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β. PMID:23166834

  11. Role of mesenchymal cell death in lung remodeling after injury.

    PubMed Central

    Polunovsky, V A; Chen, B; Henke, C; Snover, D; Wendt, C; Ingbar, D H; Bitterman, P B

    1993-01-01

    Repair after acute lung injury requires elimination of granulation tissue from the alveolar airspace. We hypothesized that during lung repair, signals capable of inducing the death of the two principal cellular elements of granulation tissue, fibroblasts and endothelial cells, would be present at the air-lung interface. Bronchoalveolar lavage fluid obtained from patients during lung repair induced both fibroblast and endothelial cell death, while fluid obtained at the time of injury or from patient controls did not. The mode of cell death for endothelial cells was apoptosis. Fibroblast death, while morphologically distinct from necrosis, also differed from typical apoptosis. Only proliferating cells were susceptible to the bioactivities in lavage fluid, which were trypsin sensitive and lipid insoluble. Histological examination of lung tissue from patients after lung injury revealed evidence of apoptotic cells within airspace granulation tissue. Our results suggest that cell death induced by peptide(s) present at the air-lung interface may participate in the remodeling process that accompanies tissue repair after injury. Images PMID:8326006

  12. Choroid plexus acinar adenoma: a case report.

    PubMed

    Rembao-Bojórquez, Daniel; Vega, Rosalba; Bermúdez-Maldonado, Luis; Gutiérrez, Ramón; Salinas, Citlaltepetl; Tena-Suck, Martha

    2007-06-01

    Mucus-secreting adenomas or acinar adenoma of the choroid plexus are very rare. We report the case of a 79-year-old male with a 3-year history of occipital headaches with vomiting, ataxia and cerebellar signs. He was first seen due to difficulty while walking. He was admitted to the hospital with significant tumor expansion and clinical deterioration. CT and MRI revealed obstructive hydrocephalus secondary to a large fourth ventricular cyst mass, which enhanced markedly on contrast administration. Pathological findings were consistent with an acinar choroid plexus adenoma. The tumor was attached to the ependymal lining and was strongly adhered to the walls and floor of the IV ventricle. Post-operative bleeding complicated partial removal of this tumor. The patient died 6 h after surgery.

  13. Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells.

    PubMed

    Rodríguez-Hernández, A; Navarro-Villarán, E; González, R; Pereira, S; Soriano-De Castro, L B; Sarrias-Giménez, A; Barrera-Pulido, L; Álamo-Martínez, J M; Serrablo-Requejo, A; Blanco-Fernández, G; Nogales-Muñoz, A; Gila-Bohórquez, A; Pacheco, D; Torres-Nieto, M A; Serrano-Díaz-Canedo, J; Suárez-Artacho, G; Bernal-Bellido, C; Marín-Gómez, L M; Barcena, J A; Gómez-Bravo, M A; Padilla, C A; Padillo, F J; Muntané, J

    2015-12-01

    Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10 µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.

  14. Cysteine aggravates palmitate-induced cell death in hepatocytes

    PubMed Central

    Dou, Xiaobing; Wang, Zhigang; Yao, Tong; Song, Zhenyuan

    2011-01-01

    Aims Lipotoxicity, defined as cell death induced by excessive fatty acids, especially saturated fatty acids, is critically involved in the development of non-alcoholic steatohepatitis (NASH). Recent studies report that plasma cysteine concentrations is elevated in the subjects with either alcoholic steatohepatitis (ASH) or NASH than normal subjects. The present study was conducted to determine if elevation of cysteine could be a deleterious factor in palmitate-induced hepatocyte cell death. Main methods HepG2 and Hep3B cells were treated with palmitate with/without the inclusion of cysteine in the media for 24 hours. The effects of cysteine inclusion on palmitate induced cell death were determined by lactate dehydrogenase (LDH) release and MTT assay. Oxidative stress was evaluated by intracellular glutathione (GSH) level, malondialdehyde (MDA) formation, and DCFH-DA assay. Western blotting was performed to detect the changes of endoplasmic reticulum(ER) stress markers: C/EBP homologous transcription factor (CHOP), GRP-78, and phosphorylated c-jun N-terminal kinase (p-JNK). Key findings Elevated intracellular cysteine aggravates hepatocytes to palmitate-induced cell death. Enhancement of ER stress, specifically increased activation of JNK pathway, contributed to this cell death process. Significance Increase of plasma cysteine levels, as observed in both ASH and NASH patients, may play a pathological role in the development of the liver diseases. Manipulation of dietary amino acids supplementation could be a therapeutic choice. PMID:22008477

  15. Characterization of a novel model of pancreatic fibrosis and acinar atrophy.

    PubMed

    Murayama, K M; Barent, B L; Gruber, M; Brooks, A; Eliason, S; Brunt, E M; Smith, G S

    1999-01-01

    Significant fibrosis and acinar atrophy are characteristics of chronic pancreatitis; however, because of the lack of a reproducible model, early phases of these changes are poorly understood. We have developed a model of severe hyperstimulation and obstruction pancreatitis (SHOP) to better define the mechanisms of early pancreatic fibrogenesis. Sprague-Dawley rats were used and SHOP was induced by complete pancreatic duct obstruction and daily cerulein hyperstimulation (50 microg/kg intraperitoneally). Animals were killed at 24, 48, 72, and 96 hours. Control animals underwent sham operation and received no cerulein. Pancreata were prepared for hematoxylin and eosin and sirius red (collagen-specific) staining and for hydroxyproline assay (measure of total collagen content). We found moderate amounts of edema and inflammation but minimal parenchymal necrosis. Significant loss of acinar cell mass was noted by 48 hours, and normal acinar cells were essentially absent by 96 hours. Tissue collagen content increased with time and large amounts of interstitial collagen were detected by 72 hours. In conclusion, SHOP is a novel model of early pancreatic fibrosis associated with minimal necrosis and a significant decrease in acinar cell mass, making it an ideal model to study the early cellular mechanisms of pancreatic fibrogenesis.

  16. Detection of Apoptotic Versus Autophagic Cell Death by Flow Cytometry.

    PubMed

    Sica, Valentina; Maiuri, M Chiara; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    Different modes of regulated cell death (RCD) can be initiated by distinct molecular machineries and their morphological manifestations can be difficult to discriminate. Moreover, cells responding to stress often activate an adaptive response centered around autophagy, and whether such a response is cytoprotective or cytotoxic cannot be predicted based on morphological parameters only. Molecular definitions are therefore important to understand various RCD subroutines from a mechanistic perspective. In vitro, various forms of RCD including apoptosis and autophagic cell death can be easily discriminated from each other with assays that involve chemical or pharmacological interventions targeting key components of either pathway. Here, we detail a straightforward method to discriminate apoptosis from autophagic cell death by flow cytometry, based on the broad-spectrum caspase inhibitor Z-VAD-fmk and the genetic inhibition of ATG5.

  17. Entamoeba histolytica induces cell death of HT29 colonic epithelial cells via NOX1-derived ROS.

    PubMed

    Kim, Kyeong Ah; Kim, Ju Young; Lee, Young Ah; Min, Arim; Bahk, Young Yil; Shin, Myeong Heon

    2013-02-01

    Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.

  18. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    SciTech Connect

    Walia, Rupali; Dardari, Rkia Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  19. Mechanisms of programmed cell death during oogenesis in Drosophila virilis.

    PubMed

    Velentzas, Athanassios D; Nezis, Ioannis P; Stravopodis, Dimitrios J; Papassideri, Issidora S; Margaritis, Lukas H

    2007-02-01

    We describe the features of programmed cell death occurring in the egg chambers of Drosophila virilis during mid-oogenesis and late oogenesis. During mid-oogenesis, the spontaneously degenerating egg chambers exhibit typical characteristics of apoptotic cell death. As revealed by propidium iodide, rhodamine-conjugated phalloidin staining, and the TUNEL assay, respectively, the nurse cells contain condensed chromatin, altered actin cytoskeleton, and fragmented DNA. In vitro caspase activity assays and immunostaining procedures demonstrate that the atretic egg chambers possess high levels of caspase activity. Features of autophagic cell death are also observed during D. virilis mid-oogenesis, as shown by monodansylcadaverine staining, together with an ultrastructural examination by transmission electron microscopy. During the late stages of oogenesis in D. virilis, once again, the two mechanisms, viz., nurse cell cluster apoptosis and autophagy, operate together, manifesting features of cell death similar to those detailed above. Moreover, an altered form of cytochrome c seems to be released from the mitochondria in the nurse cells proximal to the oocyte. We propose that apoptosis and autophagy function synergistically during oogenesis in D. virilis in order to achieve a more efficient elimination of the degenerated nurse cells and abnormal egg chambers.

  20. Mitochondrial regulation of cell death: a phylogenetically conserved control

    PubMed Central

    Galluzzi, Lorenzo; Kepp, Oliver; Kroemer, Guido

    2016-01-01

    Mitochondria are fundamental for eukaryotic cells as they participate in critical catabolic and anabolic pathways. Moreover, mitochondria play a key role in the signal transduction cascades that precipitate many (but not all) regulated variants of cellular demise. In this short review, we discuss the differential implication of mitochondria in the major forms of regulated cell death. PMID:28357340

  1. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    PubMed

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  2. Ethylene insensitivity modulates ozone-induced cell death in birch.

    PubMed

    Vahala, Jorma; Ruonala, Raili; Keinänen, Markku; Tuominen, Hannele; Kangasjärvi, Jaakko

    2003-05-01

    We have used genotypic variation in birch (Betula pendula Roth) to investigate the roles of ozone (O(3))-induced ethylene (ET), jasmonic acid, and salicylic acid in the regulation of tissue tolerance to O(3). Of these hormones, ET evolution correlated best with O(3)-induced cell death. Disruption of ET perception by transformation of birch with the dominant negative mutant allele etr1-1 of the Arabidopsis ET receptor gene ETR1 or blocking of ET perception with 1-methylcyclopropene reduced but did not completely prevent the O(3)-induced cell death, when inhibition of ET biosynthesis with aminooxyacetic acid completely abolished O(3) lesion formation. This suggests the presence of an ET-signaling-independent but ET biosynthesis-dependent component in the ET-mediated stimulation of cell death in O(3)-exposed birch. Functional ET signaling was required for the O(3) induction of the gene encoding beta-cyanoalanine synthase, which catalyzes detoxification of the cyanide formed during ET biosynthesis. The results suggest that functional ET signaling is required to protect birch from the O(3)-induced cell death and that a decrease in ET sensitivity together with a simultaneous, high ET biosynthesis can potentially cause cell death through a deficient detoxification of cyanide.

  3. Stapled peptide induces cancer cell death.

    PubMed

    Whelan, Jo

    2004-11-01

    Hydrocarbon stapling could enable peptides from the key domains of natural proteins to be used therapeutically. Using the technique on a peptide involved in apoptosis, researchers have succeeded in destroying cancer cells in a mouse model of leukaemia.

  4. Ganglion cell death in glaucoma: from mice to men.

    PubMed

    Nickells, Robert W

    2007-01-01

    Glaucoma results from the degeneration of retinal ganglion cells and their axons. Over the last 20 years several important advancements have been made in our understanding of the molecular pathology of this disease, particularly through the development of rat models of experimental glaucoma and the characterization of a spontaneous secondary form of glaucoma in DBA/2 substrains of inbred mice. One of these advances is the observation that ganglion cells die by apoptosis, an intrinsic molecular pathway of programmed cell death. An important aspect of this cell death process is the concept that these cells actually undergo compartmentalized self-destruction. Importantly, genetic evidence now suggests that axons die independently of the apoptotic program that executes the cell body or soma. This review briefly summarizes some of the most significant developments in glaucoma research, with respect to the process of ganglion cell degeneration.

  5. X-ray-induced cell death: Apoptosis and necrosis

    SciTech Connect

    Nakano, Hisako; Shinohara, Kunio

    1994-10-01

    X-ray-induced cell death in MOLT-4N1, a subclone of MOLT-4 cells, and M10 cells was studied with respect to their modes of cell death, apoptosis and necrosis. MOLT-4N1 cells showed radiosensitivity similar to that of M10 cells, a radiosensitive mutant of L5178Y, as determined by the colony formation assay. Analysis of cell size demonstrated that MOLT-4N1 cells increased in size at an early stage after irradiation and then decreased to a size smaller than that of control cells, whereas the size of irradiated M10 cells increased continuously. Apoptosis detected by morphological changes and DNA ladder formation (the cleavage of DNA into oligonucleosomal fragments) occurred in X-irradiated MOLT-4N1 cells but not in M10 cells. Pulsed-field gel electrophoresis showed that the ladder formation involved an intermediate-sized DNA (about 20 kbp). Most of the DNA was detected at the origin in both methods of electrophoresis in the case of M10 cells, though a trace amount of ladder formation was observed. Heat treatment of M10 cells induced apoptosis within 30 min after treatment, in contrast to MOLT-4N1 cells. The results suggest that apoptosis and necrosis are induced by X rays in a manner which is dependent on the cell line irrespective of the capability of the cells to develop apoptosis. DNA fragmentation was the earliest change observed in the development of apoptosis. 27 refs., 8 figs., 1 tab.

  6. An introduction to acinar pressures in BPH and prostate cancer.

    PubMed

    Wadhera, Panikar

    2013-06-01

    Intra-acinar and peri-acinar pressures in the prostate might be key factors in the evolution of its zonal morphology and the pathogenesis of BPH and cancer. Herein, I hypothesize that intra-acinar pressures lead to a decrease in apoptosis by distending or stretching acinar epithelium and its surrounding stroma. Increased prostatic smooth muscle content and tone might generate peri-acinar pressures, which could, in the long-term, counteract intra-acinar pressures and decrease epithelial stretch. Thus, it is proposed that BPH (characterized by increased prostatic smooth muscle and, therefore, raised peri-acinar pressures) might decrease the risk of prostate cancer progression by counteracting intra-acinar pressures. In the context of this theory, the transition zone might have evolved as a specialized region within the prostate that can mount a concerted stromal-epithelial response to increased urethral and intra-acinar pressures (BPH), and the urethral angulation, anterior stroma and the prostatic capsule have an adjunctive evolutionary role in this phenomenon.

  7. Modeling cell-death patterning during biofilm formation

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Ben-Jacob, Eshel; Levine, Herbert

    2013-12-01

    Self-organization by bacterial cells often leads to the formation of a highly complex spatially-structured biofilm. In such a bacterial biofilm, cells adhere to each other and are embedded in a self-produced extracellular matrix (ECM). Bacillus substilis bacteria utilize localized cell-death patterns which focuses mechanical forces to form wrinkled sheet-like structures in three dimensions. A most intriguing feature underlying this biofilm formation is that vertical buckling and ridge location is biased to occur in region of high cell-death. Here we present a spatially extended model to investigate the role of the bacterial secreted ECM during the biofilm formation and the self-organization of cell-death. Using this reaction-diffusion model we show that the interaction between the cell's motion and the ECM concentration gives rise to a self-trapping instability, leading to variety of cell-death patterns. The resultant spot patterns generated by our model are shown to be in semi-quantitative agreement with recent experimental observation.

  8. Glycobiology of cell death: when glycans and lectins govern cell fate

    PubMed Central

    Lichtenstein, R G; Rabinovich, G A

    2013-01-01

    Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings. PMID:23703323

  9. Oxidative Stress and Programmed Cell Death in Yeast

    PubMed Central

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed. PMID:22737670

  10. Accelerated Tumor Cell Death by Angiogenic Modifiers

    DTIC Science & Technology

    2004-08-01

    neuroendocrine factors. They can guide cancer cell perineural invasion and dissemination through the release of soluble and solid matrix factors (see review (32...Ooshima, A. Targeted disruption of TGF-betal/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral

  11. Programmed Cell Death During Female Gametophyte Development

    SciTech Connect

    Drews, Gary, N.

    2004-09-15

    Endosperm is a storage tissue in the angiosperm seed that is important both biologically and agriculturally. Endosperm is biologically important because it provides nutrients to the embryo during seed development and agriculturally important because it is a significant source of food, feed, and industrial raw materials. Approximately two-thirds of human calories are derived from endosperm, either directly or indirectly through animal feed. Furthermore, endosperm is used as a raw material for numerous industrial products including ethanol. A major event in endosperm development is the transition between the syncytial phase, during which the endosperm nuclei undergo many rounds of mitosis without cytokinesis, and the cellularized phase, during which cell walls form around the endosperm nuclei. Understanding how the syncytial-cellular transition is regulated is agriculturally important because it influences seed size, seed sink strength, and grain weight. However, the molecular processes controlling this transition are not understood. This project led to the identification of the AGL62 gene that regulates the syncytial-cellular transition during endosperm development. AGL62 is expressed during the syncytial phase and suppresses endosperm cellularization during this period. AGL62 most likely does so by suppressing the expression of genes required for cellularization. At the end of the syncytial phase, the FIS PcG complex suppresses AGL62 expression, which allows expression of the cellularization genes and triggers the initiation of the cellularized phase. Endosperm arises following fertilization of the central cell within the female gametophyte. This project also led to the identification of the AGL80 gene that is required for development of the central cell into the endosperm. Within the ovule and seed, AGL80 is expressed exclusively in the central cell and uncellularized endosperm. AGL80 is required for expression of several central cell-expressed genes, including

  12. Role and regulation of autophagy in the development of acinar structures formed by bovine BME-UV1 mammary epithelial cells.

    PubMed

    Sobolewska, Agnieszka; Motyl, Tomasz; Gajewska, Malgorzata

    2011-10-01

    Autophagy is a catabolic process providing an alternative energy source for cells under stressful conditions such as starvation, growth factor deprivation or hypoxia. During involution of the bovine mammary gland autophagy is induced in mammary epithelial cells (MECs) as a survival mechanism, and is tightly regulated by hormones and growth factors necessary for gland development. In the present study we adapted the three-dimensional culture model to investigate the role of autophagy during formation of alveoli-like structures by bovine BME-UV1 MECs grown on extracellular matrix (ECM) components. Using confocal microscopy and Western-blot analyses of autophagic and apoptotic markers: LC3, and cleaved caspase-3, we showed that autophagy was induced in centrally localized cells within the developing acini. These cells lacked a direct contact with ECM, and formed a distinct population from the outer layer of cells. Induction of autophagy preceded apoptosis, but did not inhibit the formation of a hollow lumen. In the presence of steroid hormones: 17β-estradiol and progesterone, although autophagy was augmented, acini formation proceeded normally. In contrast, the major lactogenic hormone: prolactin, which supports functional differentiation of alveoli, did not alter induction of autophagy within the spheroids. BME-UV1 cells cultured on Matrigel in the presence of growth factors IGF-I and EGF formed larger, underdeveloped acini without lumens due to caspase-3 inhibition, and sustained autophagy in the centre of the spheroids, while TGF-β1 accelerated apoptosis, and increased autophagy significantly. Our observations suggest that sex steroids 17β-estradiol and progesterone, as well as growth factor TGF-β1 may regulate the development of the bovine mammary gland by inducing autophagy in addition to regulating proliferation and apoptosis of MECs. These data indicate that autophagy may play an important role during alveolargenesis.

  13. Danger signalling during cancer cell death: origins, plasticity and regulation.

    PubMed

    Garg, A D; Martin, S; Golab, J; Agostinis, P

    2014-01-01

    Accumulating data indicates that following anti-cancer treatments, cancer cell death can be perceived as immunogenic or tolerogenic by the immune system. The former is made possible due to the ability of certain anti-cancer modalities to induce immunogenic cell death (ICD) that is associated with the emission of damage-associated molecular patterns (DAMPs), which assist in unlocking a sequence of events leading to the development of anti-tumour immunity. In response to ICD inducers, activation of endoplasmic reticulum (ER) stress has been identified to be indispensable to confer the immunogenic character of cancer cell death, due to its ability to coordinate the danger signalling pathways responsible for the trafficking of vital DAMPs and subsequent anti-cancer immune responses. However, in recent times, certain processes apart from ER stress have emerged (e.g., autophagy and possibly viral response-like signature), which have the ability to influence danger signalling. In this review, we discuss the molecular nature, emerging plasticity in the danger signalling mechanisms and immunological impact of known DAMPs in the context of immunogenic cancer cell death. We also discuss key effector mechanisms modulating the interface between dying cancer cells and the immune cells, which we believe are crucial for the therapeutic relevance of ICD in the context of human cancers, and also discuss the influence of experimental conditions and animal models on these.

  14. High mobility group box 1 induces the activation of the Janus kinase 2 and signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway in pancreatic acinar cells in rats, while AG490 and rapamycin inhibit their activation

    PubMed Central

    Wang, Guoliang; Zhang, Jingchao; Dui, Danhua; Ren, Haoyuan; Liu, Jin

    2016-01-01

    The pathogenesis of severe acute pancreatitis (SAP) remains unclear. The Janus kinase and signal transducer and activator of transcription (JAK/STAT) pathway is important for various cytokines and growth factors. This study investigated the effect of the late inflammatory factor high mobility group box 1 (HMGB1) on the activation of JAK2/STAT3 in pancreatic acinar cells and the inhibitory effects of AG490 (a JAK2 inhibitor) and rapamycin (a STAT3 inhibitor) on this pathway. Rat pancreatic acinar cells were randomly divided into the control, HMGB1, AG490, and rapamycin groups. The mRNA levels of JAK2 and STAT3 at 10, 30, 60, and 120 minutes were detected using reverse transcription polymerase chain reaction (RT-PCR). The protein levels of JAK2 and STAT3 at 60 and 120 minutes were observed using Western blotting. Compared with the control group, the HMGB1 group exhibited significantly increased levels of JAK2 mRNA at each time point; STAT3 mRNA at 30, 60, and 120 minutes; and JAK2 and STAT3 proteins at 60 and 120 minutes (p < 0.01). Compared with the HMGB1 group, the AG490 and rapamycin groups both exhibited significantly decreased levels of JAK2 mRNA at each time point (p < 0.05); STAT3 mRNA at 30, 60, and 120 minutes (p < 0.01); and JAK2 and STAT3 proteins at 60 and 120 minutes (p < 0.01). HMGB1 induces the activation of the JAK2/STAT3 signaling pathway in rat pancreatic acinar cells, and this activation can be inhibited by AG490 and rapamycin. The results of this study may provide new insights for the treatment of SAP. PMID:27754827

  15. The role of mitochondria in metabolism and cell death.

    PubMed

    Vakifahmetoglu-Norberg, Helin; Ouchida, Amanda Tomie; Norberg, Erik

    2017-01-15

    Mitochondria are complex organelles that play a central role in energy metabolism, control of stress responses and are a hub for biosynthetic processes. Beyond its well-established role in cellular energetics, mitochondria are critical mediators of signals to propagate various cellular outcomes. In addition mitochondria are the primary source of intracellular reactive oxygen species (ROS) generation and are involved in cellular Ca(2+) homeostasis, they contain a self-destructive arsenal of apoptogenic factors that can be unleashed to promote cell death, thus displaying a shared platform for metabolism and apoptosis. In the present review, we will give a brief account on the integration of mitochondrial metabolism and apoptotic cell death.

