Bhatia, Vandanajay; Rastellini, Cristiana; Han, Song; Aronson, Judith F; Greeley, George H; Falzon, Miriam
2014-09-01
Pancreatitis is a necroinflammatory disease with acute and chronic manifestations. Accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic pancreatitis (CP). Pancreatic parathyroid hormone-related protein (PTHrP) levels are elevated in a mouse model of cerulein-induced AP. Here, we show elevated PTHrP levels in mouse models of pancreatitis induced by chronic cerulein administration and pancreatic duct ligation. Because acinar cells play a major role in the pathophysiology of pancreatitis, mice with acinar cell-specific targeted disruption of the Pthrp gene (PTHrP(Δacinar)) were generated to assess the role of acinar cell-secreted PTHrP in pancreatitis. These mice were generated using Cre-LoxP technology and the acinar cell-specific elastase promoter. PTHrP(Δacinar) exerted protective effects in cerulein and pancreatic duct ligation models, evident as decreased edema, histological damage, amylase secretion, pancreatic stellate cell (PSC) activation, and extracellular matrix deposition. Treating acinar cells in vitro with cerulein increased IL-6 expression and NF-κB activity; these effects were attenuated in PTHrP(Δacinar) cells, as were the cerulein- and carbachol-induced elevations in amylase secretion. The cerulein-induced upregulation of procollagen I expression was lost in PSCs from PTHrP(Δacinar) mice. PTHrP immunostaining was elevated in human CP sections. The cerulein-induced upregulation of IL-6 and ICAM-1 (human acinar cells) and procollagen I (human PSCs) was suppressed by pretreatment with the PTH1R antagonist, PTHrP (7-34). These findings establish PTHrP as a novel mediator of inflammation and fibrosis associated with CP. Acinar cell-secreted PTHrP modulates acinar cell function via its effects on proinflammatory cytokine release and functions via a paracrine pathway to activate PSCs. Copyright © 2014 the American Physiological Society.
Establishment of Functional Acinar-like Cultures from Human Salivary Glands
Jang, S.I.; Ong, H.L.; Gallo, A.; Liu, X.; Illei, G.
2015-01-01
Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers—namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after β-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients. PMID:25416669
Establishment of functional acinar-like cultures from human salivary glands.
Jang, S I; Ong, H L; Gallo, A; Liu, X; Illei, G; Alevizos, I
2015-02-01
Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers-namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after β-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients. © International & American Associations for Dental Research 2014.
Gryshchenko, Oleksiy; Gerasimenko, Julia V; Peng, Shuang; Gerasimenko, Oleg V; Petersen, Ole H
2018-02-09
Ca 2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca 2+ signals evoked by K + -induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca 2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca 2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol-related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca 2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation. Physiological Ca 2+ signals in pancreatic acinar cells control fluid and enzyme secretion, whereas excessive Ca 2+ signals induced by pathological agents induce destructive processes leading to acute pancreatitis. Ca 2+ signals in the peri-acinar stellate cells may also play a role in the development of acute pancreatitis. In this study, we explored Ca 2+ signalling in the different cell types in the acinar environment of the pancreatic tissue. We have, for the first time, recorded depolarization-evoked Ca 2+ signals in pancreatic nerves and shown that whereas acinar cells receive a functional cholinergic innervation, there is no evidence for functional innervation of the stellate cells. The stellate, like the acinar, cells are not electrically excitable as they do not generate Ca 2+ signals in response to membrane depolarization. The principal agent evoking Ca 2+ signals in the stellate cells is bradykinin, but in experimental alcohol-related acute pancreatitis, these cells become much less responsive to bradykinin and then acquire sensitivity to trypsin. Our new findings have implications for our understanding of the development of acute pancreatitis and we propose a scheme in which Ca 2+ signals in stellate cells provide an amplification loop promoting acinar cell death. Initial release of the proteases kallikrein and trypsin from dying acinar cells can, via bradykinin generation and protease-activated receptors, induce Ca 2+ signals in stellate cells which can then, possibly via nitric oxide generation, damage more acinar cells and thereby cause additional release of proteases, generating a vicious circle. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S.
2016-01-01
The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca2+] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca2+-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca2+ entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca2+-dependent up-regulation of AQP5. These important findings reveal that the Ca2+-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture. PMID:26903518
Martinelli, Paola; Cañamero, Marta; del Pozo, Natalia; Madriles, Francesc; Zapata, Agustín; Real, Francisco X
2013-10-01
Previous studies have suggested an important role of the transcription factor Gata6 in endocrine pancreas, while GATA6 haploinsufficient inactivating mutations cause pancreatic agenesis in humans. We aimed to analyse the effects of Gata6 inactivation on pancreas development and function. We deleted Gata6 in all epithelial cells in the murine pancreas at the onset of its development. Acinar proliferation, apoptosis, differentiation and exocrine functions were assessed using reverse transcriptase quantitative PCR (RT-qPCR), chromatin immunoprecipitation, immunohistochemistry and enzyme assays. Adipocyte transdifferentiation was assessed using electron microscopy and genetic lineage tracing. Gata6 is expressed in all epithelial cells in the adult mouse pancreas but it is only essential for exocrine pancreas homeostasis: while dispensable for pancreatic development after e10.5, it is required for complete acinar differentiation, for establishment of polarity and for the maintenance of acinar cells in the adult. Gata6 regulates directly the promoter of genes coding for digestive enzymes and the transcription factors Rbpjl and Mist1. Upon pancreas-selective Gata6 inactivation, massive loss of acinar cells and fat replacement take place. This is accompanied by increased acinar apoptosis and proliferation, acinar-to-ductal metaplasia and adipocyte transdifferentiation. By contrast, the endocrine pancreas is spared. Our data show that Gata6 is required for the complete differentiation of acinar cells through multiple transcriptional regulatory mechanisms. In addition, it is required for the maintenance of the adult acinar cell compartment. Our studies suggest that GATA6 alterations may contribute to diseases of the human adult exocrine pancreas.
The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology.
Hegyi, Peter; Petersen, Ole H
2013-01-01
There are many reviews of pancreatic acinar cell function and also of pancreatic duct function, but there is an almost total absence of synthetic reviews bringing the integrated functions of these two vitally and mutually interdependent cells together. This is what we have attempted to do in this chapter. In the first part, we review the normal integrated function of the acinar-ductal system, with particular emphasis on how regulation of one type of cell also influences the other cell type. In the second part, we review a range of pathological processes, particularly those involved in acute pancreatitis (AP), an often-fatal human disease in which the pancreas digests itself, in order to explore how malfunction of one of the cell types adversely affects the function of the other.
[Pancreatic acinar neoplasms : Comparative molecular characterization].
Bergmann, F
2016-11-01
Pancreatic acinar cell carcinomas are biologically aggressive neoplasms for which treatment options are very limited. The molecular mechanisms of tumor initiation and progression are largely not understood and precursor lesions have not yet been identified. In this study, pancreatic acinar cell carcinomas were cytogenetically characterized as well as by molecular and immunohistochemical analyses. Corresponding investigations were carried out on pancreatic ductal adenocarcinomas and pancreatic neuroendocrine neoplasms augmented by functional analyses. We show that pancreatic acinar cell carcinomas display a microsatellite stable, chromosomal unstable genotype, characterized by recurrent chromosomal imbalances that clearly discriminate them from pancreatic ductal adenocarcinomas and neuroendocrine neoplasms. Based on findings obtained from comparative genomic hybridization, candidate genes could be identified, such as deleted in colorectal cancer (DCC) and c-MYC. Furthermore, several therapeutic targets were identified in acinar cell carcinomas and other pancreatic neoplasms, including epidermal growth factor receptor (EGFR), L1 cell adhesion molecule (L1CAM) and heat shock protein 90 (HSP90). Moreover, L1CAM was shown to play a significant role in the tumorigenesis of pancreatic ductal adenocarcinoma. Functional analyses in cell lines derived from pancreatic neuroendocrine neoplasms revealed promising anti-tumorigenic effects using EGFR and HSP90 inhibitors affecting the cell cycle and in the case of HSP90, regulating several other oncogenes. Finally, based on mutational analyses of mitochondrial DNA, molecular evidence is provided that acinar cell cystadenomas (or better cystic acinar transformation) represent non-clonal lesions, suggesting an inflammatory reactive non-neoplastic nature.
Bonior, Joanna; Ceranowicz, Piotr; Gajdosz, Ryszard; Kuśnierz-Cabala, Beata; Pierzchalski, Piotr; Warzecha, Zygmunt; Dembiński, Artur; Pędziwiatr, Michał; Kot, Michalina; Leja-Szpak, Anna; Nawrot-Porąbka, Katarzyna; Link-Lenczowski, Paweł; Olszanecki, Rafał; Bartuś, Krzysztof; Jaworek, Jolanta
2017-05-02
Ghrelin (GHRL) is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Experimental studies showed that GHRL protects the stomach and pancreas against acute damage, but the effect of GHRL on pancreatic acinar cells was still undetermined. To investigate the effect of GHRL and caerulein on the functional ghrelin system in pancreatic acinar cells taking into account the role of sensory nerves (SN). Experiments were carried out on isolated pancreatic acinar cells and AR42J cells. Before acinar cells isolation, GHRL was administered intraperitoneally at a dose of 50 µg/kg to rats with intact SN or with capsaicin deactivation of SN (CDSN). After isolation, pancreatic acinar cells were incubated in caerulein-free or caerulein containing solution. AR42J cells were incubated under basal conditions and stimulated with caerulein, GHRL or a combination of the above. Incubation of isolated acinar cells with caerulein inhibited GHS-R and GHRL expression at the level of mRNA and protein in those cells. Either in rats with intact SN or with CDSN, administration of GHRL before isolation of acinar cells increased expression of GHRL and GHS-R in those cells and reversed the caerulein-induced reduction in expression of those parameters. Similar upregulation of GHS-R and GHRL was observed after administration of GHRL in AR42J cells. GHRL stimulates its own expression and expression of its receptor in isolated pancreatic acinar cells and AR42J cells on the positive feedback pathway. This mechanism seems to participate in the pancreatoprotective effect of GHRL in the course of acute pancreatitis.
Freedman, S D; Scheele, G A
1994-03-23
The role of acid-base interactions during coordinated acinar and duct cell secretion in the exocrine pancreas is described. The sequence of acid-base events may be summarized as follows: (1) Sorting of secretory proteins and membrane components into the regulated secretory pathway of pancreatic acinar cells is triggered by acid- and calcium-induced aggregation and association mechanisms located in the trans-Golgi network. (2) Cholecystokinin-stimulated exocytosis in acinar cells releases the acidic contents of secretory granules into the acinar lumen. (3) Secretin-stimulated bicarbonate secretion from duct and duct-like cells neutralizes the acidic pH of exocytic contents, which leads to dissociation of protein aggregates and solubilization of (pro)enzymes within the acinar lumen. (4) Stimulated fluid secretion transports solubilized enzymes through the ductal system. (5) Further alkalinization of acinar lumen pH accelerates the enzymatic cleavage of the glycosyl phosphatidyl-inositol anchor associated with GP2 and thus releases the GP2/proteoglycan matrix from lumenal membranes, a process that appears to be required for vesicular retrieval of granule membranes from the apical plasma membrane and their reuse in the secretory process. We conclude that the central function of bicarbonate secretion by centroacinar and duct cells in the pancreas is to neutralize and then alkalinize the pH of the acinar lumen, sequential process that are required for (a) solubilization of secreted proteins and (b) cellular retrieval of granule membranes, respectively.
Morphology and function of lacrimal gland acinar cells in primary culture.
Hann, L E; Tatro, J B; Sullivan, D A
1989-01-01
The objectives of the current investigation were fourfold: (1) to establish an effective procedure for the isolation of acinar cells from the rat lacrimal gland; (2) to evaluate the functional capacity of freshly isolated cells; (3) to determine defined culture conditions which permit maintenance of viable, differentiated cells, as well as secretory component (SC) production, during long-term culture; and (4) to characterize the morphological features of cultured cells. Acinar cells were isolated by serial incubation of gland fragments in chelating and enzymatic solutions, followed by centrifugation through a Ficoll gradient. The yield of viable cells/gland appeared to be age-dependent: cell recovery was inversely proportional to the age of the animals. Immunofluorescence analysis of freshly isolated cells showed the presence of SC, the IgA antibody receptor, within isolated cells. In addition, experiments with a labeled analog (Nle4-D-Phe7-alpha MSH) of alpha-melanocyte-stimulating hormone (alpha-MSH) demonstrated specific binding sites on freshly isolated cells; alpha-MSH is a known modulator of acinar protein secretion. Maximum binding of the alpha-MSH analog occurred within 30 min, was dependent upon cell density and was reduced by coincubation with unlabeled alpha-MSH. To determine the culture requirements of acinar cells, cells were cultured on a variety of substrates (plastic or modified plastic [Primaria], coated with or without extracellular matrix [Matrigel]) in the presence or absence of various supplements and/or fetal calf serum (FCS) for 0.7 to 3.5 weeks. Cell attachment, function and long-term viability required an extracellular matrix. Moreover, in long term cultures (25 days), acinar cell attachment was enhanced by the inclusion of supplements to media containing 10% FCS. Replacement of serum with fibroblast growth factor, high-density lipoprotein and an increased concentration of epidermal growth factor resulted in a distinct "cobblestone" morphology characteristic of epithelial cell cultures. Electron microscopic analysis of cells cultured in supplemented serum-free media demonstrated extensive rough endoplasmic reticulum and Golgi, intermediate filaments and numerous secretory granules, as well as tight junctions and desmosomes. In addition to cell maintenance and attachment, acinar cell synthesis and/or secretion of SC was positively influenced by inclusion of supplements in the media. In summary, we have isolated lacrimal gland acinar cells, which express receptors for IgA antibodies and alpha-MSH. In addition, we have defined culture conditions which permit the long-term maintenance of SC-secreting acinar cells.
Teos, LY; Zheng, C-Y; Liu, X; Swaim, WD; Goldsmith, CM; Cotrim, AP; Baum, BJ; Ambudkar, IS
2017-01-01
Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands functionally compromised post IR. PMID:26966862
Antonucci, Laura; Fagman, Johan B.; Kim, Ju Youn; Todoric, Jelena; Gukovsky, Ilya; Mackey, Mason; Ellisman, Mark H.; Karin, Michael
2015-01-01
Pancreatic acinar cells possess very high protein synthetic rates as they need to produce and secrete large amounts of digestive enzymes. Acinar cell damage and dysfunction cause malnutrition and pancreatitis, and inflammation of the exocrine pancreas that promotes development of pancreatic ductal adenocarcinoma (PDAC), a deadly pancreatic neoplasm. The cellular and molecular mechanisms that maintain acinar cell function and whose dysregulation can lead to tissue damage and chronic pancreatitis are poorly understood. It was suggested that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis, but it is unknown whether impaired autophagy is a cause or a consequence of pancreatitis. To address this question, we generated Atg7Δpan mice that lack the essential autophagy-related protein 7 (ATG7) in pancreatic epithelial cells. Atg7Δpan mice exhibit severe acinar cell degeneration, leading to pancreatic inflammation and extensive fibrosis. Whereas ATG7 loss leads to the expected decrease in autophagic flux, it also results in endoplasmic reticulum (ER) stress, accumulation of dysfunctional mitochondria, oxidative stress, activation of AMPK, and a marked decrease in protein synthetic capacity that is accompanied by loss of rough ER. Atg7Δpan mice also exhibit spontaneous activation of regenerative mechanisms that initiate acinar-to-ductal metaplasia (ADM), a process that replaces damaged acinar cells with duct-like structures. PMID:26512112
Zoukhri, Driss; Macari, Elizabeth; Kublin, Claire L.
2011-01-01
Emerging studies from our laboratory demonstrate that interleukin-1 (IL-1) family members play a major role in impairing lacrimal gland functions. Here we have extended our investigations to observe the effects of IL-1 on aqueous tear production, lacrimal gland secretion, lacrimal gland histology, and acinar and ductal cell proliferation. We demonstrate that a single injection of IL-1 into the lacrimal glands inhibited neurally- as well as agonist-induced protein secretion resulting in decreased tear output. Meanwhile, IL-1 injection induced a severe, but reversible (7–13 days), inflammatory response that led to destruction of lacrimal gland acinar epithelial cells. Finally, we demonstrate that as the inflammatory response subsided and lacrimal gland secretion and tear production returned to normal levels, there was increased proliferation of acinar and ductal epithelial cells. Our work uncovers novel effects of IL-1 on lacrimal gland functions and the potential regenerative capacity of the mouse lacrimal gland. PMID:17362931
Athwal, T; Huang, W; Mukherjee, R; Latawiec, D; Chvanov, M; Clarke, R; Smith, K; Campbell, F; Merriman, C; Criddle, D; Sutton, R; Neoptolemos, J; Vlatković, N
2014-01-01
Hereditary pancreatitis (HP) is an autosomal dominant disease that displays the features of both acute and chronic pancreatitis. Mutations in human cationic trypsinogen (PRSS1) are associated with HP and have provided some insight into the pathogenesis of pancreatitis, but mechanisms responsible for the initiation of pancreatitis have not been elucidated and the role of apoptosis and necrosis has been much debated. However, it has been generally accepted that trypsinogen, prematurely activated within the pancreatic acinar cell, has a major role in the initiation process. Functional studies of HP have been limited by the absence of an experimental system that authentically mimics disease development. We therefore developed a novel transgenic murine model system using wild-type (WT) human PRSS1 or two HP-associated mutants (R122H and N29I) to determine whether expression of human cationic trypsinogen in murine acinar cells promotes pancreatitis. The rat elastase promoter was used to target transgene expression to pancreatic acinar cells in three transgenic strains that were generated: Tg(Ela-PRSS1)NV, Tg(Ela-PRSS1*R122H)NV and Tg(Ela-PRSS1*N29I)NV. Mice were analysed histologically, immunohistochemically and biochemically. We found that transgene expression is restricted to pancreatic acinar cells and transgenic PRSS1 proteins are targeted to the pancreatic secretory pathway. Animals from all transgenic strains developed pancreatitis characterised by acinar cell vacuolisation, inflammatory infiltrates and fibrosis. Transgenic animals also developed more severe pancreatitis upon treatment with low-dose cerulein than controls, displaying significantly higher scores for oedema, inflammation and overall histopathology. Expression of PRSS1, WT or mutant, in acinar cells increased apoptosis in pancreatic tissues and isolated acinar cells. Moreover, studies of isolated acinar cells demonstrated that transgene expression promotes apoptosis rather than necrosis. We therefore conclude that expression of WT or mutant human PRSS1 in murine acinar cells induces apoptosis and is sufficient to promote spontaneous pancreatitis, which is enhanced in response to cellular insult. PMID:24722290
Geiser, Jim; De Lisle, Robert C.; Andrews, Glen K.
2013-01-01
Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy. PMID:24303081
The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma
Krah, Nathan M; De La O, Jean-Paul; Swift, Galvin H; Hoang, Chinh Q; Willet, Spencer G; Chen Pan, Fong; Cash, Gabriela M; Bronner, Mary P; Wright, Christopher VE; MacDonald, Raymond J; Murtaugh, L Charles
2015-01-01
Understanding the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) may provide therapeutic strategies for this deadly disease. Recently, we and others made the surprising finding that PDAC and its preinvasive precursors, pancreatic intraepithelial neoplasia (PanIN), arise via reprogramming of mature acinar cells. We therefore hypothesized that the master regulator of acinar differentiation, PTF1A, could play a central role in suppressing PDAC initiation. In this study, we demonstrate that PTF1A expression is lost in both mouse and human PanINs, and that this downregulation is functionally imperative in mice for acinar reprogramming by oncogenic KRAS. Loss of Ptf1a alone is sufficient to induce acinar-to-ductal metaplasia, potentiate inflammation, and induce a KRAS-permissive, PDAC-like gene expression profile. As a result, Ptf1a-deficient acinar cells are dramatically sensitized to KRAS transformation, and reduced Ptf1a greatly accelerates development of invasive PDAC. Together, these data indicate that cell differentiation regulators constitute a new tumor suppressive mechanism in the pancreas. DOI: http://dx.doi.org/10.7554/eLife.07125.001 PMID:26151762
Snail1 is required for the maintenance of the pancreatic acinar phenotype
Loubat-Casanovas, Jordina; Peña, Raúl; Gonzàlez, Núria; Alba-Castellón, Lorena; Rosell, Santi; Francí, Clara; Navarro, Pilar; de Herreros, Antonio García
2016-01-01
The Snail1 transcriptional factor is required for correct embryonic development, yet its expression in adult animals is very limited and its functional roles are not evident. We have now conditionally inactivated Snail1 in adult mice and analyzed the phenotype of these animals. Snail1 ablation rapidly altered pancreas structure: one month after Snail1 depletion, acinar cells were markedly depleted, and pancreas accumulated adipose tissue. Snail1 expression was not detected in the epithelium but was in pancreatic mesenchymal cells (PMCs). Snail1 ablation in cultured PMCs downregulated the expression of several β-catenin/Tcf-4 target genes, modified the secretome of these cells and decreased their ability to maintain acinar markers in cultured pancreas cells. Finally, Snail1 deficiency modified the phenotype of pancreatic tumors generated in transgenic mice expressing c-myc under the control of the elastase promoter. Specifically, Snail1 depletion did not significantly alter the size of the tumors but accelerated acinar-ductal metaplasia. These results demonstrate that Snail1 is expressed in PMCs and plays a pivotal role in maintaining acinar cells within the pancreas in normal and pathological conditions. PMID:26735179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ge; Wan, Rong; Hu, Yanling
2014-01-31
Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration ofmore » sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.« less
Molecular Mechanism of Pancreatic and Salivary Glands Fluid and HCO3− Secretion
Lee, Min Goo; Ohana, Ehud; Park, Hyun Woo; Yang, Dongki; Muallem, Shmuel
2013-01-01
Fluid and HCO3− secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO3− secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren’s syndrome and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO3− secretion, in particular by secretory glands. Fluid and HCO3− secretion by secretory glands is a two step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl− and secrete HCO3−. The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete small amount of NaCl-rich fluid, while the duct absorbs the Cl− and secretes HCO3− and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO3− secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that contains high concentrations of Na+ and Cl− and fluid secretion is mediated by active Cl− secretion. The salivary glands duct absorbs both the Na+ and Cl− and secretes K+ and HCO3−. In this review, we focus on the molecular mechanism of fluid and HCO3− secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and point the differences to meet glands specific secretions. PMID:22298651
New insights into the pathways initiating and driving pancreatitis
Gukovskaya, Anna S.; Pandol, Stephen J.; Gukovsky, Ilya
2016-01-01
Purpose of review In this article, we discuss recent studies that advance our understanding of molecular and cellular factors initiating and driving pancreatitis, with the emphasis on the role of acinar cell organelle disorders. Recent findings The central physiologic function of the pancreatic acinar cell – to synthesize, store, and secrete digestive enzymes – critically relies on coordinated actions of the endoplasmic reticulum (ER), the endolysosomal system, mitochondria, and autophagy. Recent studies begin to unravel the roles of these organelles’ disordering in the mechanism of pancreatitis. Mice deficient in key autophagy mediators Atg5 or Atg7, or lysosome-associated membrane protein-2, exhibit dysregulation of multiple signaling and metabolic pathways in pancreatic acinar cells and develop spontaneous pancreatitis. Mitochondrial dysfunction caused by sustained opening of the permeability transition pore is shown to mediate pancreatitis in several clinically relevant experimental models, and its inhibition by pharmacologic or genetic means greatly reduces local and systemic pathologic responses. Experimental pancreatitis is also alleviated with inhibitors of ORAI1, a key component of the plasma membrane channel mediating pathologic rise in acinar cell cytosolic Ca2+. Pancreatitis-promoting mutations are increasingly associated with the ER stress. These findings suggest novel pathways and drug targets for pancreatitis treatment. In addition, the recent studies identify new mediators (e.g., neutrophil extracellular traps) of the inflammatory and other responses of pancreatitis. Summary The recent findings illuminate a critical role of organelles regulating the autophagic, endolysosomal, mitochondrial, and ER pathways in maintaining pancreatic acinar cell homeostasis and secretory function; provide compelling evidence that organelle disordering is a key pathogenic mechanism initiating and driving pancreatitis; and identify molecular and cellular factors that could be targeted to restore organellar functions and thus alleviate or treat pancreatitis. PMID:27428704
PNA lectin for purifying mouse acinar cells from the inflamed pancreas.
Xiao, Xiangwei; Fischbach, Shane; Fusco, Joseph; Zimmerman, Ray; Song, Zewen; Nebres, Philip; Ricks, David Matthew; Prasadan, Krishna; Shiota, Chiyo; Husain, Sohail Z; Gittes, George K
2016-02-17
Better methods for purifying human or mouse acinar cells without the need for genetic modification are needed. Such techniques would be advantageous for the specific study of certain mechanisms, such as acinar-to-beta-cell reprogramming and pancreatitis. Ulex Europaeus Agglutinin I (UEA-I) lectin has been used to label and isolate acinar cells from the pancreas. However, the purity of the UEA-I-positive cell fraction has not been fully evaluated. Here, we screened 20 widely used lectins for their binding specificity for major pancreatic cell types, and found that UEA-I and Peanut agglutinin (PNA) have a specific affinity for acinar cells in the mouse pancreas, with minimal affinity for other major pancreatic cell types including endocrine cells, duct cells and endothelial cells. Moreover, PNA-purified acinar cells were less contaminated with mesenchymal and inflammatory cells, compared to UEA-I purified acinar cells. Thus, UEA-I and PNA appear to be excellent lectins for pancreatic acinar cell purification. PNA may be a better choice in situations where mesenchymal cells or inflammatory cells are significantly increased in the pancreas, such as type 1 diabetes, pancreatitis and pancreatic cancer.
PNA lectin for purifying mouse acinar cells from the inflamed pancreas
Xiao, Xiangwei; Fischbach, Shane; Fusco, Joseph; Zimmerman, Ray; Song, Zewen; Nebres, Philip; Ricks, David Matthew; Prasadan, Krishna; Shiota, Chiyo; Husain, Sohail Z.; Gittes, George K.
2016-01-01
Better methods for purifying human or mouse acinar cells without the need for genetic modification are needed. Such techniques would be advantageous for the specific study of certain mechanisms, such as acinar-to-beta-cell reprogramming and pancreatitis. Ulex Europaeus Agglutinin I (UEA-I) lectin has been used to label and isolate acinar cells from the pancreas. However, the purity of the UEA-I-positive cell fraction has not been fully evaluated. Here, we screened 20 widely used lectins for their binding specificity for major pancreatic cell types, and found that UEA-I and Peanut agglutinin (PNA) have a specific affinity for acinar cells in the mouse pancreas, with minimal affinity for other major pancreatic cell types including endocrine cells, duct cells and endothelial cells. Moreover, PNA-purified acinar cells were less contaminated with mesenchymal and inflammatory cells, compared to UEA-I purified acinar cells. Thus, UEA-I and PNA appear to be excellent lectins for pancreatic acinar cell purification. PNA may be a better choice in situations where mesenchymal cells or inflammatory cells are significantly increased in the pancreas, such as type 1 diabetes, pancreatitis and pancreatic cancer. PMID:26884345
Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels
NASA Astrophysics Data System (ADS)
Pradhan, Swati
Xerostomia, a condition resulting from irradiation of the head and neck, affects over 40,000 cancer patients each year in the United States. Direct radiation damage of the acinar cells that secrete fluid and protein results in salivary gland hypofunction. Present medical management for xerostomia for patients treated for upper respiratory cancer is largely ineffective. Patients who have survived their terminal diagnosis are often left with a diminished quality of life and are unable to enjoy the simple pleasures of eating and drinking. This project aims to ultimately reduce human suffering by developing a functional implantable artificial salivary gland. The goal was to create an extracellular matrix (ECM) modified hyaluronic acid (HA) based hydrogel culture system that allows for the growth and differentiation of salivary acinar cells into functional acini-like structures capable of secreting large amounts of protein and fluid unidirectionally and to ultimately engineer a functional artificial salivary gland that can be implanted into an animal model. A tissue collection protocol was established and salivary gland tissue was obtained from patients undergoing head and neck surgery. The tissue specimen was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Hematoxylin and eosin staining confirmed normal glandular tissue structures including intercalated ducts, striated ducts and acini. alpha-Amylase and periodic acid schiff stain, used for structures with a high proportion of carbohydrate macromolecules, preferentially stained acinar cells in the tissue. Intercalated and striated duct structures were identified using cytokeratins 19 and 7 staining. Myoepithelial cells positive for cytokeratin 14 were found wrapped around the serous and mucous acini. Tight junction components including ZO-1 and E-cadherin were present between both ductal and acinar cells. Ductal and acinar cells were identified in cultured cells from dispersed tissue. Biomarker studies with the salivary enzyme, alpha-amylase, and tight junction proteins, such as zonula occludens-1 and E-cadherin, confirmed the phenotype of these cells. Strong staining for laminin and perlecan/HSPG2 were noted in basement membranes and perlecan also was secreted and organized by cultured acinar populations, which formed lobular structures that mimicked intact glands when cultured on Matrigel(TM) or a bioactive peptide derived from domain IV of perlecan (PlnDIV). On either matrix, large acini-like lobular structures grew and formed connections between the lobes. alpha-Amylase secretion was confirmed by staining and activity assay. Biomarkers including tight junction protein E-cadherin and water channel protein, aquaporin 5 (AQP5) found in tissue, were expressed in cultured acinar cells. Cells cultured on Matrigel(TM) or PlnDIV peptide organized stress fibers and activated focal adhesion kinase (FAK). HA, a natural polysaccharide and a major component of the ECM, can be used to generate soft and pliable hydrogels. A culture system consisting of HA hydrogel and PlnDIV peptide was used to generate a 2.5D culture system. Acinar cells cultured on these hydrogels self-assembled into lobular structures and expressed tight junction components such as ZO-1. Acini-like structures were stained for the presence of alpha-amylase. Live/dead staining revealed the presence of apoptotic cells in the center of the acini-like structures, indicative of lumen formation. The functionality of these acini-like structures was studied by stimulating them with neurotransmitters to enhance their fluid and protein production. Acini-like structures treated with norepinephrine and isoproterenol showed increased granule formation as observed by phase contrast microscopy and alpha-amylase staining in the structures. Lobular structures on hydrogels were treated with acetylcholine to increase fluid production. The increase in intracellular calcium due to the activation of the M3 muscarinic receptor via binding to acetylcholine was measured. Although cells in 2D did not show any differences, cells on the 2.5D hydrogels showed an increase in intracellular calcium. The culture system consisting of PlnDIV peptide reported here will aid the development of an artificial salivary gland which will foster formation of functional salivary units capable of secreting salivary fluid and which can be implanted into patients to relieve xerostomia. Future experiments will involve implantation of these hydrogels in animal models to test their functionality in vivo.
Almássy, János; Siguenza, Elias; Skaliczki, Marianna; Matesz, Klara; Sneyd, James; Yule, David I; Nánási, Péter P
2018-04-01
The plasma membrane of parotid acinar cells is functionally divided into apical and basolateral regions. According to the current model, fluid secretion is driven by transepithelial ion gradient, which facilitates water movement by osmosis into the acinar lumen from the interstitium. The osmotic gradient is created by the apical Cl - efflux and the subsequent paracellular Na + transport. In this model, the Na + -K + pump is located exclusively in the basolateral membrane and has essential role in salivary secretion, since the driving force for Cl - transport via basolateral Na + -K + -2Cl - cotransport is generated by the Na + -K + pump. In addition, the continuous electrochemical gradient for Cl - flow during acinar cell stimulation is maintained by the basolateral K + efflux. However, using a combination of single-cell electrophysiology and Ca 2+ -imaging, we demonstrate that photolysis of Ca 2+ close to the apical membrane of parotid acinar cells triggered significant K + current, indicating that a substantial amount of K + is secreted into the lumen during stimulation. Nevertheless, the K + content of the primary saliva is relatively low, suggesting that K + might be reabsorbed through the apical membrane. Therefore, we investigated the localization of Na + -K + pumps in acinar cells. We show that the pumps appear evenly distributed throughout the whole plasma membrane, including the apical pole of the cell. Based on these results, a new mathematical model of salivary fluid secretion is presented, where the pump reabsorbs K + from and secretes Na + to the lumen, which can partially supplement the paracellular Na + pathway.
Bombardo, Marta; Saponara, Enrica; Malagola, Ermanno; Chen, Rong; Seleznik, Gitta M; Haumaitre, Cecile; Quilichini, Evans; Zabel, Anja; Reding, Theresia; Graf, Rolf; Sonda, Sabrina
2017-11-01
Pancreatitis is a common inflammation of the pancreas with rising incidence in many countries. Despite improvements in diagnostic techniques, the disease is associated with high risk of severe morbidity and mortality and there is an urgent need for new therapeutic interventions. In this study, we evaluated whether histone deacetylases (HDACs), key epigenetic regulators of gene transcription, are involved in the development of the disease. We analysed HDAC regulation during cerulein-induced acute, chronic and autoimmune pancreatitis using different transgenic mouse models. The functional relevance of class I HDACs was tested with the selective inhibitor MS-275 in vivo upon pancreatitis induction and in vitro in activated macrophages and primary acinar cell explants. HDAC expression and activity were up-regulated in a time-dependent manner following induction of pancreatitis, with the highest abundance observed for class I HDACs. Class I HDAC inhibition did not prevent the initial acinar cell damage. However, it effectively reduced the infiltration of inflammatory cells, including macrophages and T cells, in both acute and chronic phases of the disease, and directly disrupted macrophage activation. In addition, MS-275 treatment reduced DNA damage in acinar cells and limited acinar de-differentiation into acinar-to-ductal metaplasia in a cell-autonomous manner by impeding the EGF receptor signalling axis. These results demonstrate that class I HDACs are critically involved in the development of acute and chronic forms of pancreatitis and suggest that blockade of class I HDAC isoforms is a promising target to improve the outcome of the disease. © 2017 The British Pharmacological Society.
Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan
2013-01-01
Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.
Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan
2013-01-01
Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ. PMID:24223842
Xiong, Yuyan; Yepuri, Gautham; Necetin, Sevil; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong
2017-06-01
Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L -arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic β-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II -/- ) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and β-cell mass, and more proliferative and less apoptotic β-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II -/- ) mice contains higher TNF-α levels than the young mice and stimulates β-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to β-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice. © 2017 by the American Diabetes Association.
Zymogen proteolysis within the pancreatic acinar cell is associated with cellular injury.
Grady, T; Mah'Moud, M; Otani, T; Rhee, S; Lerch, M M; Gorelick, F S
1998-11-01
The pathological activation of digestive zymogens within the pancreatic acinar cell probably plays a central role in initiating many forms of pancreatitis. To examine the relationship between zymogen activation and acinar cell injury, we investigated the effects of secretagogue treatment on isolated pancreatic acini. Immunofluorescence studies using antibodies to the trypsinogen-activation peptide demonstrated that both CCK (10(-7) M) hyperstimulation and bombesin (10(-5) M) stimulation of isolated acini resulted in trypsinogen processing to trypsin. These treatments also induced the proteolytic processing of procarboxypeptidase A1 to carboxypeptidase A1 (CA1). After CCK hyperstimulation, most CA1 remained in the acinar cell. In contrast, the CA1 generated by bombesin was released from the acinar cell. CCK hyperstimulation of acini was associated with cellular injury, whereas bombesin treatment did not induce injury. These studies suggest that 1) proteolytic zymogen processing occurs within the pancreatic acinar cell and 2) both zymogen activation and the retention of enzymes within the acinar cell may be required to induce injury.
Polycystin-2 Expression and Function in Adult Mouse Lacrimal Acinar Cells
Hilgenberg, Jill D.; Rybalchenko, Volodymyr; Medina-Ortiz, Wanda E.; Gregg, Elaine V.; Koulen, Peter
2011-01-01
Purpose. Lacrimal glands regulate the production and secretion of tear fluid. Dysfunction of lacrimal gland acinar cells can ultimately result in ocular surface disorders, such as dry eye disease. Ca2+ homeostasis is tightly regulated in the cellular environment, and secretion from the acinar cells of the lacrimal gland is regulated by both cholinergic and adrenergic stimuli, which both result in changes in the cytosolic Ca2+ concentration. We have previously described the detailed intracellular distribution of inositol-1,4,5-trisphosphate receptors (IP3Rs), and ryanodine receptors (RyRs) in lacrimal acinar cells, however, little is known regarding the expression and distribution of the third major class of intracellular Ca2+ release channels, transient receptor potential polycystin family (TRPP) channels. Methods. Studies were performed in adult lacrimal gland tissue of Swiss-Webster mice. Expression, localization, and intracellular distribution of TRPP Ca2+ channels were investigated using immunocytochemistry, immunohistochemistry, and electron microscopy. The biophysical properties of single polycystin-2 channels were investigated using a planar lipid bilayer electrophysiology system. Results. All channel-forming isoforms of TRPP channels (polycystin-2, polycystin-L, and polycystin-2L2) were expressed in adult mouse lacrimal gland. Subcellular analysis of immunogold labeling revealed strongest polycystin-2 expression on the membranes of the endoplasmic reticulum, Golgi, and nucleus. Biophysical properties of lacrimal gland polycystin-2 channels were similar to those described for other tissues. Conclusions. The expression of TRPP channels in lacrimal acinar cells suggests a functional role of the proteins in the regulation of lacrimal fluid secretion under physiological and disease conditions, and provides the basis for future studies focusing on physiology and pharmacology. PMID:21508103
Functional somatostatin receptors on a rat pancreatic acinar cell line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.
1988-07-01
Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of {sup 125}I-(Tyr{sup 11})Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 {plus minus} 20 fmol/10{sup 6} cells. Somatostatin receptor structure was analyzed by covalently cross-linking {sup 125}I-(Tyr{sup 11})somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibitionmore » of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N{sub i} to inhibit adenylate cyclase.« less
Bang, Betsy G.; Bang, Frederik B.
1969-01-01
The domestic chicken was used as an experimental model in which to demonstrate morphological and functional relationships of nasal organ systems, principally of mucous systems. Mucous secretions of olfactory, respiratory, lacrimal, and accessory areas were found to have clear histochemical differences, yet were sufficiently miscible in normal circumstances to form an unbroken, synchronously moving sheet. Changes induced experimentally in host physiology did not all affect the mucous components of given areas in the same way or to the same degree. Mucosal changes were produced by the following methods: Topically administered cocaine 20%, in a single application, temporarily paralyzed the cilia, and the consequently reduced traction apparently held mucus in the acini and effected a temporary lag in mucus excretion. Three successive applications caused acute acinar depletion and ciliary paralysis. Hexylcaine chloride 5% immediately desquamated all intranasal epithelia, damaged the proximal portion of the acini, and induced acinar exhaustion and mucosal inflammation—effects not overcome within 5½ days. Internal dehydration produced progressively viscous mucus, severe acinar gaping with mucus anchored in the acini, a heavy surface sheet, and deceleration or arrest of mucociliary flow. Avitaminosis A induced reduction in the height (about 50%) of all mucosae and acini, especially the inner lining of the maxillary concha, caused an actual 50% reduction in the number of cells per acinus, and retarded the mucociliary flow rate about 50%. Pilocarpine induced initial hypersecretion, later exhaustion, and, still later, slow production of densely staining mucus in the acinar cells; also acinar gaping. Breeding in a germfree environment produced a greatly reduced mucosal depth throughout the nasal fossa, an extraordinary reduction in the number of cells per acinus, relative reduction in the number of acinar neck cells, and concomitant increase in ciliated cells in that region. Exposure to a temperature of –20°C for 1 hr caused blanching of all secretory cells, acinar gaping, and temporary reduction of mucosal depth. PMID:5797516
Necroptosis: a potential, promising target and switch in acute pancreatitis.
Wang, Gang; Qu, Feng-Zhi; Li, Le; Lv, Jia-Chen; Sun, Bei
2016-02-01
Pancreatic acinar cell death is the major pathophysiological change in early acute pancreatitis (AP), and the death modalities are important factors determining its progression and prognosis. During AP, acinar cells undergo two major modes of death, including necrosis and apoptosis. Acinar necrosis can lead to intensely local and systemic inflammatory responses, which both induce and aggravate the lesion. Necrosis has long been considered an unregulated, and passive cell death process. Since the effective interventions of necrosis are difficult to perform, its relevant studies have not received adequate attention. Necroptosis is a newly discovered cell death modality characterized by both necrosis and apoptosis, i.e., it is actively regulated by special genes, while has the typical morphological features of necrosis. Currently, necroptosis is gradually becoming an important topic in the fields of inflammatory diseases. The preliminary results from necroptosis in AP have confirmed the existence of acinar cell necroptosis, which may be a potential target for effectively regulating inflammatory injuries and improving its outcomes; however, the functional changes and mechanisms of necroptosis still require further investigation. This article reviewed the progress of necroptosis in AP to provide a reference for deeply understanding the pathogenic mechanisms of AP and identifying new therapeutic targets.
Yamakawa, M; Weinstein, R; Tsuji, T; McBride, J; Wong, D T; Login, G R
2000-08-01
IL-1beta, TNF-alpha, and IL-6 have been implicated in the destruction of parotid gland acinar cells (but not duct cells) in autoimmune sialoadenitis. Here we report the temporal alterations of these cytokines in parotid acinar cells that may lead to this specificity in cell death in the non-obese diabetic (NOD) mouse model for Sjögren's syndrome. Immunohistochemistry on paraffin sections of parotid gland from 5- and 10-week-old BALB/c and NOD mice confirmed the presence of many peri-acinar lymphoid nodules but few T-cells and macrophages between acinar cells. RT-PCR on enzymatically dispersed mouse parotid acinar cells (MPACs) showed no bands for CD3varepsilon, CD20, or F4/80 regardless of mouse strain or age. By ELISA, MPACs from 10-week-old NODs showed a small but highly significant (p<0.003) increase in IL-1beta and a large significant decrease (p<0.008) in IL-6 compared to 5-week-old NODs. Norepinephrine-stimulated amylase release from MPACs was not different regardless of mouse strain or age. These data show that alterations in acinar cell production of IL-1beta and IL-6 in aging NODs precede periductal lymphoid aggregates and acinar cell secretory dysfunction. (J Histochem Cytochem 48:1033-1041,2000)
Jakubison, Brad L; Schweickert, Patrick G; Moser, Sarah E; Yang, Yi; Gao, Hongyu; Scully, Kathleen; Itkin-Ansari, Pamela; Liu, Yunlong; Konieczny, Stephen F
2018-05-02
Pancreatic acinar cells synthesize, package, and secrete digestive enzymes into the duodenum to aid in nutrient absorption and meet metabolic demands. When exposed to cellular stresses and insults, acinar cells undergo a dedifferentiation process termed acinar-ductal metaplasia (ADM). ADM lesions with oncogenic mutations eventually give rise to pancreatic ductal adenocarcinoma (PDAC). In healthy pancreata, the basic helix-loop-helix (bHLH) factors MIST1 and PTF1a coordinate an acinar-specific transcription network that maintains the highly developed differentiation status of the cells, protecting the pancreas from undergoing a transformative process. However, when MIST1 and PTF1a gene expression is silenced, cells are more prone to progress to PDAC. In this study, we tested whether induced MIST1 or PTF1a expression in PDAC cells could (i) re-establish the transcriptional program of differentiated acinar cells and (ii) simultaneously reduce tumor cell properties. As predicted, PTF1a induced gene expression of digestive enzymes and acinar-specific transcription factors, while MIST1 induced gene expression of vesicle trafficking molecules as well as activation of unfolded protein response components, all of which are essential to handle the high protein production load that is characteristic of acinar cells. Importantly, induction of PTF1a in PDAC also influenced cancer-associated properties, leading to a decrease in cell proliferation, cancer stem cell numbers, and repression of key ATP-binding cassette efflux transporters resulting in heightened sensitivity to gemcitabine. Thus, activation of pancreatic bHLH transcription factors rescues the acinar gene program and decreases tumorigenic properties in pancreatic cancer cells, offering unique opportunities to develop novel therapeutic intervention strategies for this deadly disease. © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Sobhan, Ubaidus; Sato, Masaki; Shinomiya, Takashi; Okubo, Migiwa; Tsumura, Maki; Muramatsu, Takashi; Kawaguchi, Mitsuru; Tazaki, Masakazu; Shibukawa, Yoshiyuki
2013-11-01
Transient receptor potential (TRP) cation channels are unique cellular sensors involved in multiple cellular functions. Their role in salivary secretion remains to be elucidated. The expression and localization of temperature-sensitive TRP channels in salivary (submandibular, sublingual and parotid) glands were analyzed by immunohistochemistry and quantitative real-time reverse transcription plus the polymerase chain reaction (RT-PCR). The effects of various TRP channel agonists on carbachol (CCh)-induced salivary secretion in the submandibular gland and on the intracellular Ca(2+) concentration ([Ca(2+)]i) in a submandibular epithelial cell line were also investigated. Immunohistochemistry revealed the expression of TRP-melastatin subfamily member 8 (TRPM8) and TRP-ankyrin subfamily member 1 (TRPA1) in myoepithelial, acinar and ductal cells in the sublingual, submandibular and parotid glands. In addition, TRP-vanilloid subfamily member 1 (TRPV1), TRPV3 and TRPV4 were also expressed in myoepithelial, acinar and ductal cells in all three types of gland. Quantitative real-time RT-PCR results demonstrated the mRNA expression of TRPV1, TRPV3, TRPV4, TRPM8 and TRPA1 in acinar and ductal cells in these salivary glands. Perfusion of the entire submandibular gland with the TRPV1 agonist capsaicin (1 μM) via the submandibular artery significantly increased CCh-induced salivation, whereas perfusion with TRPM8 and TRPA1 agonists (0.5 μM WS12 and 100 μM allyl isothiocyanate) decreased it. Application of agonists for each of the thermosensitive TRP channels increased [Ca(2+)]i in a submandibular epithelial cell line. These results indicate that temperature-sensitive TRP channels are localized and distributed in acinar, ductal and myoepithelial cells in salivary glands and that they play a functional role in the regulation and/or modulation of salivary secretion.
In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes
Li, Weida; Nakanishi, Mio; Zumsteg, Adrian; Shear, Matthew; Wright, Christopher; Melton, Douglas A; Zhou, Qiao
2014-01-01
Direct lineage conversion of adult cells is a promising approach for regenerative medicine. A major challenge of lineage conversion is to generate specific cell subtypes. The pancreatic islets contain three major hormone-secreting endocrine subtypes: insulin+ β-cells, glucagon+ α-cells, and somatostatin+ δ-cells. We previously reported that a combination of three transcription factors, Ngn3, Mafa, and Pdx1, directly reprograms pancreatic acinar cells to β-cells. We now show that acinar cells can be converted to δ-like and α-like cells by Ngn3 and Ngn3+Mafa respectively. Thus, three major islet endocrine subtypes can be derived by acinar reprogramming. Ngn3 promotes establishment of a generic endocrine state in acinar cells, and also promotes δ-specification in the absence of other factors. δ-specification is in turn suppressed by Mafa and Pdx1 during α- and β-cell induction. These studies identify a set of defined factors whose combinatorial actions reprogram acinar cells to distinct islet endocrine subtypes in vivo. DOI: http://dx.doi.org/10.7554/eLife.01846.001 PMID:24714494
Redman, R S
2008-06-01
Radiation therapy for cancer of the head and neck can devastate the salivary glands and partially devitalize the mandible and maxilla. As a result, saliva production is drastically reduced and its quality adversely altered. Without diligent home and professional care, the teeth are subject to rapid destruction by caries, necessitating extractions with attendant high risk of necrosis of the supporting bone. Innovative techniques in delivery of radiation therapy and administration of drugs that selectively protect normal tissues can reduce significantly the radiation effects on salivary glands. Nonetheless, many patients still suffer severe oral dryness. I review here the functional morphology and development of salivary glands as these relate to approaches to preventing and restoring radiation-induced loss of salivary function. The acinar cells are responsible for most of the fluid and organic material in saliva, while the larger ducts influence the inorganic content. A central theme of this review is the extent to which the several types of epithelial cells in salivary glands may be pluripotential and the circumstances that may influence their ability to replace cells that have been lost or functionally inactivated due to the effects of radiation. The evidence suggests that the highly differentiated cells of the acini and large ducts of mature glands can replace themselves except when the respective pools of available cells are greatly diminished via apoptosis or necrosis owing to severely stressful events. Under the latter circumstances, relatively undifferentiated cells in the intercalated ducts proliferate and redifferentiate as may be required to replenish the depleted pools. It is likely that some, if not many, acinar cells may de-differentiate into intercalated duct-like cells and thus add to the pool of progenitor cells in such situations. If the stress is heavy doses of radiation, however, the result is not only the death of acinar cells, but also a marked decline in functional differentiation and proliferative capacity of all of the surviving cells, including those with progenitor capability. Restoration of gland function, therefore, seems to require increasing the secretory capacity of the surviving cells, or replacing the acinar cells and their progenitors either in the existing gland remnants or with artificial glands.
New advances in cell physiology and pathophysiology of the exocrine pancreas.
Mössner, Joachim
2010-01-01
This review provides some aspects on the physiology of stimulation and inhibition of pancreatic digestive enzyme secretion and the pathophysiology of pancreatic acinar cell function leading to pancreatitis. Cholecystokinin (CCK) stimulates both directly via CCK-A receptors on acinar cells and indirectly via CCK-B receptors on nerves, followed by acetylcholine release, pancreatic enzyme secretion. It is still not known whether CCK-A receptors exist in human acinar cells, in contrast to acinar cells of rodents where CCK-A receptors have been well described. CCK has numerous actions both in the periphery and in the central nervous systems. CCK inhibits gastric motility and regulates satiety. Another major function of CCK is stimulation of gallbladder contraction. This function enables that bile acids act simultaneously with pancreatic lipolytic enzymes. Secretin is a major stimulator of bicarbonate secretion. Trypsinogen is activated by the gut mucosal enzyme enterokinase. The other pancreatic proenzymes are activated by trypsin. Termination of enzyme secretion may be regulated by negative feedback mechanisms via destruction of CCK-releasing peptides by trypsin. Furthermore, the ileum may act as a brake by release of inhibitory hormones such as PYY and somatostatin. In the pathophysiology of acute pancreatitis, fusion of zymogen granules with lysosomes leading to intracellular activation of trypsinogen is regarded as an initiation step. This activation of trypsinogen may be caused by the lysosomal enzyme cathepsin B. However, autoactivation of trypsinogen itself may be a possibility in pathogenesis. Autoactivation is enhanced in certain mutations of trypsinogen. Furthermore, an imbalance of protease inhibitors and active proteases may be involved. The role of pancreatic lipolytic enzymes, the role of bicarbonate secretion, and toxic Ca(2+) signals by excessive liberation from the endoplasmic reticulum have to be discussed in the pathogenesis of acute pancreatitis. Copyright © 2011 S. Karger AG, Basel.
Yan, Xing; Hai, Bo; Sun, Yi-lin; Zhang, Chun-mei; Wang, Song-ling
2009-02-01
To study the ultrastructure of parotid glands, lacrimal glands and pituitary glands between miniature pig and mouse. Five adult miniature pigs and 5 mice were studied. Ultrastructure of their parotid glands, lacrimal glands, and pituitary glands was observed. The secretary granules in acinar cell of miniature pig parotid glands showed higher density and more aequalis than those of mice. The cell apparatus in acinar cell of mouse parotid glands were more plentiful than those of miniature pigs. The secretary granules on blood vessel wall were richer in parotid gland of miniature pigs compared with mouse parotid gland. Lacrimal gland had the similar ultrastructure to parotid gland in these two animals. Many blood vessel antrum were found in pituitary glands of these two animals. Compared with mouse parotid glands, there are more secretary granules in acinar cells and vascular endothelial cells in miniature pig parotid glands, which might enter blood stream and have function of endocrine secretion.
Hale, Michael A; Swift, Galvin H; Hoang, Chinh Q; Deering, Tye G; Masui, Toshi; Lee, Youn-Kyoung; Xue, Jumin; MacDonald, Raymond J
2014-08-01
The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype. © 2014. Published by The Company of Biologists Ltd.
Hermann, Patrick C; Sancho, Patricia; Cañamero, Marta; Martinelli, Paola; Madriles, Francesc; Michl, Patrick; Gress, Thomas; de Pascual, Ricardo; Gandia, Luis; Guerra, Carmen; Barbacid, Mariano; Wagner, Martin; Vieira, Catarina R; Aicher, Alexandra; Real, Francisco X; Sainz, Bruno; Heeschen, Christopher
2014-11-01
Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting differentiation toward an acinar cell program. In mice, nicotine promotes pancreatic carcinogenesis and tumor development via down-regulation of Gata6 to induce acinar cell dedifferentiation. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
Critical role for NHE1 in intracellular pH regulation in pancreatic acinar cells.
Brown, David A; Melvin, James E; Yule, David I
2003-11-01
The primary function of pancreatic acinar cells is to secrete digestive enzymes together with a NaCl-rich primary fluid which is later greatly supplemented and modified by the pancreatic duct. A Na+/H+ exchanger(s) [NHE(s)] is proposed to be integral in the process of fluid secretion both in terms of the transcellular flux of Na+ and intracellular pH (pHi) regulation. Multiple NHE isoforms have been identified in pancreatic tissue, but little is known about their individual functions in acinar cells. The Na+/H+ exchange inhibitor 5-(N-ethyl-N-isopropyl) amiloride completely blocked pHi recovery after an NH4Cl-induced acid challenge, confirming a general role for NHE in pHi regulation. The targeted disruption of the Nhe1 gene also completely abolished pHi recovery from an acid load in pancreatic acini in both HCO3--containing and HCO3--free solutions. In contrast, the disruption of either Nhe2 or Nhe3 had no effect on pHi recovery. In addition, NHE1 activity was upregulated in response to muscarinic stimulation in wild-type mice but not in NHE1-deficient mice. Fluctuations in pHi could potentially have major effects on Ca2+ signaling following secretagogue stimulation; however, the targeted disruption of Nhe1 was found to have no significant effect on intracellular Ca2+ homeostasis. These data demonstrate that NHE1 is the major regulator of pHi in both resting and muscarinic agonist-stimulated pancreatic acinar cells.
Functional differences in the acinar cells of the murine major salivary glands.
Kondo, Y; Nakamoto, T; Jaramillo, Y; Choi, S; Catalan, M A; Melvin, J E
2015-05-01
In humans, approximately 90% of saliva is secreted by the 3 major salivary glands: the parotid (PG), the submandibular (SMG), and the sublingual glands (SLG). Even though it is known that all 3 major salivary glands secrete saliva by a Cl(-)-dependent mechanism, salivary secretion rates differ greatly among these glands. The goal of this study was to gain insight into the properties of the ion-transporting pathways in acinar cells that might account for the differences among the major salivary glands. Pilocarpine-induced saliva was simultaneously collected in vivo from the 3 major salivary glands of mice. When normalized by gland weight, the amount of saliva secreted by the PG was more than 2-fold larger than that obtained from the SMG and SLG. At the cellular level, carbachol induced an increase in the intracellular [Ca(2+)] that was more than 2-fold larger in PG and SMG than in SLG acinar cells. Carbachol-stimulated Cl(-) efflux and the protein levels of the Ca(2+)-activated Cl(-) channel TMEM16A, the major apical Cl(-) efflux pathway in salivary acinar cells, were significantly greater in PG compared with SMG and SLG. In addition, we evaluated the transporter activity of the Na(+)-K(+)-2Cl(-) cotransporters (NKCC1) and anion exchangers (AE), the 2 primary basolateral Cl(-) uptake mechanisms in acinar cells. The SMG NKCC1 activity was about twice that of the PG and more than 12-fold greater than that of the SLG. AE activity was similar in PG and SLG, and both PG and SLG AE activity was about 2-fold larger than that of SMG. In summary, the salivation kinetics of the 3 major glands are distinct, and these differences can be explained by the unique functional properties of each gland related to Cl(-) movement, including the transporter activities of the Cl(-) uptake and efflux pathways, and intracellular Ca(2+) mobilization. © International & American Associations for Dental Research 2015.
Muili, Kamaldeen A; Ahmad, Mahwish; Orabi, Abrahim I; Mahmood, Syeda M; Shah, Ahsan U; Molkentin, Jeffery D; Husain, Sohail Z
2012-04-15
Acute pancreatitis is a major health burden for which there are currently no targeted therapies. Premature activation of digestive proenzymes, or zymogens, within the pancreatic acinar cell is an early and critical event in this disease. A high-amplitude, sustained rise in acinar cell Ca(2+) is required for zymogen activation. We previously showed in a cholecystokinin-induced pancreatitis model that a potential target of this aberrant Ca(2+) signaling is the Ca(2+)-activated phosphatase calcineurin (Cn). However, in this study, we examined the role of Cn on both zymogen activation and injury, in the clinically relevant condition of neurogenic stimulation (by giving the acetylcholine analog carbachol) using three different Cn inhibitors or Cn-deficient acinar cells. In freshly isolated mouse acinar cells, pretreatment with FK506, calcineurin inhibitory peptide (CiP), or cyclosporine (CsA) blocked intra-acinar zymogen activation (n = 3; P < 0.05). The Cn inhibitors also reduced leakage of lactate dehydrogenase (LDH) by 79%, 62%, and 63%, respectively (n = 3; P < 0.05). Of the various Cn isoforms, the β-isoform of the catalytic A subunit (CnAβ) was strongly expressed in mouse acinar cells. For this reason, we obtained acinar cells from CnAβ-deficient mice (CnAβ-/-) and observed an 84% and 50% reduction in trypsin and chymotrypsin activation, respectively, compared with wild-type controls (n = 3; P < 0.05). LDH release in the CnAβ-deficient cells was reduced by 50% (n = 2; P < 0.05). The CnAβ-deficient cells were also protected against zymogen activation and cell injury induced by the cholecystokinin analog caerulein. Importantly, amylase secretion was generally not affected by either the Cn inhibitors or Cn deficiency. These data provide both pharmacological and genetic evidence that implicates Cn in intra-acinar zymogen activation and cell injury during pancreatitis.
Muili, Kamaldeen A.; Ahmad, Mahwish; Orabi, Abrahim I.; Mahmood, Syeda M.; Shah, Ahsan U.; Molkentin, Jeffery D.
2012-01-01
Acute pancreatitis is a major health burden for which there are currently no targeted therapies. Premature activation of digestive proenzymes, or zymogens, within the pancreatic acinar cell is an early and critical event in this disease. A high-amplitude, sustained rise in acinar cell Ca2+ is required for zymogen activation. We previously showed in a cholecystokinin-induced pancreatitis model that a potential target of this aberrant Ca2+ signaling is the Ca2+-activated phosphatase calcineurin (Cn). However, in this study, we examined the role of Cn on both zymogen activation and injury, in the clinically relevant condition of neurogenic stimulation (by giving the acetylcholine analog carbachol) using three different Cn inhibitors or Cn-deficient acinar cells. In freshly isolated mouse acinar cells, pretreatment with FK506, calcineurin inhibitory peptide (CiP), or cyclosporine (CsA) blocked intra-acinar zymogen activation (n = 3; P < 0.05). The Cn inhibitors also reduced leakage of lactate dehydrogenase (LDH) by 79%, 62%, and 63%, respectively (n = 3; P < 0.05). Of the various Cn isoforms, the β-isoform of the catalytic A subunit (CnAβ) was strongly expressed in mouse acinar cells. For this reason, we obtained acinar cells from CnAβ-deficient mice (CnAβ−/−) and observed an 84% and 50% reduction in trypsin and chymotrypsin activation, respectively, compared with wild-type controls (n = 3; P < 0.05). LDH release in the CnAβ-deficient cells was reduced by 50% (n = 2; P < 0.05). The CnAβ-deficient cells were also protected against zymogen activation and cell injury induced by the cholecystokinin analog caerulein. Importantly, amylase secretion was generally not affected by either the Cn inhibitors or Cn deficiency. These data provide both pharmacological and genetic evidence that implicates Cn in intra-acinar zymogen activation and cell injury during pancreatitis. PMID:22323127
Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S
2015-11-01
The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs) in pancreatitis. We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP de-glycosylation and degradation. LAMP cleavage by cathepsin B (CatB) was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger LAMPs' bulk de-glycosylation, but induces their degradation via CatB-mediated cleavage of LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, stimulates the basal and inhibits CCK-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis, and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction.
1982-01-01
We have examined the secretogogue responsiveness and the pattern of secretory proteins produced by a transplantable rat pancreatic acinar cell tumor. Dispersed tumor cells were found to discharge secretory proteins in vitro when incubated with hormones that act on four different classes of receptors: carbamylcholine, caerulein, secretin- vasoactive intestinal peptide, and bombesin. With all hormones tested, maximal discharge from tumor cells was only about one-half that of control pancreatic lobules, but occurred at the same dose optima except for secretin, whose dose optimum was 10-fold higher. Biochemical analysis of secretory proteins discharged by the tumor cells was carried out by crossed immunoelectrophoresis and by two-dimensional isoelectric focusing-SDS polyacrylamide gel electrophoresis. To establish a baseline for comparison, secretory proteins from normal rat pancreas were identified according to enzymatic activity and correlated with migration position on two-dimensional gels. Our results indicate that a group of basic polypeptides including proelastase, basic trypsinogen, basic chymotrypsinogen, and ribonuclease, two out of three forms of procarboxypeptidase B, and the major lipase species were greatly reduced or absent in tumor cell secretion. In contrast, the amount of acidic chymotrypsinogen was notably increased compared with normal acinar cells. Although the acinar tumor cells are highly differentiated cytologically and express functional receptors for several classes of pancreatic secretagogues, they show quantitative and qualitative differences when compared with normal pancreas with regard to their production of secretory proteins. PMID:6185502
Regeneration and Repair of the Exocrine Pancreas
Murtaugh, L. Charles; Keefe, Matthew
2015-01-01
Pancreatitis is caused by inflammatory injury to the exocrine pancreas, from which both humans and animal models appear to recover via regeneration of digestive enzyme-producing acinar cells. This regenerative process involves transient phases of inflammation, metaplasia and redifferentiation, driven by cell-cell interactions between acinar cells, leukocytes and resident fibroblasts. The NFκB signaling pathway is a critical determinant of pancreatic inflammation and metaplasia, whereas a number of developmental signals and transcription factors are devoted to promoting acinar redifferentiation after injury. Imbalances between these pro-inflammatory and pro-differentiation pathways contribute to chronic pancreatitis, characterized by persistent inflammation, fibrosis and acinar dedifferentiation. Loss of acinar cell differentiation also drives pancreatic cancer initiation, providing a mechanistic link between pancreatitis and cancer risk. Unraveling the molecular bases of exocrine regeneration may identify new therapeutic targets for treatment and prevention of both of these deadly diseases. PMID:25386992
Yago, Maria D; Diaz, Ricardo J; Ramirez, Rolando; Martinez, Maria A; Mañas, Mariano; Martinez-Victoria, Emilio
2004-02-01
The effects of dietary lipids on the fatty acid composition of rat pancreatic membranes and acinar cell function were investigated. Weaning rats were fed for 8 weeks on one of two diets which contained 100 g virgin olive oil (OO) or sunflower-seed oil (SO)/kg. Pancreatic plasma membranes were isolated and fatty acids determined. Amylase secretion and cytosolic concentrations of Ca(2+) and Mg(2+) were measured in pancreatic acini. Membrane fatty acids were profoundly affected by the diets; the rats fed OO had higher levels of 18 : 1n-9 (42.86 (sem 1.99) %) and total MUFA compared with the animals fed SO (25.37 (sem 1.11) %). Reciprocally, the SO diet resulted in greater levels of total and n-6 PUFA than the OO diet. The most striking effect was observed for 18 : 2n-6 (SO 17.88 (sem 1.32) %; OO 4.45 (sem 0.60) %), although the levels of 20 : 4n-6 were also different. The proportion of total saturated fatty acids was similar in both groups, and there was only a slight, not significant (P=0.098), effect on the unsaturation index. Compared with the OO group, acinar cells from the rats fed SO secreted more amylase at rest but less in response to cholecystokinin octapeptide, and this was paralleled by reduced Ca(2+) responses to the secretagogue. The results confirm that rat pancreatic cell membranes are strongly influenced by the type of dietary fat consumed and this is accompanied by a modulation of the secretory activity of pancreatic acinar cells that involves, at least in part, Ca(2+) signalling.
Gukovskaya, Anna S; Gukovsky, Ilya; Jung, Yoon; Mouria, Michelle; Pandol, Stephen J
2002-06-21
Apoptosis and necrosis are critical parameters of pancreatitis, the mechanisms of which remain unknown. Many characteristics of pancreatitis can be studied in vitro in pancreatic acini treated with high doses of cholecystokinin (CCK). We show here that CCK stimulates apoptosis and death signaling pathways in rat pancreatic acinar cells, including caspase activation, cytochrome c release, and mitochondrial depolarization. The mitochondrial dysfunction is mediated by upstream caspases (possibly caspase-8) and, in turn, leads to activation of caspase-3. CCK causes mitochondrial alterations through both permeability transition pore-dependent (cytochrome c release) and permeability transition pore-independent (mitochondrial depolarization) mechanisms. Caspase activation and mitochondrial alterations also occur in untreated pancreatic acinar cells; however, the underlying mechanisms are different. In particular, caspases protect untreated acinar cells from mitochondrial damage. We found that caspases not only mediate apoptosis but also regulate other parameters of CCK-induced acinar cell injury that are characteristic of pancreatitis; in particular, caspases negatively regulate necrosis and trypsin activation in acinar cells. The results suggest that the observed signaling pathways regulate parenchymal cell injury and death in CCK-induced pancreatitis. Protection against necrosis and trypsin activation by caspases can explain why the severity of pancreatitis in experimental models correlates inversely with the extent of apoptosis.
Ferdek, Pawel E; Jakubowska, Monika A; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H
2016-11-01
Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas. Bile acids are known to induce Ca 2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored. Here we show that cholate and taurocholate elicit more dramatic Ca 2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3-sulfate primarily affects acinar cells. Ca 2+ signals and necrosis are strongly dependent on extracellular Ca 2+ as well as Na + ; and Na + -dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells. Bile acid-mediated pancreatic damage can be further escalated by bradykinin-induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca 2+ signals and necrosis in acinar cells. However, bile acid-elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca 2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3-sulfate (TLC-S), known to induce Ca 2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca 2+ signals on extracellular Na + and the presence of sodium-taurocholate cotransporting polypeptide (NTCP) indicate a Na + -dependent bile acid uptake mechanism in stellate cells. Bile acid treatment caused necrosis predominantly in stellate cells, which was abolished by removal of extracellular Ca 2+ and significantly reduced in the absence of Na + , showing that bile-dependent cell death was a downstream event of Ca 2+ signals. Finally, combined application of TLC-S and the inflammatory mediator bradykinin caused more extensive necrosis in both stellate and acinar cells than TLC-S alone. Our findings shed new light on the mechanism by which bile acids promote pancreatic pathology. This involves not only signalling in acinar cells but also in stellate cells. © 2016 The Authors The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.
2016-01-01
Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na+‐dependent bile acid uptake mechanism in stellate cells. Bile acid treatment caused necrosis predominantly in stellate cells, which was abolished by removal of extracellular Ca2+ and significantly reduced in the absence of Na+, showing that bile‐dependent cell death was a downstream event of Ca2+ signals. Finally, combined application of TLC‐S and the inflammatory mediator bradykinin caused more extensive necrosis in both stellate and acinar cells than TLC‐S alone. Our findings shed new light on the mechanism by which bile acids promote pancreatic pathology. This involves not only signalling in acinar cells but also in stellate cells. PMID:27406326
Zhang, Jun; Rouse, Rodney L
2014-09-01
Three classical rodent models of acute pancreatitis were created in an effort to identify potential pre-clinical models of drug-induced pancreatitis (DIP) and candidate non-invasive biomarkers for improved detection of DIP. Study objectives included designing a lexicon to minimize bias by capturing normal variation and spontaneous and injury-induced changes while maintaining the ability to statistically differentiate degrees of change, defining morphologic anchors for novel pancreatic injury biomarkers, and improved understanding of mechanisms responsible for pancreatitis. Models were created in male Sprague-Dawley rats and C57BL6 mice through: 1) administration of the cholecystokinin analog, caerulein; 2) administration of arginine; 3) surgical ligation of the pancreatic duct. Nine morphologically detectable processes were used in the lexicon; acinar cell hypertrophy; acinar cell autophagy; acinar cell apoptosis; acinar cell necrosis; vascular injury; interstitial edema, inflammation and hemorrhage; fat necrosis; ductal changes; acinar cell atrophy. Criteria were defined for scoring levels (0 = absent, 1 = mild, 2 = moderate, 3 = severe) for each lexicon component. Consistent with previous studies, histopathology scores were significant greater in rats compared to mice at baseline and after treatment. The histopathology scores in caerulein and ligation-treated rats and mice were significantly greater than those of arginine-treated rats and mice. The present study supports a multifaceted pathogenesis for acute pancreatitis in which intra-acinar trypsinogen activation, damage to acinar cells, fat cells, and vascular cells as well as activation/degranulation of mast cells and activated macrophages all contribute to the initiation and/or progression of acute inflammation of the exocrine pancreas.
Fazio, Elena N; Young, Claire C; Toma, Jelena; Levy, Michael; Berger, Kurt R; Johnson, Charis L; Mehmood, Rashid; Swan, Patrick; Chu, Alphonse; Cregan, Sean P; Dilworth, F Jeffrey; Howlett, Christopher J; Pin, Christopher L
2017-09-01
Pancreatitis is a debilitating disease of the exocrine pancreas that, under chronic conditions, is a major susceptibility factor for pancreatic ductal adenocarcinoma (PDAC). Although down-regulation of genes that promote the mature acinar cell fate is required to reduce injury associated with pancreatitis, the factors that promote this repression are unknown. Activating transcription factor 3 (ATF3) is a key mediator of the unfolded protein response, a pathway rapidly activated during pancreatic insult. Using chromatin immunoprecipitation followed by next-generation sequencing, we show that ATF3 is bound to the transcriptional regulatory regions of >30% of differentially expressed genes during the initiation of pancreatitis. Of importance, ATF3-dependent regulation of these genes was observed only upon induction of pancreatitis, with pathways involved in inflammation, acinar cell differentiation, and cell junctions being specifically targeted. Characterizing expression of transcription factors that affect acinar cell differentiation suggested that acinar cells lacking ATF3 maintain a mature cell phenotype during pancreatitis, a finding supported by maintenance of junctional proteins and polarity markers. As a result, Atf3 -/- pancreatic tissue displayed increased tissue damage and inflammatory cell infiltration at early time points during injury but, at later time points, showed reduced acinar-to-duct cell metaplasia. Thus our results reveal a critical role for ATF3 as a key regulator of the acinar cell transcriptional response during injury and may provide a link between chronic pancreatitis and PDAC. © 2017 Fazio et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation.
Drosos, Yiannis; Neale, Geoffrey; Ye, Jianming; Paul, Leena; Kuliyev, Emin; Maitra, Anirban; Means, Anna L; Washington, M Kay; Rehg, Jerold; Finkelstein, David B; Sosa-Pineda, Beatriz
2016-03-01
The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Viktorinová, Ivana; Henry, Ian; Tomancak, Pavel
2017-11-01
Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs.
Henry, Ian; Tomancak, Pavel
2017-01-01
Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs. PMID:29176774
Singhi, Aatur D; Norwood, Stephanie; Liu, Ta-Chiang; Sharma, Rajni; Wolfgang, Christopher L; Schulick, Richard D; Zeh, Herbert J; Hruban, Ralph H
2013-09-01
Acinar cell cystadenoma (ACA) of the pancreas was initially described as a non-neoplastic cyst of the pancreas and, at that time, referred to as "acinar cystic transformation." In subsequent studies, these lesions were given the designation of "-oma," despite the relative lack of evidence supporting a neoplastic process. To characterize these lesions further, we examined the clinical, pathologic, and immunohistochemical features of 8 ACAs. The majority of patients were female (7 of 8, 88%) and ranged in age from 18 to 57 years (mean, 43 y). Grossly, the cysts involved the head (n=5), body (n=1), or the entire pancreas (n=2). ACAs were either multilocular (n=4) or unilocular (n=4) and ranged in size from 1.8 to 15 cm (mean, 6.8 cm). Histologically, multilocular ACAs were lined by patches of acinar and ductal epithelium. Immunolabeling, including double-labeling for cytokeratin 19 and chymotrypsin, highlighted the patchy pattern of the ductal and acinar cells lining the cysts. In some areas, the cysts with patches of acinar and ductal differentiation formed larger locules with incomplete septa as they appeared to fuse with other cysts. In contrast, the unilocular cases were lined by 1 to 2 cell layers of acinar cells with little intervening ductal epithelium. Nuclear atypia, mitotic figures, necrosis, infiltrative growth, and associated invasive carcinoma were absent in all cases. In addition, we assessed the clonal versus polyclonal nature of ACAs, occurring in women, using X-chromosome inactivation analysis of the human androgen receptor (AR) gene. Five of 7 cases were informative and demonstrated a random X-chromosome inactivation pattern. Clinical follow-up information was available for all patients, and follow-up ranged from 10 months to 7.8 years (mean, 3.6 y), with no evidence of recurrence or malignant transformation. We hypothesize that early lesions are marked by acinar dilatation that expands into and incorporates smaller ductules and later larger ducts. As the cysts increase in size, they fuse forming larger cysts. Later lesions demonstrate a unilocular cyst lined by predominantly acinar epithelium with scattered ductal cells. The term cystadenoma, with its neoplastic connotation, does not seem to accurately reflect the histologic, immunohistochemical, or molecular features of these lesions. We suggest readopting the term "acinar cystic transformation" until the non-neoplastic versus neoplastic origin of these lesions can be resolved.
Trulsson, Lena M; Gasslander, Thomas; Svanvik, Joar
2004-10-01
The background of cholecystokinin-8 (CCK-8)-induced hypoplasia in the pancreas is not known. In order to increase our understanding we studied the roles of nitric oxide and NF-kappaB in rats. CCK-8 was injected for 4 days, in a mode known to cause hypoplasia, and the nitric oxide formation was either decreased by means of N(omega)-nitro-L-arginine (L-NNA) or increased by S-nitroso-N-acetylpencillamine (SNAP). The activation of NF-kappaB was quantified by ELISA detection, apoptosis with caspase-3 and histone-associated DNA-fragmentation and mitotic activity in the acinar, centroacinar and ductal cells were visualized by the incorporation of [(3)H]-thymidine. Pancreatic histology and weight as well as protein- and DNA contents were also studied. Intermittent CCK injections reduced pancreatic weight, protein and DNA contents and increased apoptosis, acinar cell proliferation and nuclear factor kappaB (NF-kappaB) activation. It also caused vacuolisation of acinar cells. The inhibition of endogenous nitric oxide formation by L-NNA further increased apoptosis and NF-kappaB activation but blocked the increased proliferation and vacuolisation of acinar cells. The DNA content was not further reduced. SNAP given together with CCK-8 increased apoptosis and other pathways of cell death, raised proliferation of acinar cells and strongly reduced the DNA content in the pancreas. Histological examination showed no inflammation in any group. We conclude that during CCK-8-induced pancreatic hypoplasia, endogenously formed nitric oxide suppresses apoptosis but increases cell death along non-apoptotic pathways and stimulates regeneration of acinar cells. Exogenous nitric oxide enhances the acinar cell turnover by increasing both apoptotic and non-apoptotic cell death and cell renewal. In this situation NF-kappaB activation seems not to inhibit apoptosis nor promote cell proliferation.