  16. Accelerated Tumor Cell Death by Angiogenic Modifiers

    DTIC Science & Technology

    2003-08-01

    form an active autocrine loop. fibrosis . Luminal epithelial cells of PIA lesions have elev- A recent study indicated the increase of both IL-6 and...its receptor dothelin-3 (ET-3), and endothelin-4 (ET-4) (Cun- ( CXCR4 ), may play a role as prostate cancer bone meta- ningham et al., 1997). All...members of the endothelin stasis homing signals. The level of CXCR4 increased family contain two essential disulfide bridges and six with the malignancy of

  17. DAMPs from Cell Death to New Life

    PubMed Central

    Vénéreau, Emilie; Ceriotti, Chiara; Bianchi, Marco Emilio

    2015-01-01

    Our body handles tissue damage by activating the immune system in response to intracellular molecules released by injured tissues [damage-associated molecular patterns (DAMPs)], in a similar way as it detects molecular motifs conserved in pathogens (pathogen-associated molecular patterns). DAMPs are molecules that have a physiological role inside the cell, but acquire additional functions when they are exposed to the extracellular environment: they alert the body about danger, stimulate an inflammatory response, and finally promote the regeneration process. Beside their passive release by dead cells, some DAMPs can be secreted or exposed by living cells undergoing a life-threatening stress. DAMPs have been linked to inflammation and related disorders: hence, inhibition of DAMP-mediated inflammatory responses is a promising strategy to improve the clinical management of infection- and injury-elicited inflammatory diseases. However, it is important to consider that DAMPs are not only danger signals but also central players in tissue repair. Indeed, some DAMPs have been studied for their role in tissue healing after sterile or infection-associated inflammation. This review is focused on two exemplary DAMPs, HMGB1 and adenosine triphosphate, and their contribution to both inflammation and tissue repair. PMID:26347745

  18. Sensory hair cell death and regeneration in fishes

    PubMed Central

    Monroe, Jerry D.; Rajadinakaran, Gopinath; Smith, Michael E.

    2015-01-01

    Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation vs. direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies. PMID:25954154

  19. Regulation of ferroptotic cancer cell death by GPX4.

    PubMed

    Yang, Wan Seok; SriRamaratnam, Rohitha; Welsch, Matthew E; Shimada, Kenichi; Skouta, Rachid; Viswanathan, Vasanthi S; Cheah, Jaime H; Clemons, Paul A; Shamji, Alykhan F; Clish, Clary B; Brown, Lewis M; Girotti, Albert W; Cornish, Virginia W; Schreiber, Stuart L; Stockwell, Brent R

    2014-01-16

    Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death.

  20. The role of vacuole in plant cell death.

    PubMed

    Hara-Nishimura, I; Hatsugai, N

    2011-08-01

    Almost all plant cells have large vacuoles that contain both hydrolytic enzymes and a variety of defense proteins. Plants use vacuoles and vacuolar contents for programmed cell death (PCD) in two different ways: for a destructive way and for a non-destructive way. Destruction is caused by vacuolar membrane collapse, followed by the release of vacuolar hydrolytic enzymes into the cytosol, resulting in rapid and direct cell death. The destructive way is effective in the digestion of viruses proliferating in the cytosol, in susceptible cell death induced by fungal toxins, and in developmental cell death to generate integuments (seed coats) and tracheary elements. On the other hand, the non-destructive way involves fusion of the vacuolar and the plasma membrane, which allows vacuolar defense proteins to be discharged into the extracellular space where the bacteria proliferate. Membrane fusion, which is normally suppressed, was triggered in a proteasome-dependent manner. Intriguingly, both ways use enzymes with caspase-like activity; the membrane-fusion system uses proteasome subunit PBA1 with caspase-3-like activity, and the vacuolar-collapse system uses vacuolar processing enzyme (VPE) with caspase-1-like activity. This review summarizes two different ways of vacuole-mediated PCD and discusses how plants use them to attack pathogens that invade unexpectedly.

  1. Lipid raft involvement in yeast cell growth and death

    PubMed Central

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases. PMID:23087902

  2. Real-time monitoring of cisplatin-induced cell death.

    PubMed

    Alborzinia, Hamed; Can, Suzan; Holenya, Pavlo; Scholl, Catharina; Lederer, Elke; Kitanovic, Igor; Wölfl, Stefan

    2011-01-01

    Since the discovery of cisplatin more than 40 years ago and its clinical introduction in the 1970s an enormous amount of research has gone into elucidating the mechanism of action of cisplatin on tumor cells. With a novel cell biosensor chip system allowing continuous monitoring of respiration, glycolysis, and impedance we followed cisplatin treatment of different cancer cell lines in real-time. Our measurements reveal a first effect on respiration, in all cisplatin treated cell lines, followed with a significant delay by interference with glycolysis in HT-29, HCT-116, HepG2, and MCF-7 cells but not in the cisplatin-resistant cell line MDA-MB-231. Most strikingly, cell death started in all cisplatin-sensitive cell lines within 8 to 11 h of treatment, indicating a clear time frame from exposure, first response to cisplatin lesions, to cell fate decision. The time points of most significant changes were selected for more detailed analysis of cisplatin response in the breast cancer cell line MCF-7. Phosphorylation of selected signal transduction mediators connected with cellular proliferation, as well as changes in gene expression, were analyzed in samples obtained directly from sensor chips at the time points when changes in glycolysis and impedance occurred. Our online cell biosensor measurements reveal for the first time the time scale of metabolic response until onset of cell death under cisplatin treatment, which is in good agreement with models of p53-mediated cell fate decision.

  3. Ceramide triggers metacaspase-independent mitochondrial cell death in yeast.

    PubMed

    Carmona-Gutierrez, Didac; Reisenbichler, Angela; Heimbucher, Petra; Bauer, Maria A; Braun, Ralf J; Ruckenstuhl, Christoph; Büttner, Sabrina; Eisenberg, Tobias; Rockenfeller, Patrick; Fröhlich, Kai-Uwe; Kroemer, Guido; Madeo, Frank

    2011-11-15

    The activation of ceramide-generating enzymes, the blockade of ceramide degradation, or the addition of ceramide analogues can trigger apoptosis or necrosis in human cancer cells. Moreover, endogenous ceramide plays a decisive role in the killing of neoplastic cells by conventional anticancer chemotherapeutics. Here, we explored the possibility that membrane-permeable C2-ceramide might kill budding yeast (Saccharomyces cerevisiae) cells under fermentative conditions, where they exhibit rapid proliferation and a Warburg-like metabolism that is reminiscent of cancer cells. C2-ceramide efficiently induced the generation of reactive oxygen species (ROS), as well as apoptotic and necrotic cell death, and this effect was not influenced by deletion of the sole yeast metacaspase. However, C2-ceramide largely failed to cause ROS hypergeneration and cell death upon deletion of the mitochondrial genome. Thus, mitochondrial function is strictly required for C2-ceramide-induced yeast lethality. Accordingly, mitochondria from C2-ceramide-treated yeast cells exhibited major morphological alterations including organelle fragmentation and aggregation. Altogether, our results point to a pivotal role of mitochondria in ceramide-induced yeast cell death.

  4. Autophagonizer, a novel synthetic small molecule, induces autophagic cell death

    SciTech Connect

    Choi, In-Kwon; Cho, Yoon Sun; Jung, Hye Jin; Kwon, Ho Jeong

    2010-03-19

    Autophagy is an apoptosis-independent mechanism of cell death that protects the cell from environmental imbalances and infection by pathogens. We identified a novel small molecule, 2-(3-Benzyl-4-oxo-3,4,5,6,7,8-hexahydro-benzo[4,5]thieno[2,3-d] pyrimidin-2-ylsulfanylmethyl)-oxazole-4-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide (referred as autophagonizer), using high-content cell-based screening and the autophagosome marker EGFP-LC3. Autophagonizer inhibited growth and induced cell death in the human tumor cell lines MCF7, HeLa, HCT116, A549, AGS, and HT1080 via a caspase-independent pathway. Conversion of cytosolic LC3-I to autophagosome-associated LC3-II was greatly enhanced by autophagonizer treatment. Transmission electron microscopy and acridine orange staining revealed increased autophagy in the cytoplasm of autophagonizer-treated cells. In conclusion, autophagonizer is a novel autophagy inducer with unique structure, which induces autophagic cell death in the human tumor cell lines.

  5. Ferroptosis and cell death mechanisms in Parkinson's disease.

    PubMed

    Guiney, Stephanie J; Adlard, Paul A; Bush, Ashley I; Finkelstein, David I; Ayton, Scott

    2017-03-01

    Symptoms of Parkinson's disease arise due to neuronal loss in multiple brain regions, especially dopaminergic neurons in the substantia nigra pars compacta. Current therapies aim to restore dopamine levels in the brain, but while these provide symptomatic benefit, they do not prevent ongoing neurodegeneration. Preventing neuronal death is a major strategy for disease-modifying therapies; however, while many pathogenic factors have been identified, it is currently unknown how neurons die in the disease. Ferroptosis, a recently identified iron-dependent cell death pathway, involves several molecular events that have previously been implicated in PD. This review will discuss ferroptosis and other cell death pathways implicated in PD neurodegeneration, with a focus on the potential to therapeutically target these pathways to slow the progression of this disease.

  6. Death's toolbox: examining the molecular components of bacterial programmed cell death.

    PubMed

    Rice, Kelly C; Bayles, Kenneth W

    2003-11-01

    Programmed cell death (PCD) is a genetically determined process of cellular suicide that is activated in response to cellular stress or damage, as well as in response to the developmental signals in multicellular organisms. Although historically studied in eukaryotes, it has been proposed that PCD also functions in prokaryotes, either during the developmental life cycle of certain bacteria or to remove damaged cells from a population in response to a wide variety of stresses. This review will examine several putative examples of bacterial PCD and summarize what is known about the molecular components of these systems.

  7. Cell death monitoring using quantitative optical coherence tomography methods

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Kolios, Michael C.; Czarnota, Gregory J.

    2011-03-01

    Cell death is characterized by a series of predictable morphological changes, which modify the light scattering properties of cells. We present a multi-parametric approach to detecting changes in subcellular morphology related to cell death using optical coherence tomography (OCT). Optical coherence tomography data were acquired from acute myeloid leukemia (AML) cells undergoing apoptosis over a period of 48 hours. Integrated backscatter (IB) and spectral slope (SS) were computed from OCT backscatter spectra and statistical parameters were extracted from a generalized gamma (GG) distribution fit to OCT signal intensity histograms. The IB increased by 2-fold over 48 hours with significant increases observed as early as 4 hours. The SS increased in steepness by 2.5-fold with significant changes at 12 hours, while the GG parameters were sensitive to apoptotic changes at 24 to 48 hours. Histology slides indicated nuclear condensation and fragmentation at 24 hours, suggesting the late scattering changes could be related to nuclear structure. A second series of measurements from AML cells treated with cisplatin, colchicine or ionizing radiation suggested that the GG parameters could potentially differentiate between modes of cell death. Distinct cellular morphology was observed in histology slides obtained from cells treated under each condition.

  8. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    PubMed Central

    Martin, Lee J.

    2010-01-01

    Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy. PMID:21258649

  9. Bortezomib induces autophagic death in proliferating human endothelial cells

    SciTech Connect

    Belloni, Daniela; Veschini, Lorenzo; Foglieni, Chiara; Dell'Antonio, Giacomo; Caligaris-Cappio, Federico; Ferrarini, Marina; Ferrero, Elisabetta

    2010-04-01

    The proteasome inhibitor Bortezomib has been approved for the treatment of relapsed/refractory multiple myeloma (MM), thanks to its ability to induce MM cell apoptosis. Moreover, Bortezomib has antiangiogenic properties. We report that endothelial cells (EC) exposed to Bortezomib undergo death to an extent that depends strictly on their activation state. Indeed, while quiescent EC are resistant to Bortezomib, the drug results maximally toxic in EC switched toward angiogenesis with FGF, and exerts a moderate effect on subconfluent HUVEC. Moreover, EC activation state deeply influences the death pathway elicited by Bortezomib: after treatment, angiogenesis-triggered EC display typical features of apoptosis. Conversely, death of subconfluent EC is preceded by ROS generation and signs typical of autophagy, including intense cytoplasmic vacuolization with evidence of autophagosomes at electron microscopy, and conversion of the cytosolic MAP LC3 I form toward the autophagosome-associated LC3 II form. Treatment with the specific autophagy inhibitor 3-MA prevents both LC3 I/LC3 II conversion and HUVEC cell death. Finally, early removal of Bortezomib is accompanied by the recovery of cell shape and viability. These findings strongly suggest that Bortezomib induces either apoptosis or autophagy in EC; interfering with the autophagic response may potentiate the antiangiogenic effect of the drug.

  10. PROGRAMMED CELL DEATH IN EXTRAOCULAR MUSCLE TENDON/SCLERA PRECURSORS

    EPA Science Inventory

    Abstract

    Purpose: This study was designed to examine the occurrence of natural cell death in the periocular mesenchyme of mouse embryos.

    Methods: Vital staining with LysoTracker Red and Nile blue sulphate as well as terminal nick end labeling (TUNEL) were utiliz...

  11. Programmed Cell Death of Embryonic Motoneurons Triggered through the FAS Death Receptor

    PubMed Central

    Raoul, Cédric; Henderson, Christopher E.; Pettmann, Brigitte

    1999-01-01

    About 50% of spinal motoneurons undergo programmed cell death (PCD) after target contact, but little is known about how this process is initiated. Embryonic motoneurons coexpress the death receptor Fas and its ligand FasL at the stage at which PCD is about to begin. In the absence of trophic factors, many motoneurons die in culture within 2 d. Most (75%) of these were saved by Fas-Fc receptor body, which blocks interactions between Fas and FasL, or by the caspase-8 inhibitor tetrapeptide IETD. Therefore, activation of Fas by endogenous FasL underlies cell death induced by trophic deprivation. In the presence of neurotrophic factors, exogenous Fas activators such as soluble FasL or anti-Fas antibodies triggered PCD of 40–50% of purified motoneurons over the following 3–5 d; this treatment led to activation of caspase-3, and was blocked by IETD. Sensitivity to Fas activation is regulated: motoneurons cultured for 3 d with neurotrophic factors became completely resistant. Levels of Fas expressed by motoneurons varied little, but FasL was upregulated in the absence of neurotrophic factors. Motoneurons resistant to Fas activation expressed high levels of FLICE-inhibitory protein (FLIP), an endogenous inhibitor of caspase-8 activation. Our results suggest that Fas can act as a driving force for motoneuron PCD, and raise the possibility that active triggering of PCD may contribute to motoneuron loss during normal development and/or in pathological situations. PMID:10579724

  12. Mitochondria and cell death: outer membrane permeabilization and beyond.

    PubMed

    Tait, Stephen W G; Green, Douglas R

    2010-09-01

    Mitochondrial outer membrane permeabilization (MOMP) is often required for activation of the caspase proteases that cause apoptotic cell death. Various intermembrane space (IMS) proteins, such as cytochrome c, promote caspase activation following their mitochondrial release. As a consequence, mitochondrial outer membrane integrity is highly controlled, primarily through interactions between pro- and anti-apoptotic members of the B cell lymphoma 2 (BCL-2) protein family. Following MOMP by pro-apoptotic BCL-2-associated X protein (BAX) or BCL-2 antagonist or killer (BAK), additional regulatory mechanisms govern the mitochondrial release of IMS proteins and caspase activity. MOMP typically leads to cell death irrespective of caspase activity by causing a progressive decline in mitochondrial function, although cells can survive this under certain circumstances, which may have pathophysiological consequences.

  13. Metal-accelerated oxidation in plant cell death

    SciTech Connect

    Czuba, M. )

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death are Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.

  14. High-frequency ultrasound detection of cell death: Spectral differentiation of different forms of cell death in vitro

    PubMed Central

    Pasternak, Maurice M.; Sadeghi-Naini, Ali; Ranieri, Shawn M.; Giles, Anoja; Oelze, Michael L.; Kolios, Michael C.; Czarnota, Gregory J.

    2016-01-01

    High frequency quantitative ultrasound techniques were investigated to characterize different forms of cell death in vitro. Suspension-grown acute myeloid leukemia cells were treated to cause apoptosis, oncosis, mitotic arrest, and heat-induced death. Samples were scanned with 20 and 40 MHz ultrasound and assessed histologically in terms of cellular structure. Frequency-domain analysis of 20 MHz ultrasound data demonstrated midband fit changes of 6.0 ± 0.7 dBr, 6.2 ± 1.8 dBr, 4.0 ± 1.0 dBr and −4.6 ± 1.7 dBr after 48-hour cisplatinum-induced apoptosis, 48-hour oncotic decay, 36-hour colchicine-induced mitotic arrest, and heat treatment compared to control, respectively. Trends from 40 MHz ultrasound were similar. Spectral slope changes obtained from 40 MHz ultrasound data were reflective of alterations in cell and nucleus size. Chromatin pyknosis or lysis trends suggested that the density of nuclear material may be responsible for observed changes in ultrasound backscatter. Flow cytometry analysis confirmed the modes of cell death and supported midband fit trends in ultrasound data. Scatterer-size and concentration estimates obtained from a fluid-filled sphere form factor model further corresponded with spectral analysis and histology. Results indicate quantitative ultrasound spectral analysis may be used for probing anti-cancer response and distinguishing various modes of cell death in vitro. PMID:28050578

  15. Targeted Lymphoma Cell Death by Novel Signal Transduction Modifications

    DTIC Science & Technology

    2010-07-14

    AD_________________ Award Number: W81XWH-07-1-0471 TITLE: Targeted Lymphoma Cell Death by Novel...opinions and/or findings contained in this report are those of the author( s ) and should not be construed as an official Department of the Army position...ADDRESS. 1. REPORT DATE 14-07-2010 2. REPORT TYPE Annual 3. DATES COVERED 15 JUN 2009 - 14 JUN 2010 4. TITLE AND SUBTITLE Targeted Lymphoma Cell

  16. Ceramide Synthase-dependent Ceramide Generation and Programmed Cell Death

    PubMed Central

    Mullen, Thomas D.; Jenkins, Russell W.; Clarke, Christopher J.; Bielawski, Jacek; Hannun, Yusuf A.; Obeid, Lina M.

    2011-01-01

    The sphingolipid ceramide has been widely implicated in the regulation of programmed cell death or apoptosis. The accumulation of ceramide has been demonstrated in a wide variety of experimental models of apoptosis and in response to a myriad of stimuli and cellular stresses. However, the detailed mechanisms of its generation and regulatory role during apoptosis are poorly understood. We sought to determine the regulation and roles of ceramide production in a model of ultraviolet light-C (UV-C)-induced programmed cell death. We found that UV-C irradiation induces the accumulation of multiple sphingolipid species including ceramide, dihydroceramide, sphingomyelin, and hexosylceramide. Late ceramide generation was also found to be regulated by Bcl-xL, Bak, and caspases. Surprisingly, inhibition of de novo synthesis using myriocin or fumonisin B1 resulted in decreased overall cellular ceramide levels basally and in response to UV-C, but only fumonisin B1 inhibited cell death, suggesting the presence of a ceramide synthase (CerS)-dependent, sphingosine-derived pool of ceramide in regulating programmed cell death. We found that this pool did not regulate the mitochondrial pathway, but it did partially regulate activation of caspase-7 and, more importantly, was necessary for late plasma membrane permeabilization. Attempting to identify the CerS responsible for this effect, we found that combined knockdown of CerS5 and CerS6 was able to decrease long-chain ceramide accumulation and plasma membrane permeabilization. These data identify a novel role for CerS and the sphingosine salvage pathway in regulating membrane permeability in the execution phase of programmed cell death. PMID:21388949

  17. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

    PubMed Central

    Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.

    2016-01-01

    +‐dependent bile acid uptake mechanism in stellate cells. Bile acid treatment caused necrosis predominantly in stellate cells, which was abolished by removal of extracellular Ca2+ and significantly reduced in the absence of Na+, showing that bile‐dependent cell death was a downstream event of Ca2+ signals. Finally, combined application of TLC‐S and the inflammatory mediator bradykinin caused more extensive necrosis in both stellate and acinar cells than TLC‐S alone. Our findings shed new light on the mechanism by which bile acids promote pancreatic pathology. This involves not only signalling in acinar cells but also in stellate cells. PMID:27406326

  18. Imipramine protects mouse hippocampus against tunicamycin-induced cell death.

    PubMed

    Ono, Yoko; Shimazawa, Masamitsu; Ishisaka, Mitsue; Oyagi, Atsushi; Tsuruma, Kazuhiro; Hara, Hideaki

    2012-12-05

    Endoplasmic reticulum (ER) stress is implicated in various diseases. Recently, some reports have suggested that the sigma-1 receptor may play a role in ER stress, and many antidepressants have a high affinity for the sigma-1 receptor. In the present study, we focused on imipramine, a widely used antidepressant, and investigated whether it might protect against the neuronal cell death induced by tunicamycin, an ER stress inducer. In mouse cultured hippocampal HT22 cells, imipramine inhibited cell death and caspase-3 activation induced by tunicamycin, although it did not alter the elevated expressions of 78 kDa glucose-regulated protein (GRP78) and C/EBP-homologous protein (CHOP). Interestingly, in such cells application of imipramine normalized the expression of the sigma-1 receptor, which was decreased by treatment with tunicamycin alone. Additionally, NE-100, a selective sigma-1 receptor antagonist, abolished the protective effect of imipramine against such tunicamycin-induced cell death. Imipramine inhibited the reduction of mitochondrial membrane potential induced by tunicamycin, and NE-100 blocked this modulating effect of imipramine. Furthermore, in anesthetized mice intracerebroventricular administration of tunicamycin decreased the number of neuronal cells in the hippocampus, particularly in the CA1 and dentate gyrus (DG) areas, and 7 days' imipramine treatment (10mg/kg/day; i.p.) significantly suppressed these reductions in CA1 and DG. These findings suggest that imipramine protects against ER stress-induced hippocampal neuronal cell death both in vitro and in vivo. Such protection may be partly due to the sigma-1 receptor.

  19. Neural stem cell progeny regulate stem cell death in a Notch and Hox dependent manner

    PubMed Central

    Arya, R; Sarkissian, T; Tan, Y; White, K

    2015-01-01

    Cell death is a prevalent, well-controlled and fundamental aspect of development, particularly in the nervous system. In Drosophila, specific neural stem cells are eliminated by apoptosis during embryogenesis. In the absence of apoptosis, these stem cells continue to divide, resulting in a dramatically hyperplastic central nervous system and adult lethality. Although core cell death pathways have been well described, the spatial, temporal and cell identity cues that activate the cell death machinery in specific cells are largely unknown. We identified a cis-regulatory region that controls the transcription of the cell death activators reaper, grim and sickle exclusively in neural stem cells. Using a reporter generated from this regulatory region, we found that Notch activity is required for neural stem cell death. Notch regulates the expression of the abdominalA homeobox protein, which provides important spatial cues for death. Importantly, we show that pro-apoptotic Notch signaling is activated by the Delta ligand expressed on the neighboring progeny of the stem cell. Thus we identify a previously undescribed role for progeny in regulating the proper developmental death of their parental stem cells. PMID:25633198

  20. Focally regulated endothelial proliferation and cell death in human synovium.

    PubMed Central

    Walsh, D. A.; Wade, M.; Mapp, P. I.; Blake, D. R.

    1998-01-01

    Angiogenesis and vascular insufficiency each may support the chronic synovial inflammation of rheumatoid arthritis. We have shown by quantitative immunohistochemistry and terminal uridyl deoxynucleotide nick end labeling that endothelial proliferation and cell death indices were each increased in synovia from patients with rheumatoid arthritis compared with osteoarthritic and noninflamed controls, whereas endothelial fractional areas did not differ significantly among disease groups. Markers of proliferation were associated with foci immunoreactive for vascular endothelial growth factor and integrin alpha(v)beta3, whereas cell death was observed in foci in which immunoreactivities for these factors were weak or absent. No association was found with thrombospondin immunoreactivity. The balance between angiogenesis and vascular regression in rheumatoid synovitis may be determined by the focal expression of angiogenic and endothelial survival factors. Increased endothelial cell turnover may contribute to microvascular dysfunction and thereby facilitate persistent synovitis. Images Figure 1 Figure 3 Figure 4 PMID:9502411

  1. Glycosphingolipids and cell death: One aim, many ways

    PubMed Central

    Garcia-Ruiz, Carmen; Morales, Albert; Fernández-Checa, José C.

    2015-01-01

    Glycosphingolipids (GSLs) are a family of bioactive lipids that in addition to their role in the regulation of structural properties of membrane bilayers have emerged as crucial players in many biological processes and signal transduction pathways. Rather than being uniformly distributed within membrane bilayers, GSLs are localized in selective domains called lipid rafts where many signaling platforms operate. One of the most important functions of GSLs, particularly ceramide, is their ability to regulate cell death pathways and hence cell fate. This complex role is accomplished by the ability of GSLs to act in distinct subcellular strategic centers, such as mitochondria, endoplasmic reticulum (ER) or lysosomes to mediate apoptosis, ER stress, autophagy, lysosomal membrane permeabilization and necroptosis. Hence better understanding the role of GSLs in cell death may be of relevance for a number of pathological processes and diseases, including neurodegeneration, metabolic liver diseases and cancer. PMID:25637183

  2. Multiple cell death programs: Charon's lifts to Hades.

    PubMed

    Bursch, Wilfried

    2004-11-01

    Cells use different pathways for active self-destruction as reflected by different morphology: while in apoptosis (or "type I") nuclear fragmentation associated with cytoplasmic condensation but preservation of organelles is predominant, autophagic degradation of cytoplasmic structures preceding nuclear collapse is a characteristic of a second type of programmed cell death (PCD). The diverse morphologies can be attributed--at least to some extent--to distinct biochemical and molecular events (e.g. caspase-dependent and -independent death programs; DAP-kinase activity, Ras-expression). However, apoptosis and autophagic PCD are not mutually exclusive phenomena. Rather, diverse PCD programs emerged during evolution, the conservation of which apparently allows cells a flexible response to environmental changes, either physiological or pathological.

  3. Blockade of maitotoxin-induced oncotic cell death reveals zeiosis

    PubMed Central

    Estacion, Mark; Schilling, William P

    2002-01-01

    Background Maitotoxin (MTX) initiates cell death by sequentially activating 1) Ca2+ influx via non-selective cation channels, 2) uptake of vital dyes via formation of large pores, and 3) release of lactate dehydrogenase, an indication of cell lysis. MTX also causes formation of membrane blebs, which dramatically dilate during the cytolysis phase. To determine the role of phospholipase C (PLC) in the cell death cascade, U73122, a specific inhibitor of PLC, and U73343, an inactive analog, were examined on MTX-induced responses in bovine aortic endothelial cells. Results Addition of either U73122 or U73343, prior to MTX, produced a concentration-dependent inhibition of the cell death cascade (IC50 ≈ 1.9 and 0.66 μM, respectively) suggesting that the effect of these agents was independent of PLC. Addition of U73343 shortly after MTX, prevented or attenuated the effects of the toxin, but addition at later times had little or no effect. Time-lapse videomicroscopy showed that U73343 dramatically altered the blebbing profile of MTX-treated cells. Specifically, U73343 blocked bleb dilation and converted the initial blebbing event into "zeiosis", a type of membrane blebbing commonly associated with apoptosis. Cells challenged with MTX and rescued by subsequent addition of U73343, showed enhanced caspase-3 activity 48 hr after the initial insult, consistent with activation of the apoptotic program. Conclusions Within minutes of MTX addition, endothelial cells die by oncosis. Rescue by addition of U73343 shortly after MTX showed that a small percentage of cells are destined to die by oncosis, but that a larger percentage survive; cells that survive the initial insult exhibit zeiosis and may ultimately die by apoptotic mechanisms. PMID:11825342

  4. Cell death by mitotic catastrophe: a molecular definition.

    PubMed

    Castedo, Maria; Perfettini, Jean-Luc; Roumier, Thomas; Andreau, Karine; Medema, Rene; Kroemer, Guido

    2004-04-12

    The current literature is devoid of a clearcut definition of mitotic catastrophe, a type of cell death that occurs during mitosis. Here, we propose that mitotic catastrophe results from a combination of deficient cell-cycle checkpoints (in particular the DNA structure checkpoints and the spindle assembly checkpoint) and cellular damage. Failure to arrest the cell cycle before or at mitosis triggers an attempt of aberrant chromosome segregation, which culminates in the activation of the apoptotic default pathway and cellular demise. Cell death occurring during the metaphase/anaphase transition is characterized by the activation of caspase-2 (which can be activated in response to DNA damage) and/or mitochondrial membrane permeabilization with the release of cell death effectors such as apoptosis-inducing factor and the caspase-9 and-3 activator cytochrome c. Although the morphological aspect of apoptosis may be incomplete, these alterations constitute the biochemical hallmarks of apoptosis. Cells that fail to execute an apoptotic program in response to mitotic failure are likely to divide asymmetrically in the next round of cell division, with the consequent generation of aneuploid cells. This implies that disabling of the apoptotic program may actually favor chromosomal instability, through the suppression of mitotic catastrophe. Mitotic catastrophe thus may be conceived as a molecular device that prevents aneuploidization, which may participate in oncogenesis. Mitotic catastrophe is controlled by numerous molecular players, in particular, cell-cycle-specific kinases (such as the cyclin B1-dependent kinase Cdk1, polo-like kinases and Aurora kinases), cell-cycle checkpoint proteins, survivin, p53, caspases and members of the Bcl-2 family.

  5. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death

    PubMed Central

    Garg, Abhishek D.; Galluzzi, Lorenzo; Apetoh, Lionel; Baert, Thais; Birge, Raymond B.; Bravo-San Pedro, José Manuel; Breckpot, Karine; Brough, David; Chaurio, Ricardo; Cirone, Mara; Coosemans, An; Coulie, Pierre G.; De Ruysscher, Dirk; Dini, Luciana; de Witte, Peter; Dudek-Peric, Aleksandra M.; Faggioni, Alberto; Fucikova, Jitka; Gaipl, Udo S.; Golab, Jakub; Gougeon, Marie-Lise; Hamblin, Michael R.; Hemminki, Akseli; Herrmann, Martin; Hodge, James W.; Kepp, Oliver; Kroemer, Guido; Krysko, Dmitri V.; Land, Walter G.; Madeo, Frank; Manfredi, Angelo A.; Mattarollo, Stephen R.; Maueroder, Christian; Merendino, Nicolò; Multhoff, Gabriele; Pabst, Thomas; Ricci, Jean-Ehrland; Riganti, Chiara; Romano, Erminia; Rufo, Nicole; Smyth, Mark J.; Sonnemann, Jürgen; Spisek, Radek; Stagg, John; Vacchelli, Erika; Vandenabeele, Peter; Vandenberk, Lien; Van den Eynde, Benoit J.; Van Gool, Stefaan; Velotti, Francesca; Zitvogel, Laurence; Agostinis, Patrizia

    2015-01-01

    The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called “damage-associated molecular patterns” (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation. PMID:26635802

  6. Cell death and survival signalling in the cardiovascular system.

    PubMed

    Tucka, Joanna; Bennett, Martin; Littlewood, Trevor

    2012-01-01

    The loss of cells is an important factor in many diseases, including those of the cardiovascular system. Whereas apoptosis is an essential process in development and tissue homeostasis, its occurrence is often associated with various pathologies. Apoptosis of neurons that fail to make appropriate connections is essential for the selection of correct neural signalling in the developing embryo, but its appearance in adults is often associated with neurodegenerative disease. Similarly, in the cardiovascular system, remodeling of the mammalian outflow tract during the transition from a single to dual series circulation with four chambers is accompanied by a precise pattern of cell death, but apoptosis of cardiomyocytes contributes to ischemia-reperfusion injury in the heart. In many cases, it is unclear whether apoptosis represents a causative association or merely a consequence of the disease itself. There are many excellent reviews on cell death in the cardiovascular system (1-5); in this review we outline the critical signalling pathways that promote the survival of cardiovascular cells, and their relevance to both physiological cell death and disease.

  7. Methylglyoxal Induces Mitochondrial Dysfunction and Cell Death in Liver

    PubMed Central

    Seo, Kyuhwa; Ki, Sung Hwan

    2014-01-01

    Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the production of reactive oxygen species (ROS) and depleted glutathione (GSH) content. Pretreatment with antioxidants caused a marked decrease in methylglyoxal-induced apoptosis, indicating that oxidant species are involved in the apoptotic process. Methylglyoxal treatment induced mitochondrial permeability transition, which represents mitochondrial impairment. However, pretreatment with cyclosporin A, an inhibitor of the formation of the permeability transition pore, partially inhibited methylglyoxal-induced cell death. Furthermore, acute treatment of mice with methylglyoxal increased the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver toxicity. Collectively, our results showed that methylglyoxal increases cell death and induces liver toxicity, which results from ROS-mediated mitochondrial dysfunction and oxidative stress. PMID:25343013

  8. Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae).

    PubMed

    Papini, Alessio; Mosti, Stefano; Milocani, Eva; Tani, Gabriele; Di Falco, Pietro; Brighigna, Luigi

    2011-10-01

    The degeneration of three of four meiotic products is a very common process in the female gender of oogamous eukaryotes. In Tillandsia (and many other angiosperms), the surviving megaspore has a callose-free wall in chalazal position while the other three megaspores are completely embedded in callose. Therefore, nutrients and signals can reach more easily the functional megaspore from the nucellus through the chalazal pole with respect to the other megaspores. The abortion of three of four megaspores was already recognized as the result of a programmed cell death (PCD) process. We investigated the process to understand the modality of this specific type of PCD and its relationship to the asymmetric callose deposition around the tetrad. The decision on which of the four megaspores will be the supernumerary megaspores in angiosperms, and hence destined to undergo programmed cell death, appears to be linked to the callose layer deposition around the tetrad. During supernumerary megaspores degeneration, events leading to the deletion of the cells do not appear to belong to a single type of cell death. The first morphological signs are typical of autophagy, including the formation of autophagosomes. The TUNEL positivity and a change in morphology of mitochondria and chloroplasts indicate the passage to an apoptotic-like PCD phase, while the cellular remnants undergo a final process resembling at least partially (ER swelling) necrotic morphological syndromes, eventually leading to a mainly lipidic cell corpse still separated from the functional megaspore by a callose layer.

  9. The cellular energy crisis: mitochondria and cell death.

    PubMed

    Waterhouse, Nigel J

    2003-01-01

    Exploding nuclear reactors, environmental destruction, and global warming; the danger of energy production is clear. It is quite remarkable that in this modern age, where power usage is at a premium, we find that even on a cellular level, generation of large quantities of power comes at a cost. Mitochondria, which produce the majority of cellular energy in the form of ATP, have recently been shown to play an essential role in the death of a cell by a process known as apoptosis. During apoptosis, the integrity of mitochondria is compromised and various pro-apoptotic proteins are released into the cytoplasm. This results in activation of caspases, proteases that orchestrate the death of the cell. Cells in which apoptosis is inhibited upstream of mitochondria generally maintain the potential to proliferate, whereas inhibition of caspases downstream of mitochondria generally only delays cell death. Although breaches of the mitochondrial outer membrane result in the release of proteins that are important for respiration, mitochondria appear capable of maintaining at least some of their functions, including ATP production, even after this event. This has important implications both for the mechanism of outer-membrane permeabilization and the mechanism by which the cells eventually die in the absence of caspase activity. The events surrounding the breach of the mitochondrial outer membrane during apoptosis have therefore received much interest over the past few years.

  10. Unraveling the mechanism of cell death induced by chemical fibrils

    PubMed Central

    Julien, Olivier; Kampmann, Martin; Bassik, Michael C.; Zorn, Julie A.; Venditto, Vincent J.; Shimbo, Kazutaka; Agard, Nicholas J.; Shimada, Kenichi; Rheingold, Arnold L.; Stockwell, Brent R.; Weissman, Jonathan S.

    2014-01-01

    We previously discovered a small-molecule inducer of cell death, named 1541, that non-covalently self-assembles into chemical fibrils (“chemi-fibrils”) and activates procaspase-3 in vitro. We report here that 1541-induced cell death is caused by the fibrillar, rather than the soluble form of the drug. An shRNA screen reveals that knockdown of genes involved in endocytosis, vesicle trafficking, and lysosomal acidification causes partial 1541 resistance. We confirm the role of these pathways using pharmacological inhibitors. Microscopy shows that the fluorescent chemi-fibrils accumulate in punctae inside cells that partially co-localize with lysosomes. Notably, the chemi-fibrils bind and induce liposome leakage in vitro, suggesting they may do the same in cells. The chemi-fibrils induce extensive proteolysis including caspase substrates, yet modulatory profiling reveals that chemi-fibrils form a distinct class from existing inducers of cell death. The chemi-fibrils share similarities to proteinaceous fibrils and may provide insight into their mechanism of cellular toxicity. PMID:25262416

  11. Aquatic viruses induce host cell death pathways and its application.

    PubMed

    Reshi, Latif; Wu, Jen-Leih; Wang, Hao-Ven; Hong, Jiann-Ruey

    2016-01-04

    Virus infections of mammalian and animal cells consist of a series of events. As intracellular parasites, viruses rely on the use of host cellular machinery. Through the use of cell culture and molecular approaches over the past decade, our knowledge of the biology of aquatic viruses has grown exponentially. The increase in aquaculture operations worldwide has provided new approaches for the transmission of aquatic viruses that include RNA and DNA viruses. Therefore, the struggle between the virus and the host for control of the cell's death machinery is crucial for survival. Viruses are obligatory intracellular parasites and, as such, must modulate apoptotic pathways to control the lifespan of their host to complete their replication cycle. This paper updates the discussion on the detailed mechanisms of action that various aquatic viruses use to induce cell death pathways in the host, such as Bad-mediated, mitochondria-mediated, ROS-mediated and Fas-mediated cell death circuits. Understanding how viruses exploit the apoptotic pathways of their hosts may provide great opportunities for the development of future potential therapeutic strategies and pathogenic insights into different aquatic viral diseases.

  12. Insights into the apoptotic death of immune cells in sepsis.

    PubMed

    Luan, Ying-yi; Yao, Yong-ming; Xiao, Xian-zhong; Sheng, Zhi-yong

    2015-01-01

    Sepsis with subsequent multiple-organ dysfunction is a distinct systemic inflammatory response to concealed or obvious infection, and it is a leading cause of death in intensive care units. Thus, one of the key goals in critical care medicine is to develop novel therapeutic strategies that will affect favorably on outcome of septic patients. In addition to systemic response to infection, apoptosis is implicated to be an important mechanism of the death of immune cells, including neutrophils, macrophages, T lymphocytes, and dendritic cells, and it is usually followed by the development of multiple-organ failure in sepsis. The implication of apoptosis of immune cells is now highlighted by multiple studies that demonstrate that prevention of cell apoptosis can improve survival in relevant animal models of severe sepsis. In this review, we focus on major apoptotic death pathways and molecular mechanisms that regulate apoptosis of different immune cells, and advances in these areas that may be translated into more promising therapies for the prevention and treatment of severe sepsis.

  13. Induction of necrotic cell death by oxidative stress in retinal pigment epithelial cells.

    PubMed

    Hanus, J; Zhang, H; Wang, Z; Liu, Q; Zhou, Q; Wang, S

    2013-12-12

    Age-related macular degeneration (AMD) is a degenerative disease of the retina and the leading cause of blindness in the elderly. Retinal pigment epithelial (RPE) cell death and the resultant photoreceptor apoptosis are characteristic of late-stage dry AMD, especially geographic atrophy (GA). Although oxidative stress and inflammation have been associated with GA, the nature and underlying mechanism for RPE cell death remains controversial, which hinders the development of targeted therapy for dry AMD. The purpose of this study is to systematically dissect the mechanism of RPE cell death induced by oxidative stress. Our results show that characteristic features of apoptosis, including DNA fragmentation, caspase 3 activation, chromatin condensation and apoptotic body formation, were not observed during RPE cell death induced by either hydrogen peroxide or tert-Butyl hydroperoxide. Instead, this kind of cell death can be prevented by RIP kinase inhibitors necrostatins but not caspase inhibitor z-VAD, suggesting necrotic feature of RPE cell death. Moreover, ATP depletion, receptor interacting protein kinase 3 (RIPK3) aggregation, nuclear and plasma membrane leakage and breakdown, which are the cardinal features of necrosis, were observed in RPE cells upon oxidative stress. Silencing of RIPK3, a key protein in necrosis, largely prevented oxidative stress-induced RPE death. The necrotic nature of RPE death is consistent with the release of nuclear protein high mobility group protein B1 into the cytoplasm and cell medium, which induces the expression of inflammatory gene TNFα in healthy RPE and THP-1 cells. Interestingly, features of pyroptosis or autophagy were not observed in oxidative stress-treated RPE cells. Our results unequivocally show that necrosis, but not apoptosis, is a major type of cell death in RPE cells in response to oxidative stress. This suggests that preventing oxidative stress-induced necrotic RPE death may be a viable approach for late-stage dry

  14. Sensitization of acute lymphoblastic leukemia cells for LCL161-induced cell death by targeting redox homeostasis.

    PubMed

    Haß, Christina; Belz, Katharina; Schoeneberger, Hannah; Fulda, Simone

    2016-04-01

    Disturbed redox homeostasis with both elevated reactive oxygen species (ROS) levels and antioxidant defense mechanisms has been reported in acute lymphoblastic leukemia (ALL). We therefore hypothesized that inhibition of pathways responsible for ROS detoxification renders ALL cells more susceptible for cell death. Here, we report that pharmacological inhibitors of key pathways for the elimination of ROS, i.e. Erastin, buthionine sulfoximine (BSO) and Auranofin, sensitize ALL cells for cell death upon treatment with the Smac mimetic LCL161 that antagonizes Inhibitor of Apoptosis (IAP) proteins. Erastin, BSO or Auranofin significantly increase LCL161-induced cell death and also act in concert with LCL161 to profoundly suppress long-term clonogenic survival in several ALL cell lines. Erastin or BSO cooperates with LCL161 to stimulate ROS production and lipid peroxidation prior to cell death. ROS production and lipid peroxidation are required for this cotreatment-induced cell death, since ROS scavengers or pharmacological inhibition of lipid peroxidation provides significant protection against cell death. These results emphasize that inhibition of antioxidant defense mechanisms can serve as a potent approach to prime ALL cells for LCL161-induced cell death.

  15. A simian virus 40 large T-antigen segment containing amino acids 1 to 127 and expressed under the control of the rat elastase-1 promoter produces pancreatic acinar carcinomas in transgenic mice.