Ablation of Phosphoinositide 3-Kinase-γ Reduces the Severity of Acute Pancreatitis
Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P.; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio
2004-01-01
In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-γ (PI3Kγ) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3Kγ, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3Kγ significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3Kγ-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3Kγ, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3Kγ. Our results thus suggest that inhibition of PI3Kγ may be of therapeutic value in acute pancreatitis. PMID:15579443
Ablation of phosphoinositide 3-kinase-gamma reduces the severity of acute pancreatitis.
Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio
2004-12-01
In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-gamma (PI3K gamma) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3K gamma, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3K gamma significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3K gamma-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3K gamma, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3K gamma. Our results thus suggest that inhibition of PI3K gamma may be of therapeutic value in acute pancreatitis.
Jiang, Chunfang; Zheng, Hai; Liu, Sunan; Fang, Kaifeng
2008-02-01
The relationship between intracellular trypsinogen activation and NF-kappa B activation in rat pancreatic acinar cells induced by M3 cholinergic receptor agonist (carbachol) hyperstimulation was studied. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, the active protease inhibitor (pefabloc) and NF-kappa B inhibitor (PDTC) in vitro. Intracellular trypsin activity was measured by using a fluorogenic substrate. The activity of NF-kappa B was monitored by using electrophoretic mobility shift assay. The results showed that after pretreatment with 2 mmol/L pefabloc, the activities of trypsin and NF-kappa B in pancreatic acinar cells treated with high concentrations of carbachol (10(-3) mol/L) in vitro was significantly decreased as compared with control group (P<0.01). The addition of 10(-2) mol/L PDTC resulted in a significant decrease of NF-kappa B activities in pancreatic acinar cells after treated with high concentrations of carbachol (10(-3) mol/L) in vitro, but the intracellular trypsinogen activity was not obviously inhibited (P>0.05). It was concluded that intracellular trypsinogen activation is likely involved in the regulation of high concentrations of carbachol-induced NF-kappa B activation in pancreatic acinar cells in vitro. NF-kappa B activation is likely not necessary for high concentrations of carbachol-induced trypsinogen activation in pancreatic acinar cells in vitro.
Schmitner, Nicole; Kohno, Kenji
2017-01-01
ABSTRACT The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b. In conclusion, we show a conserved requirement for Wnt signaling in exocrine tissue expansion and reveal a potential novel progenitor or stem cell population as a source for exocrine neogenesis after complete loss of acinar cells. PMID:28138096
Alcohols enhance caerulein-induced zymogen activation in pancreatic acinar cells
LU, ZHAO; KARNE, SURESH; KOLODECIK, THOMAS; GORELICK, FRED S.
2010-01-01
Activation of zymogens within the pancreatic acinar cell is an early feature of acute pancreatitis. Supraphysiological concentrations of cholecystokinin (CCK) cause zymogen activation and pancreatitis. The effects of the CCK analog, caerulein, and alcohol on trypsin and chymotrypsin activation in isolated pancreatic acini were examined. Caerulein increased markers of zymogen activation in a time- and concentration-dependent manner. Notably, trypsin activity reached a peak value within 30 min, then diminished with time, whereas chymotrypsin activity increased with time. Ethanol (35 mM) sensitized the acinar cells to the effects of caerulein (10−10 to 10−7 M) on zymogen activation but had no effect alone. The effects of ethanol were concentration dependent. Alcohols with a chain length of ≥2 also sensitized the acinar cell to caerulein; the most potent was butanol. Branched alcohols (2-propanol and 2-butanol) were less potent than aliphatic alcohols (1-propanol and 1-butanol). The structure of an alcohol is related to its ability to sensitize acinar cells to the effects of caerulein on zymogen activation. PMID:11842000
Developmental biology of the pancreas: a comprehensive review.
Gittes, George K
2009-02-01
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Telocytes in pancreas of the Chinese giant salamander (Andrias davidianus).
Zhang, Hui; Yu, Pengcheng; Zhong, Shengwei; Ge, Tingting; Peng, Shasha; Guo, Xiaoquan; Zhou, Zuohong
2016-11-01
Telocytes (TCs), novel interstitial cells, have been identified in various organs of many mammals. However, information about TCs of lower animals remains rare. Herein, pancreatic TCs of the Chinese giant salamanders (Andrias davidianus) were identified by CD34 immunohistochemistry (IHC) and transmission electron microscopy (TEM). The IHC micrographs revealed CD34 + TCs with long telopodes (Tps) that were located in the interstitium of the pancreas. CD34 + TCs/Tps were frequently observed between exocrine acinar cells and were close to blood vessels. The TEM micrographs also showed the existence of TCs in the interstitium of the pancreas. TCs had distinctive ultrastructural features, such as one to three very long and thin Tps with podoms and podomers, caveolae, dichotomous branching, neighbouring exosomes and vesicles. The Tps and exosomes were found in close proximity to exocrine acinar cells and α cells. It is suggested that TCs may play a role in the regeneration of acinar cells and α cells. In conclusion, our results demonstrated the presence of TCs in the pancreas of the Chinese giant salamander. This finding will assist us in a better understanding of TCs functions in the amphibian pancreas. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick
2018-01-01
The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells. PMID:29535635
Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick
2018-01-01
The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells.
Rejniak, Katarzyna A.; Anderson, Alexander R.A.
2013-01-01
Normal hollow epithelial acini are 3-dimensional culture structures that resemble the architecture and functions of normal breast glands and lobules. This experimental model enables in vitro investigations of genotypic and molecular abnormalities associated with epithelial cancers. However, the way in which the acinar structure is formed is not yet completely understood. Gaining more information about consecutive stages of acini development—starting from a single cell that gives rise to a cluster of randomly oriented cells, followed by cell differentiation that leads to a layer of polarised cells enclosing the hollow lumen—will provide insight into the transformations of eukaryotic cells that are necessary for their successful arrangement into an epithelium. In this paper, we introduce a two-dimensional single-cell-based model representing the cross section of a typical acinus. Using this model, we investigate mechanisms that lead to the unpolarised cell growth, cell polarisation, stabilisation of the acinar structure and maintenance of the hollow lumen and discuss the sufficient conditions for each stage of acinar formation. In the follow-up paper (Rejniak and Anderson, A computational study of the development of epithelial acini. II. Necessary conditions for structure and lumen stability), we investigate what morphological changes are observable in the growing acini when some assumptions of this model are relaxed. PMID:18188652
Rezaei, Marzieh; Hosseini, Ahmad; Nikeghbalian, Saman; Ghaderi, Abbas
Basic research in the field of acinar cell carcinoma (ACC) as a rare neoplasm of the pancreas is dependent on the availability of pragmatic model such as new pancreatic cancer cell lines. Thus, establishment and characterization of new pancreatic cancer cell lines from ACC origin are deemed important. Faraz-ICR cell line was derived from a 58-years old woman with pancreatic acinar cell carcinoma by the collagenase digestion protocol. We characterized the cell line by examining its morphology and cytostructural and functional profile. Faraz-ICR has a doubling time of 35 hours and grows in soft agar with a colony-forming efficiency of 25%. The cell had nearly normal pattern of chromosomes in karyotype analysis and Comparative Genomic Hybridization (CGH) array analysis. Evaluation of cells by flowcytometry showed that Faraz-ICR is negative for EpCAM and mesenchymal markers in different passages, and has epithelial nature. Immunofluorescence staining revealed that cells were strongly positive for vimentin, desmin, ezrin, S100, nestin and they were negative for pan-cytokeratins, chromogranin and alpha smooth muscle actin. We were able to establish a new pancreatic carcinoma cell line with partial aspects of Epithelial-mesenchymal transition and aggressiveness. This cell line might be suitable for studying various anticancer drugs and protein profile aiming to see any possible tumor associated marker for ACC. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Yoon, Mi Na; Kim, Min Jae; Koong, Hwa Soo; Kim, Dong Kwan; Kim, Se Hoon; Park, Hyung Seo
2017-09-01
Oscillation of intracellular calcium levels is closely linked to initiating secretion of digestive enzymes from pancreatic acinar cells. Excessive alcohol consumption is known to relate to a variety of disorders in the digestive system, including the exocrine pancreas. In this study, we have investigated the role and mechanism of ethanol on carbamylcholine (CCh)-induced intracellular calcium oscillation in murine pancreatic acinar cells. Ethanol at concentrations of 30 and 100 mM reversibly suppressed CCh-induced Ca 2+ oscillation in a dose-dependent manner. Pretreatment of ethanol has no effect on the store-operated calcium entry induced by 10 μM of CCh. Ethanol significantly reduced the initial calcium peak induced by low concentrations of CCh and therefore, the CCh-induced dose-response curve of the initial calcium peak was shifted to the right by ethanol pretreatment. Furthermore, ethanol significantly dose-dependently reduced inositol 1,4,5-trisphosphate-induced calcium release from the internal stores in permeabilized acinar cells. These results provide evidence that excessive alcohol intake could impair cytosolic calcium oscillation through inhibiting calcium release from intracellular stores in mouse pancreatic acinar cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Bonior, Joanna; Warzecha, Zygmunt; Ceranowicz, Piotr; Gajdosz, Ryszard; Pierzchalski, Piotr; Kot, Michalina; Leja-Szpak, Anna; Nawrot-Porąbka, Katarzyna; Link-Lenczowski, Paweł; Olszanecki, Rafał; Bartuś, Krzysztof; Trąbka, Rafał; Kuśnierz-Cabala, Beata; Dembiński, Artur; Jaworek, Jolanta
2017-01-01
Ghrelin was shown to exhibit protective and therapeutic effect in the gut. Aim of the study was to investigate the role of sensory nerves (SN) in the protective effect of ghrelin in acute pancreatitis (AP). Studies were performed on male Wistar rats or isolated pancreatic acinar cells. After capsaicin deactivation of sensory nerves (CDSN) or treatment with saline, rats were pretreated intraperitoneally with ghrelin or saline. In those rats, AP was induced by cerulein or pancreases were used for isolation of pancreatic acinar cells. Pancreatic acinar cells were incubated in cerulein-free or cerulein containing solution. In rats with intact SN, pretreatment with ghrelin led to a reversal of the cerulein-induced increase in pancreatic weight, plasma activity of lipase and plasma concentration of tumor necrosis factor-α (TNF-α). These effects were associated with an increase in plasma interleukin-4 concentration and reduction in histological signs of pancreatic damage. CDSN tended to increase the severity of AP and abolished the protective effect of ghrelin. Exposure of pancreatic acinar cells to cerulein led to increase in cellular expression of mRNA for TNF-α and cellular synthesis of this cytokine. Pretreatment with ghrelin reduced this alteration, but this effect was only observed in acinar cells obtained from rats with intact SN. Moreover, CDSN inhibited the cerulein- and ghrelin-induced increase in gene expression and synthesis of heat shock protein 70 (HSP70) in those cells. Ghrelin exhibits the protective effect in cerulein-induced AP on the organ and pancreatic acinar cell level. Sensory nerves ablation abolishes this effect. PMID:28665321
Wen, Li; Voronina, Svetlana; Javed, Muhammad A.; Awais, Muhammad; Szatmary, Peter; Latawiec, Diane; Chvanov, Michael; Collier, David; Huang, Wei; Barrett, John; Begg, Malcolm; Stauderman, Ken; Roos, Jack; Grigoryev, Sergey; Ramos, Stephanie; Rogers, Evan; Whitten, Jeff; Velicelebi, Gonul; Dunn, Michael; Tepikin, Alexei V.; Criddle, David N.; Sutton, Robert
2015-01-01
Background & Aims Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release–activated calcium modulator ORAI1 is the most abundant Ca2+ entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. Methods Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. Results GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca2+ currents after Ca2+ release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. Conclusions Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed for the treatment of patients with pancreatitis. PMID:25917787
Schmitner, Nicole; Kohno, Kenji; Meyer, Dirk
2017-03-01
The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l- negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l -positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b In conclusion, we show a conserved requirement for Wnt signaling in exocrine tissue expansion and reveal a potential novel progenitor or stem cell population as a source for exocrine neogenesis after complete loss of acinar cells. © 2017. Published by The Company of Biologists Ltd.
Sun, Zhen; Gou, Wenyu; Kim, Do-Sung; Dong, Xiao; Strange, Charlie; Tan, Yu; Adams, David B; Wang, Hongjun
2017-11-01
The objective of this study was to assess the capacity of adipose-derived mesenchymal stem cells (ASCs) to mitigate disease progression in an experimental chronic pancreatitis mouse model. Chronic pancreatitis (CP) was induced in C57BL/6 mice by repeated ethanol and cerulein injection, and mice were then infused with 4 × 10 5 or 1 × 10 6 GFP + ASCs. Pancreas morphology, fibrosis, inflammation, and presence of GFP + ASCs in pancreases were assessed 2 weeks after treatment. We found that ASC infusion attenuated pancreatic damage, preserved pancreas morphology, and reduced pancreatic fibrosis and cell death. GFP + ASCs migrated to pancreas and differentiated into amylase + cells. In further confirmation of the plasticity of ASCs, ASCs co-cultured with acinar cells in a Transwell system differentiated into amylase + cells with increased expression of acinar cell-specific genes including amylase and chymoB1. Furthermore, culture of acinar or pancreatic stellate cell lines in ASC-conditioned medium attenuated ethanol and cerulein-induced pro-inflammatory cytokine production in vitro. Our data show that a single intravenous injection of ASCs ameliorated CP progression, likely by directly differentiating into acinar-like cells and by suppressing inflammation, fibrosis, and pancreatic tissue damage. These results suggest that ASC cell therapy has the potential to be a valuable treatment for patients with pancreatitis. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Wauters, Elke; Sanchez-Arévalo Lobo, Victor J; Pinho, Andreia V; Mawson, Amanda; Herranz, Daniel; Wu, Jianmin; Cowley, Mark J; Colvin, Emily K; Njicop, Erna Ngwayi; Sutherland, Rob L; Liu, Tao; Serrano, Manuel; Bouwens, Luc; Real, Francisco X; Biankin, Andrew V; Rooman, Ilse
2013-04-01
The exocrine pancreas can undergo acinar-to-ductal metaplasia (ADM), as in the case of pancreatitis where precursor lesions of pancreatic ductal adenocarcinoma (PDAC) can arise. The NAD(+)-dependent protein deacetylase Sirtuin-1 (Sirt1) has been implicated in carcinogenesis with dual roles depending on its subcellular localization. In this study, we examined the expression and the role of Sirt1 in different stages of pancreatic carcinogenesis, i.e. ADM models and established PDAC. In addition, we analyzed the expression of KIAA1967, a key mediator of Sirt1 function, along with potential Sirt1 downstream targets. Sirt1 was co-expressed with KIAA1967 in the nuclei of normal pancreatic acinar cells. In ADM, Sirt1 underwent a transient nuclear-to-cytoplasmic shuttling. Experiments where during ADM, we enforced repression of Sirt1 shuttling, inhibition of Sirt1 activity or modulation of its expression, all underscore that the temporary decrease of nuclear and increase of cytoplasmic Sirt1 stimulate ADM. Our results further underscore that important transcriptional regulators of acinar differentiation, that is, Pancreatic transcription factor-1a and β-catenin can be deacetylated by Sirt1. Inhibition of Sirt1 is effective in suppression of ADM and in reducing cell viability in established PDAC tumors. KIAA1967 expression is differentially downregulated in PDAC and impacts on the sensitivity of PDAC cells to the Sirt1/2 inhibitor Tenovin-6. In PDAC, acetylation of β-catenin is not affected, unlike p53, a well-characterized Sirt1-regulated protein in tumor cells. Our results reveal that Sirt1 is an important regulator and potential therapeutic target in pancreatic carcinogenesis. ©2012 AACR.
IP3R deficit underlies loss of salivary fluid secretion in Sjögren’s Syndrome
Teos, Leyla Y.; Zhang, Yu; Cotrim, Ana P.; Swaim, William; Won, Jon H.; Ambrus, Julian; Shen, Long; Bebris, Lolita; Grisius, Margaret; Jang, Shyh-Ing; Yule, David I.; Ambudkar, Indu S.; Alevizos, Ilias
2015-01-01
The autoimmune exocrinopathy, Sjögren’s syndrome (SS), is associated with secretory defects in patients, including individuals with mild lymphocytic infiltration and minimal glandular damage. The mechanism(s) underlying the secretory dysfunction is not known. We have used minor salivary gland biopsies from SS patients and healthy individuals to assess acinar cell function in morphologically intact glandular areas. We report that agonist-regulated intracellular Ca2+ release, critically required for Ca2+ entry and fluid secretion, is defective in acini from SS patients. Importantly, these acini displayed reduction in IP3R2 and IP3R3, but not AQP5 or STIM1. Similar decreases in IP3R and carbachol (CCh)-stimulated [Ca2+]i elevation were detected in acinar cells from lymphotoxin-alpha (LTα) transgenic (TG) mice, a model for (SS). Treatment of salivary glands from healthy individuals with LT α, a cytokine linked to disease progression in SS and IL14α mice, reduced Ca2+ signaling. Together, our findings reveal novel IP3R deficits in acinar cells that underlie secretory dysfunction in SS patients. PMID:26365984
Experimental evidence of age-related adaptive changes in human acinar airways
Quirk, James D.; Sukstanskii, Alexander L.; Woods, Jason C.; Lutey, Barbara A.; Conradi, Mark S.; Gierada, David S.; Yusen, Roger D.; Castro, Mario
2015-01-01
The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized 3He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized 3He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518
Login, G R; Yang, J; Bryan, K P; Digenis, E C; McBride, J; Elovic, A; Quissell, D O; Dvorak, A M; Wong, D T
1997-03-01
Although the expression and biological role of transforming growth factor-alpha (TGF-alpha) have been explored in a variety of normal cells in mammalian species, little is known about the storage of TGF-alpha in secretory cells of exocrine organs. Parotid glands from four rats were homogenized for RNA isolation followed by reverse transcription-polymerase chain reaction to determine the presence of TGF-alpha message. In situ hybridization using a hamster-specific TGF-alpha riboprobe was done on paraffin sections. Parotid gland and isolated acinar cells were processed for transmission electron microscopy (TEM) and postembedding immunogold labeled for TGF-alpha. Gold particles were counted on approximately 200 granules in 10 acinar cells and in 10 intercalated duct cells. Labeling density was calculated as the number of gold particles per square micrometer +/- SD. Statistical significance was calculated using one-way analysis of variance. Using multiple technologies, we have established that rat parotid acinar and intercalated duct cells synthesize TGF-alpha and store the precursor form of this cytokine in their secretory granules.
Weber, Heike; Jonas, Ludwig; Wakileh, Michael; Krüger, Burkhard
2014-03-01
The pathogenesis of acute pancreatitis (AP) is still poorly understood. Thus, a reliable pharmacological therapy is currently lacking. In recent years, an impairment of the energy metabolism of pancreatic acinar cells, caused by Ca(2+)-mediated depolarization of the inner mitochondrial membrane and a decreased ATP supply, has been implicated as an important pathological event. In this study, we investigated whether quercetin exerts protection against mitochondrial dysfunction. Following treatment with or without quercetin, rat pancreatic acinar cells were stimulated with supramaximal cholecystokinin-8 (CCK). CCK caused a decrease in the mitochondrial membrane potential (MMP) and ATP concentration, whereas the mitochondrial dehydrogenase activity was significantly increased. Quercetin treatment before CCK application exerted no protection on MMP but increased ATP to a normal level, leading to a continuous decrease in the dehydrogenase activity. The protective effect of quercetin on mitochondrial function was accompanied by a reduction in CCK-induced changes to the cell membrane. Concerning the molecular mechanism underlying the protective effect of quercetin, an increased AMP/ATP ratio suggests that the AMP-activated protein kinase system may be activated. In addition, quercetin strongly inhibited CCK-induced trypsin activity. The results indicate that the use of quercetin may be a therapeutic strategy for reducing the severity of AP.
Case report: primary acinar cell carcinoma of the liver treated with multimodality therapy
Basturk, Olca; Shia, Jinru; Klimstra, David S.; Alago, William; D’Angelica, Michael I.; Abou-Alfa, Ghassan K.; O’Reilly, Eileen M.; Lowery, Maeve A.
2017-01-01
We describe a case of primary acinar cell carcinoma (ACC) originating in the liver in a 54-year-old female, diagnosed following persistent abnormal elevated liver function. Imaging revealed two masses, one dominant lesion in the right hepatic lobe and another in segment IVA. A right hepatectomy was performed to remove the larger lesion, while the mass in segment IVA was unresectable due to its proximity to the left hepatic vein. Immunohistochemical staining showed positivity for trypsin and chymotrypsin. Postoperatively the patient underwent hepatic arterial embolization of the other unresectable lesion followed by FOLFOX chemotherapy. At 20 months from diagnosis the patient is currently under observation with a decreasing necrotic mass and no other disease evident. Based on histology, immunohistochemistry and radiological findings a diagnosis of primary ACC of the liver was made. Genomic assessment of somatic mutations within the patient’s tumor was also performed through next generation sequencing and findings were consistent with an acinar malignancy. This case highlights a rare tumor subtype treated with a combination of therapeutic modalities through a multidisciplinary approach. PMID:29184698
Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav
2012-07-01
Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25-30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10(-6) M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav
2012-01-01
Abstract Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25–30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10−6M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. PMID:22040127
Gaiko-Shcherbak, Aljona; Fabris, Gloria; Dreissen, Georg; Merkel, Rudolf; Hoffmann, Bernd; Noetzel, Erik
2015-01-01
The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa) experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN) without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunavala-Dossabhoy, Gulshan, E-mail: gsunav@lsuhsc.edu; Palaniyandi, Senthilnathan; Richardson, Charles
2012-09-01
Purpose: Patients treated with radiotherapy for head-and-neck cancer invariably suffer its deleterious side effect, xerostomia. Salivary hypofunction ensuing from the irreversible destruction of glands is the most common and debilitating oral complication affecting patients undergoing regional radiotherapy. Given that the current management of xerostomia is palliative and ineffective, efforts are now directed toward preventive measures to preserve gland function. The human homolog of Tousled protein, TLK1B, facilitates chromatin remodeling at DNA repair sites and improves cell survival against ionizing radiation (IR). Therefore, we wanted to determine whether a direct transfer of TLK1B protein to rat salivary glands could protect againstmore » IR-induced salivary hypofunction. Methods: The cell-permeable TAT-TLK1B fusion protein was generated. Rat acinar cell line and rat salivary glands were pretreated with TAT peptide or TAT-TLK1B before IR. The acinar cell survival in vitro and salivary function in vivo were assessed after radiation. Results: We demonstrated that rat acinar cells transduced with TAT-TLK1B were more resistant to radiation (D{sub 0} = 4.13 {+-} 1.0 Gy; {alpha}/{beta} = 0 Gy) compared with cells transduced with the TAT peptide (D{sub 0} = 4.91 {+-} 1.0 Gy; {alpha}/{beta} = 20.2 Gy). Correspondingly, retroductal instillation of TAT-TLK1B in rat submandibular glands better preserved salivary flow after IR (89%) compared with animals pretreated with Opti-MEM or TAT peptide (31% and 39%, respectively; p < 0.01). Conclusions: The results demonstrate that a direct transfer of TLK1B protein to the salivary glands effectively attenuates radiation-mediated gland dysfunction. Prophylactic TLK1B-protein therapy could benefit patients undergoing radiotherapy for head-and-neck cancer.« less
Tourlakis, Marina E.; Zhang, Siyi; Ball, Heather L.; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S.; Guidos, Cynthia J.; Durie, Peter R.; Rommens, Johanna M.
2015-01-01
Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to be p53-dependent. Our findings therefore point to cell/tissue-specific responses to p53-activation that include distinction between apoptosis and senescence pathways, in the context of translation disruption. PMID:26057580
Tourlakis, Marina E; Zhang, Siyi; Ball, Heather L; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S; Guidos, Cynthia J; Durie, Peter R; Rommens, Johanna M
2015-06-01
Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15(Ink4b) and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to be p53-dependent. Our findings therefore point to cell/tissue-specific responses to p53-activation that include distinction between apoptosis and senescence pathways, in the context of translation disruption.
Cho, Gota; Bragiel, Aneta M; Wang, Di; Pieczonka, Tomasz D; Skowronski, Mariusz T; Shono, Masayuki; Nielsen, Søren; Ishikawa, Yasuko
2015-04-01
The subcellular distribution of aquaporin-5 (AQP5) in rat parotid acinar cells in response to muscarinic acetylcholine receptor (mAChR) activation remains unclear. Immunoconfocal and immunoelectron microscopy were used to visualize the distribution of AQP5 in parotid acinar cells. Western blotting was used to analyze AQP5 levels in membranes. To clarify the characteristics of membrane domains associated with AQP5, detergent solubility and sucrose-density flotation experiments were performed. Under control conditions, AQP5 was diffusely distributed on the apical plasma membrane (APM) and apical plasmalemmal region and throughout the cytoplasm. Upon mAChR activation, AQP5 was predominantly located in the nucleus, APM and lateral plasma membrane (LPM). Subsequently, localization of AQP5 in the nucleus, APM and LPM was decreased. Prolonged atropine treatment inhibited mAChR agonist-induced translocation of AQP5 to the nucleus, APM and LPM. AQP5 levels were enhanced in isolated nuclei and nuclear membranes prepared from parotid tissues incubated with mAChR agonist. mAChR agonist induced AQP5 levels in both soluble and insoluble nuclear fractions solubilized with Triton X-100 or Lubrol WX. Small amounts of AQP5 in nuclei were detected using low-density sucrose gradient. When AQP5 was present in the nuclear membrane, nuclear size decreased. The activation of mAChR induced AQP5 translocation to the nucleus, APM and LPM, and AQP5 may trigger water transport across the nuclear membrane and plasma membrane in rat parotid acinar cells. AQP5 translocates to the nuclear membrane and may trigger the movement of water, inducing shrinkage of the nucleus and the start of nuclear functions. Copyright © 2015 Elsevier B.V. All rights reserved.
Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers.
Dorrell, Craig; Grompe, Maria T; Pan, Fong Cheng; Zhong, Yongping; Canaday, Pamela S; Shultz, Leonard D; Greiner, Dale L; Wright, Chris V; Streeter, Philip R; Grompe, Markus
2011-06-06
Tools permitting the isolation of live pancreatic cell subsets for culture and/or molecular analysis are limited. To address this, we developed a collection of monoclonal antibodies with selective surface labeling of endocrine and exocrine pancreatic cell types. Cell type labeling specificity and cell surface reactivity were validated on mouse pancreatic sections and by gene expression analysis of cells isolated using FACS. Five antibodies which marked populations of particular interest were used to isolate and study viable populations of purified pancreatic ducts, acinar cells, and subsets of acinar cells from whole pancreatic tissue or of alpha or beta cells from isolated mouse islets. Gene expression analysis showed the presence of known endocrine markers in alpha and beta cell populations and revealed that TTR and DPPIV are primarily expressed in alpha cells whereas DGKB and GPM6A have a beta cell specific expression profile. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liou, Geou-Yarh; Döppler, Heike; Braun, Ursula B.; Panayiotou, Richard; Scotti Buzhardt, Michele; Radisky, Derek C.; Crawford, Howard C.; Fields, Alan P.; Murray, Nicole R.; Wang, Q. Jane; Leitges, Michael; Storz, Peter
2015-02-01
The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.
Lemper, Marie; De Groef, Sofie; Stangé, Geert; Baeyens, Luc; Heimberg, Harry
2016-09-01
When the beta cell mass or function declines beyond a critical point, hyperglycaemia arises. Little is known about the potential pathways involved in beta cell rescue. As two cytokines, epidermal growth factor (EGF) and ciliary neurotrophic factor (CNTF), restored a functional beta cell mass in mice with long-term hyperglycaemia by reprogramming acinar cells that transiently expressed neurogenin 3 (NGN3), the current study assesses the effect of these cytokines on the functional beta cell mass after an acute chemical toxic insult. Glycaemia and insulin levels, pro-endocrine gene expression and beta cell origin, as well as the role of signal transducer and activator of transcription 3 (STAT3) signalling, were assessed in EGF+CNTF-treated mice following acute hyperglycaemia. The mice were hyperglycaemic 1 day following i.v. injection of the beta cell toxin alloxan, when the two cytokines were applied. One week later, 68.6 ± 4.6% of the mice had responded to the cytokine treatment and increased their insulin(+) cell number to 30% that of normoglycaemic control mice, resulting in restoration of euglycaemia. Although insulin(-) NGN3(+) cells appeared following acute EGF+CNTF treatment, genetic lineage tracing showed that the majority of the insulin(+) cells originated from pre-existing beta cells. Beta cell rescue by EGF+CNTF depends on glycaemia rather than on STAT3-induced NGN3 expression in acinar cells. In adult mice, EGF+CNTF allows the rescue of beta cells in distress when treatment is given shortly after the diabetogenic insult. The rescued beta cells restore a functional beta cell mass able to control normal blood glucose levels. These findings may provide new insights into compensatory pathways activated early after beta cell loss.
Epithelial NEMO/IKKγ limits fibrosis and promotes regeneration during pancreatitis.
Chan, Lap Kwan; Gerstenlauer, Melanie; Konukiewitz, Björn; Steiger, Katja; Weichert, Wilko; Wirth, Thomas; Maier, Harald Jakob
2017-11-01
Inhibitory κB kinase (IKK)/nuclear factor κB (NF-κB) signalling has been implicated in the pathogenesis of pancreatitis, but its precise function has remained controversial. Here, we analyse the contribution of IKK/NF-κB signalling in epithelial cells to the pathogenesis of pancreatitis by targeting the IKK subunit NF-κB essential modulator (NEMO) (IKKγ), which is essential for canonical NF-κB activation. Mice with a targeted deletion of NEMO in the pancreas were subjected to caerulein pancreatitis. Pancreata were examined at several time points and analysed for inflammation, fibrosis, cell death, cell proliferation, as well as cellular differentiation. Human samples were used to corroborate findings established in mice. In acute pancreatitis, NEMO deletion in the pancreatic parenchyma resulted in minor changes during the early phase but led to the persistence of inflammatory and fibrotic foci in the recovery phase. In chronic pancreatitis, NEMO deletion aggravated inflammation and fibrosis, inhibited compensatory acinar cell proliferation, and enhanced acinar atrophy and acinar-ductal metaplasia. Gene expression analysis revealed sustained activation of profibrogenic genes and the CXCL12/CXCR4 axis in the absence of epithelial NEMO. In human chronic pancreatitis samples, the CXCL12/CXCR4 axis was activated as well, with CXCR4 expression correlating with the degree of fibrosis. The aggravating effects of NEMO deletion were attenuated by the administration of the CXCR4 antagonist AMD3100. Our results suggest that NEMO in epithelial cells exerts a protective effect during pancreatitis by limiting inflammation and fibrosis and improving acinar cell regeneration. The CXCL12/CXCR4 axis is an important mediator of that effect and may also be of importance in human chronic pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Development of Poly(Ethylene Glycol) Hydrogels for Salivary Gland Tissue Engineering Applications
Shubin, Andrew D.; Felong, Timothy J.; Graunke, Dean; Ovitt, Catherine E.
2015-01-01
More than 40,000 patients are diagnosed with head and neck cancers annually in the United States with the vast majority receiving radiation therapy. Salivary glands are irreparably damaged by radiation therapy resulting in xerostomia, which severely affects patient quality of life. Cell-based therapies have shown some promise in mouse models of radiation-induced xerostomia, but they suffer from insufficient and inconsistent gland regeneration and accompanying secretory function. To aid in the development of regenerative therapies, poly(ethylene glycol) hydrogels were investigated for the encapsulation of primary submandibular gland (SMG) cells for tissue engineering applications. Different methods of hydrogel formation and cell preparation were examined to identify cytocompatible encapsulation conditions for SMG cells. Cell viability was much higher after thiol-ene polymerizations compared with conventional methacrylate polymerizations due to reduced membrane peroxidation and intracellular reactive oxygen species formation. In addition, the formation of multicellular microspheres before encapsulation maximized cell–cell contacts and increased viability of SMG cells over 14-day culture periods. Thiol-ene hydrogel-encapsulated microspheres also promoted SMG proliferation. Lineage tracing was employed to determine the cellular composition of hydrogel-encapsulated microspheres using markers for acinar (Mist1) and duct (Keratin5) cells. Our findings indicate that both acinar and duct cell phenotypes are present throughout the 14 day culture period. However, the acinar:duct cell ratios are reduced over time, likely due to duct cell proliferation. Altogether, permissive encapsulation methods for primary SMG cells have been identified that promote cell viability, proliferation, and maintenance of differentiated salivary gland cell phenotypes, which allows for translation of this approach for salivary gland tissue engineering applications. PMID:25762214
Song, Eun Ah; Lim, Joo Weon; Kim, Hyeyoung
2017-07-01
Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells. Copyright © 2017. Published by Elsevier Ltd.
Wang, Guohao; Liu, Xudong; Gaertig, Marta A.; Li, Shihua; Li, Xiao-Jiang
2016-01-01
The Huntington’s disease (HD) protein, huntingtin (HTT), is essential for early development. Because suppressing the expression of mutant HTT is an important approach to treat the disease, we must first understand the normal function of Htt in adults versus younger animals. Using inducible Htt knockout mice, we found that Htt depletion does not lead to adult neurodegeneration or animal death at >4 mo of age, which was also verified by selectively depleting Htt in neurons. On the other hand, young Htt KO mice die at 2 mo of age of acute pancreatitis due to the degeneration of pancreatic acinar cells. Importantly, Htt interacts with the trypsin inhibitor, serine protease inhibitor Kazal-type 3 (Spink3), to inhibit activation of digestive enzymes in acinar cells in young mice, and transgenic HTT can rescue the early death of Htt KO mice. These findings point out age- and cell type-dependent vital functions of Htt and the safety of knocking down neuronal Htt expression in adult brains as a treatment. PMID:26951659
Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells.
Leite, M F; Dranoff, J A; Gao, L; Nathanson, M H
1999-01-01
The ryanodine receptor (RyR) is the principal Ca2+-release channel in excitable cells, whereas the inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) is primarily responsible for Ca2+ release in non-excitable cells, including epithelia. RyR also is expressed in a number of non-excitable cell types, but is thought to serve as an auxiliary or alternative Ca2+-release pathway in those cells. Here we use reverse transcription PCR to show that a polarized epithelium, the pancreatic acinar cell, expresses the type 2, but not the type 1 or 3, isoform of RyR. We furthermore use immunochemistry to demonstrate that the type 2 RyR is distributed throughout the basolateral and, to a lesser extent, the apical region of the acinar cell, but is excluded from the trigger zone, where cytosolic Ca2+ signals originate in this cell type. Since propagation of Ca2+ waves in acinar cells is sensitive to ryanodine, caffeine and Ca2+, these findings suggest that Ca2+ waves in this cell type result from the co-ordinated release of Ca2+, first from InsP3Rs in the trigger zone, then from RyRs elsewhere in the cell. RyR may play a fundamental role in Ca2+ signalling in polarized epithelia, including for Ca2+ signals initiated by InsP3. PMID:9882629
Congo red modulates ACh-induced Ca2+ oscillations in single pancreatic acinar cells of mice
Huang, Ze-bing; Wang, Hai-yan; Sun, Na-na; Wang, Jing-ke; Zhao, Meng-qin; Shen, Jian-xin; Gao, Ming; Hammer, Ronald P; Fan, Xue-gong; Wu, Jie
2014-01-01
Aim: Congo red, a secondary diazo dye, is usually used as an indicator for the presence of amyloid fibrils. Recent studies show that congo red exerts neuroprotective effects in a variety of models of neurodegenerative diseases. However, its pharmacological profile remains unknown. In this study, we investigated the effects of congo red on ACh-induced Ca2+ oscillations in mouse pancreatic acinar cells in vitro. Methods: Acutely dissociated pancreatic acinar cells of mice were prepared. A U-tube drug application system was used to deliver drugs into the bath. Intracellular Ca2+ oscillations were monitored by whole-cell recording of Ca2+-activated Cl− currents and by using confocal Ca2+ imaging. For intracellular drug application, the drug was added in pipette solution and diffused into cell after the whole-cell configuration was established. Results: Bath application of ACh (10 nmol/L) induced typical Ca2+ oscillations in dissociated pancreatic acinar cells. Addition of congo red (1, 10, 100 μmol/L) dose-dependently enhanced Ach-induced Ca2+ oscillations, but congo red alone did not induce any detectable response. Furthermore, this enhancement depended on the concentrations of ACh: congo red markedly enhanced the Ca2+ oscillations induced by ACh (10–30 nmol/L), but did not alter the Ca2+ oscillations induced by ACh (100–10000 nmol/L). Congo red also enhanced the Ca2+ oscillations induced by bath application of IP3 (30 μmol/L). Intracellular application of congo red failed to alter ACh-induced Ca2+ oscillations. Conclusion: Congo red significantly modulates intracellular Ca2+ signaling in pancreatic acinar cells, and this pharmacological effect should be fully considered when developing congo red as a novel therapeutic drug. PMID:25345744
Yago, María D; Díaz, Ricardo J; Martínez, María A; Audi, Nama'a; Naranjo, José A; Martínez-Victoria, Emilio; Mañas, Mariano
2006-04-01
Olive oil is a major component of the Mediterranean diet, and its role in human health is being actively debated. This study aimed to clarify the mechanism of pancreatic adaptation to dietary fat. For this purpose, we examined whether dietary-induced modification of pancreatic membranes affects acinar cell function in response to the secretagogue acetylcholine (ACh). Weaning male Wistar rats were assigned to one of two experimental groups and fed for 8 weeks with a commercial chow (C) or a semisynthetic diet containing virgin olive oil as dietary fat (OO). The fatty acid composition of pancreatic plasma membranes was determined by gas-liquid chromatography. For assessment of secretory function, viable acini were incubated with ACh and amylase of supernatant was further assayed with a substrate reagent. Changes in cytosolic Ca(2+) concentration in response to ACh were measured by fura-2 AM fluorimetry. Compared to C rats, pancreatic cell membranes of OO rats had a higher level of monounsaturated fatty acids and a lower level of both saturated and polyunsaturated fatty acids, thus, reflecting the type of dietary fat given. Net amylase secretion in response to ACh was greatly enhanced after OO feeding, although this was not paralleled by enhancement of ACh-evoked Ca(2+) peak increases. In conclusion, chronic intake of diets that differ in the fat type influences not only the fatty acid composition of rat pancreatic membranes but also the responsiveness of acinar cells to ACh. This mechanism may be, at least in part, responsible for the adaptation of the exocrine pancreas to the type of fat available.
Effects of double ligation of Stensen's duct on the rabbit parotid gland.
Maria, O M; Maria, S M; Redman, R S; Maria, A M; Saad El-Din, T A; Soussa, E F; Tran, S D
2014-04-01
Salivary gland duct ligation is an alternative to gland excision for treating sialorrhea or reducing salivary gland size prior to tumor excision. Duct ligation also is used as an approach to study salivary gland aging, regeneration, radiotherapy, sialolithiasis and sialadenitis. Reports conflict about the contribution of each salivary cell population to gland size reduction after ductal ligation. Certain cell populations, especially acini, reportedly undergo atrophy, apoptosis and proliferation during reduction of gland size. Acini also have been reported to de-differentiate into ducts. These contradictory results have been attributed to different animal or salivary gland models, or to methods of ligation. We report here a bilateral double ligature technique for rabbit parotid glands with histologic observations at 1, 7, 14, 30, 60 days after ligation. A large battery of special stains and immunohistochemical procedures was employed to define the cell populations. Four stages with overlapping features were observed that led to progressive shutdown of gland activities: 1) marked atrophy of the acinar cells occurred by 14 days, 2) response to and removal of the secretory material trapped in the acinar and ductal lumens mainly between 30 and 60 days, 3) reduction in the number of parenchymal (mostly acinar) cells by apoptosis that occurred mainly between 14-30 days, and 4) maintenance of steady-state at 60 days with a low rate of fluid, protein, and glycoprotein secretion, which greatly decreased the number of leukocytes engaged in the removal of the luminal contents. The main post- ligation characteristics were dilation of ductal and acinar lumens, massive transient infiltration of mostly heterophils (rabbit polymorphonuclear leukocytes), acinar atrophy, and apoptosis of both acinar and ductal cells. Proliferation was uncommon except in the larger ducts. By 30 days, the distribution of myoepithelial cells had spread from exclusively investing the intercalated ducts pre-ligation to surrounding a majority of the residual duct-like structures, many of which clearly were atrophic acini. Thus, both atrophy and apoptosis made major contributions to the post-ligation reduction in gland size. Structures also occurred with both ductal and acinar markers that suggested acini differentiating into ducts. Overall, the reaction to duct ligation proceeded at a considerably slower pace in the rabbit parotid glands than has been reported for the salivary glands of the rat.
Pancreatic acinar cell carcinoma extending into the common bile and main pancreatic ducts.
Yamaguchi, Rin; Okabe, Yoshinobu; Jimi, Atsuo; Shiota, Koji; Kodama, Takahito; Naito, Yoshiki; Yasunaga, Masafumi; Kinoshita, Hisafumi; Kojiro, Masamichi
2006-10-01
Acinar cell carcinoma (ACC) of the pancreas is relatively rare, accounting for only approximately 1% of all exocrine pancreatic tumors. A 69-year-old man was found to have a mass lesion measuring approximately 4 cm in diameter in the pancreatic head on ultrasound, abdominal dynamic CT, and percutaneous transhepatic cholangiography. Magnetic resonance cholangiopancreatography showed defect of the lower common bile duct (CBD) due to obstruction by the tumor cast. Histopathologically, the pancreatic head tumor invaded the main pancreatic duct (MPD) and CBD with extension into the CBD in a form of tumor cast. The tumor cells consisted of a solid proliferation with abundant eosinophilic cytoplasm and round nuclei in an acinar and trabecular fashion. A 55-year-old man with upper abdominal pain and nausea, had a cystic lesion approximately 3 cm in size in the pancreatic tail on CT. Histopathologically, the tumor was encapsulated by fibrous capsule and had extensive central necrosis with solid areas in the tumor periphery, and invaded with extension into the MPD in a form of tumor cast. The tumor cells resembled acinar cells in solid growths. Two resected cases of ACC with unusual tumor extension into the CBD and the MPD, respectively, are reported.
PKD signaling and pancreatitis
Yuan, Jingzhen; Pandol, Stephen J.
2016-01-01
Background Acute pancreatitis is a serious medical disorder with no current therapies directed to the molecular pathogenesis of the disorder. Inflammation, inappropriate intracellular activation of digestive enzymes, and parenchymal acinar cell death by necrosis are the critical pathophysiologic processes of acute pancreatitis. Thus, it is necessary to elucidate the key molecular signals that mediate these pathobiologic processes and develop new therapeutic strategies to attenuate the appropriate signaling pathways in order to improve outcomes for this disease. A novel serine/threonine protein kinase D (PKD) family has emerged as key participants in signal transduction, and this family is increasingly being implicated in the regulation of multiple cellular functions and diseases. Methods This review summarizes recent findings of our group and others regarding the signaling pathway and the biological roles of the PKD family in pancreatic acinar cells. In particular, we highlight our studies of the functions of PKD in several key pathobiologic processes associated with acute pancreatitis in experimental models. Results Our findings reveal that PKD signaling is required for NF-κB activation/inflammation, intracellular zymogen activation, and acinar cell necrosis in rodent experimental pancreatitis. Novel small-molecule PKD inhibitors attenuate the severity of pancreatitis in both in vitro and in vivo experimental models. Further, this review emphasizes our latest advances in the therapeutic application of PKD inhibitors to experimental pancreatitis after the initiation of pancreatitis. Conclusions These novel findings suggest that PKD signaling is a necessary modulator in key initiating pathobiologic processes of pancreatitis, and that it constitutes a novel therapeutic target for treatments of this disorder. PMID:26879861
Tachow, Apussara; Thoungseabyoun, Wipawee; Phuapittayalert, Laorrat; Petcharat, Kanoktip; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi
2017-10-01
This study proposed to investigate the localization at light and electron microscopic levels of Arf6 and its activator EFA6D in the mouse submandibular gland (SMG) under normal conditions and when stimulated by adrenergic or cholinergic agonists. SMGs of male adult mice were utilized for immunoblotting and immuno-light and -electron microscopic analyses. Isoproterenol and noradrenalin were used as adrenergics, while carbachol was used for the cholinergic stimulant. SMGs were examined at 15, 30, 60 and 120min after intraperitoneal injection of these agents. Immunoreactivities for both Arf6 and its activator EFA6D were similarly intense in the basolateral domain of GCTs, but no significant immunoreactivities were seen in the apical domain of GCT cells or any domain of acinar cells under normal conditions. In immuno-electron microscopy, the immunoreactive materials were mainly deposited on the basolateral plasma membranes and subjacent cytoplasm. Shortly after injection of isoproterenol and noradrenaline, but not carbachol, the immunoreactivities for both molecules were additionally seen on the apical plasmalemma of most, if not all, GCT cells, but not acinar cells. The present findings suggest that the direct involvement of Arf6/EFA6D in regulatory exocytosis at the apical plasma membrane of acinar and GCT cells is apparently to be smaller, if present, than that of endocytosis at the basolateral membranes of GCT cells under normal conditions. This also suggests that the two molecules function additionally at the apical membrane of GCT cells for modulation of saliva secretion under β-adrenoceptor stimulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cyclic AMP regulates formation of mammary epithelial acini in vitro
Nedvetsky, Pavel I.; Kwon, Sang-Ho; Debnath, Jayanta; Mostov, Keith E.
2012-01-01
Epithelial cells form tubular and acinar structures notable for a hollow lumen. In three-dimensional culture utilizing MCF10A mammary epithelial cells, acini form due to integrin-dependent polarization and survival of cells contacting extracellular matrix (ECM), and the apoptosis of inner cells of acini lacking contact with the ECM. In this paper, we report that cyclic AMP (cAMP)-dependent protein kinase A (PKA) promotes acinus formation via two mechanisms. First, cAMP accelerates redistribution of α6-integrin to the periphery of the acinus and thus facilitates the polarization of outer acinar cells. Blocking of α6-integrin function by inhibitory antibody prevents cAMP-dependent polarization. Second, cAMP promotes the death of inner cells occupying the lumen. In the absence of cAMP, apoptosis is delayed, resulting in perturbed luminal clearance. cAMP-dependent apoptosis is accompanied by a posttranscriptional PKA-dependent increase in the proapoptotic protein Bcl-2 interacting mediator of cell death. These data demonstrate that cAMP regulates lumen formation in mammary epithelial cells in vitro, both through acceleration of polarization of outer cells and apoptosis of inner cells of the acinus. PMID:22675028
Dong, Zhaojun; Shang, Haixiao; Chen, Yong Q.; Pan, Li-Long
2016-01-01
Acute pancreatitis (AP) is characterized by early activation of intra-acinar proteases followed by acinar cell death and inflammation. Cellular oxidative stress is a key mechanism underlying these pathological events. Sulforaphane (SFN) is a natural organosulfur antioxidant with undescribed effects on AP. Here we investigated modulatory effects of SFN on cellular oxidation and inflammation in AP. AP was induced by cerulean hyperstimulation in BALB/c mice. Treatment group received a single dose of 5 mg/kg SFN for 3 consecutive days before AP. We found that SFN administration attenuated pancreatic injury as evidenced by serum amylase, pancreatic edema, and myeloperoxidase, as well as by histological examination. SFN administration reverted AP-associated dysregulation of oxidative stress markers including pancreatic malondialdehyde and redox enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). In acinar cells, SFN treatment upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes including quinoneoxidoreductase-1, heme oxidase-1, SOD1, and GPx1. In addition, SFN selectively suppressed cerulein-induced activation of the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome, in parallel with reduced nuclear factor- (NF-) κB activation and modulated NF-κB-responsive cytokine expression. Together, our data suggested that SFN modulates Nrf2-mediated oxidative stress and NLRP3/NF-κB inflammatory pathways in acinar cells, thereby protecting against AP. PMID:27847555
Dong, Zhaojun; Shang, Haixiao; Chen, Yong Q; Pan, Li-Long; Bhatia, Madhav; Sun, Jia
2016-01-01
Acute pancreatitis (AP) is characterized by early activation of intra-acinar proteases followed by acinar cell death and inflammation. Cellular oxidative stress is a key mechanism underlying these pathological events. Sulforaphane (SFN) is a natural organosulfur antioxidant with undescribed effects on AP. Here we investigated modulatory effects of SFN on cellular oxidation and inflammation in AP. AP was induced by cerulean hyperstimulation in BALB/c mice. Treatment group received a single dose of 5 mg/kg SFN for 3 consecutive days before AP. We found that SFN administration attenuated pancreatic injury as evidenced by serum amylase, pancreatic edema, and myeloperoxidase, as well as by histological examination. SFN administration reverted AP-associated dysregulation of oxidative stress markers including pancreatic malondialdehyde and redox enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). In acinar cells, SFN treatment upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes including quinoneoxidoreductase-1, heme oxidase-1, SOD1, and GPx1. In addition, SFN selectively suppressed cerulein-induced activation of the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome, in parallel with reduced nuclear factor- (NF-) κ B activation and modulated NF- κ B-responsive cytokine expression. Together, our data suggested that SFN modulates Nrf2-mediated oxidative stress and NLRP3/NF- κ B inflammatory pathways in acinar cells, thereby protecting against AP.
[Histopathological and immunohistochemical studies on mucous cysts].
Kuroda, N
1989-01-01
The present study investigated the histopathology, histochemistry of mucopolysaccharides, and immunohistochemistry of oral mucous cysts. The materials were obtained from ninety cases that were histopathologically diagnosed as oral mucous cysts at the Department of Oral Pathology, Meikai University School of Dentistry. Mucopolysaccharide staining was done with PAS, alcian blue (AB, pH 2.5) and high iron diamine (HID). Immunohistochemical studies were focused on secretory component (SC), lactoferrin (Lf), alpha-amylase (Am), IgA, lysozyme (Ly), and keratin (Kr). The following results were obtained: 1. Histopathological findings. (1) Retention and/or retention-like type cysts occurred in was twenty-six cases and the extravasation type in sixty-four cases. (2) Cases showing epithelial lining of the cystic wall were only eight in number, and many cystic walls were contained granulation tissue (fifty cases). (3) As for inflammation of the cystic wall, the degree was slight, and infiltrated cells were mainly macrophages (so-called mucinophages) and lymphocytes. (4) Regarding adjoining salivary glands, acinar cells showed atrophic changes, and hypertrophy of mucous acinar cells was evident. Many ducts showed dilatation, and stromal connective tissue showed fibrosis and hyalinization. 2. Histochemical findings on mucopolysaccharides. (1) Mucous materials in cystic cavity, mucous acinar cells, and secretory materials in ductal lumens were intensely stained by PAS and AB. But stainability with AB was less than that with PAS staining. Serous acinar cells and ductal epithelium were negative to PAS and AB staining. (2) Stainability of the above with HID was less than at with PAS or AB. Cystic walls were not stained by HID. Mucous acinar cells reactive with HID were intensely stained, but the number of the positive cells was limited when compared with the numbers of PAS-and AB-positive cells. 3. Immunohistochemical findings. (1) As for mucous materials in the cystic cavity, reactions for Sc, Am, IgA, and Ly were all positive, whereas those for Lf and Kr were negative. (2) Staining of cystic walls was generally weak: the walls were negative for IgA, Ly and Kr showed and borderline or slightly positive for Sc, Lf, and Am. (3) Mucous acinar cells were negative for all markers examined in this study, but serous acinar cells and/or demilunes were markedly positive for Sc, Ly, and Am. (4) In ductal epithelial cells, Ly and Kr were negative, but IgA was borderline or slightly positive. Sc and Am gave intensely positive staining. (5) Secretory materials in ductal lumens, Sc were intensely positive for Lf, and Ly; slightly or moderately positive for IgA; and slightly positive or negative for Am.(ABSTRACT TRUNCATED AT 400 WORDS)
Pancreatic panniculitis as a presentation symptom of acinar cell carcinoma.
de Frutos Rosa, Diego; Espinosa Taranilla, Laura; González de Canales de Simón, Pilar; Vélez Velázquez, María Dolores; Guirado Koch, Cristina
2018-05-01
Pancreatic panniculitis is a rare skin manifestation associated with pancreatic conditions. This condition has similar characteristics to those of other panniculitis types and its course parallels the triggering condition and may occasionally precede it. We report the case of a female patient with asymptomatic pancreatic panniculitis; the etiologic study identified a pancreatic acinar cell carcinoma with liver metastases.
Schulte, B A; Spicer, S S
1983-12-01
Mouse salivary glands and pancreases were stained with a battery of ten horseradish peroxidase-conjugated lectins. Lectin staining revealed striking differences in the structure of oligosaccharides of stored intracellular secretory glycoproteins and glycoconjugates associated with the surface of epithelial cells lining excretory ducts. The percentage of acinar cells containing terminal alpha-N-acetylgalactosamine residues varied greatly in submandibular glands of 30 male mice, but all submandibular acinar cells contained oligosaccharides with terminal sialic acid and penultimate beta-galactose residues. The last named dimer was abundant in secretory glycoprotein of all mucous acinar cells in murine sublingual glands and an additional 20-50% of these cells in all glands contained terminal N-acetylglucosamine residues. In contrast, terminal alpha-N-acetylgalactosamine was abundant in sublingual serous demilune secretions. Serous acinar cells in the exorbital lacrimal gland, posterior lingual gland, parotid gland and pancreas exhibited a staining pattern unique to each organ. In contrast, the apical cytoplasm and surface of striated duct epithelial cells in the submandibular, sublingual, parotid and exorbital lacrimal gland stained similarly. A comparison of staining with conjugated lectins reported biochemically to have very similar carbohydrate binding specificity has revealed some remarkable differences in their reactivity, suggesting different binding specificity for the same terminal sugars having different glycosidic linkages or with different penultimate sugar residues.
Effects of pilocarpine and cevimeline on Ca2+ mobilization in rat parotid acini and ducts.
Ono, Kentaro; Inagaki, Tomohiro; Iida, Taichi; Hosokawa, Ryuji; Inenaga, Kiyotoshi
2009-01-01
Previous reports suggested that there is no significant difference in the binding affinity of pilocarpine and cevimeline on muscarinic receptors (1). However, in vivo studies from our laboratory suggested that pilocarpine-induced salivation from the parotid gland is greater than that induced by cevimeline in rats. Therefore, in the present study, sialogogue-induced intracellular Ca(2+) mobilization was investigated in isolated parotid gland cells in vitro. Pilocarpine and cevimeline increased the intracellular Ca(2+) concentration of parotid gland acinar and duct cells over 1 microM in a dose-dependent manner. Pilocarpine-induced responses were higher than cevimeline-induced responses. Ca(2+) responses to both agents were completely blocked by 1 microM 4-DAMP, an M3 muscarinic receptor antagonist. In the absence of extracellular Ca(2+), both sialogogues induced transient Ca(2+) increase in parotid gland acinar cells. These results suggest that the sialogogues stimulate some common routes via the Ca(2+) signaling in parotid gland acinar cells. We also report a significant difference of Ca(2+) responses in concentration between pilocarpine and cevimeline in parotid gland acinar cells. The different Ca(2+) responses between the sialogogues would explain the different saliva volumes from the parotid gland between them that we have observed in previous in vivo studies.
Tandler, B; Nagato, T; Phillips, C J
1997-05-01
As part of a continuing investigation of the comparative ultrastructure of chiropteran salivary glands, we examined the submandibular glands of eight species of neotropical fruit bats in the genus Artibeus. We previously described secretory granules of unusual substructure in the seromucous demilunar cells of this organ in some species in this genus. In the present study, we turned our attention to the serous acinar cells in the same glands. Specimens of eight species of Artibeus were collected in neotropical localities. Salivary glands were extirpated in the field and thin slices were fixed by immersion in triple aldehyde-DMSO or in modified half-strength Karnovsky's fixative. Tissues were further processed for electron microscopy by conventional means. In contrast to seromucous cells, which exhibit species-specific diversification in bats of this genus, the secretory apparatus and secretory granules in the serous acinar cells are highly conserved across all seven species. The single exception involves the mitochondria in one species. In this instance, some of the serous cell mitochondria in Artibeus obscurus are modified into megamitochondria. Such organelles usually have short, peripheral cristae; a laminar inclusion is present in the matrix compartment of every outsized organelle. Inclusions of this nature never are present in normal-size mitochondria in the serous cells. None of the megamitochondria were observed in the process of degeneration. The giant mitochondria in A. obscurus have a matrical structure that is radically different from that of the only other megamitochondria reported to occur in bat salivary glands. The factors that lead to variation in megamitochondrial substructure in different species, as well as the functional capacities of such giant organelles, are unknown.
Fujiwara, Sachiko; Matsui, Tsubasa S; Ohashi, Kazumasa; Deguchi, Shinji; Mizuno, Kensaku
2018-01-01
Cell-substrate adhesions are essential for various physiological processes, including embryonic development and maintenance of organ functions. Hemidesmosomes (HDs) are multiprotein complexes that attach epithelial cells to the basement membrane. Formation and remodeling of HDs are dependent on the surrounding mechanical environment; however, the upstream signaling mechanisms are not well understood. We recently reported that Solo (also known as ARHGEF40), a guanine nucleotide exchange factor targeting RhoA, binds to keratin8/18 (K8/K18) intermediate filaments, and that their interaction is important for force-induced actin and keratin cytoskeletal reorganization. In this study, we show that Solo co-precipitates with an HD protein, β4-integrin. Co-precipitation assays revealed that the central region (amino acids 330-1057) of Solo binds to the C-terminal region (1451-1752) of β4-integrin. Knockdown of Solo significantly suppressed HD formation in MCF10A mammary epithelial cells. Similarly, knockdown of K18 or treatment with Y-27632, a specific inhibitor of Rho-associated kinase (ROCK), suppressed HD formation. As Solo knockdown or Y-27632 treatment is known to disorganize K8/K18 filaments, these results suggest that Solo is involved in HD formation by regulating K8/K18 filament organization via the RhoA-ROCK signaling pathway. We also showed that knockdown of Solo impairs acinar formation in MCF10A cells cultured in 3D Matrigel. In addition, Solo accumulated at the site of traction force generation in 2D-cultured MCF10A cells. Taken together, these results suggest that Solo plays a crucial role in HD formation and acinar development in epithelial cells by regulating mechanical force-induced RhoA activation and keratin filament organization.
Matsui, Tsubasa S.; Ohashi, Kazumasa; Deguchi, Shinji; Mizuno, Kensaku
2018-01-01
Cell-substrate adhesions are essential for various physiological processes, including embryonic development and maintenance of organ functions. Hemidesmosomes (HDs) are multiprotein complexes that attach epithelial cells to the basement membrane. Formation and remodeling of HDs are dependent on the surrounding mechanical environment; however, the upstream signaling mechanisms are not well understood. We recently reported that Solo (also known as ARHGEF40), a guanine nucleotide exchange factor targeting RhoA, binds to keratin8/18 (K8/K18) intermediate filaments, and that their interaction is important for force-induced actin and keratin cytoskeletal reorganization. In this study, we show that Solo co-precipitates with an HD protein, β4-integrin. Co-precipitation assays revealed that the central region (amino acids 330–1057) of Solo binds to the C-terminal region (1451–1752) of β4-integrin. Knockdown of Solo significantly suppressed HD formation in MCF10A mammary epithelial cells. Similarly, knockdown of K18 or treatment with Y-27632, a specific inhibitor of Rho-associated kinase (ROCK), suppressed HD formation. As Solo knockdown or Y-27632 treatment is known to disorganize K8/K18 filaments, these results suggest that Solo is involved in HD formation by regulating K8/K18 filament organization via the RhoA-ROCK signaling pathway. We also showed that knockdown of Solo impairs acinar formation in MCF10A cells cultured in 3D Matrigel. In addition, Solo accumulated at the site of traction force generation in 2D-cultured MCF10A cells. Taken together, these results suggest that Solo plays a crucial role in HD formation and acinar development in epithelial cells by regulating mechanical force-induced RhoA activation and keratin filament organization. PMID:29672603
Kim, Hyo-Sup; Lee, Moon-Kyu
2016-05-01
Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells.
Sugiya, H; Hara-Yokoyama, M; Furuyama, S
1992-03-30
When saponin-permeabilized rat parotid acinar cells were incubated with [adenylate-32P]NAD+, labelling of proteins (33, 27 and 23 kDa) in particulate fractions of the cells was stimulated by isoproterenol. The effect of isoproterenol was completely blocked by a beta-antagonist. Both forskolin or cAMP mimicked the effect of isoproterenol on the labelling. However, an inhibitor of cAMPdPK failed to induce complete inhibition of the effects of isoproterenol, forskolin and cAMP. When the labelled proteins were treated with snake venom phosphodiesterase, neither [32P]5'-AMP nor [32P]phosphoribosyladenosine was released. These results suggest that covalent modification of proteins with NAD+, which is distinct from ADP-ribosylation and cAMPdPK-dependent phosphorylation, is coupled to beta-receptor-cAMP signalling system in rat parotid acinar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.
Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumormore » incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.« less
Yang, Yu-Mi; Lee, Jiae; Jo, Hae; Park, Soonhong; Chang, Inik; Muallem, Shmuel; Shin, Dong Min
2014-09-05
Homer proteins are scaffold molecules with a domain structure consisting of an N-terminal Ena/VASP homology 1 protein-binding domain and a C-terminal leucine zipper/coiled-coil domain. The Ena/VASP homology 1 domain recognizes proline-rich motifs and binds multiple Ca(2+)-signaling proteins, including G protein-coupled receptors, inositol 1,4,5-triphosphate receptors, ryanodine receptors, and transient receptor potential channels. However, their role in Ca(2+) signaling in nonexcitable cells is not well understood. In this study, we investigated the role of Homer2 on Ca(2+) signaling in parotid gland acinar cells using Homer2-deficient (Homer2(-/-)) mice. Homer2 is localized at the apical pole in acinar cells. Deletion of Homer2 did not affect inositol 1,4,5-triphosphate receptor localization or channel activity and did not affect the expression and activity of sarco/endoplasmic reticulum Ca(2+)-ATPase pumps. In contrast, Homer2 deletion markedly increased expression of plasma membrane Ca(2+)-ATPase (PMCA) pumps, in particular PMCA4, at the apical pole. Accordingly, Homer2 deficiency increased Ca(2+) extrusion by acinar cells. These findings were supported by co-immunoprecipitation of Homer2 and PMCA in wild-type parotid cells and transfected human embryonic kidney 293 (HEK293) cells. We identified a Homer-binding PPXXF-like motif in the N terminus of PMCA that is required for interaction with Homer2. Mutation of the PPXXF-like motif did not affect the interaction of PMCA with Homer1 but inhibited its interaction with Homer2 and increased Ca(2+) clearance by PMCA. These findings reveal an important regulation of PMCA by Homer2 that has a central role on PMCA-mediated Ca(2+) signaling in parotid acinar cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard
2012-01-15
During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends on pancreas developmental stage. Using temporal genetic labeling approaches we examined the dynamic of endocrine progenitor differentiation and explored the plasticity of Neurog3-induced cells throughout development. We found that Neurog3(+) progenitors develop into hormone-expressing cells in a fast process taking less then 10h. Furthermore, fate-mapping studies in heterozygote (Neurog3(CreERT/+)) and Neurog3-deficient (Neurog3(CreERT/CreERT)) embryos revealed that Neurog3-induced cells have different potential over time. At the early bud stage, failed endocrine progenitors can adopt acinar or ductal fate, whereas later in the branching pancreas they do not contribute to the acinar lineage but Neurog3-deficient cells eventually differentiate into duct cells. Thus these results provide evidence that the plasticity of Neurog3-induced cells becomes restricted during development. Furthermore these data suggest that during the secondary transition, endocrine progenitor cells arise from bipotent precursors already committed to the duct/endocrine lineages and not from domain of cells having distinct potentialities. Copyright © 2011 Elsevier Inc. All rights reserved.
Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard
2011-01-01
SUMMARY During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends on pancreas developmental stage. Using temporal genetic labeling approaches we examined the dynamic of endocrine progenitor differentiation and explored the plasticity of Neurog3-induced cells throughout development. We found that Neurog3+ progenitors develop into hormone-expressing cells in a fast process taking less then 10h. Furthermore, fate-mapping studies in heterozygote (Neurog3CreERT/+) and Neurog3-deficient (Neurog3CreERT/CreERT) embryos revealed that Neurog3-induced cells have different potential over time. At the early bud stage, failed endocrine progenitors can adopt acinar or ductal fate, whereas later in the branching pancreas they do not contribute to the acinar lineage but Neurog3-deficient cells eventually differentiate into duct cells. Thus these results provide evidence that the plasticity of Neurog3-induced cells becomes restricted during development. Furthermore these data suggest that during the secondary transition endocrine progenitor cells arise from single bipotent progenitor already committed to the duct/endocrine lineages and not from domain of cells having both potentialities. PMID:22056785
Sera, Toshihiro; Yokota, Hideo; Tanaka, Gaku; Uesugi, Kentaro; Yagi, Naoto; Schroter, Robert C
2013-07-15
We visualized pulmonary acini in the core regions of the mouse lung in situ using synchrotron refraction-enhanced computed tomography (CT) and evaluated their kinematics during quasi-static inflation. This CT system (with a cube voxel of 2.8 μm) allows excellent visualization of not just the conducting airways, but also the alveolar ducts and sacs, and tracking of the acinar shape and its deformation during inflation. The kinematics of individual alveoli and alveolar clusters with a group of terminal alveoli is influenced not only by the connecting alveolar duct and alveoli, but also by the neighboring structures. Acinar volume was not a linear function of lung volume. The alveolar duct diameter changed dramatically during inflation at low pressures and remained relatively constant above an airway pressure of ∼8 cmH2O during inflation. The ratio of acinar surface area to acinar volume indicates that acinar distension during low-pressure inflation differed from that during inflation over a higher pressure range; in particular, acinar deformation was accordion-like during low-pressure inflation. These results indicated that the alveoli and duct expand differently as total acinar volume increases and that the alveolar duct may expand predominantly during low-pressure inflation. Our findings suggest that acinar deformation in the core regions of the lung is complex and heterogeneous.
Regulation of Breast Cancer Stem Cell by Tissue Rigidity
2014-06-01
pose the similar question as Paszek et al but in a more biomimetic niche: “Does the mature mammary acinar structure desensitize mammary epithelial...2728032. 6. Lucero HA, Kagan HM. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci. 2006;63(19-20):2304-16. 7. Levental...requirement of EMT and/or MET during the individual steps of tumor metastasis and discuss the potential of targeting this program when treating
Wang, Lixin; Brugge, Joan S; Janes, Kevin A
2011-10-04
Gene expression networks are complicated by the assortment of regulatory factors that bind DNA and modulate transcription combinatorially. Single-cell measurements can reveal biological mechanisms hidden by population averages, but their value has not been fully explored in the context of mRNA regulation. Here, we adapted a single-cell expression profiling technique to examine the gene expression program downstream of Forkhead box O (FOXO) transcription factors during 3D breast epithelial acinar morphogenesis. By analyzing patterns of mRNA fluctuations among individual matrix-attached epithelial cells, we found that a subset of FOXO target genes was jointly regulated by the transcription factor Runt-related transcription factor 1 (RUNX1). Knockdown of RUNX1 causes hyperproliferation and abnormal morphogenesis, both of which require normal FOXO function. Down-regulating RUNX1 and FOXOs simultaneously causes widespread oxidative stress, which arrests proliferation and restores normal acinar morphology. In hormone-negative breast cancers lacking human epidermal growth factor receptor 2 (HER2) amplification, we find that RUNX1 down-regulation is strongly associated with up-regulation of FOXO1, which may be required to support growth of RUNX1-negative tumors. The coordinate function of these two tumor suppressors may provide a failsafe mechanism that inhibits cancer progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jingu; Park, Sangkyu; Roh, Sangho, E-mail: sangho@snu.ac.kr
A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. Themore » cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.« less
Matsuda, Akiko; Makino, Naohiko; Tozawa, Tomohiro; Shirahata, Nakao; Honda, Teiichiro; Ikeda, Yushi; Sato, Hideyuki; Ito, Miho; Kakizaki, Yasuharu; Akamatsu, Manabu; Ueno, Yoshiyuki; Kawata, Sumio
2014-01-01
Objective The histological alteration of the exocrine pancreas in obesity has not been clarified. In the present study, we investigated biochemical and histological changes in the exocrine pancreas of obese model rats. Methods Zucker lean rats were fed a standard diet, and Zucker diabetic fatty (ZDF) rats were divided into 2 groups fed a standard diet and a high-fat diet, respectively. These experimental groups were fed each of the diets from 6 weeks until 12, 18, 24 weeks of age. We performed blood biochemical assays and histological analysis of the pancreas. Results In the ZDF rats fed a high-fat diet, the ratio of accumulated pancreatic fat area relative to exocrine gland area was increased significantly at 18 weeks of age in comparison with the other 2 groups (P < 0.05), and lipid droplets were observed in acinar cells. Subsequently, at 24 weeks of age in this group, pancreatic fibrosis and the serum exocrine pancreatic enzyme levels were increased significantly relative to the other 2 groups (P < 0.01). Conclusions In ZDF rats fed a chronic high-fat diet, fat accumulates in pancreatic acinar cells, and this fatty change seems to be related to subsequent pancreatic fibrosis and acinar cell injury. PMID:24717823
Characterization of Rat Meibomian Gland Ion and Fluid Transport
Yu, Dongfang; Davis, Richard M.; Aita, Megumi; Burns, Kimberlie A.; Clapp, Phillip W.; Gilmore, Rodney C.; Chua, Michael; O'Neal, Wanda K.; Schlegel, Richard; Randell, Scott H.; C. Boucher, Richard
2016-01-01
Purpose We establish novel primary rat meibomian gland (MG) cell culture systems and explore the ion transport activities of the rat MG. Methods Freshly excised rat MG tissues were characterized as follows: (1) mRNA expression of selected epithelial ion channels/transporters were measured by RT-PCR, (2) localization of epithelial sodium channel (ENaC) mRNAs was performed by in situ hybridization, and (3) protein expression and localization of βENaC, the Na+/K+/Cl− cotransporter (NKCC), and the Na+/K+ ATPase were evaluated by immunofluorescence. Primary isolated rat MG cells were cocultured with 3T3 feeder cells and a Rho-associated kinase (ROCK) inhibitor (Y-27632) for expansion. Passaged rat MG cells were cultured as planar sheets under air-liquid interface (ALI) conditions for gene expression and electrophysiologic studies. Passaged rat MG cells also were cultured in matrigel matrices to form spheroids, which were examined ultrastructurally by transmission electron microscopy (TEM) and functionally using swelling assays. Results Expression of multiple ion channel/transporter genes was detected in rat MG tissues. β-ENaC mRNA and protein were localized more to MG peripheral acinar cells than central acinar cells or ductular epithelial cells. Electrophysiologic studies of rat MG cell planar cultures demonstrated functional sodium, chloride, and potassium channels, and cotransporters activities. Transmission electron microscopic analyses of rat MG spheroids revealed highly differentiated MG cells with abundant lysosomal lamellar bodies. Rat MG spheroids culture-based measurements demonstrated active volume regulation by ion channels. Conclusions This study demonstrates the presence and function of ion channels and volume transport by rat MG. Two novel primary MG cell culture models that may be useful for MG research were established. PMID:27127933
Sakao, Masayuki; Sakaguchi, Yutaku; Suzuki, Ryo; Takahashi, Yu; Kishimoto, Masanobu; Fukui, Toshiro; Uchida, Kazushige; Nishio, Akiyoshi; Matsuzaki, Koichi; Okazaki, Kazuichi
The aims of this study are to characterize cell proliferation and differentiation during regeneration after pancreatitis and pancreatic buds during development to evaluate the role of Smad2/3, phosphorylated at the specific linker threonine residues (pSmad2/3L-Thr) in positive cells. Male C57BL/6 mice received hourly intraperitoneal injections of cerulein and were analyzed after induced pancreatitis. Pancreatitis-affected tissue sections and pancreatic buds were immunostained for pSmad2/3L-Thr, with other markers thought to be stem/progenitor markers of the pancreas. pSmad2/3L-Thr immunostaining-positive cells increased as the pancreatitis progressed. The expression of pSmad2/3L-Thr was seen in acinar cells and ductlike tubular complexes. These results suggest that pSmad2/3L-Thr is expressed during acinar-ductal metaplasia. Immunohistochemical colocalization of pSmad2/3L-Thr with Ki67 was never observed. pSmad2/3L-Thr-positive cells may remain in an undifferentiated state. During the pancreatic development process, pSmad2/3L-Thr was expressed as other markers. pSmad2/3L-Thr develops in duct structure of the undifferentiated cell population in the last part of viviparity that acinar structure is formed clearly. pSmad2/3L-Thr expression occurs during acinar-ductal metaplasia after pancreatitis and may represent the contribution of stem cells and/or progenitor cells to the differentiation of the pancreas.
Nagata, Tetsuji
2012-01-01
For the purpose of studying the aging changes of macromolecular synthesis in the pancreatic acinar cells of experimental animals, we studied 10 groups of aging mice during development and aging from fetal day 19 to postnatal month 24. They were injected with 3H-uridine, a precursor for RNA synthesis, sacrificed and the pancreatic tissues were taken out, fixed and processed for light and electron microscopic radioautography. On many radioautograms the localization of silver grains demonstrating RNA synthesis in pancreatic acinar cells in respective aging groups were analyzed qualitatively. The number of mitochondria per cell, the number of labeled mitochondria with silver grains and the number of silver grains in each cell in respective aging groups were analyzed quantitatively in relation to the aging of animals. The results revealed that the RNA synthetic activity as expressed by the incorporations of RNA precursor, i.e., the number of silver grains in cell nuclei, cell organelles, changed due to the aging of animals. The number of mitochondria, the number of labeled mitochondria and the mitochondrial labeling index labeled with silver grains were counted in each pancreatic acinar cell. It was demonstrated that the number of mitochondria, the number of labeled mitochondria and the labeling indices showing RNA synthesis at various ages increased from embryonic day 19 to postnatal newborn day 1, 3, 9, 14, adult month 1, 2 and 6, reaching the maxima, then decreased to senile stage at postnatal year 1 to 2, indicating the aging changes. Based upon our findings, available literature on macromolecular synthesis in mitochondria of various cells are reviewed.
Persistent Salmonellosis Causes Pancreatitis in a Murine Model of Infection
Hall, Jason C.; Thotakura, Gangadaar; Crawford, Howard C.; van der Velden, Adrianus W. M.