    PubMed Central

    Tevethia, M J; Bonneau, R H; Griffith, J W; Mylin, L

    1997-01-01

    The simian virus 40 large T antigen induces tumors in a wide variety of tissues in transgenic mice, the precise tissues depending on the tissue specificity of the upstream region controlling T-antigen expression. Expression of mutant T antigens that contain a subset of the protein's activities restricts the spectrum of tumors induced. Others showed previously that expression of a mutant large T antigen containing the N-terminal 121 amino acids (T1-121) under control of the lymphotropic papovavirus promoter resulted in slow-growing choroid plexus tumors, whereas full-length T antigen under the same promoter induced rapidly growing CPR tumors, T-cell lymphomas, and B-cell lymphomas. In those instances, the alteration in tumor induction or progression correlated with inability of the mutant large T antigen to bind the tumor suppressor p53. In the study reported here, we investigated the capacity of an N-terminal T antigen segment (T1-127) expressed in conjunction with small t antigen under control of the rat elastase-1 (E1) promoter to induce pancreatic tumors. The results show that pancreases of transgenic mice expressing T1-127 and small t antigen display acinar cell dysplasia at birth that progresses to neoplasia. The average age to death in these mice is within the range reported for transgenic mice expressing full-length T antigen under control of the E1 promoter. These results indicate that sequestering p53 by binding is not required for the development of rapidly growing acinar cell carcinomas. In addition, we provide evidence that small t antigen is unlikely to be required. Finally, we show that the p53 protein in acinar cell carcinomas is wild type in conformation. PMID:9343166

  16. Fas Protects Breast Cancer Stem Cells from Death

    DTIC Science & Technology

    2014-10-01

    apoptosis and DICE in breast cancer cells, with many potential therapeutical applications. I could also demonstrate the involvement of miRNA in the...process. Moreover, I have developed a novel plasmid-based tool to isolate BCSCS by the activity of miRNAs , and I am going to optimize and test the...relevance of its use in the next reporting period. 15. SUBJECT TERMS Fas, FasL, Cancer, Cancer Stem cells, Apoptosis, miRNA , EMT, cell death. 16

  17. Contribution of apoptotic cell death to renal injury.

    PubMed

    Ortiz, A; Lorz, C; Justo, P; Catalán, M P; Egido, J

    2001-01-01

    Cell number abnormalities are frequent in renal diseases, and range from the hypercellularity of postinfectious glomerulonephritis to the cell depletion of chronic renal atrophy. Recent research has shown that apoptosis and its regulatory mechanisms contribute to cell number regulation in the kidney. The role of apoptosis ranges from induction to repair and progression of renal injury. Death ligands and receptors, such as TNF and FasL, proapoptotic and antiapoptotic Bcl-2 family members and caspases have all been shown to participate in apoptosis regulation in the course of renal injury. These proteins represent potential therapeutic targets, which should be further explored.

  18. UTX coordinates steroid hormone-mediated autophagy and cell death

    PubMed Central

    Denton, Donna; Aung-Htut, May T.; Lorensuhewa, Nirmal; Nicolson, Shannon; Zhu, Wenying; Mills, Kathryn; Cakouros, Dimitrios; Bergmann, Andreas; Kumar, Sharad

    2014-01-01

    Correct spatial and temporal induction of numerous cell type-specific genes during development requires regulated removal of the repressive histone H3 lysine 27 trimethylation (H3K27me3) modification. Here we show that the H3K27me3 demethylase dUTX is required for hormone-mediated transcriptional regulation of apoptosis and autophagy genes during ecdysone-regulated programmed cell death of Drosophila salivary glands. We demonstrate that dUTX binds to the nuclear hormone receptor complex Ecdysone Receptor/Ultraspiracle, and is recruited to the promoters of key apoptosis and autophagy genes. Salivary gland cell death is delayed in dUTX mutants, with reduced caspase activity and autophagy that coincides with decreased apoptosis and autophagy gene transcripts. We further show that salivary gland degradation requires dUTX catalytic activity. Our findings provide evidence for an unanticipated role for UTX demethylase activity in regulating hormone-dependent cell death and demonstrate how a single transcriptional regulator can modulate a specific complex functional outcome during animal development. PMID:24336022

  19. Different types of cell death induced by enterotoxins.

    PubMed

    Lin, Chiou-Feng; Chen, Chia-Ling; Huang, Wei-Ching; Cheng, Yi-Lin; Hsieh, Chia-Yuan; Wang, Chi-Yun; Hong, Ming-Yuan

    2010-08-01

    The infection of bacterial organisms generally causes cell death to facilitate microbial invasion and immune escape, both of which are involved in the pathogenesis of infectious diseases. In addition to the intercellular infectious processes, pathogen-produced/secreted enterotoxins (mostly exotoxins) are the major weapons that kill host cells and cause diseases by inducing different types of cell death, particularly apoptosis and necrosis. Blocking these enterotoxins with synthetic drugs and vaccines is important for treating patients with infectious diseases. Studies of enterotoxin-induced apoptotic and necrotic mechanisms have helped us to create efficient strategies to use against these well-characterized cytopathic toxins. In this article, we review the induction of the different types of cell death from various bacterial enterotoxins, such as staphylococcal enterotoxin B, staphylococcal alpha-toxin, Panton-Valentine leukocidin, alpha-hemolysin of Escherichia coli, Shiga toxins, cytotoxic necrotizing factor 1, heat-labile enterotoxins, and the cholera toxin, Vibrio cholerae. In addition, necrosis caused by pore-forming toxins, apoptotic signaling through cross-talk pathways involving mitochondrial damage, endoplasmic reticulum stress, and lysosomal injury is discussed.

  20. Sodium azide induces necrotic cell death in rat squamous cell carcinoma SCC131.

    PubMed

    Sato, Eiju; Suzuki, Toshimitsu; Hoshi, Nobuo; Sugino, Takashi; Hasegawa, Hiroshi

    2008-12-01

    Sodium azide (NaN(3)) is widely used in industry and agriculture, and also in laboratories as a potent preservative. NaN(3) induces cell death when applied to cultured cells. However, whether the mode of cell death is apoptosis or necrosis remains a subject of debate. There have been no previous reports on NaN(3)-induced cell death in squamous cell carcinoma (SCC), and so we studied the mode of cell death induced by NaN(3) using the rat SCC cell line, SCC131. In this experiment, SCC131 cells died 48-72 h after NaN(3) treatment with concentrations greater than 5 mM. The NaN(3) treatment reduced the mitochondrial membrane potential and ATP content. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and DNA ladder detection assay indicated that no DNA fragmentation occurred. In addition, phosphatidyl serine did not appear on the cell surface, according to the findings of dye-uptake bioassay and flow cytometric analysis of Annexin V labeling. Electron microscopic analysis revealed that the NaN(3)-treated cells showed mitochondrial swelling and rupture of the cell membrane. In conclusion, NaN(3) induces necrotic cell death in SCC131. This experimental model may be used in the study of necrotic cell death.

  1. Coenzyme Q10 Ameliorates Ultraviolet B Irradiation Induced Cell Death Through Inhibition of Mitochondrial Intrinsic Cell Death Pathway

    PubMed Central

    Jing, Li; Kumari, Santosh; Mendelev, Natalia; Li, P. Andy

    2011-01-01

    Ultraviolet B (UVB) induces cell death by increasing free radical production, activating apoptotic cell death pathways and depolarizing mitochondrial membrane potential. Coenzyme Q10 (CoQ10), an essential cofactor in the mitochondrial electron transport chain, serves as a potent antioxidant in the mitochondria. The aim of the present study is to establish whether CoQ10 is capable of protecting neuronal cells against UVB-induced damage. Murine hippocampal HT22 cells were treated with 0.01, 0.1 or 1 μM of CoQ10 3 or 24 h prior to the cells being exposed to UVB irradiation. The CoQ10 concentrations were maintained during irradiation and 24 h post-UVB. Cell viability was assessed by counting viable cells and MTT conversion assay. Superoxide production and mitochondrial membrane potential were measured using fluorescent probes. Levels of cleaved caspase-9, caspase-3, and apoptosis-inducing factor (AIF) were detected using immunocytochemistry and Western blotting. The results showed that UVB irradiation decreased cell viability and such damaging effect was associated with increased superoxide production, mitochondrial depolarization, and activation of caspase-9 and caspase-3. Treatment with CoQ10 at three different concentrations started 24 h before UVB exposure significantly increased the cell viability. The protective effect of CoQ10 was associated with reduction in superoxide production, normalization of mitochondrial membrane potential and inhibition of caspase-9 and caspase-3 activation. It is concluded that the neuroprotective effect of CoQ10 results from inhibiting oxidative stress and blocking caspase-3 dependent cell death pathway. PMID:22174665

  2. Triggering cell death by nanographene oxide mediated hyperthermia

    NASA Astrophysics Data System (ADS)

    Vila, M.; Matesanz, M. C.; Gonçalves, G.; Feito, M. J.; Linares, J.; Marques, P. A. A. P.; Portolés, M. T.; Vallet-Regi, M.

    2014-01-01

    Graphene oxide (GO) has been proposed as an hyperthermia agent for anticancer therapies due to its near-infrared (NIR) optical absorption ability which, with its small two-dimensional size, could have a unique performance when compared to that of any other nanoparticle. Nevertheless, attention should be given to the hyperthermia route and the kind of GO-cell interactions induced in the process. The hyperthermia laser irradiation parameters, such as exposure time and laser power, were investigated to control the temperature rise and consequent damage in the GOs containing cell culture medium. The type of cell damage produced was evaluated as a function of these parameters. The results showed that cell culture temperature (after irradiating cells with internalized GO) increases preferentially with laser power rather than with exposure time. Moreover, when laser power is increased, necrosis is the preferential cell death leading to an increase of cytokine release to the medium.

  3. Mitochondrial DNA damage by bleomycin induces AML cell death.

    PubMed

    Yeung, ManTek; Hurren, Rose; Nemr, Carine; Wang, Xiaoming; Hershenfeld, Samantha; Gronda, Marcela; Liyanage, Sanduni; Wu, Yan; Augustine, Jeevan; Lee, Eric A; Spagnuolo, Paul A; Southall, Noel; Chen, Catherine; Zheng, Wei; Jeyaraju, Danny V; Minden, Mark D; Laposa, Rebecca; Schimmer, Aaron D

    2015-06-01

    Mitochondria contain multiple copies of their own 16.6 kb circular genome. To explore the impact of mitochondrial DNA (mtDNA) damage on mitochondrial (mt) function and viability of AML cells, we screened a panel of DNA damaging chemotherapeutic agents to identify drugs that could damage mtDNA. We identified bleomycin as an agent that damaged mtDNA in AML cells at concentrations that induced cell death. Bleomycin also induced mtDNA damage in primary AML samples. Consistent with the observed mtDNA damage, bleomycin reduced mt mass and basal oxygen consumption in AML cells. We also demonstrated that the observed mtDNA damage was functionally important for bleomycin-induced cell death. Finally, bleomycin delayed tumor growth in xenograft mouse models of AML and anti-leukemic concentrations of the drug induced mtDNA damage in AML cells preferentially over normal lung tissue. Taken together, mtDNA-targeted therapy may be an effective strategy to target AML cells and bleomycin could be useful in the treatment of this disease.

  4. Chromatin Remodeling, Cell Proliferation and Cell Death in Valproic Acid-Treated HeLa Cells

    PubMed Central

    Felisbino, Marina Barreto; Tamashiro, Wirla M. S. C.; Mello, Maria Luiza S.

    2011-01-01

    Background Valproic acid (VPA) is a potent anticonvulsant that inhibits histone deacetylases. Because of this inhibitory action, we investigated whether VPA would affect chromatin supraorganization, mitotic indices and the frequency of chromosome abnormalities and cell death in HeLa cells. Methodology/Principal Findings Image analysis was performed by scanning microspectrophotometry for cells cultivated for 24 h, treated with 0.05, 0.5 or 1.0 mM VPA for 1–24 h, and subjected to the Feulgen reaction. TSA-treated cells were used as a predictable positive control. DNA fragmentation was investigated with the TUNEL assay. Chromatin decondensation was demonstrated under TSA and all VPA treatments, but no changes in chromosome abnormalities, mitotic indices or morphologically identified cell death were found with the VPA treatment conditions mentioned above, although decreased mitotic indices were detected under higher VPA concentration and longer exposure time. The frequency of DNA fragmentation identified with the TUNEL assay in HeLa cells increased after a 24-h VPA treatment, although this fragmentation occurred much earlier after treatment with TSA. Conclusions/Significance The inhibition of histone deacetylases by VPA induces chromatin remodeling in HeLa cells, which suggests an association to altered gene expression. Under VPA doses close to the therapeutic antiepileptic plasma range no changes in cell proliferation or chromosome abnormalities are elicited. The DNA fragmentation results indicate that a longer exposure to VPA or a higher VPA concentration is required for the induction of cell death. PMID:22206001

  5. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy

    PubMed Central

    Adkins, Irena; Fucikova, Jitka; Garg, Abhishek D; Agostinis, Patrizia; Špíšek, Radek

    2015-01-01

    The concept of immunogenic cancer cell death (ICD), as originally observed during the treatment with several chemotherapeutics or ionizing irradiation, has revolutionized the view on the development of new anticancer therapies. ICD is defined by endoplasmic reticulum (ER) stress response, reactive oxygen species (ROS) generation, emission of danger-associated molecular patterns and induction of antitumor immunity. Here we describe known and emerging cancer cell death-inducing physical modalities, such as ionizing irradiation, ultraviolet C light, Photodynamic Therapy (PDT) with Hypericin, high hydrostatic pressure (HHP) and hyperthermia (HT), which have been shown to elicit effective antitumor immunity. We discuss the evidence of ICD induced by these modalities in cancer patients together with their applicability in immunotherapeutic protocols and anticancer vaccine development. PMID:25964865

  6. Cytofluorometric Quantification of Cell Death Elicited by NLR Proteins.

    PubMed

    Sica, Valentina; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2016-01-01

    Nucleotide-binding domain and leucine-rich repeat containing (NLR) proteins, also known as NOD-like receptors, are critical components of the molecular machinery that senses intracellular danger signals to initiate an innate immune response against invading pathogens or endogenous sources of hazard. The best characterized effect of NLR signaling is the secretion of various cytokines with immunostimulatory effects, including interleukin (IL)-1β and IL-18. Moreover, at least under specific circumstances, NLRs can promote regulated variants of cell death. Here, we detail two protocols for the cytofluorometric quantification of cell death-associated parameters that can be conveniently employed to assess the lethal activity of specific NLRs or their ligands.

  7. A novel cell death gene acts to repair patterning defects in Drosophila melanogaster.

    PubMed

    Tanaka, Kentaro M; Takahashi, Aya; Fuse, Naoyuki; Takano-Shimizu-Kouno, Toshiyuki

    2014-06-01

    Cell death is a mechanism utilized by organisms to eliminate excess cells during development. Here, we describe a novel regulator of caspase-independent cell death, Mabiki (Mabi), that is involved in the repair of the head patterning defects caused by extra copies of bicoid in Drosophila melanogaster. Mabiki functions together with caspase-dependent cell death mechanisms to provide robustness during development.

  8. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    SciTech Connect

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose; Leon, Francisco; Estevez, Francisco

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  9. Vacuolar processing enzyme in plant programmed cell death

    PubMed Central

    Hatsugai, Noriyuki; Yamada, Kenji; Goto-Yamada, Shino; Hara-Nishimura, Ikuko

    2015-01-01

    Vacuolar processing enzyme (VPE) is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an ortholog of animal asparaginyl endopeptidase (AEP/VPE/legumain). VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD) pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1. PMID:25914711

  10. Role of ion transport in control of apoptotic cell death.

    PubMed

    Lang, Florian; Hoffmann, Else K

    2012-07-01

    Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.

  11. Osteoblast cell death on methacrylate polymers involves apoptosis.

    PubMed

    Gough, J E; Downes, S

    2001-12-15

    The success of an implant depends on the implant-tissue interface. There are many causes of implant failure, one of which is tissue necrosis. The aim of this in vitro study was to determine whether cell death of primary human osteoblasts (implant site specific cells) occurred by apoptosis (a form of programmed cell death) on two methacrylate polymers. Cells were cultured on poly(ethyl methacrylate)/tetrahydrofurfuryl methacrylate and poly(methyl methacrylate in the form of 13-mm discs, in conditioned medium containing leachable monomer and in the presence of various concentrations of monomer itself in the culture medium. It was found that monomer and leached monomer caused apoptosis of human osteoblast cells in this system. Tetrahydrofurfuryl methacrylate monomer was found to be more toxic than currently used monomer methylmethacrylate. Preincubation of polymers in serum containing medium was found to increase the biocompatibility of the polymers. High levels of apoptosis occurred on polymer used directly after polymerization. Apoptosis levels were decreased after polymer was incubated at 60 degrees C overnight or for 3 days. Apoptosis therefore may occur in cells at the implant site in vivo.

  12. Cell birth, cell death, cell diversity and DNA breaks: how do they all fit together?

    NASA Technical Reports Server (NTRS)

    Gilmore, E. C.; Nowakowski, R. S.; Caviness, V. S. Jr; Herrup, K.

    2000-01-01

    Substantial death of migrating and differentiating neurons occurs within the developing CNS of mice that are deficient in genes required for repair of double-stranded DNA breaks. These findings suggest that large-scale, yet previously unrecognized, double-stranded DNA breaks occur normally in early postmitotic and differentiating neurons. Moreover, they imply that cell death occurs if the breaks are not repaired. The cause and natural function of such breaks remains a mystery; however, their occurrence has significant implications. They might be detected by histological methods that are sensitive to DNA fragmentation and mistakenly interpreted to indicate cell death when no relationship exists. In a broader context, there is now renewed speculation that DNA recombination might be occurring during neuronal development, similar to DNA recombination in developing lymphocytes. If this is true, the target gene(s) of recombination and their significance remain to be determined.

  13. Zanthoxylum fruit extract from Japanese pepper promotes autophagic cell death in cancer cells

    PubMed Central

    Nozaki, Reo; Kono, Toru; Bochimoto, Hiroki; Watanabe, Tsuyoshi; Oketani, Kaori; Sakamaki, Yuichi; Okubo, Naoto; Nakagawa, Koji; Takeda, Hiroshi

    2016-01-01

    Zanthoxylum fruit, obtained from the Japanese pepper plant (Zanthoxylum piperitum De Candolle), and its extract (Zanthoxylum fruit extract, ZFE) have multiple physiological activities (e.g., antiviral activity). However, the potential anticancer activity of ZFE has not been fully examined. In this study, we investigated the ability of ZFE to induce autophagic cell death (ACD). ZFE caused remarkable autophagy-like cytoplasmic vacuolization, inhibited cell proliferation, and ultimately induced cell death in the human cancer cell lines DLD-1, HepG2, and Caco-2, but not in A549, MCF-7, or WiDr cells. ZFE increased the level of LC3-II protein, a marker of autophagy. Knockdown of ATG5 using siRNA inhibited ZFE-induced cytoplasmic vacuolization and cell death. Moreover, in cancer cells that could be induced to undergo cell death by ZFE, the extract increased the phosphorylation of c-Jun N-terminal kinase (JNK), and the JNK inhibitor SP600125 attenuated both vacuolization and cell death. Based on morphology and expression of marker proteins, ZFE-induced cell death was neither apoptosis nor necrosis. Normal intestinal cells were not affected by ZFE. Taken together, our findings show that ZFE induces JNK-dependent ACD, which appears to be the main mechanism underlying its anticancer activity, suggesting a promising starting point for anticancer drug development. PMID:27626481

  14. Omi/HtrA2 protease mediates cisplatin-induced cell death in renal cells.

    PubMed

    Cilenti, Lucia; Kyriazis, George A; Soundarapandian, Mangala M; Stratico, Valerie; Yerkes, Adam; Park, Kwon Moo; Sheridan, Alice M; Alnemri, Emad S; Bonventre, Joseph V; Zervos, Antonis S

    2005-02-01

    Omi/HtrA2 is a mitochondrial proapoptotic serine protease that is able to induce both caspase-dependent and caspase-independent cell death. After apoptotic stimuli, Omi is released to the cytoplasm where it binds and cleaves inhibitor of apoptosis proteins. In this report, we investigated the role of Omi in renal cell death following cisplatin treatment. Using primary mouse proximal tubule cells, as well as established renal cell lines, we show that the level of Omi protein is upregulated after treatment with cisplatin. This upregulation is followed by the release of Omi from mitochondria to the cytoplasm and degradation of XIAP. Reducing the endogenous level of Omi protein using RNA interference renders renal cells resistant to cisplatin-induced cell death. Furthermore, we show that the proteolytic activity of Omi is necessary and essential for cisplatin-induced cell death in this system. When renal cells are treated with Omi's specific inhibitor, ucf-101, they become significantly resistant to cisplatin-induced cell death. Ucf-101 was also able to minimize cisplatin-induced nephrotoxic injury in animals. Our results demonstrate that Omi is a major mediator of cisplatin-induced cell death in renal cells and suggest a way to limit renal injury by specifically inhibiting its proteolytic activity.