2014-01-01
Pancreatitis, a known risk factor for the development of pancreatic ductal adenocarcinoma, is a serious, widespread medical condition usually caused by alcohol abuse or gallstone-mediated ductal obstruction. However, many cases of pancreatitis are of an unknown etiology. Pancreatitis has been linked to bacterial infection, but causality has yet to be established. Here, we found that persistent infection of mice with the bacterial pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) was sufficient to induce pancreatitis reminiscent of the human disease. Specifically, we found that pancreatitis induced by persistent S. Typhimurium infection was characterized by a loss of pancreatic acinar cells, acinar-to-ductal metaplasia, fibrosis and accumulation of inflammatory cells, including CD11b+ F4/80+, CD11b+ Ly6Cint Ly6G+ and CD11b+ Ly6Chi Ly6G− cells. Furthermore, we found that S. Typhimurium colonized and persisted in the pancreas, associated with pancreatic acinar cells in vivo, and could invade cultured pancreatic acinar cells in vitro. Thus, persistent infection of mice with S. Typhimurium may serve as a useful model for the study of pancreatitis as it relates to bacterial infection. Increased knowledge of how pathogenic bacteria can cause pancreatitis will provide a more integrated picture of the etiology of the disease and could lead to the development of new therapeutic approaches for treatment and prevention of pancreatitis and pancreatic ductal adenocarcinoma. PMID:24717768
Shapiro, John P; Komar, Hannah M; Hancioglu, Baris; Yu, Lianbo; Jin, Ming; Ogata, Yuko; Hart, Phil A; Cruz-Monserrate, Zobeida; Lesinski, Gregory B; Conwell, Darwin L
2017-01-01
Objectives: Chronic pancreatitis (CP) is characterized by inflammation and fibrosis of the pancreas, leading to pain, parenchymal damage, and loss of exocrine and endocrine function. There are currently no curative therapies; diagnosis remains difficult and aspects of pathogenesis remain unclear. Thus, there is a need to identify novel biomarkers to improve diagnosis and understand pathophysiology. We hypothesize that pancreatic acinar regions contain proteomic signatures relevant to disease processes, including secreted proteins that could be detected in biofluids. Methods: Acini from pancreata of mice injected with or without caerulein were collected using laser capture microdissection followed by mass spectrometry analysis. This protocol enabled high-throughput analysis that captured altered protein expression throughout the stages of CP. Results: Over 2,900 proteins were identified, whereas 331 were significantly changed ≥2-fold by mass spectrometry spectral count analysis. Consistent with pathogenesis, we observed increases in proteins related to fibrosis (e.g., collagen, P<0.001), several proteases (e.g., trypsin 1, P<0.001), and altered expression of proteins associated with diminished pancreas function (e.g., lipase, amylase, P<0.05). In comparison with proteomic data from a public data set of CP patients, a significant correlation was observed between proteomic changes in tissue from both the caerulein model and CP patients (r=0.725, P<0.001). CONCLUSIONS: This study illustrates the ability to characterize proteome changes of acinar cells isolated from pancreata of caerulein-treated mice and demonstrates a relationship between signatures from murine and human CP. PMID:28406494
Šimo, Ladislav; Koči, Juraj; Kim, Donghun; Park, Yoonseong
2014-01-01
The control of tick salivary secretion, which plays a crucial role in compromising the host immune system, involves complex neural mechanisms. Dopamine is known to be the most potent activator of salivary secretion, as a paracrine/autocrine factor. We describe the invertebrate specific D1-like dopamine receptor (InvD1L), which is highly expressed in tick salivary glands. The InvD1L phylogenic clade was found only in invertebrates, suggesting that this receptor was lost in the vertebrates during evolution. InvD1L expressed in CHO-K1 cells was activated by dopamine with a median effective dose (EC50) of 1.34 μM. Immunohistochemistry using the antibody raised against InvD1L revealed two different types of immunoreactivities: basally located axon terminals that are colocalized with myoinhibitory peptide (MIP) and SIFamide neuropeptides, and longer axon-like processes that are positive only for the InvD1L antibody and extended to the apical parts of the acini. Both structures were closely associated with the myoepithelial cell, as visualized by beta-tubulin antibody, lining the acinar lumen in a web-like fashion. Subcellular localizations of InvD1L in the salivary gland suggest that InvD1L modulates the neuronal activities including MIP/SIFamide varicosities, and leads the contraction of myoepithelial cells and/or of the acinar valve to control the efflux of the luminal content. Combining the previously described D1 receptor with its putative function for activating an influx of fluid through the epithelial cells of acini, we propose that complex control of the tick salivary glands is mediated through two different dopamine receptors, D1 and InvD1L, for different downstream responses of the acinar cells. PMID:24307522
Zoukhri, Driss
2011-01-01
The non-keratinized epithelia of the ocular surface are constantly challenged by environmental insults, such as smoke, dust, and airborne pathogens. Tears are the sole physical protective barrier for the ocular surface. Production of tears in inadequate quantity or of inadequate quality results in constant irritation of the ocular surface, leading to dry eye disease, also referred to as keratoconjunctivitis sicca (KCS). Inflammation of the lacrimal gland, such as occurs in Sjögren’s syndrome, sarcoidosis, chronic graft versus-host disease, and other pathological conditions, results in inadequate secretion of the aqueous layer of the tear film, and is a leading cause of dry eye disease. The hallmarks of lacrimal gland inflammation are the presence of immune cell infiltrates, loss of acinar epithelial cells (the secreting cells), and increased production of proinflammatory cytokines. To date, the mechanisms leading to acinar cell loss and the associated decline in lacrimal gland secretion are still poorly understood. It is also not understood why the remaining lacrimal gland cells are unable to proliferate in order to regenerate a functioning lacrimal gland. This article reviews recent advances in exocrine tissue injury and repair, with emphasis on the roles of programmed cell death and stem/progenitor cells. PMID:20427009
Insulin-Like Growth Factor-1 Preserves Salivary Gland Function After Fractionated Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limesand, Kirsten H., E-mail: limesank@u.arizona.ed; Department of Nutritional Sciences, University of Arizona, Tucson, AZ; Avila, Jennifer L.
Purpose: Radiotherapy for head-and-neck cancer consists of fractionated radiation treatments that cause significant damage to salivary glands leading to chronic salivary gland dysfunction with only limited prevention and treatment options currently available. This study examines the feasibility of IGF-1 in preserving salivary gland function following a fractionated radiation treatment regimen in a pre-clinical model. Methods and Materials: Mice were exposed to fractionated radiation, and salivary gland function and histological analyses of structure, apoptosis, and proliferation were evaluated. Results: In this study, we report that treatment with fractionated doses of radiation results in a significant level of apoptotic cells in FVBmore » mice after each fraction, which is significantly decreased in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Salivary gland function is significantly reduced in FVB mice exposed to fractionated radiation; however, myr-Akt1 transgenic mice maintain salivary function under the same treatment conditions. Injection into FVB mice of recombinant insulin-like growth factor-1 (IGF-1), which activates endogenous Akt, suppressed acute apoptosis and preserved salivary gland function after fractionated doses of radiation 30 to 90 days after treatment. FVB mice exposed to fractionated radiation had significantly lower levels of proliferating cell nuclear antigen-positive salivary acinar cells 90 days after treatment, which correlated with a chronic loss of function. In contrast, FVB mice injected with IGF-1 before each radiation treatment exhibited acinar cell proliferation rates similar to those of untreated controls. Conclusion: These studies suggest that activation of IGF-1-mediated pathways before head-and-neck radiation could modulate radiation-induced salivary gland dysfunction and maintain glandular homeostasis.« less
Tang, Xiping; Tang, Guodu; Liang, Zhihai; Qin, Mengbin; Fang, Chunyun; Zhang, Luyi
The study investigated the effects of endogenous targeted inhibition of ghrelin gene on inflammation and calcium pathway in an in vitro pancreatic acinar cell model of acute pancreatitis. Lentiviral expression vector against ghrelin gene was constructed and transfected into AR42J cells. The mRNA and protein expression of each gene were detected by reverse transcription polymerase chain reaction, Western blotting, or enzyme-linked immunosorbent assay. The concentration of intracellular calcium ([Ca]i) was determined by calcium fluorescence mark probe combined with laser scanning confocal microscopy. Compared with the control group, cerulein could upregulate mRNA and protein expression of inflammatory factors, calcium pathway, ghrelin, and [Ca]i. mRNA and protein expression of inflammatory factors increased significantly in cells transfected with ghrelin miRNA compared with the other groups. Intracellular calcium and expression of some calcium pathway proteins decreased significantly in cells transfected with ghrelin miRNA compared with the other groups. Targeted inhibition of ghrelin gene in pancreatic acinar cells of acute pancreatitis can upregulate the expression of the intracellular inflammatory factors and alleviate the intracellular calcium overload.
Altered coupling of muscarinic acetylcholine receptors in pancreatic acinar carcinoma of rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, J.L.; Warren, J.R.
The structure and function of muscarinic acetylcholine receptors (mAChR) in acinar carcinoma cells have been compared to mAChR in normal pancreatic acinar cells. Similar 80 kD proteins identified by SDS-PAGE of tumor and normal mAChR affinity-labeled with the muscarinic antagonist /sup 3/H-propylbenzilyl-choline mustards, and identical binding of the antagonist N-methylscopolamine to tumor and normal cells (K/sub D/approx.4x10/sup -10/ M), indicate conservation of mAChR proteins in carcinoma cells. Carcinoma mAChR display homogeneous binding of the agonists carbamylcholine (CCh), K/sub D/approx.3x10/sup -5/ M, and oxotremorine (Oxo), K/sub D/approx.x10/sup -6/ M, whereas normal cells display heterogeneous binding, with a minor component of highmore » affinity interactions for CCh, K/sub D/approx.3x10/sup -6/ M, and Oxo, K/sub D/approx.2x/sup -17/ M, and a major component of low affinity interactions for CCh, K/sub D/approx.1x10/sup -4/ M, and Oxo, K/sub D/approx.2x10/sup -5/ M. Both carcinoma and normal cells exhibit concentration-dependent CCh-stimulated increase in cytosolic free Ca/sup 2 +/, as measured by intracellular Quin 2 fluorescence and /sup 45/Ca/sup 2 +/ efflux. However, carcinoma cells demonstrate 50% maximal stimulation of intracellular Ca/sup 2 +/ release at a CCh concentration (EC/sub 50/approx.6x10/sup -7/ M) one log below that observed for normal cells. The authors propose an altered coupling of mAChR to intracellular Ca/sup 2 +/ homeostasis in carcinoma cells, which is manifest as a single activated receptor state for agonist binding, and increased sensitivity to muscarinic receptor stimulation of Ca/sup 2 +/ release.« less
Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting.
Suzuki, Atsushi; Nakauchi, Hiromitsu; Taniguchi, Hideki
2004-08-01
During pancreatic development, neogenesis, and regeneration, stem cells might act as a central player to generate endocrine, acinar, and duct cells. Although these cells are well known as pancreatic stem cells (PSCs), indisputable proof of their existence has not been reported. Identification of phenotypic markers for PSCs leads to their prospective isolation and precise characterization to clear whether stem cells exist in the pancreas. By combining flow cytometry and clonal analysis, we show here that a possible pancreatic stem or progenitor cell candidate that resides in the developing and adult mouse pancreas expresses the receptor for the hepatocyte growth factor (HGF) c-Met, but does not express hematopoietic and vascular endothelial antigens such as CD45, TER119, c-Kit, and Flk-1. These cells formed clonal colonies in vitro and differentiated into multiple pancreatic lineage cells from single cells. Some of them could largely expand with self-renewing cell divisions in culture, and, following cell transplantation, they differentiated into pancreatic endocrine and acinar cells in vivo. Furthermore, they produced cells expressing multiple markers of nonpancreatic organs including liver, stomach, and intestine in vitro. Our data strongly suggest that c-Met/HGF signaling plays an important role in stem/progenitor cell function in both developing and adult pancreas. By using this antigen, PSCs could be isolated prospectively, enabling a detailed investigation of stem cell markers and application toward regenerative therapies for diabetes.
Furukawa, Toru; Sakamoto, Hitomi; Takeuchi, Shoko; Ameri, Mitra; Kuboki, Yuko; Yamamoto, Toshiyuki; Hatori, Takashi; Yamamoto, Masakazu; Sugiyama, Masanori; Ohike, Nobuyuki; Yamaguchi, Hiroshi; Shimizu, Michio; Shibata, Noriyuki; Shimizu, Kyoko; Shiratori, Keiko
2015-03-06
Acinar cell carcinoma of the pancreas is a rare tumor with a poor prognosis. Compared to pancreatic ductal adenocarcinoma, its molecular features are poorly known. We studied a total of 11 acinar cell carcinomas, including 3 by exome and 4 by target sequencing. Exome sequencing revealed 65 nonsynonymous mutations and 22 indels with a mutation rate of 3.4 mutations/Mb per tumor, on average. By accounting for not only somatic but also germline mutations with loss of the wild-type allele, we identified recurrent mutations of BRCA2 and FAT genes. BRCA2 showed somatic or germline premature termination mutations, with loss of the wild-type allele in 3 of 7 tumors. FAT1, FAT3, and FAT4 showed somatic or germline missense mutations in 4 of 7 tumors. The germline FAT mutations were with loss of the wild-type allele. Loss of BRCA2 expression was observed in 5 of 11 tumors. One patient with a BRCA2-mutated tumor experienced complete remission of liver metastasis following cisplatinum chemotherapy. In conclusion, acinar cell carcinomas show a distinct mutation pattern and often harbor somatic or germline mutations of BRCA2 and FAT genes. This result may warrant assessment of BRCA2 abrogation in patients with the carcinoma to determine their sensitivity to chemotherapy.
Protease activation during in vivo pancreatitis is dependent on calcineurin activation.
Shah, Ahsan U; Sarwar, Amna; Orabi, Abrahim I; Gautam, Samir; Grant, Wayne M; Park, Alexander J; Shah, Adnan U; Liu, Jun; Mistry, Pramod K; Jain, Dhanpat; Husain, Sohail Z
2009-11-01
The premature activation of digestive proenzymes, specifically proteases, within the pancreatic acinar cell is an early and critical event during acute pancreatitis. Our previous studies demonstrate that this activation requires a distinct pathological rise in cytosolic Ca(2+). Furthermore, we have shown that a target of aberrant Ca(2+) in acinar cells is the Ca(2+)/calmodulin-dependent phosphatase calcineurin (PP2B). In this study, we hypothesized that PP2B mediates in vivo protease activation and pancreatitis severity. To test this, pancreatitis was induced in mice over 8 h by administering hourly intraperitoneal injections of the cholecystokinin analog caerulein (50 microg/kg). Treatment with the PP2B inhibitor FK506 at 1 and 8 h after pancreatitis induction reduced trypsin activities by greater than 50% (P < 0.005). Serum amylase and IL-6 was reduced by 86 and 84% relative to baseline (P < 0.0005) at 8 h, respectively. Histological severity of pancreatitis, graded on the basis of pancreatic edema, acinar cell vacuolization, inflammation, and apoptosis, was reduced early in the course of pancreatitis. Myeloperoxidase activity from both pancreas and lung was reduced by 93 and 83% relative to baseline, respectively (P < 0.05). These data suggest that PP2B is an important target of the aberrant acinar cell Ca(2+) rise associated with pathological protease activation and pancreatitis.
Felix-Patrício, Bruno; Miranda, Alexandre F.; Medeiros, Jorge L.; Gallo, Carla B. M.; Gregório, Bianca M.; de Souza, Diogo B.; Costa, Waldemar S.; Sampaio, Francisco J. B.
2017-01-01
ABSTRACT Purpose: To evaluate if late hormonal replacement is able to recover the prostatic tissue modified by androgenic deprivation. Materials and Methods: 24 rats were assigned into a Sham group; an androgen deficient group, submitted to bilateral orchiectomy (Orch); and a group submitted to bilateral orchiectomy followed by testosterone replacement therapy (Orch+T). After 60 days from surgery blood was collected for determination of testosterone levels and the ventral prostate was collected for quantitative and qualitative microscopic analysis. The acinar epithelium height, the number of mast cells per field, and the densities of collagen fibers and acinar lumen were analyzed by stereological methods under light microscopy. The muscle fibers and types of collagen fibers were qualitatively assessed by scanning electron microscopy and polarization microscopy. Results: Hormone depletion (in group Orch) and return to normal levels (in group Orch+T) were effective as verified by serum testosterone analysis. The androgen deprivation promoted several alterations in the prostate: the acinar epithelium height diminished from 16.58±0.47 to 11.48±0.29μm; the number of mast cells per field presented increased from 0.45±0.07 to 2.83±0.25; collagen fibers density increased from 5.83±0.92 to 24.70±1.56%; and acinar lumen density decreased from 36.78±2.14 to 16.47±1.31%. Smooth muscle was also increased in Orch animals, and type I collagen fibers became more predominant in these animals. With the exception of the densities of collagen fibers and acinar lumen, in animals receiving testosterone replacement therapy all parameters became statistically similar to Sham. Collagen fibers density became lower and acinar lumen density became higher in Orch+T animals, when compared to Sham. This is the first study to demonstrate a relation between mast cells and testosterone levels in the prostate. This cells have been implicated in prostatic cancer and benign hyperplasia, although its specific role is not understood. Conclusion: Testosterone deprivation promotes major changes in the prostate of rats. The hormonal replacement therapy was effective in reversing these alterations. PMID:28379662
Felix-Patrício, Bruno; Miranda, Alexandre F; Medeiros, Jorge L; Gallo, Carla B M; Gregório, Bianca M; Souza, Diogo B; Costa, Waldemar S; Sampaio, Francisco J B
2017-01-01
To evaluate if late hormonal replacement is able to recover the prostatic tissue modified by androgenic deprivation. 24 rats were assigned into a Sham group; an androgen deficient group, submitted to bilateral orchiectomy (Orch); and a group submitted to bilateral orchiectomy followed by testosterone replacement therapy (Orch+T). After 60 days from surgery blood was collected for determination of testosterone levels and the ventral prostate was collected for quantitative and qualitative microscopic analysis. The acinar epithelium height, the number of mast cells per field, and the densities of collagen fibers and acinar lumen were analyzed by stereological methods under light microscopy. The muscle fibers and types of collagen fibers were qualitatively assessed by scanning electron microscopy and polarization microscopy. Hormone depletion (in group Orch) and return to normal levels (in group Orch+T) were effective as verified by serum testosterone analysis. The androgen deprivation promoted several alterations in the prostate: the acinar epithelium height diminished from 16.58±0.47 to 11.48±0.29μm; the number of mast cells per field presented increased from 0.45±0.07 to 2.83±0.25; collagen fibers density increased from 5.83±0.92 to 24.70±1.56%; and acinar lumen density decreased from 36.78±2.14 to 16.47±1.31%. Smooth muscle was also increased in Orch animals, and type I collagen fibers became more predominant in these animals. With the exception of the densities of collagen fibers and acinar lumen, in animals receiving testosterone replacement therapy all parameters became statistically similar to Sham. Collagen fibers density became lower and acinar lumen density became higher in Orch+T animals, when compared to Sham. This is the first study to demonstrate a relation between mast cells and testosterone levels in the prostate. This cells have been implicated in prostatic cancer and benign hyperplasia, although its specific role is not understood. Testosterone deprivation promotes major changes in the prostate of rats. The hormonal replacement therapy was effective in reversing these alterations. Copyright® by the International Brazilian Journal of Urology.
Guo, Liang; Lichten, Louis A.; Ryu, Moon-Suhn; Liuzzi, Juan P.; Wang, Fudi; Cousins, Robert J.
2010-01-01
The exocrine pancreas plays an important role in endogenous zinc loss by regulating excretion into the intestinal tract and hence influences the dietary zinc requirement. The present experiments show that the zinc transporter ZnT2 (Slc30a2) is localized to the zymogen granules and that dietary zinc restriction in mice decreased the zinc concentration of zymogen granules and ZnT2 expression. Excess zinc given orally increased ZnT2 expression and was associated with increased pancreatic zinc accumulation. Rat AR42J acinar cells when induced into a secretory phenotype, using the glucocorticoid analog dexamethasone (DEX), exhibited increased ZnT2 expression and labile zinc as measured with a fluorophore. DEX administrated to mice also induced ZnT2 expression that accompanied a reduction of the pancreatic zinc content. ZnT2 promoter analyses identified elements required for responsiveness to zinc and DEX. Zinc regulation was traced to a MRE located downstream from the ZnT2 transcription start site. Responsiveness to DEX is produced by two upstream STAT5 binding sites that require the glucocorticoid receptor for activation. ZnT2 knockdown in the AR42J cells using siRNA resulted in increased cytoplasmic zinc and decreased zymogen granule zinc that further demonstrated that ZnT2 may mediate the sequestration of zinc into zymogen granules. We conclude, based upon experiments with intact mice and pancreatic acinar cells in culture, that ZnT2 participates in zinc transport into pancreatic zymogen granules through a glucocorticoid pathway requiring glucocorticoid receptor and STAT5, and zinc-regulated signaling pathways requiring MTF-1. The ZnT2 transporter appears to function in a physiologically responsive manner involving entero-pancreatic zinc trafficking. PMID:20133611
Sequential changes from minimal pancreatic inflammation to advanced alcoholic pancreatitis.
Noronha, M; Dreiling, D A; Bordalo, O
1983-11-01
A correlation of several clinical parameters and pancreatitis morphological alterations observed in chronic alcoholics with and without pancreatic is presented. Three groups of patients were studied: asymptomatic chronic alcoholics (24); non-alcoholic controls (10); and cases with advanced chronic pancreatitis (6). Clinical, biochemical and functional studies were performed. Morphological studies were made on surgical biopsy specimens in light and electron microscopy. The results of this study showed: 1) fat accumulates within pancreatic acinar cells in alcoholics drinking more than 80 g of ethanol per day; 2) ultrastructural changes found in acinar cells of the alcoholics are similar to those described for liver cells; 3) the alterations found in alcoholics without pancreatitis are also observed in those with advanced chronic pancreatitis. An attempt to correlate the sequential changes in the histopathology of alcoholic pancreatic disease with the clinical picture and secretory patterns was made. According to these observations, admitting the ultrastructural similarities between the liver and the pancreas and the recently demonstrated abnormalities of lipid metabolism in pancreatic cells in experimental animal research, the authors postulate a toxic-metabolic mechanism as a likely hypothesis for the pathogenesis of chronic alcoholic inflammation of the pancreas.
Rejniak, Katarzyna A.; Anderson, Alexander R.A.
2013-01-01
Simple epithelial tissues are organized as single layers of tightly packed cells that surround hollow lumens and form selective barriers separating different internal compartments of the body. The maintenance of epithelial structure and its function requires tight coordination and control of all the life processes of epithelial cells via cell-to-cell communication and signaling. These well-balanced cellular systems are, however, quite often disturbed by genetic or environmental cues that may lead to the formation of epithelial tumors (carcinomas). In fact, more than a half of all diagnosed tumors are initiated from epithelial cells. It is, therefore, important to gain a greater understanding of the factors that form and maintain the epithelial structure, as well as the features of the acinar structure that are modified during cancer development as observable in experimental and clinical research. We address these questions using the bio-mechanical model of the developing hollow epithelial acini introduced in Rejniak and Anderson (Bull. Math. Biol. 70:677–712, 2008). Here, we propose several scenarios involving various bio-mechanical interactions between neighboring cells that result in abnormal acinar development. Whenever possible, we compare our computational results with known experimental cases of mutant acini. PMID:18401665
Duong, MyLinh T.; Akli, Said; Wei, Caimiao; Wingate, Hannah F.; Liu, Wenbin; Lu, Yiling; Yi, Min; Mills, Gordon B.; Hunt, Kelly K.; Keyomarsi, Khandan
2012-01-01
Elastase-mediated cleavage of cyclin E generates low molecular weight cyclin E (LMW-E) isoforms exhibiting enhanced CDK2–associated kinase activity and resistance to inhibition by CDK inhibitors p21 and p27. Approximately 27% of breast cancers express high LMW-E protein levels, which significantly correlates with poor survival. The objective of this study was to identify the signaling pathway(s) deregulated by LMW-E expression in breast cancer patients and to identify pharmaceutical agents to effectively target this pathway. Ectopic LMW-E expression in nontumorigenic human mammary epithelial cells (hMECs) was sufficient to generate xenografts with greater tumorigenic potential than full-length cyclin E, and the tumorigenicity was augmented by in vivo passaging. However, cyclin E mutants unable to interact with CDK2 protected hMECs from tumor development. When hMECs were cultured on Matrigel, LMW-E mediated aberrant acinar morphogenesis, including enlargement of acinar structures and formation of multi-acinar complexes, as denoted by reduced BIM and elevated Ki67 expression. Similarly, inducible expression of LMW-E in transgenic mice generated hyper-proliferative terminal end buds resulting in enhanced mammary tumor development. Reverse-phase protein array assay of 276 breast tumor patient samples and cells cultured on monolayer and in three-dimensional Matrigel demonstrated that, in terms of protein expression profile, hMECs cultured in Matrigel more closely resembled patient tissues than did cells cultured on monolayer. Additionally, the b-Raf-ERK1/2-mTOR pathway was activated in LMW-E–expressing patient samples, and activation of this pathway was associated with poor disease-specific survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (a pan kinase inhibitor targeting b-Raf) effectively prevented aberrant acinar formation in LMW-E–expressing cells by inducing G1/S cell cycle arrest. LMW-E requires CDK2–associated kinase activity to induce mammary tumor formation by disrupting acinar development. The b-Raf-ERK1/2-mTOR signaling pathway is aberrantly activated in breast cancer and can be suppressed by combination treatment with roscovitine plus either rapamycin or sorafenib. PMID:22479189
Thoungseabyoun, Wipawee; Tachow, Apussara; Pakkarato, Sawetree; Rawangwong, Atsara; Krongyut, Suthankamon; Sakaew, Waraporn; Kondo, Hisatake; Hipkaeo, Wiphawi
2017-09-01
We wished to investigate the subcellular localization of CB1, a receptor for the endocannabinoids in mouse submandibular glands (SMGs) under normal conditions and when stimulated by adrenergic or cholinergic agonists. SMGs of both male and female adult mice were utilized for immunoblotting and immuno-light and -electron microscopic analyses. Isoproterenol and carbachol were used as adrenergic and cholinergic stimulants, respectively. SMGs were examined at 15, 30, 60 and 120min after intraperitoneal injection of these agents. Selective localization of intense immunoreactivity for CB1 in the granular convoluted ductal cells was confirmed by immunoblotting and the antigen absorption test. In SMGs of control male mice, CB1-immunoreactivity was evident on the basolateral plasma membranes, including the basal infoldings, but was absent on the apical membranes in the ductal cells. Localization and intensity of CB1-immunoreactivity were essentially the same in SMGs of female mice. The immunoreactivity was transiently localized in the apical plasmalemma of some acinar and granular ductal cells of male SMGs shortly after stimulation by isoproterenol, but not by carbachol. The present finding suggests that CB1 functions primarily in the basolateral membranes of the granular convoluted ductal cells of SMGs under normal conditions, and that the CB1 can function additionally in the apical membrane of acinar and granular ductal cells for modulation of the saliva secretory condition via adrenoceptors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ferreira, Rute M M; Sancho, Rocio; Messal, Hendrik A; Nye, Emma; Spencer-Dene, Bradley; Stone, Richard K; Stamp, Gordon; Rosewell, Ian; Quaglia, Alberto; Behrens, Axel
2017-10-24
The cell of origin of pancreatic ductal adenocarcinoma (PDAC) has been controversial. Here, we show that identical oncogenic drivers trigger PDAC originating from both ductal and acinar cells with similar histology but with distinct pathophysiology and marker expression dependent on cell of origin. Whereas acinar-derived tumors exhibited low AGR2 expression and were preceded by pancreatic intraepithelial neoplasias (PanINs), duct-derived tumors displayed high AGR2 and developed independently of a PanIN stage via non-mucinous lesions. Using orthotopic transplantation and chimera experiments, we demonstrate that PanIN-like lesions can be induced by PDAC as bystanders in adjacent healthy tissues, explaining the co-existence of mucinous and non-mucinous lesions and highlighting the need to distinguish between true precursor PanINs and PanIN-like bystander lesions. Our results suggest AGR2 as a tool to stratify PDAC according to cell of origin, highlight that not all PanIN-like lesions are precursors of PDAC, and add an alternative progression route to the current model of PDAC development. Copyright © 2017 Francis Crick Institute. Published by Elsevier Inc. All rights reserved.
Kawashima, Motoko; Maida, Yoshiko; Kamoi, Mizuka; Ogawa, Yoko; Shimmura, Shigeto; Masutomi, Kenkichi; Tsubota, Kazuo
2011-01-01
Purpose Indicators of aging such as disruption of telomeric function due to shortening may be more frequent in dysfunctional lacrimal gland. The aims of this study were to 1) determine the viability of quantitative fluorescence in situ hybridization of telomeres (telo-FISH) for the assessment of telomere length in lacrimal gland in Sjögren and non- Sjögren syndrome patients; and 2) investigate the relationship between progenitor cell markers and telomere length in both groups. Methods Quantitative fluorescence in situ hybridization with a peptide nucleic acid probe complementary to the telomere repeat sequence was performed on frozen sections from human lacrimal gland tissues. The mean fluorescence intensity of telomere spots was automatically quantified by image analysis as relative telomere length in lacrimal gland epithelial cells. Immunostaining for p63, nucleostemin, ATP-binding cassette, sub-family G, member 2 (ABCG2), and nestin was also performed. Results Telomere intensity in the Sjögren syndrome group (6,785.0±455) was significantly lower than that in the non-Sjögren syndrome group (7,494.7±477; p=0.02). Among the samples from the non-Sjögren syndrome group, immunostaining revealed that p63 was expressed in 1–3 acinar cells in each acinar unit and continuously in the basal layer of duct cells. In contrast, in the Sjögren syndrome group, p63 and nucleostemin showed a lower level of expression. ABCG2 was expressed in acinar cells in both sjogren and non-Sjogren syndrome. Conclusions The results of this study indicate that 1) telo-FISH is a viable method of assessing telomere length in lacrimal gland, and 2) telomere length in Sjögren syndrome is shorter and associated with lower levels of expression of p63 and nucleostemin than in non-Sjögren syndrome. PMID:21655359
Moustafa, Amira; Habara, Yoshiaki
2015-10-01
In addition to nitric oxide (NO), hydrogen sulfide (H2S) is recognized as a crucial gaseous messenger that exerts many biological actions in various tissues. An attempt was made to assess the roles and underlying mechanisms of both gases in isolated rat parotid acinar cells. Ductal cells and some acinar cells were found to express NO and H2S synthases. Cevimeline, a muscarinic receptor agonist upregulated endothelial NO synthase in parotid tissue. NO and H2S donors increased the intracellular Ca(2+) concentration ([Ca(2+)]i). This was not affected by inhibitors of phospholipase C and inositol 1,4,5-trisphosphate receptors, but was decreased by blockers of ryanodine receptors (RyRs), soluble guanylyl cyclase, and protein kinase G. The H2S donor evoked NO production, which was decreased by blockade of NO synthases or phosphoinositide 3-kinase or by hypotaurine, an H2S scavenger. The H2S donor-induced [Ca(2+)]i increase was diminished by a NO scavenger or the NO synthases blocker. These results suggest that NO and H2S play important roles in regulating [Ca(2+)]i via soluble guanylyl cyclase-cGMP-protein kinase G-RyRs, but not via inositol 1,4,5-trisphosphate receptors. The effect of H2S may be partially through NO produced via phosphoinositide 3-kinase-Akt-endothelial NO synthase. It was concluded that both gases regulate [Ca(2+)]i in a synergistic way, mainly via RyRs in rat parotid acinar cells. Copyright © 2015 the American Physiological Society.
Gillard, Marc; Lack, Justin; Pontier, Andrea; Gandla, Divya; Hatcher, David; Sowalsky, Adam G; Rodriguez-Nieves, Jose; Vander Griend, Donald; Paner, Gladell; VanderWeele, David
2017-12-08
Ductal adenocarcinoma of the prostate is an aggressive subtype, with high rates of biochemical recurrence and overall poor prognosis. It is frequently found coincident with conventional acinar adenocarcinoma. The genomic features driving evolution to its ductal histology and the biology associated with its poor prognosis remain unknown. To characterize genomic features distinguishing ductal adenocarcinoma from coincident acinar adenocarcinoma foci from the same patient. Ten patients with coincident acinar and ductal prostate cancer underwent prostatectomy. Laser microdissection was used to separately isolate acinar and ductal foci. DNA and RNA were extracted, and used for integrative genomic and transcriptomic analyses. Single nucleotide mutations, small indels, copy number estimates, and expression profiles were identified. Phylogenetic relationships between coincident foci were determined, and characteristics distinguishing ductal from acinar foci were identified. Exome sequencing, copy number estimates, and fusion genes demonstrated coincident ductal and acinar adenocarcinoma diverged from a common progenitor, yet they harbored distinct alterations unique to each focus. AR expression and activity were similar in both histologies. Nine of 10 cases had mutually exclusive CTNNB1 hotspot mutations or phosphatase and tensin homolog (PTEN) alterations in the ductal component, and these were absent in the acinar foci. These alterations were associated with changes in expression in WNT- and PI3K-pathway genes. Coincident ductal and acinar histologies typically are clonally related and thus arise from the same cell of origin. Ductal foci are enriched for cases with either a CTNNB1 hotspot mutation or a PTEN alteration, and are associated with WNT- or PI3K-pathway activation. These alterations are mutually exclusive and may represent distinct subtypes. The aggressive subtype ductal adenocarcinoma is closely related to conventional acinar prostate cancer. Ductal foci contain additional alterations, however, leading to frequent activation of two targetable pathways. Published by Elsevier B.V.
Fedirko, N V; Kruglikov, I A; Kopach, O V; Vats, J A; Kostyuk, P G; Voitenko, N V
2006-03-01
Xerostomia and pathological thirst are troublesome complications of diabetes mellitus associated with impaired functioning of salivary glands; however, their cellular mechanisms are not yet determined. Isolated acinar cells were loaded with Ca2+ indicators fura-2/AM for measuring cytosolic Ca2+ concentration ([Ca2+]i) or mag-fura-2/AM-inside the endoplasmic reticulum (ER). We found a dramatic decrease in pilocarpine-stimulated saliva flow, protein content and amylase activity in rats after 6 weeks of diabetes vs. healthy animals. This was accompanied with rise in resting [Ca2+]i and increased potency of acetylcholine (ACh) and carbachol (CCh) but not norepinephrine (NE) to induce [Ca2+]i transients in acinar cells from diabetic animals. However, [Ca2+]i transients mediated by Ca2+ release from ER stores (induced by application of either ACh, CCh, NE, or ionomycin in Ca2+-free extracellular medium) were decreased under diabetes. Application of inositol-1,4,5-trisphosphate led to smaller Ca2+ release from ER under the diabetes. Both plasmalemma and ER Ca2+-ATPases activity was reduced and the latter showed the increased affinity to ATP under the diabetes. We conclude that the diabetes caused impairment of salivary cells functions that, on the cellular level, associates with Ca2+ overload, increased Ca2+-mobilizing ability of muscarinic but not adrenergic receptors, decreased Ca2+-ATPases activity and ER Ca2+ content.
Expression of membrane-associated mucins MUC1 and MUC4 in major human salivary glands.
Liu, Bing; Lague, Jessica R; Nunes, David P; Toselli, Paul; Oppenheim, Frank G; Soares, Rodrigo V; Troxler, Robert F; Offner, Gwynneth D
2002-06-01
Mucins are high molecular weight glycoproteins secreted by salivary glands and epithelial cells lining the digestive, respiratory, and reproductive tracts. These glycoproteins, encoded in at least 13 distinct human genes, can be subdivided into gel-forming and membrane-associated forms. The gel-forming mucin MUC5B is secreted by mucous acinar cells in major and minor salivary glands, but little is known about the expression pattern of membrane-associated mucins. In this study, RT-PCR and Northern blotting demonstrated the presence of transcripts for MUC1 and MUC4 in both parotid and submandibular glands, and in situ hybridization localized these transcripts to epithelial cells lining striated and excretory ducts and in some serous acinar cells. The same cellular distribution was observed by immunohistochemistry. Soluble forms of both mucins were detected in parotid secretion after immunoprecipitation with mucin-specific antibodies. These studies have shown that membrane-associated mucins are produced in both parotid and submandibular glands and that they are expressed in different cell types than gel-forming mucins. Although the function of these mucins in the oral cavity remains to be elucidated, it is possible that they both contribute to the epithelial protective mucin layer and act as receptors initiating one or more intracellular signal transduction pathways.
The pathobiological impact of cigarette smoke on pancreatic cancer development (review).
Wittel, Uwe A; Momi, Navneet; Seifert, Gabriel; Wiech, Thorsten; Hopt, Ulrich T; Batra, Surinder K
2012-07-01
Despite extensive efforts, pancreatic cancer remains incurable. Most risk factors, such as genetic disposition, metabolic diseases or chronic pancreatitis cannot be influenced. By contrast, cigarette smoking, an important risk factor for pancreatic cancer, can be controlled. Despite the epidemiological evidence of the detrimental effects of cigarette smoking with regard to pancreatic cancer development and its unique property of being influenceable, our understanding of cigarette smoke-induced pancreatic carcinogenesis is limited. Current data on cigarette smoke-induced pancreatic carcinogenesis indicate multifactorial events that are triggered by nicotine, which is the major pharmacologically active constituent of tobacco smoke. In addition to nicotine, a vast number of carcinogens have the potential to reach the pancreatic gland, where they are metabolized, in some instances to even more toxic compounds. These metabolic events are not restricted to pancreatic ductal cells. Several studies show that acinar cells are also greatly affected. Furthermore, pancreatic cancer progenitor cells do not only derive from the ductal epithelial lineage, but also from acinar cells. This sheds new light on cigarette smoke-induced acinar cell damage. On this background, our objective is to outline a multifactorial model of tobacco smoke-induced pancreatic carcinogenesis.
Functional significance of SPINK1 promoter variants in chronic pancreatitis.
Derikx, Monique H M; Geisz, Andrea; Kereszturi, Éva; Sahin-Tóth, Miklós
2015-05-01
Chronic pancreatitis is a progressive inflammatory disorder of the pancreas, which often develops as a result of genetic predisposition. Some of the most frequently identified risk factors affect the serine protease inhibitor Kazal type 1 (SPINK1) gene, which encodes a trypsin inhibitor responsible for protecting the pancreas from premature trypsinogen activation. Recent genetic and functional studies indicated that promoter variants in the SPINK1 gene might contribute to disease risk in carriers. Here, we investigated the functional effects of 17 SPINK1 promoter variants using luciferase reporter gene expression assay in four different cell lines, including three pancreatic acinar cell lines (rat AR42J with or without dexamethasone-induced differentiation and mouse 266-6) and human embryonic kidney 293T cells. We found that most variants caused relatively small changes in promoter activity. Surprisingly, however, we observed significant variations in the effects of the promoter variants in the different cell lines. Only four variants exhibited consistently reduced promoter activity in all acinar cell lines, confirming previous reports that variants c.-108G>T, c.-142T>C, and c.-147A>G are risk factors for chronic pancreatitis and identifying c.-52G>T as a novel risk variant. In contrast, variant c.-215G>A, which is linked with the disease-associated splice-site mutation c.194 + 2T>C, caused increased promoter activity, which may mitigate the overall effect of the pathogenic haplotype. Our study lends further support to the notion that sequence evaluation of the SPINK1 promoter region in patients with chronic pancreatitis is justified as part of the etiological investigation. Copyright © 2015 the American Physiological Society.
Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X
2004-01-01
Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613
Siriwardena, Ajith K
2014-01-01
AIM: To reappraise the hypothesis of xenobiotic induced, cytochrome P450-mediated, micronutrient-deficient oxidative injury in chronic pancreatitis. METHODS: Individual searches of the Medline and Embase databases were conducted for each component of the theory of oxidative-stress mediated cellular injury for the period from 1st January 1990 to 31st December 2012 using appropriate medical subject headings. Boolean operators were used. The individual components were drawn from a recent update on theory of oxidative stress-mediated cellular injury in chronic pancreatitis. RESULTS: In relation to the association between exposure to volatile hydrocarbons and chronic pancreatitis the studies fail to adequately control for alcohol intake. Cytochrome P450 (CYP) induction occurs as a diffuse hepatic and extra-hepatic response to xenobiotic exposure rather than an acinar cell-specific process. GSH depletion is not consistently confirmed. There is good evidence of superoxide dismutase depletion in acute phases of injury but less to support a chronic intra-acinar depletion. Although the liver is the principal site of CYP induction there is no evidence to suggest that oxidative by-products are carried in bile and reflux into the pancreatic duct to cause injury. CONCLUSION: Pancreatic acinar cell injury due to short-lived oxygen free radicals (generated by injury mediated by prematurely activated intra-acinar trypsin) is an important mechanism of cell damage in chronic pancreatitis. However, in contemporary paradigms of chronic pancreatitis this should be seen as one of a series of cell-injury mechanisms rather than a sole mediator. PMID:24659895
Effect of different exercise intensities on the pancreas of animals with metabolic syndrome.
Amaral, Fernanda; Lima, Nathalia Ea; Ornelas, Elisabete; Simardi, Lucila; Fonseca, Fernando Luiz Affonso; Maifrino, Laura Beatriz Mesiano
2015-01-01
Metabolic syndrome (MS) comprises several metabolic disorders that are risk factors for cardiovascular disease and has its source connected to the accumulation of visceral adipose tissue (VAT) and development of insulin resistance. Despite studies showing beneficial results of exercise on several risk factors for cardiovascular disease, studies evaluating the effects of different intensities of exercise training on the pancreas with experimental models are scarce. In total, 20 Wistar rats were used, divided into four groups: control (C), metabolic syndrome (MS and without exercise), metabolic syndrome and practice of walking (MSWalk), and metabolic syndrome and practice of running (MSRun). The applied procedures were induction of MS by fructose in drinking water; experimental protocol of walking and running; weighing of body mass and VAT; sacrifice of animals with blood collection and removal of organs and processing of samples for light microscopy using the analysis of volume densities (Vv) of the studied structures. Running showed a reduction of VAT weight (-54%), triglyceride levels (-40%), Vv[islet] (-62%), Vv[islet.cells] (-22%), Vv[islet.insterstitial] (-44%), and Vv[acinar.insterstitial] (-24%) and an increase of Vv[acini] (+21%) and Vv[acinar.cells] (+22%). Regarding walking, we observed a decrease of VAT weight (-34%) and triglyceride levels (-27%), an increase of Vv[islet.cells] (+72%) and Vv[acinar.cells] (+7%), and a decrease of Vv[acini] (-4%) and Vv[acinar.insterstitial] (-16%) when compared with those in the MS group. Our results suggest that the experimental model with low-intensity exercise (walking) seems to be more particularly recommended for preventing morphological and metabolic disorders occurring in the MS.
Orabi, Abrahim I; Shah, Ahsan U; Muili, Kamaldeen; Luo, Yuhuan; Mahmood, Syeda Maham; Ahmad, Asim; Reed, Anamika; Husain, Sohail Z
2011-04-22
Alcohol abuse is a leading cause of pancreatitis, accounting for 30% of acute cases and 70-90% of chronic cases, yet the mechanisms leading to alcohol-associated pancreatic injury are unclear. An early and critical feature of pancreatitis is the aberrant signaling of Ca(2+) within the pancreatic acinar cell. An important conductor of this Ca(2+) is the basolaterally localized, intracellular Ca(2+) channel ryanodine receptor (RYR). In this study, we examined the effect of ethanol on mediating both pathologic intra-acinar protease activation, a precursor to pancreatitis, as well as RYR Ca(2+) signals. We hypothesized that ethanol sensitizes the acinar cell to protease activation by modulating RYR Ca(2+). Acinar cells were freshly isolated from rat, pretreated with ethanol, and stimulated with the muscarinic agonist carbachol (1 μM). Ethanol caused a doubling in the carbachol-induced activation of the proteases trypsin and chymotrypsin (p < 0.02). The RYR inhibitor dantrolene abrogated the enhancement of trypsin and chymotrypsin activity by ethanol (p < 0.005 for both proteases). Further, ethanol accelerated the speed of the apical to basolateral Ca(2+) wave from 9 to 18 μm/s (p < 0.0005; n = 18-22 cells/group); an increase in Ca(2+) wave speed was also observed with a change from physiologic concentrations of carbachol (1 μM) to a supraphysiologic concentration (1 mM) that leads to protease activation. Dantrolene abrogated the ethanol-induced acceleration of wave speed (p < 0.05; n = 10-16 cells/group). Our results suggest that the enhancement of pathologic protease activation by ethanol is dependent on the RYR and that a novel mechanism for this enhancement may involve RYR-mediated acceleration of Ca(2+) waves.
Orabi, Abrahim I.; Shah, Ahsan U.; Muili, Kamaldeen; Luo, Yuhuan; Mahmood, Syeda Maham; Ahmad, Asim; Reed, Anamika; Husain, Sohail Z.
2011-01-01
Alcohol abuse is a leading cause of pancreatitis, accounting for 30% of acute cases and 70–90% of chronic cases, yet the mechanisms leading to alcohol-associated pancreatic injury are unclear. An early and critical feature of pancreatitis is the aberrant signaling of Ca2+ within the pancreatic acinar cell. An important conductor of this Ca2+ is the basolaterally localized, intracellular Ca2+ channel ryanodine receptor (RYR). In this study, we examined the effect of ethanol on mediating both pathologic intra-acinar protease activation, a precursor to pancreatitis, as well as RYR Ca2+ signals. We hypothesized that ethanol sensitizes the acinar cell to protease activation by modulating RYR Ca2+. Acinar cells were freshly isolated from rat, pretreated with ethanol, and stimulated with the muscarinic agonist carbachol (1 μm). Ethanol caused a doubling in the carbachol-induced activation of the proteases trypsin and chymotrypsin (p < 0.02). The RYR inhibitor dantrolene abrogated the enhancement of trypsin and chymotrypsin activity by ethanol (p < 0.005 for both proteases). Further, ethanol accelerated the speed of the apical to basolateral Ca2+ wave from 9 to 18 μm/s (p < 0.0005; n = 18–22 cells/group); an increase in Ca2+ wave speed was also observed with a change from physiologic concentrations of carbachol (1 μm) to a supraphysiologic concentration (1 mm) that leads to protease activation. Dantrolene abrogated the ethanol-induced acceleration of wave speed (p < 0.05; n = 10–16 cells/group). Our results suggest that the enhancement of pathologic protease activation by ethanol is dependent on the RYR and that a novel mechanism for this enhancement may involve RYR-mediated acceleration of Ca2+ waves. PMID:21372126
Armstrong, Jane A.; Cash, Nicole J.; Ouyang, Yulin; Morton, Jack C.; Chvanov, Michael; Latawiec, Diane; Awais, Muhammad; Tepikin, Alexei V.; Sutton, Robert; Criddle, David N.
2018-01-01
Mitochondrial dysfunction lies at the core of acute pancreatitis (AP). Diverse AP stimuli induce Ca2+-dependent formation of the mitochondrial permeability transition pore (MPTP), a solute channel modulated by cyclophilin D (CypD), the formation of which causes ATP depletion and necrosis. Oxidative stress reportedly triggers MPTP formation and is elevated in clinical AP, but how reactive oxygen species influence cell death is unclear. Here, we assessed potential MPTP involvement in oxidant-induced effects on pancreatic acinar cell bioenergetics and fate. H2O2 application promoted acinar cell apoptosis at low concentrations (1–10 μm), whereas higher levels (0.5–1 mm) elicited rapid necrosis. H2O2 also decreased the mitochondrial NADH/FAD+ redox ratio and ΔΨm in a concentration-dependent manner (10 μm to 1 mm H2O2), with maximal effects at 500 μm H2O2. H2O2 decreased the basal O2 consumption rate of acinar cells, with no alteration of ATP turnover at <50 μm H2O2. However, higher H2O2 levels (≥50 μm) diminished spare respiratory capacity and ATP turnover, and bioenergetic collapse, ATP depletion, and cell death ensued. Menadione exerted detrimental bioenergetic effects similar to those of H2O2, which were inhibited by the antioxidant N-acetylcysteine. Oxidant-induced bioenergetic changes, loss of ΔΨm, and cell death were not ameliorated by genetic deletion of CypD or by its acute inhibition with cyclosporine A. These results indicate that oxidative stress alters mitochondrial bioenergetics and modifies pancreatic acinar cell death. A shift from apoptosis to necrosis appears to be associated with decreased mitochondrial spare respiratory capacity and ATP production, effects that are independent of CypD-sensitive MPTP formation. PMID:29626097
Insulation of a G protein-coupled receptor on the plasmalemmal surface of the pancreatic acinar cell
1995-01-01
Receptor desensitization is a key process for the protection of the cell from continuous or repeated exposure to high concentrations of an agonist. Well-established mechanisms for desensitization of guanine nucleotide-binding protein (G protein)-coupled receptors include phosphorylation, sequestration/internalization, and down-regulation. In this work, we have examined some mechanisms for desensitization of the cholecystokinin (CCK) receptor which is native to the pancreatic acinar cell, and have found the predominant mechanism to be distinct from these recognized processes. Upon fluorescent agonist occupancy of the native receptor, it becomes "insulated" from the effects of acid washing and becomes immobilized on the surface of the plasma membrane in a time- and temperature-dependent manner. This localization was assessed by ultrastructural studies using a colloidal gold conjugate of CCK, and lateral mobility of the receptor was assessed using fluorescence recovery after photobleaching. Of note, recent application of the same morphologic techniques to a CCK receptor-bearing Chinese hamster ovary cell line demonstrated prominent internalization via the clathrin-dependent endocytic pathway, as well as entry into caveolae (Roettger, B.F., R.U. Rentsch, D. Pinon, E. Holicky, E. Hadac, J.M. Larkin, and L.J. Miller, 1995, J. Cell Biol. 128: 1029-1041). These organelles are not observed to represent prominent compartments for the same receptor to traverse in the acinar cell, although fluorescent insulin is clearly internalized in these cells via receptor-mediated endocytosis. In this work, the rate of lateral mobility of the CCK receptor is observed to be similar in both cell types (1-3 x 10(-10) cm2/s), while the fate of the agonist-occupied receptor is quite distinct in each cell. This supports the unique nature of desensitization processes which occur in a cell-specific manner. A plasmalemmal site of insulation of this important receptor on the pancreatic acinar cell could be particularly effective to protect the cell from processes which might initiate pancreatitis, while providing for the rapid resensitization of this receptor to ensure appropriate pancreatic secretion to aid in nutrient assimilation for the organism. PMID:7622559
Yu, Run; Jih, Lily; Zhai, Jing; Nissen, Nicholas N; Colquhoun, Steven; Wolin, Edward; Dhall, Deepti
2013-04-01
The objective of this study was to characterize the novel clinical and pathological features of mixed acinar-endocrine carcinoma of the pancreas. This was a retrospective review of medical records and surgical pathology specimens of patients with a diagnosis of mixed acinar-endocrine carcinoma of the pancreas at Cedars-Sinai Medical Center between 2005 and 2011. Additional immunohistochemistry was performed on the specimens of some patients. Five patients were identified. The median age at presentation was 74 years (range, 59-89 years), and all patients were male. The presenting symptoms were all related to tumor mass effects. The median size of the tumor was 10 cm (range, 3.9-16 cm). Preoperative clinical diagnosis aided by fine-needle aspiration biopsy was incorrect in all 5 cases. Most tumors (3/5) exhibited predominantly endocrine differentiation without hormonal production. Only 10% to 30% of cells were truly amphicrine, whereas most were differentiated into either endocrine or acinar phenotype. The clinical behavior ranged from moderate to aggressive with postoperative survival from 2.5 months to more than 3 years. Four patients received neoadjuvant or adjuvant chemotherapy with variable responses. Mixed acinar-endocrine carcinoma of the pancreas appears to be not uncommon in men, may harbor predominantly endocrine component, is often misdiagnosed by cytology, and exhibits variable clinical behavior. Mixed acinar-endocrine carcinoma of the pancreas should be considered in older patients with sizable pancreatic mass and may warrant aggressive surgical resection and chemotherapy.
Catalán, Marcelo A.; Kondo, Yusuke; Peña-Munzenmayer, Gaspar; Jaramillo, Yasna; Liu, Frances; Choi, Sooji; Crandall, Edward; Borok, Zea; Flodby, Per; Shull, Gary E.; Melvin, James E.
2015-01-01
Activation of an apical Ca2+-activated Cl− channel (CaCC) triggers the secretion of saliva. It was previously demonstrated that CaCC-mediated Cl− current and Cl− efflux are absent in the acinar cells of systemic Tmem16A (Tmem16A Cl− channel) null mice, but salivation was not assessed in fully developed glands because Tmem16A null mice die within a few days after birth. To test the role of Tmem16A in adult salivary glands, we generated conditional knockout mice lacking Tmem16A in acinar cells (Tmem16A−/−). Ca2+-dependent salivation was abolished in Tmem16A−/− mice, demonstrating that Tmem16A is obligatory for Ca2+-mediated fluid secretion. However, the amount of saliva secreted by Tmem16A−/− mice in response to the β-adrenergic receptor agonist isoproterenol (IPR) was comparable to that seen in controls, indicating that Tmem16A does not significantly contribute to cAMP-induced secretion. Furthermore, IPR-stimulated secretion was unaffected in mice lacking Cftr (Cftr∆F508/∆F508) or ClC-2 (Clcn2−/−) Cl− channels. The time course for activation of IPR-stimulated fluid secretion closely correlated with that of the IPR-induced cell volume increase, suggesting that acinar swelling may activate a volume-sensitive Cl− channel. Indeed, Cl− channel blockers abolished fluid secretion, indicating that Cl− channel activity is critical for IPR-stimulated secretion. These data suggest that β-adrenergic–induced, cAMP-dependent fluid secretion involves a volume-regulated anion channel. In summary, our results using acinar-specific Tmem16A−/− mice identify Tmem16A as the Cl− channel essential for muscarinic, Ca2+-dependent fluid secretion in adult mouse salivary glands. PMID:25646474
Glycoconjugate pattern of membranes in the acinar cell of the rat pancreas.
Willemer, S; Köhler, H; Naumann, R; Kern, H F; Adler, G
1990-01-01
Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): L-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis- to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.
Exocrine pancreas ER stress is differentially induced by different fatty acids.
Danino, Hila; Ben-Dror, Karin; Birk, Ruth
2015-12-10
Exocrine pancreas acinar cells have a highly developed endoplasmic reticulum (ER), accommodating their high protein production rate. Overload of dietary fat (typical to obesity) is a recognized risk factor in pancreatitis and pancreatic cancer. Dietary fat, especially saturated fat, has been suggested by others and us to induce an acinar lipotoxic effect. The effect of different dietary fatty acids on the ER stress response is unknown. We studied the effect of acute (24h) challenge with different fatty acids (saturated, mono and poly-unsaturated) at different concentrations (between 200 and 500µM, typical to normal and obese states, respectively), testing fat accumulation, ER stress indicators, X-box binding protein 1 (Xbp1) splicing and nuclear translocation, as well as unfolded protein response (UPR) transcripts and protein levels using exocrine pancreas acinar AR42J and primary cells. Acute exposure of AR42J cells to different fatty acids caused increased accumulation of triglycerides, dependent on the type of fat. Different FAs had different effects on ER stress: most notably, saturated palmitic acid significantly affected the UPR response, as demonstrated by altered Xbp1 splicing, elevation in transcript levels of UPR (Xbp, CHOP, Bip) and immune factors (Tnfα, Tgfβ), and enhanced Xbp1 protein levels and Xbp1 time-dependent nuclear translocation. Poly-unsaturated FAs caused milder elevation of ER stress markers, while mono-unsaturated oleic acid attenuated the ER stress response. Thus, various fatty acids differentially affect acinar cell fat accumulation and, apart from oleic acid, induce ER stress. The differential effect of the various fatty acids could have potential nutritional and therapeutic implications. Copyright © 2015 Elsevier Inc. All rights reserved.
Michael, E S; Kuliopulos, A; Covic, L; Steer, M L; Perides, G
2013-03-01
Pancreatic acinar cells express proteinase-activated receptor-2 (PAR2) that is activated by trypsin-like serine proteases and has been shown to exert model-specific effects on the severity of experimental pancreatitis, i.e., PAR2(-/-) mice are protected from experimental acute biliary pancreatitis but develop more severe secretagogue-induced pancreatitis. P2pal-18S is a novel pepducin lipopeptide that targets and inhibits PAR2. In studies monitoring PAR2-stimulated intracellular Ca(2+) concentration changes, we show that P2pal-18S is a full PAR2 inhibitor in acinar cells. Our in vivo studies show that P2pal-18S significantly reduces the severity of experimental biliary pancreatitis induced by retrograde intraductal bile acid infusion, which mimics injury induced by endoscopic retrograde cholangiopancreatography (ERCP). This reduction in pancreatitis severity is observed when the pepducin is given before or 2 h after bile acid infusion but not when it is given 5 h after bile acid infusion. Conversely, P2pal-18S increases the severity of secretagogue-induced pancreatitis. In vitro studies indicate that P2pal-18S protects acinar cells against bile acid-induced injury/death, but it does not alter bile acid-induced intracellular zymogen activation. These studies are the first to report the effects of an effective PAR2 pharmacological inhibitor on pancreatic acinar cells and on the severity of experimental pancreatitis. They raise the possibility that a pepducin such as P2pal-18S might prove useful in the clinical management of patients at risk for developing severe biliary pancreatitis such as occurs following ERCP.
Dynamic landscape of pancreatic carcinogenesis reveals early molecular networks of malignancy.
Kong, Bo; Bruns, Philipp; Behler, Nora A; Chang, Ligong; Schlitter, Anna Melissa; Cao, Jing; Gewies, Andreas; Ruland, Jürgen; Fritzsche, Sina; Valkovskaya, Nataliya; Jian, Ziying; Regel, Ivonne; Raulefs, Susanne; Irmler, Martin; Beckers, Johannes; Friess, Helmut; Erkan, Mert; Mueller, Nikola S; Roth, Susanne; Hackert, Thilo; Esposito, Irene; Theis, Fabian J; Kleeff, Jörg; Michalski, Christoph W
2018-01-01
The initial steps of pancreatic regeneration versus carcinogenesis are insufficiently understood. Although a combination of oncogenic Kras and inflammation has been shown to induce malignancy, molecular networks of early carcinogenesis remain poorly defined. We compared early events during inflammation, regeneration and carcinogenesis on histological and transcriptional levels with a high temporal resolution using a well-established mouse model of pancreatitis and of inflammation-accelerated Kras G12D -driven pancreatic ductal adenocarcinoma. Quantitative expression data were analysed and extensively modelled in silico. We defined three distinctive phases-termed inflammation, regeneration and refinement-following induction of moderate acute pancreatitis in wild-type mice. These corresponded to different waves of proliferation of mesenchymal, progenitor-like and acinar cells. Pancreas regeneration required a coordinated transition of proliferation between progenitor-like and acinar cells. In mice harbouring an oncogenic Kras mutation and challenged with pancreatitis, there was an extended inflammatory phase and a parallel, continuous proliferation of mesenchymal, progenitor-like and acinar cells. Analysis of high-resolution transcriptional data from wild-type animals revealed that organ regeneration relied on a complex interaction of a gene network that normally governs acinar cell homeostasis, exocrine specification and intercellular signalling. In mice with oncogenic Kras, a specific carcinogenic signature was found, which was preserved in full-blown mouse pancreas cancer. These data define a transcriptional signature of early pancreatic carcinogenesis and a molecular network driving formation of preneoplastic lesions, which allows for more targeted biomarker development in order to detect cancer earlier in patients with pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Cecchini, Maria Paola; Merigo, Flavia; Cristofoletti, Mirko; Osculati, Francesco; Sbarbati, Andrea
2009-01-01
The oral cavity is continuously bathed by saliva secreted by the major and minor salivary glands. Saliva is the first biological medium to confront external materials that are taken into the body as part of food or drink or inhaled volatile substances, and it contributes to the first line of oral defence. In humans, it has been shown that sputum and a variety of biological fluids contain Clara cell secretory proteins (CC10–CC26). Various studies of the respiratory apparatus have suggested their protective effect against inflammatory response and oxidative stress. Recently, CC10 deficiency has been related to the protein Annexin-1 (ANXA1), which has immunomodulatory and anti-inflammatory properties. Considering the defensive role of both Clara cell secretory proteins and ANXA1 in the respiratory apparatus, and the importance of salivary gland secretion in the first line of oral defence, we decided to evaluate the expression of CC10, CC26 and ANXA1 proteins in rat major salivary glands using immunohistochemistry. CC10 expression was found only in the ductal component of the sublingual gland. Parotid and submandibular glands consistently lacked CC10 immunoreactivity. In the parotid gland, both acinar and ductal cells were always CC26-negative, whereas in the submandibular gland, immunostaining was localized in the ductal component and in the periodic acid Schiff (PAS)-positive area. In the sublingual gland, ductal cells were always positive. Acinar cells were not immunostained at all. ANXA1 was expressed in ductal cells in all three major glands. In parotid and sublingual glands, acinar cells were negative. In submandibular glands, immunostaining was present in the mucous PAS-positive portion, whereas serous acinar cells were consistently negative. The existence of some CC10-CC26–ANXA1-positive cells in rat salivary glandular tissue is an interesting preliminary finding which could support the hypothesis, suggested for airway tissue, that these proteins have a defensive and protective role. Protein expression heterogeneity in the different portions of the glands could be an important clue in further investigations of their role. PMID:19438769
Baumann, Otto; Dames, Petra; Kühnel, Dana; Walz, Bernd
2002-01-01
Background The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types. Results The acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation. Conclusion Our results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin. PMID:12095424
Baumann, Otto; Dames, Petra; Kühnel, Dana; Walz, Bernd
2002-06-24
The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controlled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types. The acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation. Our results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin.
Relationship between aquaporin-5 expression and saliva flow in streptozotocin-induced diabetic mice?
Soyfoo, M S; Bolaky, N; Depoortere, I; Delporte, C
2012-07-01
To investigate the expression and distribution of AQP5 in submandibular acinar cells from sham- and streptozotocin (STZ)-treated mice in relation to the salivary flow. Mice were sham or STZ injected. Distribution of AQP5 subcellular expression in submandibular glands was determined by immunohistochemistry. AQP5 labelling indices (LI), reflecting AQP5 subcellular distribution, were determined in acinar cells. Western blotting was performed to determine the expression of AQP5 in submandibular glands. Blood glycaemia and osmolality and saliva flow rates were also determined. AQP5 immunoreactivity was primarily located at the apical and apical-basolateral membranes of submandibular gland acinar cells from sham- and STZ-treated mice. No significant differences in AQP5 protein levels were observed between sham- and STZ-treated mice. Compared to sham-treated mice, STZ-treated mice had significant increased glycaemia, while no significant differences in blood osmolality were observed. Saliva flow rate was significantly decreased in STZ-treated mice as compared to sham-treated mice. In STZ-treated mice, significant reduction in salivary flow rate was observed without any concomitant modification in AQP5 expression and localization. © 2011 John Wiley & Sons A/S.
Ramond, Cyrille; Glaser, Nicolas; Berthault, Claire; Ameri, Jacqueline; Kirkegaard, Jeannette Schlichting; Hansson, Mattias; Honoré, Christian; Semb, Henrik; Scharfmann, Raphaël
2017-07-21
Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages. Development towards the acinar lineage is paralleled by an increase in GP2 expression. Conversely, a subset of the GP2 + population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3 , a marker of endocrine differentiation. Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated.
Hendley, Audrey M.; Provost, Elayne; Bailey, Jennifer M.; Wang, Yue J.; Cleveland, Megan H.; Blake, Danielle; Bittman, Ross W.; Roeser, Jeffrey C.; Maitra, Anirban; Reynolds, Albert B.; Leach, Steven D.
2015-01-01
The intracellular protein p120 catenin aids in maintenance of cell-cell adhesion by regulating E-cadherin stability in epithelial cells. In an effort to understand the biology of p120 catenin in pancreas development, we ablated p120 catenin in mouse pancreatic progenitor cells, which resulted in deletion of p120 catenin in all epithelial lineages of the developing mouse pancreas: islet, acinar, centroacinar, and ductal. Loss of p120 catenin resulted in formation of dilated epithelial tubules, expansion of ductal epithelia, loss of acinar cells, and the induction of pancreatic inflammation. Aberrant branching morphogenesis and tubulogenesis were also observed. Throughout development, the phenotype became more severe, ultimately resulting in an abnormal pancreas comprised primarily of duct-like epithelium expressing early progenitor markers. In pancreatic tissue lacking p120 catenin, overall epithelial architecture remained intact; however, actin cytoskeleton organization was disrupted, an observation associated with increased cytoplasmic PKCζ. Although we observed reduced expression of adherens junction proteins E-cadherin, β-catenin, and α-catenin, p120 catenin family members p0071, ARVCF, and δ-catenin remained present at cell membranes in homozygous p120f/f pancreases, potentially providing stability for maintenance of epithelial integrity during development. Adult mice homozygous for deletion of p120 catenin displayed dilated main pancreatic ducts, chronic pancreatitis, acinar to ductal metaplasia (ADM), and mucinous metaplasia that resembles PanIN1a. Taken together, our data demonstrate an essential role for p120 catenin in pancreas development. PMID:25523391
Role of Alcohol Metabolism in Chronic Pancreatitis
Vonlaufen, Alain; Wilson, Jeremy S.; Pirola, Romano C.; Apte, Minoti V.
2007-01-01
Alcohol abuse is the major cause of chronic inflammation of the pancreas (i.e., chronic pancreatitis). Although it has long been thought that alcoholic pancreatitis is a chronic disease from the outset, evidence is accumulating to indicate that chronic damage in the pancreas may result from repeated attacks of acute tissue inflammation and death (i.e., necroinflammation). Initially, research into the pathogenesis of alcoholic pancreatitis was related to ductular and sphincteric abnormalities. In recent years, the focus has shifted to the type of pancreas cell that produces digestive juices (i.e., acinar cell). Alcohol now is known to exert a number of toxic effects on acinar cells. Notably, acinar cells have been shown to metabolize alcohol (i.e., ethanol) via both oxidative (i.e., involving oxygen) and nonoxidative pathways. The isolation and study of pancreatic stellate cells (PSCs)—the key effectors in the development of connective tissue fibers (i.e., fibrogenesis) in the pancreas—has greatly enhanced our understanding of the pathogenesis of chronic pancreatitis. Pancreatic stellate cells become activated in response to ethanol and acetaldehyde, a toxic byproduct of alcohol metabolism. In addition, PSCs have the capacity to metabolize alcohol via alcohol dehydrogenase (the major oxidizing enzyme for ethanol). The fact that only a small percentage of heavy alcoholics develop chronic pancreatitis has led to the search for precipitating factors of the disease. Several studies have investigated whether variations in ethanol-metabolizing enzymes may be a trigger factor for chronic pancreatitis, but no definite relationship has been established so far. PMID:17718401
Endale, Mehari; Ahlfeld, Shawn; Bao, Erik; Chen, Xiaoting; Green, Jenna; Bess, Zach; Weirauch, Matthew; Xu, Yan; Perl, Anne Karina
2017-08-01
The following data are derived from key stages of acinar lung development and define the developmental role of lung interstitial fibroblasts expressing platelet-derived growth factor alpha (PDGFRα). This dataset is related to the research article entitled "Temporal, spatial, and phenotypical changes of PDGFRα expressing fibroblasts during late lung development" (Endale et al., 2017) [1]. At E16.5 (canalicular), E18.5 (saccular), P7 (early alveolar) and P28 (late alveolar), PDGFRα GFP mice, in conjunction with immunohistochemical markers, were utilized to define the spatiotemporal relationship of PDGFRα + fibroblasts to endothelial, stromal and epithelial cells in both the proximal and distal acinar lung. Complimentary analysis with flow cytometry was employed to determine changes in cellular proliferation, define lipofibroblast and myofibroblast populations via the presence of intracellular lipid or alpha smooth muscle actin (αSMA), and evaluate the expression of CD34, CD29, and Sca-1. Finally, PDGFRα + cells isolated at each stage of acinar lung development were subjected to RNA-Seq analysis, data was subjected to Bayesian timeline analysis and transcriptional factor promoter enrichment analysis.
Glucocorticoid-induced pancreatic-hepatic trans-differentiation in a human cell line in vitro.
Fairhall, Emma A; Leitch, Alistair C; Lakey, Anne F; Probert, Philip M E; Richardson, Gabriella; De Santis, Carol; Wright, Matthew C
2018-05-22
The rodent pancreatic AR42J-B13 (B-13) cell line differentiates into non-replicative hepatocyte-like cells in response to glucocorticoid mediated via the glucocorticoid receptor (GR). The aims of this study were to identify a human cell line that responds similarly and investigate the mechanisms underpinning any alteration in differentiation. Exposing the human pancreatic adenocarcinoma (HPAC) cell line to 1-10 µM concentrations of dexamethasone (DEX) resulted an inhibition of proliferation, suppressed carcinoembryonic antigen expression, limited expression of pancreatic acinar and hepatic gene expression and significant induction of the constitutively-expressed hepatic CYP3A5 mRNA transcript. These changes were associated with a pulse of genomic DNA methylation and suppressed notch signalling activity. HPAC cells expressed high levels of GR transcript in contrast to other nuclear receptors - such as the glucocorticoid-activated pregnane X receptor (PXR) - and GR transcriptional function was activated by DEX in HPAC cells. Expression of selected hepatocyte transcripts in response to DEX was blocked by co-treatment with the GR antagonist RU486. These data indicate that the HPAC response to glucocorticoid exposure includes an inhibition in proliferation, alterations in notch signalling and a limited change in the expression of genes associated with an acinar and hepatic phenotype. This is the first demonstration of a human cell responding to similarly to the rodent B-13 cell regarding formation of hepatocyte-like cells in response to glucocorticoid. Identifying and modulating the ablating factor(s) may enhance the hepatocyte-like forming capacity of HPAC cells after exposure to glucocorticoid and generate an unlimited in vitro supply of human hepatocytes for toxicology studies and a variety of clinical applications. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E
2015-11-01
Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.
Audi, Nama'a; Mesa, María D; Martínez, María A; Martínez-Victoria, Emilio; Mañas, Mariano; Yago, María D
2007-04-01
Dietary fat type influences fatty acids in rat pancreatic membranes, in association with modulation of secretory activity and cell signalling in viable acini. We aimed to confirm whether AR42J cells are a valid model to study the interactions between lipids and pancreatic acinar cell function. For this purpose we have (i) compared the baseline fatty acid composition of AR42J cells with that of pancreatic membranes from rats fed a standard chow; (ii) investigated if fatty acids in AR42J membranes can be modified in culture; and (iii) studied if similar compositional variations that can be evoked in rats when dietary fat type is altered occur in AR42J cells. Weaning Wistar rats were fed for 8 weeks either a commercial chow (C) or semi-purified diets containing virgin olive oil (VOO) or sunflower oil (SO) as fat source. AR42J cells were incubated for 72 hrs in medium containing unmodified fetal calf serum (FCS, AR42J-C cells), FCS enriched with 18:1 n-9 (AR42J-O cells), or FCS enriched with 18:2 n-6 (AR42J-L cells). Fatty acids in crude membranes from rat pancreas and AR42J cells were determined by gas-liquid chromatography. Differences in membrane fatty acids between C rats and AR42J-C cells can be explained in part by variations in the amount of fatty acids in the extracellular environment. Supplementation of FCS with 18:1 n-9 or 18:2 n-6 changed the fatty acid spectrum of AR42J cells in a manner that resembles the pattern found, respectively, in VOO and SO rats, although AR42J-L cells were unable to accumulate 20:4 n-6. The AR42J cell line can be a useful tool to assess the effect of membrane compositional changes on acinar cell function. However, differences in baseline characteristics, and perhaps fatty acid metabolism, indicate that results obtained in AR42J cells should be confirmed with experiments in the whole animal.
TenHave-Opbroek, A. A.; Hammond, W. G.; Benfield, J. R.; Teplitz, R. L.; Dijkman, J. H.
1993-01-01
The type II alveolar epithelial cell is one of two pluripotential stem cell phenotypes in normal mammalian lung morphogenesis; cells manifesting this phenotype have been found to constitute bronchioloalveolar regions of canine adenocarcinomas. We now studied type II cell expression in canine acinar adenocarcinomas and adenoid cystic (bronchial gland) carcinomas, using the same bronchogenic carcinoma model (subcutaneous bronchial autografts treated with 3-methylcholanthrene). Distinctive features of type II cells are the approximately cuboid cell shape, large and roundish nucleus, immunofluorescent staining of the cytoplasm for the surfactant protein SP-A, and presence of multilamellar bodies or their precursory forms. Cells with these type II cell characteristics were found in the basal epithelial layer of all tumor lesions and in upper layers as far as the lumen, singly or in clusters; they were also found in early invasive carcinomatous lesions but not in bronchial glands or bronchial epithelium before carcinogen exposure. Immunoblots of tumor homogenates showed reactive proteins within size classes of SP-A (28 to 36 kd) or its dimeric form (56 to 72 kd). These findings and those previously reported are consistent with the concept that chemical carcinogenesis in the adult bronchial epithelium may lead to type II cell carcinomas of varying glandular (acinar, adenoidcystic or bronchioloalveolar) growth patterns. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 PMID:8386445
Preferential expression of cystein-rich secretory protein-3 (CRISP-3) in chronic pancreatitis.
Liao, Q; Kleeff, J; Xiao, Y; Guweidhi, A; Schambony, A; Töpfer-Petersen, E; Zimmermann, A; Büchler, M W; Friess, H
2003-04-01
Chronic pancreatitis (CP) is a progressive inflammatory process resulting in exocrine and endocrine pancreatic insufficiency in advanced stages. Cysteine-rich secretory protein (CRISP-3) has been identified as a defense-associated molecule with predominant expression in the salivary gland, pancreas and prostate. In this study, we investigated CRISP-3 expression in normal pancreatic tissues, chronic pancreatitis tissues, pancreatic cancer tissues and pancreatic cancer cell lines, as well as in other gastrointestinal organs. 15 normal pancreatic tissues, 14 chronic pancreatitis tissues and 14 pancreatic cancer tissues as well as three pancreatic cancer cell lines were analyzed. Moreover, hepatocellular carcinoma and esophageal, stomach and colon cancers were also analyzed together with the corresponding normal controls. CRISP-3 was expressed at moderate to high levels in chronic pancreatitis tissues and at moderate levels in pancreatic cancer tissues but at low levels in normal pancreatic tissues, and was absent in three pancreatic cancer cell lines. CRISP-3 expression was below the level of detection in all cancerous gastrointestinal tissues and in all normal tissues except 2 of 16 colon tissue samples. CRISP-3 mRNA signals and immunoreactivity were strongly present in the cytoplasm of degenerating acinar cells and in small proliferating ductal cells in CP tissues and CP-like lesions in pancreatic cancer tissues. In contrast, CRISP-3 expression was weak to absent in the cytoplasm of cancer cells as well as in acinar cells and ductal cells in pancreatic cancer tissues and normal pancreatic tissues. These results reveal that the distribution of CRISP-3 in gastrointestinal tissues is predominantly in the pancreas. High levels of CRISP-3 in acinar cells dedifferentiating into small proliferating ductal cells in CP and CP-like lesions in pancreatic cancer suggests a role of this molecule in the pathophysiology of CP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loo, Jr., Billy W.
2000-06-01
The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the majormore » intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.« less
Lopes, R A; Costa, J R; Piccolo, A M; Petenusci, S O
1982-01-01
The authors studied morphological, morphometric, and histochemically the mucosubstances and proteins in the salivary glands of the lizard Ameiva. Based on the results, the authors concluded: 1. The labial salivary gland is formed by small mucous and mucoserous glands; the sublingual gland by mucoserous cells. 2. Mucous cells show neutral and sulphated mucosubstances and sialic acid. Mucoserous cells of the labial gland show neutral mucosubstance, sialic acid, hyaluronic acid and protein radicals. Mucoserous cells of the sublingual gland show neutral mucosubstance, sialic acid and protein radicals. 3. The average values for acinar area were: 1,198.11 microns 2 for mucoserous acini and 2,105.95 microns 2 for mucous acini of the labial salivary gland. The average values for nucleus volume were: 47.41 microns 3 for mucoserous cells and 38.97 microns 4 for mucous cells. 4. The average values for acinar area and nuclear volume of the mucoserous cells of the subingual gland were respectively: 1,474.62 microns 2 and 67.77 microns 3.
Protective Effects of Lithospermum erythrorhizon Against Cerulein-Induced Acute Pancreatitis.
Choi, Sun Bok; Bae, Gi-Sang; Jo, Il-Joo; Seo, Seung-Hee; Kim, Dong-Goo; Shin, Joon-Yeon; Hong, Seung-Heon; Choi, Byung-Min; Park, Sang-Hyun; Song, Ho-Joon; Park, Sung-Joo
2015-01-01
We aimed to evaluate the anti-inflammatory and inhibitory effects of Lithospermum erythrorhizon (LE) on cerulein-induced acute pancreatitis (AP) in a mouse model. Acute pancreatitis was induced via intraperitoneal injection of cerulein (50 μg/kg) every hour for 6 times. In the LE, water extract (100, 250, or 500 mg/kg) was administered intraperitoneally 1 hour before the first injection of cerulein. Six hours after AP, blood, the pancreas, and the lung were harvested for further examination. In addition, pancreatic acinar cells were isolated using a collagenase method, and then, we investigated the acinar cell viability and cytokine productions. Treatment with LE reduced pancreatic damage and AP-associated lung injury and attenuated the severity of AP, as evidenced by the reduction in neutrophil infiltration, serum amylase and lipase levels, trypsin activity, and proinflammatory cytokine expression. In addition, treatment with LE inhibited high mobility group box 1 expression in the pancreas during AP. In accordance with in vivo data, LE inhibited the cerulein-induced acinar cell death, cytokine productions, and high-mobility group box 1 expression. Furthermore, LE also inhibited the activation of p38 mitogen-activated protein kinases. These results suggest that LE plays a protective role during the development of AP by inhibiting the activation of p38.
Protective Effects of Lithospermum erythrorhizon Against Cerulein-Induced Acute Pancreatitis
Choi, Sun Bok; Bae, Gi-Sang; Jo, Il-Joo; Seo, Seung-Hee; Kim, Dong-Goo; Shin, Joon-Yeon; Hong, Seung-Heon; Choi, Byung-Min; Park, Sang-Hyun; Song, Ho-Joon; Park, Sung-Joo
2015-01-01
Objectives We aimed to evaluate the anti-inflammatory and inhibitory effects of Lithospermum erythrorhizon (LE) on cerulein-induced acute pancreatitis (AP) in a mouse model. Methods Acute pancreatitis was induced via intraperitoneal injection of cerulein (50 μg/kg) every hour for 6 times. In the LE, water extract (100, 250, or 500 mg/kg) was administered intraperitoneally 1 hour before the first injection of cerulein. Six hours after AP, blood, the pancreas, and the lung were harvested for further examination. In addition, pancreatic acinar cells were isolated using a collagenase method, and then, we investigated the acinar cell viability and cytokine productions. Results Treatment with LE reduced pancreatic damage and AP-associated lung injury and attenuated the severity of AP, as evidenced by the reduction in neutrophil infiltration, serum amylase and lipase levels, trypsin activity, and proinflammatory cytokine expression. In addition, treatment with LE inhibited high mobility group box 1 expression in the pancreas during AP. In accordance with in vivo data, LE inhibited the cerulein-induced acinar cell death, cytokine productions, and high-mobility group box 1 expression. Furthermore, LE also inhibited the activation of p38 mitogen-activated protein kinases. Conclusions These results suggest that LE plays a protective role during the development of AP by inhibiting the activation of p38. PMID:25102438
Wang, Guoliang; Zhang, Jingchao; Dui, Danhua; Ren, Haoyuan; Liu, Jin
2016-11-10
The pathogenesis of severe acute pancreatitis (SAP) remains unclear. The Janus kinase and signal transducer and activator of transcription (JAK/STAT) pathway is important for various cytokines and growth factors. This study investigated the effect of the late inflammatory factor high mobility group box 1 (HMGB1) on the activation of JAK2/STAT3 in pancreatic acinar cells and the inhibitory effects of AG490 (a JAK2 inhibitor) and rapamycin (a STAT3 inhibitor) on this pathway. Rat pancreatic acinar cells were randomly divided into the control, HMGB1, AG490, and rapamycin groups. The mRNA levels of JAK2 and STAT3 at 10, 30, 60, and 120 minutes were detected using reverse transcription polymerase chain reaction (RT-PCR). The protein levels of JAK2 and STAT3 at 60 and 120 minutes were observed using Western blotting. Compared with the control group, the HMGB1 group exhibited significantly increased levels of JAK2 mRNA at each time point; STAT3 mRNA at 30, 60, and 120 minutes; and JAK2 and STAT3 proteins at 60 and 120 minutes (p < 0.01). Compared with the HMGB1 group, the AG490 and rapamycin groups both exhibited significantly decreased levels of JAK2 mRNA at each time point (p < 0.05); STAT3 mRNA at 30, 60, and 120 minutes (p < 0.01); and JAK2 and STAT3 proteins at 60 and 120 minutes (p < 0.01). HMGB1 induces the activation of the JAK2/STAT3 signaling pathway in rat pancreatic acinar cells, and this activation can be inhibited by AG490 and rapamycin. The results of this study may provide new insights for the treatment of SAP.
Assessing the secretory capacity of pancreatic acinar cells.
Geron, Erez; Schejter, Eyal D; Shilo, Ben-Zion
2014-08-28
Pancreatic acinar cells produce and secrete digestive enzymes. These cells are organized as a cluster which forms and shares a joint lumen. This work demonstrates how the secretory capacity of these cells can be assessed by culture of isolated acini. The setup is advantageous since isolated acini, which retain many characteristics of the intact exocrine pancreas can be manipulated and monitored more readily than in the whole animal. Proper isolation of pancreatic acini is a key requirement so that the ex vivo culture will represent the in vivo nature of the acini. The protocol demonstrates how to isolate intact acini from the mouse pancreas. Subsequently, two complementary methods for evaluating pancreatic secretion are presented. The amylase secretion assay serves as a global measure, while direct imaging of pancreatic secretion allows the characterization of secretion at a sub-cellular resolution. Collectively, the techniques presented here enable a broad spectrum of experiments to study exocrine secretion.
Anzi, Shira; Stolovich-Rain, Miri; Klochendler, Agnes; Fridlich, Ori; Helman, Aharon; Paz-Sonnenfeld, Avital; Avni-Magen, Nili; Kaufman, Elizabeth; Ginzberg, Miriam B; Snider, Daniel; Ray, Saikat; Brecht, Michael; Holmes, Melissa M; Meir, Karen; Avivi, Aaron; Shams, Imad; Berkowitz, Asaf; Shapiro, A M James; Glaser, Benjamin; Ben-Sasson, Shmuel; Kafri, Ran; Dor, Yuval
2018-06-18
Developmental processes in different mammals are thought to share fundamental cellular mechanisms. We report a dramatic increase in cell size during postnatal pancreas development in rodents, accounting for much of the increase in organ size after birth. Hypertrophy of pancreatic acinar cells involves both higher ploidy and increased biosynthesis per genome copy; is maximal adjacent to islets, suggesting endocrine to exocrine communication; and is partly driven by weaning-related processes. In contrast to the situation in rodents, pancreas cell size in humans remains stable postnatally, indicating organ growth by pure hyperplasia. Pancreatic acinar cell volume varies 9-fold among 24 mammalian species analyzed, and shows a striking inverse correlation with organismal lifespan. We hypothesize that cellular hypertrophy is a strategy for rapid postnatal tissue growth, entailing life-long detrimental effects. Copyright © 2018 Elsevier Inc. All rights reserved.
Selvam, Shivaram; Chang, Wenji V.; Nakamura, Tamako; Samant, Deedar M.; Thomas, Padmaja B.; Trousdale, Melvin D.; Mircheff, Austin K.; Schechter, Joel E.
2009-01-01
With the eventual goal of developing a tissue-engineered tear secretory system, we found that primary lacrimal gland acinar cells grown on solid poly(L-lactic acid) (PLLA) supports expressed the best histiotypic morphology. However, to be able to perform vectorial transport functions, epithelia must be supported by a permeable substratum. In the present study, we describe the use of a solvent-cast/particulate leaching technique to fabricate microporous PLLA membranes (mpPLLAm) from PLLA/polyethylene glycol blends. Scanning electron microscopy revealed pores on both the air-cured (∼4 μm) and glass-cured sides (<2 μm) of the mpPLLAm. Diffusion studies were performed with mpPLLAm fabricated from 57.1% PLLA/42.9% polyethylene glycol blends to confirm the presence of channelized pores. The data reveal that glucose, L-tryptophan, and dextran (a high molecular weight glucose polymer) readily permeate mpPLLAm. Diffusion of the immunoglobulin G through the mpPLLAm decreased with time, suggesting the possible adsorption and occlusion of the pores. Cells cultured on the mpPLLAm (57.1/42.9 wt%) grew to subconfluent monolayers but retained histiotypic morphological and physiological characteristics of lacrimal acinar cells in vivo. Our results suggest that mpPLLAm fabricated using this technique may be useful as a scaffold for a bioartificial lacrimal gland device. PMID:19260769
Ramond, Cyrille; Glaser, Nicolas; Berthault, Claire; Ameri, Jacqueline; Kirkegaard, Jeannette Schlichting; Hansson, Mattias; Honoré, Christian; Semb, Henrik; Scharfmann, Raphaël
2017-01-01
Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages. Development towards the acinar lineage is paralleled by an increase in GP2 expression. Conversely, a subset of the GP2+ population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3, a marker of endocrine differentiation. Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated. DOI: http://dx.doi.org/10.7554/eLife.27564.001 PMID:28731406
Sørensen, Christiane Elisabeth; Larsen, Jytte Overgaard; Reibel, Jesper; Lauritzen, Martin; Mortensen, Erik Lykke; Osler, Merete; Pedersen, Anne Marie Lynge
2014-09-01
One aim of the present study was to investigate whether symptoms of oral dryness (xerostomia) during daytime, assessed in a study group of middle-aged male positive and negative outliers in cognition scores, were associated with age-related degenerative changes in human labial salivary glands and with quantitative measures of the glandular autonomic innervation. Another aim was to study the relation between the autonomic innervation and loss of secretory acinar cells in these glands. Labial salivary gland biopsies were taken from the lower lip from 190 men, born in 1953 and members of the Danish Metropolit birth cohort, who were examined for age-related changes in cognitive function and dental health as part of the Copenhagen University Center for Healthy Aging clinical neuroscience project. The glands were routinely processed and semi-quantitatively analyzed for inflammation, acinar atrophy, fibrosis, and adipocyte infiltration. Sections of labial salivary gland tissue were stained with the panneuronal marker PGP 9.5. In a subsample of 51 participants, the autonomic innervation of the glands was analyzed quantitatively by use of stereology. Labial salivary gland tissue samples from 33% of all participants displayed moderate to severe acinar atrophy and fibrosis (31%). Xerostomia was not significantly associated with structural changes of labial salivary glands, but in the subsample it was inversely related to the total nerve length in the glandular connective tissue. Acinar atrophy and fibrosis were negatively correlated with the parenchymal innervation and positively related to diffuse inflammation. The results from the present study indicate that aspects of the autonomic innervation of labial salivary glands may play a role in the occurrence of xerostomia which in the present study group was not significantly associated with degenerative changes in these glands. The findings further indicate that the integrity of labial salivary gland acini is related to the parenchymal autonomic innervation, whereas inflammatory processes may compromise it by alternative mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.
Hendley, Audrey M; Provost, Elayne; Bailey, Jennifer M; Wang, Yue J; Cleveland, Megan H; Blake, Danielle; Bittman, Ross W; Roeser, Jeffrey C; Maitra, Anirban; Reynolds, Albert B; Leach, Steven D
2015-03-01
The intracellular protein p120 catenin aids in maintenance of cell-cell adhesion by regulating E-cadherin stability in epithelial cells. In an effort to understand the biology of p120 catenin in pancreas development, we ablated p120 catenin in mouse pancreatic progenitor cells, which resulted in deletion of p120 catenin in all epithelial lineages of the developing mouse pancreas: islet, acinar, centroacinar, and ductal. Loss of p120 catenin resulted in formation of dilated epithelial tubules, expansion of ductal epithelia, loss of acinar cells, and the induction of pancreatic inflammation. Aberrant branching morphogenesis and tubulogenesis were also observed. Throughout development, the phenotype became more severe, ultimately resulting in an abnormal pancreas comprised primarily of duct-like epithelium expressing early progenitor markers. In pancreatic tissue lacking p120 catenin, overall epithelial architecture remained intact; however, actin cytoskeleton organization was disrupted, an observation associated with increased cytoplasmic PKCζ. Although we observed reduced expression of adherens junction proteins E-cadherin, β-catenin, and α-catenin, p120 catenin family members p0071, ARVCF, and δ-catenin remained present at cell membranes in homozygous p120(f/f) pancreases, potentially providing stability for maintenance of epithelial integrity during development. Adult mice homozygous for deletion of p120 catenin displayed dilated main pancreatic ducts, chronic pancreatitis, acinar to ductal metaplasia (ADM), and mucinous metaplasia that resembles PanIN1a. Taken together, our data demonstrate an essential role for p120 catenin in pancreas development. Copyright © 2014 Elsevier Inc. All rights reserved.
Perry, Clint; Quissell, David O; Reyland, Mary E; Grichtchenko, Irina I
2008-11-01
Cholinergic agonists are major stimuli for fluid secretion in parotid acinar cells. Saliva bicarbonate is essential for maintaining oral health. Electrogenic and electroneutral Na(+)-HCO(3)(-) cotransporters (NBCe1 and NBCn1) are abundant in parotid glands. We previously reported that angiotensin regulates NBCe1 by endocytosis in Xenopus oocytes. Here, we studied cholinergic regulation of NBCe1 and NBCn1 membrane trafficking by confocal fluorescent microscopy and surface biotinylation in parotid epithelial cells. NBCe1 and NBCn1 colocalized with E-cadherin monoclonal antibody at the basolateral membrane (BLM) in polarized ParC5 cells. Inhibition of constitutive recycling with the carboxylic ionophore monensin or the calmodulin antagonist W-13 caused NBCe1 to accumulate in early endosomes with a parallel loss from the BLM, suggesting that NBCe1 is constitutively endocytosed. Carbachol and PMA likewise caused redistribution of NBCe1 from BLM to early endosomes. The PKC inhibitor, GF-109203X, blocked this redistribution, indicating a role for PKC. In contrast, BLM NBCn1 was not downregulated in parotid acinar cells treated with constitutive recycling inhibitors, cholinergic stimulators, or PMA. We likewise demonstrate striking differences in regulation of membrane trafficking of NBCe1 vs. NBCn1 in resting and stimulated cells. We speculate that endocytosis of NBCe1, which coincides with the transition to a steady-state phase of stimulated fluid secretion, could be a part of acinar cell adjustment to a continuous secretory response. Stable association of NBCn1 at the membrane may facilitate constitutive uptake of HCO(3)(-) across the BLM, thus supporting HCO(3)(-) luminal secretion and/or maintaining acid-base homeostasis in stimulated cells.
Fernández-Sánchez, Marcela; del Castillo-Vaquero, Angel; Salido, Ginés M; González, Antonio
2009-10-30
A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS) production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 microM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.
Gomez, Danielle L.; O’Driscoll, Marci; Sheets, Timothy P.; Hruban, Ralph H.; Oberholzer, Jose; McGarrigle, James J.; Shamblott, Michael J.
2015-01-01
Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment. PMID:26288179
Prostate specific antigen and acinar density: a new dimension, the "Prostatocrit".
Robinson, Simon; Laniado, Marc; Montgomery, Bruce
2017-01-01
Prostate-specific antigen densities have limited success in diagnosing prostate cancer. We emphasise the importance of the peripheral zone when considered with its cellular constituents, the "prostatocrit". Using zonal volumes and asymmetry of glandular acini, we generate a peripheral zone acinar volume and density. With the ratio to the whole gland, we can better predict high grade and all grade cancer. We can model the gland into its acinar and stromal elements. This new "prostatocrit" model could offer more accurate nomograms for biopsy. 674 patients underwent TRUS and biopsy. Whole gland and zonal volumes were recorded. We compared ratio and acinar volumes when added to a "clinic" model using traditional PSA density. Univariate logistic regression was used to find significant predictors for all and high grade cancer. Backwards multiple logistic regression was used to generate ROC curves comparing the new model to conventional density and PSA alone. Prediction of all grades of prostate cancer: significant variables revealed four significant "prostatocrit" parameters: log peripheral zone acinar density; peripheral zone acinar volume/whole gland acinar volume; peripheral zone acinar density/whole gland volume; peripheral zone acinar density. Acinar model (AUC 0.774), clinic model (AUC 0.745) (P=0.0105). Prediction of high grade prostate cancer: peripheral zone acinar density ("prostatocrit") was the only significant density predictor. Acinar model (AUC 0.811), clinic model (AUC 0.769) (P=0.0005). There is renewed use for ratio and "prostatocrit" density of the peripheral zone in predicting cancer. This outperforms all traditional density measurements. Copyright® by the International Brazilian Journal of Urology.
Tarpey, P S; Wood, I S; Shirazi-Beechey, S P; Beechey, R B
1995-01-01
The Na(+)-dependent D-glucose symporter has been shown to be located on the basolateral domain of the plasma membrane of ovine parotid acinar cells. This is in contrast to the apical location of this transporter in the ovine enterocyte. The amino acid sequences of these two proteins have been determined. They are identical. The results indicated that the signals responsible for the differential targeting of these two proteins to the apical and the basal domains of the plasma membrane are not contained within the primary amino acid sequence. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7492327
Gardner, J D; Conlon, T P; Kleveman, H L; Adams, T D; Ondetti, M A
1975-01-01
COOH-terminal octapeptide of cholecystokinin (CCK-octapeptide) and the cholinergic agent carbamylcholine each produced a fourfold stimulation of calcium outflux in guinea pig isolated pancreatic acinar cells. Neither agent altered calcium influx. Stimulation of calcium outflux was rapid and specific, was abolished by reducing the incubation temperature to 4 degrees C, and was a saturable function of the secretagogue concentration. The concentrations of CCK-octapeptide and carbamylcholine that produced half-maximal stimulation of calcium outflux were 3.1 x 10(-10) M and 4.9 x 10(-5) M, respectively. The cholinergic antagonist antropine competitively inhibited carbamylcholine stimulation of calcium outflux but did not alter stimulation produced by CCK-octapeptide. Stimulation of calcium outflux by maximal concentrations of carbamycholine plus CCK-octapeptide was the same as that produced by a maximal concentration of either agent alone.Calcium outflux became refractory to stimulation by secretagogues, and incubation with either CCK-ostapeptide or carbamylcholine produced a refractoriness to both agents. The relative potencies with CCK and its related fragments stimulated calcium outflux were CCK-octapeptide greater than heptapeptide greater than CCK greater than hexapeptide = gastrin. Secretin, glucagon, and vasoactive intestinal peptide, at concentrations as high as 10(-5) M, failed to alter calcium outflux and did not affect stimulation by CCK-octapeptide or by carbamycholine. Images PMID:1150877
La Rosa, Stefano; Bernasconi, Barbara; Vanoli, Alessandro; Sciarra, Amedeo; Notohara, Kenji; Albarello, Luca; Casnedi, Selenia; Billo, Paola; Zhang, Lizhi; Tibiletti, Maria Grazia; Sessa, Fausto
2018-05-02
The molecular alterations of pancreatic acinar cell carcinomas (ACCs) and mixed acinar-neuroendocrine carcinomas (MANECs) are not completely understood, and the possible role of c-MYC amplification in tumor development, progression, and prognosis is not known. We have investigated c-MYC gene amplification in a series of 35 ACCs and 4 MANECs to evaluate its frequency and a possible prognostic role. Gene amplification was investigated using interphasic fluorescence in situ hybridization analysis simultaneously hybridizing c-MYC and the centromere of chromosome 8 probes. Protein expression was immunohistochemically investigated using a specific monoclonal anti-c-myc antibody. Twenty cases had clones with different polysomies of chromosome 8 in absence of c-MYC amplification, and 5 cases had one amplified clone and other clones with chromosome 8 polysomy, while the remaining 14 cases were diploid for chromosome 8 and lacked c-MYC amplification. All MANECs showed c-MYC amplification and/or polysomy which were observed in 54% pure ACCs. Six cases (15.3%) showed nuclear immunoreactivity for c-myc, but only 4/39 cases showed simultaneous c-MYC amplification/polysomy and nuclear protein expression. c-myc immunoreactivity as well as c-MYC amplification and/or chromosome 8 polysomy was not statistically associated with prognosis. Our study demonstrates that a subset of ACCs shows c-MYC alterations including gene amplification and chromosome 8 polysomy. Although they are not associated with a different prognostic signature, the fact that these alterations are present in all MANECs suggests a role in the acinar-neuroendocrine differentiation possibly involved in the pathogenesis of MANECs.
A histochemical study of rat salivary gland acid phosphatase.
Isacsson, G
1986-01-01
Male Sprague-Dawley rats received 4 mg pilocarpine/100 g body wt intraperitoneally or physiological saline as control and were killed at various intervals. Acid phosphatase was reacted on frozen sections from soft palate, parotid and submandibular glands using sodium-alpha-naphthyl acid phosphate as substrate. Various inhibitors were added to the incubation medium. The strongest acid phosphatase activity was in the parotid gland acinar and proximal secretory duct cells; the mucous minor glands of the palate were completely negative. Activity was found in the acinar cells, proximal secretory duct cells, granular and striated duct and excretory duct cells. Pilocarpine injection slightly reduced the activity up to 6 h after injection. Cupric chloride added to the incubation medium lowered the overall activity. Fluoride and molybdate inhibited the acid phosphatase reaction in all structures. Tartrate inhibited the reaction in all structures except the submandibular striated duct cells. The tartrate-resistant activity may be a Na+K+-dependent ATPase involved in re-absorbing water and electrolytes from the primary saliva.
Proposed morphologic classification of prostate cancer with neuroendocrine differentiation.
Epstein, Jonathan I; Amin, Mahul B; Beltran, Himisha; Lotan, Tamara L; Mosquera, Juan-Miguel; Reuter, Victor E; Robinson, Brian D; Troncoso, Patricia; Rubin, Mark A
2014-06-01
On July 31, 2013, the Prostate Cancer Foundation assembled a working committee on the molecular biology and pathologic classification of neuroendocrine (NE) differentiation in prostate cancer. New clinical and molecular data emerging from prostate cancers treated by contemporary androgen deprivation therapies, as well as primary lesions, have highlighted the need for refinement of diagnostic terminology to encompass the full spectrum of NE differentiation. The classification system consists of: Usual prostate adenocarcinoma with NE differentiation; 2) Adenocarcinoma with Paneth cell NE differentiation; 3) Carcinoid tumor; 4) Small cell carcinoma; 5) Large cell NE carcinoma; and 5) Mixed NE carcinoma - acinar adenocarcinoma. The article also highlights "prostate carcinoma with overlapping features of small cell carcinoma and acinar adenocarcinoma" and "castrate-resistant prostate cancer with small cell cancer-like clinical presentation". It is envisioned that specific criteria associated with the refined diagnostic terminology will lead to clinically relevant pathologic diagnoses that will stimulate further clinical and molecular investigation and identification of appropriate targeted therapies.
2014-05-28
Acinar Cell Adenocarcinoma of the Pancreas; Duct Cell Adenocarcinoma of the Pancreas; Liver Metastases; Lung Metastases; Recurrent Breast Cancer; Recurrent Pancreatic Cancer; Stage IV Breast Cancer; Stage IV Pancreatic Cancer
Houbracken, Isabelle; Bouwens, Luc
2010-01-01
Adult stem cell research has drawn a lot of attention by many researchers, due to its medical hope of cell replacement or regenerative therapy for diabetes patients. Despite the many research efforts to date, there is no consensus on the existence of stem cells in adult pancreas. Genetic lineage tracing experiments have put into serious doubt whether β-cell neogenesis from stem/progenitor cells takes place postnatally. Different in vitro experiments have suggested centroacinar, ductal, acinar, stellate, or yet unidentified clonigenic cells as candidate β-cell progenitors. As in the rest of the adult stem cell field, sound and promising observations have been made. However, these observations still need to be replicated. As an alternative to committed stem/progenitor cells in the pancreas, transdifferentiation or lineage reprogramming of exocrine acinar and endocrine α-cells may be used to generate new β-cells. At present, it is unclear which approach is most medically promising. This article highlights the progress being made in knowledge about tissue stem cells, their existence and availability for therapy in diabetes. Particular attention is given to the assessment of methods to verify the existence of tissue stem cells.
Hydrogen-rich saline ameliorates the severity of L-arginine-induced acute pancreatitis in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Han; Sun, Yan Ping; Li, Yang
2010-03-05
Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the L-arginine (L-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of L-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each L-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreasmore » were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-{kappa}B) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of L-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-{kappa}B activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-{kappa}B activation and to promote acinar cell proliferation.« less
Tanda, N; Ohyama, H; Yamakawa, M; Ericsson, M; Tsuji, T; McBride, J; Elovic, A; Wong, D T; Login, G R
1998-01-01
Synthesis, storage, and secretion of the proinflammatory cytokine interleukin-1 beta (IL-1 beta) and the anti-inflammatory cytokine IL-6 have not been established in normal exocrine gland secretory cells. Parotid glands and isolated acinar cells prepared from BALB/c mice were homogenized for RNA isolation and reverse transcription-polymerase chain reaction (RT-PCR). IL-1 beta and IL-6 enzyme-linked immunosorbent assays (ELISAs) were done on supernatants prepared from mouse parotid acinar cell (MPAC) preparations unstimulated or stimulated between 0 and 10 min with 10(-5) M norepinephrine at 37 degrees C. MPACs were fixed in paraformaldehyde, frozen sectioned for light and electron microscopy, and labeled with antibodies to IL-1 beta and IL-6. Mouse specific riboprobes to IL-1 and IL-6 were used for in situ hybridization. RT-PCR yielded the expected IL-1 (336-bp) and IL-6 (614-bp) mRNA products. By ELISA, stimulated MPACs showed a significant increase in IL-1 beta (P < 0.03) and IL-6 (P < 0.01) release into supernatants by 10 min that paralleled the time course of amylase release. In situ hybridization showed the presence of transcripts for IL-1 and IL-6 in glandular epithelial cells. Gold-labeled IL-1 beta and IL-6 were significantly higher (P < 0.01) in granules than in the nucleus and cytoplasm. This study shows that MPACs synthesize IL-1 beta and IL-6 and release these cytokines from their granules after alpha- and beta-adrenergic stimulation.
The physiology of a local renin-angiotensin system in the pancreas.
Leung, Po Sing
2007-04-01
The systemic renin-angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested.
The physiology of a local renin–angiotensin system in the pancreas
Leung, Po Sing
2007-01-01
The systemic renin–angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested. PMID:17218353
Evidence for minimal oxygen heterogeneity in the healthy human pulmonary acinus
Tawhai, Merryn H.
2011-01-01
It has been suggested that the human pulmonary acinus operates at submaximal efficiency at rest due to substantial spatial heterogeneity in the oxygen partial pressure (Po2) in alveolar air within the acinus. Indirect measurements of alveolar air Po2 could theoretically mask significant heterogeneity if intra-acinar perfusion is well matched to Po2. To investigate the extent of intra-acinar heterogeneity, we developed a computational model with anatomically based structure and biophysically based equations for gas exchange. This model yields a quantitative prediction of the intra-acinar O2 distribution that cannot be measured directly. Temporal and spatial variations in Po2 in the intra-acinar air and blood are predicted with the model. The model, representative of a single average acinus, has an asymmetric multibranching respiratory airways geometry coupled to a symmetric branching conducting airways geometry. Advective and diffusive O2 transport through the airways and gas exchange into the capillary blood are incorporated. The gas exchange component of the model includes diffusion across the alveolar air-blood membrane and O2-hemoglobin binding. Contrary to previous modeling studies, simulations show that the acinus functions extremely effectively at rest, with only a small degree of intra-acinar Po2 heterogeneity. All regions of the model acinus, including the peripheral generations, maintain a Po2 >100 mmHg. Heterogeneity increases slightly when the acinus is stressed by exercise. However, even during exercise the acinus retains a reasonably homogeneous gas phase. PMID:21071589
Nishimura, Hidehiko; Yakeishi, Akira; Saga, Tsuyoshi; Yamaki, Koh-Ichi
2009-01-01
Sjögren's syndrome (SS) is an autoimmune disorder whose main symptoms include xerostomia and dry eyes. It has been demonstrated that abnormal expression of aquaporin (AQP)-5 in the parotid and submandibular glands in SS model mice was corrected by cevimeline. In the present study, we orally administered cevimeline hydrochloride (cevimeline) to female MRL/l mice, which are widely used as a model for SS, to immunohistochemically investigate the localization of AQP-5 in the salivary glands. We also assessed the ultrastructure of acinar cells in the submandibular glands. AQP-5 was expressed in the apical and lateral cell membranes of acinar cells in the parotid and submandibular glands of normal mice, but not in the sublingual glands. In contrast, AQP-5 was expressed not only in the cell membranes in the apical domains but also in the cytoplasm in the SS model mice, indicating that the localization of AQP-5 was disordered in the SS model mice. After administration of cevimeline, AQP-5 was predominantly localized in the cellular apical domains of the acinar cells. Electron microscopy revealed that administration of cevimeline to the SS model mice and normal mice markedly reduced the number of secretory granules, increased the area of the rough endoplasmic reticulum, and expanded the intercellular gaps in the cells of the submandibular acini. Condensed vacuoles were also observed in the Golgi apparatuses, indicating that secondary enhancement of secretion and production of saliva had occurred. Consequently, the results of the present study demonstrate that the administration of cevimeline to the SS model mice increased salivary secretion in the submandibular glands. Furthermore, cevimeline transiently normalized the localization of AQP-5 expression in the parotid and submandibular glands.
Huang, Wei; Cane, Matthew C; Mukherjee, Rajarshi; Szatmary, Peter; Zhang, Xiaoying; Elliott, Victoria; Ouyang, Yulin; Chvanov, Michael; Latawiec, Diane; Wen, Li; Booth, David M; Haynes, Andrea C; Petersen, Ole H; Tepikin, Alexei V; Criddle, David N
2017-01-01
Objective Caffeine reduces toxic Ca2+ signals in pancreatic acinar cells via inhibition of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated signalling, but effects of other xanthines have not been evaluated, nor effects of xanthines on experimental acute pancreatitis (AP). We have determined effects of caffeine and its xanthine metabolites on pancreatic acinar IP3R-mediated Ca2+ signalling and experimental AP. Design Isolated pancreatic acinar cells were exposed to secretagogues, uncaged IP3 or toxins that induce AP and effects of xanthines, non-xanthine phosphodiesterase (PDE) inhibitors and cyclic adenosine monophosphate and cyclic guanosine monophosphate (cAMP/cGMP) determined. The intracellular cytosolic calcium concentration ([Ca2+]C), mitochondrial depolarisation and necrosis were assessed by confocal microscopy. Effects of xanthines were evaluated in caerulein-induced AP (CER-AP), taurolithocholic acid 3-sulfate-induced AP (TLCS-AP) or palmitoleic acid plus ethanol-induced AP (fatty acid ethyl ester AP (FAEE-AP)). Serum xanthines were measured by liquid chromatography-mass spectrometry. Results Caffeine, dimethylxanthines and non-xanthine PDE inhibitors blocked IP3-mediated Ca2+ oscillations, while monomethylxanthines had little effect. Caffeine and dimethylxanthines inhibited uncaged IP3-induced Ca2+ rises, toxin-induced Ca2+ release, mitochondrial depolarisation and necrotic cell death pathway activation; cAMP/cGMP did not inhibit toxin-induced Ca2+ rises. Caffeine significantly ameliorated CER-AP with most effect at 25 mg/kg (seven injections hourly); paraxanthine or theophylline did not. Caffeine at 25 mg/kg significantly ameliorated TLCS-AP and FAEE-AP. Mean total serum levels of dimethylxanthines and trimethylxanthines peaked at >2 mM with 25 mg/kg caffeine but at <100 µM with 25 mg/kg paraxanthine or theophylline. Conclusions Caffeine and its dimethylxanthine metabolites reduced pathological IP3R-mediated pancreatic acinar Ca2+ signals but only caffeine ameliorated experimental AP. Caffeine is a suitable starting point for medicinal chemistry. PMID:26642860
Unsteady Oxygen Transfer in Space-Filling Models of the Pulmonary Acinus
NASA Astrophysics Data System (ADS)
Hofemeier, Philipp; Shachar-Berman, Lihi; Filoche, Marcel; Sznitman, Josue
2014-11-01
Diffusional screening in the pulmonary acinus is a well-known physical phenomenon that results from the depletion of fresh oxygen in proximal acinar generations diffusing through the alveolar wall membranes and effectively creating a gradient in the oxygen partial pressure along the acinar airways. Until present, most studies have focused on steady-state oxygen diffusion in generic sub-acinar structures and discarded convective oxygen transport due to low Peclet numbers in this region. Such studies, however, fall typically short in capturing the complex morphology of acinar airways as well as the oscillatory nature of convecive acinar breathing. Here, we revisit this problem and solve the convective-diffusive transport equations in breathing 3D acinar structures, underlining the significance of convective flows in proximal acinar generations as well as recirculating alveolar flow patterns. In particular, to assess diffusional screening, we monitor time-dependent efficiencies of the acinus under cyclic breathing motion. Our study emphasizes the necessity of capturing both a dynamically breathing and anatomically-realistic model of the sub-acinus to characterize unsteady oxygen transport across the acinar walls.
Endoscopic sensing of pH in the distal lung (Conference Presentation)
NASA Astrophysics Data System (ADS)
Choudhury, Debaditya; Tanner, Michael G.; McAughtrie, Sarah; Yu, Fei; Mills, Bethany; Choudhary, Tushar R.; Seth, Sohan; Craven, Thomas; Stone, James M.; Mati, Ioulia K.; Campbell, Colin J.; Bradley, Mark; Williams, Christopher K.; Dhaliwal, Kevin; Birks, Timothy A.; Thomson, Robert R.
2017-04-01
In healthy humans, the physiological state in the distal lung alveolar acinar units is tightly regulated by normal homeostatic mechanisms. Pulmonary abnormalities such as chronic obstructive pulmonary disease, that are characterized by recurrent cycles of inflammation and infection involving dense infiltration by myeloid derived peripheral blood cells, may result in significant perturbation of the homeostatic baselines of physiology in addition to host tissue damage. Therefore, the ability to quantify and monitor physiology (e.g. pH, glucose level, oxygen tension) within the alveolar acinar units would provide a key biomarker of distal lung innate defence. Although in vitro modeling of fundamental biological processes show remarkable sensitivity to physiological aberrations, little is known about the physiological state of the distal lung due to the inability to concurrently access the alveolar sacs and perform real-time sensing. Here we report on previously unobtainable measurements of alveolar pH using a fiber-optic optrode and surface enhanced Raman spectroscopy (SERS) and show that alveolar pH changes in response to ventilation. The endoscope-deployable optrode consisted of para-mercaptobenzoic acid functionalized 150 nm gold nanoshells located at the distal end, and an asymmetric dual-core optical fiber designed for spatially separated optical pump delivery and SERS signal collection in order to circumvent the unwanted Raman signal originating from the fiber itself. We demonstrate a 100-fold increase in SERS signal-to-fiber background ratio and pH sensing at multiple sites in the respiratory acinar units of a whole ex vivo ovine lung model with a measurement accuracy of ± 0.07 pH units.
2018-01-05
Acinar Cell Adenocarcinoma of the Pancreas; Duct Cell Adenocarcinoma of the Pancreas; Recurrent Pancreatic Cancer; Stage IA Pancreatic Cancer; Stage IB Pancreatic Cancer; Stage IIA Pancreatic Cancer; Stage IIB Pancreatic Cancer; Stage III Pancreatic Cancer
Takeshima, Ken; Ariyasu, Hiroyuki; Iwakura, Hiroshi; Kawai, Shintaro; Uraki, Shinsuke; Inaba, Hidefumi; Furuta, Machi; Warigaya, Kenji; Murata, Shin-Ichi; Akamizu, Takashi
2018-06-01
Autoimmune pancreatitis (AIP) is a subset of inflammatory pancreatic disease, responsive to corticosteroid therapy. It is prone to being affected by diabetes mellitus, but the effectiveness of steroid therapy on pancreatic endocrine function is still controversial. We present a case of AIP, focusing on pancreatic endocrine function after steroid therapy. The patient was referred to our hospital with exacerbation of diabetic control and pancreatic swelling. By admission, the insulin secretory capacity was severely impaired. The patient was diagnosed with AIP and treated with prednisolone, resulting in marked improvement of the pancreatic swelling. Glycemic control worsened transiently after initiation of steroid therapy, but insulin requirements decreased along with tapering prednisolone dosage. Pancreatic cytology showed that the acinar structure had been destroyed, and the islets had disappeared. Insulin and glucagon immunostaining revealed slightly scattered alpha and beta cells within the fibrotic stroma. The patient notably showed improved pancreatic alpha cell function predominantly after steroid therapy, despite partial improvement of beta cell function. An imbalance between alpha and beta cell function may contribute to insufficient diabetic control in some patients with AIP. The pancreatic endocrine function test in combination with pancreatic cytology could be helpful when considering the treatment strategy for diabetic control in patients with AIP.
Lin, Ziqi; Guo, Jia; Xue, Ping; Huang, Lei; Deng, Lihui; Yang, Xiaonan; Xia, Qing
2014-04-01
To explore the effect and the mechanism of Chaiqinchengqi decoction (CQCQD) on the apoptosis-necrosis switch of pancreatic acinar cells in acute necrotizing pancreatitis (ANP) in rats. Sixty Sprague-Dawley rats were randomized into the control group, the ANP group and the CQCQD group. The acute pancreatitis (AP) model was induced by intraperitoneal injections of 4 g/kg 8% L-Arginine (PH 7.0) twice with a 1 h interval. Rats in the CQCQD group were intragastrically administered CQCQD (20 mL/kg every 2 h, 3 times, then 20 mL/kg every 6 h, 3 times). Rats were killed at the 6 and 24 h after the induction of AP. The pancreatic tissues were collected for pathology and to isolate pancreatic acinar cells and mitochondria. CQCQD significantly ameliorated the severity of ANP by reducing the pancreatic histopathology score, indicated by lactate dehydrogenase levels at the 6 and 24 h. The CQCQD group promoted the apoptosis of pancreatic acinar cells by raising the apoptosis index compared with the ANP group and the control group. Mitochondrial cytochrome c at the 6 and 24 h in the ANP group were lower than that in the control group or the CQCQD group (0.67 +/- 0.13 vs 1.54 +/- 0.03 vs 0.81 +/- 0.09; 0.71 +/- 0.08 vs 1.55 +/- 0.09 vs 0.89 +/- 0.16, P < 0.01). The cytochrome c levels in the cytoplasm at the 6 and 2 h in the CQCQD group were higher than in the control group (1.36 +/- 0.15 vs 0.67 +/- 0.04, 1.46 +/- 0.08 vs 0.59 +/- 0.09, P < 0.01), or the ANP group (0.96 +/- 0.13, P > 0.05; 0.97 +/- 0.09, P < 0.05). CQCQD increased caspase-3 activity over the ANP group at the 6 h. CQCQD can induce apoptosis and relieve the necrosis of pancreatic acinar cells via promoting the release of mitochondrial cytochrome c and increasing pancreatic caspase-3 activity in ANP rats.
Meyrick, B. O.; Reid, L. M.
1982-01-01
Feeding with Crotalaria spectabilis seeds induces structural changes in the pulmonary arterial circulation characteristic of pulmonary hypertension: increased medial and adventitial thickness, the appearance of muscle in smaller arteries than normal, and reduction in the number of peripheral arteries. By autoradiographic techniques, after injection of 3H-thymidine into rats fed Crotalaria for 3, 7, 14, 21, 28, or 35 days, the contribution of hyperplasia to these changes has been assessed at two levels of the pulmonary artery--the hilum and the periphery. In the hilar pulmonary artery, a biphasic increase in labeling index (LI) is seen in each cell type. After 3 days of feeding, the medial smooth muscle cells show a slight but significant increase (1.5 times the control value), and, after 7 days, so do the adventitial fibroblasts (3 x) and the endothelial cells (EC) (2 x). After 14 days LI for all three cell types is again at control values, but after 21 days (wall thickness is no increased) each cell type shows at least a fivefold increase; by 35 days all are again near control levels. In the intra-acinar region, by 14 days, "newly" muscularized arteries are identified and increase in number and proportion up to 35 days; 3H-thymidine uptake is not evident in this cell type until 35 days have passed. The ECs of these arteries, however, show a striking increase in LI after 14 days as do those of the alveolar capillaries. The ECs of the intra-acinar veins show a biphasic response being increased after 7, 28, and 35 days. The present study has shown that Crotalaria ingestion induces hyperplasia and hypertrophy of pulmonary arterial cells at pre- and intra-acinar levels. The early increase in LI probably represents a response to the original cell injury, the later changes, a response to continuing damage or, in part, adaptation to the pulmonary hypertension now present. Images Figure 3 Figure 7 PMID:7055214
New Insights into the Pathogenesis of Pancreatitis
Sah, Raghuwansh P.; Dawra, Rajinder K.; Saluja, Ashok K.
2014-01-01
Purpose of review In this article, we review important advances in our understanding of the mechanisms of pancreatitis. Recent Findings The relative contribution of intra-pancreatic trypsinogen activation and NFκB activation, the two major early independent cellular events in the etiology of pancreatitis, have been investigated using novel genetic models. Trypsinogen activation has traditionally held the spotlight for many decades as it is believed to be the central pathogenic event of pancreatitis However, recent experimental evidence points to the role of trypsin activation in early acinar cell damage but not in the inflammatory response of acute pancreatitis through NFκB activation. Further, chronic pancreatitis in the caerulein model develops independently of typsinogen activation. Sustained activation of the NFκB pathway, but not persistent intra-acinar expression of active trypsin, was shown to result in chronic pancreatitis. Calcineurin-NFAT signaling was shown to mediate downstream effects of pathologic rise in intracellular calcium. IL-6 was identified as a key cytokine mediating pancreatitis-associated lung injury. Summary Recent advances challenge the long-believed trypsin-centered understanding of pancreatitis. It is becoming increasingly clear that activation of intense inflammatory signaling mechanisms in acinar cells is crucial to the pathogenesis of pancreatitis, which may explain the strong systemic inflammatory response in pancreatitis. PMID:23892538
Role of alveolar topology on acinar flows and convective mixing.
Hofemeier, Philipp; Sznitman, Josué
2014-06-01
Due to experimental challenges, computational simulations are often sought to quantify inhaled aerosol transport in the pulmonary acinus. Commonly, these are performed using generic alveolar topologies, including spheres, toroids, and polyhedra, to mimic the complex acinar morphology. Yet, local acinar flows and ensuing particle transport are anticipated to be influenced by the specific morphological structures. We have assessed a range of acinar models under self-similar breathing conditions with respect to alveolar flow patterns, convective flow mixing, and deposition of fine particles (1.3 μm diameter). By tracking passive tracers over cumulative breathing cycles, we find that irreversible flow mixing correlates with the location and strength of the recirculating vortex inside the cavity. Such effects are strongest in proximal acinar generations where the ratio of alveolar to ductal flow rates is low and interalveolar disparities are most apparent. Our results for multi-alveolated acinar ducts highlight that fine 1 μm inhaled particles subject to alveolar flows are sensitive to the alveolar topology, underlining interalveolar disparities in particle deposition patterns. Despite the simplicity of the acinar models investigated, our findings suggest that alveolar topologies influence more significantly local flow patterns and deposition sites of fine particles for upper generations emphasizing the importance of the selected acinar model. In distal acinar generations, however, the alveolar geometry primarily needs to mimic the space-filling alveolar arrangement dictated by lung morphology.
Prkar1a gene knockout in the pancreas leads to neuroendocrine tumorigenesis.
Saloustros, Emmanouil; Salpea, Paraskevi; Starost, Matthew; Liu, Sissi; Faucz, Fabio R; London, Edra; Szarek, Eva; Song, Woo-Jin; Hussain, Mehboob; Stratakis, Constantine A
2017-01-01
Carney complex (CNC) is a rare disease associated with multiple neoplasias, including a predisposition to pancreatic tumors; it is caused most frequently by the inactivation of the PRKAR1A gene, a regulator of the cyclic AMP (cAMP)-dependent kinase (PKA). The method used was to create null alleles of prkar1a in mouse cells expressing pdx1 (Δ-Prkar1a). We found that these mice developed endocrine or mixed endocrine/acinar cell carcinomas with 100% penetrance by the age of 4-5 months. Malignant behavior of the tumors was seen as evidenced by stromal invasion and metastasis to locoregional lymph nodes. Histologically, most tumors exhibited an organoid pattern as seen in the islet-cell tumors. Biochemically, the lesions exhibited high PKA activity, as one would expect from deleting prkar1a The primary neuroendocrine nature of these tumor cells was confirmed by immunohistochemical staining and electron microscopy, the latter revealing the characteristic granules. Although the Δ-Prkar1a mice developed hypoglycemia after overnight fasting, insulin and glucagon levels in the plasma were normal. Negative immunohistochemical staining for the most commonly produced peptides (insulin, c-peptide, glucagon, gastrin and somatostatin) suggested that these tumors were non-functioning. We hypothesize that the recently identified multipotent pdx1+/insulin- cell in adult pancreas, gives rise to endocrine or mixed endocrine/acinar pancreatic malignancies with complete prkar1a deficiency. In conclusion, this mouse model supports the role of prkar1a as a tumor suppressor gene in the pancreas and points to the PKA pathway as a possible therapeutic target for these lesions. © 2017 Society for Endocrinology.
Guo, Long; Liang, Ziqi; Zheng, Chen; Liu, Baolong; Yin, Qingyan; Cao, Yangchun; Yao, Junhu
2018-05-23
Dietary nutrient utilization, particularly starch, is potentially limited by digestion in dairy cow small intestine because of shortage of α-amylase. Leucine acts as an effective signal molecular in the mTOR signaling pathway, which regulates a series of biological processes, especially protein synthesis. It has been reported that leucine could affect α-amylase synthesis and secretion in ruminant pancreas, but mechanisms have not been elaborated. In this study, pancreatic acinar (PA) cells were used as a model to determine the cellular signal of leucine influence on α-amylase synthesis. PA cells were isolated from newborn Holstein dairy bull calves and cultured in Dulbecco's modifed Eagle's medium/nutrient mixture F12 liquid media containing four leucine treatments (0, 0.23, 0.45, and 0.90 mM, respectively), following α-amylase activity, zymogen granule, and signal pathway factor expression detection. Rapamycin, a specific inhibitor of mTOR, was also applied to PA cells. Results showed that leucine increased ( p < 0.05) synthesis of α-amylase as well as phosphorylation of PI3K, Akt, mTOR, and S6K1 while reduced ( p < 0.05) GCN2 expression. Inhibition of mTOR signaling downregulated the α-amylase synthesis. In addition, the extracellular leucine dosage significantly influenced intracellular metabolism of isoleucine ( p < 0.05). Overall, leucine regulates α-amylase synthesis through promoting the PI3K/Akt-mTOR pathway and reducing the GCN2 pathway in PA cells of dairy calves. These pathways form the signaling network that controls the protein synthesis and metabolism. It would be of great interest in future studies to explore the function of leucine in ruminant nutrition.
Lacrimal gland-derived IL-22 regulates IL-17-mediated ocular mucosal inflammation
Ji, Yong Woo; Mittal, Sharad K.; Hwang, Ho Sik; Chang, Eun-Ju; Lee, Joon H.; Seo, Yuri; Yeo, Areum; Noh, Hyemi; Lee, Hye Sun; Chauhan, Sunil K.; Lee, Hyung Keun
2016-01-01
Inflammatory damage of mucosal surface of the eye is a hallmark of dry eye disease (DED), and in severe cases can lead to significant discomfort, visual impairment, and blindness. DED is a multifactorial autoimmune disorder with a largely unknown pathogenesis. Using a cross-sectional patient study and a well-characterized murine model of DED, herein we investigated the immunoregulatory function of interleukin-22 (IL-22) in the pathogenesis of DED. We found that IL-22 levels were elevated in lacrimal fluids of DED patients and inversely correlated with severity of disease. Acinar cells of the lacrimal glands, not inflammatory immune cells, are the primary source of IL-22, which suppresses inflammation in ocular surface epithelial cells upon desiccating stress. Moreover, loss of function analyses using IL-22 knock-out mice demonstrated that IL-22 is essential for suppression of ocular surface infiltration of Th17 cells and inhibition of DED induction. Our novel findings elucidate immunoregulatory function of lacrimal gland-derived IL-22 in inhibiting IL-17-mediated ocular surface epitheliopathy in DED thus making IL-22 a new relevant therapeutic target. PMID:28051088
Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology.
Marciniak, Anja; Cohrs, Christian M; Tsata, Vasiliki; Chouinard, Julie A; Selck, Claudia; Stertmann, Julia; Reichelt, Saskia; Rose, Tobias; Ehehalt, Florian; Weitz, Jürgen; Solimena, Michele; Slak Rupnik, Marjan; Speier, Stephan
2014-12-01
Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.
Chibly, Alejandro M; Wong, Wen Yu; Pier, Maricela; Cheng, Hongqiang; Mu, Yongxin; Chen, Ju; Ghosh, Sourav; Limesand, Kirsten H
2018-04-20
Xerostomia and salivary hypofunction often result as a consequence of radiation therapy for head and neck cancers, which are diagnosed in roughly 60,000 individuals every year in the U.S. Due to the lack of effective treatments for radiation-induced salivary hypofunction, stem cell-based therapies have been suggested to regenerate the irradiated salivary glands. Pharmacologically, restoration of salivary gland function has been accomplished in mice by administering IGF-1 shortly after radiation treatment, but it is not known if salivary stem and progenitor cells play a role. We show that radiation inactivates aPKCζ and promotes nuclear redistribution of Yap in a population of label-retaining cells in the acinar compartment of the parotid gland (PG)- which comprises a heterogeneous pool of salivary progenitors. Administration of IGF-1 post-radiation maintains activation of aPKCζ and partially rescues Yap's cellular localization in label retaining cells, while restoring salivary function. Finally, IGF-1 fails to restore saliva production in mice lacking aPKCζ, demonstrating the importance of the kinase as a potential therapeutic target.
La Rosa, Stefano; Bernasconi, Barbara; Frattini, Milo; Tibiletti, Maria Grazia; Molinari, Francesca; Furlan, Daniela; Sahnane, Nora; Vanoli, Alessandro; Albarello, Luca; Zhang, Lizhi; Notohara, Kenji; Casnedi, Selenia; Chenard, Marie-Pierre; Adsay, Volkan; Asioli, Sofia; Capella, Carlo; Sessa, Fausto
2016-03-01
The molecular alterations of pancreatic acinar cell carcinomas (ACCs) are poorly understood and have been reported as being different from those in ductal adenocarcinomas. Loss of TP53 gene function in the pathogenesis of ACCs is controversial since contradictory findings have been published. A comprehensive analysis of the different possible genetic and epigenetic mechanisms leading to TP53 alteration in ACC has never been reported and hence the role of TP53 in the pathogenesis and/or progression of ACC remains unclear. We investigated TP53 alterations in 54 tumor samples from 44 patients, including primary and metastatic ACC, using sequencing analysis, methylation-specific multiplex ligation probe amplification, fluorescence in situ hybridization, and immunohistochemistry. TP53 mutations were found in 13 % of primary ACCs and in 31 % of metastases. Primary ACCs and metastases showed the same mutational profile, with the exception of one case, characterized by a wild-type sequence in the primary carcinoma and a mutation in the corresponding metastasis. FISH analysis revealed deletion of the TP53 region in 53 % of primary ACCs and in 50 % of metastases. Promoter hypermethylation was found in one case. The molecular alterations correlated well with the immunohistochemical findings. A statistically significant association was found between the combination of mutation of one allele and loss of the other allele of TP53 and worse survival.
La Rosa, Stefano; Sessa, Fausto; Capella, Carlo
2015-01-01
Acinar cell carcinomas (ACCs) of the pancreas are rare pancreatic neoplasms accounting for about 1-2% of pancreatic tumors in adults and about 15% in pediatric subjects. They show different clinical symptoms at presentation, different morphological features, different outcomes, and different molecular alterations. This heterogeneous clinicopathological spectrum may give rise to difficulties in the clinical and pathological diagnosis with consequential therapeutic and prognostic implications. The molecular mechanisms involved in the onset and progression of ACCs are still not completely understood, although in recent years, several attempts have been made to clarify the molecular mechanisms involved in ACC biology. In this paper, we will review the main clinicopathological and molecular features of pancreatic ACCs of both adult and pediatric subjects to give the reader a comprehensive overview of this rare tumor type.
Sendler, Matthias; Maertin, Sandrina; John, Daniel; Persike, Maria; Weiss, F. Ulrich; Krüger, Burkhard; Wartmann, Thomas; Wagh, Preshit; Halangk, Walter; Schaschke, Norbert; Mayerle, Julia; Lerch, Markus M.
2016-01-01
Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific. PMID:27226576
Sendler, Matthias; Maertin, Sandrina; John, Daniel; Persike, Maria; Weiss, F Ulrich; Krüger, Burkhard; Wartmann, Thomas; Wagh, Preshit; Halangk, Walter; Schaschke, Norbert; Mayerle, Julia; Lerch, Markus M
2016-07-08
Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Repeat Prostate Biopsy Practice Patterns in a Statewide Quality Improvement Collaborative.
Burks, Frank N; Hu, Jonathan C; Telang, Dinesh; Liu, Alice; Hawken, Scott; Montgomery, Zack; Linsell, Susan; Montie, James E; Miller, David C; Ghani, Khurshid R
2017-08-01
We examined rebiopsies in MUSIC (Michigan Urological Surgery Improvement Collaborative) to understand adherence to guidelines recommending repeat prostate biopsy in patients with multifocal high grade prostatic intraepithelial neoplasia or atypical small acinar proliferation. We analyzed data on men undergoing repeat biopsy, practice patterns and cancer detection rates. Multivariate regression modeling was used to calculate the proportion of patients undergoing rebiopsy. We used claims data to validate the treatment classification in MUSIC. To understand reasons for not performing rebiopsy we reviewed records of a sample of patients with atypical small acinar proliferation. We identified 5,375 men with a negative biopsy, of whom 411 (7.6%) underwent repeat biopsy. In 718 men with high grade prostatic intraepithelial neoplasia, 350 with atypical small acinar proliferation and 587 with high grade prostatic intraepithelial neoplasia and atypical small acinar proliferation or atypical small acinar proliferation alone at initial biopsy the rebiopsy rate was 20.7%, 42.5% and 55.6%, respectively. The adjusted proportion of patients with rebiopsy in each practice ranged from 0% to 17.2% (p <0.001). The overall cancer detection rate at rebiopsy was 39.3%. It was highest after atypical small acinar proliferation (adjusted probability 0.39, 95% CI 0.30-0.48), and after high grade prostatic intraepithelial neoplasia and atypical small acinar proliferation (adjusted probability 0.50, 95% CI 0.35-0.65). The greatest Gleason 7 or greatest detection rate of 41.1% was found in patients with high grade prostatic intraepithelial neoplasia and atypical small acinar proliferation. Chart review revealed that 45.5% of patients with atypical small acinar proliferation underwent prostate specific antigen testing instead of rebiopsy while 36% failed to undergo rebiopsy despite a recommendation. Rebiopsy rates vary in Michigan practices with relatively low use in men with high grade prostatic intraepithelial neoplasia and atypical small acinar proliferation or atypical small acinar proliferation alone. Quality improvement strategies should target patients with atypical small acinar proliferation and high grade prostatic intraepithelial neoplasia as they have the highest likelihood of cancer detection. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
TMPRSS2-ERG gene fusions are infrequent in prostatic ductal adenocarcinomas.
Lotan, Tamara L; Toubaji, Antoun; Albadine, Roula; Latour, Mathieu; Herawi, Mehsati; Meeker, Alan K; DeMarzo, Angelo M; Platz, Elizabeth A; Epstein, Jonathan I; Netto, George J
2009-03-01
Ductal adenocarcinoma of the prostate is an unusual subtype that may be associated with a more aggressive clinical course, and is less responsive to conventional therapies than the more common prostatic acinar adenocarcinoma. However, given its frequent association with an acinar component at prostatectomy, some have challenged the concept of prostatic ductal adenocarcinoma as a distinct clinicopathologic entity. We studied the occurrence of the TMPRSS2-ERG gene fusion, in 40 surgically resected ductal adenocarcinoma cases, and in their associated acinar component using fluorescence in situ hybridization. A group of 38 'pure' acinar adenocarcinoma cases matched with the ductal adenocarcinoma group for pathological grade and stage was studied as a control. Compared with the matched acinar adenocarcinoma cases, the TMPRSS2-ERG gene fusion was significantly less frequently observed in ductal adenocarcinoma (45 vs 11% of cases, P=0.002, Fisher's exact test). Here, of the ductal adenocarcinoma cases with the gene fusion, 75% were fused through deletion, and the remaining case was fused through translocation. The TMPRSS2-ERG gene fusion was also rare in the acinar component of mixed ductal-acinar tumors when compared with the pure acinar adenocarcinoma controls (5 vs 45%, P=0.001, Fisher's exact test). In 95% of the ductal adenocarcinoma cases in which a concurrent acinar component was analyzed, there was concordance for presence/absence of the TMPRSS2-ERG gene fusion between the different histologic subtypes. In the control group of pure acinar adenocarcinoma cases, 59% were fused through deletion and 41% were fused through translocation. The presence of the TMPRSS2-ERG gene fusion in some cases of prostatic ductal adenocarcinoma supports the concept that ductal adenocarcinoma and acinar adenocarcinoma may be related genetically. However, the significantly lower rate of the gene fusion in pure ductal adenocarcinoma cases underscores the fact that genetic and biologic differences exist between these two tumors that may be important for future therapeutic strategies.
The role of anisotropic expansion for pulmonary acinar aerosol deposition
Hofemeier, Philipp; Sznitman, Josué
2016-01-01
Lung deformations at the local pulmonary acinar scale are intrinsically anisotropic. Despite progress in imaging modalities, the true heterogeneous nature of acinar expansion during breathing remains controversial, where our understanding of inhaled aerosol deposition still widely emanates from studies under self-similar, isotropic wall motions. Building on recent 3D models of multi-generation acinar networks, we explore in numerical simulations how different hypothesized scenarios of anisotropic expansion influence deposition outcomes of inhaled aerosols in the acinar depths. While the broader range of particles acknowledged to reach the acinar region (dp = 0.005–5.0 μm) are largely unaffected by the details of anisotropic expansion under tidal breathing, our results suggest nevertheless that anisotropy modulates the deposition sites and fractions for a narrow band of sub-micron particles (dp ~ 0.5–0.75 μm), where the fate of aerosols is greatly intertwined with local convective flows. Our findings underscore how intrinsic aerosol motion (i.e. diffusion, sedimentation) undermines the role of anisotropic wall expansion that is often attributed in determining aerosol mixing and acinar deposition. PMID:27614613
The role of anisotropic expansion for pulmonary acinar aerosol deposition.
Hofemeier, Philipp; Sznitman, Josué
2016-10-03
Lung deformations at the local pulmonary acinar scale are intrinsically anisotropic. Despite progress in imaging modalities, the true heterogeneous nature of acinar expansion during breathing remains controversial, where our understanding of inhaled aerosol deposition still widely emanates from studies under self-similar, isotropic wall motions. Building on recent 3D models of multi-generation acinar networks, we explore in numerical simulations how different hypothesized scenarios of anisotropic expansion influence deposition outcomes of inhaled aerosols in the acinar depths. While the broader range of particles acknowledged to reach the acinar region (d p =0.005-5.0μm) are largely unaffected by the details of anisotropic expansion under tidal breathing, our results suggest nevertheless that anisotropy modulates the deposition sites and fractions for a narrow band of sub-micron particles (d p ~0.5-0.75μm), where the fate of aerosols is greatly intertwined with local convective flows. Our findings underscore how intrinsic aerosol motion (i.e. diffusion, sedimentation) undermines the role of anisotropic wall expansion that is often attributed in determining aerosol mixing and acinar deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhao, Hui; Chen, Jing-Yao; Wang, Yu-Qian; Lin, Zhi-Rong; Wang, Shen
2016-11-05
Dry eye patients suffer from all kinds of symptoms. Sometimes, the clinical signs evaluation does not disclose any obvious difference in routine examination; in vivo confocal microscopy (IVCM) is a powerful tool for ocular surface disease. This study aimed to clarify meibomian gland (MG) alterations in dry eye patients with different symptoms and to compare the findings using IVCM. A total of sixty patients were recruited, all subjected to Ocular Surface Disease Index (OSDI) and Salisbury Eye Evaluation Questionnaire (SEEQ), and questionnaires for the assessment of dry eye symptoms before clinical sign examinations were given to the patients. Finally, IVCM was applied to observe MG's structure. Statistical analysis was performed using the t-test, Mann-Whitney U-test and Spearman correlation analysis. The differences were statistically significant when P< 0.05. In the severe symptom group, OSDI and SEEQ scores were significantly higher (P< 0.05) compared with the mild symptoms group. All other clinical sign examinations had no statistical difference in the two groups (P> 0.05). However, all the IVCM-observed data showed that patients with severe symptoms had more significant fibrosis in MG (acinar unit area 691.87 ± 182.01 μm2 for the severe, 992.17 ± 170.84 μm2 for the mild; P< 0.05) and severer decrease in the size of MG acinar units than those observed in patients with mild symptoms (MG acinar unit density [MGAUD] 70.08 ± 18.78 glands/mm2, MG acinar unit longest diameter [MGALD] 51.50 ± 15.51 μm, MG acinar unit shortest diameter [MGASD] 20.30 ± 11.85 μm for the severe, MGAUD 89.53 ± 39.88 glands/mm2, MGALD 81.57 ± 21.14 μm, MGASD 42.37 ± 14.55 μm for the mild;P< 0.05). Dry eye symptoms were negatively correlated with MG confocal microscopic parameters and positively correlated with conjunctival inflammatory cells and Langerhans cells (P< 0.05). IVCM application provides a strong support to differentiate dry eye patients with different symptoms: meibomian gland dysfunction (MGD) plays a pivotal role in dry eye aggravation, and using IVCM to observe MG fibrosis, changes in size and density of MG as well as status of inflammation cells can help not only correctly diagnose the type and severity of dry eye, but also possibly prognosticate in routine eye examination in the occurrence of MGD.
Hayden, Melvin R; Patel, Kamlesh; Habibi, Javad; Gupta, Deepa; Tekwani, Seema S; Whaley-Connell, Adam; Sowers, James R
2008-01-01
Ultrastructural observations reveal a continuous interstitial matrix connection between the endocrine and exocrine pancreas, which is lost due to fibrosis in rodent models and humans with type 2 diabetes mellitus (T2DM). Widening of the islet-exocrine interface appears to result in loss of desmosomes and adherens junctions between islet and acinar cells and is associated with hypercellularity consisting of pericytes and inflammatory cells in T2DM pancreatic tissue. Organized fibrillar collagen was closely associated with pericytes, which are known to differentiate into myofibroblasts-pancreatic stellate cells. Of importance, some pericyte cellular processes traverse both the connecting islet-exocrine interface and the endoacinar interstitium of the exocrine pancreas. Loss of cellular paracrine communication and extracellular matrix remodeling fibrosis in young animal models and humans may result in a dysfunctional insulino-acinar-ductal-incretin gut hormone axis, resulting in pancreatic insufficiency and glucagon-like peptide deficiency, which are known to exist in prediabetes and overt T2DM in humans.
Hayden, Melvin R; Patel, Kamlesh; Habibi, Javad; Gupta, Deepa; Tekwani, Seema S.; Whaley-Connell, Adam; Sowers, James R.
2009-01-01
Ultrastructural observations reveal a continuous interstitial matrix connection between the endocrine and exocrine pancreas, which is lost due to fibrosis in rodent models and humans with type 2 diabetes mellitus (T2DM). Widening of the islet exocrine interface (IEI) appears to result in loss of desmosomes and adherens junctions between islet and acinar cells and is associated with hypercellularity consisting of pericytes and inflammatory cells in T2DM pancreatic tissue. Organized fibrillar collagen was closely associated with pericytes, which are known to differentiate into myofibroblasts – pancreatic stellate cells. Importantly, some pericyte cellular processes traverse both the connecting IEI and the endoacinar interstitium of the exocrine pancreas. Loss of cellular paracrine communication and extracellular matrix remodeling fibrosis in young animal models and humans may result in a dysfunctional insulino-acinar-ductal – incretin gut hormone axis resulting in pancreatic insufficiency and glucagon like peptide deficiency known to exist in prediabetes and overt T2DM in humans. PMID:19040593
Cheng, Li; Qiao, Zhenguo; Xu, Chunfang; Shen, Jiaqing
2017-06-01
Midkine (MK) is involved in the pathogenesis of numerous malignancies, but the expression and effect of MK in acute pancreatitis (AP) have not been well studied and documented. In this study, the expression of MK was assayed in mice with L-arginine-induced AP. A recombinant human MK (rhMK) was introduced in this study to test the effect of MK on the L-arginine-induced AP. Serum amylase and lipase were assayed. Pancreas tissue samples were also collected for the evaluation of histological injury. Western blot and immunochemical staining of α-amylase and proliferating cell nuclear antigen were applied for the study of acinar regeneration in the pancreas. The elevation of MK expression was found in mice with AP induced by L-arginine. After rhMK administration, rhMK did not affect the severity of acute pancreatic injury in acute phase in L-arginine-induced pancreatitis in mice, in accordance with changes of serum amylase and lipase and the histological evaluation. But during the recovery phase, the area of remaining acinar cells was increased and the fibrosis was reduced in rhMK-treated mice. Furthermore, the expression of proliferating cell nuclear antigen and α-amylase was also upregulated after rhMK treatment. Midkine is over-expressed during AP in the animal model. Recombinant MK could promote the recovery of L-arginine-induced pancreatitis in mice. Therefore, MK may be involved in the regeneration of acinar cells in AP, and rhMK may be a possible therapeutic intervention for the repairment of AP. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Lin, Tong; Gong, Lan
2016-06-01
The aim of the study was to evaluate the morphological changes of meibomian glands (MGs) in primary blepharospasm (PBS) by in vivo laser scanning confocal microscopy (LSCM) and to investigate the correlations between clinical data of PBS and LSCM parameters of MGs. This prospective and case-control study recruited 30 consecutive PBS patients and 30 age- and gender-matched healthy controls. After questionnaire assessments of ocular surface disease index (OSDI), Jankovic rating scale, and blepharospasm disability index, all subjects underwent blink rate evaluation, tear film break-up time (TBUT), corneal fluorescein staining (CFS), Schirmer test, MG expressibility, meibum quality, MG dropout, and LSCM examination of the MGs. The main LSCM outcomes included the mean MG acinar area and density, orifice diameter, meibum secretion reflectivity, acinar irregularity, and inhomogeneity of interstice and acinar wall. The PBS patients had significantly higher blink rate, higher OSDI and CFS scores, lower TBUT and Schirmer test value, and worse MG expressibility than the controls (All P < 0.05), whereas meibum quality showed no difference (P > 0.05). The PBS patients showed lower values of MG acinar area, orifice diameter and meibum secretion reflectivity, and higher scores of acinar irregularity and inhomogeneity of interstices than the controls (All P < 0.05). For the PBS patients, the severity of blepharospasm evaluated by JCR scale was strong correlated with MG acinar area (P < 0.001), orifice diameter (P = 0.002), meibum secretion reflectivity (P = 0.002), and MG acinar irregularity (P = 0.013). The MG expressibility was significantly correlated to MG acinar area (P = 0.039), orifice diameter (P < 0.001), and MG acinar irregularity (P = 0.014). The OSDI score was moderate correlated with MG acinar irregularity (P = 0.016), whereas the TBUT value was positively correlated with MG acinar area (P = 0.045) and negatively correlated to MG acinar irregularity (P = 0.016). The CFS score was negatively correlated to MG orifice diameter (P = 0.008). The LSCM provided a noninvasive tool for in vivo histopathologic studies of MGs in PBS patients. The excessive constriction of lid muscles closely related to MG morphological alterations of PBS, which offered a new research approach to interpret the interactional mechanism between dry eye and PBS.
In vivo confocal microscopy of meibomian glands in primary blepharospasm
Lin, Tong; Gong, Lan
2016-01-01
Abstract The aim of the study was to evaluate the morphological changes of meibomian glands (MGs) in primary blepharospasm (PBS) by in vivo laser scanning confocal microscopy (LSCM) and to investigate the correlations between clinical data of PBS and LSCM parameters of MGs. This prospective and case–control study recruited 30 consecutive PBS patients and 30 age- and gender-matched healthy controls. After questionnaire assessments of ocular surface disease index (OSDI), Jankovic rating scale, and blepharospasm disability index, all subjects underwent blink rate evaluation, tear film break-up time (TBUT), corneal fluorescein staining (CFS), Schirmer test, MG expressibility, meibum quality, MG dropout, and LSCM examination of the MGs. The main LSCM outcomes included the mean MG acinar area and density, orifice diameter, meibum secretion reflectivity, acinar irregularity, and inhomogeneity of interstice and acinar wall. The PBS patients had significantly higher blink rate, higher OSDI and CFS scores, lower TBUT and Schirmer test value, and worse MG expressibility than the controls (All P < 0.05), whereas meibum quality showed no difference (P > 0.05). The PBS patients showed lower values of MG acinar area, orifice diameter and meibum secretion reflectivity, and higher scores of acinar irregularity and inhomogeneity of interstices than the controls (All P < 0.05). For the PBS patients, the severity of blepharospasm evaluated by JCR scale was strong correlated with MG acinar area (P < 0.001), orifice diameter (P = 0.002), meibum secretion reflectivity (P = 0.002), and MG acinar irregularity (P = 0.013). The MG expressibility was significantly correlated to MG acinar area (P = 0.039), orifice diameter (P < 0.001), and MG acinar irregularity (P = 0.014). The OSDI score was moderate correlated with MG acinar irregularity (P = 0.016), whereas the TBUT value was positively correlated with MG acinar area (P = 0.045) and negatively correlated to MG acinar irregularity (P = 0.016). The CFS score was negatively correlated to MG orifice diameter (P = 0.008). The LSCM provided a noninvasive tool for in vivo histopathologic studies of MGs in PBS patients. The excessive constriction of lid muscles closely related to MG morphological alterations of PBS, which offered a new research approach to interpret the interactional mechanism between dry eye and PBS. PMID:27281086
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roomans, G.M.; Wei, X.; Ceder, O.
The chronically reserpinized rat has been suggested as an animal model for cystic fibrosis. X-ray microanalysis of thick and thin cryosections was carried out to assess elemental redistribution in the submandibular glands and the pancreas of reserpinized rats at the cellular and subcellular level. In the submandibular gland of reserpinized rats, calcium and magnesium concentrations were significantly elevated. Mucus globules, secretory granules, and endoplasmic reticulum were the primary sites of the localization of excess calcium and magnesium. A significant potassium loss from the gland had occurred, particularly from the serous cells. Electron microscopy of conventionally prepared tissue showed marked swellingmore » of the endoplasmic reticulum, especially in mucous cells. The elemental changes in the pancreatic acinar cells of reserpinized rats were reminiscent of elemental redistribution connected with cell death: increased levels of sodium, chlorine, and calcium and decreased levels of magnesium and potassium. Ultrastructural changes included swelling of the endoplasmic reticulum and obstruction of the acinar lumen. It is concluded tha elemental redistribution in chronically reserpinized rats presents interesting parallels with cystic fibrosis.« less
Kerr, M; Fischer, J E; Purushotham, K R; Gao, D; Nakagawa, Y; Maeda, N; Ghanta, V; Hiramoto, R; Chegini, N; Humphreys-Beher, M G
1994-08-02
The murine transformed cell line YC-8 and beta-adrenergic receptor agonist (isoproternol) treated rat and mouse parotid gland acinar cells ectopically express cell surface beta 1-4 galactosyltransferase during active proliferation. This activity is dependent upon the expression of the GTA-kinase (p58) in these cells. Using total RNA, cDNA clones for the protein coding region of the kinase were isolated by reverse transcriptase-PCR cloning. DNA sequence analysis failed to show sequence differences with the normal homolog from mouse cells although Southern blot analysis of YC-8, and a second cell line KI81, indicated changes in the restriction enzyme digestion profile relative to murine cell lines which do not express cell surface galactosyltransferase. The rat cDNA clone from isoproterenol-treated salivary glands showed a high degree of protein and nucleic acid sequence homology to the GTA-kinase from both murine and human sources. Northern blot analysis of YC-8 and a control cell line LSTRA revealed the synthesis of a major 3.0 kb mRNA from both cell lines plus the unique expression of a 4.5 kb mRNA in the YC-8 cells. Reverse transcriptase-PCR of LSTRA and YC-8 confirmed the increased steady state levels of the GTA-kinase mRNA in YC-8. In the mouse, induction of cell proliferation by isoproterenol resulted in a 50-fold increase in steady state mRNA levels for the kinase over the low level of expression in quiescent cells. Expression of the rat 3' untranslated region in rat parotid cells in vitro led to an increased rate of DNA synthesis, cell number an ectopic expression of cell surface galactosyltransferase in the sense orientation. Antisense expression or vector alone did not alter growth characteristics of acinar cells. A polyclonal antibody monospecific to a murine amino terminal peptide sequence revealed a uniform distribution of GTA-kinase over the cytoplasm of acinar and duct cells of control mouse parotid glands. However, upon growth stimulation, kinase was detected primarily in a perinuclear and nuclear immunostaining pattern. Western blot analysis confirmed a translocation from a cytoplasmic localization in both LSTRA and quiescent salivary cells to a membrane-associated localization in YC-8 and proliferating salivary cells.
Glycogen synthase kinase-3β ablation limits pancreatitis-induced acinar-to-ductal metaplasia.