  15. Programmed Cell Death in Animal Development and Disease

    PubMed Central

    Fuchs, Yaron; Steller, Hermann

    2015-01-01

    Programmed Cell Death (PCD) plays a fundamental role in animal development and tissue homeostasis. Abnormal regulation of this process is associated with a wide variety of human diseases, including immunological and developmental disorders, neuro-degeneration, and cancer. Here, we provide a brief historical overview of the field and reflect on myriad functions carried out by PCD during development and explore how PCD is regulated. We also focus on the function and regulation of apoptotic proteins, including caspases, the key executioners of apoptosis, highlighting the non-lethal functions of these proteins in diverse developmental processes including cell differentiation and tissue remodeling. Finally, we explore a growing body of work about the connections between apoptosis, stem cells and cancer, focusing on how apoptotic cells release a variety of signals to communicate with their cellular environment, including factors that promote cell division, tissue regeneration, and wound healing. PMID:22078876

  16. The variability of autophagy and cell death susceptibility

    PubMed Central

    Loos, Ben; Engelbrecht, Anna-Mart; Lockshin, Richard A.; Klionsky, Daniel J; Zakeri, Zahra

    2013-01-01

    Impaired autophagic machinery is implicated in a number of diseases such as heart disease, neurodegeneration and cancer. A common denominator in these pathologies is a dysregulation of autophagy that has been linked to a change in susceptibility to cell death. Although we have progressed in understanding the molecular machinery and regulation of the autophagic pathway, many unanswered questions remain. How does the metabolic contribution of autophagy connect with the cell’s history and how does its current autophagic flux affect metabolic status and susceptibility to undergo cell death? How does autophagic flux operate to switch metabolic direction and what are the underlying mechanisms in metabolite and energetic sensing, metabolite substrate provision and metabolic integration during the cellular stress response? In this article we focus on unresolved questions that address issues around the role of autophagy in sensing the energetic environment and its role in actively generating metabolite substrates. We attempt to provide answers by explaining how and when a change in autophagic pathway activity such as primary stress response is able to affect cell viability and when not. By addressing the dynamic metabolic relationship between autophagy, apoptosis and necrosis we provide a new perspective on the parameters that connect autophagic activity, severity of injury and cellular history in a logical manner. Last, by evaluating the cell’s condition and autophagic activity in a clear context of regulatory parameters in the intra- and extracellular environment, this review provides new concepts that set autophagy into an energetic feedback loop, that may assist in our understanding of autophagy in maintaining healthy cells or when it controls the threshold between cell death and cell survival. PMID:23846383

  17. Thymoquinone causes multiple effects, including cell death, on dividing plant cells.

    PubMed

    Hassanien, Sameh E; Ramadan, Ahmed M; Azeiz, Ahmed Z Abdel; Mohammed, Rasha A; Hassan, Sabah M; Shokry, Ahmed M; Atef, Ahmed; Kamal, Khalid B H; Rabah, Samar; Sabir, Jamal S M; Abuzinadah, Osama A; El-Domyati, Fotouh M; Martin, Gregory B; Bahieldin, Ahmed

    2013-01-01

    Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ.

  18. Embryonic death and the creation of human embryonic stem cells.

    PubMed

    Landry, Donald W; Zucker, Howard A

    2004-11-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ donation.

  19. The importance of being dead: cell death mechanisms assessment in anti-sarcoma therapy.

    PubMed

    Rello-Varona, Santiago; Herrero-Martín, David; Lagares-Tena, Laura; López-Alemany, Roser; Mulet-Margalef, Núria; Huertas-Martínez, Juan; Garcia-Monclús, Silvia; García Del Muro, Xavier; Muñoz-Pinedo, Cristina; Tirado, Oscar Martínez

    2015-01-01

    Cell death can occur through different mechanisms, defined by their nature and physiological implications. Correct assessment of cell death is crucial for cancer therapy success. Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promising in other fields, regulated necrosis and other cell death circumstances (as so-called "autophagic cell death" or "mitotic catastrophe") have not been yet properly addressed in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most cases the precise sequence of events remains poorly characterized. In this review, our main objective is to put into context the most recent sarcoma cell death findings in the more general landscape of different cell death modalities.

  20. EFFECTS OF ETHANOL AND HYDROGEN PEROXIDE ON MOUSE LIMB BUD MESENCHYME DIFFERENTIATION AND CELL DEATH

    EPA Science Inventory

    Many of the morphological defects associated with embryonic alcohol exposure are a result of cell death. During limb development, ethanol administration produces cell death in the limb and digital defects, including postaxial ectrodactyly. Because an accumulation of reactive oxyg...

  1. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Brauchle, Eva; Thude, Sibylle; Brucker, Sara Y.; Schenke-Layland, Katja

    2014-04-01

    Although apoptosis and necrosis have distinct features, the identification and discrimination of apoptotic and necrotic cell death in vitro is challenging. Immunocytological and biochemical assays represent the current gold standard for monitoring cell death pathways; however, these standard assays are invasive, render large numbers of cells and impede continuous monitoring experiments. In this study, both room temperature (RT)-induced apoptosis and heat-triggered necrosis were analyzed in individual Saos-2 and SW-1353 cells by utilizing Raman microspectroscopy. A targeted analysis of defined cell death modalities, including early and late apoptosis as well as necrosis, was facilitated based on the combination of Raman spectroscopy with fluorescence microscopy. Spectral shifts were identified in the two cell lines that reflect biochemical changes specific for either RT-induced apoptosis or heat-mediated necrosis. A supervised classification model specified apoptotic and necrotic cell death based on single cell Raman spectra. To conclude, Raman spectroscopy allows a non-invasive, continuous monitoring of cell death, which may help shedding new light on complex pathophysiological or drug-induced cell death processes.

  2. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death

    PubMed Central

    Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M

    2015-01-01

    Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30–50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases. PMID:26024394

  3. Programmed Cell Death Initiation and Execution in Budding Yeast

    PubMed Central

    Strich, Randy

    2015-01-01

    Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals. PMID:26272996

  4. The essential role of evasion from cell death in cancer

    PubMed Central

    Kelly, Gemma; Strasser, Andreas

    2011-01-01

    The link between evasion of apoptosis and the development of cellular hyperplasia and ultimately cancer is implicitly clear if one considers how many cells are produced each day and, hence, how many cells must die to make room for the new ones (reviewed in (Raff, 1996)). Furthermore, cells are frequently experiencing noxious stimuli that can cause lesions in their DNA and faults in DNA replication can occur during cellular proliferation. Such DNA damage needs to be repaired efficiently or cells with irreparable damage must be killed to prevent subsequent division of aberrant cells that may fuel tumorigenesis (reviewed in (Weinberg, 2007)). The detection of genetic lesions in human cancers that activate pro-survival genes or disable pro-apoptotic genes have provided the first evidence that defects in programmed cell death can cause cancer (Tagawa et al., 2005; Tsujimoto et al., 1984; Vaux et al., 1988) and this concept was proven by studies with genetically modified mice (Egle et al., 2004b; Strasser et al., 1990a). It is therefore now widely accepted that evasion of apoptosis is a requirement for both neoplastic transformation and sustained growth of cancer cells (reviewed in (Cory and Adams, 2002; Hanahan and Weinberg, 2000; Weinberg, 2007)). Importantly, apoptosis is also a major contributor to anti-cancer therapy induced killing of tumor cells (reviewed in (Cory and Adams, 2002; Cragg et al., 2009)). Consequently, a detailed understanding of apoptotic cell death will help to better comprehend the complexities of tumorigenesis and should assist with the development of improved targeted therapies for cancer based on the direct activation of the apoptotic machinery (reviewed in (Lessene et al., 2008)). PMID:21704830

  5. Cell Death Control by Matrix Metalloproteinases1[OPEN

    PubMed Central

    Zimmermann, Dirk; Sieferer, Elke; Pfannstiel, Jens

    2016-01-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. PMID:27208293

  6. Acute Hypoglycemia Induces Retinal Cell Death in Mouse

    PubMed Central

    Emery, Martine; Schorderet, Daniel F.; Roduit, Raphaël

    2011-01-01

    Background Glucose is the most important metabolic substrate of the retina and maintenance of normoglycemia is an essential challenge for diabetic patients. Glycemic excursions could lead to cardiovascular disease, nephropathy, neuropathy and retinopathy. A vast body of literature exists on hyperglycemia namely in the field of diabetic retinopathy, but very little is known about the deleterious effect of hypoglycemia. Therefore, we decided to study the role of acute hypoglycemia in mouse retina. Methodology/Principal Findings To test effects of hypoglycemia, we performed a 5-hour hyperinsulinemic/hypoglycemic clamp; to exclude an effect of insulin, we made a hyperinsulinemic/euglycemic clamp as control. We then isolated retinas from each group at different time-points after the clamp to analyze cells apoptosis and genes regulation. In parallel, we used 661W photoreceptor cells to confirm in vivo results. We showed herein that hypoglycemia induced retinal cell death in mouse via caspase 3 activation. We then tested the mRNA expression of glutathione transferase omega 1 (Gsto1) and glutathione peroxidase 3 (Gpx3), two genes involved in glutathione (GSH) homeostasis. The expression of both genes was up-regulated by low glucose, leading to a decrease of reduced glutathione (GSH). In vitro experiments confirmed the low-glucose induction of 661W cell death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. Moreover, decrease of GSH content by inhibition with buthionine sulphoximine (BSO) at high glucose induced apoptosis, while complementation with extracellular glutathione ethyl ester (GSHee) at low glucose restored GSH level and reduced apoptosis. Conclusions/Significance We showed, for the first time, that acute insulin-induced hypoglycemia leads to caspase 3-dependant retinal cell death with a predominant role of GSH content. PMID:21738719

  7. Epiplakin deficiency aggravates murine caerulein-induced acute pancreatitis and favors the formation of acinar keratin granules.

    PubMed

    Wögenstein, Karl L; Szabo, Sandra; Lunova, Mariia; Wiche, Gerhard; Haybaeck, Johannes; Strnad, Pavel; Boor, Peter; Wagner, Martin; Fuchs, Peter

    2014-01-01

    Epiplakin, a member of the plakin protein family, is exclusively expressed in epithelial tissues and was shown to bind to keratins. Epiplakin-deficient (EPPK-/-) mice showed no obvious spontaneous phenotype, however, EPPK-/- keratinocytes displayed faster keratin network breakdown in response to stress. The role of epiplakin in pancreas, a tissue with abundant keratin expression, was not yet known. We analyzed epiplakin's expression in healthy and inflamed pancreatic tissue and compared wild-type and EPPK-/- mice during caerulein-induced acute pancreatitis. We found that epiplakin was expressed primarily in ductal cells of the pancreas and colocalized with apicolateral keratin bundles in murine pancreatic acinar cells. Epiplakin's diffuse subcellular localization in keratin filament-free acini of K8-deficient mice indicated that its filament-associated localization in acinar cells completely depends on its binding partner keratin. During acute pancreatitis, epiplakin was upregulated in acinar cells and its redistribution closely paralleled keratin reorganization. EPPK-/- mice suffered from aggravated pancreatitis but showed no obvious regeneration phenotype. At the most severe stage of the disease, EPPK-/- acinar cells displayed more keratin aggregates than those of wild-type mice. Our data propose epiplakin to be a protective protein during acute pancreatitis, and that its loss causes impaired disease-associated keratin reorganization.

  8. Autophagy Protects Against Aminochrome-Induced Cell Death in Substantia Nigra-Derived Cell Line

    PubMed Central

    Paris, Irmgard; Muñoz, Patricia; Huenchuguala, Sandro; Couve, Eduardo; Sanders, Laurie H.; Greenamyre, John Timothy; Caviedes, Pablo; Segura-Aguilar, Juan

    2011-01-01

    Aminochrome, the precursor of neuromelanin, has been proposed to be involved in the neurodegeneration neuromelanin-containing dopaminergic neurons in Parkinson’s disease. We aimed to study the mechanism of aminochrome-dependent cell death in a cell line derived from rat substantia nigra. We found that aminochrome (50μM), in the presence of NAD(P)H-quinone oxidoreductase, EC 1.6.99.2 (DT)-diaphorase inhibitor dicoumarol (DIC) (100μM), induces significant cell death (62 ± 3%; p < 0.01), increase in caspase-3 activation (p < 0.001), release of cytochrome C, disruption of mitochondrial membrane potential (p < 0.01), damage of mitochondrial DNA, damage of mitochondria determined with transmission electron microscopy, a dramatic morphological change characterized as cell shrinkage, and significant increase in number of autophagic vacuoles. To determine the role of autophagy on aminochrome-induced cell death, we incubated the cells in the presence of vinblastine and rapamycin. Interestingly, 10μM vinblastine induces a 5.9-fold (p < 0.001) and twofold (p < 0.01) significant increase in cell death when the cells were incubated with 30μM aminochrome in the absence and presence of DIC, respectively, whereas 10μM rapamycin preincubated 24 h before addition of 50μM aminochrome in the absence and the presence of 100μM DIC induces a significant decrease (p < 0.001) in cell death. In conclusion, autophagy seems to be an important protective mechanism against two different aminochrome-induced cell deaths that initially showed apoptotic features. The cell death induced by aminochrome when DT-diaphorase is inhibited requires activation of mitochondrial pathway, whereas the cell death induced by aminochrome alone requires inhibition of autophagy-dependent degrading of damaged organelles and recycling through lysosomes. PMID:21427056

  9. Elucidation of a Novel Cell Death Mechanism in Prostate Epithelial Cells

    DTIC Science & Technology

    2004-12-01

    abundant in prostate stroma. In contrast, androgen independent LNCaP, DU145 and PC-3 cells are resistant to galectin-1 induced death and express ...LNCaP cells correlates with decreased expression of a specific glycosyltransferase, C2GnT, that creates 0-glycan ligands recognized by galectin-1...Blocking Oglycan elongation by expressing a competing glycosyltransferase, ST3Gal I, renders LNCaP cells resistant to galectin-1 death. Galectin-1

  10. The complexity of apoptotic cell death in mollusks: An update.

    PubMed

    Romero, A; Novoa, B; Figueras, A

    2015-09-01

    Apoptosis is a type of programmed cell death that produces changes in cell morphology and in biochemical intracellular processes without inflammatory reactions. The components of the apoptotic pathways are conserved throughout evolution. Caspases are key molecules involved in the transduction of the death signal and are responsible for many of the biochemical and morphological changes associated with apoptosis. Nowadays, It is known that caspases are activated through two major apoptotic pathways (the extrinsic or death receptor pathway and the intrinsic or mitochondrial pathway), but there are also evidences of at least other alternative pathway (the perforin/granzyme pathway). Apoptosis in mollusks seems to be similar in complexity to apoptosis in vertebrates but also has unique features maybe related to their recurrent exposure to environmental changes, pollutants, pathogens and also related to the sedentary nature of some stages in the life cycle of mollusks bivalves and gastropods. As in other animals, apoptotic process is involved in the maintenance of tissue homeostasis and also constitutes an important immune response that can be triggered by a variety of stimuli, including cytokines, hormones, toxic insults, viruses, and protozoan parasites. The main goal of this work is to present the current knowledge of the molecular mechanisms of apoptosis in mollusks and to highlight those steps that need further study.

  11. Cell death in leukemia: passenger protein regulation by topoisomerase inhibitors.

    PubMed

    Jahnke, Ulrike; Higginbottom, Karen; Newland, Adrian C; Cotter, Finbarr E; Allen, Paul D

    2007-10-05

    Etoposide is a potent inducer of mitotic catastrophe; a type of cell death resulting from aberrant mitosis. It is important in p53 negative cells where p53 dependent apoptosis and events at the G1 and G2 cell cycle checkpoints are compromised. Passenger proteins regulate many aspects of mitosis and siRNA interference or direct inhibition of Aurora B kinase results in mitotic catastrophe. However, there is little available data of clinical relevance in leukaemia models. Here, in p53 negative K562 myeloid leukemia cells, etoposide-induced mitotic catastrophe is shown to be time and/or concentration dependent. Survivin and Aurora remained bound to chromosomes. Survivin and Aurora were also associated with Cdk1 and were shown to form complexes, which in pull down experiments, included INCENP. There was no evidence of Aurora B kinase suppression. These data suggests etoposide will complement Aurora B kinase inhibitors currently in clinical trials for cancer.

  12. The oncolytic peptide LTX-315 triggers necrotic cell death

    PubMed Central

    Forveille, Sabrina; Zhou, Heng; Sauvat, Allan; Bezu, Lucillia; Müller, Kevin; Liu, Peng; Zitvogel, Laurence; Pierron, Gérard; Rekdal, Øystein; Kepp, Oliver; Kroemer, Guido

    2015-01-01

    The oncolytic peptide LTX-315 has been designed for killing human cancer cells and turned out to stimulate anti-cancer immune responses when locally injected into tumors established in immunocompetent mice. Here, we investigated the question whether LTX-315 induces apoptosis or necrosis. Transmission electron microscopy or morphometric analysis of chromatin-stained tumor cells revealed that LTX-315 failed to induce apoptotic nuclear condensation and rather induced a necrotic phenotype. Accordingly, LTX-315 failed to stimulate the activation of caspase-3, and inhibition of caspases by means of Z-VAD-fmk was unable to reduce cell killing by LTX-315. In addition, 2 prominent inhibitors of regulated necrosis (necroptosis), namely, necrostatin-1 and cycosporin A, failed to reduce LTX-315-induced cell death. In conclusion, it appears that LTX-315 triggers unregulated necrosis, which may contribute to its pro-inflammatory and pro-immune effects. PMID:26566869

  13. Ceramide metabolism regulates autophagy and apoptotic cell death induced by melatonin in liver cancer cells.

    PubMed

    Ordoñez, Raquel; Fernández, Anna; Prieto-Domínguez, Néstor; Martínez, Laura; García-Ruiz, Carmen; Fernández-Checa, José C; Mauriz, José L; González-Gallego, Javier

    2015-09-01

    Autophagy is a process that maintains homeostasis during stress, although it also contributes to cell death under specific contexts. Ceramides have emerged as important effectors in the regulation of autophagy, mediating the crosstalk with apoptosis. Melatonin induces apoptosis of cancer cells; however, its role in autophagy and ceramide metabolism has yet to be clearly elucidated. This study was aimed to evaluate the effect of melatonin administration on autophagy and ceramide metabolism and its possible link with melatonin-induced apoptotic cell death in hepatocarcinoma (HCC) cells. Melatonin (2 mm) transiently induced autophagy in HepG2 cells through JNK phosphorylation, characterized by increased Beclin-1 expression, p62 degradation, and LC3II and LAMP-2 colocalization, which translated in decreased cell viability. Moreover, ATG5 silencing sensitized HepG2 cells to melatonin-induced apoptosis, suggesting a dual role of autophagy in cell death. Melatonin enhanced ceramide levels through both de novo synthesis and acid sphingomyelinase (ASMase) stimulation. Serine palmitoyltransferase (SPT) inhibition with myriocin prevented melatonin-induced autophagy and ASMase inhibition with imipramine-impaired autophagy flux. However, ASMase inhibition partially protected HepG2 cells against melatonin, while SPT inhibition significantly enhanced cell death. Findings suggest a crosstalk between SPT-mediated ceramide generation and autophagy in protecting against melatonin, while specific ASMase-induced ceramide production participates in melatonin-mediated cell death. Thus, dual blocking of SPT and autophagy emerges as a potential strategy to potentiate the apoptotic effects of melatonin in liver cancer cells.

  14. Mitochondrial control of cell death induced by hyperosmotic stress.

    PubMed

    Criollo, Alfredo; Galluzzi, Lorenzo; Maiuri, M Chiara; Tasdemir, Ezgi; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-X(L) sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control.

  15. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells.

    PubMed

    Mahamed, Deeqa; Boulle, Mikael; Ganga, Yashica; Mc Arthur, Chanelle; Skroch, Steven; Oom, Lance; Catinas, Oana; Pillay, Kelly; Naicker, Myshnee; Rampersad, Sanisha; Mathonsi, Colisile; Hunter, Jessica; Sreejit, Gopalkrishna; Pym, Alexander S; Lustig, Gila; Sigal, Alex

    2017-01-28

    A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states.

  16. Statins and Voriconazole Induce Programmed Cell Death in Acanthamoeba castellanii

    PubMed Central

    López-Arencibia, Atteneri; Sifaoui, Ines; Reyes-Batlle, María; Valladares, Basilio; Martínez-Carretero, Enrique; Piñero, José E.; Maciver, Sutherland K.; Lorenzo-Morales, Jacob

    2015-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a life-threatening encephalitis. In order to treat those infections properly, it is necessary to target the treatment not only to the trophozoite but also to the cyst. Furthermore, it may be advantageous to avoid parasite killing by necrosis, which may induce local inflammation. We must also avoid toxicity of host tissue. Many drugs which target eukaryotes are known to induce programmed cell death (PCD), but this process is poorly characterized in Acanthamoeba. Here, we study the processes of programmed cell death in Acanthamoeba, induced by several drugs, such as statins and voriconazole. We tested atorvastatin, fluvastatin, simvastatin, and voriconazole at the 50% inhibitory concentrations (IC50s) and IC90s that we have previously established. In order to evaluate this phenomenon, we investigated the DNA fragmentation, one of the main characteristics of PCD, with quantitative and qualitative techniques. Also, the changes related to phosphatidylserine exposure on the external cell membrane and cell permeability were studied. Finally, because caspases are key to PCD pathways, caspase activity was evaluated in Acanthamoeba. All the drugs assayed in this study induced PCD in Acanthamoeba. To the best of our knowledge, this is the first study where PCD induced by drugs is described quantitatively and qualitatively in Acanthamoeba. PMID:25733513

  17. Diverse functions of ceramide in cancer cell death and proliferation.

    PubMed

    Saddoughi, Sahar A; Ogretmen, Besim

    2013-01-01

    Ceramide, a bioactive sphingolipid, is now at the forefront of cancer research. Classically, ceramide is thought to induce death, growth inhibition, and senescence in cancer cells. However, it is now clear that this simple picture of ceramide no longer holds true. Recent studies suggest that there are diverse functions of endogenously generated ceramides, which seem to be context dependent, regulated by subcellular/membrane localization and presence/absence of direct targets of these lipid molecules. For example, different fatty-acid chain lengths of ceramide, such as C(16)-ceramide that can be generated by ceramide synthase 6 (CerS6), have been implicated in cancer cell proliferation, whereas CerS1-generated C(18)-ceramide mediates cell death. The dichotomy of ceramides' function in cancer cells makes some of the metabolic enzymes of ceramide synthesis potential drug targets (such as Cers6) to prevent cancer growth in breast and head and neck cancers. Conversely, activation of CerS1 could be a new therapeutic option for the development of novel strategies against lung and head and neck cancers. This chapter focuses on recent discoveries about the mechanistic details of mainly de novo-generated ceramides and their signaling functions in cancer pathogenesis, and about how these mechanistic information can be translated into clinically relevant therapeutic options for the treatment of cancer.