Ding, Li; Liou, Geou-Yarh; Schmitt, Daniel M; Storz, Peter; Zhang, Jin-San; Billadeau, Daniel D
2017-09-01
Acinar-to-ductal metaplasia (ADM) is a reversible epithelial transdifferentiation process that occurs in the pancreas in response to acute inflammation. ADM can rapidly progress towards pre-malignant pancreatic intraepithelial neoplasia (PanIN) lesions in the presence of mutant KRas and ultimately pancreatic adenocarcinoma (PDAC). In the present work, we elucidate the role and related mechanism of glycogen synthase kinase-3beta (GSK-3β) in ADM development using in vitro 3D cultures and genetically engineered mouse models. We show that GSK-3β promotes TGF-α-induced ADM in 3D cultured primary acinar cells, whereas deletion of GSK-3β attenuates caerulein-induced ADM formation and PanIN progression in Kras G12D transgenic mice. Furthermore, we demonstrate that GSK-3β ablation influences ADM formation and PanIN progression by suppressing oncogenic KRas-driven cell proliferation. Mechanistically, we show that GSK-3β regulates proliferation by increasing the activation of S6 kinase. Taken together, these results indicate that GSK-3β participates in early pancreatitis-induced ADM and thus could be a target for the treatment of chronic pancreatitis and the prevention of PDAC progression. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Manko, B O; Manko, V V
2013-08-01
Acetylcholine as one of the main secretagogues modulates mitochondrial functions in acinar pancreacytes, presumably due to increase in ATP hydrolysis or Ca(2+) transport into mitochondria. The aim of this work was to investigate the mechanisms of carbachol (CCh) action on respiration and oxidative phosphorylation of isolated pancreatic acini. Respiration of intact or permeabilized rat pancreatic acini was studied at 37 °C using a Clark oxygen electrode. Respiration rate of isolated acini in rest was 0.27 ± 0.01 nmol O2 s(-1) 10(-6) cells. Addition of 10 μM CCh into respiration chamber evoked biphasic stimulation of respiration. Rapid increase of respiration by 20.1% lasted for approx. 1 min, followed by decrease to level by 11.5% higher than control. Addition of 1 μm CCh caused monophasic increase by 11.5%. Preincubation (5 min) with 1 or 10 μm CCh elevated respiration rate by 12.5 or 11.2% respectively. FCCP prevented the effect of CCh. Preincubation with 1 (but not 10) μm CCh increased FCCP-uncoupled respiration rate. Thapsigargin slightly elevated respiration, but ryanodine did not. Application of 2-aminoethoxydiphenyl borate or ruthenium red prevented the effects of CCh on respiration, while oligomycin abolished them. Preincubation with 1 μm CCh prior to cell permeabilization increased respiration rate at pyruvate+malate oxidation, but not at succinate oxidation. In contrast, preincubation with 10 μm CCh decreased pyruvate+malate oxidation. Medium CCh dose (1 μm) intensifies respiration and oxidative phosphorylation of acinar pancreacytes by feedforward mechanism via Ca(2+) transport into mitochondria and activation of Ca(2+) /ADP-sensitive mitochondrial dehydrogenases. Prolonged action of high CCh dose (10 μm) might impair mitochondrial functions. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Thrower, Edwin C; Yuan, Jingzhen; Usmani, Ashar; Liu, Yannan; Jones, Courtney; Minervini, Samantha N; Alexandre, Martine; Pandol, Stephen J; Guha, Sushovan
2011-01-01
Novel protein kinase C isoforms (PKC δ and ε) mediate early events in acute pancreatitis. Protein kinase D (PKD/PKD1) is a convergent point of PKC δ and ε in the signaling pathways triggered through CCK or cholinergic receptors and has been shown to activate the transcription factor NF-κB in acute pancreatitis. For the present study we hypothesized that a newly developed PKD/PKD1 inhibitor, CRT0066101, would prevent the initial events leading to pancreatitis. We pretreated isolated rat pancreatic acinar cells with CRT0066101 and a commercially available inhibitor Gö6976 (10 μM). This was followed by stimulation for 60 min with high concentrations of cholecystokinin (CCK, 0.1 μM), carbachol (CCh, 1 mM), or bombesin (10 μM) to induce initial events of pancreatitis. PKD/PKD1 phosphorylation and activity were measured as well as zymogen activation, amylase secretion, cell injury and NF-κB activation. CRT0066101 dose dependently inhibited secretagogue-induced PKD/PKD1 activation and autophosphorylation at Ser-916 with an IC(50) ∼3.75-5 μM but had no effect on PKC-dependent phosphorylation of the PKD/PKD1 activation loop (Ser-744/748). Furthermore, CRT0066101 reduced secretagogue-induced zymogen activation and amylase secretion. Gö6976 reduced zymogen activation but not amylase secretion. Neither inhibitor affected basal zymogen activation or secretion. CRT0066101 did not affect secretagogue-induced cell injury or changes in cell morphology, but it reduced NF-κB activation by 75% of maximal for CCK- and CCh-stimulated acinar cells. In conclusion, CRT0066101 is a potent and specific PKD family inhibitor. Furthermore, PKD/PKD1 is a potential mediator of zymogen activation, amylase secretion, and NF-κB activation induced by a range of secretagogues in pancreatic acinar cells.
2017-10-25
Acinar Cell Carcinoma; Ampulla of Vater Adenocarcinoma; Cholangiocarcinoma; Duodenal Adenocarcinoma; Pancreatic Adenocarcinoma; Pancreatic Ductal Adenocarcinoma; Pancreatic Intraductal Papillary Mucinous Neoplasm, Pancreatobiliary-Type; Periampullary Adenocarcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, C.; Matozaki, T.; Nagao, M.
1987-09-01
Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate (Gpp(NH)p)>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg/sup 2 +/. When pancreatic acini were treated withmore » 1 ..mu..g/ml pertussis toxin for 4 h, subsequent /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor.« less
Arango, M E; Li, P; Komatsu, M; Montes, C; Carraway, C A; Carraway, K L
2001-11-01
To show the presence and forms of sialomucin complex (rat Muc4) and receptor tyrosine kinase ErbBs in the rat lacrimal gland and analyze for complexes of ErbB2 and its ligand Muc4. Northern blot analyses were used to identify sialomucin complex/Muc4 (SMC/Muc4) mRNA in rat lacrimal gland. Immunoblot analyses were performed to detect SMC/Muc4 and ErbBs. Sequential immunoprecipitation and immunoblot analyses were used to differentiate membrane and soluble forms of the SMC/Muc4 transmembrane subunit ASGP-2. Methacarn-fixed, paraffin-embedded sections of lacrimal glands from female adult rats were immunocytochemically stained using antisera to SMC/Muc4 and ErbBs to determine their relative locations in the gland. Colocalization of SMC/Muc4 and ErbB2 was confirmed by confocal immunofluorescence. Sequential immunoprecipitation and immunoblot were performed to analyze complexes of the SMC/Muc4 and ErbB2 in the lacrimal tissue. Northern blot analyses of rat lacrimal glands, with a probe for SMC/Muc4, demonstrated the presence of a approximately 9-kb transcript, consistent with observations in other tissues. Similarly, immunoblot analyses with antibodies against both the transmembrane (ASGP-2) and mucin (ASGP-1) subunits showed the presence of the two SMC/Muc4 subunits in lysates from rat lacrimal gland. Significantly, two different forms of ASGP-2 were observed, a high-molecular-weight ( approximately 200-kDa) form and the more common 120- to 140-kDa form. Sequential immunoprecipitation and immunoblot analyses to differentiate membrane and soluble forms of SMC/Muc4 indicated that the high-molecular-weight form of ASGP-2 was predominantly associated with membranes, whereas the 120- to 140-kDa form was both membrane-associated and soluble. The lacrimal gland consists of acini connected by intercalated and interlobular ducts. Both acini and some intercalated ducts were stained by anti-ASGP-2 monoclonal antisera. Two patterns of acinar staining were observed: membrane staining at the borders of the epithelial cells and a granular staining within the cells. Staining of ductal surfaces with antibody to the cytoplasmic domain of ASGP-2 suggests that membrane SMC/Muc4 is being produced by the ductal cells and is not simply an adsorbed soluble product from the acinar cells. Immunoblot and immunocytochemical analyses demonstrated the presence of all four ErbBs, with ErbB2 showing the most widespread distribution, similar to that of SMC/Muc4. Immunofluorescence colocalization of membrane SMC/Muc4 and ErbB2 and coimmunoprecipitation of a complex of the two provided evidence of their association in membranes of lacrimal gland acinar cells. SMC/Muc4 is produced by the rat lacrimal gland as both membrane and soluble forms, specifically associated with both acinar and ductal cells. Because sialomucin complex is also present in the ocular tear film, the rat lacrimal gland represents a second source of this mucin for the tear film, in addition to the corneal and conjunctival epithelia. Moreover, the presence of a complex of SMC/Muc4 and the receptor tyrosine kinase ErbB2 in lacrimal tissue suggests that SMC/Muc4 acts as a ligand for the receptor and has functions in the lacrimal gland other than that of a mucin.
Salivary Gland NK Cells Are Phenotypically and Functionally Unique
Brossay, Laurent
2011-01-01
Natural killer (NK) cells and CD8+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV). However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV) infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or Treg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells. PMID:21249177
Furlan, Daniela; Sahnane, Nora; Bernasconi, Barbara; Frattini, Milo; Tibiletti, Maria Grazia; Molinari, Francesca; Marando, Alessandro; Zhang, Lizhi; Vanoli, Alessandro; Casnedi, Selenia; Adsay, Volkan; Notohara, Kenji; Albarello, Luca; Asioli, Sofia; Sessa, Fausto; Capella, Carlo; La Rosa, Stefano
2014-05-01
Genetic and epigenetic alterations involved in the pathogenesis of pancreatic acinar cell carcinomas (ACCs) are poorly characterized, including the frequency and role of gene-specific hypermethylation, chromosome aberrations, and copy number alterations (CNAs). A subset of ACCs is known to show alterations in the APC/β-catenin pathway which includes mutations of APC gene. However, it is not known whether, in addition to mutation, loss of APC gene function can occur through alternative genetic and epigenetic mechanisms such as gene loss or promoter methylation. We investigated the global methylation profile of 34 tumor suppressor genes, CNAs of 52 chromosomal regions, and APC gene alterations (mutation, methylation, and loss) together with APC mRNA level in 45 ACCs and related peritumoral pancreatic tissues using methylation-specific multiplex ligation probe amplification (MS-MLPA), fluorescence in situ hybridization (FISH), mutation analysis, and reverse transcription-droplet digital PCR. ACCs did not show an extensive global gene hypermethylation profile. RASSF1 and APC were the only two genes frequently methylated. APC mutations were found in only 7 % of cases, while APC loss and methylation were more frequently observed (48 and 56 % of ACCs, respectively). APC mRNA low levels were found in 58 % of cases and correlated with CNAs. In conclusion, ACCs do not show extensive global gene hypermethylation. APC alterations are frequently involved in the pathogenesis of ACCs mainly through gene loss and promoter hypermethylation, along with reduction of APC mRNA levels.
Wang, J X; Li, P; Zhang, X T; Ye, L X
2017-09-01
Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor (GHS-R), is produced by multiple cell types and affects feeding behavior, metabolic regulation, and energy balance. In the mammalian pancreas, the types of endocrine cells that are immunoreactive to ghrelin vary. However, little was known about its distribution and developmental changes in the pancreas of African ostrich chicks (Struthio camelus). In the present study, the distribution, morphological characteristics, and developmental changes of ghrelin-immunopositive (ghrelin-ip) cells in the pancreas of African ostrich chicks were investigated using immunohistochemistry. Ghrelin-ip cells were found in both the pancreatic islets and acinar cell regions. The greatest number of ghrelin-ip cells were found in the pancreatic islets, and were primarily observed at the periphery of the islets; some ghrelin-ip cells were also located in the central portion of the pancreatic islets. Interestingly, from postnatal d 1 to d 90, there was a steady decrease in the number of ghrelin-ip cells in the pancreatic islets and acinar cell regions. These results clearly demonstrated that ghrelin-ip cells exist and decreased with age in the African ostrich pancreas from postnatal d 1 to d90. Thus, these findings indicated that ghrelin may be involved in the development of the pancreas in the African ostrich. © 2017 Poultry Science Association Inc.
Diakopoulos, Kalliope N; Lesina, Marina; Wörmann, Sonja; Song, Liang; Aichler, Michaela; Schild, Lorenz; Artati, Anna; Römisch-Margl, Werner; Wartmann, Thomas; Fischer, Robert; Kabiri, Yashar; Zischka, Hans; Halangk, Walter; Demir, Ihsan Ekin; Pilsak, Claudia; Walch, Axel; Mantzoros, Christos S; Steiner, Jörg M; Erkan, Mert; Schmid, Roland M; Witt, Heiko; Adamski, Jerzy; Algül, Hana
2015-03-01
Little is known about the mechanisms of the progressive tissue destruction, inflammation, and fibrosis that occur during development of chronic pancreatitis. Autophagy is involved in multiple degenerative and inflammatory diseases, including pancreatitis, and requires the protein autophagy related 5 (ATG5). We created mice with defects in autophagy to determine its role in pancreatitis. We created mice with pancreas-specific disruption of Atg5 (Ptf1aCreex1;Atg5F/F mice) and compared them to control mice. Pancreata were collected and histology, immunohistochemistry, transcriptome, and metabolome analyses were performed. ATG5-deficient mice were placed on diets containing 25% palm oil and compared with those on a standard diet. Another set of mice received the antioxidant N-acetylcysteine. Pancreatic tissues were collected from 8 patients with chronic pancreatitis (CP) and compared with pancreata from ATG5-deficient mice. Mice with pancreas-specific disruption of Atg5 developed atrophic CP, independent of β-cell function; a greater proportion of male mice developed CP than female mice. Pancreata from ATG5-deficient mice had signs of inflammation, necrosis, acinar-to-ductal metaplasia, and acinar-cell hypertrophy; this led to tissue atrophy and degeneration. Based on transcriptome and metabolome analyses, ATG5-deficient mice produced higher levels of reactive oxygen species than control mice, and had insufficient activation of glutamate-dependent metabolism. Pancreata from these mice had reduced autophagy, increased levels of p62, and increases in endoplasmic reticulum stress and mitochondrial damage, compared with tissues from control mice; p62 signaling to Nqo1 and p53 was also activated. Dietary antioxidants, especially in combination with palm oil-derived fatty acids, blocked progression to CP and pancreatic acinar atrophy. Tissues from patients with CP had many histologic similarities to those from ATG5-deficient mice. Mice with pancreas-specific disruption of Atg5 develop a form of CP similar to that of humans. CP development appears to involve defects in autophagy, glutamate-dependent metabolism, and increased production of reactive oxygen species. These mice might be used to identify therapeutic targets for CP. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109
Hockla, Alexandra; Radisky, Derek C.
2010-01-01
Serine proteases have been implicated in many stages of cancer development, facilitating tumor cell growth, invasion, and metastasis, and naturally occurring serine protease inhibitors have shown promise as potential anticancer therapeutics. Optimal design of inhibitors as potential therapeutics requires the identification of the specific serine proteases involved in disease progression and the functional targets responsible for the tumor-promoting properties. Here, we use the HMT-3522 breast cancer progression series grown in 3D organotypic culture conditions to find that serine protease inhibitors cause morphological reversion of the malignant T4-2 cells, assessed by inhibition of proliferation and formation of acinar structures with polarization of basal markers, implicating serine protease activity in their malignant growth behavior. We identify PRSS3/mesotrypsin upregulation in T4-2 cells as compared to their nonmalignant progenitors, and show that knockdown of PRSS3 attenuates, and treatment with recombinant purified mesotrypsin enhances, the malignant growth phenotype. Using proteomic methods, we identify CD109 as the functional proteolytic target of mesotrypsin. Our study identifies a new mediator and effector of breast cancer growth and progression. PMID:20035377
2011-07-01
into the bioreactor . Cell lines were cultured in low density 3D matrigel conditions. Mammoshere formation is dependent upon a number of...epithelial cell culture systems grown under 3D cell culture conditions that allow for mammosphere or glandular mammary acinar development. Drug...assessed whether lowering the dose would still be affective as a extracellular matrix inhibitor. For 3D cell cultures , mammospheres were allowed to
Paulsen, Friedrich; Langer, Gesa; Hoffmann, Werner; Berry, Monica
2004-05-01
The objective of this study was to determine whether the lacrimal gland synthesizes mucins and whether they are changed with age or in cases of dry eye. Expression of mucins in human lacrimal glands was monitored by reverse transcription-polymerase chain reaction analysis. Furthermore, the presence and distribution of MUC1, -2, -4, -5AC, -5B, -6 and -7 in epithelia of the human lacrimal gland and its excretory duct system were assessed with antisera to mucin peptide cores. Thirty normal tissues from cadavers of different ages were tested, plus four with dry eye treated with artificial tears. Expression studies detected mRNAs for mucins MUC1, -4, -5AC, -5B, -6 and -7; whereas the MUC2 message was absent. The message for MUC4 was present in all four cases of dry eye, but only in six out of the 30 normal glands from individuals who did not receive artificial tears. MUC6 mRNA was detected only in about half of the investigated samples. Immunohistochemistry revealed membrane-bound MUC1 at the apical surface of acinar cells, absence of MUC2, MUC5AC associated with goblet cells of excretory ducts, MUC5B and -7 in the cytoplasm of acinar cells, and MUC7 also in epithelial cells of excretory ducts. MUC4 mucin was detected only in those individuals in which message was identified. In dry eyes, MUC5AC and -5B were localized in the same acinar cells; whereas MUC2 and MUC6 were not detectable. Dot-blot analysis clearly revealed increased amounts of MUC4, -5AC, and -5B in the glands of elderly women who received treatment for dry eyes. These results confirm that the human lacrimal gland synthesizes a spectrum of mucins; part of them might be correlated with age. Copyright 2004 Springer-Verlag
Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo
2018-01-20
The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Indomethacin inhabits the NLRP3 inflammasome pathway and protects severe acute pancreatitis in mice.
Lu, Guotao; Pan, Yiyuan; Kayoumu, Abudurexiti; Zhang, Ling; Yin, Tao; Tong, Zhihui; Li, Baiqiang; Xiao, Weiming; Ding, Yanbing; Li, Weiqin
2017-11-04
Clinical studies have confirmed that indomethacin (Indo) can reduce the incidence and severity of post-endoscopicretrogradecholangio-pancreatography pancreatitis (PEP) effectively. However, the role of Indo on severe acute pancreatitis (SAP) is not clear. In the present study, we aimed to explore the effects of Indo treatment on SAP model induced by caerulein combined with lipopolysaccharide. After intraperitoneal injection of Indo in mice, both the severity of SAP and the serum levels of amylase, lipase, and proinflammatory cytokines were decreased. Furthermore, the mRNA and protein levels of NLRP3 inflammasome pathway (NLRP3,ASC and IL-1β) in pancreatic tissues were down-regulated. In vitro experiments, by isolating the pancreatic acinar cells (PACs) from mice, we found that Indo significantly reduced lactate dehydrogenase(LDH) excretion, increased the cell activity, and inhibited the NLRP3 inflammasome pathway of PACs. Taken together, our data showed that Indo could protect pancreatic acinar cell from injury by inhabiting NLRP3 pathway and decreased the severity of SAP accordingly. Copyright © 2017. Published by Elsevier Inc.
Kawasaki, G; Mataki, S; Mizuno, A
1995-01-01
These effects of polychlorinated biphenyl (PCB) were examined by light and electron microscopy and biochemical analysis of lysosomal enzyme activities. Several experimental protocols with dosage schedules of either 0.2, 2.0, or 20 mg/kg of PCB were used. Typical histological changes were observed in mice given 2 mg/kg of PCB in a single injection. There were no remarkable changes until 4 days after PCB administration; marked cytoplasmic vacuolation was observed in parotid acinar cells at 7 days. The activities of lysosomal enzymes increased after the PCB injection and their maximum values appeared consistently at 4 days after the treatment; the increases were threefold for acid phosphatase, twofold for beta-glucuronidase, threefold for cathepsin D, fivefold for cathepsin H and twofold for cathepsin L. As vacuolation was preceded by a large increase in lysosomal enzyme activities and the vacuoles co-localized with lysosomes, it is suggested that an increase in these activities induced by PCB may be closely related to the development of vacuolation in the parotid acinar cells as a subacute effect of PCB.
Criscimanna, Angela; Coudriet, Gina M; Gittes, George K; Piganelli, Jon D; Esni, Farzad
2014-11-01
Although the cells that contribute to pancreatic regeneration have been widely studied, little is known about the mediators of this process. During tissue regeneration, infiltrating macrophages debride the site of injury and coordinate the repair response. We investigated the role of macrophages in pancreatic regeneration in mice. We used a saporin-conjugated antibody against CD11b to reduce the number of macrophages in mice following diphtheria toxin receptor-mediated cell ablation of pancreatic cells, and evaluated the effects on pancreatic regeneration. We analyzed expression patterns of infiltrating macrophages after cell-specific injury or from the pancreas of nonobese diabetic mice. We developed an in vitro culture system to study the ability of macrophages to induce cell-specific regeneration. Depletion of macrophages impaired pancreatic regeneration. Macrophage polarization, as assessed by expression of tumor necrosis factor-α, interleukin 6, interleukin 10, and CD206, depended on the type of injury. The signals provided by polarized macrophages promoted lineage-specific generation of acinar or endocrine cells. Macrophage from nonobese diabetic mice failed to provide signals necessary for β-cell generation. Macrophages produce cell type-specific signals required for pancreatic regeneration in mice. Additional study of these processes and signals might lead to new approaches for treating type 1 diabetes or pancreatitis. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
EPI64B Acts as a GTPase-activating Protein for Rab27B in Pancreatic Acinar Cells*
Hou, Yanan; Chen, Xuequn; Tolmachova, Tatyana; Ernst, Stephen A.; Williams, John A.
2013-01-01
The small GTPase Rab27B localizes to the zymogen granule membranes and plays an important role in regulating protein secretion by pancreatic acinar cells, as does Rab3D. A common guanine nucleotide exchange factor (GEF) for Rab3 and Rab27 has been reported; however, the GTPase-activating protein (GAP) specific for Rab27B has not been identified. In this study, the expression in mouse pancreatic acini of two candidate Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins, EPI64 (TBC1D10A) and EPI64B (TBC1D10B), was first demonstrated. Their GAP activity on digestive enzyme secretion was examined by adenovirus-mediated overexpression of EPI64 and EPI64B in isolated pancreatic acini. EPI64B almost completely abolished the GTP-bound form of Rab27B, without affecting GTP-Rab3D. Overexpression of EPI64B also enhanced amylase release. This enhanced release was independent of Rab27A, but dependent on Rab27B, as shown using acini from genetically modified mice. EPI64 had a mild effect on both GTP-Rab27B and amylase release. Co-overexpression of EPI64B with Rab27B can reverse the inhibitory effect of Rab27B on amylase release. Mutations that block the GAP activity decreased the inhibitory effect of EPI64B on the GTP-bound state of Rab27B and abolished the enhancing effect of EPI64B on the amylase release. These data suggest that EPI64B can serve as a potential physiological GAP for Rab27B and thereby participate in the regulation of exocytosis in pancreatic acinar cells. PMID:23671284
Intracellular proteolysis of pancreatic zymogens.
Gorelick, F. S.; Modlin, I. M.; Leach, S. D.; Carangelo, R.; Katz, M.
1992-01-01
Activation of pancreatic digestive zymogens within the pancreatic acinar cell may be an early event in the development of pancreatitis. To detect such activation, an immunoblot assay has been developed that measures the relative amounts of inactive zymogens and their respective active enzyme forms. Using this assay, high doses of cholecystokinin or carbachol were found to stimulate the intracellular conversion of at least three zymogens (procarboxypeptidase A1, procarboxypeptidase B, and chymotrypsinogen 2) to their active forms. Thus, this conversion may be a generalized phenomenon of pancreatic zymogens. The conversion is detected within ten minutes of treatment and is not associated with changes in acinar cell morphology; it has been predicted that the lysosomal thiol protease, cathepsin B, may initiate this conversion. Small amounts of cathepsin B are found in the secretory pathway, and cathepsin B can activate trypsinogen in vitro; however, exposure of acini to a thiol protease inhibitor (E64) did not block this conversion. Conversion was inhibited by the serine protease inhibitor, benzamidine, and by raising the intracellular pH, using chloroquine or monensin. This limited proteolytic conversion appears to require a low pH compartment and a serine protease activity. After long periods of treatment (60 minutes), the amounts of the active enzyme forms began to decrease; this observation suggested that the active enzyme forms were being degraded. Treatment of acini with E64 reduced this late decrease in active enzyme forms, suggesting that thiol proteases, including lysosomal hydrolases, may be involved in the degradation of the active enzyme forms. These findings indicate that pathways for zymogen activation as well as degradation of active enzyme forms are present within the pancreatic acinar cell. Images FIG. 1 FIG. 6 PMID:1340058
Ramnath, Raina Devi; Sun, Jia; Adhikari, Sharmila; Bhatia, Madhav
2007-01-01
Abstract Substance P, acting via its neurokinin 1 receptor (NK1 R), plays an important role in mediating a variety of inflammatory processes. Its interaction with chemokines is known to play a crucial role in the pathogenesis of acute pancreatitis. In pancreatic acinar cells, substance P stimulates the release of NFκB-driven chemokines. However, the signal transduction pathways by which substance P-NK1 R interaction induces chemokine production are still unclear. To that end, we went on to examine the participation of mitogen-activated protein kinases (MAPKs) in substance P-induced synthesis of pro-inflammatory chemokines, monocyte chemoanractant protein-1 (MCP-I), macrophage inflammatory protein-lα (MIP-lα) and macrophage inflammatory protein-2 (MIP-2), in pancreatic acini. In this study, we observed a time-dependent activation of ERK1/2, c-Jun N-terminal kinase (JNK), NFκB and activator protein-1 (AP-1) when pancreatic acini were stimulated with substance P. Moreover, substance P-induced ERK 1/2, JNK, NFκB and AP-1 activation as well as chemokine synthesis were blocked by pre-treatment with either extracellular signal-regulated protein kinase kinase 1 (MEK1) inhibitor or JNK inhibitor. In addition, substance P-induced activation of ERK 112, JNK, NFκB and AP-1-driven chemokine production were attenuated by CP96345, a selective NK1 R antagonist, in pancreatic acinar cells. Taken together, these results suggest that substance P-NK1 R induced chemokine production depends on the activation of MAPKs-mediated NFκB and AP-1 signalling pathways in mouse pancreatic acini. PMID:18205703
Morisset, J; Larose, L; Korc, M
1989-06-01
The in vivo effects of epidermal growth factor (EGF) on pancreatic growth and digestive enzyme concentrations were compared with the actions of the pancreatic secretagogue caerulein in the adult rat. EGF (10 micrograms/kg BW) did not alter pancreatic weight or protein content. However, this concentration of EGF inhibited [3H]thymidine incorporation into DNA by 44%, decreased DNA content by 20%, and increased the concentrations of amylase, chymotrypsinogen, and protein by 106%, 232%, and 42%, respectively. Pancreatic acini prepared from EGF-treated rats exhibited a characteristic secretory response to caerulein that was superimposable to that obtained in acini from saline-treated rats. In both groups of acini half-maximal and maximal stimulation of amylase release occurred at approximately 5 pM and 50 pM caerulein, respectively. In contrast to EGF, caerulein (1 microgram/kg BW) increased pancreatic weight by 29% and protein content by 59%, and enhanced [3H]thymidine incorporation into DNA by 70%. Although caerulein increased the concentrations of pancreatic amylase and chymotrypsinogen by 38% and 297%, respectively, pancreatic acini prepared from caerulein-treated rats were less sensitive to the actions of caerulein in vitro when compared with acini from control rats. Indeed, the EC50 was shift from 4.8 pM to 9.8 pM after 4 days of treatment. EGF potentiated the actions of caerulein on pancreatic weight, protein content, and chymotrypsinogen concentration, and prevented the caerulein-induced alteration in the secretory responsiveness of the acinar cell. Conversely, caerulein reversed the inhibitory effect of EGF on thymidine incorporation. These findings suggest that EGF may modulate the trophic effects of certain gastrointestinal hormones, and may participate in the regulation of pancreatic exocrine function in vivo.
Pancreatic β-cell regeneration: Facultative or dedicated progenitors?
Afelik, Solomon; Rovira, Meritxell
2017-04-15
The adult pancreas is only capable of limited regeneration. Unlike highly regenerative tissues such as the skin, intestinal crypts and hematopoietic system, no dedicated adult stem cells or stem cell niche have so far been identified within the adult pancreas. New β cells have been shown to form in the adult pancreas, in response to high physiological demand or experimental β-cell ablation, mostly by replication of existing β cells. The possibility that new β cells are formed from other sources is currently a point of major controversy. Under particular injury conditions, fully differentiated pancreatic duct and acinar cells have been shown to dedifferentiate into a progenitor-like state, however the extent, to which ductal, acinar or other endocrine cells contribute to restoring pancreatic β-cell mass remains to be resolved. In this review we focus on regenerative events in the pancreas with emphasis on the restoration of β-cell mass. We present an overview of regenerative responses noted within the different pancreatic lineages, following injury. We also highlight the intrinsic plasticity of the adult pancreas that allows for inter-conversion of fully differentiated pancreatic lineages through manipulation of few genes or growth factors. Taken together, evidence from a number of studies suggest that differentiated pancreatic lineages could act as facultative progenitor cells, but the extent to which these contribute to β-cell regeneration in vivo is still a matter of contention. Copyright © 2016. Published by Elsevier B.V.
Characteristics of 106 spontaneous mammary tumours appearing in Sprague-Dawley female rats.
Okada, M.; Takeuchi, J.; Sobue, M.; Kataoka, K.; Inagaki, Y.; Shigemura, M.; Chiba, T.
1981-01-01
Pathological studies were undertaken on 106 mammary tumours (89 benign, 17 malignant) appearing spontaneously in 95 normal female Sprague-Dawley rats which were killed at Day 756. The benign tumours comprised those with a predominant acinar hyperplasia and those with adenomatous or fibroadenomatous pattern. No significant differences were found histochemically between the acinar cells of the benign tumours and of the lactating gland, except that the amount of fibrous interstitial connective tissue was larger in the former. 3H- or 35S-glycosaminoglycan synthesis by the benign tumours was found to be much higher. The prolactin value in the plasma of the benign-tumour-bearing rats was about 27 times that of 6-month-old virgin rats, and similar to that of rats on the 7th day post partum. Carcinomatous proliferation of tubuloacinar cells could be seen in 5 of the 89 benign tumours. The incidence of benign tumours increases with the age of the rats. Images Fig. 1 Fig. 2 Fig. 3 PMID:7248153
RIP3 attenuates the pancreatic damage induced by deletion of ATG7.
Zhou, Xiaodong; Xie, Li; Xia, Leizhou; Bergmann, Frank; Büchler, Markus W; Kroemer, Guido; Hackert, Thilo; Fortunato, Franco
2017-07-13
Invalidation of pancreatic autophagy entails pancreatic atrophy, endocrine and exocrine insufficiency and pancreatitis. The aim of this study was to investigate whether depletion of Rip3, which is involved in necroptotic signaling, may attenuate the pancreatic atrophy and pancreatitis resulting from autophagy inhibition. Autophagy and necroptosis signaling were evaluated in mice lacking expression of Rip3 in all organs and Atg7 in the pancreas. Acinar cell death, inflammation and fibrosis were evaluated by using of a compendium of immunofluorescence methods and immunoblots. Mice deficient for pancreatic Atg7 developed acute pancreatitis, which progressed to chronic pancreatitis. This phenotype reduces autophagy, increase apoptosis and necroptosis, inflammation and fibrosis, as well as premature death of the animals. Knockout of Rip3 exacerbated the apoptotic death of acinar cells, increased tissue damage, reduced macrophage infiltration and further accelerated the death of the mice with Atg7-deficient pancreas. The pancreatic degeneration induced by autophagy inhibition was exacerbated by Rip3 deletion.
Possible neoplastic effects of acrylamide on rat exocrine pancreas.
Yener, Y; Kalipci, E; Öztaş, H; Aydin, A D; Yildiz, H
2013-01-01
We investigated whether the acrylamide formed during cooking carbohydrate-rich foods at high temperatures causes neoplastic changes in rat pancreas. Azaserine, which is an amino acid derivative that has the ability to initiate neoplastic changes in rat pancreas, was injected into 14-day-old male rats once a week for three weeks. Acrylamide was given to both azaserine-injected and non-injected rats at doses of 5 and 10 mg/kg/day in drinking water for 16 weeks after which tissue slides were prepared from the pancreata. Pancreas weights and body weights of rats treated with azaserine and acrylamide together increased significantly compared to the other groups. Moreover, the size, average diameter and volume of atypical acinar cell foci that developed in the pancreata of rats treated with azaserine and acrylamide together increased significantly compared to rats treated with either azaserine or acrylamide alone and control groups. Atypical acinar cell adenoma or adenocarcinoma was not observed in the pancreata of rats in any group.
Metabolic Profile of Pancreatic Acinar and Islet Tissue in Culture
Suszynski, Thomas M.; Mueller, Kathryn; Gruessner, Angelika C.; Papas, Klearchos K.
2016-01-01
The amount and condition of exocrine impurities may affect the quality of islet preparations especially during culture. In this study, the objective was to determine the oxygen demandand viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture. We compare the OCR normalized to DNA (OCR/DNA, a measure of fractional viability in units nmol/min/mg DNA), and percent change in OCR and DNA recoveries between adult porcine islet and acinar tissue from the same preparation (paired) over a 6-9 days of standard culture. Paired comparisons were done to quantify differences in OCR/DNA between islet and acinar tissue from the same preparation, at specified time points during culture; the mean (± standard error) OCR/DNA was 74.0 (±11.7) units higher for acinar (vs. islet) tissue on the day of isolation (n=16, p<0.0001), but 25.7 (±9.4) units lower after 1 day (n=8, p=0.03), 56.6 (±11.5) units lower after 2 days (n=12, p=0.0004), and 65.9 (±28.7) units lower after 8 days (n=4, p=0.2) in culture. DNA and OCR recoveries decreased at different rates for acinar versus islet tissue over 6-9 days in culture (n=6). DNA recovery decreased to 24±7% for acinar and 75±8% for islets (p=0.002). Similarly, OCR recovery decreased to 16±3% for acinar and remained virtually constant for islets (p=0.005). Differences in the metabolic profile of acinarand islet tissue should be considered when culturing impure islet preparations. OCR-based measurements may help optimize pre-IT culture protocols. PMID:25131082
Physical principle of airway design in human lungs
NASA Astrophysics Data System (ADS)
Park, Keunhwan; Son, Taeho; Kim, Wonjung; Kim, Ho-Young
2014-11-01
From an engineering perspective, lungs are natural microfluidic devices that extract oxygen from air. In the bronchial tree, airways branch by dichotomy with a systematic reduction of their diameters. It is generally accepted that in conducting airways, which air passes on the way to the acinar airways from the atmosphere, the reduction ratio of diameter is closely related to the minimization of viscous dissipation. Such a principle is formulated as the Hess-Murray law. However, in acinar airways, where oxygen transfer to alveolae occurs, the diameter reduction with progressive generations is more moderate than in conducting airways. Noting that the dominant transfer mechanism in acinar airways is diffusion rather than advection, unlike conducting airways, we construct a mathematical model for oxygen transfer through a series of acinar airways. Our model allows us to predict the optimal airway reduction ratio that maximizes the oxygen transfer in a finite airway volume, thereby rationalizing the observed airway reduction ratio in acinar airways.
Shimoyama, S; Gansauge, F; Gansauge, S; Oohara, T; Beger, H G
1995-12-01
The aim of this study was to elucidate the expression and distribution patterns of both integrins and extracellular matrix (ECM) molecules in chronic pancreatitis (CP) and pancreatic adenocarcinoma (PC) compared with normal pancreas (NP). Expression of nine alpha-subunits (alpha 2-alpha 6, alpha V, alpha L, alpha M, and alpha X), four beta-subunits (beta 1, beta 3-beta 5), and four ECM molecules (type IV collagen, laminin, fibronectin, and vitronectin) was investigated immunohistochemically. In CP, all integrins except alpha V showed nearly the same staining patterns compared with NP. Some acinar cells in CP expressed alpha V. Whereas alpha 2, alpha 3, and alpha 6 expression was stronger and diffuse, no alpha 5 expression was seen in PC. Basement membrane (BM) showed continuous staining in CP, whereas it showed discontinuous/absent staining in PC with antitype IV collagen, laminin, and vitronectin antibodies. Some carcinoma cells showed reverse correlation between alpha 2, alpha 3, and alpha 6 expression and type IV collagen and laminin expression. Fibronectin showed diffuse stromal expression in CP and PC. Some acinar cells or duct cells in CP carcinoma cells in PC showed intracellular VN expression. These results suggest that these integrins and ECM molecules are involved in inflammatory and malignant processes in pancreas.
Stem Cell-Soluble Signals Enhance Multilumen Formation in SMG Cell Clusters.
Maruyama, C L M; Leigh, N J; Nelson, J W; McCall, A D; Mellas, R E; Lei, P; Andreadis, S T; Baker, O J
2015-11-01
Saliva plays a major role in maintaining oral health. Patients with salivary hypofunction exhibit difficulty in chewing and swallowing foods, tooth decay, periodontal disease, and microbial infections. At this time, treatments for hyposalivation are limited to medications (e.g., muscarinic receptor agonists: pilocarpine and cevimeline) that induce saliva secretion from residual acinar cells as well as artificial salivary substitutes. Therefore, advancement of restorative treatments is necessary to improve the quality of life in these patients. Our previous studies indicated that salivary cells are able to form polarized 3-dimensional structures when grown on growth factor-reduced Matrigel. This basement membrane is rich in laminin-III (L1), which plays a critical role in salivary gland formation. Mitotically inactive feeder layers have been used previously to support the growth of many different cell types, as they provide factors necessary for cell growth and organization. The goal of this study was to improve salivary gland cell differentiation in primary cultures by using a combination of L1 and a feeder layer of human hair follicle-derived mesenchymal stem cells (hHF-MSCs). Our results indicated that the direct contact of mouse submandibular (mSMG) cell clusters and hHF-MSCs was not required for mSMG cells to form acinar and ductal structures. However, the hHF-MSC conditioned medium enhanced cell organization and multilumen formation, indicating that soluble signals secreted by hHF-MSCs play a role in promoting these features. © International & American Associations for Dental Research 2015.
Isolation and Propagation of Mesenchymal Stem Cells from the Lacrimal Gland
You, Samantha; Kublin, Claire L.; Avidan, Orna; Miyasaki, David
2011-01-01
Purpose. Previously, it was reported that the murine lacrimal gland is capable of repair after experimentally induced injury and that the number of stem/progenitor cells was increased during the repair phase (2–3 days after injury). The aim of the present study was to determine whether these cells can be isolated from the lacrimal gland and propagated in vitro. Methods. Lacrimal gland injury was induced by injection of interleukin (IL)-1, and injection of saline vehicle served as control. Two and half days after injection, the lacrimal glands were removed and used to prepare explants or acinar cells for tissue culture. Cells derived from the explants and the acinar cells were grown in DMEM supplemented with 10% fetal bovine serum. Cells were stained for the stem cells markers, nestin, vimentin, ABCG2, and Sca-1. Cell proliferation was measured using an antibody against Ki67 or a cell-counting kit. The adipogenic capability of these cells was also tested in vitro. Results. Results show that nestin-positive cells can be isolated from IL-1–injected, but not saline-injected, lacrimal glands. A population of nestin-positive cells was also positive for vimentin, an intermediate filament protein expressed by mesenchymal cells. In addition, cultured cells expressed two other markers of stem cells, ABCG2 and Sca-1. These cells proliferated in vitro and can be induced to form adipocytes, attesting to their mesenchymal stem cell property. Conclusions. Murine lacrimal glands contain mesenchymal stem cells that seem to play a pivotal role in tissue repair. PMID:21178145
Nishiyama, A; Petersen, O H
1975-01-01
1. Intracellular recordings of membrane potential, input resistance and time constant have been made in vitro from the exocrine acinar cells of the mouse pancreas using glass micro-electrodes. The acinar cells were stimulated by acetylcholine (ACh). In some cases ACh was simply directly added to the tissue superfusion bath, in other experiments ACh was applied locally to pancreatic acini by micro-iontophoresis. 2. Current-voltage relations were investigated by injecting rectangular de- or hyperpolarizing current pulses through the recording micro-electrode. Within a relatively wide range (-20 to -70 mV) there was a linear relation between injected current and change in membrane potential. The slope of such linear curves corresponded to an input resistance of about 3-8 M omega. The membrane time constant was about 5-10 msec. 3. ACh depolarized the cell membrane and caused a marked reduction of input resistance and time constant. The minimum latency of the ACh-induced depolarization (microiontophoretic application) was 100-300 msec. Maximal depolarization was about 20 mV. The effect of this local ACh application was abolished by atropine (1-4 x 10-6 M). The blocking effect of atropine was fully reversible. 4. Stimulating with ACh during the passage of large depolarizing current pulses made it possible simultaneously to observe the effect of ACh at two different levels of resting potential (RP). At the spontaneous RP of about minus 40 mV ACh evoked a depolarization of usual magnitude (15-20 mV) while at the artificially displaced level of about -10 mV a small hyperpolarization (about 5 mV) was observed. It therefore appears that the reversal potential of the transmitter equilibrium potential is about -20 mV. 5. Replacement of the superfusion fluid C1 by sulphate or methylsulphate caused an initial short-lasting depolarization, thereafter the normal resting potential was reassumed... PMID:1142124
Nuche-Berenguer, Bernardo; Ramos-Álvarez, Irene; Jensen, R T
2016-06-01
In pancreatic acinar cells, the Src family of kinases (SFK) is involved in the activation of several signaling cascades that are implicated in mediating cellular processes (growth, cytoskeletal changes, apoptosis). However, the role of SFKs in various physiological responses such as enzyme secretion or in pathophysiological processes such as acute pancreatitis is either controversial, unknown, or incompletely understood. To address this, in this study, we investigated the role/mechanisms of SFKs in acute pancreatitis and enzyme release. Enzyme secretion was studied in rat dispersed pancreatic acini, in vitro acute-pancreatitis-like changes induced by supramaximal COOH-terminal octapeptide of cholecystokinin (CCK). SFK involvement assessed using the chemical SFK inhibitor (PP2) with its inactive control, 4-amino-7-phenylpyrazol[3,4-d]pyrimidine (PP3), under experimental conditions, markedly inhibiting SFK activation. In CCK-stimulated pancreatic acinar cells, activation occurred of trypsinogen, various MAP kinases (p42/44, JNK), transcription factors (signal transducer and activator of transcription-3, nuclear factor-κB, activator protein-1), caspases (3, 8, and 9) inducing apoptosis, LDH release reflective of necrosis, and various chemokines secreted (monocyte chemotactic protein-1, macrophage inflammatory protein-1α, regulated on activation, normal T cell expressed and secreted). All were inhibited by PP2, not by PP3, except caspase activation leading to apoptosis, which was increased, and trypsin activation, which was unaffected, as was CCK-induced amylase release. These results demonstrate SFK activation is playing a dual role in acute pancreatitis, inhibiting apoptosis and promoting necrosis as well as chemokine/cytokine release inducing inflammation, leading to more severe disease, as well as not affecting secretion. Thus, our studies indicate that SFK is a key mediator of inflammation and pancreatic acinar cell death in acute pancreatitis, suggesting it could be a potential therapeutic target in acute pancreatitis. Copyright © 2016 the American Physiological Society.
Lee, Robert J; Harlow, Janice M; Limberis, Maria P; Wilson, James M; Foskett, J Kevin
2008-07-01
Airway submucosal glands contribute to airway surface liquid (ASL) composition and volume, both important for lung mucociliary clearance. Serous acini generate most of the fluid secreted by glands, but the molecular mechanisms remain poorly characterized. We previously described cholinergic-regulated fluid secretion driven by Ca(2+)-activated Cl(-) secretion in primary murine serous acinar cells revealed by simultaneous differential interference contrast (DIC) and fluorescence microscopy. Here, we evaluated whether Ca(2+)-activated Cl(-) secretion was accompanied by secretion of HCO(3)(-), possibly a critical ASL component, by simultaneous measurements of intracellular pH (pH(i)) and cell volume. Resting pH(i) was 7.17 +/- 0.01 in physiological medium (5% CO(2)-25 mM HCO(3)(-)). During carbachol (CCh) stimulation, pH(i) fell transiently by 0.08 +/- 0.01 U concomitantly with a fall in Cl(-) content revealed by cell shrinkage, reflecting Cl(-) secretion. A subsequent alkalinization elevated pH(i) to above resting levels until agonist removal, whereupon it returned to prestimulation values. In nominally CO(2)-HCO(3)(-)-free media, the CCh-induced acidification was reduced, whereas the alkalinization remained intact. Elimination of driving forces for conductive HCO(3)(-) efflux by ion substitution or exposure to the Cl(-) channel inhibitor niflumic acid (100 microM) strongly inhibited agonist-induced acidification by >80% and >70%, respectively. The Na(+)/H(+) exchanger (NHE) inhibitor dimethylamiloride (DMA) increased the magnitude (greater than twofold) and duration of the CCh-induced acidification. Gene expression profiling suggested that serous cells express NHE isoforms 1-4 and 6-9, but pharmacological sensitivities demonstrated that alkalinization observed during both CCh stimulation and pH(i) recovery from agonist-induced acidification was primarily due to NHE1, localized to the basolateral membrane. These results suggest that serous acinar cells secrete HCO(3)(-) during Ca(2+)-evoked fluid secretion by a mechanism that involves the apical membrane secretory Cl(-) channel, with HCO(3)(-) secretion sustained by activation of NHE1 in the basolateral membrane. In addition, other Na(+)-dependent pH(i) regulatory mechanisms exist, as evidenced by stronger inhibition of alkalinization in Na(+)-free media.
Taylor, M J; Baicu, S
2011-11-01
A critical component of treating type I diabetes by transplantation is the availability of sufficient high-quality islets. Currently, islets can be obtained only by reliance on an expensive, inconsistent, and toxic enzyme digestion process. As an alternative, we hypothesize that cryobiologic techniques can be used for differential freeze destruction of the pancreas to release islets that are selectively cryopreserved in situ. Pancreases were procured from juvenile pigs with the use of approved procedures. The concept of cryo-isolation is based on differential processing of the pancreas in 5 stages: 1) infiltrating islets in situ preferentially with a cryoprotectant (CPA) cocktail via antegrade perfusion of the major arteries; 2) retrograde ductal infusion of water (or saline solution) to fully distend the gland; 3) freezing the entire pancreas to -160°C, and stored in liquid nitrogen; 4) mechanically crushing and pulverizing the frozen pancreas into small fragments; and 5) thawing, filtering and washing the frozen fragments with RPMI 1640 culture medium to remove the CPA. Finally, the filtered effluent (cryo-isolate) was stained with dithizone for identification of intact islets, and samples were taken for static glucose-stimulated insullin release assessment. As predicted the cryo-isolated contained small fragments of residual tissue comprising an amorphous mass of acinar tissue with largely intact embedded islets. The degree of cleavage of the cryoprotected islets from the freeze-destroyed exocrine cells, was variable. Islets were typically larger than their counterparts isolated from juvenile pigs with conventional enzyme-digestion techniques. Functionally, the islets from replicate cryo-isolates responded to a glucose challenge with a mean stimulation index = 3.3 ± 0.7 (n = 3). An enzyme-free method of islet isolation relying on in situ cryopreservation of islets with simultaneous freeze-destruction of acinar tissue is feasible and proposed as a novel method that avoids the problems associated with conventional collagenase digestion methods. Copyright © 2011 Elsevier Inc. All rights reserved.
Expression patterns of epiplakin1 in pancreas, pancreatic cancer and regenerating pancreas.
Yoshida, Tetsu; Shiraki, Nobuaki; Baba, Hideo; Goto, Mizuki; Fujiwara, Sakuhei; Kume, Kazuhiko; Kume, Shoen
2008-07-01
Epiplakin1 (Eppk1) is a plakin family gene with its function remains largely unknown, although the plakin genes are known to function in interconnecting cytoskeletal filaments and anchoring them at plasma membrane-associated adhesive junction. Here we analyzed the expression patterns of Eppk1 in the developing and adult pancreas in the mice. In the embryonic pancreas, Eppk1+/Pdx1+ and Eppk1+/Sox9+ pancreatic progenitor cells were observed in early pancreatic epithelium. Since Pdx1 expression overlapped with that of Sox9 at this stage, these multipotent progenitor cells are Eppk1+/Pdx1+/Sox9+ cells. Then Eppk1 expression becomes confined to Ngn3+ or Sox9+ endocrine progenitor cells, and p48+ exocrine progenitor cells, and then restricted to the duct cells and a cells at birth. In the adult pancreas, Eppk1 is expressed in centroacinar cells (CACs) and in duct cells. Eppk1 is observed in pancreatic intraepithelial neoplasia (PanIN), previously identified as pancreatic ductal adenocarcinoma (PDAC) precursor lesions. In addition, the expansion of Eppk1-positive cells occurs in a caerulein-induced acute pancreatitis, an acinar cell regeneration model. Furthermore, in the partial pancreatectomy (Px) regeneration model using mice, Eppk1 is expressed in "ducts in foci", a tubular structure transiently induced. These results suggest that Eppk1 serves as a useful marker for detecting pancreatic progenitor cells in developing and regenerating pancreas.
Fiorentino, Teresa Vanessa; Owston, Michael; Abrahamian, Gregory; La Rosa, Stefano; Marando, Alessandro; Perego, Carla; Di Cairano, Eliana S.; Finzi, Giovanna; Capella, Carlo; Sessa, Fausto; Casiraghi, Francesca; Paez, Ana; Adivi, Ashwin; Davalli, Alberto; Fiorina, Paolo; Guardado Mendoza, Rodolfo; Comuzzie, Anthony G.; Sharp, Mark; DeFronzo, Ralph A.; Halff, Glenn; Dick, Edward J.; Folli, Franco
2016-01-01
In this study, we aimed to evaluate the effects of exenatide (EXE) treatment on exocrine pancreas of nonhuman primates. To this end, 52 baboons (Papio hamadryas) underwent partial pancreatectomy, followed by continuous infusion of EXE or saline (SAL) for 14 weeks. Histological analysis, immunohistochemistry, Computer Assisted Stereology Toolbox morphometry, and immunofluorescence staining were performed at baseline and after treatment. The EXE treatment did not induce pancreatitis, parenchymal or periductal inflammatory cell accumulation, ductal hyperplasia, or dysplastic lesions/pancreatic intraepithelial neoplasia. At study end, Ki-67–positive (proliferating) acinar cell number did not change, compared with baseline, in either group. Ki-67–positive ductal cells increased after EXE treatment (P = 0.04). However, the change in Ki-67–positive ductal cell number did not differ significantly between the EXE and SAL groups (P = 0.13). M-30–positive (apoptotic) acinar and ductal cell number did not change after SAL or EXE treatment. No changes in ductal density and volume were observed after EXE or SAL. Interestingly, by triple-immunofluorescence staining, we detected c-kit (a marker of cell transdifferentiation) positive ductal cells co-expressing insulin in ducts only in the EXE group at study end, suggesting that EXE may promote the differentiation of ductal cells toward a β-cell phenotype. In conclusion, 14 weeks of EXE treatment did not exert any negative effect on exocrine pancreas, by inducing either pancreatic inflammation or hyperplasia/dysplasia in nonhuman primates. PMID:25447052
Hai, Bo; Zhao, Qingguo; Qin, Lizheng; Rangaraj, Dharanipathy; Gutti, Veera R; Liu, Fei
2016-05-01
Irreversible hypofunction of salivary glands is common in head and neck cancer survivors treated with radiotherapy and can only be temporarily relieved with current treatments. We found in an inducible sonic hedgehog (Shh) transgenic mouse model that transient activation of the Hedgehog pathway after irradiation rescued salivary gland function in males by preserving salivary stem/progenitor cells and parasympathetic innervation. To translate these findings into feasible clinical application, we evaluated the effects of Shh gene transfer to salivary glands of wild-type mice on irradiation-induced hyposalivation. Shh or control GFP gene was delivered by noninvasive retrograde ductal instillation of corresponding adenoviral vectors. In both male and female mice, Shh gene delivery efficiently activated Hedgehog/Gli signaling, and significantly improved stimulated saliva secretion and preserved saliva-producing acinar cells after irradiation. In addition to preserving parasympathetic innervation through induction of neurotrophic factors, Shh gene delivery also alleviated the irradiation damage of the microvasculature, likely via inducing angiogenic factors, but did not expand the progeny of cells responsive to Hedgehog/Gli signaling. These data indicate that transient activation of the Hedgehog pathway by gene delivery is promising to rescue salivary function after irradiation in both sexes, and the Hedgehog/Gli pathway may function mainly in cell nonautonomous manners to achieve the rescue effect.
Elasticity of biomembranes studied by dynamic light scattering
NASA Astrophysics Data System (ADS)
Fujime, Satoru; Miyamoto, Shigeaki
1991-05-01
Combination of osmotic swelling and dynamic light scattering makes it possible to measure the elastic modulus of biomembranes. By this technique we have observed a drastic increase in membrane flexibility on activation of Na/glucose cotransporters in membrane vesicles prepared from brush-borders of rat small intestine and on activation by micromolar [Ca2] of exocytosis in secretory granules isolated from rat pancreatic acinar cells and bovine adrenal chromaffin cells. 1 .
Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective
Feng, Hui-Yi; Chen, Yang-Chao
2016-01-01
The role of bile acids in colorectal cancer has been well documented, but their role in pancreatic cancer remains unclear. In this review, we examined the risk factors of pancreatic cancer. We found that bile acids are associated with most of these factors. Alcohol intake, smoking, and a high-fat diet all lead to high secretion of bile acids, and bile acid metabolic dysfunction is a causal factor of gallstones. An increase in secretion of bile acids, in addition to a long common channel, may result in bile acid reflux into the pancreatic duct and to the epithelial cells or acinar cells, from which pancreatic adenocarcinoma is derived. The final pathophysiological process is pancreatitis, which promotes dedifferentiation of acinar cells into progenitor duct-like cells. Interestingly, bile acids act as regulatory molecules in metabolism, affecting adipose tissue distribution, insulin sensitivity and triglyceride metabolism. As a result, bile acids are associated with three risk factors of pancreatic cancer: obesity, diabetes and hypertriglyceridemia. In the second part of this review, we summarize several studies showing that bile acids act as cancer promoters in gastrointestinal cancer. However, more question are raised than have been solved, and further oncological and physiological experiments are needed to confirm the role of bile acids in pancreatic cancer carcinogenesis. PMID:27672269
The skeletal phenotype of achondrogenesis type 1A is caused exclusively by cartilage defects.
Bird, Ian M; Kim, Susie H; Schweppe, Devin K; Caetano-Lopes, Joana; Robling, Alexander G; Charles, Julia F; Gygi, Steven P; Warman, Matthew L; Smits, Patrick J
2018-01-08
Inactivating mutations in the ubiquitously expressed membrane trafficking component GMAP-210 (encoded by Trip11 ) cause achondrogenesis type 1A (ACG1A). ACG1A is surprisingly tissue specific, mainly affecting cartilage development. Bone development is also abnormal, but as chondrogenesis and osteogenesis are closely coupled, this could be a secondary consequence of the cartilage defect. A possible explanation for the tissue specificity of ACG1A is that cartilage and bone are highly secretory tissues with a high use of the membrane trafficking machinery. The perinatal lethality of ACG1A prevents investigating this hypothesis. We therefore generated mice with conditional Trip11 knockout alleles and inactivated Trip11 in chondrocytes, osteoblasts, osteoclasts and pancreas acinar cells, all highly secretory cell types. We discovered that the ACG1A skeletal phenotype is solely due to absence of GMAP-210 in chondrocytes. Mice lacking GMAP-210 in osteoblasts, osteoclasts and acinar cells were normal. When we inactivated Trip11 in primary chondrocyte cultures, GMAP-210 deficiency affected trafficking of a subset of chondrocyte-expressed proteins rather than globally impairing membrane trafficking. Thus, GMAP-210 is essential for trafficking specific cargoes in chondrocytes but is dispensable in other highly secretory cells. © 2018. Published by The Company of Biologists Ltd.
Mukherjee, Rajarshi; Mareninova, Olga A; Odinokova, Irina V; Huang, Wei; Murphy, John; Chvanov, Michael; Javed, Muhammad A; Wen, Li; Booth, David M; Cane, Matthew C; Awais, Muhammad; Gavillet, Bruno; Pruss, Rebecca M; Schaller, Sophie; Molkentin, Jeffery D; Tepikin, Alexei V; Petersen, Ole H; Pandol, Stephen J; Gukovsky, Ilya; Criddle, David N; Gukovskaya, Anna S
2016-01-01
Objective Acute pancreatitis is caused by toxins that induce acinar cell calcium overload, zymogen activation, cytokine release and cell death, yet is without specific drug therapy. Mitochondrial dysfunction has been implicated but the mechanism not established. Design We investigated the mechanism of induction and consequences of the mitochondrial permeability transition pore (MPTP) in the pancreas using cell biological methods including confocal microscopy, patch clamp technology and multiple clinically representative disease models. Effects of genetic and pharmacological inhibition of the MPTP were examined in isolated murine and human pancreatic acinar cells, and in hyperstimulation, bile acid, alcoholic and choline-deficient, ethionine-supplemented acute pancreatitis. Results MPTP opening was mediated by toxin-induced inositol trisphosphate and ryanodine receptor calcium channel release, and resulted in diminished ATP production, leading to impaired calcium clearance, defective autophagy, zymogen activation, cytokine production, phosphoglycerate mutase 5 activation and necrosis, which was prevented by intracellular ATP supplementation. When MPTP opening was inhibited genetically or pharmacologically, all biochemical, immunological and histopathological responses of acute pancreatitis in all four models were reduced or abolished. Conclusions This work demonstrates the mechanism and consequences of MPTP opening to be fundamental to multiple forms of acute pancreatitis and validates the MPTP as a drug target for this disease. PMID:26071131
Cellular immune reaction in the pancreas is induced by constitutively active IκB kinase‐2
Aleksic, Tamara; Baumann, Bernd; Wagner, Martin; Adler, Guido; Wirth, Thomas
2007-01-01
Background Activation of the nuclear factor κB (NF‐κB) system is a major event in acute and chronic inflammatory processes. NF‐κB cascades are comprised of IκB kinases, IκBs and NF‐κB dimers. Little is known of the individual roles of these proteins in organ specific inflammation. The aim of the present study was to analyse the consequences of ectopic IκB kinase‐2 (IKK2) activation in the pancreas of mice. Methods Transgenic mice were generated using an inducible genetic system (tet system) to conditionally overexpress a gain of function mutant of IKK2 (tetO‐IKK2‐EE) in the pancreas. To achieve transgene expression in the pancreas, these animals were crossed with CMV‐rtTA mice that are known to express the rtTA protein in the pancreas. Results In these double transgenic animals, doxycycline treatment induced expression of IKK2‐EE (IKK2CA) in pancreatic acinar cells resulting in moderate activation of the IκB kinase complex, as measured by the immune complex kinase assay, and up to 200‐fold activation of the transgene expression cassette, as detected by luciferase assay. IKK2CA expression in the pancreas had a mosaic appearance. Ectopic IKK2CA mostly activated the classical NF‐κB pathway. The activation level of the NF‐κB cascade induced by IKK2CA was considerably lower compared with that observed after supramaximal caerulein stimulation but still led to the formation of leucocyte infiltrates first observed after 4 weeks of doxycycline stimulation with a maximum after 8–12 weeks. The infiltrates were mainly composed of B lymphocytes and macrophages. Increased mRNA levels of tumour necrosis factor α and RANTES were detected in pancreatic acinar cells. However, only minor damage to pancreatic tissue was observed. A combination of supramaximal caerulein stimulation with induction of IKK2CA caused increased tissue damage compared with either IKK2CA or caerulein alone. Conclusions Our observations suggest that the role of IKK2 activation in pancreatic acini is to induce leucocyte infiltration, but at a moderate level of activation it is not sufficient to induce pancreatic damage in mice. The IKK2CA induced infiltrations resemble those observed in autoimmune pancreatitis, indicating a role for IKK2/NF‐κB in this disease. IKK2CA in pancreatic acinar cells increases tissue damage of secretagogue induced experimental pancreatitis underlining the proinflammatory role of the IKK/NF‐κB pathway in this disease. PMID:16870717
Nivolumab and Ipilimumab in Treating Patients With Rare Tumors
2018-06-27
Acinar Cell Carcinoma; Adenoid Cystic Carcinoma; Adrenal Cortex Carcinoma; Adrenal Gland Pheochromocytoma; Anal Canal Neuroendocrine Carcinoma; Anal Canal Undifferentiated Carcinoma; Appendix Mucinous Adenocarcinoma; Bartholin Gland Transitional Cell Carcinoma; Bladder Adenocarcinoma; Cervical Adenocarcinoma; Cholangiocarcinoma; Chordoma; Colorectal Squamous Cell Carcinoma; Desmoid-Type Fibromatosis; Endometrial Transitional Cell Carcinoma; Endometrioid Adenocarcinoma; Esophageal Neuroendocrine Carcinoma; Esophageal Undifferentiated Carcinoma; Extrahepatic Bile Duct Carcinoma; Fallopian Tube Adenocarcinoma; Fallopian Tube Transitional Cell Carcinoma; Fibromyxoid Tumor; Gastric Neuroendocrine Carcinoma; Gastric Squamous Cell Carcinoma; Gastrointestinal Stromal Tumor; Giant Cell Carcinoma; Intestinal Neuroendocrine Carcinoma; Intrahepatic Cholangiocarcinoma; Lung Carcinoid Tumor; Lung Sarcomatoid Carcinoma; Major Salivary Gland Carcinoma; Malignant Odontogenic Neoplasm; Malignant Peripheral Nerve Sheath Tumor; Malignant Testicular Sex Cord-Stromal Tumor; Metaplastic Breast Carcinoma; Metastatic Malignant Neoplasm of Unknown Primary Origin; Minimally Invasive Lung Adenocarcinoma; Mixed Mesodermal (Mullerian) Tumor; Mucinous Adenocarcinoma; Mucinous Cystadenocarcinoma; Nasal Cavity Adenocarcinoma; Nasal Cavity Carcinoma; Nasopharyngeal Carcinoma; Nasopharyngeal Papillary Adenocarcinoma; Nasopharyngeal Undifferentiated Carcinoma; Oral Cavity Carcinoma; Oropharyngeal Undifferentiated Carcinoma; Ovarian Adenocarcinoma; Ovarian Germ Cell Tumor; Ovarian Mucinous Adenocarcinoma; Ovarian Squamous Cell Carcinoma; Ovarian Transitional Cell Carcinoma; Pancreatic Acinar Cell Carcinoma; Pancreatic Neuroendocrine Carcinoma; Paraganglioma; Paranasal Sinus Adenocarcinoma; Paranasal Sinus Carcinoma; Parathyroid Gland Carcinoma; Pituitary Gland Carcinoma; Placental Choriocarcinoma; Placental-Site Gestational Trophoblastic Tumor; Primary Peritoneal High Grade Serous Adenocarcinoma; Pseudomyxoma Peritonei; Rare Disorder; Scrotal Squamous Cell Carcinoma; Seminal Vesicle Adenocarcinoma; Seminoma; Serous Cystadenocarcinoma; Small Intestinal Adenocarcinoma; Small Intestinal Squamous Cell Carcinoma; Spindle Cell Neoplasm; Squamous Cell Carcinoma of the Penis; Teratoma With Malignant Transformation; Testicular Non-Seminomatous Germ Cell Tumor; Thyroid Gland Carcinoma; Tracheal Carcinoma; Transitional Cell Carcinoma; Undifferentiated Gastric Carcinoma; Ureter Adenocarcinoma; Ureter Squamous Cell Carcinoma; Urethral Adenocarcinoma; Urethral Squamous Cell Carcinoma; Vaginal Adenocarcinoma; Vaginal Squamous Cell Carcinoma, Not Otherwise Specified; Vulvar Carcinoma
Al-Adsani, Amani; Burke, Zoë D; Eberhard, Daniel; Lawrence, Katherine L; Shen, Chia-Ning; Rustgi, Anil K; Sakaue, Hiroshi; Farrant, J Mark; Tosh, David
2010-10-27
The pancreatic exocrine cell line AR42J-B13 can be reprogrammed to hepatocytes following treatment with dexamethasone. The question arises whether dexamethasone also has the capacity to induce ductal cells as well as hepatocytes. AR42J-B13 cells were treated with and without dexamethasone and analyzed for the expression of pancreatic exocrine, hepatocyte and ductal markers. Addition of dexamethasone inhibited pancreatic amylase expression, induced expression of the hepatocyte marker transferrin as well as markers typical of ductal cells: cytokeratin 7 and 19 and the lectin peanut agglutinin. However, the number of ductal cells was low compared to hepatocytes. The proportion of ductal cells was enhanced by culture with dexamethasone and epidermal growth factor (EGF). We established several features of the mechanism underlying the transdifferentiation of pancreatic exocrine cells to ductal cells. Using a CK19 promoter reporter, we show that a proportion of the ductal cells arise from differentiated pancreatic exocrine-like cells. We also examined whether C/EBPβ (a transcription factor important in the conversion of pancreatic cells to hepatocytes) could alter the conversion from acinar cells to a ductal phenotype. Overexpression of an activated form of C/EBPβ in dexamethasone/EGF-treated cells provoked the expression of hepatocyte markers and inhibited the expression of ductal markers. Conversely, ectopic expression of a dominant-negative form of C/EBPβ, liver inhibitory protein, inhibited hepatocyte formation in dexamethasone-treated cultures and enhanced the ductal phenotype. These results indicate that hepatocytes and ductal cells may be induced from pancreatic exocrine AR42J-B13 cells following treatment with dexamethasone. The conversion from pancreatic to hepatocyte or ductal cells is dependent upon the expression of C/EBPβ.
Kleeff, Jorg; Whitcomb, David C; Shimosegawa, Tooru; Esposito, Irene; Lerch, Markus M; Gress, Thomas; Mayerle, Julia; Drewes, Asbjørn Mohr; Rebours, Vinciane; Akisik, Fatih; Muñoz, J Enrique Domínguez; Neoptolemos, John P
2017-09-07
Chronic pancreatitis is defined as a pathological fibro-inflammatory syndrome of the pancreas in individuals with genetic, environmental and/or other risk factors who develop persistent pathological responses to parenchymal injury or stress. Potential causes can include toxic factors (such as alcohol or smoking), metabolic abnormalities, idiopathic mechanisms, genetics, autoimmune responses and obstructive mechanisms. The pathophysiology of chronic pancreatitis is fairly complex and includes acinar cell injury, acinar stress responses, duct dysfunction, persistent or altered inflammation, and/or neuro-immune crosstalk, but these mechanisms are not completely understood. Chronic pancreatitis is characterized by ongoing inflammation of the pancreas that results in progressive loss of the endocrine and exocrine compartment owing to atrophy and/or replacement with fibrotic tissue. Functional consequences include recurrent or constant abdominal pain, diabetes mellitus (endocrine insufficiency) and maldigestion (exocrine insufficiency). Diagnosing early-stage chronic pancreatitis is challenging as changes are subtle, ill-defined and overlap those of other disorders. Later stages are characterized by variable fibrosis and calcification of the pancreatic parenchyma; dilatation, distortion and stricturing of the pancreatic ducts; pseudocysts; intrapancreatic bile duct stricturing; narrowing of the duodenum; and superior mesenteric, portal and/or splenic vein thrombosis. Treatment options comprise medical, radiological, endoscopic and surgical interventions, but evidence-based approaches are limited. This Primer highlights the major progress that has been made in understanding the pathophysiology, presentation, prevalence and management of chronic pancreatitis and its complications.
Function of the Membrane Water Channel Aquaporin-5 in the Salivary Gland
Matsuzaki, Toshiyuki; Susa, Taketo; Shimizu, Kinue; Sawai, Nobuhiko; Suzuki, Takeshi; Aoki, Takeo; Yokoo, Satoshi; Takata, Kuniaki
2012-01-01
The process of saliva production in the salivary glands requires transepithelial water transfer from the interstitium to the acinar lumen. There are two transepithelial pathways: the transcellular and paracellular. In the transcellular pathway, the aquaporin water channels induce passive water diffusion across the membrane lipid bilayer. It is well known that aquaporin-5 (AQP5) is expressed in the salivary glands, in which it is mainly localized at the apical membrane of the acinar cells. This suggests the physiological importance of AQP5 in transcellular water transfer. Reduced saliva secretion under pilocarpine stimulation in AQP5-null mice compared with normal mice further indicates the importance of AQP5 in this process, at least in stimulated saliva secretion. Questions remain therefore regarding the role and importance of AQP5 in basal saliva secretion. It has been speculated that there would be some short-term regulation of AQP5 such as a trafficking mechanism to regulate saliva secretion. However, no histochemical evidence of AQP5-trafficking has been found, although some of biochemical analyses suggested that it may occur. There are no reports of human disease caused by AQP5 mutations, but some studies have revealed an abnormal subcellular distribution of AQP5 in patients or animals with xerostomia caused by Sjögren’s syndrome and X-irradiation. These findings suggest the possible pathophysiological importance of AQP5 in the salivary glands. PMID:23209334
NASA Astrophysics Data System (ADS)
Hou, Chen
Space-filling fractal surfaces play a fundamental role in how organisms function at various levels and in how structure determines function at different levels. In this thesis, we develop a quantitative theory of oxygen transport to and across the surface of the highly branched, space-filling system of alveoli, the fundamental gas exchange unit (acinar airways), in the human lung. Oxygen transport in the acinar airways is by diffusion, and we treat the two steps---diffusion through the branched airways, and transfer across the alveolar membranes---as a stationary diffusion-reaction problem, taking into account that there may be steep concentration gradients between the entrance and remote alveoli (screening). We develop a renormalization treatment of this screening effect and derive an analytic formula for the oxygen current across the cumulative alveolar membrane surface, modeled as a fractal, space-filling surface. The formula predicts the current from a minimum of morphological data of the acinus and appropriate values of the transport parameters, through a number of power laws (scaling laws). We find that the lung at rest operates near the borderline between partial screening and no screening; that it switches to no screening under exercise; and that the computed currents agree with measured values within experimental uncertainties. From an analysis of the computed current as a function of membrane permeability, we find that the space-filling structure of the gas exchanger is simultaneously optimal with respect to five criteria. The exchanger (i) generates a maximum oxygen current at minimum permeability; (ii) 'wastes' a minimum of surface area; (iii) maintains a minimum residence time of oxygen in the acinar airways; (iv) has a maximum fault tolerance to loss of permeability; and (v) generates a maximum current increase when switching from rest to exercise.
Exenatide Induces Impairment of Autophagy Flux to Damage Rat Pancreas.
Li, Zhiqiang; Huang, Lihua; Yu, Xiao; Yu, Can; Zhu, Hongwei; Li, Xia; Han, Duo; Huang, Hui
2017-01-01
The study aimed to explore the alteration of autophagy in rat pancreas treated with exenatide. Normal Sprague-Dawley rats and diabetes-model rats induced by 2-month high-sugar and high-fat diet and streptozotocin injection were subcutaneously injected with exenatide, respectively, for 10 weeks, with homologous rats treated with saline as control. Meanwhile, AR42J cells, pancreatic acinar cell line, were cultured with exenatide at doses of 5 pM for 3 days. The pancreas was disposed, and several sections were stained with hematoxylin-eosin. Immunohistochemistry was used to measure the expressions of glucagon-like peptide 1 receptor (GLP-1R) and cysteine-aspartic acid protease-3 in rat pancreas, and Western blot was used to test the expressions of GLP-1R, light chain 3B-I and -II, and p62 in rat pancreas and AR42J cells. The data were expressed as mean (standard deviation) and analyzed by unpaired Student's t-test. Exenatide can induce pathological changes in rat pancreas. The GLP-1R, p62, light chain 3B-II, and cysteine-aspartic acid protease-3 in rat pancreas and AR42J cells treated with exenatide were significantly overexpressed. Exenatide can activate and upregulate its receptor, GLP-1R, then impair autophagy flux and activate apoptosis in the pancreatic acinar cell, thus damaging rat pancreas.
Trulsson, Lena M; Gasslander, Thomas; Sundqvist, Tommy; Svanvik, Joar
2002-06-15
Nitric oxide (NO) is formed by different cell types in the pancreas. In this study, inhibition of endogenous nitric oxide by N(omega)-nitro-L-arginine (L-NNA) reduced the urinary excretion of NO(2)/NO(3) and raised serum L-arginine and the NO donator S-nitroso-N-acetylpenicillamine (SNAP) increased the urinary excretion of NO(2)/NO(3). The peptide cholecystokinin-8 (CCK-8) has a strong influence on exocrine pancreatic proliferation. Rat pancreas was excised and studied with regard to tissue weight, protein and DNA contents after 3 days of treatment with saline, L-NNA or SNAP given separately or combined with CCK-8. Further, proliferation of different pancreatic cells was studied with [3H]-thymidine incorporation and apoptotic activity was studied by analysing caspase-3 activity and histone-associated DNA fragments. The effects of L-NNA indicate that endogenous nitric oxide formation has a tonic inhibition on apoptosis in the pancreas during both basal condition and growth stimulation by CCK-8. In CCK-induced hyperplasia, NO inhibits the proliferation of acinar cells but stimulates ductal cells. Endogenous NO may regulate the balance between proliferation and apoptosis and in a situation of growth stimulation by CCK-8, it has a tonic inhibition on both mitogenesis and apoptosis thus slowing down the acinar cell turnover in the pancreas.
Schäfer, G; Hoffmann, W; Berry, M; Paulsen, F
2005-02-01
The secretory cells of the human lacrimal gland show a PAS-positive reaction in cytochemical staining procedures, suggesting the production of mucous substances. Recently, these substances were differentiated according to modern molecular classifications. Expression studies detected mRNA for MUC1, MUC4, MUC5AC, MUC5B, MUC6, and MUC7, whereas MUC2 transcripts were absent in all samples investigated. Immunohistochemistry revealed membrane-bound MUC1 at the apical surface of acinar cells, MUC5AC associated with goblet cells of excretory ducts, MUC5B and MUC7 in the cytoplasm of acinar cells, and MUC7 also in epithelial cells of excretory ducts. MUC2 (RT-PCR negative) and MUC6 (RT-PCR positive) were not detectable by immunohistochemistry. MUC4 mRNA was present in all samples from patients treated for dry eye but only in 6 of 30 glands from individuals who did not receive treatment with artificial tears. Dot-blot analyses clearly revealed increased amounts of MUC4, MUC5AC and MUC5B in the glands of elderly women who received treatment for dry eye as compared to the remaining samples. These results confirm that the human lacrimal gland synthesizes a spectrum of mucins, some of which might be involved in the pathophysiology of dry eye syndrome.
Da, Yun-Meng; Niu, Kai-Yu; Liu, Shu-Ya; Wang, Ke; Wang, Wen-Juan; Jia, Jing; Qin, Li-Hua; Bai, Wen-Pei
2017-03-14
Cimicifuga racemosa is one of the herbs used for the treatment of climacteric syndrome, and it has been cited as an alternative therapy to estrogen. Apart from hectic fevers, dyspareunia and so on, dry mouth also increase significantly after menopause. It has not yet been reported whether C. racemosa has any impact on the sublingual gland, which may relate to dry mouth. In an attempt to determine this, we have compared the effects of estrogen and C. racemosa on the sublingual gland of ovariectomized rats. HE staining showed that the acinar cell area had contracted and that the intercellular spaces were broadened in the OVX (ovariectomized rats) group, while treatment with estradiol (E2) and iCR (isopropanolic extract of C. racemosa) improved these lesions. Transmission electron microscopy showed that rough endoplasmic reticulum expansion in mucous and serous acinar epithelial cells and apoptotic cells was more commonly seen in the OVX group than in the SHAM (sham-operated rats) group. Mitochondria and plasma membrane infolding lesions in the striated ducts were also observed. These lesions were alleviated by both treatments. It is of note that, in the OVX + iCR group, the volume of mitochondria in the striated duct was larger than in other groups. Immunohistochemical staining showed that the ratio of caspase-3 positive cells was significantly increased in the acinar cells of the OVX group compared with the SHAM group (p < 0.05); and the MA (mean absorbance) of caspase-3 in the striated ducts also increased (p < 0.05). Estradiol decreased the ratio of caspase-3 positive cells and the MA of caspase-3 in striated ducts significantly (p < 0.05). ICR also reduced the ratio of caspase-3 positive cells and the MA in the striated ducts (p < 0.05), but the reduction of the MA in striated ducts was inferior to that of the OVX + E2 group (p < 0.05). Both estradiol and iCR can inhibit subcellular structural damage, and down-regulate the expression of caspase-3 caused by ovariectomy, but their effects were not identical, suggesting that both drugs confer a protective effect on the sublingual gland of ovariectomized rats, but that the specific location and mechanism of action producing these effects were different.
Ishikawa, T
1996-09-01
A Ca(2+)-activated Cl- conductance in rat submandibular acinar cells was identified and characterized using whole-cell patch-clamp technique. When the cells were dialyzed with Cs-glutamate-rich pipette solutions containing 2 mM ATP and 1 microM free Ca2+ and bathed in N-methyl-D-glucamine chloride (NMDG-Cl) or Choline-Cl-rich solutions, they mainly exhibited slowly activating currents. Dialysis of the cells with pipette solutions containing 300 nM or less than 1 nM free Ca2+ strongly reduced the Cl- currents, indicating the currents were Ca(2+)-dependent. Relaxation analysis of the "on" currents of slowly activating currents suggested that the channels were voltage-dependent. The anion permeability sequence of the Cl- channels was: NO3- (2.00) > I- (1.85) > or = Br- (1.69) > Cl- (1.00) > bicarbonate (0.77) > or = acetate (0.70) > propionate (0.41) > > glutamate (0.09). When the ATP concentration in the pipette solutions was increased from 0 to 10 mM, the Ca(2+)-dependency of the Cl- current amplitude shifted to lower free Ca2+ concentrations by about two orders of magnitude. Cells dialyzed with a pipette solution (pCa = 6) containing ATP-gamma S (2 mM) exhibited currents of similar magnitude to those observed with the solution containing ATP (2 mM). The addition of the calmodulin inhibitors trifluoperazine (100 microM) or calmidazolium (25 microM) to the bath solution and the inclusion of KN-62 (1 microM), a specific inhibitor of calmodulin kinase, or staurosporin (10 nM), an inhibitor of protein kinase C to the pipette solution had little, if any, effect on the Ca(2+)-activated Cl- currents. This suggests that Ca2+/Calmodulin or calmodulin kinase II and protein kinase C are not involved in Ca(2+)-activated Cl- currents. The outward Cl- currents at +69 mV were inhibited by NPPB (100 microM), IAA-94 (100 microM), DIDS (0.03-1 mM), 9-AC (300 microM and 1 mM) and DPC (1 mM), whereas the inward currents at -101 mV were not. These results demonstrate the presence of a bicarbonate- and weak acid-permeable Cl- conductance controlled by cytosolic Ca2+ and ATP levels in rat submandibular acinar cells.
1989-01-01
The relationship between receptor-mediated increases in the intracellular free calcium concentration [( Ca]i) and the stimulation of ion fluxes involved in fluid secretion was examined in the rat parotid acinar cell. Agonist-induced increases in [Ca]i caused the rapid net loss of up to 50-60% of the total content of intracellular chloride (Cli) and potassium (Ki), which is consistent with the activation of calcium-sensitive chloride and potassium channels. These ion movements were accompanied by a 25% reduction in the intracellular volume. The relative magnitudes of the losses of Ki and the net potassium fluxes promoted by carbachol (a muscarinic agonist), phenylephrine (an alpha-adrenergic agonist), and substance P were very similar to their characteristic effects on elevating [Ca]i. Carbachol stimulated the loss of Ki through multiple efflux pathways, including the large-conductance Ca-activated K channel. Carbachol and substance P increased the levels of intracellular sodium (Nai) to more than 2.5 times the normal level by stimulating the net uptake of sodium through multiple pathways; Na-K-2Cl cotransport accounted for greater than 50% of the influx, and approximately 20% was via Na-H exchange, which led to a net alkalinization of the cells. Ionomycin stimulated similar fluxes through these two pathways, but also promoted sodium influx through an additional pathway which was nearly equivalent in magnitude to the combined uptake through the other two pathways. The carbachol- induced increase in Nai and decrease in Ki stimulated the activity of the sodium pump, measured by the ouabain-sensitive rate of oxygen consumption, to nearly maximal levels. In the absence of extracellular calcium or in cells loaded with the calcium chelator BAPTA (bis[o- aminophenoxy]ethane-N,N,N',N'-tetraacetic acid) the magnitudes of agonist- or ionomycin-stimulated ion fluxes were greatly reduced. The parotid cells displayed a marked desensitization to substance P; within 10 min the elevation of [Ca]i and alterations in Ki, Nai, and cell volume spontaneously returned to near baseline levels. In addition to quantitating the activation of various ion flux pathways in the rat parotid acinar cell, these results demonstrate that the activation of ion transport systems responsible for fluid secretion in this tissue is closely linked to the elevation of [Ca]i. PMID:2467962
Bae, Gi-Sang; Kim, Min-Sun; Park, Kyoung-Chel; Koo, Bon Soon; Jo, Il-Joo; Choi, Sun Bok; Lee, Dong-Sung; Kim, Youn-Chul; Kim, Tae-Hyeon; Seo, Sang-Wan; Shin, Yong Kook; Song, Ho-Joon; Park, Sung-Joo
2012-01-01
AIM: To determine if the fraction of Nardostachys jatamansi (NJ) has the potential to ameliorate the severity of acute pancreatitis (AP). METHODS: Mice were administered the biologically active fraction of NJ, i.e., the 4th fraction (NJ4), intraperitoneally, and then injected with the stable cholecystokinin analogue cerulein hourly for 6 h. Six hours after the last cerulein injection, the pancreas, lung, and blood were harvested for morphological examination, measurement of cytokine expression, and examination of neutrophil infiltration. RESULTS: NJ4 administration attenuated the severity of AP and lung injury associated with AP. It also reduced cytokine production and neutrophil infiltration and resulted in the in vivo up-regulation of heme oxygenase-1 (HO-1). Furthermore, NJ4 and its biologically active fraction, NJ4-2 inhibited the cerulein-induced death of acinar cells by inducing HO-1 in isolated pancreatic acinar cells. CONCLUSION: These results suggest that NJ4 may be a candidate fraction offering protection in AP and NJ4 might ameliorate the severity of pancreatitis by inducing HO-1 expression. PMID:22783046
Luo, Yaping; Hu, Guilan; Ma, Yanru; Guo, Ning; Li, Fang
2017-09-01
Pancreatic acinar cell carcinoma (ACC) is a rare malignant tumor of exocrine pancreas. It is typically a well-marginated large solid mass arising in a certain aspect of the pancreas. Diffuse involvement of ACC in the pancreas is very rare, and may simulate pancreatitis in radiological findings. We report 2 cases of ACC presenting as diffuse enlargement of the pancreas due to tumor involvement without formation of a distinct mass. The patients consisted of a 41-year-old man with weight loss and a 77-year-old man who was asymptomatic. Computed tomography (CT) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT showed diffuse enlargement of the pancreas forming a sausage-like shape with homogenously increased FDG activity. Endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA) biopsy of the pancreatic lesion was performed. Histopathology results from the pancreas confirmed the diagnosis of pancreatic ACC. Because diffuse enlargement of the pancreas is a common imaging feature of pancreatitis, recognition of this rare morphologic pattern of ACC is important for radiological diagnosis of this tumor.
Dual origin, development, and fate of bovine pancreatic islets
Merkwitz, Claudia; Lochhead, Paul; Böttger, Jan; Matz-Soja, Madlen; Sakurai, Michiharu; Gebhardt, Rolf; Ricken, Albert M
2013-01-01
Endocrine cells are evident at an early stage in bovine pancreatic development when the pancreas still consists of primitive epithelial cords. At this stage, the endocrine cells are interspersed between the precursor cells destined to form the ductulo-acinar trees of later exocrine lobules. We here demonstrate that, in bovine fetuses of crown rump length ≥ 11 cm, the endocrine cells become increasingly segregated from the developing exocrine pancreas by assembly into two units that differ in histogenesis, architecture, and fate. Small numbers of ‘perilobular giant islets’ are distinguishable from larger numbers of ‘intralobular small islets’. The two types of islets arise in parallel from the ends of the ductal tree. Aside from differences in number, location, and size, the giant and small islets differ in cellular composition (predominantly insulin-synthesising cells vs. mixtures of endocrine cells), morphology (epithelial trabeculae with gyriform and rosette-like appearance vs. compact circular arrangements of endocrine cells), and in their relationships to intrapancreatic ganglia and nerves. A further difference becomes apparent during the antenatal period; while the ‘interlobular small islets’ persist in the pancreata of calves and adult cattle, the perilobular giant islets are subject to regression, characterised by involution of the parenchyma, extensive haemorrhage, leukocyte infiltration (myeloid and T-cells) and progressive fibrotic replacement. In conclusion, epithelial precursor cells of the ductolo-acinar tree may give rise to populations of pancreatic islets with different histomorphology, cellular composition and fates. This should be taken into account when using these cells for the generation of pancreatic islets for transplantation therapy. PMID:23171225
Amini, Reza; Kaczka, David W.
2013-01-01
To determine the impact of ventilation frequency, lung volume, and parenchymal stiffness on ventilation distribution, we developed an anatomically-based computational model of the canine lung. Each lobe of the model consists of an asymmetric branching airway network subtended by terminal, viscoelastic acinar units. The model allows for empiric dependencies of airway segment dimensions and parenchymal stiffness on transpulmonary pressure. We simulated the effects of lung volume and parenchymal recoil on global lung impedance and ventilation distribution from 0.1 to 100 Hz, with mean transpulmonary pressures from 5 to 25 cmH2O. With increasing lung volume, the distribution of acinar flows narrowed and became more synchronous for frequencies below resonance. At higher frequencies, large variations in acinar flow were observed. Maximum acinar flow occurred at first antiresonance frequency, where lung impedance achieved a local maximum. The distribution of acinar pressures became very heterogeneous and amplified relative to tracheal pressure at the resonant frequency. These data demonstrate the important interaction between frequency and lung tissue stiffness on the distribution of acinar flows and pressures. These simulations provide useful information for the optimization of frequency, lung volume, and mean airway pressure during conventional ventilation or high frequency oscillation (HFOV). Moreover our model indicates that an optimal HFOV bandwidth exists between the resonant and antiresonant frequencies, for which interregional gas mixing is maximized. PMID:23872936
de Bessa Garcia, Simone A; Pereira, Michelly C; Nagai, Maria A
2010-12-21
The histological organization of the mammary gland involves a spatial interaction of epithelial and myoepithelial cells with the specialized basement membrane (BM), composed of extra-cellular matrix (ECM) proteins, which is disrupted during the tumorigenic process. The interactions between mammary epithelial cells and ECM components play a major role in mammary gland branching morphogenesis. Critical signals for mammary epithelial cell proliferation, differentiation, and survival are provided by the ECM proteins. Three-dimensional (3D) cell culture was developed to establish a system that simulates several features of the breast epithelium in vivo; 3D cell culture of the spontaneously immortalized cell line, MCF10A, is a well-established model system to study breast epithelial cell biology and morphogenesis. Mammary epithelial cells grown in 3D form spheroids, acquire apicobasal polarization, and form lumens that resemble acini structures, processes that involve cell death. Using this system, we evaluated the expression of the pro-apoptotic gene PAWR (PKC apoptosis WT1 regulator; also named PAR-4, prostate apoptosis response-4) by immunofluorescence and quantitative real time PCR (qPCR). A time-dependent increase in PAR-4 mRNA expression was found during the process of MCF10A acinar morphogenesis. Confocal microscopy analysis also showed that PAR-4 protein was highly expressed in the MCF10A cells inside the acini structure. During the morphogenesis of MCF10A cells in 3D cell culture, the cells within the lumen showed caspase-3 activation, indicating apoptotic activity. PAR-4 was only partially co-expressed with activated caspase-3 on these cells. Our results provide evidence, for the first time, that PAR-4 is differentially expressed during the process of MCF10A acinar morphogenesis.
Bad seeds produce bad crops: a single stage-process of prostate tumor invasion
Man, Yan-gao; Gardner, William A.
2008-01-01
It is a commonly held belief that prostate carcinogenesis is a multi-stage process and that tumor invasion is triggered by the overproduction of proteolytic enzymes. This belief is consistent with data from cell cultures and animal models, whereas is hard to interpret several critical facts, including the presence of cancer in “healthy” young men and cancer DNA phenotype in morphologically normal prostate tissues. These facts argue that alternative pathways may exist for prostate tumor invasion in some cases. Since degradation of the basal cell layer is the most distinct sign of invasion, our recent studies have attempted to identify pre-invasive lesions with focal basal cell layer alterations. Our studies revealed that about 30% of prostate cancer patients harbored normal appearing duct or acinar clusters with a high frequency of focal basal cell layer disruptions. These focally disrupted basal cell layers had significantly reduced cell proliferation and tumor suppressor expression, whereas significantly elevated degeneration, apoptosis, and infiltration of immunoreactive cells. In sharp contrast, associated epithelial cell had significantly elevated proliferation, expression of malignancy-signature markers, and physical continuity with invasive lesions. Based on these and other findings, we have proposed that these normal appearing duct or acinar clusters are derived from monoclonal proliferation of genetically damaged stem cells and could progress directly to invasion through two pathways: 1) clonal in situ transformation (CIST) and 2) multi-potential progenitor mediated “budding” (MPMB). These pathways may contribute to early onset of prostate cancer at young ages, and to clinically more aggressive prostate tumors. PMID:18725981
Kubisch, Constanze H; Logsdon, Craig D
2007-06-01
Endoplasmic reticulum (ER) stress leads to the accumulation of misfolded proteins in the ER lumen and initiates the unfolded protein response (UPR). Components of the UPR are important in pancreatic development, and recent studies have indicated that the UPR is activated in the arginine model of acute pancreatitis. However, the effects of secretagogues on UPR components in the pancreas are unknown. The present study aimed to examine the effects of different types and concentrations of secretagogues on acinar cell function and specific components of the UPR. Rat pancreatic acini were stimulated with the CCK analogs CCK8 (10 pM-10 nM) or JMV-180 (10 nM-10 microM) or with bombesin (1-100 nM). Components of the UPR, including chaperone BiP expression, PKR-like ER kinase (PERK) phosphorylation, X box-binding protein 1 (XBP1) splicing, and CCAAT/enhancer binding protein homologous protein (CHOP) expression, were measured, as were effects on amylase secretion and intracellular trypsin activation. CCK8 generated a biphasic secretion dose-response curve, and high concentrations increased intracellular active trypsin levels. In contrast, JMV-180 and bombesin secretion dose-response curves were monophasic, and high concentrations did not increase intracellular trypsin activity. All three secretagogues increased BiP levels and XBP1 splicing. However, only supraphysiological levels of CCK8 associated with inhibited amylase secretion and trypsin activation stimulated PERK phosphorylation and expression of CHOP. The effects of CCK8 on UPR components were rapid, occurring within 5-20 min. In conclusion, ER stress response mechanisms appear to be involved in both pancreatic physiology and pathophysiology, and future efforts should be directed at understanding the roles of these mechanisms in the pancreas.
Dolai, Subhankar; Liang, Tao; Orabi, Abrahim I; Holmyard, Douglas; Xie, Li; Greitzer-Antes, Dafna; Kang, Youhou; Xie, Huanli; Javed, Tanveer A; Lam, Patrick P; Rubin, Deborah C; Thorn, Peter; Gaisano, Herbert Y
2018-05-01
Pancreatic acinar cells are polarized epithelial cells that store enzymes required for digestion as inactive zymogens, tightly packed at the cell apex. Stimulation of acinar cells causes the zymogen granules to fuse with the apical membrane, and the cells undergo exocytosis to release proteases into the intestinal lumen. Autophagy maintains homeostasis of pancreatic acini. Syntaxin 2 (STX2), an abundant soluble N-ethyl maleimide sensitive factor attachment protein receptor in pancreatic acini, has been reported to mediate apical exocytosis. Using human pancreatic tissues and STX2-knockout (KO) mice, we investigated the functions of STX2 in zymogen granule-mediated exocytosis and autophagy. We obtained pancreatic tissues from 5 patients undergoing surgery for pancreatic cancer and prepared 80-μm slices; tissues were exposed to supramaximal cholecystokinin octapeptide (CCK-8) or ethanol and a low concentration of CCK-8 and analyzed by immunoblot and immunofluorescence analyses. STX2-KO mice and syntaxin 2 +/+ C57BL6 mice (controls) were given intraperitoneal injections of supramaximal caerulein (a CCK-8 analogue) or fed ethanol and then given a low dose of caerulein to induce acute pancreatitis, or saline (controls); pancreata were isolated and analyzed by histology and immunohistochemistry. Acini were isolated from mice, incubated with CCK-8, and analyzed by immunofluorescence microscopy or used in immunoprecipitation experiments. Exocytosis was quantified using live-cell exocytosis and Ca 2+ imaging analyses and based on formation of exocytotic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes. Dysregulations in autophagy were identified using markers, electron and immunofluorescence microscopy, and protease activation assays. Human pancreatic tissues and dispersed pancreatic acini from control mice exposed to CCK-8 or ethanol plus CCK-8 were depleted of STX2. STX2-KO developed more severe pancreatitis after administration of supramaximal caerulein or a 6-week ethanol diet compared with control. Acini from STX2-KO mice had increased apical exocytosis after exposure to CCK-8, as well as increased basolateral exocytosis, which led to ectopic release of proteases. These increases in apical and basolateral exocytosis required increased formation of fusogenic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes, mediated by STX3 and STX4. STX2 bound ATG16L1 and prevented it from binding clathrin. Deletion of STX2 from acini increased binding of AT16L1 to clathrin, increasing formation of pre-autophagosomes and inducing autophagy. Induction of autophagy promoted the CCK-8-induced increase in autolysosome formation and the activation of trypsinogen. In studies of human pancreatic tissues and pancreata from STX2-KO and control mice, we found STX2 to block STX3- and STX4-mediated fusion of zymogen granules with the plasma membrane and exocytosis and prevent binding of ATG16L1 to clathrin, which contributes to induction of autophagy. Exposure of pancreatic tissues to CCK-8 or ethanol depletes acinar cells of STX2, increasing basolateral exocytosis and promoting autophagy induction, leading to activation of trypsinogen. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Lee, Robert J.; Harlow, Janice M.; Limberis, Maria P.; Wilson, James M.; Foskett, J. Kevin
2008-01-01
Airway submucosal glands contribute to airway surface liquid (ASL) composition and volume, both important for lung mucociliary clearance. Serous acini generate most of the fluid secreted by glands, but the molecular mechanisms remain poorly characterized. We previously described cholinergic-regulated fluid secretion driven by Ca2+-activated Cl− secretion in primary murine serous acinar cells revealed by simultaneous differential interference contrast (DIC) and fluorescence microscopy. Here, we evaluated whether Ca2+-activated Cl− secretion was accompanied by secretion of HCO3−, possibly a critical ASL component, by simultaneous measurements of intracellular pH (pHi) and cell volume. Resting pHi was 7.17 ± 0.01 in physiological medium (5% CO2–25 mM HCO3−). During carbachol (CCh) stimulation, pHi fell transiently by 0.08 ± 0.01 U concomitantly with a fall in Cl− content revealed by cell shrinkage, reflecting Cl− secretion. A subsequent alkalinization elevated pHi to above resting levels until agonist removal, whereupon it returned to prestimulation values. In nominally CO2–HCO3−-free media, the CCh-induced acidification was reduced, whereas the alkalinization remained intact. Elimination of driving forces for conductive HCO3− efflux by ion substitution or exposure to the Cl− channel inhibitor niflumic acid (100 μM) strongly inhibited agonist-induced acidification by >80% and >70%, respectively. The Na+/H+ exchanger (NHE) inhibitor dimethylamiloride (DMA) increased the magnitude (greater than twofold) and duration of the CCh-induced acidification. Gene expression profiling suggested that serous cells express NHE isoforms 1–4 and 6–9, but pharmacological sensitivities demonstrated that alkalinization observed during both CCh stimulation and pHi recovery from agonist-induced acidification was primarily due to NHE1, localized to the basolateral membrane. These results suggest that serous acinar cells secrete HCO3− during Ca2+-evoked fluid secretion by a mechanism that involves the apical membrane secretory Cl− channel, with HCO3− secretion sustained by activation of NHE1 in the basolateral membrane. In addition, other Na+-dependent pHi regulatory mechanisms exist, as evidenced by stronger inhibition of alkalinization in Na+-free media. PMID:18591422
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
Contents include: effects of ethiofos (WR-2721) and radiation on monkey visual discrimination performance; gamma radiolysis of RNA: an ESR and spin-trapping study; phospholipid storage in the secretory granule of the mast cell; physiological localization of an agonist-sensitive pool of Ca{sup 2+} in parotid acinar cells; changes in canine neutrophil function(s) following cellular isolation by percoll gradient centrifugation or isotoniclysis; impaired repair of uvc-induced DNA damage in l5178Y-R cells: sedimentation studies with the use of 5'-bromodeoxyuridine photolysis; comparative behavioral toxicity of four sulfhydryl radioprotective compounds in mice: WR-2721, cysteamine, diethyldithiocarbamate, and n-acetylcysteine; measurement of the radiosensitivity of rat marrow by flowmore » cytometry; radioprotection by biological response modifiers alone and in combination with WR-2721; postirradiation glucan administration enhances the radioprotective effects of WR-2721; attenuation and cross-attenuation in taste aversion learning in the rat: studies with ionizing radiation, lithium chloride, and ethanol; a low-energy x-ray irradiator for electrophysiological studies; thermospray liquid chromatography mass spectrometry of thiol radioprotective agents: characteristic spectra; radioprotection by leukotrienes: is there a receptor mechanism and a low-energy x-ray irradiator for electrophysiological studies.« less
Hypocalcemia in acute pancreatitis revisited
Ahmed, Armin; Azim, Afzal; Gurjar, Mohan; Baronia, Arvind Kumar
2016-01-01
Hypocalcemia is a frequent finding in acute pancreatitis. Severe hypocalcemia can present with neurological as well as cardiovascular manifestations. Correction of hypocalcemia by parenteral calcium infusion remains a controversial topic as intracellular calcium overload is the central mechanism of acinar cell injury in pancreatitis. The current article deals with the art and science of calcium correction in pancreatitis patients. PMID:27076730
Ready, Set, Go: EGFR at the pancreatic cancer starting line
Perera, Rushika M.; Bardeesy, Nabeel
2012-01-01
Acinar-to-ductal metaplasia (ADM) results from pancreatic injury or KRAS activation, and is an early step in pancreatic cancer progression. In this Cancer Cell issue, Ardito et al. and Navas et al. demonstrate that ADM and KRAS-driven pancreatic cancer require EGFR signaling, revealing a mechanism for developmental reprogramming that primes tumorigenesis. PMID:22975369
Endocrine cells in human Bartholin's glands. An immunohistochemical and ultrastructural analysis.
Fetissof, F; Arbeille, B; Bellet, D; Barre, I; Lansac, J
1989-01-01
Endocrine cells were investigated in human Bartholin's glands by use of histochemical, immunohistochemical and ultrastructural methods. Endocrine cells represent normal constituents of these glands, being mainly distributed throughout the transitional epithelium of the major excretory duct; however, single elements are dispersed among the acinar lobules. Serotonin-, calcitonin-, katacalcin-, bombesin- and alpha-hCG-immunoreactive cells were recognized, with serotonin-immunoreactive cells predominating. Co-expression of calcitonin, katacalcin or alpha-hCG with serotonin was observed in single endocrine cells. At the ultrastructural level, these cells are richly granulated and show typical neuroendocrine features. Bartholin's glands display an endocrine profile quite similar to that of other cloacal-derived tissues.
Breast Cancer in Context: New Tools and Paradigms for the Millennium
2007-07-01
arrest. The percentage of TUNEL-positive nuclei increased from 24 to 72 hours. Treatment with AIIB2 results in decreased tumor forma - tion, increased...manipulation on the ability of these cells to execute acinar morphogenesis (Debnath et al., 2002, 2003; Gunawardane et al., 2005; Irie et al., 2005; Isakoff et...breast cancer cell lines. Cancer Research 58, 1972–1977. Irie , H.Y., Pearline, R.V., Grueneberg, D., Hsia, M., Ravichandran, P., Kothari, N., Natesan, S
Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice
Cavelti-Weder, Claudia; Li, Weida; Zumsteg, Adrian; Stemann-Andersen, Marianne; Zhang, Yuemei; Yamada, Takatsugu; Wang, Max; Lu, Jiaqi; Jermendy, Agnes; Bee, Yong Mong; Bonner-Weir, Susan; Weir, Gordon C.; Zhou, Qiao
2016-01-01
Aims/hypothesis Reprogramming of pancreatic exocrine to insulin-producing cells by viral delivery of the genes encoding transcription factors neurogenin-3 (Ngn3), pancreas/duodenum homeobox protein 1 (Pdx1) and MafA is an efficient method for reversing diabetes in murine models. The variables that modulate reprogramming success are currently ill-defined. Methods Here, we assess the impact of glycaemia on in vivo reprogramming in a mouse model of streptozotocin-induced beta cell ablation, using subsequent islet transplantation or insulin pellet implantation for creation of groups with differing levels of glycaemia before viral delivery of transcription factors. Results We observed that hyperglycaemia significantly impaired reprogramming of exocrine to insulin-producing cells in their quantity, differentiation status and function. With hyperglycaemia, the reprogramming of acinar towards beta cells was less complete. Moreover, inflammatory tissue changes within the exocrine pancreas including macrophage accumulation were found, which may represent the tissue’s response to clear the pancreas from insufficiently reprogrammed cells. Conclusions/interpretation Our findings shed light on normoglycaemia as a prerequisite for optimal reprogramming success in a diabetes model, which might be important in other tissue engineering approaches and disease models, potentially facilitating their translational applications. PMID:26693711
Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice.
Cavelti-Weder, Claudia; Li, Weida; Zumsteg, Adrian; Stemann-Andersen, Marianne; Zhang, Yuemei; Yamada, Takatsugu; Wang, Max; Lu, Jiaqi; Jermendy, Agnes; Bee, Yong Mong; Bonner-Weir, Susan; Weir, Gordon C; Zhou, Qiao
2016-03-01
Reprogramming of pancreatic exocrine to insulin-producing cells by viral delivery of the genes encoding transcription factors neurogenin-3 (Ngn3), pancreas/duodenum homeobox protein 1 (Pdx1) and MafA is an efficient method for reversing diabetes in murine models. The variables that modulate reprogramming success are currently ill-defined. Here, we assess the impact of glycaemia on in vivo reprogramming in a mouse model of streptozotocin-induced beta cell ablation, using subsequent islet transplantation or insulin pellet implantation for creation of groups with differing levels of glycaemia before viral delivery of transcription factors. We observed that hyperglycaemia significantly impaired reprogramming of exocrine to insulin-producing cells in their quantity, differentiation status and function. With hyperglycaemia, the reprogramming of acinar towards beta cells was less complete. Moreover, inflammatory tissue changes within the exocrine pancreas including macrophage accumulation were found, which may represent the tissue's response to clear the pancreas from insufficiently reprogrammed cells. Our findings shed light on normoglycaemia as a prerequisite for optimal reprogramming success in a diabetes model, which might be important in other tissue engineering approaches and disease models, potentially facilitating their translational applications.
Three-Dimensional Culture of Human Breast Epithelial Cells: The How and the Why
Vidi, Pierre-Alexandre; Bissell, Mina J.; Lelièvre, Sophie A.
2013-01-01
Organs are made of the organized assembly of different cell types that contribute to the architecture necessary for functional differentiation. In those with exocrine function, such as the breast, cell–cell and cell–extracellular matrix (ECM) interactions establish mechanistic constraints and a complex biochemical signaling network essential for differentiation and homeostasis of the glandular epithelium. Such knowledge has been elegantly acquired for the mammary gland by placing epithelial cells under three-dimensional (3D) culture conditions. Three-dimensional cell culture aims at recapitulating normal and pathological tissue architectures, hence providing physiologically relevant models to study normal development and disease. The specific architecture of the breast epithelium consists of glandular structures (acini) connected to a branched ductal system. A single layer of basoapically polarized luminal cells delineates ductal or acinar lumena at the apical pole. Luminal cells make contact with myoepithelial cells and, in certain areas at the basal pole, also with basement membrane (BM) components. In this chapter, we describe how this exquisite organization as well as stages of disorganization pertaining to cancer progression can be reproduced in 3D cultures. Advantages and limitations of different culture settings are discussed. Technical designs for induction of phenotypic modulations, biochemical analyses, and state-of-the-art imaging are presented. We also explain how signaling is regulated differently in 3D cultures compared to traditional two-dimensional (2D) cultures. We believe that using 3D cultures is an indispensable method to unravel the intricacies of human mammary functions and would best serve the fight against breast cancer. PMID:23097109
Taraseviciute, Agne; Vincent, Benjamin T.; Schedin, Pepper; Jones, Peter Lloyd
2010-01-01
Remodeling of the stromal extracellular matrix and elevated expression of specific proto-oncogenes within the adjacent epithelium represent cardinal features of breast cancer, yet how these events become integrated is not fully understood. To address this question, we focused on tenascin-C (TN-C), a stromal extracellular matrix glycoprotein whose expression increases with disease severity. Initially, nonmalignant human mammary epithelial cells (MCF-10A) were cultured within a reconstituted basement membrane (BM) where they formed three-dimensional (3-D) polarized, growth-attenuated, multicellular acini, enveloped by a continuous endogenous BM. In the presence of TN-C, however, acini failed to generate a normal BM, and net epithelial cell proliferation increased. To quantify how TN-C alters 3-D tissue architecture and function, we developed a computational image analysis algorithm, which showed that although TN-C disrupted acinar surface structure, it had no effect on their volume. Thus, TN-C promoted epithelial cell proliferation leading to luminal filling, a process that we hypothesized involved c-met, a proto-oncogene amplified in breast tumors that promotes intraluminal filling. Indeed, TN-C increased epithelial c-met expression and promoted luminal filling, whereas blockade of c-met function reversed this phenotype, resulting in normal BM deposition, proper lumen formation, and decreased cell proliferation. Collectively, these studies, combining a novel quantitative image analysis tool with 3-D organotypic cultures, demonstrate that stromal changes associated with breast cancer can control proto-oncogene function. PMID:20042668
Nagahara, Rei; Kimura, Masayuki; Itahashi, Megu; Sugahara, Go; Kawashima, Masashi; Murayama, Hirotada; Yoshida, Toshinori; Shibutani, Makoto
2016-11-01
Two solitary and minute tumors of 1 and 1.5 mm diameter were identified by microscopy in the left fourth mammary gland of a 13-year-old female Labrador Retriever dog, in addition to multiple mammary gland tumors. The former tumors were well circumscribed and were composed of small-to-large polyhedral neoplastic oncocytes with finely granular eosinophilic cytoplasm, and were arranged in solid nests separated by fine fibrovascular septa. Scattered lumina of variable sizes containing eosinophilic secretory material were evident. Cellular atypia was minimal, and no mitotic figures were visible. One tumor had several oncocytic cellular foci revealing cellular transition, with perivascular pseudorosettes consisting of columnar epithelial cells surrounding the fine vasculature. Scattered foci of mammary acinar cell hyperplasia showing oncocytic metaplasia were also observed. Immunohistochemically, the cytoplasm of neoplastic cells of the 2 microtumors showed diffuse immunoreactivity to anti-cytokeratin antibody AE1/AE3, and finely granular immunoreactivity for 60-kDa heat shock protein, mitochondrial membrane ATP synthase complex V beta subunit, and chromogranin A. One tumor also had oncocytic cellular foci forming perivascular pseudorosettes showing cellular membrane immunoreactivity for neural cell adhesion molecule. The tumors were negative for smooth muscle actin, neuron-specific enolase, vimentin, desmin, S100, and synaptophysin. Ultrastructural observation confirmed the abundant mitochondria in the cytoplasm of both neoplastic and hyperplastic cells, the former cells also having neuroendocrine granule-like electron-dense bodies. From these results, our case was diagnosed with mammary oncocytomas accompanied by neuroendocrine differentiation. Scattered foci of mammary oncocytosis might be related to the multicentric occurrence of these oncocytomas. © 2016 The Author(s).
Goh, Saik-Kia; Bertera, Suzanne; Olsen, Phillip; Candiello, Joe; Halfter, Willi; Uechi, Guy; Balasubramani, Manimalha; Johnson, Scott; Sicari, Brian; Kollar, Elizabeth; Badylak, Stephen F.; Banerjee, Ipsita
2013-01-01
Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development. Perfusion-decellularized organs are a likely candidate for use in such scaffolds since they mimic compositional, architectural and biomechanical nature of a native organ. In this study, we investigate perfusion-decellularization of whole pancreas and the feasibility to recellularize the whole pancreas scaffold with pancreatic cell types. Our result demonstrates that perfusion-decellularization of whole pancreas effectively removes cellular and nuclear material while retaining intricate three-dimensional microarchitecture with perfusable vasculature and ductal network and crucial extracellular matrix (ECM) components. To mimic pancreatic cell composition, we recellularized the whole pancreas scaffold with acinar and beta cell lines and cultured up to 5 days. Our result shows successful cellular engraftment within the decellularized pancreas, and the resulting graft gave rise to strong up-regulation of insulin gene expression. These findings support biological utility of whole pancreas ECM as a biomaterials scaffold for supporting and enhancing pancreatic cell functionality and represent a step toward bioengineered pancreas using regenerative medicine approaches. PMID:23787110
Costello, Leslie C.; Franklin, Renty B.
2016-01-01
The human prostate gland contains extremely high zinc levels; which is due to the specialized zinc-accumulating acinar epithelial of the peripheral zone. These cells evolved for their unique capability to produce and secrete extremely levels of citrate, which is achieved by the high cellular zinc level effects on the cell metabolism. This review highlights the specific functional and metabolic alterations that result from the accumulation of the high zinc levels, especially its effects on mitochondrial citrate metabolism and terminal oxidation. The implications of zinc in the development and progression of prostate cancer are described, which is the most consistent hallmark characteristic of prostate cancer. The requirement for decreased zinc resulting from down regulation of ZIP1 to prevent zinc cytotoxicity in the malignant cells is described as an essential early event in prostate oncogenesis. This provides the basis for the concept that an agent (such as the zinc ionophore, clioquinol) that facilitates zinc uptake and accumulation in ZIP1-deficient prostate tumors cells will markedly inhibit tumor growth. In the current absence of an efficacious chemotherapy for advanced prostate cancer, and for prevention of early development of malignancy; a zinc treatment regimen is a plausible approach that should be pursued. PMID:27132038
Creating new β cells: cellular transmutation by genomic alchemy.
Moss, Larry G
2013-03-01
To address insulin insufficiency, diabetes research has long focused on techniques for replacing insulin-producing β cells. Studies in mice have suggested that, under some conditions, α cells possess the capacity to transdifferentiate into β cells, although the mechanisms that drive this conversion are unclear. In this issue, Bramswig et al. analyzed the methylation states of purified human α, β, and acinar cells and found α cells exhibit intrinsic phenotypic plasticity associated with specific histone methylation profiles. In addition to expanding our understanding of this potential source of β cells, this compendium of carefully generated human gene expression and epigenomic data in islet cell subtypes constitutes a truly valuable resource for the field.
Creating new β cells: cellular transmutation by genomic alchemy
Moss, Larry G.
2013-01-01
To address insulin insufficiency, diabetes research has long focused on techniques for replacing insulin-producing β cells. Studies in mice have suggested that, under some conditions, α cells possess the capacity to transdifferentiate into β cells, although the mechanisms that drive this conversion are unclear. In this issue, Bramswig et al. analyzed the methylation states of purified human α, β, and acinar cells and found α cells exhibit intrinsic phenotypic plasticity associated with specific histone methylation profiles. In addition to expanding our understanding of this potential source of β cells, this compendium of carefully generated human gene expression and epigenomic data in islet cell subtypes constitutes a truly valuable resource for the field. PMID:23434598
Effects of thyroxine and dexamethasone on rat submandibular glands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagulin, G.B.; Roomans, G.M.
1989-08-01
Glucocorticoids and thyroxine are known to have a marked effect on the flow rate and protein composition of rat parotid saliva in hormonally intact animals. In the present study, the effects of a one-week treatment of male rats with dexamethasone and thyroxine were studied by electron microscopy and x-ray micro-analysis, and by measurement of the flow rate and determination of the chemical composition of pilocarpine-induced submandibular saliva. Thyroxine had the most extensive effects on the submandibular gland. The acinar cells were enlarged and filled with mucus; the cellular calcium concentration was significantly increased. The flow rate of the submandibular salivamore » was significantly reduced compared with that in saline-injected control animals. Thyroxine caused an increase in the concentrations of protein, total calcium, and potassium in the saliva. Dexamethasone had no significant effects on gland ultrastructure or on the elemental composition of the acinar cells; flow rate was not affected, but the concentrations of protein, calcium, and potassium were significantly increased. The effects of dexamethasone and thyroxine on the flow rate and protein composition of pilocarpine-induced rat submandibular saliva differ from those reported earlier for rat parotid saliva after simultaneous stimulation with pilocarpine and isoproterenol.« less
Tran, Simon D.; Liu, Younan; Xia, Dengsheng; Maria, Ola M.; Khalili, Saeed; Wang, Renee Wan-Jou; Quan, Vu-Hung; Hu, Shen; Seuntjens, Jan
2013-01-01
Background There are reports that bone marrow cell (BM) transplants repaired irradiated salivary glands (SGs) and re-established saliva secretion. However, the mechanisms of action behind these reports have not been elucidated. Methods To test if a paracrine mechanism was the main effect behind this reported improvement in salivary organ function, whole BM cells were lysed and its soluble intracellular contents (termed as “BM Soup”) injected into mice with irradiation-injured SGs. The hypothesis was that BM Soup would protect salivary cells, increase tissue neovascularization, function, and regeneration. Two minor aims were also tested a) comparing two routes of delivering BM Soup, intravenous (I.V.) versus intra-glandular injections, and b) comparing the age of the BM Soup’s donors. The treatment-comparison group consisted of irradiated mice receiving injections of living whole BM cells. Control mice received irradiation and injections of saline or sham-irradiation. All mice were followed for 8 weeks post-irradiation. Results BM Soup restored salivary flow rates to normal levels, protected salivary acinar, ductal, myoepithelial, and progenitor cells, increased cell proliferation and blood vessels, and up-regulated expression of tissue remodeling/repair/regenerative genes (MMP2, CyclinD1, BMP7, EGF, NGF). BM Soup was as an efficient therapeutic agent as injections of live BM cells. Both intra-glandular or I.V. injections of BM Soup, and from both young and older mouse donors were as effective in repairing irradiated SGs. The intra-glandular route reduced injection frequency/dosage by four-fold. Conclusion BM Soup, which contains only the cell by-products, can be advantageously used to repair irradiation-damaged SGs rather than transplanting whole live BM cells which carry the risk of differentiating into unwanted/tumorigenic cell types in SGs. PMID:23637870
Tran, Simon D; Liu, Younan; Xia, Dengsheng; Maria, Ola M; Khalili, Saeed; Wang, Renee Wan-Jou; Quan, Vu-Hung; Hu, Shen; Seuntjens, Jan
2013-01-01
There are reports that bone marrow cell (BM) transplants repaired irradiated salivary glands (SGs) and re-established saliva secretion. However, the mechanisms of action behind these reports have not been elucidated. To test if a paracrine mechanism was the main effect behind this reported improvement in salivary organ function, whole BM cells were lysed and its soluble intracellular contents (termed as "BM Soup") injected into mice with irradiation-injured SGs. The hypothesis was that BM Soup would protect salivary cells, increase tissue neovascularization, function, and regeneration. Two minor aims were also tested a) comparing two routes of delivering BM Soup, intravenous (I.V.) versus intra-glandular injections, and b) comparing the age of the BM Soup's donors. The treatment-comparison group consisted of irradiated mice receiving injections of living whole BM cells. Control mice received irradiation and injections of saline or sham-irradiation. All mice were followed for 8 weeks post-irradiation. BM Soup restored salivary flow rates to normal levels, protected salivary acinar, ductal, myoepithelial, and progenitor cells, increased cell proliferation and blood vessels, and up-regulated expression of tissue remodeling/repair/regenerative genes (MMP2, CyclinD1, BMP7, EGF, NGF). BM Soup was as an efficient therapeutic agent as injections of live BM cells. Both intra-glandular or I.V. injections of BM Soup, and from both young and older mouse donors were as effective in repairing irradiated SGs. The intra-glandular route reduced injection frequency/dosage by four-fold. BM Soup, which contains only the cell by-products, can be advantageously used to repair irradiation-damaged SGs rather than transplanting whole live BM cells which carry the risk of differentiating into unwanted/tumorigenic cell types in SGs.
Detection of BrdU-label Retaining Cells in the Lacrimal Gland: Implications for Tissue Repair
You, Samantha; Tariq, Ayesha; Kublin, Claire L.; Zoukhri, Driss
2011-01-01
The purpose of the present study was to determine if the lacrimal gland contains 5-bromo-2’-deoxyuridine (BrdU)-label retaining cells and if they are involved in tissue repair. Animals were pulsed daily with BrdU injections for 7 consecutive days. After a chase period of 2, 4, or 12 weeks, the animals were sacrificed and the lacrimal glands were removed and processed for BrdU immunostaining. In another series of experiments, the lacrimal glands of 12-week chased animals were either left untreated or were injected with interleukin 1 (IL-1) to induce injury. Two and half day post-injection, the lacrimal glands were removed and processed for BrdU immunostaining. After 2 and 4 week of chase period, a substantial number of lacrimal gland cells were BrdU+ (11.98 ± 1.84 and 7.95 ± 1.83 BrdU+ cells/mm2, respectively). After 12 weeks of chase, there was a 97% decline in the number of BrdU+ cells (0.38 ± 0.06 BrdU+ cells/mm2), suggesting that these BrdU-label retaining cells may represent slow-cycling adult stem/progenitor cells. In support of this hypothesis, the number of BrdU labeled cells increased over 7-fold during repair of the lacrimal gland (control: 0.41 ± 0.09 BrdU+ cells/mm2, injured: 2.91 ± 0.62 BrdU+ cells/mm2). Furthermore, during repair, among BrdU+ cells 58.2 ± 3.6 % were acinar cells, 26.4 ± 4.1% were myoepithelial cells, 0.4 ± 0.4% were ductal cells, and 15.0 ± 3.0% were stromal cells. We conclude that the murine lacrimal gland contains BrdU-label retaining cells that are mobilized following injury to generate acinar, myoepithelial and ductal cells. PMID:22101331
Scavuzzo, Marissa A; Teaw, Jessica; Yang, Diane; Borowiak, Malgorzata
2018-06-02
The pancreas is a complex organ composed of many different cell types that work together to regulate blood glucose homeostasis and digestion. These cell types include enzyme-secreting acinar cells, an arborized ductal system responsible for the transportation of enzymes to the gut, and hormone-producing endocrine cells. Endocrine beta-cells are the sole cell type in the body that produce insulin to lower blood glucose levels. Diabetes, a disease characterized by a loss or the dysfunction of beta-cells, is reaching epidemic proportions. Thus, it is essential to establish protocols to investigate beta-cell development that can be used for screening purposes to derive the drug and cell-based therapeutics. While the experimental investigation of mouse development is essential, in vivo studies are laborious and time-consuming. Cultured cells provide a more convenient platform for screening; however, they are unable to maintain the cellular diversity, architectural organization, and cellular interactions found in vivo. Thus, it is essential to develop new tools to investigate pancreatic organogenesis and physiology. Pancreatic epithelial cells develop in the close association with mesenchyme from the onset of organogenesis as cells organize and differentiate into the complex, physiologically competent adult organ. The pancreatic mesenchyme provides important signals for the endocrine development, many of which are not well understood yet, thus difficult to recapitulate during the in vitro culture. Here, we describe a protocol to culture three-dimensional, cellular complex mouse organoids that retain mesenchyme, termed pancreatoids. The e10.5 murine pancreatic bud is dissected, dissociated, and cultured in a scaffold-free environment. These floating cells self-assemble with mesenchyme enveloping the developing pancreatoid and a robust number of endocrine beta-cells developing along with the acinar and the duct cells. This system can be used to study the cell fate determination, structural organization, and morphogenesis, cell-cell interactions during organogenesis, or for the drug, small molecule, or genetic screening.
The effect of primary hyperparathyroidism on pancreatic exocrine function.
Sisman, P; Avci, M; Akkurt, A; Sahin, A B; Gul, O O; Ersoy, C; Erturk, E
2018-03-01
Elastase-1 is a proteolytic enzyme secreted by pancreatic acinar cells, and measurements of the concentration this enzyme are used to evaluate pancreatic exocrine function. We aimed to determine whether pancreatic exocrine function declines due to chronic hypercalcemia by measuring fecal elastase levels. 75 patients with primary hyperparathyroidism (18 men and 47 women) and 30 healthy subjects (11 men and 19 women) participated in this study. Renal function tests, lipid parameters, bone mineral density, and serum calcium, phosphorus, vitamin D, parathormone, glucose, and thyroid stimulating hormone levels as well as fecal elastase concentrations, were determined in these patients and controls. The mean fecal elastase level was 335.3 ± 181.4 μg/g in the PHPT group and 317.4 ± 157.3 μg/g in the control group. There was no significant difference in fecal elastase levels between the two groups (p = 0.5). Chronic hypercalcemia in primary hyperparathyroidism did not decrease the fecal elastase level, which is an indirect indicator of chronic pancreatitis; therefore, chronic hypercalcemia in PHPT may not cause chronic pancreatitis.
He, Ping; Yang, Jong Won; Yang, Vincent W; Bialkowska, Agnieszka B
2018-04-01
Activating mutations in KRAS are detected in most pancreatic ductal adenocarcinomas (PDACs). Expression of an activated form of KRAS (KrasG12D) in pancreata of mice is sufficient to induce formation of pancreatic intraepithelial neoplasia (PanINs)-a precursor of PDAC. Pancreatitis increases formation of PanINs in mice that express KrasG12D by promoting acinar-to-ductal metaplasia (ADM). We investigated the role of the transcription factor Krüppel-like factor 5 (KLF5) in ADM and KRAS-mediated formation of PanINs. We performed studies in adult mice with conditional disruption of Klf5 (Klf5 fl/fl ) and/or expression of Kras G12D (LSL-Kras G12D ) via Cre ERTM recombinase regulated by an acinar cell-specific promoter (Ptf1a). Activation of Kras G12D and loss of KLF5 was achieved by administration of tamoxifen. Pancreatitis was induced in mice by administration of cerulein; pancreatic tissues were collected, analyzed by histology and immunohistochemistry, and transcriptomes were compared between mice that did or did not express KLF5. We performed immunohistochemical analyses of human tissue microarrays, comparing levels of KLF5 among 96 human samples of PDAC. UN-KC-6141 cells (pancreatic cancer cells derived from Pdx1-Cre;LSL-Kras G12D mice) were incubated with inhibitors of different kinases and analyzed in proliferation assays and by immunoblots. Expression of KLF5 was knocked down with small hairpin RNAs or CRISPR/Cas9 strategies; cells were analyzed in proliferation and gene expression assays, and compared with cells expressing control vectors. Cells were subcutaneously injected into flanks of syngeneic mice and tumor growth was assessed. Of the 96 PDAC samples analyzed, 73% were positive for KLF5 (defined as nuclear staining in more than 5% of tumor cells). Pancreata from Ptf1a-Cre ERTM ;LSL-Kras G12D mice contained ADM and PanIN lesions, which contained high levels of nuclear KLF5 within these structures. In contrast, Ptf1a-Cre ERTM ;LSL-Kras G12D ;Klf5 fl/fl mice formed fewer PanINs. After cerulein administration, Ptf1a-Cre ERTM ;LSL-Kras G12D mice formed more extensive ADM than Ptf1a-Cre ERTM ;LSL-Kras G12D ;Klf5 fl/fl mice. Pancreata from Ptf1a-Cre ERTM ;LSL-Kras G12D ;Klf5 fl/fl mice had increased expression of the tumor suppressor NDRG2 and reduced phosphorylation (activation) of STAT3, compared with Ptf1a-Cre ERTM ;LSL-Kras G12D mice. In UN-KC-6141 cells, PI3K and MEK signaling increased expression of KLF5; a high level of KLF5 increased proliferation. Cells with knockdown of Klf5 had reduced proliferation, compared with control cells, had reduced expression of ductal markers, and formed smaller tumors (71.61 ± 30.79 mm 3 vs 121.44 ± 34.90 mm 3 from control cells) in flanks of mice. Levels of KLF5 are increased in human PDAC samples and in PanINs of Ptf1a-Cre ERTM ;LSL-Kras G12D mice, compared with controls. KLF5 disruption increases expression of NDRG2 and reduces activation of STAT3 and reduces ADM and PanINs formation in mice. Strategies to reduce KLF5 activity might reduce progression of acinar cells from ADM to PanIN and pancreatic tumorigenesis. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Loss of p27Kip¹ promotes metaplasia in the pancreas via the regulation of Sox9 expression.
Jeannot, Pauline; Callot, Caroline; Baer, Romain; Duquesnes, Nicolas; Guerra, Carmen; Guillermet-Guibert, Julie; Bachs, Oriol; Besson, Arnaud
2015-11-03
p27Kip1 (p27) is a negative regulator of proliferation and a tumor suppressor via the inhibition of cyclin-CDK activity in the nucleus. p27 is also involved in the regulation of other cellular processes, including transcription by acting as a transcriptional co-repressor. Loss of p27 expression is frequently observed in pancreatic adenocarcinomas in human and is associated with decreased patient survival. Similarly, in a mouse model of K-Ras-driven pancreatic cancer, loss of p27 accelerates tumor development and shortens survival, suggesting an important role for p27 in pancreatic tumorigenesis. Here, we sought to determine how p27 might contribute to early events leading to tumor development in the pancreas. We found that K-Ras activation in the pancreas causes p27 mislocalization at pre-neoplastic stages. Moreover, loss of p27 or expression of a mutant p27 that does not bind cyclin-CDKs causes the mislocalization of several acinar polarity markers associated with metaplasia and induces the nuclear expression of Sox9 and Pdx1 two transcription factors involved in acinar-to-ductal metaplasia. Finally, we found that p27 directly represses transcription of Sox9, but not that of Pdx1. Thus, our results suggest that K-Ras activation, the earliest known event in pancreatic carcinogenesis, may cause loss of nuclear p27 expression which results in derepression of Sox9, triggering reprogramming of acinar cells and metaplasia.
Chen, Zhuo; Li, Zhijie; Basti, Surendra; Farley, William J; Pflugfelder, Stephen C
2010-11-01
Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCα knockout ((-/-)) mice have impaired ocular surface-lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCα(-/-) mice. In PKCα(+/+) control mice and PKCα(-/-) mice, tear production, osmolarity, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding. Compared with the PKCα(+/+) mice, the PKCα(-/-) mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCα(-/-) mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCα(+/+) mice. The PKCα(-/-) mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCα(-/-) mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration.
Steward, M C; Seo, Y; Rawlings, J M; Case, R M
1990-01-01
1. The diffusive water permeability of epithelial cell membranes in the perfused rabbit mandibular salivary gland was measured at 37 degrees C by a 1H nuclear magnetic resonance relaxation method using an extracellular relaxation reagent, gadolinium diethylenetriaminepentaacetic acid (Gd(DTPA)). 2. In glands perfused with a HEPES-buffered solution containing 10 mmol l-1 Gd(DTPA), the spin-lattice (T1) relaxation of the water protons showed two exponential components. The water compartment responsible for the slower component corresponded in magnitude to 71 +/- 5% of the wet weight of the gland, and was attributed to the exchangeable intracellular water of the acinar cells. 3. The rate constant for water efflux from the cells was estimated to be 4.1 +/- 0.1 s-1 which would be consistent with a diffusive membrane permeability (Pd) of approximately 3 x 10(-3) cm s-1. Stimulation with acetylcholine (10(-6) mol l-1) did not cause any detectable change in membrane water permeability. 4. Since the basolateral membrane probably provides the main pathway for water efflux, the osmotic water permeability of this barrier (expressed per gland) was estimated to be less than 6.2 cm3 s-1. This would be insufficient to account for the generation of a near-isosmotic fluid at the flow rates observed during secretion, and suggests that a substantial fraction of the flow of water occurs via a paracellular route. PMID:1966053
Fukushi, Y
1999-01-01
We studied the heterologous desensitization of muscarinic receptors by ATP in fura-2-loaded rat parotid acinar cells. Exposure to ATP or 3'-o-(4-benzoyl) benzoyl-ATP shortened the duration and decreased the magnitude of acetylcholine-induced Ca2+ release from intracellular Ca2+ stores in a dose-dependent manner. The shortening was observed only in an early stage of desensitization (within 20 s), whereas the decrease in the magnitude of the response was dependent upon the time the cells were exposed to the nucleotides. Atropine induced a profound shortening during the progressive decrease in the magnitude of acetylcholine-induced Ca2+ release. 3'-o-(4-Benzoyl) benzoyl-ATP did not induce an increase in the cytosolic Ca2+ concentration when the cells were incubated in the Ca2+- and Na+-free medium, but it did induce a strong desensitization of muscarinic receptors. The specific protein kinase C inhibitor bisindoylmaleimide resensitized the 3'-o-(4-benzoyl) benzoyl-ATP-treated muscarinic receptors. Phorbol 12-myristate 13-acetate potentiated the desensitization of muscarinic receptors. Ceramides that prevent the activation of phospholipase D resensitized the 3'-o-(4-benzoyl) benzoyl-ATP-treated muscarinic receptors. These results suggest that ATP, acting through P2Z purinoceptor-mediated phospholipase D, may produce a Ca2+-independent protein kinase C. Heterologous desensitization of muscarinic receptors by protein kinase C may shorten the duration and decrease the magnitude of acetylcholine-induced Ca2+ release.
A quantitative analysis of electrolyte exchange in the salivary duct
Catalán, Marcelo A.; Melvin, James E.; Yule, David I.; Crampin, Edmund J.; Sneyd, James
2012-01-01
A healthy salivary gland secretes saliva in two stages. First, acinar cells generate primary saliva, a plasma-like, isotonic fluid high in Na+ and Cl−. In the second stage, the ducts exchange Na+ and Cl− for K+ and HCO3−, producing a hypotonic final saliva with no apparent loss in volume. We have developed a tool that aims to understand how the ducts achieve this electrolyte exchange while maintaining the same volume. This tool is part of a larger multiscale model of the salivary gland and can be used at the duct or gland level to investigate the effects of genetic and chemical alterations. In this study, we construct a radially symmetric mathematical model of the mouse salivary gland duct, representing the lumen, the cell, and the interstitium. For a given flow and primary saliva composition, we predict the potential differences and the luminal and cytosolic concentrations along a duct. Our model accounts well for experimental data obtained in wild-type animals as well as knockouts and chemical inhibitors. Additionally, the luminal membrane potential of the duct cells is predicted to be very depolarized compared with acinar cells. We investigate the effects of an electrogenic vs. electroneutral anion exchanger in the luminal membrane on concentration and the potential difference across the luminal membrane as well as how impairing the cystic fibrosis transmembrane conductance regulator channel affects other ion transporting mechanisms. Our model suggests the electrogenicity of the anion exchanger has little effect in the submandibular duct. PMID:22899825
ERIC Educational Resources Information Center
Liang, Willmann
2009-01-01
This teaching article uses the report by Kwan et al., "Effects of methacholine, thapsigargin, and La[superscript 3+] on plasmalemmal and intracellular Ca[superscript 2+] transport in lacrimal acinar cells," where the effects of Ca[superscript 2+]-mobilizing agents in regulating Ca[superscript 2+] fluxes were examined under various conditions.…
Vinayek, R; Patto, R J; Menozzi, D; Gregory, J; Mrozinski, J E; Jensen, R T; Gardner, J D
1993-03-10
Based on the effects of monensin on binding of 125I-CCK-8 and its lack of effect on CCK-8-stimulated amylase secretion we previously proposed that pancreatic acinar cells possess three classes of CCK receptors: high-affinity receptors, low-affinity receptors and very low-affinity receptors [1]. In the present study we treated pancreatic acini with carbachol to induce a complete loss of high-affinity CCK receptors and then examined the action of CCK-8 on inositol trisphosphate IP3(1,4,5), cytosolic calcium and amylase secretion in an effort to confirm and extend our previous hypothesis. We found that first incubating pancreatic acini with 10 mM carbachol decreased binding of 125I-CCK-8 measured during a second incubation by causing a complete loss of high-affinity CCK receptors with no change in the low-affinity CCK receptors. Carbachol treatment of acini, however, did not alter the action of CCK-8 on IP3(1,4,5), cytosolic calcium or amylase secretion or the action of CCK-JMV-180 on amylase secretion or on the supramaximal inhibition of amylase secretion caused by CCK-8. The present findings support our previous hypothesis that pancreatic acinar cells possess three classes of CCK receptors and suggest that high-affinity CCK receptors do not mediate the action of CCK-8 on enzyme secretion, that low-affinity CCK receptors may mediate the action of CCK on cytosolic calcium that does not involve IP3(1,4,5) and produce the upstroke of the dose-response curve for CCK-8-stimulated amylase secretion and that very low-affinity CCK receptors mediate the actions of CCK on IP3(1,4,5) and cytosolic calcium and produce the downstroke of the dose-response curve for CCK-8-stimulated amylase secretion. Moreover, CCK-JMV-180 is a full agonist for stimulating amylase secretion by acting at low-affinity CCK receptors and is an antagonist at very low-affinity CCK receptors.
Mixed acinar-neuroendocrine-ductal carcinoma of the pancreas: a tale of three lineages.
Anderson, Mark J; Kwong, Christina A; Atieh, Mohammed; Pappas, Sam G
2016-06-02
Most pancreatic cancers arise from a single cell type, although mixed pancreatic carcinomas represent a rare exception. The rarity of these aggressive malignancies and the limitations of fine-needle aspiration (FNA) pose significant barriers to diagnosis and appropriate management. We report a case of a 54-year-old man presenting with abdominal pain, jaundice and a hypodense lesion within the uncinate process on CT. FNA suggested poorly differentiated adenocarcinoma, which was subsequently resected via pancreaticoduodenectomy. Pathological analysis yielded diagnosis of invasive mixed acinar-neuroendocrine-ductal pancreatic carcinoma. Given the rare and deadly nature of these tumours, clinicians must be aware of their pathophysiology and do practice with a high degree of clinical suspicion, when appropriate. Surgical resection and thorough pathological analysis with immunohistochemical staining and electron microscopy remain the standards of care for mixed pancreatic tumours without gross evidence of metastasis. Diligent characterisation of the presentation and histological findings associated with these neoplasms should continue in order to promote optimal diagnostic and therapeutic strategies. 2016 BMJ Publishing Group Ltd.
Mitochondrial function and malfunction in the pathophysiology of pancreatitis.
Gerasimenko, Oleg V; Gerasimenko, Julia V
2012-07-01
As a primary energy producer, mitochondria play a fundamental role in pancreatic exocrine physiology and pathology. The most frequent aetiology of acute pancreatitis is either gallstones or heavy alcohol consumption. Repeated episodes of acute pancreatitis can result in the development of chronic pancreatitis and increase the lifetime risk of pancreatic cancer 100-fold. Pancreatic cancer is one of the most common causes of cancer mortality with only about 3-4 % of patients surviving beyond 5 years. It has been shown that acute pancreatitis involves Ca²⁺ overload and overproduction of reactive oxygen species in pancreatic acinar cells. Both factors significantly affect mitochondria and lead to cell death. The pathogenesis of inflammation in acute and chronic pancreatitis is tightly linked to the induction of necrosis and apoptosis. There is currently no specific therapy for pancreatitis, but recent findings of an endogenous protective mechanism against Ca²⁺ overload--and particularly the potential to boost this protection--bring hope of new therapeutic approaches.
Phospho-Aspirin (MDC-22) Prevents Pancreatic Carcinogenesis in Mice.
Mattheolabakis, George; Papayannis, Ioannis; Yang, Jennifer; Vaeth, Brandon M; Wang, Ruixue; Bandovic, Jela; Ouyang, Nengtai; Rigas, Basil; Mackenzie, Gerardo G
2016-07-01
Pancreatic cancer is a deadly disease with a dismal 5-year survival rate of <6%. The currently limited treatment options for pancreatic cancer underscore the need for novel chemopreventive and therapeutic agents. Accumulating evidence indicates that aspirin use is associated with a decreased risk of pancreatic cancer. However, the anticancer properties of aspirin are restricted by its gastrointestinal toxicity and its limited efficacy. Therefore, we developed phospho-aspirin (MDC-22), a novel derivative of aspirin, and evaluated its chemopreventive efficacy in preclinical models of pancreatic cancer. Phospho-aspirin inhibited the growth of human pancreatic cancer cell lines 8- to 12-fold more potently than aspirin; based on the 24-hour IC50 values. In a Panc-1 xenograft model, phospho-aspirin, at a dose of 100 mg/kg/d 5 times per week for 30 days, reduced tumor growth by 78% (P < 0.01 vs. vehicle control). Furthermore, phospho-aspirin prevented pancreatitis-accelerated acinar-to-ductal metaplasia in mice with activated Kras. In p48-Cre;Kras(G12D) mice, cerulein treatment (6 hourly injections two times per week for 3 weeks) led to a significant increase in ductal metaplasia, replacing the majority of the exocrine compartment. Administration of phospho-aspirin 100 mg/kg/day five times per week for 21 days (starting on the first day of cerulein injection) inhibited the acinar-to-ductal metaplasia, reducing it by 87% (P < 0.01, vs. cerulein-treated control). Phospho-aspirin appeared to be safe, with the animals showing no signs of toxicity during treatment. Mechanistically, phospho-aspirin inhibited EGFR activation in pancreatic cancer, an effect consistently observed in pancreatic cancer cells, primary acinar explants and in vivo In conclusion, our findings indicate that phospho-aspirin has strong anticancer efficacy in preclinical models of pancreatic cancer, warranting its further evaluation. Cancer Prev Res; 9(7); 624-34. ©2016 AACR. ©2016 American Association for Cancer Research.
Promising Gene Therapeutics for Salivary Gland Radiotoxicity
Nair, Renjith Parameswaran; Sunavala-Dossabhoy, Gulshan
2017-01-01
More than 0.5 million new cases of head and neck cancer are diagnosed worldwide each year, and approximately 75% of them are treated with radiation alone or in combination with other cancer treatments. A majority of patients treated with radiotherapy develop significant oral off-target effects because of the unavoidable irradiation of normal tissues. Salivary glands that lie within treatment fields are often irreparably damaged and a decline in function manifests as dry mouth or xerostomia. Limited ability of the salivary glands to regenerate lost acinar cells makes radiation-induced loss of function a chronic problem that affects the quality of life of the patients well beyond the completion of radiotherapy. The restoration of saliva production after irradiation has been a daunting challenge, and this review provides an overview of promising gene therapeutics that either improve the gland’s ability to survive radiation insult, or alternately, restore fluid flow after radiation. The salient features and shortcomings of each approach are discussed. PMID:28286865
Liu, Xibao; Gong, Baijuan; de Souza, Lorena Brito; Ong, Hwei Ling; Subedi, Krishna P.; Cheng, Kwong Tai; Swaim, William; Zheng, Changyu; Mori, Yasuo; Ambudkar, Indu S.
2017-01-01
Store-operated Ca2+ entry (SOCE) is critical for salivary gland fluid secretion. We report that radiation treatment caused persistent salivary gland dysfunction by activating a TRPM2-dependent mitochondrial pathway, leading to caspase-3–mediated cleavage of stromal interaction molecule 1 (STIM1) and loss of SOCE. After irradiation, acinar cells from the submandibular glands of TRPM2+/+, but not those from TRPM2−/− mice, displayed an increase in the concentrations of mitochondrial Ca2+ and reactive oxygen species, a decrease in mitochondrial membrane potential, and activation of caspase-3, which was associated with a sustained decrease in STIM1 abundance and attenuation of SOCE. In a salivary gland cell line, silencing the mitochondrial Ca2+ uniporter or caspase-3 or treatment with inhibitors of TRPM2 or caspase-3 prevented irradiation-induced loss of STIM1 and SOCE. Expression of exogenous STIM1 in the salivary glands of irradiated mice increased SOCE and fluid secretion. We suggest that targeting the mechanisms underlying the loss of STIM1 would be a potentially useful approach for preserving salivary gland function after radiation therapy. PMID:28588080
Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi
2015-01-01
Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057
CCPG1, a cargo receptor required for reticulophagy and endoplasmic reticulum proteostasis.
Smith, Matthew D; Wilkinson, Simon
2018-06-19
The importance of selective macroautophagy/autophagy in cellular health is increasingly evident. The selective degradation of portions of the endoplasmic reticulum (ER), or reticulophagy, is an emerging example but requires further mechanistic detail and broad evidence of physiological relevance. In a recent study, we identified CCPG1, an ER-resident transmembrane protein that can bind to Atg8-family proteins and, independently and discretely, to RB1CC1/FIP200. Both of these interactions are required to facilitate CCPG1's function as a reticulophagy cargo receptor. CCPG1 transcripts are inducible by ER stress, providing a direct link between ER stress and reticulophagy. In vivo, CCPG1 prevents the hyper-accumulation of insoluble protein within the ER lumen of pancreatic acinar cells and alleviates ER stress. Accordingly, CCPG1 loss sensitizes the exocrine pancreas to tissue injury.
Labò, G; Vezzadini, P; Gullo, L; Sternini, C; Bonora, G
1983-08-01
We studied the effect of bombesin (9 ng/kg X min for 30 min by intravenous infusion) on serum immunoreactive trypsin in healthy subjects and in chronic pancreatitis patients. Bombesin administration caused a marked and significant increase of serum immunoreactive trypsin concentration in healthy subjects. The increase occurred in the first 15 min after the beginning of bombesin infusion and persisted for the duration of the study (2 h). In patients with chronic pancreatitis, the increase was much less pronounced. In these patients, the integrated immunoreactive trypsin response to bombesin was significantly correlated with bicarbonate, lipase, and chymotrypsin outputs into the duodenum. The response of serum immunoreactive trypsin to bombesin stimulation seems to vary according to the degree of pancreatic exocrine dysfunction and to reflect the functional capacity of acinar cell mass.
K+ transport and membrane potentials in isolated rat parotid acini
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nauntofte, B.; Dissing, S.
1988-10-01
42K+ transport properties of isolated rat parotid acini were characterized concomitant with measurements of membrane potentials (Em) by means of the fluorescent dye diSC3-(5). In unstimulated acini suspended in a 5 mM K+ buffer, Em was governed by the K+ and Cl- gradients and amounted to about -59 mV, a value that remained unaffected on cholinergic stimulation. In unstimulated acini, 42K+ influx was largely mediated by the Na+-K+ pump, and the residual influxes were mediated by a bumetanide-sensitive component (cotransport system) and by K+ channels. Efflux of 42K+ was largely mediated by a bumetanide-sensitive component and by K+ channels. Inmore » the unstimulated state, the cotransport system was mediating K+-K+ exchange without contributing to the net uptake of K+. Within 10 s after stimulation, a approximately 10-fold increase in the acinar K+ conductance (gK) occurred, resulting in a rapid net efflux of K+ that amounted to approximately 3.8 mmol.l cells-1.s-1. Measurements of 42K+ fluxes as a function of the external K+ concentration revealed that in the stimulated state gK increases when external K+ is raised from 0.7 to 10 mM, consistent with an activation of acinar gK by the binding of external K+ to the channel. 42K+ flux ratios as well as the effect of the K+ channel inhibitor from scorpion venom (LQV) suggest that approximately 90% of K+ transport in the stimulated state is mediated by ''maxi'' K+ channels.« less
Kobayashi, Takashi; Manivel, Juan C; Bellin, Melena D; Carlson, Annelisa M; Moran, Antoinette; Freeman, Martin L; Hering, Bernhard J; Sutherland, David E R
2010-01-01
The probability of insulin independence after intraportal islet autotransplantation (IAT) for chronic pancreatitis (CP) treated by total pancreatectomy (TP) relates to the number of islets isolated from the excised pancreas. Our goal was to correlate the islet yield with the histopathologic findings and the clinical parameters in pediatric (age, <19 years) CP patients undergoing TP-IAT. Eighteen pediatric CP patients aged 5 to 18 years (median, 15.6 years) who underwent TP-IAT were studied. Demographics and clinical history came from medical records. Histopathologic specimens from the pancreas were evaluated for presence and severity of fibrosis, acinar cell atrophy, inflammation, and nesidioblastosis by a surgical pathologist blinded to clinical information. Fibrosis and acinar atrophy negatively correlated with islet yield (P = 0.02, r = -0.50), particularly in hereditary CP (P = 0.01). Previous duct drainage surgeries also had a strong negative correlation (P = 0.01). Islet yield was better in younger (preteen) children (P = 0.02, r = -0.61) and in those with pancreatitis of shorter duration (P = 0.04, r = -0.39). For preserving beta cell mass, it is best to perform TP-IAT early in the course of CP in children, and prior drainage procedures should be avoided to maximize the number of islets available, especially in hereditary disease.
X-ray microanalysis of exocrine glands in animal models for cystic fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, R.M.R.; Roomans, G.M.
1985-01-01
Elemental distribution and ultrastructure of the submandibular gland, the parotid gland and the pancreas were investigated in three suggested animal models of the disease cystic fibrosis: the chronically reserpinized rat, the chronically isoproterenol-treated rat, and the chronically pilocarpine-treated rat. To elucidate the cellular mechanism underlying the effects of these treatments, chronic effects of specific alpha - and beta -adrenergic agonists, as well as acute effects of reserpine and various agonists were also investigated. Reserpine, isoproterenol, and pilocarpine cause an increase in the calcium concentration in submandibular gland acinar cells, due to an increased calcium content of the intracellular mucus. Inmore » the parotid gland, reserpine and isoproterenol cause a decrease of the calcium concentration in acinar cells, due to a lower calcium content of the zymogen granules. In the submandibular gland, a decreased cellular Na concentration was noted after chronic treatment with isoproterenol or pilocarpine, and after a single dose of reserpine or isoproterenol. Ultrastructural changes in the exocrine glands investigated included excessive accumulation of intracellular secretory material and formation of abnormal uncondensed secretion granules. A common pattern in the animal models appears to be (1) inhibition of secretion resulting in intracellular accumulation of secretory material, (2) synthesis of secretory macromolecules with altered cation-binding properties.« less
NASA Astrophysics Data System (ADS)
dos Reis, Edmyr R.; Nicola, Ester M. D.; Metze, Konradin; Nicola, Jorge H.
2000-06-01
In rats, the Harderian Gland secret Protoporphirin IX which is retained at acinar lumina. Since this photosensitizer is important for PDT of malignant tumors, we propose to study this gland as a model to help understanding PDT with endogenous photosensitizers. Twenty Wistar SPF adult rats were submitted to surgical exposure of both Harderian glands, revealing red fluorescence upon UV, characterizing the protoporphirin IX presence. After that, one gland of each pair (one kept as control) was irradiated with an 8 mW HeNe (6328 angstrom) for 45 minutes, delivering about 2.7 joules/mm2. After 24 hours a group of 10 animals were scarified and the glands removed for histological analysis. The remaining animals were subjected to the same procedure but the glands were removed immediately after laser treatment. Histological and fluorescence analysis immediately after laser irradiation showed cell fragmentation with loss of acinar architecture with diffusion of protoporphirin in the cytoplasm of damaged cells, as well as interstitial edema. After 24 hours these alterations were more pronounced with accentuated loss of intraluminal protoporphirin and beginning of leukocytic demarcation of necrotic areas. The innate Harderian glands of rats, exposed to HeNe laser, showed a similar behavior as tumor tissue under PDT.
A dynamic model of saliva secretion
Palk, Laurence; Sneyd, James; Shuttleworth, Trevor J.; Yule, David I.; Crampin, Edmund J.
2010-01-01
We construct a mathematical model of the parotid acinar cell with the aim of investigating how the distribution of K+ and Cl− channels affects saliva production. Secretion of fluid is initiated by Ca2+ signals acting the Ca2+ dependent K+ and Cl− channels. The opening of these channels facilitates the movement of Cl− ions into the lumen which water follows by osmosis. We use recent results into both the release of Ca2+ from internal stores via the inositol (1,4,5)-trisphosphate receptor (IP3R) and IP3 dynamics to create a physiologically realistic Ca2+ model which is able to recreate important experimentally observed behaviours seen in parotid acinar cells. We formulate an equivalent electrical circuit diagram for the movement of ions responsible for water flow which enables us to calculate and include distinct apical and basal membrane potentials to the model. We show that maximum saliva production occurs when a small amount of K+ conductance is located at the apical membrane, with the majority in the basal membrane. The maximum fluid output is found to coincide with a minimum in the apical membrane potential. The traditional model whereby all Cl− channels are located in the apical membrane is shown to be the most efficient Cl− channel distribution. PMID:20600135
Proglucagon-Derived Peptides Do Not Significantly Affect Acute Exocrine Pancreas in Rats
Akalestou, Elina; Christakis, Ioannis; Solomou, Antonia M.; Minnion, James S.; Rutter, Guy A.; Bloom, Stephen R.