  18. From DNA radiation damage to cell death: theoretical approaches.

    PubMed

    Ballarini, Francesca

    2010-10-05

    Some representative models of radiation-induced cell death, which is a crucial endpoint in radiobiology, were reviewed. The basic assumptions were identified, their consequences on predicted cell survival were analyzed, and the advantages and drawbacks of each approach were outlined. In addition to "historical" approaches such as the Target Theory, the Linear-Quadratic model, the Theory of Dual Radiation Action and Katz' model, the more recent Local Effect Model was discussed, focusing on its application in Carbon-ion hadrontherapy. Furthermore, a mechanistic model developed at the University of Pavia and based on the relationship between cell inactivation and chromosome aberrations was presented, together with recent results; the good agreement between model predictions and literature experimental data on different radiation types (photons, protons, alpha particles, and Carbon ions) supported the idea that asymmetric chromosome aberrations like dicentrics and rings play a fundamental role for cell death. Basing on these results, a reinterpretation of the TDRA was also proposed, identifying the TDRA "sublesions" and "lesions" as clustered DNA double-strand breaks and (lethal) chromosome aberrations, respectively.

  19. From DNA Radiation Damage to Cell Death: Theoretical Approaches

    PubMed Central

    Ballarini, Francesca

    2010-01-01

    Some representative models of radiation-induced cell death, which is a crucial endpoint in radiobiology, were reviewed. The basic assumptions were identified, their consequences on predicted cell survival were analyzed, and the advantages and drawbacks of each approach were outlined. In addition to “historical” approaches such as the Target Theory, the Linear-Quadratic model, the Theory of Dual Radiation Action and Katz' model, the more recent Local Effect Model was discussed, focusing on its application in Carbon-ion hadrontherapy. Furthermore, a mechanistic model developed at the University of Pavia and based on the relationship between cell inactivation and chromosome aberrations was presented, together with recent results; the good agreement between model predictions and literature experimental data on different radiation types (photons, protons, alpha particles, and Carbon ions) supported the idea that asymmetric chromosome aberrations like dicentrics and rings play a fundamental role for cell death. Basing on these results, a reinterpretation of the TDRA was also proposed, identifying the TDRA “sublesions” and “lesions” as clustered DNA double-strand breaks and (lethal) chromosome aberrations, respectively. PMID:20976308

  20. Bifurcate effects of glucose on caspase-independent cell death during hypoxia

    SciTech Connect

    Aki, Toshihiko; Nara, Akina; Funakoshi, Takeshi; Uemura, Koichi

    2010-06-04

    We investigated the effect of glucose on hypoxic death of rat cardiomyocyte-derived H9c2 cells and found that there is an optimal glucose concentration for protection against hypoxic cell death. Hypoxic cell death in the absence of glucose is accompanied by rapid ATP depletion, release of apoptosis-inducing factor from mitochondria, and nuclear chromatin condensation, all of which are inhibited by glucose in a dose-dependent manner. In contrast, excessive glucose also induces hypoxic cell death that is not accompanied by these events, suggesting a change in the mode of cell death between hypoxic cells with and without glucose supplementation.

  1. Programmed cell death in C. elegans, mammals and plants.

    PubMed

    Lord, Christina E N; Gunawardena, Arunika H L A N

    2012-08-01

    Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein

  2. Reduction of cardiac cell death after helium postconditioning in rats: transcriptional analysis of cell death and survival pathways.

    PubMed

    Oei, Gezina T M L; Heger, Michal; van Golen, Rowan F; Alles, Lindy K; Flick, Moritz; van der Wal, Allard C; van Gulik, Thomas M; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2015-01-20

    Helium, a noble gas, has been used safely in humans. In animal models of regional myocardial ischemia/reperfusion (I/R) it was shown that helium conditioning reduces infarct size. Currently, it is not known how helium exerts its cytoprotective effects and which cell death/survival pathways are affected. The objective of this study, therefore, was to investigate the cell protective effects of helium postconditioning by PCR array analysis of genes involved in necrosis, apoptosis and autophagy. Male rats were subjected to 25 min of ischemia and 5, 15 or 30 min of reperfusion. Semiquantitative histological analysis revealed that 15 min of helium postconditioning reduced the extent of I/R-induced cell damage. This effect was not observed after 5 and 30 min of helium postconditioning. Analysis of the differential expression of genes showed that 15 min of helium postconditioning mainly caused upregulation of genes involved in autophagy and inhibition of apoptosis versus I/R alone. The results suggest that the cytoprotective effects of helium inhalation may be caused by a switch from pro-cell-death signaling to activation of cell survival mechanisms, which appears to affect a wide range of pathways.

  3. p-Cresol mediates autophagic cell death in renal proximal tubular cells.

    PubMed

    Lin, Hsin-Hung; Huang, Chiu-Ching; Lin, Tze-Yi; Lin, Ching-Yuang

    2015-04-02

    Higher serum level of p-cresol (PC) in chronic kidney disease (CKD) patients has been linked with CKD progression. The toxic effect of PC on diverse cells has been reported by prior studies, except for renal tubular cells. Both autophagy and apoptosis contribute to renal tubular cell death, yet evidence of its response to PC is limited and their crosstalk is still unclear. Autophagy is an important cellular process involved in toxin-induced cell death. Renal tubular cell death in tubular injury is thought to be one of the key events causing the progression of CKD. Thus, we treated rat (NRK-52E) and human (HRPTEC) renal proximal tubular cells (RPTC) with PC and found the cell proliferation was significantly decreased. Cell apoptosis was significantly increased and accompanied with the activation of autophagy as evidenced by increases in LC3-II, beclin 1 and Atg 4. We also found an increase of p62 by c-Jun activation. p62 accumulation could mediate the activation of caspase 8-dependent cell apoptosis. Conversely, knockdown of p62 by siRNA of p62 had the opposite effect by arresting LC3-II accumulation and promoting increasing cell viability. We conclude that PC triggered autophagic RPTC death via JNK-mediated p62 accumulation and then activated caspase 8-dependent cell death pathway. PC can be considered as one of the key events causing progression of CKD, which might affect drug disposition in CKD cases.

  4. The role of anisotropic expansion for pulmonary acinar aerosol deposition

    PubMed Central

    Hofemeier, Philipp; Sznitman, Josué

    2016-01-01

    Lung deformations at the local pulmonary acinar scale are intrinsically anisotropic. Despite progress in imaging modalities, the true heterogeneous nature of acinar expansion during breathing remains controversial, where our understanding of inhaled aerosol deposition still widely emanates from studies under self-similar, isotropic wall motions. Building on recent 3D models of multi-generation acinar networks, we explore in numerical simulations how different hypothesized scenarios of anisotropic expansion influence deposition outcomes of inhaled aerosols in the acinar depths. While the broader range of particles acknowledged to reach the acinar region (dp = 0.005–5.0 μm) are largely unaffected by the details of anisotropic expansion under tidal breathing, our results suggest nevertheless that anisotropy modulates the deposition sites and fractions for a narrow band of sub-micron particles (dp ~ 0.5–0.75 μm), where the fate of aerosols is greatly intertwined with local convective flows. Our findings underscore how intrinsic aerosol motion (i.e. diffusion, sedimentation) undermines the role of anisotropic wall expansion that is often attributed in determining aerosol mixing and acinar deposition. PMID:27614613

  5. Inhibition of Telomerase Recruitment and Cancer Cell Death*

    PubMed Central

    Nakashima, Mai; Nandakumar, Jayakrishnan; Sullivan, Kelly D.; Espinosa, Joaquín M.; Cech, Thomas R.

    2013-01-01

    Continued proliferation of human cells requires maintenance of telomere length, usually accomplished by telomerase. Telomerase is recruited to chromosome ends by interaction with a patch of amino acids (the TEL patch, for TPP1 glutamate (E) and leucine (L)-rich patch) on the surface of telomere protein TPP1. In previous studies, interruption of this interaction by mutation prevented telomere extension in HeLa cells, but the cell culture continued to grow. We now show that the telomerase inhibitor BIBR1532 acts together with TEL patch mutations to inhibit the growth of HeLa cell lines and that apoptosis is a prominent mechanism of death of these cells. Survivor cells take over the population beginning around 40 days in culture. These cells no longer express the TEL patch mutant TPP1, apparently because of silencing of the expression cassette, a survival mechanism that would not be available to cancer cells. These results provide hope that inhibiting the binding of telomerase to the TEL patch of TPP1, perhaps together with a modest inhibition of the telomerase enzyme, could comprise an effective anticancer therapy for the ∼90% of human tumors that are telomerase-positive. PMID:24097987

  6. [Mechanisms of gamma-inducible death of Jurkat cells line].

    PubMed

    Gamkrelidze, M M; Bezhitashvili, N D; Pavliashvili, A T; Mchedlishvili, T V; Sanikidze, T V

    2008-06-01

    Mechanisms of radio-inducible death of Jurkat cells were investigated. Human lymphoblastoid T-cell line Jurkat is widely established model for studying apoptosis mechanisms. The cell was radiated by "Teragam" (Czech Republic) by dose 2 g during 1 minute. After radiation cells were incubated at standard conditions during 24 hours. After gamma radiation in cell population amount of cells in gaplois (apoptotic G 0) stage was increased 8,2 folds, in diplois (G 0/G1) stage - by 17%, in synthetic (S) stage decreased by 35% and tetraploid (G2/M) stage by 73% in comparison to control group. It was revealed intensive production of free radicals of oxygen and nitric oxide and decreasing activity of antioxidant enzymes (superoxidismutasa, catalasa and glutathione peroxidase). Revealed dependence between intensification of apoptosis and radiation-induced arrest of cell cycle G2/M phase may be determined by excess amount of free oxygen and nitrogen radicals generated in Jurkat cells as a result of nondirect effects of low doses of gamma radiation.

  7. DNA damage, neuronal and glial cell death and neurodegeneration.

    PubMed

    Barzilai, Ari

    2010-11-01

    The DNA damage response (DDR) is a key factor in the maintenance of genome stability. As such, it is a central axis in sustaining cellular homeostasis in a variety of contexts: development, growth, differentiation, and maintenance of the normal life cycle of the cell. It is now clear that diverse mechanisms encompassing cell cycle regulation, repair pathways, many aspects of cellular metabolism, and cell death are inter-linked and act in concert in response to DNA damage. Defects in the DDR in proliferating cells can lead to cancer, while DDR defects in neurons may result in neurodegeneration. Mature neurons are highly differentiated, post-mitotic cells that cannot be replenished after disease or trauma. Their high metabolic activity generates large amounts of reactive oxygen species with DNA damaging capacity. Moreover, their intense transcriptional activity increases the potential for genomic DNA damage. Respectively, neurons have elaborate mechanisms to defend the integrity of their genome, thus ensuring their longevity and functionality in the face of these threats. Over the course of the past two decades, there has been a substantial increase in our understanding of the role of glial cells in supporting the neuronal cell DDR and longevity. This review article focuses on the potential role of the DDR in the etiology and pathogenesis of neurodegenerative diseases, and in addition, it describes various aspects of glial cell functionality in two genomic instability disorders: ataxia telangiectasia (A-T) and Nijmegen breakage syndrome.

  8. Cell Arrest and Cell Death in Mammalian Preimplantation Development: Lessons from the Bovine Model

    PubMed Central

    Leidenfrost, Sandra; Boelhauve, Marc; Reichenbach, Myriam; Güngör, Tuna; Reichenbach, Horst-Dieter; Sinowatz, Fred; Wolf, Eckhard; Habermann, Felix A.

    2011-01-01

    Background The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. Methods and Findings To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. Conclusions In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development. PMID

  9. Optical coherence tomography speckle decorrelation for detecting cell death

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Mariampillai, Adrian; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-03-01

    We present a dynamic light scattering technique applied to optical coherence tomography (OCT) for detecting changes in intracellular motion caused by cellular reorganization during apoptosis. We have validated our method by measuring Brownian motion in microsphere suspensions and comparing the measured values to those derived based on particle diffusion calculated using the Einstein-Stokes equation. Autocorrelations of OCT signal intensities acquired from acute myeloid leukemia cells as a function of treatment time demonstrated a significant drop in the decorrelation time after 24 hours of cisplatin treatment. This corresponded with nuclear fragmentation and irregular cell shape observed in histological sections. A similar analysis conducted with multicellular tumor spheroids indicated a shorter decorrelation time in the spheroid core relative to its edges. The spheroid core corresponded to a region exhibiting signs of cell death in histological sections and increased backscatter intensity in OCT images.

  10. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis

    PubMed Central

    Hornik, Tamara C.; Vilalta, Anna; Brown, Guy C.

    2016-01-01

    ABSTRACT Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis. PMID:26567213

  11. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis.

    PubMed

    Hornik, Tamara C; Vilalta, Anna; Brown, Guy C

    2016-01-01

    Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12 cells, and caspase inhibition prevented phosphatidylserine exposur and decreased subsequent phagocytosis. Nitric oxide was necessary and sufficient to induce the reversible phosphatidylserine exposure and phagocytosis. The PC12 cells were not dead at the time they were phagocytised, and inhibition of their phagocytosis left viable cells. Cell loss was inhibited by blocking phagocytosis mediated by phosphatidylserine, MFG-E8, vitronectin receptors or P2Y6 receptors. Thus, activated microglia can induce reversible apoptosis of target cells, which is insufficient to cause apoptotic cell death, but sufficient to induce their phagocytosis and therefore cell death by phagoptosis.

  12. The Importance of Being Dead: Cell Death Mechanisms Assessment in Anti-Sarcoma Therapy

    PubMed Central

    Rello-Varona, Santiago; Herrero-Martín, David; Lagares-Tena, Laura; López-Alemany, Roser; Mulet-Margalef, Núria; Huertas-Martínez, Juan; Garcia-Monclús, Silvia; García del Muro, Xavier; Muñoz-Pinedo, Cristina; Tirado, Oscar Martínez

    2015-01-01

    Cell death can occur through different mechanisms, defined by their nature and physiological implications. Correct assessment of cell death is crucial for cancer therapy success. Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promising in other fields, regulated necrosis and other cell death circumstances (as so-called “autophagic cell death” or “mitotic catastrophe”) have not been yet properly addressed in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most cases the precise sequence of events remains poorly characterized. In this review, our main objective is to put into context the most recent sarcoma cell death findings in the more general landscape of different cell death modalities. PMID:25905041

  13. Alternative flow cytometry strategies to analyze stem cells and cell death in planarians

    PubMed Central

    Peiris, Tanuja Harshani; García‐Ojeda, Marcos E.

    2016-01-01

    Abstract Planarians possess remarkable stem cell populations that continuously support cellular turnover and are instrumental in the regeneration of tissues upon injury. Cellular turnover and tissue regeneration in planarians rely on the proper integration of local and systemic signals that regulate cell proliferation and cell death. Thus, understanding the signals controlling cellular proliferation and cell death in planarians could provide valuable insights for maintenance of adult body homeostasis and the biology of regeneration. Flow cytometry techniques have been utilized widely to identify, isolate, and characterize planarian stem cell populations. We developed alternative flow cytometry strategies that reduce the number of reagents and the time of sample preparation to analyze stem cells and cell death in planarians. The sensitivity of these methods is validated with functional studies using RNA interference and treatment with  γ irradiation or stressful conditions that are known to trigger cell death. Altogether, we provide a community resource intended to minimize adverse effects during ex vivo studies of stem cells and cell death in planarians. PMID:27307993

  14. Apoptotic cell death in rat epididymis following epichlorohydrin treatment.

    PubMed

    Lee, I-C; Kim, K-H; Kim, S-H; Baek, H-S; Moon, C; Kim, S-H; Yun, W-K; Nam, K-H; Kim, H-C; Kim, J-C

    2013-06-01

    Epichlorohydrin (ECH) is an antifertility agent that acts both as an epididymal toxicant and an agent capable of directly affecting sperm motility. This study identified the time course of apoptotic cell death in rat epididymides after ECH treatment. Rats were administrated with a single oral dose of ECH (50 mg/kg). ECH-induced apoptotic changes were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and its related mechanism was confirmed by Western blot analysis and colorimetric assay. The TUNEL assay showed that the number of apoptotic cells increased at 8 h, reached a maximum level at 12 h, and then decreased progressively. The Western blot analysis demonstrated no significant changes in proapoptotic Bcl-2-associated X (Bax) and anti-apoptotic Bcl-2 expression during the time course of the study. However, phospho-p38 mitogen-activated protein kinase (p-p38 MAPK) and phospho-c-Jun amino-terminal kinase (p-JNK) expression increased at 8-24 h. Caspase-3 and caspase-8 activities also increased at 8-48 h and 12-48 h, respectively, in the same manner as p-p38 MAPK and p-JNK expression. These results indicate that ECH induced apoptotic changes in rat epididymides and that the apoptotic cell death may be related more to the MAPK pathway than to the mitochondrial pathway.

  15. Mitochondrial Extrusion through the cytoplasmic vacuoles during cell death.

    PubMed

    Nakajima, Akihito; Kurihara, Hidetake; Yagita, Hideo; Okumura, Ko; Nakano, Hiroyasu

    2008-08-29

    Under various conditions, noxious stimuli damage mitochondria, resulting in mitochondrial fragmentation; however, the mechanisms by which fragmented mitochondria are eliminated from the cells remain largely unknown. Here we show that cytoplasmic vacuoles originating from the plasma membrane engulfed fragmented mitochondria and subsequently extruded them into the extracellular spaces in undergoing acute tumor necrosis factor alpha-induced cell death in a caspase-dependent fashion. Notably, upon fusion of the membrane encapsulating mitochondria to the plasma membrane, naked mitochondria were released into the extracellular spaces in an exocytotic manner. Mitochondrial extrusion was specific to tumor necrosis factor alpha-induced cell death, because a genotoxic stress-inducing agent such as cisplatin did not elicit mitochondrial extrusion. Moreover, intact actin and tubulin cytoskeletons were required for mitochondrial extrusion as well as membrane blebbing. Furthermore, fragmented mitochondria were engulfed by cytoplasmic vacuoles and extruded from hepatocytes of mice injected with anti-Fas antibody, suggesting that mitochondrial extrusion can be observed in vivo under pathological conditions. Mitochondria are eliminated during erythrocyte maturation under physiological conditions, and anti-mitochondrial antibody is detected in some autoimmune diseases. Thus, elucidating the mechanism underlying mitochondrial extrusion will open a novel avenue leading to better understanding of various diseases caused by mitochondrial malfunction as well as mitochondrial biology.

  16. Mitochondrial calcium and the permeability transition in cell death.

    PubMed

    Lemasters, John J; Theruvath, Tom P; Zhong, Zhi; Nieminen, Anna-Liisa

    2009-11-01

    Dysregulation of Ca(2+) has long been implicated to be important in cell injury. A Ca(2+)-linked process important in necrosis and apoptosis (or necrapoptosis) is the mitochondrial permeability transition (MPT). In the MPT, large conductance permeability transition (PT) pores open that make the mitochondrial inner membrane abruptly permeable to solutes up to 1500 Da. The importance of Ca(2+) in MPT induction varies with circumstance. Ca(2+) overload is sufficient to induce the MPT. By contrast after ischemia-reperfusion to cardiac myocytes, Ca(2+) overload is the consequence of bioenergetic failure after the MPT rather than its cause. In other models, such as cytotoxicity from Reye-related agents and storage-reperfusion injury to liver grafts, Ca(2+) appears to be permissive to MPT onset. Lastly in oxidative stress, increased mitochondrial Ca(2+) and ROS generation act synergistically to produce the MPT and cell death. Thus, the exact role of Ca(2+) for inducing the MPT and cell death depends on the particular biologic setting.

  17. Peroxide-induced cell death and lipid peroxidation in C6 glioma cells.

    PubMed

    Linden, Arne; Gülden, Michael; Martin, Hans-Jörg; Maser, Edmund; Seibert, Hasso

    2008-08-01

    Peroxides are often used as models to induce oxidative damage in cells in vitro. The aim of the present study was to elucidate the role of lipid peroxidation in peroxide-induced cell death. To this end (i) the ability to induce lipid peroxidation in C6 rat astroglioma cells of hydrogen peroxide (H2O2), cumene hydroperoxide (CHP) and t-butyl hydroperoxide (t-BuOOH) (ii) the relation between peroxide-induced lipid peroxidation and cell death in terms of time and concentration dependency and (iii) the capability of the lipid peroxidation chain breaking alpha-tocopherol to prevent peroxide-induced lipid peroxidation and/or cell death were investigated. Lipid peroxidation was characterised by measuring thiobarbituric acid reactive substances (TBARS) and, by HPLC, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) and hexanal. Within 2 h CHP, t-BuOOH and H2O2 induced cell death with EC50 values of 59+/-9 microM, 290+/-30 microM and 12+/-1.1 mM, respectively. CHP and t-BuOOH, but not H2O2 induced lipid peroxidation in C6 cells with EC50 values of 15+/-14 microM and 130+/-33 microM, respectively. The TBARS measured almost exclusively consisted of MDA. 4-HNE was mostly not detectable. The concentration of hexanal slightly increased with increasing concentrations of organic peroxides. Regarding time and concentration dependency lipid peroxidation preceded cell death. Pretreatment with alpha-tocopherol (10 microM, 24 h) prevented both, peroxide-induced lipid peroxidation and cell death. The results strongly indicate a major role of lipid peroxidation in the killing of C6 cells by organic peroxides but also that lipid peroxidation is not involved in H2O2 induced cell death.

  18. High dose of ascorbic acid induces cell death in mesothelioma cells.

    PubMed

    Takemura, Yukitoshi; Satoh, Motohiko; Satoh, Kiyotoshi; Hamada, Hironobu; Sekido, Yoshitaka; Kubota, Shunichiro

    2010-04-02

    Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma.