2015-01-01
Objectives Reports have suggested a link between treatment with glucagon-like peptide 1 (GLP-1) analogues and an increased risk of pancreatitis. Oxyntomodulin, a dual agonist of both GLP-1 and glucagon receptors, is currently being investigated as a potential anti-obesity therapy, but little is known about its pancreatic safety. The aim of this study was to investigate the acute effect of oxyntomodulin and other proglucagon-derived peptides on the rat exocrine pancreas. Methods GLP-1, oxyntomodulin, glucagon and exendin-4 were infused into anaesthetised rats to measure plasma amylase concentration changes. Additionally, the effect of each peptide on both amylase release and proliferation in rat pancreatic acinar (AR42J) and primary isolated ductal cells was determined. Results Plasma amylase did not increase post peptide infusion, compared to vehicle and cholecystokinin (CCK); however, oxyntomodulin inhibited plasma amylase when co-administered with CCK. None of the peptides caused a significant increase in proliferation rate or amylase secretion from acinar and ductal cells. Conclusions The investigated peptides do not have an acute effect on the exocrine pancreas with regard to proliferation and plasma amylase, when administered individually. Oxyntomodulin appears to be a potent inhibitor of amylase release, potentially making it a safer anti-obesity agent regarding pancreatitis, compared to GLP-1 agonists. PMID:26731187
Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra
2015-01-01
The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression. PMID:25723869
1996-01-01
Mature adult parenchymal hepatocytes, typically of restricted capacity to proliferate in culture, can now enter into clonal growth under the influence of hepatocyte growth factor (scatter factor) (HGF/SF), epidermal growth factor (EGF), and transforming growth factor alpha (TGFalpha) in the presence of a new chemically defined medium (HGM). The expanding populations of hepatocytes lose expression of hepatocyte specific genes (albumin, cytochrome P450 IIB1), acquire expression of markers expressed by bile duct epithelium (cytokeratin 19), produce TGFalpha and acidic FGF and assume a very simplified morphologic phenotype by electron microscopy. A major change associated with this transition is the decrease in ratio between transcription factors C/EBPalpha and C/EBPbeta, as well as the emergence in the proliferating hepatocytes of transcription factors AP1, NFkappaB. The liver associated transcription factors HNFI, HNF3, and HNF4 are preserved throughout this process. After population expansion and clonal growth, the proliferating hepatocytes can return to mature hepatocyte phenotype in the presence of EHS gel (Matrigel). This includes complete restoration of electron microscopic structure and albumin expression. The hepatocyte cultures however can instead be induced to form acinar/ductular structures akin to bile ductules (in the presence of HGF/SF and type I collagen). These transformations affect the entire population of the hepatocytes and occur even when DNA synthesis is inhibited. Similar acinar/ductular structures are seen in embryonic liver when HGF/SF and its receptor are expressed at high levels. These findings strongly support the hypothesis that mature hepatocytes can function as or be a source of bipotential facultative hepatic stem cells (hepatoblasts). These studies also provide evidence for the growth factor and matrix signals that govern these complex phenotypic transitions of facultative stem cells which are crucial for recovery from acute and chronic liver injury. PMID:8601590
Roth, Christian J; Ismail, Mahmoud; Yoshihara, Lena; Wall, Wolfgang A
2017-01-01
In this article, we propose a comprehensive computational model of the entire respiratory system, which allows simulating patient-specific lungs under different ventilation scenarios and provides a deeper insight into local straining and stressing of pulmonary acini. We include novel 0D inter-acinar linker elements to respect the interplay between neighboring alveoli, an essential feature especially in heterogeneously distended lungs. The model is applicable to healthy and diseased patient-specific lung geometries. Presented computations in this work are based on a patient-specific lung geometry obtained from computed tomography data and composed of 60,143 conducting airways, 30,072 acini, and 140,135 inter-acinar linkers. The conducting airways start at the trachea and end before the respiratory bronchioles. The acini are connected to the conducting airways via terminal airways and to each other via inter-acinar linkers forming a fully coupled anatomically based respiratory model. Presented numerical examples include simulation of breathing during a spirometry-like test, measurement of a quasi-static pressure-volume curve using a supersyringe maneuver, and volume-controlled mechanical ventilation. The simulations show that our model incorporating inter-acinar dependencies successfully reproduces physiological results in healthy and diseased states. Moreover, within these scenarios, a deeper insight into local pressure, volume, and flow rate distribution in the human lung is investigated and discussed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Yokode, Masataka; Itai, Ryosuke; Yamashita, Yukimasa; Zen, Yoh
2017-11-01
Acinar cell carcinomas (ACCs) and mixed acinar-endocrine carcinomas (MAECs) of the pancreas are rare, accounting for only 1% of pancreatic tumors. Although both typically present at an advanced stage, chemotherapeutic regimes have not yet been standardized. A 65-year-old man presented with a large mass in the pancreatic tail with multiple liver metastases. He was initially treated with gemcitabine for suspected ductal carcinoma of the pancreas, but no response was observed. S-1, administered as second-line chemotherapy, showed an approximately 38% reduction in the size of the primary tumor and metastatic deposits with therapeutic effects being maintained for 12 months. When the tumor progressed again, he underwent a percutaneous liver biopsy, which led to the diagnosis of MAEC. Combination therapy with cisplatin and etoposide targeting the endocrine component was administered, and this was based on the endocrine component potentially being less sensitive to S-1 than the ACC element. However, therapy was stopped due to the development of neutropenia, and the patient is currently receiving best supportive care. Given the previous studies suggested that S-1 is more effective for ACCs than gemcitabine, MAECs may also respond to S-1 chemotherapy, similar to ACCs. Another potential interpretation is that S-1 was effective when the condition was ACC, and eventually showed decreased effectiveness when the condition shifted to MAEC. Future studies are needed to conclude whether S-1 chemotherapy truly works against MAECs or induces endocrine differentiation in ACCs as a part of the drug-resistance process.
[Histochemical study of the digestive organs of rats after a flight on "Kosmos-605"].
Shubich, M G; Goriacheva, L L; Dudetskiĭ, V I; Lutsenko, N M; Mogil'naia, G M
1977-01-01
The histochemical study of the stomach, small and large intestines and pancreas of rats flown aboard the biosatellite Cosmos-605 as well as of synchronous and vivarium controls demonstrated a significant decline in the mucine producing capacity of epithelial cells of the stomach of the flight rats on the R + 1 day. The study showed an increased content of sialo- and sulphosaccharides in goblet cells of cryptae of large intestine and a reduced content of free cation protein in the acinar cells of the pancreas of flight rats. The changes were transient and disappeared by the R + 26 day.
NASA Astrophysics Data System (ADS)
Selvam, Shivaram
The most common cause of ocular morbidity in developed countries is dry eye, many cases of which are due to lacrimal insufficiency. It has been established that lacrimal insufficiency results from processes caused by both immune-related and non-immune related events such as Sjogren's syndrome, Stevens-Johnson syndrome, chemical and thermal injuries and ocular cicatricial pemphigoid. Patients with these conditions would benefit from repair of their damaged lacrimal tissue by the creation of a replacement for the lacrimal gland. The new field of tissue engineering built on the interface between principles and methods of the life sciences with those of engineering to develop biocompatible materials has created the possibility for repairing or replacing damaged tissues. This thesis explores the use of tissue engineering principles for the development of a tissue-engineered lacrimal gland. This thesis also contributes to the development of a novel model for addressing lacrimal gland physiology and epithelial fluid transport. The first part of the research work focused on the evaluation of morphological and physiological properties of purified lacrimal gland acinar cells (pLGACs) cultured on various biopolymers: silicone, collagen I, poly-D,L-lactide-co-glycolide (PLGA; 85:15 and 50:50), and poly-L-lactic acid (PLLA) in the presence and absence of an extracellular matrix, MatrigelRTM. Results indicated that PLLA demonstrated the best support expression of acinar cell-like morphology. The second part demonstrated the ex vivo reconstitution of an electrophysiologically functional lacrimal gland tissue on porous polyester membrane scaffolds. Results showed that pLGACs were capable of establishing continuous epithelial monolayers that generate active ionic fluxes consistent with current models for Na +-dependent Cl-- secretion. The third part outlined the fabrication of porous PLLA membranes, the optimal biomaterial for culturing lacrimal epithelial cells. Microporous PLLA-Polyethylene glycol (PEG) blend membranes (mpPLLAbm) with interconnected pores were prepared by the water extraction of PEG from solution cast blend membranes using the solvent-cast/particulate leaching technique. Diffusion experiments on mpPLLAbm (57.1/42.9 wt%) were performed to demonstrate that the membrane was permeable to glucose, L-tryptophan, and dextran.
ERK activation is required for CCK-mediated pancreatic adaptive growth in mice
Holtz, Bryan J.; Lodewyk, Kevin B.; Sebolt-Leopold, Judith S.; Ernst, Stephen A.
2014-01-01
High levels of cholecystokinin (CCK) can stimulate pancreatic adaptive growth in which mature acinar cells divide, leading to enhanced pancreatic mass with parallel increases in protein, DNA, RNA, and digestive enzyme content. Prolonged release of CCK can be induced by feeding trypsin inhibitor (TI) to disrupt normal feedback control. This leads to exocrine growth in a CCK-dependent manner. The extracellular signal-related kinase (ERK) pathway regulates many proliferative processes in various tissues and disease models. The aim of this study was to evaluate the role of ERK signaling in pancreatic adaptive growth using the MEK inhibitors PD-0325901 and trametinib (GSK-1120212). It was determined that PD-0325901 given two times daily by gavage or mixed into powdered chow was an effective and specific inhibitor of ERK signaling in vivo. TI-containing chow led to a robust increase in pancreatic mass, protein, DNA, and RNA content. This pancreatic adaptive growth was blocked in mice fed chow containing the MEK inhibitors. PD-0325901 blocked TI-induced ERK-regulated early response genes, cell-cycle proteins, and mitogenesis by acinar cells. It was determined that ERK signaling is necessary for the initiation of pancreatic adaptive growth but not necessary to maintain it. PD-0325901 blocked adaptive growth when given before cell-cycle initiation but not after mitogenesis had been established. Furthermore, GSK-1120212, a chemically distinct inhibitor of the ERK pathway that is now approved for clinical use, inhibited growth similar to PD-0325901. These data demonstrate that the ERK pathway is required for CCK-stimulated pancreatic adaptive growth. PMID:25104499
Altered Morphology and Function of the Lacrimal Functional Unit in Protein Kinase Cα Knockout Mice
Chen, Zhuo; Li, Zhijie; Basti, Surendra; Farley, William J.
2010-01-01
Purpose. Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCα knockout (−/−) mice have impaired ocular surface–lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCα−/− mice. Methods. In PKCα+/+ control mice and PKCα−/− mice, tear production, osmolarity, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding. Results. Compared with the PKCα+/+ mice, the PKCα−/− mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCα−/− mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCα+/+ mice. Conclusions. The PKCα−/− mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCα−/− mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration. PMID:20505191
Pal, Anupama; Kleer, Celina G
2014-04-25
Invasive breast carcinomas are a group of malignant epithelial tumors characterized by the invasion of adjacent tissues and propensity to metastasize. The interplay of signals between cancer cells and their microenvironment exerts a powerful influence on breast cancer growth and biological behavior(1). However, most of these signals from the extracellular matrix are lost or their relevance is understudied when cells are grown in two dimensional culture (2D) as a monolayer. In recent years, three dimensional (3D) culture on a reconstituted basement membrane has emerged as a method of choice to recapitulate the tissue architecture of benign and malignant breast cells. Cells grown in 3D retain the important cues from the extracellular matrix and provide a physiologically relevant ex vivo system(2,3). Of note, there is growing evidence suggesting that cells behave differently when grown in 3D as compared to 2D(4). 3D culture can be effectively used as a means to differentiate the malignant phenotype from the benign breast phenotype and for underpinning the cellular and molecular signaling involved(3). One of the distinguishing characteristics of benign epithelial cells is that they are polarized so that the apical cytoplasm is towards the lumen and the basal cytoplasm rests on the basement membrane. This apico-basal polarity is lost in invasive breast carcinomas, which are characterized by cellular disorganization and formation of anastomosing and branching tubules that haphazardly infiltrates the surrounding stroma. These histopathological differences between benign gland and invasive carcinoma can be reproduced in 3D(6,7). Using the appropriate read-outs like the quantitation of single round acinar structures, or differential expression of validated molecular markers for cell proliferation, polarity and apoptosis in combination with other molecular and cell biology techniques, 3D culture can provide an important tool to better understand the cellular changes during malignant transformation and for delineating the responsible signaling.
Biocompatible tissue scaffold compliance promotes salivary gland morphogenesis and differentiation.
Peters, Sarah B; Naim, Nyla; Nelson, Deirdre A; Mosier, Aaron P; Cady, Nathaniel C; Larsen, Melinda
2014-06-01
Substrate compliance is reported to alter cell phenotype, but little is known about the effects of compliance on cell development within the context of a complex tissue. In this study, we used 0.48 and 19.66 kPa polyacrylamide gels to test the effects of the substrate modulus on submandibular salivary gland development in culture and found a significant decrease in branching morphogenesis in explants grown on the stiff 19.66 kPa gels relative to those grown on the more physiologically compliant 0.48 kPa gels. While proliferation and apoptosis were not affected by the substrate modulus, tissue architecture and epithelial acinar cell differentiation were profoundly perturbed by aberrant, high stiffness. The glands cultured on 0.48 kPa gels were similar to developing glands in morphology and expression of the differentiation markers smooth muscle alpha-actin (SM α-actin) in developing myoepithelial cells and aquaporin 5 (AQP5) in proacinar cells. At 19.66 kPa, however, tissue morphology and the expression and distribution of SM α-actin and AQP5 were disrupted. Significantly, aberrant gland development at 19.66 kPa could be rescued by both mechanical and chemical stimuli. Transfer of glands from 19.66 to 0.48 kPa gels resulted in substantial recovery of acinar structure and differentiation, and addition of exogenous transforming growth factor beta 1 at 19.66 kPa resulted in a partial rescue of morphology and differentiation within the proacinar buds. These results indicate that environmental compliance is critical for organogenesis, and suggest that both mechanical and chemical stimuli can be exploited to promote organ development in the contexts of tissue engineering and organ regeneration.
Biocompatible Tissue Scaffold Compliance Promotes Salivary Gland Morphogenesis and Differentiation
Peters, Sarah B.; Naim, Nyla; Nelson, Deirdre A.; Mosier, Aaron P.; Cady, Nathaniel C.
2014-01-01
Substrate compliance is reported to alter cell phenotype, but little is known about the effects of compliance on cell development within the context of a complex tissue. In this study, we used 0.48 and 19.66 kPa polyacrylamide gels to test the effects of the substrate modulus on submandibular salivary gland development in culture and found a significant decrease in branching morphogenesis in explants grown on the stiff 19.66 kPa gels relative to those grown on the more physiologically compliant 0.48 kPa gels. While proliferation and apoptosis were not affected by the substrate modulus, tissue architecture and epithelial acinar cell differentiation were profoundly perturbed by aberrant, high stiffness. The glands cultured on 0.48 kPa gels were similar to developing glands in morphology and expression of the differentiation markers smooth muscle alpha-actin (SM α-actin) in developing myoepithelial cells and aquaporin 5 (AQP5) in proacinar cells. At 19.66 kPa, however, tissue morphology and the expression and distribution of SM α-actin and AQP5 were disrupted. Significantly, aberrant gland development at 19.66 kPa could be rescued by both mechanical and chemical stimuli. Transfer of glands from 19.66 to 0.48 kPa gels resulted in substantial recovery of acinar structure and differentiation, and addition of exogenous transforming growth factor beta 1 at 19.66 kPa resulted in a partial rescue of morphology and differentiation within the proacinar buds. These results indicate that environmental compliance is critical for organogenesis, and suggest that both mechanical and chemical stimuli can be exploited to promote organ development in the contexts of tissue engineering and organ regeneration. PMID:24410370
The Role of Nerve Growth Factor (NGF) and Its Precursor Forms in Oral Wound Healing
Schenck, Karl; Schreurs, Olav; Hayashi, Katsuhiko; Helgeland, Kristen
2017-01-01
Nerve growth factor (NGF) and its different precursor forms are secreted into human saliva by salivary glands and are also produced by an array of cells in the tissues of the oral cavity. The major forms of NGF in human saliva are forms of pro-nerve growth factor (pro-NGF) and not mature NGF. The NGF receptors tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptor (p75NTR) are widely expressed on cells in the soft tissues of the human oral cavity, including keratinocytes, endothelial cells, fibroblasts and leukocytes, and in ductal and acinar cells of all types of salivary glands. In vitro models show that NGF can contribute at most stages in the oral wound healing process: restitution, cell survival, apoptosis, cellular proliferation, inflammation, angiogenesis and tissue remodeling. NGF may therefore take part in the effective wound healing in the oral cavity that occurs with little scarring. As pro-NGF forms appear to be the major form of NGF in human saliva, efforts should be made to study its function, specifically in the process of wound healing. In addition, animal and clinical studies should be initiated to examine if topical application of pro-NGF or NGF can be a therapy for chronic oral ulcerations and wounds. PMID:28208669
The Role of Nerve Growth Factor (NGF) and Its Precursor Forms in Oral Wound Healing.
Schenck, Karl; Schreurs, Olav; Hayashi, Katsuhiko; Helgeland, Kristen
2017-02-11
Nerve growth factor (NGF) and its different precursor forms are secreted into human saliva by salivary glands and are also produced by an array of cells in the tissues of the oral cavity. The major forms of NGF in human saliva are forms of pro-nerve growth factor (pro-NGF) and not mature NGF. The NGF receptors tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptor (p75 NTR ) are widely expressed on cells in the soft tissues of the human oral cavity, including keratinocytes, endothelial cells, fibroblasts and leukocytes, and in ductal and acinar cells of all types of salivary glands. In vitro models show that NGF can contribute at most stages in the oral wound healing process: restitution, cell survival, apoptosis, cellular proliferation, inflammation, angiogenesis and tissue remodeling. NGF may therefore take part in the effective wound healing in the oral cavity that occurs with little scarring. As pro-NGF forms appear to be the major form of NGF in human saliva, efforts should be made to study its function, specifically in the process of wound healing. In addition, animal and clinical studies should be initiated to examine if topical application of pro-NGF or NGF can be a therapy for chronic oral ulcerations and wounds.
Role of Orai1 and store-operated calcium entry in mouse lacrimal gland signalling and function.
Xing, Juan; Petranka, John G; Davis, Felicity M; Desai, Pooja N; Putney, James W; Bird, Gary S
2014-03-01
Lacrimal glands function to produce an aqueous layer, or tear film, that helps to nourish and protect the ocular surface. Lacrimal glands secrete proteins, electrolytes and water, and loss of gland function can result in tear film disorders such as dry eye syndrome, a widely encountered and debilitating disease in ageing populations. To combat these disorders, understanding the underlying molecular signalling processes that control lacrimal gland function will give insight into corrective therapeutic approaches. Previously, in single lacrimal cells isolated from lacrimal glands, we demonstrated that muscarinic receptor activation stimulates a phospholipase C-coupled signalling cascade involving the inositol trisphosphate-dependent mobilization of intracellular calcium and the subsequent activation of store-operated calcium entry (SOCE). Since intracellular calcium stores are finite and readily exhausted, the SOCE pathway is a critical process for sustaining and maintaining receptor-activated signalling. Recent studies have identified the Orai family proteins as critical components of the SOCE channel activity in a wide variety of cell types. In this study we characterize the role of Orai1 in the function of lacrimal glands using a mouse model in which the gene for the calcium entry channel protein, Orai1, has been deleted. Our data demonstrate that lacrimal acinar cells lacking Orai1 do not exhibit SOCE following activation of the muscarinic receptor. In comparison with wild-type and heterozygous littermates, Orai1 knockout mice showed a significant reduction in the stimulated tear production following injection of pilocarpine, a muscarinic receptor agonist. In addition, calcium-dependent, but not calcium-independent exocytotic secretion of peroxidase was eliminated in glands from knockout mice. These studies indicate a critical role for Orai1-mediated SOCE in lacrimal gland signalling and function.
Quantitative Differential Expression Analysis Reveals Mir-7 As Major Islet MicroRNA
Bravo-Egana, Valia; Rosero, Samuel; Molano, R. Damaris; Pileggi, Antonello; Ricordi, Camillo; Domínguez-Bendala, Juan; Pastori, Ricardo L.
2008-01-01
MicroRNAs (miRNAs) are non-coding gene products that regulate gene expression through specific binding to target mRNAs. Cell-specific patterns of miRNAs are associated with the acquisition and maintenance of a given phenotype, such as endocrine pancreas (islets). We hypothesized that a subset of miRNAs could be differentially expressed in the islets. Using miRNA microarray technology and quantitative RT-PCR we identified a subset of miRNAs that are the most differentially expressed islet miRNAs (ratio islet/acinar >150-fold), mir-7 being the most abundant. A similarly high ratio for mir-7 was observed in human islets. The ratio islet/acinar for mir-375, a previously described islet miRNA, was <10, and is 2.5X more abundant in the islets than mir-7. Therefore, we conclude that mir-7 is the most abundant endocrine miRNA in islets while mir-375 is the most abundant intra-islet miRNA. Our results may offer new insights into regulatory pathways of islet gene expression. PMID:18086561
Tabár, László; Dean, Peter B.; Yen, Amy M.-F.; Tarján, Miklós; Chiu, Sherry Y.-H.; Chen, Sam L.-S.; Fann, Jean C.-Y.; Chen, Tony H.-H.
2014-01-01
The similarity between the structure and function of the breast and prostate has been known for a long time, but there are serious discrepancies in the terminology describing breast and prostate cancers. The use of the large, thick-section (3D) histology technique for both organs exposes the irrationality of the breast cancer terminology. Pathologists with expertise in diagnosing prostate cancer take the anatomic site of cancer origin into account when using the terms AAP (acinar adenocarcinoma of the prostate) and DAP (ductal adenocarcinoma of the prostate) to distinguish between the prostate cancers originating primarily from the fluid-producing acinar portion of the organ (AAP) and the tumors originating either purely from the larger ducts (DAP) or from both the acini and the main ducts combined (DAP and AAP). Long-term patient outcome is closely correlated with the terminology, because patients with DAP have a significantly poorer prognosis than patients with AAP. The current breast cancer terminology could be improved by modeling it after the method of classifying prostate cancer to reflect the anatomic site of breast cancer origin and the patient outcome. The long-term survival curves of our consecutive breast cancer cases collected since 1977 clearly show that the non-palpable, screen-detected breast cancers originating from the milk-producing acini have excellent prognosis, irrespective of their histologic malignancy grade or biomarkers. Correspondingly, the breast cancer subtypes of truly ductal origin have a significantly poorer outcome, despite recent improvements in diagnosis and therapy. The mammographic appearance of breast cancers reflects the underlying tissue structure. Addition of these “mammographic tumor features” to the currently used histologic phenotypes makes it possible to distinguish the breast cancer cases of ductal origin with a poor outcome, termed DAB (ductal adenocarcinoma of the breast), from the more easily managed breast cancers of acinar origin, termed AAB (acinar adenocarcinoma of the breast), which have a significantly better outcome. This simple and easily communicable terminology could lead to better communication between the diagnostic and therapeutic team members and result in more rational treatment planning for the benefit of their patients. PMID:24653647
De Groef, Sofie; Leuckx, Gunter; Van Gassen, Naomi; Staels, Willem; Cai, Ying; Yuchi, Yixing; Coppens, Violette; De Leu, Nico; Heremans, Yves; Baeyens, Luc; Van de Casteele, Mark; Heimberg, Harry
2015-01-01
Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories. PMID:26273954
Cano, David A; Murcia, Noel S; Pazour, Gregory J; Hebrok, Matthias
2004-07-01
Polycystic kidney disease (PKD) includes a group of disorders that are characterized by the presence of cysts in the kidney and other organs, including the pancreas. Here we show that in orpk mice, a model system for PKD that harbors a mutation in the gene that encodes the polaris protein, pancreatic defects start to occur at the end of gestation, with an initial expansion of the developing pancreatic ducts. Ductal dilation continues rapidly after birth and results in the formation of large, interconnected cysts. Expansion of pancreatic ducts is accompanied by apoptosis of neighboring acinar cells, whereas endocrine cell differentiation and islet formation appears to be unaffected. Polaris has been shown to co-localize with primary cilia, and these structures have been implicated in the formation of renal cysts. In the orpk pancreas, cilia numbers are reduced and cilia length is decreased. Expression of polycystin-2, a protein involved in PKD, is mislocalized in orpk mice. Furthermore, the cellular localization of beta-catenin, a protein involved in cell adhesion and Wnt signaling, is altered. Thus, polaris and primary cilia function are required for the maturation and maintenance of proper tissue organization in the pancreas.
Neuropeptide Y distribution in human brain.
Adrian, T E; Allen, J M; Bloom, S R; Ghatei, M A; Rossor, M N; Roberts, G W; Crow, T J; Tatemoto, K; Polak, J M
Tatemoto and Mutt recently used the presence of a C-terminal NH2 group to identify and isolate a new peptide, neuropeptide Y (NPY), from porcine brain. This 36 amino acid peptide was subsequently shown to be active on isolated vas deferens, vascular smooth muscle and pancreatic acinar cells in very low molar concentrations. In view of these potent effects we have now investigated its distribution in the human brain by radioimmunoassay and immunocytochemistry. High concentrations of NPY have been found, exceeding those of cholecystokinin and somatostatin, hitherto considered to be the most abundant neuropeptides. The distribution of NPY was different from that of any other peptide system described, being particularly concentrated in the basal ganglia, amygdala and nucleus accumbens. Immunocytochemistry demonstrated a large number of NPY neuronal cell bodies especially in the caudate and putamen. Immunoreactive neuronal cell bodies were also clearly localized in cortical areas, particularly layers V and VI. NPY, a newly discovered peptide with potent biological activity, thus seems to be among the most abundant of human neuropeptides. The massive numbers of NPY neurones in the basal ganglia suggest NPY to be of fundamental importance in the control of human motor function.
Buxton, R. B.; Prisk, G. K.
2012-01-01
MRI images of pulmonary blood flow using arterial spin labeling (ASL) measure the delivery of magnetically tagged blood to an image plane during one systolic ejection period. However, the method potentially suffers from two problems, each of which may depend on the imaging plane location: 1) the inversion plane is thicker than the imaging plane, resulting in a gap that blood must cross to be detected in the image; and 2) ASL includes signal contributions from tagged blood in conduit vessels (arterial and venous). By using an in silico model of the pulmonary circulation we found the gap reduced the ASL signal to 64–74% of that in the absence of a gap in the sagittal plane and 53–84% in the coronal. The contribution of the conduit vessels varied markedly as a function of image plane ranging from ∼90% of the overall signal in image planes that encompass the central hilar vessels to <20% in peripheral image planes. A threshold cutoff removing voxels with intensities >35% of maximum reduced the conduit vessel contribution to the total ASL signal to ∼20% on average; however, planes with large contributions from conduit vessels underestimate acinar flow due to a high proportion of in-plane flow, making ASL measurements of perfusion impractical. In other image planes, perfusion dominated the resulting ASL images with good agreement between ASL and acinar flow. Similarly, heterogeneity of the ASL signal as measured by relative dispersion is a reliable measure of heterogeneity of the acinar flow distribution in the same image planes. PMID:22539167
Burrowes, K S; Buxton, R B; Prisk, G K
2012-07-01
MRI images of pulmonary blood flow using arterial spin labeling (ASL) measure the delivery of magnetically tagged blood to an image plane during one systolic ejection period. However, the method potentially suffers from two problems, each of which may depend on the imaging plane location: 1) the inversion plane is thicker than the imaging plane, resulting in a gap that blood must cross to be detected in the image; and 2) ASL includes signal contributions from tagged blood in conduit vessels (arterial and venous). By using an in silico model of the pulmonary circulation we found the gap reduced the ASL signal to 64-74% of that in the absence of a gap in the sagittal plane and 53-84% in the coronal. The contribution of the conduit vessels varied markedly as a function of image plane ranging from ∼90% of the overall signal in image planes that encompass the central hilar vessels to <20% in peripheral image planes. A threshold cutoff removing voxels with intensities >35% of maximum reduced the conduit vessel contribution to the total ASL signal to ∼20% on average; however, planes with large contributions from conduit vessels underestimate acinar flow due to a high proportion of in-plane flow, making ASL measurements of perfusion impractical. In other image planes, perfusion dominated the resulting ASL images with good agreement between ASL and acinar flow. Similarly, heterogeneity of the ASL signal as measured by relative dispersion is a reliable measure of heterogeneity of the acinar flow distribution in the same image planes.
Microstructure analysis of the secondary pulmonary lobules by 3D synchrotron radiation CT
NASA Astrophysics Data System (ADS)
Fukuoka, Y.; Kawata, Y.; Niki, N.; Umetani, K.; Nakano, Y.; Ohmatsu, H.; Moriyama, N.; Itoh, H.
2014-03-01
Recognition of abnormalities related to the lobular anatomy has become increasingly important in the diagnosis and differential diagnosis of lung abnormalities at clinical routines of CT examinations. This paper aims a 3-D microstructural analysis of the pulmonary acinus with isotropic spatial resolution in the range of several micrometers by using micro CT. Previously, we demonstrated the ability of synchrotron radiation micro CT (SRμCT) using offset scan mode in microstructural analysis of the whole part of the secondary pulmonary lobule. In this paper, we present a semiautomatic method to segment the acinar and subacinar airspaces from the secondary pulmonary lobule and to track small vessels running inside alveolar walls in human acinus imaged by the SRμCT. The method beains with and segmentation of the tissues such as pleural surface, interlobular septa, alveola wall, or vessel using a threshold technique and 3-D connected component analysis. 3-D air space are then conustructed separated by tissues and represented branching patterns of airways and airspaces distal to the terminal bronchiole. A graph-partitioning approach isolated acini whose stems are interactively defined as the terminal bronchiole in the secondary pulmonary lobule. Finally, we performed vessel tracking using a non-linear sate space which captures both smoothness of the trajectories and intensity coherence along vessel orientations. Results demonstrate that the proposed method can extract several acinar airspaces from the 3-D SRμCT image of secondary pulmonary lobule and that the extracted acinar airspace enable an accurate quantitative description of the anatomy of the human acinus for interpretation of the basic unit of pulmonary structure and function.
Effects of cardiac oscillations and lung volume on acinar gas mixing during apnea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackenzie, C.F.; Skacel, M.; Barnas, G.M.
1990-05-01
We evaluated the importance of cardiogenic gas mixing in the acini of 13 dogs during 2 min of apnea. 133Xe (1-2 mCi in 4 ml of saline) was injected into an alveolar region through an occluded pulmonary artery branch, and washout was measured by gamma scintillation scanning during continued occlusion or with blood flow reinstated. The monoexponential rate constant for Xe washout (XeW) was -0.4 +/- 0.08 (SE) min-1 at functional residual capacity (FRC) with no blood flow in the injected region. It decreased by more than half at lung volumes 500 ml above and 392 ml below FRC. Withmore » intact pulmonary blood flow, XeW was -1.0 +/- 0.08 (SE) min-1 at FRC, and it increased with decreasing lung volume. However, if calculated Xe uptake by the blood was subtracted from the XeW measured with blood flow intact, resulting values at FRC and at FRC + 500 ml were not different from XeW with no blood flow. Reasonable calculation of Xe blood uptake at 392 ml below FRC was not possible because airway closure, increased shunt, and other factors affect XeW. After death, no significant XeW could be measured, which suggests that XeW caused by molecular diffusion was small. We conclude that (1) the effect of heart motion on the lung parenchyma increases acinar gas mixing during apnea, (2) this effect diminishes above or below FRC, and (3) there is probably no direct effect of pulmonary vascular pulsatility on acinar gas mixing.« less
Ponnusamy, Thiruselvam; Chakravarty, Geetika; Mondal, Debasis; John, Vijay T
2014-05-01
Biodegradable poly(lactic-co-glycolic acid) (PLGA) porous films are developed to support mammary cell growth and function. Such porous polymer matrices of PLGA are generated using the easily implemented water-templating "breath-figure" technique that allows water droplets to penetrate the nascent polymer films to create a rough porous polymer film. Such breath figure-based micropatterned porous films show higher epithelial differentiation and growth than the corresponding flat 2D films, and represent the first instance of using them for tissue culture. Specifically, the breath figure morphology supports robust acinar growth with almost double the number of lobular-alveolar units compared to the 2D cultures. Gene profile analysis indicates that the cells grown on porous polymer films show enhanced expressions of mammary differentiation genes (GATA3, EMA, and INTEGB4) but lower the expression of mesenchymal gene (CALLA). Hormonal stimulation of these cultures dramatically increases expression of progenitor marker gene Notch1. Importantly, cells grown on porous PLGA films exhibit an enhanced resistance to doxorubicin treatment in comparison to 2D cultures. Breath-figure PLGA films show promise in mimicking in vivo mammary functions and can potentially be used to screen chemotherapeutic drugs. The simplicity and ease of fabrication of these polymer films is especially appealing to the development of effective biomaterials to support cell culture and differentiation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A model of hydraulic interactions in liver parenchyma as forces behind the intrahepatic bile flow.
Kurbel, S; Kurbel, B; Dmitrovic, B; Wagner, J
2001-05-01
The small diameters of bile canaliculi and interlobular bile ducts make it hard to attribute the bile flow solely to the process of secretion. In the model liver within its capsule is considered a limited space in which volume expansions of one part are possible only through the shrinking of other parts. The liver capsule allows only very slow volume changes. The rate of blood flow through the sinusoides is governed by the Poisseuill-Hagen law. The model is based on a concept of circulatory liver units. A unit would contain a group of acini sharing the same conditions of arterial flow. We can imagine them as an acinar group behind the last pressure reducer on one arterial branch. Acini from neighboring units compose liver lobules and drain through the same central venule. One lobule can contain acini from several neighboring circulatory units. The perfusion cycle in one unit begins with a transient tide in the arterial flow, governed by local mediators. Corresponding acini expand, grabbing the space by compressing their neighbors in the same lobules. Vascular resistance is reduced in dilated and increased in compressed acini. Portal blood flows through the dilated acini, bypassing the compressed neighbors. The cycle ends when the portal tide slowly diminishes and acinar volume is back on the interphase value until the new perfusion cycle is started in another circulatory unit. Each cycle probably takes minutes to complete. Increased pressures both in dilated and in compressed acini force the bile to move from acinar canalicules. Both up and down changes in acinar volume might force the acinar biliary flow. In cases of arterial vasoconstriction, increased activity of vasoactive substances would keep most of the circulatory units in the interphase and increased liver resistance can be expected. Liver fibrosis makes all acini to be of fixed volume and result in increased resistance. Because of that, low pressure portal flow would be more compromised, as reported. In livers without arterial blood flow, although some slow changes in the portal flows can be expected, acinar volume changes should be reduced. In acute liver injury, enlarged hepatocytes would diminish sinusoidal diameter and increase acinar resistance. In liver tumors, areas of neovascularization with reduced resistance would divert the arterial flow from the normal tissue, while in the compressed perifocal areas, increased vascular resistance should diminish mainly the portal flow. Copyright 2001 Harcourt Publishers Ltd.
Sendler, Matthias; Dummer, Annegret; Weiss, Frank U; Krüger, Burkhard; Wartmann, Thomas; Scharffetter-Kochanek, Karin; van Rooijen, Nico; Malla, Sudarshan Ravi; Aghdassi, Ali; Halangk, Walter; Lerch, Markus M; Mayerle, Julia
2013-03-01
Acute pancreatitis has long been considered a disorder of pancreatic self-digestion, in which intracellular activation of digestive proteases induces tissue injury. Chemokines, released from damaged pancreatic cells then attract inflammatory cells, whose systemic action ultimately determines the disease severity. In the present work the opposite mechanism is investigated; that is, whether and how inflammatory cells can activate intracellular proteases. Using mice either deficient for the CD18-α subunit of the membrane attack complex-1 (MAC-1) complex or tumour necrosis factor (TNF)α, as well as after depletion of leucocyte subpopulations, pancreatitis was induced by 7-hourly caerulein injections (50 μg/kg, intraperitoneally). Pancreatic acini were coincubated in vitro from wild-type and cathepsin-B-deficient animals with phorbol-12-myristate-13-acetate (PMA)-activated neutrophils and macrophages, caerulein or TNFα, and activities of trypsin, cathepsin-B and caspase-3 were measured, as well as necrosis using fluorogenic substrates. TNFα was inhibited with monospecific antibodies. Deletion of CD18 prevented transmigration of leucocytes into the pancreas during pancreatitis, greatly reduced disease severity and abolished digestive protease activation. Depletion of neutrophils and macrophages equally reduced premature trypsinogen activation and disease severity. In vitro activated neutrophils and macrophages directly induced premature protease activation and cell death in pancreatic acini and stimulation of acini with TNFα induced caspase-3 activation and necrosis via a cathepsin-B and calcium-dependent mechanism. Neutralising antibodies against TNFα and genetic deletion of TNFα prevented leucocyte-induced trypsin activity and necrosis in isolated acini. The soluble inflammatory cell mediator TNFα directly induces premature protease activation and necrosis in pancreatic acinar cells. This activation depends on calcium and cathepsin-B activity. The findings from the present work further suggest that targeting TNFα, for which pharmaceutical agents are readily available, could be an effective treatment strategy that directly addresses the cellular causes of pancreatitis.
Nakamura, Taichi; Ito, Tetsuhide; Uchida, Masahiko; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Jensen, Robert T.; Takayanagi, Ryoichi
2013-01-01
Background and Aims There is increasing concern about the development of pancreatitis in patients with diabetes mellitus who received long-term GLP-1 analog treatment. Its pathogenesis is unknown. The effects of GLP-1 agonists on pancreatic endocrine cells is well studied, however there is little information on effects on other pancreatic tissues that might be involved in inflammatory processes. Pancreatic stellate cells (PSCs) can play an important role in pancreatitis, secreting various inflammatory cytokines/chemokines, as well as collagen. In this study, we investigated GLP-1R occurrence in normal pancreas, acute/chronic pancreatitis, and the effects of GLP-1 analog on normal PSCs, their ability to stimulate inflammatory mediator secretion or proliferation. Methods GLP-1R expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues were evaluated with histological/immunohistochemical analysis. PSCs were isolated from male Wistar rats. GLP1R expression and effects of GLP-1 analog on activated PSCs was examined with realtime PCR, MTS assays and Western Blotting. Results In normal pancreas, pancreatic β cells expressed GLP-1R, with only low expression in acinar cells, whereas in acute or chronic pancreatitis, acinar cells, ductal cells and activated PSCs expressed GLP-1R. With activation of normal PSCs, GLP-1R is markedly increased, as is multiple other incretin-related receptors. The GLP-1 analog, liraglutide, did not induce inflammatory genes expression in activated PSCs, but induced proliferation. Liraglutide activated multiple signaling cascades in PSCs, and the ERK pathway mediated the PSCs proliferation. Conclusions GLP-1Rs are expressed in normal pancreas and there is marked enhanced expression in acute/chronic pancreatitis. GLP-1-agonist induced cell proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest chronic treatment with GLP-1R agonists could lead to proliferation/chronic activation of PSCs, which may lead to important effects in the pancreas. PMID:24217090
López Solís, Remigio O; Weis, Ulrike Kemmerling; Ceballos, Alicia Ramos; Salas, Gustavo Hoecker
2003-12-01
Two inbred mouse strains, A/Snell and A.Swiss, which were produced as congenic with regard to the H-2 histocompatibility gene complex, are homozygous for two different groups of isoproterenol-induced salivary polypeptides (IISP). These polypeptides, which have been considered as markers of the hypertrophic growth of the parotid acinar cells, are members of the complex family of salivary proline-rich proteins (PRP) on the basis of both their massive accumulation in the parotid acinar cells in response to chronic isoproterenol, secretory character, high solubility in trichloroacetic acid and metachromatic staining by Coomassie blue. IISP expressed in both mouse strains were identified by unidimensional SDS-polyacrylamide electrophoresis and Coomassie blue staining both in parotid gland homogenates and in whole salivas obtained from mice repeatedly stimulated at 24-h intervals with isoproterenol. Parotid glands from 40 mice (20 A/Snell and 20 A.Swiss) and salivas from 270 mice (200 A/Snell and 70 A.Swiss) were analyzed. One of the congenic strains (A/Snell) expressed five IISP (Mr 65, 61, 51.5, 38, and 37 kDa) and the other strain (A.Swiss) expressed six IISP (Mr 59, 57, 54.5, 46, 36, and 34 kDa). No inter-individual intra-strain variations were observed, thus defining strain-associated patterns of IISP (PRP). Copyright 2003 Wiley-Liss, Inc.
Terachi, Momomi; Hirono, Chikara; Kitagawa, Michinori; Sugita, Makoto
2018-06-01
Cholinergic agonists evoke elevations of the cytoplasmic free-calcium concentration ([Ca 2+ ] i ) to stimulate fluid secretion in salivary glands. Salivary flow rates are significantly reduced in diabetic patients. However, it remains elusive how salivary secretion is impaired in diabetes. Here, we used an ex vivo submandibular gland perfusion technique to characterize the dependency of salivary flow rates on extracellular glucose concentration and activities of glucose transporters expressed in the glands. The cholinergic agonist carbachol (CCh) induced sustained fluid secretion, the rates of which were modulated by the extracellular glucose concentration in a biphasic manner. Both lowering the extracellular glucose concentration to less than 2.5 mM and elevating it to higher than 5 mM resulted in decreased CCh-induced fluid secretion. The CCh-induced salivary flow was suppressed by phlorizin, an inhibitor of the sodium-glucose cotransporter 1 (SGLT1) located basolaterally in submandibular acinar cells, which is altered at the protein expression level in diabetic animal models. Our data suggest that SGLT1-mediated glucose uptake in acinar cells is required to maintain the fluid secretion by sustaining Cl - secretion in real-time. High extracellular glucose levels may suppress the CCh-induced secretion of salivary fluid by altering the activities of ion channels and transporters downstream of [Ca 2+ ] i signals. © 2018 Eur J Oral Sci.
Functional significance of co-occurring mutations in PIK3CA and MAP3K1 in breast cancer.
Avivar-Valderas, Alvaro; McEwen, Robert; Taheri-Ghahfarokhi, Amir; Carnevalli, Larissa S; Hardaker, Elizabeth L; Maresca, Marcello; Hudson, Kevin; Harrington, Elizabeth A; Cruzalegui, Francisco
2018-04-20
The PI3Kα signaling pathway is frequently hyper-activated in breast cancer (BrCa), as a result of mutations/amplifications in oncogenes (e.g. HER2 ), decreased function in tumor suppressors (e.g. PTEN ) or activating mutations in key components of the pathway. In particular, activating mutations of PIK3CA (~45%) are frequently found in luminal A BrCa samples. Genomic studies have uncovered inactivating mutations in MAP3K1 (13-20%) and MAP2K4 (~8%), two upstream kinases of the JNK apoptotic pathway in luminal A BrCa samples. Further, simultaneous mutation of PIK3CA and MAP3K1 are found in ~11% of mutant PIK3CA tumors. How these two alterations may cooperate to elicit tumorigenesis and impact the sensitivity to PI3K and AKT inhibitors is currently unknown. Using CRISPR gene editing we have genetically disrupted MAP3K1 expression in mutant PIK3CA cell lines to specifically create in vitro models reflecting the mutational status of PIK3CA and MAP3K1 in BrCa patients. MAP3K1 deficient cell lines exhibited ~2.4-fold increased proliferation rate and decreased sensitivity to PI3Kα/δ(AZD8835) and AKT (AZD5363) inhibitors (~2.61 and ~5.23-fold IC 50 increases, respectively) compared with parental control cell lines. In addition, mechanistic analysis revealed that MAP3K1 disruption enhances AKT phosphorylation and downstream signaling and reduces sensitivity to AZD5363-mediated pathway inhibition. This appears to be a consequence of deficient MAP3K1-JNK signaling increasing IRS1 stability and therefore promoting IRS1 binding to p85, resulting in enhanced PI3Kα activity. Using 3D-MCF10A-PI3Kα H1047R models, we found that MAP3K1 depletion increased overall acinar volume and counteracted AZD5363-mediated reduction of acinar growth due to enhanced proliferation and reduced apoptosis. Furthermore, in vivo efficacy studies revealed that MAP3K1-deficient MCF7 tumors were less sensitive to AKT inhibitor treatment, compared with parental MCF7 tumors. Our study provides mechanistic and in vivo evidence indicating a role for MAP3K1 as a tumor suppressor gene at least in the context of PIK3CA -mutant backgrounds. Further, our work predicts that MAP3K1 mutational status may be considered as a predictive biomarker for efficacy in PI3K pathway inhibitor trials.
Martin, Katie L; Hill, Grace A; Klein, Rob R; Arnett, Deborah G; Burd, Randy; Limesand, Kirsten H
2012-01-01
Treatment of head and neck cancer with radiation often results in damage to surrounding normal tissues such as salivary glands. Permanent loss of function in the salivary glands often leads patients to discontinue treatment due to incapacitating side effects. It has previously been shown that IGF-1 suppresses radiation-induced apoptosis and enhances G2/M arrest leading to preservation of salivary gland function. In an effort to recapitulate the effects of IGF-1, as well as increase the likelihood of translating these findings to the clinic, the small molecule therapeutic Roscovitine, is being tested. Roscovitine is a cyclin-dependent kinase inhibitor that acts to transiently inhibit cell cycle progression and allow for DNA repair in damaged tissues. Treatment with Roscovitine prior to irradiation induced a significant increase in the percentage of cells in the G(2)/M phase, as demonstrated by flow cytometry. In contrast, mice treated with radiation exhibit no differences in the percentage of cells in G(2)/M when compared to unirradiated controls. Similar to previous studies utilizing IGF-1, pretreatment with Roscovitine leads to a significant up-regulation of p21 expression and a significant decrease in the number of PCNA positive cells. Radiation treatment leads to a significant increase in activated caspase-3 positive salivary acinar cells, which is suppressed by pretreatment with Roscovitine. Administration of Roscovitine prior to targeted head and neck irradiation preserves normal tissue function in mouse parotid salivary glands, both acutely and chronically, as measured by salivary output. These studies suggest that induction of transient G(2)/M cell cycle arrest by Roscovitine allows for suppression of apoptosis, thus preserving normal salivary function following targeted head and neck irradiation. This could have an important clinical impact by preventing the negative side effects of radiation therapy in surrounding normal tissues.
Uchida, Masahiko; Ito, Tetsuhide; Nakamura, Taichi; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Takayanagi, Ryoichi; Jensen, Robert T
2014-07-01
Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1), in acute/chronic pancreatitis; however, the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues and the effects of CX3CL1 on activated PSCs. CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues was evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated PSCs were examined with real-time polymerase chain reaction, BrdU (5-bromo-2-deoxyuridine) assays, and Western blotting. In normal pancreas, acinar cells expressed CX3CR1 within granule-like formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal, and activated PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1 did not induce inflammatory genes expression in activated PSCs, but induced proliferation. CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis, and the CX3CR1s are activated. CX3CL1 induces proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSC proliferation in pancreatitis where CX3CL1 levels are elevated.
Uchida, Masahiko; Ito, Tetsuhide; Nakamura, Taichi; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Takayanagi, Ryoichi; Jensen, Robert T.
2014-01-01
Objectives Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1) in acute/chronic pancreatitis, however the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues, and the effects of CX3CL1 on activated-PSCs. Methods CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues were evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated-PSCs were examined with realtime-PCR, BrdU assays and Western Blotting. Results In normal pancreas, acinar cells expressed CX3CR1 within granule-like-formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal and activated-PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1, did not induce inflammatory-genes expression in activated-PSCs, but induced proliferation. Conclusions CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis and the CX3CR1s are activated. CX3CL1 induces proliferation of activated-PSCs without increasing release of inflammatory-mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSCs proliferation in pancreatitis where CX3CL1 levels are elevated. PMID:24681877
Haffner, Michael C; Guner, Gunes; Taheri, Diana; Netto, George J; Palsgrove, Doreen N; Zheng, Qizhi; Guedes, Liana Benevides; Kim, Kunhwa; Tsai, Harrison; Esopi, David M; Lotan, Tamara L; Sharma, Rajni; Meeker, Alan K; Chinnaiyan, Arul M; Nelson, William G; Yegnasubramanian, Srinivasan; Luo, Jun; Mehra, Rohit; Antonarakis, Emmanuel S; Drake, Charles G; De Marzo, Angelo M
2018-06-01
Antibodies targeting the programmed cell death protein 1/programmed death-ligand 1 (PD-L1) interaction have shown clinical activity in multiple cancer types. PD-L1 protein expression is a clinically validated predictive biomarker of response for such therapies. Prior studies evaluating the expression of PD-L1 in primary prostate cancers have reported highly variable rates of PD-L1 positivity. In addition, limited data exist on PD-L1 expression in metastatic castrate-resistant prostate cancer (mCRPC). Here, we determined PD-L1 protein expression by immunohistochemistry using a validated PD-L1-specific antibody (SP263) in a large and representative cohort of primary prostate cancers and prostate cancer metastases. The study included 539 primary prostate cancers comprising 508 acinar adenocarcinomas, 24 prostatic duct adenocarcinomas, 7 small-cell carcinomas, and a total of 57 cases of mCRPC. PD-L1 positivity was low in primary acinar adenocarcinoma, with only 7.7% of cases showing detectable PD-L1 staining. Increased levels of PD-L1 expression were noted in 42.9% of small-cell carcinomas. In mCRPC, 31.6% of cases showed PD-L1-specific immunoreactivity. In conclusion, in this comprehensive evaluation of PD-L1 expression in prostate cancer, PD-L1 expression is rare in primary prostate cancers, but increased rates of PD-L1 positivity were observed in mCRPC. These results will be important for the future clinical development of programmed cell death protein 1/PD-L1-targeting therapies in prostate cancer. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Advanced lung adenocarcinomas with ROS1-rearrangement frequently show hepatoid cell
Kong, Mei; Zhou, Jianya; Ding, Wei; Zhou, Jianying
2016-01-01
Defining distinctive histologic characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) may help identify cases that merit molecular testing. However, the majority of previous reports have focused on surgical specimens but only limited studies assessed histomorphology of advanced NSCLCs. In order to identify the clinical and histological characteristics of ROS1-rearranged advanced NSCLCs, we examined five hundred sixteen Chinese patients with advanced NSCLCs using ROS1 fluorescence in situ hybridization and real-time polymerase chain reaction and then analyzed for clinical and pathological features. We performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement. 19 tumors were identified with ROS1 rearrangement (3.7% of adenocarcinomas). 16 ROS1+ and 122 ROS1- samples with available medical records and enough tumor cells were included for histological analysis. Compared with ROS1-negative advanced NSCLCs, ROS1-rearranged advanced NSCLCs were associated with a younger age at presentation. ROS1 rearrangements were not significantly associated with sex, smoking history, drinking history and metastatic sites. The most common histological pattern was solid growth (12/16), followed by acinar (4/16) growth. 66.7% cases with solid growth pattern showed hepatoid cytology (8/12) and 75% cases with acinar growth pattern showed a cribriform structure (3/4). 18.8% cases were found to have abundant extracellular mucus or signet-ring cells (3/16). Only one case with solid growth pattern showed psammomatous calcifications. In conclusion, age, hepatoid cytology and cribriform structure are the independent predictors for ROS1-rearranged advanced NSCLCs, recognizing these may be helpful in finding candidates for genomic alterations, especially when available tissue samples are limited. PMID:27708233
Substance P is a functional neurotransmitter in the rat parotid gland.
Gallacher, D V
1983-09-01
The technique of electrical field stimulation was employed to stimulate the intrinsic nerves of isolated rat parotid gland fragments. Responses to field stimulation were recorded as changes in enzyme secretion (amylase release), radiolabelled ion fluxes (86Rb efflux) and electrophysiological effects (changes in acinar cell membrane potential and input resistance). All effects of field stimulation were abolished by the neurotoxin, tetrodotoxin (TTX). Selective use of pharmacological antagonists revealed that both the sympathetic and parasympathetic nerves to this tissue were being excited by field stimulation. Importantly a significant component of the response to field stimulation persisted in the presence of combined autonomic receptor blockade by atropine, phentolamine and propranolol, i.e. due to release of a non-cholinergic, non-adrenergic neurotransmitter. The non-cholinergic, non-adrenergic neurotransmitter evoked amylase release, 86Rb efflux and electrophysiological effects seen as changes in acinar cell membrane potential and conductance, i.e. stimulus-permeability coupled. Two biologically active peptides, substance P (SP) and vasoactive intestinal polypeptide (VIP) were shown to evoke amylase release in the presence of combined autonomic blockade. VIP however did not evoke any increase in 86Rb efflux, i.e. not stimulus-permeability coupled. All the effects of the non-cholinergic, non-adrenergic transmitter were mimicked by substance P which evokes 86Rb efflux and electrophysiological effects in addition to amylase release. The non-cholinergic, non-adrenergic field stimulus effects on amylase release and 86Rb efflux were abolished or markedly attenuated in tissues which had been desensitized by prior exposure to exogenous substance P. In the presence of VIP, however, the non-cholinergic, non-adrenergic effects persisted and were apparently potentiated. Acute application of the neurotoxin capsaicin first stimulated a transient release of amylase and subsequently abolished the non-cholinergic, non-adrenergic field stimulus-evoked enzyme release. The putative substance P antagonist, D-Pro2, D-Trp7,9 substance P, reversibly blocked the response to both non-cholinergic, non-adrenergic nerve stimulation and exogenous substance P. It was demonstrated however that prolonged exposure to this antagonist is associated with non-reversible and, importantly, non-specific neurotoxic effects. It is concluded that substance P or a closely related peptide is a functional neurotransmitter in the rat parotid gland.
Kwon, Dohee; Koh, Jaemoon; Kim, Sehui; Go, Heounjeong; Kim, Young A; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Jeon, Yoon Kyung; Chung, Doo Hyun
2017-04-01
MET mutations leading to exon 14 skipping rarely occur in non-small cell lung cancer (NSCLC). Recently, small molecule inhibitors targeting MET mutations showed clinical benefit. However, the clinicopathological characteristics of NSCLC harboring MET mutations, and the correlation among mutations, protein expression, and gene copy number of MET in NSCLC remain unclear. Therefore, we address these issues. MET exon 14 skipping mutations were evaluated using real-time quantitative reverse-transcription-PCR (qRT-PCR) in 102 triple-negative (i.e., EGFR mutation (-)/ALK translocation (-)/KRAS mutation (-)) pulmonary adenocarcinomas, and 45 pleomorphic carcinomas. MET mutation and gene copy were also examined in microdissected tissues obtained from tumor areas with heterogeneous MET immunohistochemical expression. MET mutations were detected in 8.8% (9/102) of triple-negative adenocarcinomas and 20% (9/45) of pleomorphic carcinomas of the lung. Patients with MET-mutated adenocarcinomas was significantly older than those without MET mutations (P=0.015). The male to female and ever-to never-smoker ratios were 3:6 and 2:7, respectively, among patients with MET-mutated adenocarcinomas. All (9/9) of the MET-mutated adenocarcinomas showed acinar predominant histology with associated lepidic patterns. In contrast, the male to female and ever- to never-smoker ratios were 8:1 and 7:1, respectively, among patients with MET-mutated pleomorphic carcinomas. The carcinoma component of MET-mutated pleomorphic carcinomas was mostly adenocarcinoma of acinar pattern (8/9). MET mutation was detected by qRT-PCR in all samples with heterogeneous MET expression microdissected from five cases with MET-mutated adenocarcinoma, while MET gene amplification was detected in tumor areas expressing high MET protein levels among MET-mutated adenocarcinomas. MET-mutated NSCLC is characterized by older age in patients with adenocarcinoma and by an acinar histology and variable MET expression in patients with adenocarcinoma and pleomorphic carcinomas. Moreover, MET gene amplification might occur in the tumor cells harboring the MET mutation. Copyright © 2017 Elsevier B.V. All rights reserved.
Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles
Ostrovski, Yan; Hofemeier, Philipp; Sznitman, Josué
2016-01-01
Background It has been hypothesized that by coupling magnetic particles to inhaled therapeutics, the ability to target specific lung regions (eg, only acinar deposition), or even more so specific points in the lung (eg, tumor targeting), can be substantially improved. Although this method has been proven feasible in seminal in vivo studies, there is still a wide gap in our basic understanding of the transport phenomena of magnetic particles in the pulmonary acinar regions of the lungs, including particle dynamics and deposition characteristics. Methods Here, we present computational fluid dynamics-discrete element method simulations of magnetically loaded microdroplet carriers in an anatomically inspired, space-filling, multi-generation acinar airway tree. Breathing motion is modeled by kinematic sinusoidal displacements of the acinar walls, during which droplets are inhaled and exhaled. Particle dynamics are governed by viscous drag, gravity, and Brownian motion as well as the external magnetic force. In particular, we examined the roles of droplet diameter and volume fraction of magnetic material within the droplets under two different breathing maneuvers. Results and discussion Our results indicate that by using magnetic-loaded droplets, 100% of the particles that enter are deposited in the acinar region. This is consistent across all particle sizes investigated (ie, 0.5–3.0 µm). This is best achieved through a deep inhalation maneuver combined with a breath-hold. Particles are found to penetrate deep into the acinus and disperse well, while the required amount of magnetic material is maintained low (<2.5%). Although particles in the size range of ~90–500 nm typically show the lowest deposition fractions, our results suggest that this feature could be leveraged to augment targeted delivery. PMID:27547034
Zhan, Kang; Lin, Miao; Liu, MingMei; Sui, YangNan; Babekir, Haitham Mohammed; Zhao, GuoQi
2017-05-01
Primary bovine mammary epithelial cells (BMECs) are not ideal models for long-term studies of lactation mechanisms because these cells in a monolayer culture system cannot be polarized to simulate the physiological functions in vitro. We investigate the effects of different culture models and karyotypes on casein expression in a three-dimensional (3D) culture system. The immortalized cells' karyotypes were analyzed at passages 10, 20, 30 and 40 to detect the effects of chromosome stability. Western blotting examined that whether or not the immortalized cells at passages 5, 10, 20, 30, 40 and 50 could induce expression of casein in a 3D culture system. The proper polarization of the acinar structures was monitored. BMECs were successfully immortalized. The cell karyotype at passage 30 remained at 60 chromosomes and the average value was 57.1 ± 0.40 after passage 40. The polarized protein's levels were up-regulated in 3D culture compared to 2D culture. Expression of αs1, β and κ-casein could be detectable in a passage range in 3D culture. Expression of αs2-casein was undetectable in all experimental groups. However, all casein expressions were barely detectable in traditional 2D culture system. Therefore, 3D culture system is an important tool for the long-term study of lactation mechanisms in vitro. © 2016 Japanese Society of Animal Science.
Peribronchiolar fibrosis in lungs of cats chronically exposed to diesel exhaust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyde, D.M.; Plopper, C.G.; Weir, A.J.
This study reports the quantitative changes in the pulmonary proximal acinar region following chronic exposure to diesel exhaust and following an additional 6 months in clean air. Cats (13 months of age) from a minimum disease colony were exposed to clean air (eight cats for 27 months and nine cats for 33 months), diesel exhaust for 8 hours/day, 7 days/week (nine cats for 27 months), or diesel exhaust for 27 months followed by 6 months in clean air (10 cats). Morphologic and morphometric evaluation using light microscopy and scanning and transmission electron microscopy revealed two major exposure-related lesions in proximalmore » acinar regions of lungs of cats: peribronchiolar fibrosis associated with significant increases in lymphocytes, fibroblasts, and interstitial macrophages containing diesel particulate-like inclusions and bronchiolar epithelial metaplasia associated with the presence of ciliated and basal cells and alveolar macrophages containing diesel particulate-like inclusions. Peribronchiolar fibrosis was greater at the end of the 6 months in clean air following exposure, whereas the bronchiolar epithelial metaplasia was most severe at the end of exposure. Following an additional 6 months in clean air the epithelium more closely resembled the control epithelial cell population. The labeling index of terminal bronchiolar epithelium was significantly increased at the end of exposure but was not significantly different from controls or exposed cats following an additional 6 months in clean air. The ultrastructural appearance of epithelial cells remained relatively unchanged following diesel exhaust exposure with the exception of diesel particulate-like inclusions.« less
Particle dynamics and deposition in true-scale pulmonary acinar models.
Fishler, Rami; Hofemeier, Philipp; Etzion, Yael; Dubowski, Yael; Sznitman, Josué
2015-09-11
Particle transport phenomena in the deep alveolated airways of the lungs (i.e. pulmonary acinus) govern deposition outcomes following inhalation of hazardous or pharmaceutical aerosols. Yet, there is still a dearth of experimental tools for resolving acinar particle dynamics and validating numerical simulations. Here, we present a true-scale experimental model of acinar structures consisting of bifurcating alveolated ducts that capture breathing-like wall motion and ensuing respiratory acinar flows. We study experimentally captured trajectories of inhaled polydispersed smoke particles (0.2 to 1 μm in diameter), demonstrating how intrinsic particle motion, i.e. gravity and diffusion, is crucial in determining dispersion and deposition of aerosols through a streamline crossing mechanism, a phenomenon paramount during flow reversal and locally within alveolar cavities. A simple conceptual framework is constructed for predicting the fate of inhaled particles near an alveolus by identifying capture and escape zones and considering how streamline crossing may shift particles between them. In addition, we examine the effect of particle size on detailed deposition patterns of monodispersed microspheres between 0.1-2 μm. Our experiments underline local modifications in the deposition patterns due to gravity for particles ≥0.5 μm compared to smaller particles, and show good agreement with corresponding numerical simulations.
Particle dynamics and deposition in true-scale pulmonary acinar models
Fishler, Rami; Hofemeier, Philipp; Etzion, Yael; Dubowski, Yael; Sznitman, Josué
2015-01-01
Particle transport phenomena in the deep alveolated airways of the lungs (i.e. pulmonary acinus) govern deposition outcomes following inhalation of hazardous or pharmaceutical aerosols. Yet, there is still a dearth of experimental tools for resolving acinar particle dynamics and validating numerical simulations. Here, we present a true-scale experimental model of acinar structures consisting of bifurcating alveolated ducts that capture breathing-like wall motion and ensuing respiratory acinar flows. We study experimentally captured trajectories of inhaled polydispersed smoke particles (0.2 to 1 μm in diameter), demonstrating how intrinsic particle motion, i.e. gravity and diffusion, is crucial in determining dispersion and deposition of aerosols through a streamline crossing mechanism, a phenomenon paramount during flow reversal and locally within alveolar cavities. A simple conceptual framework is constructed for predicting the fate of inhaled particles near an alveolus by identifying capture and escape zones and considering how streamline crossing may shift particles between them. In addition, we examine the effect of particle size on detailed deposition patterns of monodispersed microspheres between 0.1–2 μm. Our experiments underline local modifications in the deposition patterns due to gravity for particles ≥0.5 μm compared to smaller particles, and show good agreement with corresponding numerical simulations. PMID:26358580
Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows
Kumar, Haribalan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long
2011-01-01
Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan–Carpenter (KC) number. PMID:21580803
Role of amino acids in salivation and the localization of their receptors in the rat salivary gland.
Shida, T; Kondo, E; Ueda, Y; Takai, N; Yoshida, Y; Araki, T; Kiyama, H; Tohyama, M
1995-11-01
The distribution of gamma-aminobutyric acid (GABA) receptor subunits such as GABAAR-gamma 1 and GABAAR-gamma 2, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type receptor subunits such as GluR-1, GluR-2/3 and GluR-4, and N-methyl-D-aspartic acid (NMDA) type subunits such as NR1 were investigated by immunocytochemistry. Furthermore, the roles of these amino acids, GABA and glutamate, on salivation were analyzed in the rat submandibular and sublingual glands. Some similarities were observed in the distribution patterns of GABAA type receptors and AMPA receptors. In the submandibular ganglion cells, collecting ducts and striated ducts, these subunits were expressed strongly; however, there were some differences in their expression patterns between the submandibular and sublingual gland acinar cells. Since these receptor subunits were expressed in the acinar cell bodies of the submandibular gland, they were not expressed in the acinar cells but were expressed in the myoepithelial cells in the sublingual gland. On the other hand, no NR1 expression was observed. To examine the roles of GABA and glutamate in salivation, the submandibular and sublingual glands were perfused partially with Ringer's solution via a facial artery to avoid systemic influence, and substrates were infused into the perfusion solution. No salivary secretion was evoked by GABA or glutamate infusion in the absence of electrical stimulation (2-3 V, 5 ms, 20 Hz). Salivary flow evoked by electrical stimulation of the chorda-lingual nerve caused significant inhibition by GABA (10(-6), 10(-5), 10(-4) and 10(-3) M) and the GABAAR agonist muscimol 10(-3) and 10(-6) M) (n = 6, P < 0.05). Such GABA-induced inhibition was antagonized by the GABAAR antagonists bicuculline (BCC; 10(-6) and 10(-3) M) and picrotoxin (PTX; 10(-6) and 10(-3) M). On the other hand, salivary flow evoked by electrical stimulation (8-10 V, 5 ms, 20 Hz) of the superior cervical ganglion (SCG) was not affected by GABA. While high doses of glutamate (10(-1) M) and NMDA (10(-1) M) showed no effects on salivary flow despite application of electrical stimulation, AMPA at a high concentration (10(-1) M) significantly inhibited salivary secretion (n = 6, P < 0.05). These studies revealed that inhibitory and excitatory amino acid receptors such as GABAA and AMPA type receptors are coexpressed in the rat salivary glands, and that GABA inhibits salivary secretion via GABAA receptors which may act with acetylcholine. However, the role of glutamate in salivation remains unclear despite the presence of AMPA type receptors. The present findings suggest that glutamate does not act alone but with other substances such as peptides and/or other amino acids.
Weindel, Michael; Zulfiqar, Muhammad; Bhalla, Amarpreet; Shidham, Vinod B
2013-12-01
Pancreatic neoplasms, including ductal adenocarcinoma, intraductal papillary mucinous neoplasm, solid pseudopapillary neoplasm, pancreatic endocrine neoplasms, acinar cell carcinoma, and ampullary carcinoma, are associated with different genetic abnormalities. Liver neoplasms, including hepatic adenomas, hepatocellular carcinomas, and cholangiocarcinomas, are associated with identifiable risk factors and genetic changes. Gall bladder adenomas and adenocarcinomas arise from distinct molecular pathways. The molecular abnormalities seen in these tumors are not used routinely in the molecular diagnostic laboratory. Copyright © 2013 Elsevier Inc. All rights reserved.
LOXL2 induces aberrant acinar morphogenesis via ErbB2 signaling
2013-01-01
Introduction Lysyl oxidase-like 2 (LOXL2) is a matrix-remodeling enzyme that has been shown to play a key role in invasion and metastasis of breast carcinoma cells. However, very little is known about its role in normal tissue homeostasis. Here, we investigated the effects of LOXL2 expression in normal mammary epithelial cells to gain insight into how LOXL2 mediates cancer progression. Methods LOXL2 was expressed in MCF10A normal human mammary epithelial cells. The 3D acinar morphogenesis of these cells was assessed, as well as the ability of the cells to form branching structures on extracellular matrix (ECM)-coated surfaces. Transwell-invasion assays were used to assess the invasive properties of the cells. Clinically relevant inhibitors of ErbB2, lapatinib and Herceptin (traztuzumab), were used to investigate the role of ErbB2 signaling in this model. A retrospective study on a previously published breast cancer patient dataset was carried out by using Disease Specific Genomic Analysis (DSGA) to investigate the correlation of LOXL2 mRNA expression level with metastasis and survival of ErbB2-positive breast cancer patients. Results Fluorescence staining of the acini revealed increased proliferation, decreased apoptosis, and disrupted polarity, leading to abnormal lumen formation in response to LOXL2 expression in MCF10A cells. When plated onto ECM, the LOXL2-expressing cells formed branching structures and displayed increased invasion. We noted that LOXL2 induced ErbB2 activation through reactive oxygen species (ROS) production, and ErbB2 inhibition by using Herceptin or lapatinib abrogated the effects of LOXL2 on MCF10A cells. Finally, we found LOXL2 expression to be correlated with decreased overall survival and metastasis-free survival in breast cancer patients with ErbB2-positive tumors. Conclusions These findings suggest that LOXL2 expression in normal epithelial cells can induce abnormal changes that resemble oncogenic transformation and cancer progression, and that these effects are driven by LOXL2-mediated activation of ErbB2. LOXL2 may also be a beneficial marker for breast cancer patients that could benefit most from anti-ErbB2 therapy. PMID:23971878
NASA Astrophysics Data System (ADS)
Fishler, Rami; Mulligan, Molly; Dubowski, Yael; Sznitman, Josue; Sznitman Lab-department of Biomedical Engineering Team; Dubowski Lab-faculty of Civil; Environmental Engineering Team
2014-11-01
In order to experimentally investigate particle deposition mechanisms in the deep alveolated regions of the lungs, we have developed a novel microfluidic device mimicking breathing acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Deposition patterns of airborne polystyrene microspheres (spanning 0.1 μm to 2 μm in diameter) inside the airway tree network compare well with CFD simulations and reveal the roles of gravity and Brownian motion on particle deposition sites. Furthermore, measured trajectories of incense particles (0.1-1 μm) inside the breathing device show a critical role for Brownian diffusion in determining the fate of inhaled sub-micron particles by enabling particles to cross from the acinar ducts into alveolar cavities, especially during the short time lag between inhalation and exhalation phases.
Role of CCK-A receptor for pancreatic function in mice: a study in CCK-A receptor knockout mice.
Takiguchi, Soichi; Suzuki, Shinji; Sato, Yuko; Kanai, Setsuko; Miyasaka, Kyoko; Jimi, Atsuo; Shinozaki, Hirotsugu; Takata, Yutaka; Funakoshi, Akihiro; Kono, Akira; Minowa, Osamu; Kobayashi, Tomoko; Noda, Tetsuo
2002-04-01
The cholecystokinin (CCK) family of peptides and receptors is present throughout the brain and gastrointestinal tract. The CCK receptors can be pharmacologically subdivided into two subtypes: CCK-A and CCK-B. CCK-A receptor is enriched in the pancreas of mice. To determine pancreatic functions in a CCK-A receptor deficient mouse mutant generated by gene targeting in embryonic stem cells. The targeting vector contained lacZ and neo insertions in exon 2. To examine exocrine functions, amylase release from the dispersed acini in vitro was examined. In the in vivo study, the mixture of bile-pancreatic juice was collected, and amylase, bicarbonate, and bile acid outputs were determined after the administration of various stimulants. The cystic duct of the gallbladder and the pylorus were ligated to exclude the involvement of gallbladder contraction and gastric acid. Pancreatic enzyme content was measured, and histologic examinations by HE and lacZ staining were conducted. To examine endocrine functions, oral glucose tolerance test (2 g/kg) was determined. The body weight, pancreatic wet weight, and enzyme content in the pancreas were similar among the three genotypes. Amylase release in vivo and in vitro and bicarbonate secretion in vivo were not stimulated by CCK-8 in CCK-AR (-/-) mice, whereas the responses to other stimulants were substantial in (-/-) mice. Administration of secretin did not increase bicarbonate secretion regardless of genotype. A normal glucose tolerance was observed in (-/-) mice. Acinar cells, islets, and duct cells were stained by lacZ, and HE staining revealed no pathologic findings. The CCK-A receptor is important for pancreatic exocrine secretion, but not essential for maintaining glucose concentration and pancreatic growth in mice.
Distribution of Pancreatic Polypeptide-secreting Endocrine Cells in Nondiabetic and Diabetic Cases.
Śliwińska-Mossoń, Mariola; Milnerowicz, Halina
2017-07-01
The aim of the study was to demonstrate the effects of cigarette smoking and ongoing inflammation in chronic pancreatitis on the functioning of pancreatic polypeptide (PP)-secreting cells and to determine the relationship between the occurrence of an increased number of PP cells in the pancreas, the change in their location, and the intensity of their inflammatory changes in the course of pancreatitis and diabetes. Samples of tissues from healthy persons and from patients were verified histopathologically, and then PP was localized by immunohistochemical staining using the monoclonal anti-human PP antibody. The histopathologic evaluation of the hormone expression intensity in tissue sections was carried out using the semiquantitative method and was calculated with digital image analysis. The present study showed a very strong PP expression in the pancreatic tissue (especially in the head of the pancreas) derived from smoking patients with diabetes. The increase in the percentage of cells in the PP islets, between the acinar cells in smoking patients with diabetes and a statistically significant increase in the expression of PP, indicates a pancreatic endocrine dysfunction and suggests that cigarette smoking has a negative impact on the organ's efficiency. Because of its properties, the PP appears to be a useful marker of the endocrine insufficiency of the pancreas and a specific prognostic parameter of developing diabetes due to chronic pancreatitis.
Fibrosis of the pancreas: the initial tissue damage and the resulting pattern.
Klöppel, Günter; Detlefsen, Sönke; Feyerabend, Bernd
2004-07-01
Fibrosis in the pancreas is caused by such processes as necrosis/apoptosis, inflammation or duct obstruction. The initial event that induces fibrogenesis in the pancreas is an injury that may involve the interstitial mesenchymal cells, the duct cells and/or the acinar cells. Damage to any one of these tissue compartments of the pancreas is associated with cytokine-triggered transformation of resident fibroblasts/pancreatic stellate cells into myofibroblasts and the subsequent production and deposition of extracellular matrix. Depending on the site of injury in the pancreas and the involved tissue compartment, predominantly inter(peri)lobular fibrosis (as in alcoholic chronic pancreatitis), periductal fibrosis (as in hereditary pancreatitis), periductal and interlobular fibrosis (as in autoimmune pancreatitis) or diffuse inter- and intralobular fibrosis (as in obstructive chronic pancreatitis) develops.
Transfer factor, lung volumes, resistance and ventilation distribution in healthy adults.
Verbanck, Sylvia; Van Muylem, Alain; Schuermans, Daniel; Bautmans, Ivan; Thompson, Bruce; Vincken, Walter
2016-01-01
Monitoring of chronic lung disease requires reference values of lung function indices, including putative markers of small airway function, spanning a wide age range.We measured spirometry, transfer factor of the lung for carbon monoxide (TLCO), static lung volume, resistance and ventilation distribution in a healthy population, studying at least 20 subjects per sex and per decade between the ages of 20 and 80 years.With respect to the Global Lung Function Initiative reference data, our subjects had average z-scores for forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC of -0.12, 0.04 and -0.32, respectively. Reference equations were obtained which could account for a potential dependence of index variability on age and height. This was done for (but not limited to) indices that are pertinent to asthma and chronic obstructive pulmonary disease studies: forced expired volume in 6 s, forced expiratory flow, TLCO, specific airway conductance, residual volume (RV)/total lung capacity (TLC), and ventilation heterogeneity in acinar and conductive lung zones.Deterioration in acinar ventilation heterogeneity and lung clearance index with age were more marked beyond 60 years, and conductive ventilation heterogeneity showed the greatest increase in variability with age. The most clinically relevant deviation from published reference values concerned RV/TLC values, which were considerably smaller than American Thoracic Society/European Respiratory Society-endorsed reference values. Copyright ©ERS 2016.
Structural differences between alcoholic and diabetic parotid sialosis.
Carda, Carmen; Carranza, Miriam; Arriaga, Adriana; Díaz, Anselmo; Peydró, Amando; Gomez de Ferraris, Maria Elsa
2005-01-01
Between the sialosis' etiologic agents, we can find the chronic alcoholism and diabetes. Both nosologic entities are described using a similar histopathologic pattern. The purpose of this work has been analyzing and comparing the histopathological differences between the diabetic and alcoholic sialosis. We studied 7 parotid glands samples of diabetic patients and 4 samples of normal glands obtained from surgical material were used as a control. For the comparative study, we used 12 parotid glands from chronic alcoholic patients with clinical diagnosis of cirrhosis and 6 autopsies on individuals who had died from alcoholic hepatic cirrhosis. This material was fixed in formaline, processed for embedding in paraffin, standard coloration techniques and immunotechnique for cytokeratin EA/1 y EA/3. In the cases of diabetics, the parotid gland was characterised by the presence of small acini, a bigger number of lipid intracytoplasmic droplets in the acinar and ductal cells, as well as an abundant adipose infiltration in the stroma when compared to the alcoholics. We observed that the cytokeratins' expression was heterogeneous at the acinar level, and very positive in the hyperplasic ducts, compared to the alcoholic and control groups. These qualitative valorations indicate the differences between the histopathologic pattern of sialosis with different origins.
Zinc toxicosis in a free-flying trumpeter swan (Cygnus buccinator)
Carpenter, J.W.; Andrews, G.A.; Beyer, W.N.
2004-01-01
A trumpeter swan (Cygnus buccinator) was observed near it mill pond in Picher, Oklahoma. USA. It became weakened and emaciated after about 1 mo, was captured with little resistance, and taken into captivity for medical care. Serum chemistry results were consistent with hepatic, renal, and muscular damage. Serum zinc concentration was elevated at 11.2 parts per million (ppm). The swan was treated for suspected heavy-metal poisoning, but died overnight. Gross postmortem findings were emaciation and pectoral muscle atrophy. Histopathologic lesions in the pancreas included mild diffuse disruption of acinar architecture, severe diffuse depletion or absence of zymogen granules, occasional apoptotic bodies ics in acinar epithelial cells, and mild interstitial and capsular fibrosis. Zinc concentration in pancreas was 3,200 ppm wet weight, and was similar to that reported in the pancreases of waterfowl known to be killed by zinc toxicity. Zinc concentrations in liver (154 ppm) and kidneys (145 ppm) also were elevated. Acute tubular necrosis of the collecting tubules of the kidneys was also possibly due to zinc toxicity. To the authors' knowledge, this is the first confirmed case of zinc poisoning in a trumpeter swan associated with mining wastes..
Legumain is activated in macrophages during pancreatitis
Wartmann, Thomas; Fleming, Alicia K.; Gocheva, Vasilena; van der Linden, Wouter A.; Withana, Nimali P.; Verdoes, Martijn; Aurelio, Luigi; Edgington-Mitchell, Daniel; Lieu, TinaMarie; Parker, Belinda S.; Graham, Bim; Reinheckel, Thomas; Furness, John B.; Joyce, Johanna A.; Storz, Peter; Halangk, Walter; Bogyo, Matthew; Bunnett, Nigel W.