  19. Cell death and tissue remodeling in planarian regeneration.

    PubMed

    Pellettieri, Jason; Fitzgerald, Patrick; Watanabe, Shigeki; Mancuso, Joel; Green, Douglas R; Sánchez Alvarado, Alejandro

    2010-02-01

    Many long-lived organisms, including humans, can regenerate some adult tissues lost to physical injury or disease. Much of the previous research on mechanisms of regeneration has focused on adult stem cells, which give rise to new tissue necessary for the replacement of missing body parts. Here we report that apoptosis of differentiated cells complements stem cell division during regeneration in the planarian Schmidtea mediterranea. Specifically, we developed a whole-mount TUNEL assay that allowed us to document two dramatic increases in the rate of apoptosis following amputation-an initial localized response near the wound site and a subsequent systemic response that varies in magnitude depending on the type of fragment examined. The latter cell death response can be induced in uninjured organs, occurs in the absence of planarian stem cells, and can also be triggered by prolonged starvation. Taken together, our results implicate apoptosis in the restoration of proper anatomical scale and proportion through remodeling of existing tissues. We also report results from initial mechanistic studies of apoptosis in planarians, which revealed that a S. mediterranea homolog of the antiapoptotic gene BCL2 is required for cell survival in adult animals. We propose that apoptosis is a central mechanism working in concert with stem cell division to restore anatomical form and function during metazoan regeneration.

  20. Fourier Transform Infrared spectroscopy discloses different types of cell death in flow cytometrically sorted cells.

    PubMed

    Le Roux, K; Prinsloo, L C; Meyer, D

    2015-10-01

    Fourier Transform Infrared (FTIR) spectroscopy is a label free methodology showing promise in characterizing different types of cell death. Cervical adenocarcinoma (HeLa) and African monkey kidney (Vero) cells were treated with a necrosis inducer (methanol), novel apoptotic inducers (diphenylphosphino gold (I) complexes) and positive control, auranofin. Following treatment, cells stained with annexin-V and propidium iodide were sorted using a Fluorescence Activated Cell Sorter (FACS Aria) to obtain populations consisting of either viable, necrotic or apoptotic cells. Transmission Electron Microscopy confirmed successful sorting of all three populations. Four bands were identified which could discriminate between viable and necrotic cells namely 989 cm(-1), 2852 cm(-1), 2875 cm(-1) and 2923 cm(-1). In HeLa cells viable and induced apoptosis could be distinguished by 1294 cm(-1), while four bands were different in Vero cells namely; 1626 cm(-1), 1741 cm(-1), 2852 cm(-1) 2923 cm(-1). Principal Component Analysis showed separation between the different types of cell death and the loadings plots indicated an increase in an additional band at 1623 cm(-1) in dead cells. FTIR spectroscopy can be developed into an invaluable tool for the assessment of specific types of chemically induced cell death with notably different molecular signatures depending on whether the cells are cancerous and mechanism of cell death.

  1. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging

    NASA Astrophysics Data System (ADS)

    Flusberg, Deborah A.; Sorger, Peter K.

    2013-06-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.

  2. Cytolethal distending toxin induces caspase-dependent and -independent cell death in MOLT-4 cells.

    PubMed

    Ohara, Masaru; Hayashi, Tomonori; Kusunoki, Yoichiro; Nakachi, Kei; Fujiwara, Tamaki; Komatsuzawa, Hitoshi; Sugai, Motoyuki

    2008-10-01

    Cytolethal distending toxin (CDT) induces apoptosis using the caspase-dependent classical pathway in the majority of human leukemic T cells (MOLT-4). However, we found the process to cell death is only partially inhibited by pretreatment of the cells with a general caspase inhibitor, z-VAD-fmk. Flow cytometric analysis using annexin V and propidium iodide showed that a 48-h CDT treatment decreased the living cell population by 35% even in the presence of z-VAD-fmk. z-VAD-fmk completely inhibited caspase activity in 24 h CDT-intoxicated cells. Further, CDT with z-VAD-fmk treatment clearly increased the cell population that had a low level of intracellular reactive oxygen. This is a characteristic opposite to that of caspase-dependent apoptosis. Overexpression of bcl2 almost completely inhibited cell death using CDT treatment in the presence of z-VAD-fmk. The data suggest there are at least two different pathways used in CDT-induced cell death: conventional caspase-dependent (early) apoptotic cell death and caspase-independent (late) death. Both occur via the mitochondrial membrane disruption pathway.

  3. Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells☆

    PubMed Central

    Rodríguez-Hernández, A.; Navarro-Villarán, E.; González, R.; Pereira, S.; Soriano-De Castro, L.B.; Sarrias-Giménez, A.; Barrera-Pulido, L.; Álamo-Martínez, J.M.; Serrablo-Requejo, A.; Blanco-Fernández, G.; Nogales-Muñoz, A.; Gila-Bohórquez, A.; Pacheco, D.; Torres-Nieto, M.A.; Serrano-Díaz-Canedo, J.; Suárez-Artacho, G.; Bernal-Bellido, C.; Marín-Gómez, L.M.; Barcena, J.A.; Gómez-Bravo, M.A.; Padilla, C.A.; Padillo, F.J.; Muntané, J.

    2015-01-01

    Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10 nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10 µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells. PMID:26233703

  4. The Role of Mislocalized Phototransduction in Photoreceptor Cell Death of Retinitis Pigmentosa

    PubMed Central

    Nakao, Takeshi; Tsujikawa, Motokazu; Notomi, Shoji; Ikeda, Yasuhiro; Nishida, Kohji

    2012-01-01

    Most of inherited retinal diseases such as retinitis pigmentosa (RP) cause photoreceptor cell death resulting in blindness. RP is a large family of diseases in which the photoreceptor cell death can be caused by a number of pathways. Among them, light exposure has been reported to induce photoreceptor cell death. However, the detailed mechanism by which photoreceptor cell death is caused by light exposure is unclear. In this study, we have shown that even a mild light exposure can induce ectopic phototransduction and result in the acceleration of rod photoreceptor cell death in some vertebrate models. In ovl, a zebrafish model of outer segment deficiency, photoreceptor cell death is associated with light exposure. The ovl larvae show ectopic accumulation of rhodopsin and knockdown of ectopic rhodopsin and transducin rescue rod photoreceptor cell death. However, knockdown of phosphodiesterase, the enzyme that mediates the next step of phototransduction, does not. So, ectopic phototransduction activated by light exposure, which leads to rod photoreceptor cell death, is through the action of transducin. Furthermore, we have demonstrated that forced activation of adenylyl cyclase in the inner segment leads to rod photoreceptor cell death. For further confirmation, we have also generated a transgenic fish which possesses a human rhodopsin mutation, Q344X. This fish and rd10 model mice show photoreceptor cell death caused by adenylyl cyclase. In short, our study indicates that in some RP, adenylyl cyclase is involved in photoreceptor cell death pathway; its inhibition is potentially a logical approach for a novel RP therapy. PMID:22485131

  5. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    PubMed Central

    Mfouo-Tynga, Ivan; Abrahamse, Heidi

    2015-01-01

    The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events. PMID:25955645

  6. Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells.

    PubMed

    Zhang, Li; Cheng, Xian; Gao, Yanyan; Zheng, Jie; Xu, Qiang; Sun, Yang; Guan, Haixia; Yu, Huixin; Sun, Zhen

    2015-11-01

    Apigenin, abundantly present in fruits and vegetables, is recognized as a flavonoid with anti-inflammatory, antioxidant and anticancer properties. In this study, we first investigated the anti-neoplastic effects of apigenin on papillary thyroid carcinoma (PTC) cell line BCPAP cells. Our results show that apigenin inhibited the viability of BCPAP cells in a dose-dependent manner. A large body of evidence demonstrates that autophagy contributes to cell death in certain contexts. In the present study, autophagy was induced by apigenin treatment in BCPAP cells, as evidenced by Beclin-1 accumulation, conversion of LC3 protein, p62 degradation as well as the significantly increased formation of acidic vesicular organelles (AVOs) compared to the control group. 3-MA, an autophagy inhibitor, rescued the cells from apigenin-induced cell death. Notably, apigenin enhanced production of reactive oxygen species (ROS), and subsequent induction of significant DNA damage as monitored by the TUNEL assay. In addition, apigenin treatment caused a significant accumulation of cells in the G2/M phase via down-regulation of Cdc25C expression. Our findings reveal that apigenin inhibits papillary thyroid cancer cell viability by the stimulation of reactive oxygen species (ROS) production, induction of DNA damage, leading to G2/M cell cycle arrest followed by autophagic cell death. Thus, our results provide new insights into the molecular mechanisms underlying apigenin-mediated autophagic cell death and suggest apigenin as a potential chemotherapeutic agent which is able to fight against papillary thyroid cancer.

  7. Necrosis, and then stress induced necrosis-like cell death, but not apoptosis, should be the preferred cell death mode for chemotherapy: clearance of a few misconceptions

    PubMed Central

    Zhang, Ju; Lou, Xiaomin; Jin, Longyu; Zhou, Rongjia; Liu, Siqi; Xu, Ningzhi; Liao, D. Joshua

    2014-01-01

    Cell death overarches carcinogenesis and is a center of cancer researches, especially therapy studies. There have been many nomenclatures on cell death, but only three cell death modes are genuine, i.e. apoptosis, necrosis and stress-induced cell death (SICD). Like apoptosis, SICD is programmed. Like necrosis, SICD is a pathological event and may trigger regeneration and scar formation. Therefore, SICD has subtypes of stress-induced apoptosis-like cell death (SIaLCD) and stress-induced necrosis-like cell death (SInLCD). Whereas apoptosis removes redundant but healthy cells, SICD removes useful but ill or damaged cells. Many studies on cell death involve cancer tissues that resemble parasites in the host patients, which is a complicated system as it involves immune clearance of the alien cancer cells by the host. Cancer resembles an evolutionarily lower-level organism having a weaker apoptosis potential and poorer DNA repair mechanisms. Hence, targeting apoptosis for cancer therapy, i.e. killing via SIaLCD, will be less efficacious and more toxic. On the other hand, necrosis of cancer cells releases cellular debris and components to stimulate immune function, thus counteracting therapy-caused immune suppression and making necrosis better than SIaLCD for chemo drug development. PMID:25594039

  8. The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells.

    PubMed

    Jeon, Seung-Hyun; Kim, Se Hyun; Kim, Yeni; Kim, Yong Sik; Lim, Yoongho; Lee, Young Han; Shin, Soon Young

    2011-09-23

    In this study, we investigated the antitumor effects of the tricyclic antidepressant 3-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)-N,N-dimethylpropan-1-amine (imipramine) on glioma cells. We found that exposure of U-87MG cells to imipramine resulted in the inhibition of PI3K/Akt/mTOR signaling, reduction of clonogenicity, and induction of cell death. Imipramine stimulated the formation of acidic vesicular organelles, the conversion of LC3-I to LC3-II, and the redistribution of LC3 to autophagosomes, suggesting that it stimulates the progression of autophagy. It did not, however, induce apoptosis. We further showed that knockdown of Beclin-1 using siRNA abrogated imipramine-induced cell death. These results suggest that imipramine exerts antitumor effects on PTEN-null U-87MG human glioma cells by inhibiting PI3K/Akt/mTOR signaling and by inducing autophagic cell death.

  9. Characterization of Breast Cancer Cell Death Induced by Interferons and Retinoids.

    DTIC Science & Technology

    1997-07-01

    responses in several human tumor cells. In particular this combination induces cell death similar to apoptosis in vitro, which could not be observed with...individual agents. Preliminary studies identified no changes in the levels of known regulators of cell death such as p53, cyclin D and Bc12. Thus it...products that mediate the growth inhibitory/ cell death inducing activities of the combination of IFN and RA in human tumor cells. To directly identify these

  10. Characterization of Breast Cancer Cell Death induced by interferons and Retinoids.

    DTIC Science & Technology

    1998-07-01

    earlier that IFNBeta/RA combination causes cell death of human breast carcinoma cells. Since we could not find a correlation between expression of known...regulators and cell death , we employed the antisense technical knock-out strategy to isolate genes that participate in IFN/RA induced pathways. We...episomal vector pTKO1. Following transfection of these libraries the breast tumor cells were selected for resistance to IFN/RA induced cell death . Using

  11. Cell death mechanisms vary with photodynamic therapy dose and photosensitizer

    NASA Astrophysics Data System (ADS)

    He, Jin; Oleinick, Nancy L.

    1995-03-01

    Mouse lymphoma L5178Y-R cells respond to photodynamic therapy (PDT) by undergoing rapid apoptosis, which is induced by PDT-activated signal transduction initiating in the damaged cellular membranes. To relate the level of PDT damage and photosensitizer to the mechanism of cell death, apoptosis has been detected by agarose gel electrophoresis of fragmented DNA and quantified by flow cytometry of cells after staining with Hoechst33342 and propidium iodide, a technique which can distinguish between live, apoptotic, and necrotic cells. When the silicon phthalocyanine Pc 4 or Pc 12 served as photosensitizer, lethal doses (as defined by clonogenic assay) of PDT induced apoptosis in essentially all cells, whereas supralethal doses prevented the characteristic degradation of DNA into oligonucleosomal fragments. In contrast with aluminum phthalocyanine (AlPc) cells died by apoptosis after all doses studied. It appears that high PDT doses with Pc 4 or Pc 12 damage enzymes needed to carry out the program of apoptosis; the absence of this effect with AlPc suggests either a different intracellular location or different photocytotoxic mechanism for the two photosensitizers.

  12. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  13. Bacterial DNA persists for extended periods after cell death.

    PubMed

    Young, Geoffrey; Turner, Sally; Davies, John K; Sundqvist, Göran; Figdor, David

    2007-12-01

    The fate of DNA from bacteria that infect the root canal but cannot survive is currently unknown, yet such information is essential in establishing the validity of polymerase chain reaction (PCR)-based identification methods for root canal samples. This in vitro study tested the hypothesis that PCR-detectable DNA from dead bacteria might persist after cell death and investigated the efficiency of sodium hypochlorite (NaOCl) as a field decontamination agent. Using heat-killed Enterococcus faecalis, the persistence of DNA encoding the 16S rRNA gene was monitored by PCR. While most probable number analysis showed an approximate 1000-fold decay in amplifiable template, E. faecalis DNA was still PCR-detectable 1 year after cell death. NaOCl (1%) eliminated amplifiable DNA within 60 seconds of exposure. Our findings also disclosed a previously overlooked problem of concentration-dependent inhibition of the PCR reaction by thiosulfate-inactivated NaOCl. These results highlight the challenges of reliably identifying the authentic living root canal flora with PCR techniques.

  14. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death.

    PubMed

    Bacellar, Isabel O L; Tsubone, Tayana M; Pavani, Christiane; Baptista, Mauricio S

    2015-08-31

    Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.

  15. Vacuolar functions determine the mode of cell death.

    PubMed

    Schauer, Alexandra; Knauer, Heide; Ruckenstuhl, Christoph; Fussi, Heike; Durchschlag, Michael; Potocnik, Ulrike; Fröhlich, Kai-Uwe

    2009-03-01

    The yeast vacuole plays a crucial role in cell homeostasis including pH regulation and degradation of proteins and organelles. Class C VPS genes code for proteins essential for vacuolar and endosomal vesicle fusion, their deletion results in the absence of a detectable vacuole. We found that single gene deletions of class C VPS genes result in a drastically enhanced sensitivity to treatment with acetic acid whereas sensitivity towards H2O2 remains largely unaffected. Interestingly acetic acid treatment known as an established inducer of yeast apoptosis leads to necrosis in class C VPS deletion strains. Their intracellular pH drops from 6.7 to 5.5 after acetic acid treatment, while in wild type the pH drops to just 6.3. When the intracellular pH in wild type is lowered below pH 5.5 using a higher concentration of acetic acid, the survival rate is similarly low as in the class C VPS mutants, however, the death phenotype is predominantly apoptotic. Hence, the vacuole not only prevents acetic acid induced cell death by buffering the cytosolic pH, but it also has a proapoptotic function.

  16. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death

    PubMed Central

    Bacellar, Isabel O. L.; Tsubone, Tayana M.; Pavani, Christiane; Baptista, Mauricio S.

    2015-01-01

    Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research. PMID:26334268

  17. The molecular ecophysiology of programmed cell death in marine phytoplankton.

    PubMed

    Bidle, Kay D

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  18. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    PubMed Central

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-01-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy, or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. While the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane. PMID:24531236

  19. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    NASA Astrophysics Data System (ADS)

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-02-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. Although the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane.

  20. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis

    PubMed Central

    Collins, Tony J.; Ylanko, Jarkko; Geng, Fei

    2015-01-01

    Abstract A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose–response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds. PMID:26422066

  1. Inhibition of programmed cell death by cyclosporin A; preferential blocking of cell death induced by signals via TCR/CD3 complex and its mode of action.

    PubMed Central

    Yasutomi, D; Odaka, C; Saito, S; Niizeki, H; Kizaki, H; Tadakuma, T

    1992-01-01

    Cyclosporin A (CsA) is reported to inhibit programmed cell death. We confirmed this by using T-cell hybridomas which are inducible to programmed cell death by activation with immobilized anti-CD3 antibody or with anti-Thy 1.2 antibody. Cell death and DNA fragmentation, characteristic features of programmed cell death, were almost completely blocked by CsA or FK506. To investigate whether CsA inhibits only the cell death through the signals via the TCR/CD3 complex or all of the programmed cell death induced by various reagents, we further established CD4+8+ thymic lymphomas which result in programmed cell death after activation with calcium ionophore, dexamethasone, cyclic AMP or anti-CD3 antibody. It was revealed that CsA could block only the cell death mediated by the TCR/CD3 complex. For the clarification of the site of action of CsA, Ca2+ influx and endocytosis of receptors after stimulation with anti-CD3 antibody were monitored in the presence of CsA, and no significant effects of CsA were observed. Furthermore, prevention of cell death was examined by adding CsA at various periods of time after initiation of culture. CsA was found to exert its effect even when added after 4 h of cultivation, and the kinetic pattern of suppression was similar to that of the suppressive effect on IL-2 production. These observations indicate that in the events of programmed cell death, the major site of action of CsA will not be the inhibition of the immediate membrane events after activation of the TCR/CD3 complex but rather the interference in the function of molecules that transmit signals between membrane events and the activation of genes in the nucleus. Images Figure 2 Figure 3 PMID:1383138

  2. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death.

    PubMed

    Lanceta, Lilibeth; Mattingly, Jacob M; Li, Chi; Eaton, John W

    2015-01-01

    Earlier observations indicate that free heme is selectively toxic to cells lacking heme oxygenase-1 (HO-1) but how this enzyme prevents heme toxicity remains unexplained. Here, using A549 (human lung cancer) and immortalized human bronchial epithelial cells incubated with exogenous heme, we find knock-down of HO-1 using siRNA does promote the accumulation of cell-associated heme and heme-induced cell death. However, it appears that the toxic effects of heme are exerted by "loose" (probably intralysosomal) iron because cytotoxic effects of heme are lessened by pre-incubation of HO-1 deficient cells with desferrioxamine (which localizes preferentially in the lysosomal compartment). Desferrioxamine also decreases lysosomal rupture promoted by intracellularly generated hydrogen peroxide. Supporting the importance of endogenous oxidant production, both chemical and siRNA inhibition of catalase activity predisposes HO-1 deficient cells to heme-mediated killing. Importantly, it appears that HO-1 deficiency somehow blocks the induction of ferritin; control cells exposed to heme show ~10-fold increases in ferritin heavy chain expression whereas in heme-exposed HO-1 deficient cells ferritin expression is unchanged. Finally, overexpression of ferritin H chain in HO-1 deficient cells completely prevents heme-induced cytotoxicity. Although two other products of HO-1 activity--CO and bilirubin--have been invoked to explain HO-1-mediated cytoprotection, we conclude that, at least in this experimental system, HO-1 activity triggers the induction of ferritin and the latter is actually responsible for the cytoprotective effects of HO-1 activity.

  3. Resveratrol induces cell death and inhibits human herpesvirus 8 replication in primary effusion lymphoma cells.

    PubMed

    Tang, Feng-Yi; Chen, Chang-Yu; Shyu, Huey-Wen; Hong, Shin; Chen, Hung-Ming; Chiou, Yee-Hsuan; Lin, Kuan-Hua; Chou, Miao-Chen; Wang, Lin-Yu; Wang, Yi-Fen

    2015-12-05

    Resveratrol (3,4',5-trihydroxy-trans-stilbene) has been reported to inhibit proliferation of various cancer cells. However, the effects of resveratrol on the human herpesvirus 8 (HHV8) harboring primary effusion lymphoma (PEL) cells remains unclear. The anti-proliferation effects and possible mechanisms of resveratrol in the HHV8 harboring PEL cells were examined in this study. Results showed that resveratrol induced caspase-3 activation and the formation of acidic vacuoles in the HHV8 harboring PEL cells, indicating resveratrol treatment could cause apoptosis and autophagy in PEL cells. In addition, resveratrol treatment increased ROS generation but did not lead to HHV8 reactivation. ROS scavenger (N-acetyl cysteine, NAC) could attenuate both the resveratrol induced caspase-3 activity and the formation of acidic vacuoles, but failed to attenuate resveratrol induced PEL cell death. Caspase inhibitor, autophagy inhibitors and necroptosis inhibitor could not block resveratrol induced PEL cell death. Moreover, resveratrol disrupted HHV8 latent infection, inhibited HHV8 lytic gene expression and decreased virus progeny production. Overexpression of HHV8-encoded viral FLICE inhibitory protein (vFLIP) could partially block resveratrol induced cell death in PEL cells. These data suggest that resveratrol-induced cell death in PEL cells may be mediated by disruption of HHV8 replication. Resveratrol may be a potential anti-HHV8 drug and an effective treatment for HHV8-related tumors.

  4. Statins induce differentiation and cell death in neurons and astroglia.

    PubMed

    März, Pia; Otten, Uwe; Miserez, André R

    2007-01-01

    Statins are potent inhibitors of the hydroxy-methyl-glutaryl-coenzyme A reductase, the rate limiting enzyme for cholesterol biosynthesis. Experimental and clinical studies with statins suggest that they have beneficial effects on neurodegenerative disorders. Thus, it was of interest to characterize the direct effects of statins on CNS neurons and glial cells. We have treated defined cultures of neurons and astrocytes of newborn rats with two lipophilic statins, atorvastatin and simvastatin, and analyzed their effects on morphology and survival. Treatment of astrocytes with statins induced a time- and dose-dependent stellation, followed by apoptosis. Similarly, statins elicited programmed cell death of cerebellar granule neurons but with a higher sensitivity. Analysis of different signaling cascades revealed that statins fail to influence classical pathways such as Akt or MAP kinases, known to be activated in CNS cells. In addition, astrocyte stellation triggered by statins resembled dibutryl-cyclic AMP (db-cAMP) induced morphological differentiation. However, in contrast to db-cAMP, statins induced upregulation of low-density lipoprotein receptors, without affecting GFAP expression, indicating separate underlying mechanisms. Analysis of the cholesterol biosynthetic pathway revealed that lack of mevalonate and of its downstream metabolites, mainly geranylgeranyl-pyrophosphate (GGPP), is responsible for the statin-induced apoptosis of neurons and astrocytes. Moreover, astrocytic stellation triggered by statins was inhibited by mevalonate and GGPP. Interestingly, neuronal cell death was significantly reduced in astrocyte/neuron co-cultures treated with statins. We postulate that under these conditions signals provided by astrocytes, e.g., isoprenoids play a key role in neuronal survival.

  5. Humanin Derivatives Inhibit Necrotic Cell Death in Neurons

    PubMed Central

    Cohen, Aviv; Lerner-Yardeni, Jenny; Meridor, David; Kasher, Roni; Nathan, Ilana; Parola, Abraham H

    2015-01-01

    Humanin and its derivatives are peptides known for their protective antiapoptotic effects against Alzheimer’s disease. Herein, we identify a novel function of the humanin-derivative AGA(C8R)-HNG17 (namely, protection against cellular necrosis). Necrosis is one of the main modes of cell death, which was until recently considered an unmoderated process. However, recent findings suggest the opposite. We have found that AGA(C8R)-HNG17 confers protection against necrosis in the neuronal cell lines PC-12 and NSC-34, where necrosis is induced in a glucose-free medium by either chemohypoxia or by a shift from apoptosis to necrosis. Our studies in traumatic brain injury models in mice, where necrosis is the main mode of neuronal cell death, have shown that AGA(C8R)-HNG17 has a protective effect. This result is demonstrated by a decrease in a neuronal severity score and by a reduction in brain edema, as measured by magnetic resonance imaging (MRI). An insight into the peptide’s antinecrotic mechanism was attained through measurements of cellular ATP levels in PC-12 cells under necrotic conditions, showing that the peptide mitigates a necrosis-associated decrease in ATP levels. Further, we demonstrate the peptide’s direct enhancement of the activity of ATP synthase activity, isolated from rat-liver mitochondria, suggesting that AGA(C8R)-HNG17 targets the mitochondria and regulates cellular ATP levels. Thus, AGA(C8R)-HNG17 has potential use for the development of drug therapies for necrosis-related diseases, for example, traumatic brain injury, stroke, myocardial infarction, and other conditions for which no efficient drug-based treatment is currently available. Finally, this study provides new insight into the mechanisms underlying the antinecrotic mode of action of AGA(C8R)-HNG17. PMID:26062019

  6. Killing Breast Cancer Cells With a VEGF-Triggered Cell Death Receptor

    DTIC Science & Technology

    2006-04-01

    patients. We are pursuing a totally different approach to targeting VEGF: rather than inhibit VEGF our goal is to convert VEGF to act as a cell death factor...cell lines in vitro. These studies suggest that a receptor such as R2Fas which converts VEGF to act as a cell death factor could yield a new and more aggressive approach to targeting overexpressed VEGF in breast cancer....Toward this aim we created a chimeric receptor (R2Fas) composed of domains from VEGF receptor 2 fused to the intracellular domain of the Fas cell

  7. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells : ROS-mediated cell death by 3-BrPA.

    PubMed

    Kim, Ji Su; Ahn, Keun Jae; Kim, Jeong-Ah; Kim, Hye Mi; Lee, Jong Doo; Lee, Jae Myun; Kim, Se Jong; Park, Jeon Han

    2008-12-01

    Hexokinase type II (HK II) is the key enzyme for maintaining increased glycolysis in cancer cells where it is overexpressed. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, induces cell death in cancer cells. To elucidate the molecular mechanism of 3-BrPA-induced cell death, we used the hepatoma cell lines SNU449 (low expression of HKII) and Hep3B (high expression of HKII). 3-BrPA induced ATP depletion-dependent necrosis and apoptosis in both cell lines. 3-BrPA increased intracellular reactive oxygen species (ROS) leading to mitochondrial dysregulation. NAC (N-acetyl-L: -cysteine), an antioxidant, blocked 3-BrPA-induced ROS production, loss of mitochondrial membrane potential and cell death. 3-BrPA-mediated oxidative stress not only activated poly-ADP-ribose (PAR) but also translocated AIF from the mitochondria to the nucleus. Taken together, 3-BrPA induced ATP depletion-dependent necrosis and apoptosis and mitochondrial dysregulation due to ROS production are involved in 3-BrPA-induced cell death in hepatoma cells.

  8. Using Small Molecules to Dissect Non-apoptotic Programmed Cell Death: Necroptosis, Ferroptosis, and Pyroptosis.

    PubMed

    Dong, Ting; Liao, Daohong; Liu, Xiaohui; Lei, Xiaoguang

    2015-12-01

    Genetically programmed cell death is a universal and fundamental cellular process in multicellular organisms. Apoptosis and necroptosis, two common forms of programmed cell death, play vital roles in maintenance of homeostasis in metazoans. Dysfunction of the regulatory machinery of these processes can lead to carcinogenesis or autoimmune diseases. Inappropriate death of essential cells can lead to organ dysfunction or even death; ischemia-reperfusion injury and neurodegenerative disorders are examples of this. Recently, novel forms of non-apoptotic programmed cell death have been identified. Although these forms of cell death play significant roles in both physiological and pathological conditions, the detailed molecular mechanisms underlying them are still poorly understood. Here, we discuss progress in using small molecules to dissect three forms of non-apoptotic programmed cell death: necroptosis, ferroptosis, and pyroptosis.

  9. Functional inactivation of Rb sensitizes cancer cells to TSC2 inactivation induced cell death.

    PubMed

    Danos, Arpad M; Liao, Yang; Li, Xuan; Du, Wei

    2013-01-01

    We showed previously that inactivation of TSC2 induces death in cancer cells lacking the Retinoblastoma (Rb) tumor suppressor under stress conditions, suggesting that inactivation of TSC2 can potentially be used as an approach to specifically kill cancers that have lost WT Rb. As Rb is often inactivated in cancers by overexpression of cyclin D1, loss of p16(ink4a) cdk inhibitor, or expression of viral oncoproteins, it will be interesting to determine if such functional inactivation of Rb would similarly sensitize cancer cells to TSC2 inactivation induced cell death. In addition, many cancers lack functional Pten, resulting in increased PI3K/Akt signaling that has been shown to modulate E2F-induced cell death. Therefore it will be interesting to test whether loss of Pten will affect TSC2 inactivation induced killing of Rb mutant cancer cells. Here, we show that overexpression of Cyclin D1 or the viral oncogene E1a sensitizes cancer cells to TSC2 knockdown induced cell death and growth inhibition. On the other hand, knockdown of p16(ink4a) sensitizes cancer cells to TSC2 knockdown induced cell death in a manner that is likely dependant on serum induction of Cyclin D1 to inactivate the Rb function. Additionally, we demonstrate that loss of Pten does not interfere with TSC2 knockdown induced cell death in Rb mutant cancer cells. Together, these results suggest that TSC2 is potentially a useful target for a large spectrum of cancer types with an inactivated Rb pathway.

  10. Pyrvinium targets autophagy addiction to promote cancer cell death.

    PubMed

    Deng, Longfei; Lei, Yunlong; Liu, Rui; Li, Jingyi; Yuan, Kefei; Li, Yi; Chen, Yi; Liu, Yi; Lu, You; Edwards, Carl K; Huang, Canhua; Wei, Yuquan

    2013-05-02

    Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that the inhibition of autophagy is mammalian target of rapamycin independent but depends on the transcriptional inhibition of autophagy genes. Moreover, the combination of pyrvinium with autophagy stimuli improves its toxicity against cancer cells, and pretreatment of cells with 3-MA or siBeclin1 partially protects cells from pyrvinium-induced cell death under glucose starvation, suggesting that targeted autophagy addiction is involved in pyrvinium-mediated cytotoxicity. Finally, in vivo studies show that the combination therapy of pyrvinium with the anticancer and autophagy stimulus agent, 2-deoxy-D-glucose (2-DG), is significantly more effective in inhibiting tumor growth than pyrvinium or 2-DG alone. This study supports a novel cancer therapeutic strategy based on targeting autophagy addiction and implicates using pyrvinium as an autophagy inhibitor in combination with chemotherapeutic agents to improve their therapeutic efficacy.

  11. Pyrvinium targets autophagy addiction to promote cancer cell death

    PubMed Central

    Deng, Longfei; Lei, Yunlong; Liu, Rui; Li, Jingyi; Yuan, Kefei; Li, Yi; Chen, Yi; Liu, Yi; Lu, You; Edwards III, Carl K; Huang, Canhua; Wei, Yuquan

    2013-01-01

    Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that the inhibition of autophagy is mammalian target of rapamycin independent but depends on the transcriptional inhibition of autophagy genes. Moreover, the combination of pyrvinium with autophagy stimuli improves its toxicity against cancer cells, and pretreatment of cells with 3-MA or siBeclin1 partially protects cells from pyrvinium-induced cell death under glucose starvation, suggesting that targeted autophagy addiction is involved in pyrvinium-mediated cytotoxicity. Finally, in vivo studies show that the combination therapy of pyrvinium with the anticancer and autophagy stimulus agent, 2-deoxy-𝒟-glucose (2-DG), is significantly more effective in inhibiting tumor growth than pyrvinium or 2-DG alone. This study supports a novel cancer therapeutic strategy based on targeting autophagy addiction and implicates using pyrvinium as an autophagy inhibitor in combination with chemotherapeutic agents to improve their therapeutic efficacy. PMID:23640456

  12. Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent

    PubMed Central

    Geng, Ying; Kohli, Latika; Klocke, Barbara J.; Roth, Kevin A.

    2010-01-01

    Glioblastoma (GBM) is a high-grade central nervous system malignancy and despite aggressive treatment strategies, GBM patients have a median survival time of just 1 year. Chloroquine (CQ), an antimalarial lysosomotropic agent, has been identified as a potential adjuvant in the treatment regimen of GBMs. However, the mechanism of CQ-induced tumor cell death is poorly defined. We and others have shown that CQ-mediated cell death may be p53-dependent and at least in part due to the intrinsic apoptotic death pathway. Here, we investigated the effects of CQ on 5 established human GBM lines, differing in their p53 gene status. CQ was found to induce a concentration-dependent death in each of these cell lines. Although CQ treatment increased caspase-3–like enzymatic activity in all 5 cell lines, a broad-spectrum caspase inhibitor did not significantly attenuate death. Moreover, CQ caused an accumulation of autophagic vacuoles in all cell lines and was found to affect the levels and subcellular distribution of cathepsin D, suggesting that altered lysosomal function may also play a role in CQ-induced cell death. Thus, CQ can induce p53-independent death in gliomas that do not require caspase-mediated apoptosis. To potentially identify more potent chemotherapeutics, various CQ derivatives and lysosomotropic compounds were tested on the GBM cells. Quinacrine and mefloquine were found to be more potent than CQ in killing GBM cells in vitro and given their superior blood–brain barrier penetration compared with CQ may prove more efficacious as chemotherapeutic agents for GBM patients. PMID:20406898

  13. Calcineurin functions in Ca(2+)-activated cell death in mammalian cells

    PubMed Central

    1995-01-01

    Calcineurin is a calcium-dependent protein phosphatase that functions in T cell activation. We present evidence that calcineurin functions more generally in calcium-triggered apoptosis in mammalian cells deprived of growth factors. Specifically, expression of epitope-tagged calcineurin A induces rapid cell death upon calcium signaling in the absence of growth factors. We show that this apoptosis does not require new protein synthesis and therefore calcineurin must operate through existing substrates. Co-expression of the Bcl-2 protooncogene efficiently blocks calcineurin-induced cell death. Significantly, we demonstrate that a calcium-independent calcineurin mutant induces apoptosis in the absence of calcium, and that this apoptotic response is a direct consequence of calcineurin's phosphatase activity. These data suggest that calcineurin plays an important role in mediating the upstream events in calcium-activated cell death. PMID:7593193

  14. Calpain-3 Impairs Cell Proliferation and Stimulates Oxidative Stress-Mediated Cell Death in Melanoma Cells

    PubMed Central

    Moretti, Daniele; Del Bello, Barbara; Allavena, Giulia; Corti, Alessandro; Signorini, Cinzia; Maellaro, Emilia

    2015-01-01

    Calpain-3 is an intracellular cysteine protease, belonging to Calpain superfamily and predominantly expressed in skeletal muscle. In human melanoma cell lines and biopsies, we previously identified two novel splicing variants (hMp78 and hMp84) of Calpain-3 gene (CAPN3), which have a significant lower expression in vertical growth phase melanomas and, even lower, in metastases, compared to benign nevi. In the present study, in order to investigate the pathophysiological role played by the longer Calpain-3 variant, hMp84, in melanoma cells, we over-expressed it in A375 and HT-144 cells. In A375 cells, the enforced expression of hMp84 induces p53 stabilization, and modulates the expression of a few p53- and oxidative stress-related genes. Consistently, hMp84 increases the intracellular production of ROS (Reactive Oxygen Species), which lead to oxidative modification of phospholipids (formation of F2-isoprostanes) and DNA damage. Such events culminate in an adverse cell fate, as indicated by the decrease of cell proliferation and by cell death. To a different extent, either the antioxidant N-acetyl-cysteine or the p53 inhibitor, Pifithrin-α, recover cell viability and decrease ROS formation. Similarly to A375 cells, hMp84 over-expression causes inhibition of cell proliferation, cell death, and increase of both ROS levels and F2-isoprostanes also in HT-144 cells. However, in these cells no p53 accumulation occurs. In both cell lines, no significant change of cell proliferation and cell damage is observed in cells over-expressing the mutant hMp84C42S devoid of its enzymatic activity, suggesting that the catalytic activity of hMp84 is required for its detrimental effects. Since a more aggressive phenotype is expected to benefit from down-regulation of mechanisms impairing cell growth and survival, we envisage that Calpain-3 down-regulation can be regarded as a novel mechanism contributing to melanoma progression. PMID:25658320

  15. Photodynamic therapy-induced programmed cell death in carcinoma cell lines

    NASA Astrophysics Data System (ADS)

    He, Xiao-Yan; Sikes, Robert A.; Thomsen, Sharon L.; Chung, L.; Jacques, Steven L.

    1993-06-01

    The mode of cell death following photodynamic therapy (PDT) was investigated from the perspective of programmed cell death (apoptosis). Human prostate carcinoma cells (PC3), human non-small cell lung carcinoma (H322a), and rat mammary carcinoma (MTF7) were treated by PDT following sensitization with dihematoporphyrin ether (DHE). The response of these carcinoma cell lines to PDT was variable. An examination of extracted cellular DNA by gel electrophoresis showed the characteristic DNA ladder pattern indicative of internucleosomal cleavage of DNA during apoptosis. MTF7 and PC3 responded to PDT by inducing apoptosis while H322a had no apoptotic response. The magnitude of the response and the PDT dosage required to induce the effect were different in PC3 and MTF7. MTF7 cells responded with rapid apoptosis at the dose of light and drug that yielded 50% cell death (LD50). In contrast, PC3 showed only marginal apoptosis at the LD50 but had a marked response at the LD85. Furthermore, the onset of apoptosis followed slower kinetics in PC3 (2 hr - 4 hr) than in MTF7 (< 1 hr). H322a cells were killed by PDT but failed to exhibit any apoptotic response. This study indicates that apoptosis may occur during PDT induced cell death, but this pathway is not universal for all cancer cell lines.

  16. Involvement of ROS in Curcumin-induced Autophagic Cell Death.

    PubMed

    Lee, Youn Ju; Kim, Nam-Yi; Suh, Young-Ah; Lee, Chuhee

    2011-02-01

    Many anticancer agents as well as ionizing radiation have been shown to induce autophagy which is originally described as a protein recycling process and recently reported to play a crucial role in various disorders. In HCT116 human colon cancer cells, we found that curcumin, a polyphenolic phytochemical extracted from the plant Curcuma longa, markedly induced the conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II and degradation of sequestome-1 (SQSTM1) which is a marker of autophagosome degradation. Moreover, we found that curcumin caused GFP-LC3 formation puncta, a marker of autophagosome, and decrease of GFP-LC3 and SQSTM1 protein level in GFP-LC3 expressing HCT116 cells. It was further confirmed that treatment of cells with hydrogen peroxide induced increase of LC3 conversion and decrease of GFP-LC3 and SQSTM1 levels, but these changes by curcumin were almost completely blocked in the presence of antioxidant, N-acetylcystein (NAC), indicating that curcumin leads to reactive oxygen species (ROS) production, which results in autophagosome development and autolysosomal degradation. In parallel with NAC, SQSTM1 degradation was also diminished by bafilomycin A, a potent inhibitor of autophagosome-lysosome fusion, and cell viability assay was further confirmed that cucurmin-induced cell death was partially blocked by bafilomycin A as well as NAC. We also observed that NAC abolished curcumin-induced activation of extracelluar signal-regulated kinases (ERK) 1/2 and p38 mitogen-activated protein kinases (MAPK), but not Jun N-terminal kinase (JNK). However, the activation of ERK1/2 and p38 MAPK seemed to have no effect on the curcumin-induced autophagy, since both the conversion of LC3 protein and SQSTM1 degradation by curcumin was not changed in the presence of NAC. Taken together, our data suggest that curcumin induced ROS production, which resulted in autophagic activation and concomitant cell death in HCT116 human colon cancer cell

  17. Involvement of ROS in Curcumin-induced Autophagic Cell Death

    PubMed Central

    Lee, Youn Ju; Kim, Nam-Yi; Suh, Young-Ah

    2011-01-01

    Many anticancer agents as well as ionizing radiation have been shown to induce autophagy which is originally described as a protein recycling process and recently reported to play a crucial role in various disorders. In HCT116 human colon cancer cells, we found that curcumin, a polyphenolic phytochemical extracted from the plant Curcuma longa, markedly induced the conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II and degradation of sequestome-1 (SQSTM1) which is a marker of autophagosome degradation. Moreover, we found that curcumin caused GFP-LC3 formation puncta, a marker of autophagosome, and decrease of GFP-LC3 and SQSTM1 protein level in GFP-LC3 expressing HCT116 cells. It was further confirmed that treatment of cells with hydrogen peroxide induced increase of LC3 conversion and decrease of GFP-LC3 and SQSTM1 levels, but these changes by curcumin were almost completely blocked in the presence of antioxidant, N-acetylcystein (NAC), indicating that curcumin leads to reactive oxygen species (ROS) production, which results in autophagosome development and autolysosomal degradation. In parallel with NAC, SQSTM1 degradation was also diminished by bafilomycin A, a potent inhibitor of autophagosome-lysosome fusion, and cell viability assay was further confirmed that cucurmin-induced cell death was partially blocked by bafilomycin A as well as NAC. We also observed that NAC abolished curcumin-induced activation of extracelluar signal-regulated kinases (ERK) 1/2 and p38 mitogen-activated protein kinases (MAPK), but not Jun N-terminal kinase (JNK). However, the activation of ERK1/2 and p38 MAPK seemed to have no effect on the curcumin-induced autophagy, since both the conversion of LC3 protein and SQSTM1 degradation by curcumin was not changed in the presence of NAC. Taken together, our data suggest that curcumin induced ROS production, which resulted in autophagic activation and concomitant cell death in HCT116 human colon cancer cell

  18. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells.

    PubMed

    Alzaharna, Mazen; Alqouqa, Iyad; Cheung, Hon-Yeung

    2017-01-01

    Andrographolide (Andro) has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi) has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS)-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α) decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP) plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death.

  19. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells

    PubMed Central

    Alzaharna, Mazen; Alqouqa, Iyad; Cheung, Hon-Yeung

    2017-01-01

    Andrographolide (Andro) has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi) has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS)-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α) decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP) plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death. PMID:28182713

  20. A Role for Programmed Cell Death in the Microbial Loop

    PubMed Central

    Durand, Pierre M.; Whitehead, Kenia; Baliga, Nitin S.

    2013-01-01

    The microbial loop is the conventional model by which nutrients and minerals are recycled in aquatic eco-systems. Biochemical pathways in different organisms become metabolically inter-connected such that nutrients are utilized, processed, released and re-utilized by others. The result is that unrelated individuals end up impacting each others' fitness directly through their metabolic activities. This study focused on the impact of programmed cell death (PCD) on a population's growth as well as its role in the exchange of carbon between two naturally co-occurring halophilic organisms. Flow cytometric, biochemical, 14C radioisotope tracing assays, and global transcriptomic analyses show that organic algal photosynthate released by Dunalliela salina cells undergoing PCD complements the nutritional needs of other non-PCD D. salina cells. This occurs in vitro in a carbon limited environment and enhances the growth of the population. In addition, a co-occurring heterotroph Halobacterium salinarum re-mineralizes the carbon providing elemental nutrients for the mixoheterotrophic chlorophyte. The significance of this is uncertain and the archaeon can also subsist entirely on the lysate of apoptotic algae. PCD is now