2016-01-01
Pancreatitis is an inflammatory disease of the pancreas characterized by dysregulated activity of digestive enzymes, necrosis, immune infiltration, and pain. Repeated incidence of pancreatitis is an important risk factor for pancreatic cancer. Legumain, a lysosomal cysteine protease, has been linked to inflammatory diseases such as atherosclerosis, stroke, and cancer. Until now, legumain activation has not been studied during pancreatitis. We used a fluorescently quenched activity-based probe to assess legumain activation during caerulein-induced pancreatitis in mice. We detected activated legumain by ex vivo imaging, confocal microscopy, and gel electrophoresis. Compared with healthy controls, legumain activity in the pancreas of caerulein-treated mice was increased in a time-dependent manner. Legumain was localized to CD68+ macrophages and was not active in pancreatic acinar cells. Using a small-molecule inhibitor of legumain, we found that this protease is not essential for the initiation of pancreatitis. However, it may serve as a biomarker of disease, since patients with chronic pancreatitis show strongly increased legumain expression in macrophages. Moreover, the occurrence of legumain-expressing macrophages in regions of acinar-to-ductal metaplasia suggests that this protease may influence reprogramming events that lead to inflammation-induced pancreatic cancer. PMID:27514475
MULTIHORMONAL ISLET CELL CARCINOMAS IN THREE KOMODO DRAGONS (VARANUS KOMODOENSIS).
Eustace, Ronan; Garner, Michael M; Cook, Kimberly; Miller, Christine; Kiupel, Matti
2017-03-01
Multihormonal pancreatic islet cell carcinomas were found in one female and two male captive geriatric Komodo dragons (Varanus komodoensis). Gross changes in the pancreas were visible in two of the cases. Clinical signs noted in the Komodo dragons were lethargy, weakness, and anorexia. Histologically, the tumors were comprised of nests and cords of well-differentiated neoplastic islet cells with scant amounts of eosinophilic cytoplasm and round, euchromatic nuclei, with rare mitoses. Infiltration by the islet cell tumor into the surrounding acinar tissue was observed in all cases, but no metastatic foci were seen. Multihormone expression was observed in all tumors, which labeled strongly positive for glucagon and somatostatin and focally positive for polypeptide. Pancreatic islet cell neoplasms should be considered in the differential diagnosis for geriatric Komodo dragons presenting with weakness, lethargy, and poor appetite.
Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development.
Nissim, Sahar; Weeks, Olivia; Talbot, Jared C; Hedgepeth, John W; Wucherpfennig, Julia; Schatzman-Bone, Stephanie; Swinburne, Ian; Cortes, Mauricio; Alexa, Kristen; Megason, Sean; North, Trista E; Amacher, Sharon L; Goessling, Wolfram
2016-10-01
The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic vs. pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Parp-1 genetic ablation in Ela-myc mice unveils novel roles for Parp-1 in pancreatic cancer.
Martínez-Bosch, Neus; Iglesias, Mar; Munné-Collado, Jessica; Martínez-Cáceres, Carlos; Moreno, Mireia; Guerra, Carmen; Yélamos, Jose; Navarro, Pilar
2014-10-01
Pancreatic cancer has a dismal prognosis and is currently the fourth leading cause of cancer-related death in developed countries. The inhibition of poly(ADP-ribose) polymerase-1 (Parp-1), the major protein responsible for poly(ADP-ribosy)lation in response to DNA damage, has emerged as a promising treatment for several tumour types. Here we aimed to elucidate the involvement of Parp-1 in pancreatic tumour progression. We assessed Parp-1 protein expression in normal, preneoplastic and pancreatic tumour samples from humans and from K-Ras- and c-myc-driven mouse models of pancreatic cancer. Parp-1 was highly expressed in acinar cells in normal and cancer tissues. In contrast, ductal cells expressed very low or undetectable levels of this protein, both in a normal and in a tumour context. The Parp-1 expression pattern was similar in human and mouse samples, thereby validating the use of animal models for further studies. To determine the in vivo effects of Parp-1 depletion on pancreatic cancer progression, Ela-myc-driven pancreatic tumour development was analysed in a Parp-1 knock-out background. Loss of Parp-1 resulted in increased tumour necrosis and decreased proliferation, apoptosis and angiogenesis. Interestingly, Ela-myc:Parp-1(-/-) mice displayed fewer ductal tumours than their Ela-myc:Parp-1(+/+) counterparts, suggesting that Parp-1 participates in promoting acinar-to-ductal metaplasia, a key event in pancreatic cancer initiation. Moreover, impaired macrophage recruitment can be responsible for the ADM blockade found in the Ela-myc:Parp-1(-/-) mice. Finally, molecular analysis revealed that Parp-1 modulates ADM downstream of the Stat3-MMP7 axis and is also involved in transcriptional up-regulation of the MDM2, VEGFR1 and MMP28 cancer-related genes. In conclusion, the expression pattern of Parp-1 in normal and cancer tissue and the in vivo functional effects of Parp-1 depletion point to a novel role for this protein in pancreatic carcinogenesis and shed light into the clinical use of Parp-1 inhibitors. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development
Nissim, Sahar; Weeks, Olivia; Talbot, Jared C.; Hedgepeth, John W.; Wucherpfennig, Julia; Schatzman-Bone, Stephanie; Swinburne, Ian; Cortes, Mauricio; Alexa, Kristen; Megason, Sean; North, Trista E.; Amacher, Sharon L.; Goessling, Wolfram
2016-01-01
The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic versus pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease. PMID:27474396
Marchese, Stephanie; Silva, Elisabete
2012-01-01
Introduction Estrogens regulate the proliferation of normal and neoplastic breast epithelium. Although the intracellular mechanisms of estrogens in the breast are largely understood, little is known about how they induce changes in the structure of the mammary epithelium, which are characteristic of breast cancer. In vitro three dimensional (3D) cultures of immortalised breast epithelial cells recapitulate features of the breast epithelium in vivo, including formation of growth arrested acini with hollow lumen and basement membrane. This model can also reproduce features of malignant transformation and breast cancer, such as increased cellular proliferation and filling of the lumen. However, a system where a connection between estrogen receptor (ER) activation and disruption of acini formation can be studied to elucidate the role of estrogens is still missing. Methods/Principal Findings We describe an in vitro 3D model for breast glandular structure development, using breast epithelial MCF-12A cells cultured in a reconstituted basement membrane matrix. These cells are estrogen receptor (ER)α, ERβ and G-protein coupled estrogen receptor 1 (GPER) competent, allowing the investigation of the effects of estrogens on mammary gland formation and disruption. Under normal conditions, MCF-12A cells formed organised acini, with deposition of basement membrane and hollow lumen. However, treatment with 17β-estradiol, and the exogenous estrogens bisphenol A and propylparaben resulted in deformed acini and filling of the acinar lumen. When these chemicals were combined with ER and GPER inhibitors (ICI 182,780 and G-15, respectively), the deformed acini recovered normal features, such as a spheroid shape, proliferative arrest and luminal clearing, suggesting a role for the ER and GPER in the estrogenic disruption of acinar formation. Conclusion This new model offers the opportunity to better understand the role of the ER and GPER in the morphogenesis of breast glandular structure as well as the events implicated in breast cancer initiation and progression. PMID:23056216
Nakamura, Moriyoshi; Saga, Tsuyoshi; Watanabe, Koichi; Takahashi, Nagahiro; Tabira, Yoko; Kusukawa, Jingo; Yamaki, Koh-Ichi
2013-01-01
Cevimeline is a muscarinic agonist that promotes saliva secretion and is used to treat Sjögren's syndrome (SS), an autoimmune disorder in which the exocrine glands that produce saliva are destroyed. Cevimeline is thought to affect the composition of saliva in part by regulating the localization of aquaporins (AQPs). In this study, we investigated the effects of chronic Cevimeline administration in the salivary glands of SS mice on the immunohistochemical localization of aquaporin (AQP)-1, 3, 4, 5 and 8. We used Cevimeline-untreated SS mice, treated SS mice, discontinued SS mice and untreated normal mice. AQP-5 was found in the apical and lateral membranes of acinar cells in the parotid and submandibular glands of cevimeline-treated SS mice and untreated normal mice. Saliva secretion and AQP-5 localization were sustained in SS mice who were chronically administered Cevimeline and at four weeks after discontinuation. Unlike AQP-5, the localization of AQP-1, 3, 4 and 8 were not affected by Cevimeline administration. Our findings demonstrated that administration of Cevimeline maintains the proper localization of AQP-5 in the acinar cells of the salivary gland, which may promote salivation in chronically treated SS mice. Clinically, this suggests that chronic Cevimeline administration may be useful therapeutically for SS patients suffering from a decrease in saliva secretion by improving the disordered AQP-5 localization.
Slomiany, Bronislaw L; Slomiany, Amalia
2005-08-01
Leptin, a pleiotropic cytokine that regulates food intake and metabolic and endocrine responses, has emerged recently as an important regulator of mucosal inflammatory responses to bacterial infection. In this study, we report that in sublingual salivary gland acinar cells leptin plays a role in the suppression of up-regulation in endothelin-1 (ET-1), induced by the LPS of a periodontopathic bacterium P. gingivalis. We show that P. gingivalisLPS detrimental effect on salivary mucin synthesis, associated with up-regulation (3.9-fold) in ET-1 generation and the enhancement (3.2-fold) in endothelin-converting enzyme-1 (ECE-1) activity, was subject to a dose-dependent suppression by leptin. The impedance by leptin of the LPS inhibitory effect on mucin synthesis was blocked by wortmannin, an inhibitor of PI3K, as well as by ERK inhibitor, PD98059. However, while the blockade of ERK led also to amplification in the impedance by leptin of the LPS-induced expression of ECE-1 and ET-1, the effect was not observed in the presence of wortmannin. The findings are the first to demonstrate that leptin counters the pathological consequences of P. gingivalisinfection on the synthesis of salivary mucin through the involvement in signaling events of PI3K and ERK pathways. We also show that the ERK cascade represents a critical signaling target for leptin in the LPS-induced up-regulation in ET-1.
Myer, James R; Romach, Elizabeth H; Elangbam, Chandikumar S
2014-01-01
Compound-induced pancreatic injury is a serious liability in preclinical toxicity studies. However, its relevance to humans should be cautiously evaluated because of interspecies variations. To highlight such variations, we evaluated the species- and dose-specific pancreatic responses and progression caused by GI181771X, a novel cholecystokinin 1 receptor agonist investigated by GlaxoSmithKline for the treatment of obesity. Acute (up to 2,000 mg/kg GI181771X, as single dose) and repeat-dose studies in mice and/or rats (0.25-250 mg/kg/day for 7 days to 26 weeks) showed wide-ranging morphological changes in the pancreas that were dose and duration dependent, including necrotizing pancreatitis, acinar cell hypertrophy/atrophy, zymogen degranulation, focal acinar cell hyperplasia, and interstitial inflammation. In contrast to rodents, pancreatic changes were not observed in cynomolgus monkeys given GI181771X (1-500 mg/kg/day with higher systemic exposure than rats) for up to 52 weeks. Similarly, no GI181771X treatment-associated abnormalities in pancreatic structure were noted in a 24-week clinical trial with obese patients (body mass index >30 or >27 kg/m(2)) as assessed by abdominal ultrasound or by magnetic resonance imaging. Mechanisms for interspecies variations in the pancreatic response to CCK among rodents, monkeys, and humans and their relevance to human risk are discussed.
Endale, Mehari; Ahlfeld, Shawn; Bao, Erik; Chen, Xiaoting; Green, Jenna; Bess, Zach; Weirauch, Matthew T; Xu, Yan; Perl, Anne Karina
2017-05-15
Many studies have investigated the source and role of epithelial progenitors during lung development; such information is limited for fibroblast populations and their complex role in the developing lung. In this study, we characterized the spatial location, mRNA expression and Immunophenotyping of PDGFRα + fibroblasts during sacculation and alveolarization. Confocal microscopy identified spatial association of PDGFRα expressing fibroblasts with proximal epithelial cells of the branching bronchioles and the dilating acinar tubules at E16.5; with distal terminal saccules at E18.5; and with alveolar epithelial cells at PN7 and PN28. Immunohistochemistry for alpha smooth muscle actin revealed that PDGFRα + fibroblasts contribute to proximal peribronchiolar smooth muscle at E16.5 and to transient distal alveolar myofibroblasts at PN7. Time series RNA-Seq analyses of PDGFRα + fibroblasts identified differentially expressed genes that, based on gene expression similarity were clustered into 7 major gene expression profile patterns. The presence of myofibroblast and smooth muscle precursors at E16.5 and PN7 was reflected by a two-peak gene expression profile on these days and gene ontology enrichment in muscle contraction. Additional molecular and functional differences between peribronchiolar smooth muscle cells at E16.5 and transient intraseptal myofibroblasts at PN7 were suggested by a single peak in gene expression at PN7 with functional enrichment in cell projection and muscle cell differentiation. Immunophenotyping of subsets of PDGFRα + fibroblasts by flow cytometry confirmed the predicted increase in proliferation at E16.5 and PN7, and identified subsets of CD29 + myofibroblasts and CD34 + lipofibroblasts. These data can be further mined to develop novel hypotheses and valuable understanding of the molecular and cellular basis of alveolarization. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Endale, Mehari; Ahlfeld, Shawn; Bao, Erik; Chen, Xiaoting; Green, Jenna; Bess, Zach; Weirauch, Matthew T.; Xu, Yan; Perl, Anne Karina
2017-01-01
Many studies have investigated the source and role of epithelial progenitors during lung development; such information is limited for fibroblast populations and their complex role in the developing lung. In this study, we characterized the spatial location, mRNA expression and Immunophenotyping of PDGFRα+ fibroblasts during sacculation and alveolarization. Confocal microscopy identified spatial association of PDGFRα expressing fibroblasts with proximal epithelial cells of the branching bronchioles and the dilating acinar tubules at E16.5; with distal terminal saccules at E18.5; and with alveolar epithelial cells at PN7 and PN28. Immunohistochemistry for alpha smooth muscle actin revealed that PDGFRα+ fibroblasts contribute to proximal peribronchiolar smooth muscle at E16.5 and to transient distal alveolar myofibroblasts at PN7. Time series RNA-Seq analyses of PDGFRα+ fibroblasts identified differentially expressed genes that, based on gene expression similarity were clustered into 7 major gene expression profile patterns. The presence of myofibroblast and smooth muscle precursors at E16.5 and PN7 was reflected by a two-peak gene expression profile on these days and gene ontology enrichment in muscle contraction. Additional molecular and functional differences between peribronchiolar smooth muscle cells at E16.5 and transient intraseptal myofibroblasts at PN7 were suggested by a single peak in gene expression at PN7 with functional enrichment in cell projection and muscle cell differentiation. Immunophenotyping of subsets of PDGFRα+ fibroblasts by flow cytometry confirmed the predicted increase in proliferation at E16.5 and PN7, and identified subsets of CD29+ myofibroblasts and CD34+ lipofibroblasts. These data can be further mined to develop novel hypotheses and valuable understanding of the molecular and cellular basis of alveolarization. PMID:28408205
Lance, Amanda; Yang, Chih-Chao; Swamydas, Muthulekha; Dean, Delphine; Deitch, Sandy; Burg, Karen J L; Dréau, Didier
2016-01-01
The extracellular matrix (ECM) contributes to the generation and dynamic of normal breast tissue, in particular to the generation of polarized acinar and ductal structures. In vitro 3D culture conditions, including variations in the composition of the ECM, have been shown to directly influence the formation and organization of acinus-like and duct-like structures. Furthermore, the density of the ECM appears to also play a role in the normal mammary tissue and tumour formation. Here we show that the density of the ECM directly influences the number, organization and function of breast acini. Briefly, non-malignant human breast MCF10A cells were incubated in increasing densities of a Matrigel®-collagen I matrix. Elastic moduli near and distant to the acinus structures were measured by atomic force microscopy, and the number of acinus structures was determined. Immunochemistry was used to investigate the expression levels of E-cadherin, laminin, matrix metalloproteinase-14 and ß-casein in MCF10A cells. The modulus of the ECM was significantly increased near the acinus structures and the number of acinus structures decreased with the increase in Matrigel-collagen I density. As evaluated by the expression of laminin, the organization of the acinus structures present was altered as the density of the ECM increased. Increases in both E-cadherin and MMP14 expression by MCF10A cells as ECM density increased were also observed. In contrast, MCF10A cells expressed lower ß-casein levels as the ECM density increased. Taken together, these observations highlight the key role of ECM density in modulating the number, organization and function of breast acini. Copyright © 2013 John Wiley & Sons, Ltd.
SEL1L Regulates Adhesion, Proliferation and Secretion of Insulin by Affecting Integrin Signaling
Diaferia, Giuseppe R.; Cirulli, Vincenzo; Biunno, Ida
2013-01-01
SEL1L, a component of the endoplasmic reticulum associated degradation (ERAD) pathway, has been reported to regulate the (i) differentiation of the pancreatic endocrine and exocrine tissue during the second transition of mouse embryonic development, (ii) neural stem cell self-renewal and lineage commitment and (iii) cell cycle progression through regulation of genes related to cell-matrix interaction. Here we show that in the pancreas the expression of SEL1L is developmentally regulated, such that it is readily detected in developing islet cells and in nascent acinar clusters adjacent to basement membranes, and becomes progressively restricted to the islets of Langherans in post-natal life. This peculiar expression pattern and the presence of two inverse RGD motifs in the fibronectin type II domain of SEL1L protein indicate a possible interaction with cell adhesion molecules to regulate islets architecture. Co-immunoprecipitation studies revealed SEL1L and ß1-integrin interaction and, down-modulation of SEL1L in pancreatic ß-cells, negatively influences both cell adhesion on selected matrix components and cell proliferation likely due to altered ERK signaling. Furthermore, the absence of SEL1L protein strongly inhibits glucose-stimulated insulin secretion in isolated mouse pancreatic islets unveiling an important role of SEL1L in insulin trafficking. This phenotype can be rescued by the ectopic expression of the ß1-integrin subunit confirming the close interaction of these two proteins in regulating the cross-talk between extracellular matrix and insulin signalling to create a favourable micro-environment for ß-cell development and function. PMID:24324549
Hodges, Robin R.
2016-01-01
Abstract Purpose: Purinergic receptors play a key role in the function of the lacrimal gland (LG) as P1 purinergic receptors A1, A2A, and A2B, P2X1–7 receptors, and many of the P2Y receptors are expressed. Methods: This review examines the current knowledge of purinergic receptors in the LG as well as the signaling pathways activated by these receptors. Results: These receptors are expressed on the acinar, ductal, and myoepithelial cells. Considerable crosstalk exists between the pathways activated by P2X7 receptors with those activated by M3 muscarinic or α1D adrenergic receptors. The mechanism of the crosstalk between P2X7 and M3 muscarinic receptors differs from that of the crosstalk between P2X7 and α1D adrenergic receptors. Conclusions: Understanding purinergic receptors and how they modulate protein secretion could play a key role in normal and pathological responses of the LG. PMID:27463365
Rovira, Meritxell; Scott, Sherri-Gae; Liss, Andrew S.; Jensen, Jan; Thayer, Sarah P.; Leach, Steven D.
2009-01-01
The question of whether dedicated progenitor cells exist in adult vertebrate pancreas remains controversial. Centroacinar cells and terminal duct (CA/TD) cells lie at the junction between peripheral acinar cells and the adjacent ductal epithelium, and are frequently included among cell types proposed as candidate pancreatic progenitors. However these cells have not previously been isolated in a manner that allows formal assessment of their progenitor capacities. We have found that a subset of adult CA/TD cells are characterized by high levels of ALDH1 enzymatic activity, related to high-level expression of both Aldh1a1 and Aldh1a7. This allows their isolation by FACS using a fluorogenic ALDH1 substrate. FACS-isolated CA/TD cells are relatively depleted of transcripts associated with differentiated pancreatic cell types. In contrast, they are markedly enriched for transcripts encoding Sca1, Sdf1, c-Met, Nestin, and Sox9, markers previously associated with progenitor populations in embryonic pancreas and other tissues. FACS-sorted CA/TD cells are uniquely able to form self-renewing “pancreatospheres” in suspension culture, even when plated at clonal density. These spheres display a capacity for spontaneous endocrine and exocrine differentiation, as well as glucose-responsive insulin secretion. In addition, when injected into cultured embryonic dorsal pancreatic buds, these adult cells display a unique capacity to contribute to both the embryonic endocrine and exocrine lineages. Finally, these cells demonstrate dramatic expansion in the setting of chronic epithelial injury. These findings suggest that CA/TD cells are indeed capable of progenitor function and may contribute to the maintenance of tissue homeostasis in adult mouse pancreas. PMID:20018761
Jiang, Hong Ning; Li, Yuan; Jiang, Wen Yi; Cui, Zong Jie
2018-01-01
Plasma membrane-delimited generation of singlet oxygen by photodynamic action with photosensitizer sulfonated aluminum phthalocyanine (SALPC) activates cholecystokinin 1 receptor (CCK1R) in pancreatic acini. Whether CCK1R retains such photooxidative singlet oxygen activation properties in other environments is not known. Genetically encoded protein photosensitizers KillerRed or mini singlet oxygen generator (miniSOG) were expressed in pancreatic acinar tumor cell line AR4-2J, CCK1R, KillerRed or miniSOG were expressed in HEK293 or CHO-K1 cells. Cold light irradiation (87 mW⋅cm -2 ) was applied to photosensitizer-expressing cells to examine photodynamic activation of CCK1R by Fura-2 fluorescent calcium imaging. When CCK1R was transduced into HEK293 cells which lack endogenous CCK1R, photodynamic action with SALPC was found to activate CCK1R in CCK1R-HEK293 cells. When KillerRed or miniSOG were transduced into AR4-2J which expresses endogenous CCK1R, KillerRed or miniSOG photodynamic action at the plasma membrane also activated CCK1R. When fused KillerRed-CCK1R was transduced into CHO-K1 cells, light irradiation activated the fused CCK1R leading to calcium oscillations. Therefore KillerRed either expressed independently, or fused with CCK1R can both activate CCK1R photodynamically. It is concluded that photodynamic singlet oxygen activation is an intrinsic property of CCK1R, independent of photosensitizer used, or CCK1R-expressing cell types. Photodynamic singlet oxygen CCK1R activation after transduction of genetically encoded photosensitizer in situ may provide a convenient way to verify intrinsic physiological functions of CCK1R in multiple CCK1R-expressing cells and tissues, or to actuate CCK1R function in CCK1R-expressing and non-expressing cell types after transduction with fused KillerRed-CCK1R.
NASA Astrophysics Data System (ADS)
Mayo, Michael; Pfeifer, Peter; Gheorghiu, Stefan
2008-03-01
The acinar airways lie at the periphery of the human lung and are responsible for the transfer of oxygen from air to the blood during respiration. This transfer occurs by the diffusion-reaction of oxygen over the irregular surface of the alveolar membranes lining the acinar airways. We present an exactly solvable diffusion-reaction model on a hierarchically branched tree, allowing a quantitative prediction of the oxygen current over the entire system of acinar airways responsible for the gas exchange. We discuss the effect of diffusional screening, which is strongly coupled to oxygen transport in the human lung. We show that the oxygen current is insensitive to a loss of permeability of the alveolar membranes over a wide range of permeabilities, similar to a ``constant-current source'' in an electric network. Such fault tolerance has been observed in other treatments of the gas exchange in the lung and is obtained here as a fully analytical result.
Restricted diffusion in a model acinar labyrinth by NMR: Theoretical and numerical results
NASA Astrophysics Data System (ADS)
Grebenkov, D. S.; Guillot, G.; Sapoval, B.
2007-01-01
A branched geometrical structure of the mammal lungs is known to be crucial for rapid access of oxygen to blood. But an important pulmonary disease like emphysema results in partial destruction of the alveolar tissue and enlargement of the distal airspaces, which may reduce the total oxygen transfer. This effect has been intensively studied during the last decade by MRI of hyperpolarized gases like helium-3. The relation between geometry and signal attenuation remained obscure due to a lack of realistic geometrical model of the acinar morphology. In this paper, we use Monte Carlo simulations of restricted diffusion in a realistic model acinus to compute the signal attenuation in a diffusion-weighted NMR experiment. We demonstrate that this technique should be sensitive to destruction of the branched structure: partial removal of the interalveolar tissue creates loops in the tree-like acinar architecture that enhance diffusive motion and the consequent signal attenuation. The role of the local geometry and related practical applications are discussed.
Bon, Robin S; Beech, David J
2013-01-01
The primary purpose of this review is to address the progress towards small molecule modulators of human Transient Receptor Potential Canonical proteins (TRPC1, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7). These proteins generate channels for calcium and sodium ion entry. They are relevant to many mammalian cell types including acinar gland cells, adipocytes, astrocytes, cardiac myocytes, cochlea hair cells, endothelial cells, epithelial cells, fibroblasts, hepatocytes, keratinocytes, leukocytes, mast cells, mesangial cells, neurones, osteoblasts, osteoclasts, platelets, podocytes, smooth muscle cells, skeletal muscle and tumour cells. There are broad-ranging positive roles of the channels in cell adhesion, migration, proliferation, survival and turning, vascular permeability, hypertrophy, wound-healing, hypo-adiponectinaemia, angiogenesis, neointimal hyperplasia, oedema, thrombosis, muscle endurance, lung hyper-responsiveness, glomerular filtration, gastrointestinal motility, pancreatitis, seizure, innate fear, motor coordination, saliva secretion, mast cell degranulation, cancer cell drug resistance, survival after myocardial infarction, efferocytosis, hypo-matrix metalloproteinase, vasoconstriction and vasodilatation. Known small molecule stimulators of the channels include hyperforin, genistein and rosiglitazone, but there is more progress with inhibitors, some of which have promising potency and selectivity. The inhibitors include 2-aminoethoxydiphenyl borate, 2-aminoquinolines, 2-aminothiazoles, fatty acids, isothiourea derivatives, naphthalene sulfonamides, N-phenylanthranilic acids, phenylethylimidazoles, piperazine/piperidine analogues, polyphenols, pyrazoles and steroids. A few of these agents are starting to be useful as tools for determining the physiological and pathophysiological functions of TRPC channels. We suggest that the pursuit of small molecule modulators for TRPC channels is important but that it requires substantial additional effort and investment before we can reap the rewards of highly potent and selective pharmacological modulators. PMID:23763262
Jo, Il-Joo; Bae, Gi-Sang; Park, Kyoung-Chel; Choi, Sun Bok; Jung, Won-Seok; Jung, Su-Young; Cho, Jung-Hee; Choi, Mee-Ok; Song, Ho-Joon; Park, Sung-Joo
2013-03-14
To evaluate the inhibitory effects of Scolopendra subspinipes mutilans (SSM) on cerulein-induced acute pancreatitis (AP) in a mouse model. SSM water extract (0.1, 0.5, or 1 g/kg) was administrated intraperitoneally 1 h prior to the first injection of cerulein. Once AP developed, the stable cholecystokinin analogue, cerulein was injected hourly, over a 6 h period. Blood samples were taken 6 h later to determine serum amylase, lipase, and cytokine levels. The pancreas and lungs were rapidly removed for morphological examination, myeloperoxidase assay, and real-time reverse transcription polymerase chain reaction. To specify the role of SSM in pancreatitis, the pancreatic acinar cells were isolated using collagenase method. Then the cells were pre-treated with SSM, then stimulated with cerulein. The cell viability, cytokine productions and high-mobility group box protein-1 (HMGB-1) were measured. Furthermore, the regulating mechanisms of SSM action were evaluated. The administration of SSM significantly attenuated the severity of pancreatitis and pancreatitis associated lung injury, as was shown by the reduction in pancreatic edema, neutrophil infiltration, vacuolization and necrosis. SSM treatment also reduced pancreatic weight/body weight ratio, serum amylase, lipase and cytokine levels, and mRNA expression of multiple inflammatory mediators such as tumor necrosis factor-α and interleukin-1β. In addition, treatment with SSM inhibited HMGB-1 expression in the pancreas during AP. In accordance with in vivo data, SSM inhibited the cerulein-induced acinar cell death, cytokine, and HMGB-1 release. SSM also inhibited the activation of c-Jun NH2-terminal kinase, p38 and nuclear factor (NF)-κB. These results suggest that SSM plays a protective role during the development of AP and pancreatitis associated lung injury via deactivating c-Jun NH2-terminal kinase, p38 and NF-κB.
Jo, Il-Joo; Bae, Gi-Sang; Park, Kyoung-Chel; Choi, Sun Bok; Jung, Won-Seok; Jung, Su-Young; Cho, Jung-Hee; Choi, Mee-Ok; Song, Ho-Joon; Park, Sung-Joo
2013-01-01
AIM: To evaluate the inhibitory effects of Scolopendra subspinipes mutilans (SSM) on cerulein-induced acute pancreatitis (AP) in a mouse model. METHODS: SSM water extract (0.1, 0.5, or 1 g/kg) was administrated intraperitoneally 1 h prior to the first injection of cerulein. Once AP developed, the stable cholecystokinin analogue, cerulein was injected hourly, over a 6 h period. Blood samples were taken 6 h later to determine serum amylase, lipase, and cytokine levels. The pancreas and lungs were rapidly removed for morphological examination, myeloperoxidase assay, and real-time reverse transcription polymerase chain reaction. To specify the role of SSM in pancreatitis, the pancreatic acinar cells were isolated using collagenase method. Then the cells were pre-treated with SSM, then stimulated with cerulein. The cell viability, cytokine productions and high-mobility group box protein-1 (HMGB-1) were measured. Furthermore, the regulating mechanisms of SSM action were evaluated. RESULTS: The administration of SSM significantly attenuated the severity of pancreatitis and pancreatitis associated lung injury, as was shown by the reduction in pancreatic edema, neutrophil infiltration, vacuolization and necrosis. SSM treatment also reduced pancreatic weight/body weight ratio, serum amylase, lipase and cytokine levels, and mRNA expression of multiple inflammatory mediators such as tumor necrosis factor-α and interleukin-1β. In addition, treatment with SSM inhibited HMGB-1 expression in the pancreas during AP. In accordance with in vivo data, SSM inhibited the cerulein-induced acinar cell death, cytokine, and HMGB-1 release. SSM also inhibited the activation of c-Jun NH2-terminal kinase, p38 and nuclear factor (NF)-κB. CONCLUSION: These results suggest that SSM plays a protective role during the development of AP and pancreatitis associated lung injury via deactivating c-Jun NH2-terminal kinase, p38 and NF-κB. PMID:23539679
Chieffi Baccari, Gabriella; Monteforte, Rossella; de Lange, Pieter; Raucci, Franca; Farina, Paola; Lanni, Antonia
2004-07-01
The effects of T(3) administration on the rat Harderian gland were examined at morphological, biochemical, and molecular levels. T(3) induced hypertrophy of the two cell types (A and B) present in the glandular epithelium. In type A cells, the hypertrophy was mainly due to an increase in the size of the lipid compartment. The acinar lumina were filled with lipoproteic substances, and the cells often showed an olocrine secretory pattern. In type B cells, the hypertrophy largely consisted of a marked proliferation of mitochondria endowed with tightly packed cristae, the mitochondrial number being nearly doubled (from 62 to 101/100 microm(2)). Although the average area of individual mitochondria decreased by about 50%, the total area of the mitochondrial compartment increased by about 80% (from 11 to 19/100 microm(2)). This could be ascribed to T(3)-induced mitochondrial proliferation. The morphological and morphometric data correlated well with our biochemical results, which indicated that mitochondrial respiratory activity is increased in hyperthyroid rats. T(3), by influencing the metabolic function of the mitochondrial compartment, induces lipogenesis and the release of secretory product by type A cells. Mitochondrial uncoupling proteins 2 and 3 were expressed at both mRNA and protein levels in the euthyroid rat Harderian gland. T(3) treatment increased the mRNA levels of both uncoupling protein 2 (UCP2) and UCP3, but the protein level only of UCP3. A possible role for these proteins in the Harderian gland is discussed.
Braakman, I; Keij, J; Hardonk, M J; Meijer, D K; Groothuis, G M
1991-01-01
Periportal and perivenous hepatocytes are known to display various functional differences. In this study we present a new method to separate periportal and perivenous cells: after selectively loading zone 1 or zone 3 with the fluorescent label acridine orange in an antegrade or retrograde perfusion, respectively, we separated the isolated hepatocytes on a fluorescence-activated cell sorter. The common way to check on proper separation is to estimate activities of enzymes known to exhibit a heterogeneous acinar distribution. Using enzyme histochemistry, however, we found that already on short collagenase perfusion, some enzymes displayed a more shallow gradient than in vivo, making enzyme activities less suitable as zonal markers. We therefore used colloidal gold granules (17 nm) injected intravenously (2.5 mg) into the rat 2 to 3 hr before cell isolation. The gold is taken up predominantly by perivenous hepatocytes, probably because of the efficient removal of gold granules in zone 1 by competing Kupffer cells. We compared acridine orange fluorescence, presence of gold particles and activities of six marker enzymes, three biochemically and three histochemically determined. Acridine orange and gold both pointed to a high enrichment of the fractions, whereas most enzyme activities were more randomly distributed among the cells as a result of the isolation procedure. Our separation procedure yielded fractions highly enriched in either viable periportal or perivenous cells, both from one liver. The use of colloidal gold as a marker to monitor separation is a valuable alternative to the more risky estimation of enzyme activities.
Berman-Booty, Lisa D.; Thomas-Ahner, Jennifer M.; Bolon, Brad; Oglesbee, Michael J.; Clinton, Steven K.; Kulp, Samuel K.; Chen, Ching-Shih; La Perle, Krista
2014-01-01
Male transgenic adenocarcinoma of the mouse prostate (TRAMP) mice are frequently used in prostate cancer research because their prostates consistently develop a series of pre-neoplastic and neoplastic lesions. Disease progression in TRAMP mouse prostates culminates in metastatic, poorly differentiated carcinomas with neuroendocrine features. The androgen dependence of the rat probasin promoter largely limits transgene expression to the prostatic epithelium. However, extra-prostatic transgene-positive lesions have been described in TRAMP mice, including renal tubulo-acinar carcinomas, neuroendocrine carcinomas of the urethra, and phyllodes-like tumors of the seminal vesicle. Here we describe the histologic and immunohistochemical features of two novel extra-prostatic lesions in TRAMP mice: primary anaplastic tumors of uncertain cell origin in the midbrain, and poorly differentiated adenocarcinomas of the submandibular salivary gland. These newly characterized tumors apparently result from transgene expression in extra-prostatic locations rather than representing metastatic prostate neoplasms because lesions were identified in both male and female mice as well as in male TRAMP mice without histologically apparent prostate tumors. In this paper we also calculate the incidences of the urethral carcinomas and renal tubulo-acinar carcinomas, further elucidate the biological behavior of the urethral carcinomas, and demonstrate the critical importance of complete necropsies even when evaluating presumably well characterized phenotypes in genetically engineered mice. PMID:24742627
Genetic inhibition of protein kinase Cε attenuates necrosis in experimental pancreatitis
Liu, Yannan; Tan, Tanya; Jia, Wenzhuo; Lugea, Aurelia; Mareninova, Olga; Waldron, Richard T.; Pandol, Stephen J.
2014-01-01
Understanding the regulation of death pathways, necrosis and apoptosis, in pancreatitis is important for developing therapies directed to the molecular pathogenesis of the disease. Protein kinase Cε (PKCε) has been previously shown to regulate inflammatory responses and zymogen activation in pancreatitis. Furthermore, we demonstrated that ethanol specifically activated PKCε in pancreatic acinar cells and that PKCε mediated the sensitizing effects of ethanol on inflammatory response in pancreatitis. Here we investigated the role of PKCε in the regulation of death pathways in pancreatitis. We found that genetic deletion of PKCε resulted in decreased necrosis and severity in the in vivo cerulein-induced pancreatitis and that inhibition of PKCε protected the acinar cells from CCK-8 hyperstimulation-induced necrosis and ATP reduction. These findings were associated with upregulation of mitochondrial Bak and Bcl-2/Bcl-xL, proapoptotic and prosurvival members in the Bcl-2 family, respectively, as well as increased mitochondrial cytochrome c release, caspase activation, and apoptosis in pancreatitis in PKCε knockout mice. We further confirmed that cerulein pancreatitis induced a dramatic mitochondrial translocation of PKCε, suggesting that PKCε regulated necrosis in pancreatitis via mechanisms involving mitochondria. Finally, we showed that PKCε deletion downregulated inhibitors of apoptosis proteins, c-IAP2, survivin, and c-FLIPs while promoting cleavage/inactivation of receptor-interacting protein kinase (RIP). Taken together, our findings provide evidence that PKCε activation during pancreatitis promotes necrosis through mechanisms involving mitochondrial proapoptotic and prosurvival Bcl-2 family proteins and upregulation of nonmitochondrial pathways that inhibit caspase activation and RIP cleavage/inactivation. Thus PKCε is a potential target for prevention and/or treatment of acute pancreatitis. PMID:25035113
Pancreatic Transduction by Helper-Dependent Adenoviral Vectors via Intraductal Delivery
Morró, Meritxell; Teichenne, Joan; Jimenez, Veronica; Kratzer, Ramona; Marletta, Serena; Maggioni, Luca; Mallol, Cristina; Ruberte, Jesus; Kochanek, Stefan; Bosch, Fatima
2014-01-01
Abstract Pancreatic gene transfer could be useful to treat several diseases, such as diabetes mellitus, cystic fibrosis, chronic pancreatitis, or pancreatic cancer. Helper-dependent adenoviral vectors (HDAds) are promising tools for gene therapy because of their large cloning capacity, high levels of transgene expression, and long-term persistence in immunocompetent animals. Nevertheless, the ability of HDAds to transduce the pancreas in vivo has not been investigated yet. Here, we have generated HDAds carrying pancreas-specific expression cassettes, that is, driven either by the elastase or insulin promoter, using a novel and convenient plasmid family and homologous recombination in bacteria. These HDAds were delivered to the pancreas of immunocompetent mice via intrapancreatic duct injection. HDAds, encoding a CMV-GFP reporter cassette, were able to transduce acinar and islet cells, but transgene expression was lost 15 days postinjection in correlation with severe lymphocytic infiltration. When HDAds encoding GFP under the control of the specific elastase promoter were used, expression was detected in acinar cells, but similarly, the expression almost disappeared 30 days postinjection and lymphocytic infiltration was also observed. In contrast, long-term transgene expression (>8 months) was achieved with HDAds carrying the insulin promoter and the secretable alkaline phosphatase as the reporter gene. Notably, transduction of the liver, the preferred target for adenovirus, was minimal by this route of delivery. These data indicate that HDAds could be used for pancreatic gene therapy but that selection of the expression cassette is of critical importance to achieve long-term expression of the transgene in this tissue. PMID:25046147
Jung, Kyung Hee; Song, Sun U; Yi, Tacghee; Jeon, Myung-Shin; Hong, Sang-Won; Zheng, Hong-Mei; Lee, Hee-Seung; Choi, Myung-Joo; Lee, Don-Haeng; Hong, Soon-Sun
2011-03-01
Acute pancreatitis (AP) has a high mortality rate; repetitive AP induces chronic AP and pancreatic adenocarcinoma. Mesenchymal stem cells (MSCs) have immunoregulatory effects and reduce inflammation. We developed a protocol to isolate human bone marrow-derived clonal MSCs (hcMSCs) from bone marrow aspirate and investigated the effects of these cells in rat models of mild and severe AP. Mild AP was induced in Sprague-Dawley rats by 3 intraperitoneal injections of cerulein (100 μg/kg), given at 2-hour intervals; severe AP was induced by intraparenchymal injection of 3% sodium taurocholate solution. hcMSCs were labeled with CM-1,1'-dioctadecyl-3,3,3'-tetramethylindo-carbocyanine perchloride and administered to rats through the tail vein. hcMSCs underwent self-renewal and had multipotent differentiation capacities and immunoregulatory functions. Greater numbers of infused hcMSCs were detected in pancreas of rats with mild and severe AP than of control rats. Infused hcMSCs reduced acinar-cell degeneration, pancreatic edema, and inflammatory cell infiltration in each model of pancreatitis. The hcMSCs reduced expression of inflammation mediators and cytokines in rats with mild and severe AP. hcMSCs suppressed the mixed lymphocyte reaction and increased expression of Foxp3(+) (a marker of regulatory T cells) in cultured rat lymph node cells. Rats with mild or severe AP that were given infusions of hcMSCs had reduced numbers of CD3(+) T cells and increased expression of Foxp3(+) in pancreas tissues. hcMSCs reduced inflammation and damage to pancreatic tissue in a rat model of AP; they reduced levels of cytokines and induced numbers of Foxp3(+) regulatory T cells. hcMSCs might be developed as a cell therapy for pancreatitis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Studies of rhodamine-123: effect on rat prostate cancer and human prostate cancer cells in vitro.
Arcadi, J A; Narayan, K S; Techy, G; Ng, C P; Saroufeem, R M; Jones, L W
1995-06-01
The effect of the lipophilic, cationic dye, Rhodamine-123 (Rh-123), on prostate cancer in rats, and on three tumor cell lines in vitro is reported here. The general toxicity of Rh-123 in mice has been found to be minimal. Lobund-Wistar (L-W) rats with the autochthonous prostate cancer of Pollard were treated for six doses with Rh-123 at a dose of 15 mg/kg subcutaneously every other day. Microscopic examination of the tumors revealed cellular and acinar destruction. The effectiveness of Rh-123 as a cytotoxic agent was tested by clonogenic and viability assays in vitro with three human prostate cancer cell lines. Severe (60-95%) growth inhibition was observed following Rh-123 exposure for 2-5 days at doses as low as 1.6 micrograms/ml in all three prostate cancer cell lines.
3He Lung Morphometry Technique: Accuracy Analysis and Pulse Sequence Optimization
Sukstanskii, A.L.; Conradi, M.S.; Yablonskiy, D.A.
2010-01-01
The 3He lung morphometry technique (Yablonskiy et al, JAP, 2009), based on MRI measurements of hyperpolarized gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. 3D tomographic images of standard morphological parameters (mean airspace chord length, lung parenchyma surface-to-volume ratio, and the number of alveoli per unit lung volume) can be created from a rather short (several seconds) MRI scan. These parameters are most commonly used to characterize lung morphometry but were not previously available from in vivo studies. A background of the 3He lung morphometry technique is based on a previously proposed model of lung acinar airways, treated as cylindrical passages of external radius R covered by alveolar sleeves of depth h, and on a theory of gas diffusion in these airways. The initial works approximated the acinar airways as very long cylinders, all with the same R and h. The present work aims at analyzing effects of realistic acinar airway structures, incorporating airway branching, physiological airway lengths, a physiological ratio of airway ducts and sacs, and distributions of R and h. By means of Monte Carlo computer simulations, we demonstrate that our technique allows rather accurate measurements of geometrical and morphological parameters of acinar airways. In particular, the accuracy of determining one of the most important physiological parameter of acinar airways – surface-to-volume ratio – does not exceed several percent. Second, we analyze the effect of the susceptibility induced inhomogeneous magnetic field on the parameter estimate and demonstrate that this effect is rather negligible at B0 ≤ 3T and becomes substantial only at higher B0 Third, we theoretically derive an optimal choice of MR pulse sequence parameters, which should be used to acquire a series of diffusion attenuated MR signals, allowing a substantial decrease in the acquisition time and improvement in accuracy of the results. It is demonstrated that the optimal choice represents three not equidistant b-values: b1 = 0, b2 ~ 2 s/cm2, b3 ~ 8 s/cm2. PMID:20937564
Flow measurement in an in-vitro model of a single human alveolus
NASA Astrophysics Data System (ADS)
Chhabra, Sudhaker; Prasad, Ajay
2006-03-01
The alveolus is the smallest and most important unit in the acinar region of the human lung. It is responsible for gas exchange between the lungs and the blood. A complete knowledge of the airflow pattern in the acinar region is necessary to predict the transport and deposition of inhaled aerosol particles. Such knowledge will benefit the pharmaceutical community in its effort to deliver therapeutic aerosols for lung-specific as well as system-wide ailments. In addition, it can also help to assess the health effects of the toxic aerosols in the environment. We have constructed an in-vitro model of a single spherical alveolus on a circular tube. The alveolus is capable of expanding and contracting in phase with the oscillatory flow through the tube. Realistic breathing conditions are reproduced by matching Reynolds and Womersley numbers. Experimental methods such as particle imaging velocimetry and laser induced fluorescence are used to study the resulting flow patterns. In particular, recirculating flow within the alveolus, and the fluid exchange between the alveolar duct and the alveolus are important for better understanding the flow in the acinar region.
Does prostate acinar adenocarcinoma with Gleason Score 3+3=6 have the potential to metastasize?
Montironi, Rodolfo; Scarpelli, Marina; Mazzucchelli, Roberta; Lopez-Beltran, Antonio; Santoni, Matteo; Briganti, Alberto; Montorsi, Francesco; Cheng, Liang
2014-10-18
There is a worldwide debate involving clinicians, uropathologists as well as patients and their families on whether Gleason score 6 adenocarcinoma should be labelled as cancer. We report a case of man diagnosed with biopsy Gleason score 6 acinar adenocarcinoma and classified as low risk (based on a PSA of 5 ng/mL and stage cT2a) whose radical prostatectomy specimen initially showed organ confined Gleason score 3+3=6, WHO nuclear grade 3, acinar adenocarcinoma with lymphovascular invasion and secondary deposit in a periprostatic lymph node. When deeper sections were cut to the point that almost all the slice present in the paraffin block was sectioned, a small tumor area (<5% of the whole tumor) of Gleason pattern 4 (poorly formed glands) was found in an extraprostatic position. The epilogue was that the additional finding changed the final Gleason score to 3+3=6 with tertiary pattern 4 and the stage to pT3a. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_190.
Effects of Erdosteine on Experimental Acute Pancreatitis Model.
Karapolat, Banu; Karapolat, Sami; Gurleyik, Emin; Yasar, Mehmet
2017-10-01
To create acute pancreatitis condition experimentally in rats using cerulein, and to reveal histopathological effects in pancreatic tissue with erdosteine. An experimental study. Department of General Surgery, Duzce University, Turkey, from June to October 2014. Thirty male Wistar albino rats were divided into three groups. No procedures were applied to Group 1. The rats in Group 2 and Group 3 were injected cerulein, to establish an experimental pancreatitis model and the blood amylase and lipase values were examined. The rats in Group 3 were given 10 mg/kg erdosteine. This treatment was continued for another 2 days and the rats were sacrificed. The pancreatic tissues were examined histopathologically for edema, inflammation, acinar necrosis, fat necrosis, and vacuolization. The lipase and amylase values and the histopathological examination of pancreatic tissues evidenced that the experimental acute pancreatitis model was established and edema, inflammation, acinar necrosis, fat necrosis, and vacuolization were observed in the pancreatic tissues. The statistical results suggest that erdosteine can decrease the edema, inflammation, acinar necrosis, fat necrosis and vacuolization scores in the tissues. The severity of acute pancreatitis, induced by cerulein in rats, is reduced with the use of erdosteine.
Yamaguchi, Soichiro; Jha, Archana; Li, Qin; Soyombo, Abigail A.; Dickinson, George D.; Churamani, Dev; Brailoiu, Eugen; Patel, Sandip; Muallem, Shmuel
2011-01-01
NAADP is a potent second messenger that mobilizes Ca2+ from acidic organelles such as endosomes and lysosomes. The molecular basis for Ca2+ release by NAADP, however, is uncertain. TRP mucolipins (TRPMLs) and two-pore channels (TPCs) are Ca2+-permeable ion channels present within the endolysosomal system. Both have been proposed as targets for NAADP. In the present study, we probed possible physical and functional association of these ion channels. Exogenously expressed TRPML1 showed near complete colocalization with TPC2 and partial colocalization with TPC1. TRPML3 overlap with TPC2 was more modest. TRPML1 and to some extent TRPML3 co-immunoprecipitated with TPC2 but less so with TPC1. Current recording, however, showed that TPC1 and TPC2 did not affect the activity of wild-type TRPML1 or constitutively active TRPML1(V432P). N-terminally truncated TPC2 (TPC2delN), which is targeted to the plasma membrane, also failed to affect TRPML1 and TRPML1(V432P) channel function or TRPML1(V432P)-mediated Ca2+ influx. Whereas overexpression of TPCs enhanced NAADP-mediated Ca2+ signals, overexpression of TRPML1 did not, and the dominant negative TRPML1(D471K) was without affect on endogenous NAADP-mediated Ca2+ signals. Furthermore, the single channel properties of NAADP-activated TPC2delN were not affected by TRPML1. Finally, NAADP-evoked Ca2+ oscillations in pancreatic acinar cells were identical in wild-type and TRPML1−/− cells. We conclude that although TRPML1 and TPCs are present in the same complex, they function as two independent organellar ion channels and that TPCs, not TRPMLs, are the targets for NAADP. PMID:21540176
Membrane interactions between secretion granules and plasmalemma in three exocrine glands
Tanaka, Y; De Camilli, P; Meldolesi, J
1980-01-01
Three types of membrane interactions were studied in three exocrine systems (the acinar cells of the rat parotid, rat lacrimal gland, and guinea pig pancrease) by freeze- fracture and thin-section electron microscopy: exocytosis, induced in vivo by specific pharmacological stimulations; the mutual apposition of secretory granule membranes in the intact cell; membrane appositions induced in vitro by centrifugation of the isolated granules. In all three glandular cells, the distribution of intramembrane particles (IMP) on the fracture faces of the luminal plasmagranule membrane particles (IMP) on the fracture faces of the lumenal plasmalemma appeared random before stimulation. However, after injection of secretagogues, IMP were rapidly clearly from the areas of granule- plasmalemma apposition in the parotid cells and, especially, in lacrimocytes. In the latter, the cleared areas appeared as large bulges toward the lumen, whereas in the parotid they were less pronounced. Exocytotic openings were usually large and the fracture faces of their rims were covered with IMP. In contrast, in stimulated pancreatic acinar cells, the IMP distribution remained apparently random after stimulation. Exocytoses were established through the formation of narrown necks, and no images which might correspond to early stages of membrane fusion were revealed. Within the cytoplasm of parotid and lacrimal cells (but not in the pancreas), both at rest and after stimulation, secretion granules were often closely apposed by means of flat, circular areas, also devoid of IMP. In thin sections, the images corresponding to IMP-free areas were close granule-granule and granule-plasmalemma appositions, sometimes with focal merging of the membrane outer layers to yield pentalaminar structures. Isolated secretion granules were forced together in vitro by centrifugation. Under these conditions, increasing the centrifugal force from 1,600 to 50,000 g for 10 min resulted in a progressive, statistically significant increase of the frequency of IMP-free flat appositions between parotid granules. In contrast, no such areas were seen between freeze-fractured pancreatic granules, although some focal pentalaminar appositions appeared in section after centrifugation at 50 and 100,000 g for 10 min. On the basis of the observation that, in secretory cells, IMP clearing always develops in deformed membrane areas (bulges, depressions, flat areas), it is suggested that it might result from the forced mechanical apposition of the interacting membranes. This might be a preliminary process not sufficient to initiate fusion. In the pancreas, IMP clearing could occur over surface areas too small to be detected. In stimulated parotid and lacrimal glands they were exceptional. These structures were either attached at the sites of continuity between granule and plasma membranes, or free in the acinar lumen, with a preferential location within exocytotic pockets or in their proximity. Experiments designed to investigate the nature of these blisters and vesicles revealed that they probably arise artifactually during glutaraldehyde fixation. In fact, (a) they were large and numerous in poorly fixed samples but were never observed in thin sections of specimens fixed in one step with glutaraldehyde and OsO(4); and (b) no increase in concentration of phospholipids was observed in the parotid saliva and pancreatic juice after stimulation of protein discharge, as was to be expected if release of membrane material were occurring after exocytosis. PMID:7380885
Zhang, Lei; Bluth, Martin H; Bhalla, Amarpreet
2018-06-01
Pancreatic neoplasms, including ductal adenocarcinoma, solid pseudopapillary neoplasm, pancreatic endocrine neoplasms, acinar cell carcinoma, and pancreatoblastoma, are associated with different genetic abnormalities. Hepatic adenomas with beta-catenin exon 3 mutation are associated with a high risk of malignancy. Hepatic adenoma with arginosuccinate synthetase 1 expression or sonic hedgehog mutations are associated with a risk of bleeding. Hepatocellular carcinoma and choangiocarcinoma display heterogeneity at both morphologic and molecular levels Cholangiocellular carcinoma is most commonly associated with IDH 1/2 mutations. Copyright © 2018 Elsevier Inc. All rights reserved.
Kullmann, W
1982-05-01
This study of protease-catalyzed peptide synthesis reports the preparation of the COOH-terminal octapeptide amide of cholecystokinin. The octapeptide was assembled by chemical condensation of two tetrapeptide segments that had been synthesized through the concerted catalytic reactions of several proteases of different specificities. The resulting octapeptide derivative was subjected to catalytic transfer hydrogenation, followed by sulfation of its tyrosine residue and removal of the N alpha-protecting group. The homogeneous target peptide was obtained after purification via partition chromatography, gel filtration, and ion-exchange chromatography. The synthetic octapeptide stimulated amylase release from pancreatic acinar cells.
2018-06-22
Pancreatic Acinar Cell Carcinoma; Pancreatic Ductal Adenocarcinoma; Pancreatic Intraductal Papillary-Mucinous Neoplasm; Stage I Pancreatic Cancer AJCC v6 and v7; Stage IA Pancreatic Cancer AJCC v6 and v7; Stage IB Pancreatic Cancer AJCC v6 and v7; Stage II Pancreatic Cancer AJCC v6 and v7; Stage IIA Pancreatic Cancer AJCC v6 and v7; Stage IIB Pancreatic Cancer AJCC v6 and v7
The Missing Link in the Diagnostic Pathway of Prostate Cancer.
Wøyen, Arne Vidar Tind; Laczkó, Gergely; Høyer, Søren; Hegyi, Laszlo
2017-04-01
Prostate cancer is one of the most common cancers in the Western world. It is among the leading causes of cancer related death. While its incidence and survival increased significantly during the last few decades in Denmark, the mortality rate did not change for patients younger than 80 year old. Development of new techniques, such as multiparametric MRI, helps to increase the accuracy of diagnosis. However, a missing link in the diagnostic pathway may result in mistreatment if an acinar adenocarcinoma of prostate is transformed into a neuroendocrine phenotype such as small cell carcinoma.
Yao, Jian; Li, Qin; Chen, Jin; Muallem, Shmuel
2004-05-14
Ca2+-induced Ca2+ release (CICR) is a well characterized activity in skeletal and cardiac muscles mediated by the ryanodine receptors. The present study demonstrates CICR in the non-excitable parotid acinar cells, which resembles the mechanism described in cardiac myocytes. Partial depletion of internal Ca2+ stores leads to a minimal activation of Ca2+ influx. Ca2+ influx through this pathway results in an explosive mobilization of Ca2+ from the majority of the stores by CICR. Thus, stimulation of parotid acinar cells in Ca2+ -free medium with 0.5 microm carbachol releases approximately 5% of the Ca2+ mobilizable by 1 mm carbachol. Addition of external Ca2+ induced the same Ca2+ release observed in maximally stimulated cells. Similar results were obtained by a short treatment with 2.5-10 microm cyclopiazonic acid, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase pump. The Ca2+ release induced by the addition of external Ca2+ was largely independent of IP(3)Rs because it was reduced by only approximately 30% by the inhibition of the inositol 1,4,5-trisphosphate receptors with caffeine or heparin. Measurements of Ca2+ -activated outward current and [Ca2+](i) suggested that most CICR triggered by Ca2+ influx occurred away from the plasma membrane. Measurement of the response to several concentrations of cyclopiazonic acid revealed that Ca2+ influx that regulates CICR is associated with a selective portion of the internal Ca2+ pool. The minimal activation of Ca2+ influx by partial store depletion was confirmed by the measurement of Mn2+ influx. Inhibition of Ca2+ influx with SKF96365 or 2-aminoethoxydiphenyl borate prevented activation of CICR observed on addition of external Ca2+. These findings provide evidence for activation of CICR by Ca2+ influx in non-excitable cells, demonstrate a previously unrecognized role for Ca2+ influx in triggering CICR, and indicate that CICR in non-excitable cells resembles CICR in cardiac myocytes with the exception that in cardiac cells Ca2+ influx is mediated by voltage-regulated Ca2+ channels whereas in non-excitable cells Ca2+ influx is mediated by store-operated channels.
Lee, Geun Dong; Lee, Seung Eun; Oh, Doo-Yi; Yu, Dan-Bi; Jeong, Hae Min; Kim, Jooseok; Hong, Sungyoul; Jung, Hun Soon; Oh, Ensel; Song, Ji-Young; Lee, Mi-Sook; Kim, Mingi; Jung, Kyungsoo; Kim, Jhingook; Shin, Young Kee; Choi, Yoon-La; Kim, Hyeong Ryul
2017-08-01
Response to mesenchymal-epithelial transition (MET) inhibitors in NSCLC with mesenchymal-epithelial transition gene (MET) exon 14 skipping (METex14) has fueled molecular screening efforts and the search for optimal therapies. However, further work is needed to refine the clinicopathologic and prognostic implications of METex14 skipping. Among 795 East Asian patients who underwent a surgical procedure for NSCLC, we screened 45 patients with quintuple-negative (EGFR-negative/KRAS-negative/anaplastic lymphoma kinase gene [ALK]-negative/ROS1-negative/ret proto-oncogene [RET]-negative) lung adenocarcinomas by using reverse-transcriptase polymerase chain reaction and found 17 patients (37.8%) with METex14 skipping. We also investigated the effect of small interfering RNA (siRNA) targeting skipping junction in cells with METex14 skipping. The median age of the 17 patients was 73 years. The acinar subtype was predominant (52.9%), followed by the solid subtype (35.3%). MET immunohistochemistry demonstrated 100% sensitivity and 70.4% specificity. Multivariate analyses showed that patients with METex14 skipping had a higher recurrence rate than those with ALK fusion (versus METex14 skipping) (hazard ratio = 0.283, 95% confidence interval: 0.119-0.670) in stage I to IIIA disease; however, the differences in overall survival were not significant after adjustment for pathologic stage (p = 0.669). Meanwhile, siRNA decreased MET-driven signaling pathways in Hs746T cells, and combined treatment with siRNA and crizotinib inhibited cell proliferation in crizotinib-resistant H596 cells. The prevalence of METex14 skipping was quite high in East Asian patients without other driver mutations in lung adenocarcinomas. METex14 skipping was associated with old age, the acinar or solid histologic subtype, and high MET immunohistochemical expression. The prognosis of patients with METex14 skipping was similar to that of patients with major driver mutations. siRNA targeting the junction of METex14 skipping could inhibit MET-driven signaling pathways in cells with METex14 skipping. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Khoriaty, Rami; Everett, Lesley; Chase, Jennifer; Zhu, Guojing; Hoenerhoff, Mark; McKnight, Brooke; Vasievich, Matthew P.; Zhang, Bin; Tomberg, Kärt; Williams, John; Maillard, Ivan; Ginsburg, David
2016-01-01
In humans, loss of function mutations in SEC23B result in Congenital Dyserythropoietic Anemia type II (CDAII), a disease limited to defective erythroid development. Patients with two nonsense SEC23B mutations have not been reported, suggesting that complete SEC23B deficiency might be lethal. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration and that mice with hematopoietic SEC23B deficiency do not exhibit CDAII. We now show that SEC23B deficiency restricted to the pancreas is sufficient to explain the lethality observed in mice with global SEC23B-deficiency. Immunohistochemical stains demonstrate an acinar cell defect but normal islet cells. Mammalian genomes contain two Sec23 paralogs, Sec23A and Sec23B. The encoded proteins share ~85% amino acid sequence identity. We generate mice with pancreatic SEC23A deficiency and demonstrate that these mice survive normally, exhibiting normal pancreatic weights and histology. Taken together, these data demonstrate that SEC23B but not SEC23A is essential for murine pancreatic development. We also demonstrate that two BAC transgenes spanning Sec23b rescue the lethality of mice homozygous for a Sec23b gene trap allele, excluding a passenger gene mutation as the cause of the pancreatic lethality, and indicating that the regulatory elements critical for Sec23b pancreatic function reside within the BAC transgenes. PMID:27297878
Rotte, C; Krach, C; Balfanz, S; Baumann, A; Walz, B; Blenau, W
2009-09-15
The phenolamines octopamine and tyramine control, regulate, and modulate many physiological and behavioral processes in invertebrates. Vertebrates possess only small amounts of both substances, and thus, octopamine and tyramine, together with other biogenic amines, are referred to as "trace amines." Biogenic amines evoke cellular responses by activating G-protein-coupled receptors. We have isolated a complementary DNA (cDNA) that encodes a biogenic amine receptor from the American cockroach Periplaneta americana, viz., Peatyr1, which shares high sequence similarity to members of the invertebrate tyramine-receptor family. The PeaTYR1 receptor was stably expressed in human embryonic kidney (HEK) 293 cells, and its ligand response has been examined. Receptor activation with tyramine reduces adenylyl cyclase activity in a dose-dependent manner (EC(50) approximately 350 nM). The inhibitory effect of tyramine is abolished by co-incubation with either yohimbine or chlorpromazine. Receptor expression has been investigated by reverse transcription polymerase chain reaction and immunocytochemistry. The mRNA is present in various tissues including brain, salivary glands, midgut, Malpighian tubules, and leg muscles. The effect of tyramine on salivary gland acinar cells has been investigated by intracellular recordings, which have revealed excitatory presynaptic actions of tyramine. This study marks the first comprehensive molecular, pharmacological, and functional characterization of a tyramine receptor in the cockroach.
Afford, S C; Randhawa, S; Eliopoulos, A G; Hubscher, S G; Young, L S; Adams, D H
1999-01-18
We propose that a novel mechanism of hepatocyte apoptosis, involving a cooperative interaction between CD40 and Fas, is involved in the hepatocyte loss of chronic liver allograft rejection. We detected increased hepatocyte expression of Fas, Fas ligand (FasL), and CD40 associated with dropout of centrilobular (acinar zone 3) hepatocytes in chronic allograft rejection. Expression of CD40 ligand (CD40L) was also increased but was largely restricted to CD68(+) macrophages. A functional role for CD40 and Fas in hepatocyte apoptosis was demonstrated in vitro using primary human hepatocytes and the HepG2 cell line in both of which apoptosis was induced, not only by cross-linking Fas directly but also via CD40 activation. Our data suggest that CD40 activation induces apoptosis via Fas because (a) ligation of CD40 upregulated hepatocyte FasL expression, and (b) apoptosis induced via activation of CD40 was prevented by a neutralizing monoclonal antibody to FasL. Thus, CD40 engagement triggers apoptosis of human hepatocytes and might amplify Fas-dependent hepatocyte apoptosis in chronic rejection and other inflammatory liver diseases in which Fas-mediated apoptosis is involved.
Salivary enhancement: current status and future therapies.
Atkinson, J C; Baum, B J
2001-10-01
Saliva provides the principal protective milieu for teeth by modulating oral microbial ecosystems and reversing the initial phases of caries development. Patients with inadequate salivary function are at increased risk for dental decay. Therefore, it is likely that therapies that increase overall fluid output of these individuals will reverse early carious lesions. The most common causes of salivary dysfunction are medication usage, Sjögren's syndrome, and damage of salivary parenchyma during therapeutic irradiation. For patients with remaining functional acinar tissue, treatment with the parasypathomimetic secretogogues pilocarpine and Cevimeline may provide relief. However, these medications do not benefit all patients. The possibilities of using gene therapy and tissue engineering to develop treatments for those with severe salivary dysfunction are discussed.
Fishman, Emily F.; Quirk, James D.; Sweet, Stuart C.; Woods, Jason C.; Gierada, David S.; Conradi, Mark S.; Siegel, Marilyn J.; Yablonskiy, Dmitriy A.
2016-01-01
Background Obtaining information on transplanted lung microstructure is an important part of the current care for monitoring transplant recipients. However, until now this information was only available from invasive lung biopsy. The objective of this study was to evaluate the use of an innovative non-invasive technique in vivo lung morphometry with hyperpolarized 3He MRI - to characterize lung microstructure in the pediatric lung transplant population. This technique yields quantitative measurements of acinar airways’ (alveolar ducts and sacs) parameters, such as acinar airways radii and alveolar depth. Methods Six pediatric lung transplant recipients with cystic fibrosis underwent in vivo lung morphometry MRI, pulmonary function testing, and quantitative CT. Results We found a strong correlation between lung lifespan and alveolar depth - patients with more shallow alveoli were likely to have a negative outcome sooner than those with larger alveolar depth. Combining morphometric results with CT we also determined mean alveolar wall thickness and found substantial increases in this parameter in some patients that negatively correlated with DLCO. Conclusion In vivo lung morphometry uniquely provides previously unavailable information on lung microstructure that may be predictive of a negative outcome and has a potential to aid in lung selection for transplantation. PMID:28120553
Wang, Di; Yuan, Zhenfang; Inoue, Noriko; Cho, Gota; Shono, Masayuki; Ishikawa, Yasuko
2011-05-01
The mechanisms underlying diabetic xerostomia have not been clarified in relation with aquaporin-5 (AQP5) subcellular localization in salivary glands. Western blotting, real-time PCR, and immunocytochemistry were used to analyse AQP5 protein levels and mRNA expression. AQP5 protein levels were measured in the apical plasma membrane (APM) and detergent-insoluble fraction prepared from streptozotocin-diabetic rat parotid glands. Despite an increase in AQP5 mRNA, AQP5 protein levels were decreased in diabetic parotid glands compared with controls. Immunohistochemical studies indicated that AQP5, under unstimulated conditions, colocalised with flotillin-2 and GM1 with a diffuse pattern in the apical cytoplasm of acinar and duct cells in both control and diabetic rats. Ten minutes after intravenous injection of muscarinic agonist cevimeline, AQP5 was dramatically increased together with flotillin-2 and GM1 in the APM of parotid acinar and duct cells of control but not diabetic rats. Sixty minutes after injection, AQP5 was located in a diffuse pattern in the apical cytoplasm in both rats. Treatment of the parotid tissues with cevimeline for 10min increased the Triton X-100 solubility of AQP5 in control but not diabetic rats. Administration of insulin to diabetic rats tended to restore the cevimeline-induced translocation of AQP5. Lack of AQP5 translocation in the salivary gland in response to a muscarinic agonist and downregulation of AQP5 protein might lead to diabetic xerostomia. Cevimeline is useful to cure diabetic xerostomia under insulin administration. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Update on pathogenesis and clinical management of acute pancreatitis
Cruz-Santamaría, Dulce M; Taxonera, Carlos; Giner, Manuel
2012-01-01
Acute pancreatitis (AP), defined as the acute nonbacterial inflammatory condition of the pancreas, is derived from the early activation of digestive enzymes found inside the acinar cells, with variable compromise of the gland itself, nearby tissues and other organs. So, it is an event that begins with pancreatic injury, elicits an acute inflammatory response, encompasses a variety of complications and generally resolves over time. Different conditions are known to induce this disorder, although the innermost mechanisms and how they act to develop the disease are still unknown. We summarize some well established aspects. A phase sequence has been proposed: etiology factors generate other conditions inside acinar cells that favor the AP development with some systemic events; genetic factors could be involved as susceptibility and modifying elements. AP is a disease with extremely different clinical expressions. Most patients suffer a mild and limited disease, but about one fifth of cases develop multi organ failure, accompanied by high mortality. This great variability in presentation, clinical course and complications has given rise to the confusion related to AP related terminology. However, consensus meetings have provided uniform definitions, including the severity of the illness. The clinical management is mainly based on the disease´s severity and must be directed to correct the underlying predisposing factors and control the inflammatory process itself. The first step is to determine if it is mild or severe. We review the principal aspects to be considered in this treatment, as reflected in several clinical practice guidelines. For the last 25 years, there has been a global increase in incidence of AP, along with many advances in diagnosis and treatment. However, progress in knowledge of its pathogenesis is scarce. PMID:22737590
Pancreatic aquaporin-7: a novel target for anti-diabetic drugs?
NASA Astrophysics Data System (ADS)
Méndez-Giménez, Leire; Ezquerro, Silvia; da Silva, Inês V.; Soveral, Graça; Frühbeck, Gema; Rodríguez, Amaia
2018-04-01
Aquaporins comprise a family of 13 members of water channels (AQP0-12) that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5 and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells) is composed by the islets of Langerhans, which are distributed in ,, , and pancreatic polypeptide (PP) cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic -cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced -cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion by increasing intracellular glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function variants of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is focused on the role of aquaporins in the physiology and pathophysiology of the pancreas, highlighting the role of pancreatic AQP7 as a novel player in the control of -cell function and a potential anti-diabetic-drug.
Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs?
Méndez-Giménez, Leire; Ezquerro, Silvia; da Silva, Inês V.; Soveral, Graça; Frühbeck, Gema; Rodríguez, Amaia
2018-01-01
Aquaporins comprise a family of 13 members of water channels (AQP0-12) that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5, and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells) is composed by the islets of Langerhans, which are distributed in α, β, δ, ε, and pancreatic polypeptide (PP) cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic β-cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced β-cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion through the increase of intracytoplasmic glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function mutations of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is focused on the role of aquaporins in the physiology and pathophysiology of the pancreas, highlighting the role of pancreatic AQP7 as a novel player in the control of β-cell function and a potential anti-diabetic-drug. PMID:29675407
Ríos, Elvio E; Cholich, Luciana A; Chileski, Gabriela; García, Enrique N; Lértora, Javier; Gimeno, Eduardo J; Guidi, María G; Mussart, Norma; Teibler, Gladys P
2015-07-01
This study describes an occurrence of pink morning glory (Ipomoea carnea) intoxication in goats in northern Argentina. The clinical signs displayed by the affected animals were ataxia, lethargy, emaciation, hypertonia of the neck muscles, spastic paresis in the hind legs, abnormal postural reactions and death. The clinico-pathologic examination revealed that the affected animals were anemic and their serum level of aspartate aminotransferase was significantly increased. Cytoplasmic vacuolation in the Purkinje cells and pancreatic acinar cells was observed by histological examination. The neuronal lectin binding pattern showed a strong positive reaction to WGA (Triticum vulgaris), sWGA (succinylated T. vulgaris) and LCA (Lens culinaris). Although I. carnea is common in tropical regions, this is the first report of spontaneous poisoning in goats in Argentina.
Progenitor cell domains in the developing and adult pancreas
Kopp, Janel L; Dubois, Claire L; Hao, Ergeng; Thorel, Fabrizio; Herrera, Pedro L
2011-01-01
Unlike organs with defined stem cell compartments, such as the intestine, the pancreas has limited capacity to regenerate. The question of whether the adult pancreas harbors facultative stem/progenitor cells has been a prime subject of debate. Cumulative evidence from recent genetic lineage tracing studies, in which specific cell populations were marked and traced in adult mice, suggests that endocrine and acinar cells are no longer generated from progenitors in the adult pancreas. These studies further indicate that adult pancreatic ductal cells are not a source for endocrine cells following pancreatic injury, as previously suggested. Our own studies have shown that adult ductal cells reinitiate expression of some endocrine progenitor markers, including Ngn3, after injury by partial duct ligation (PDL), but that these cells do not undergo endocrine cell differentiation. Here, we present additional evidence that endocrine cells do not arise from ducts following β-cell ablation by streptozotocin or by a diphtheria toxin-expressing transgene or when β-cell ablation is combined with PDL. In this review, we discuss findings from recent lineage tracing studies of embryonic and adult pancreatic ductal cells. Based upon the combined evidence from these studies, we propose that multipotency is associated with a specific transcriptional signature. PMID:21558806
Meneray, M A; Bennett, D J; Nguyen, D H; Beuerman, R W
1998-01-01
This work was conducted to determine the effects of unilateral trigeminal ganglion ablation on lacrimal gland structure and secretory activity. Adult male New Zealand rabbits underwent unilateral thermocoagulation of the ophthalmic division of the trigeminal ganglion. Sensory denervation was affirmed by anatomic inspection of the lesion and transmission electron microscopy (TEM) of the lacrimal gland innervation. Eight to 10 days after the procedure, the intraorbital lacrimal glands were removed from both sides. To compare the physiologic competence of the intact and denervated glands, freshly isolated gland fragments from the paired intact and denervated glands were stimulated with carbachol (100 microM), isoproterenol (10 microM), phorbol-12,13-dibutyrate (PDBu, 10 microM), forskolin (40 microM), or vehicle. Total secreted protein was measured at 30 or 60 min after the establishment of baseline values. Intact and denervated glands also were examined by light and TEM, and the morphologic appearance of the acinar structures as well as the appearance of nerves innervating the gland after denervation were assessed. Similar experiments were conducted with animals that underwent unilateral superior cervical ganglionectomy. Tissues from sensory denervated glands released significantly more protein than did tissues from innervated glands in response to in vitro stimulation by carbachol or isoproterenol but not in response to PDBu or forskolin. Microscopy showed that the acinar cells that had undergone sensory denervation showed a massive accumulation of secretory granules. The secretory granules filled the entire cytoplasmic space and displaced the ellipsoidal nuclei to the extreme periphery. Examination of segments of nerves revealed numerous unmyelinated axons, a few small-diameter myelinated axons, and a large amount of nerve degeneration after sensory denervation. In contrast to the effects of sensory denervation, sympathetic denervation did not alter either the acinar appearance or secretory responsiveness of the gland. Loss of the considerable sensory innervation from the trigeminal ganglion has pronounced effects on the pharmacologic responsiveness and the structure of the lacrimal gland. The effects of sensory innervation on the gland may be mediated through two possible pathways: direct input to the gland or control of the preganglionic parasympathetic pathway.
Chou, Ya-Shuan; Young, Tai-Horng; Lou, Pei-Jen
2015-11-01
Salivary gland cells are surrounded by a complex stromal environment, in which fibroblasts are the main cells in proximity to the gland cells. In this study, the interaction between parotid gland acinar cells (PGACs), fibroblasts, and biomaterials was investigated. We prepared different biomaterials, including chitosan, polyvinyl alcohol (PVA), poly (ethylene-co-vinyl alcohol) (EVAL), polyvinylidene fluoride (PVDF), and tissue culture polystyrene (TCPS) to culture fibroblasts and then collect their conditioned media to culture PGACs. We observed no difference in AQP3, AQP5, and E-cadherin expression among different fibroblast conditioned medium treatments. Interestingly, α-amylase expression was obviously enhanced in PGACs cultured in the presence of conditioned medium from fibroblasts cultured on PVDF. Higher neurotrophin-4 (NT-4) expression was observed in PVDF-derived fibroblast conditioned medium using a growth factor protein array assay. In addition, directly adding NT-4 into the culture medium significantly promoted α-amylase expression by PGACs. Finally, nestin and βIII-tubulin expression by fibroblasts cultured on PVDF was also enhanced. Together, these results suggest that PVDF could promote α-amylase expression by PGACs via the NT-4 produced by fibroblasts. To date, there is no effective therapy for patients with dry mouth with persistent salivary hypofunction. The study made use of different biomaterials to culture fibroblasts and then collect their conditioned media to culture PGACs. It was found that the effect of fibroblast conditioned medium from PVDF on the α-amylase expression of PGACs was obviously enhanced and higher neurotrophin-4 (NT-4) expression was found in PVDF-derived fibroblast conditioned medium. In addition, directly adding NT-4 into the culture medium significantly promoted the expression of α-amylase by PGACs and the expression of nestin and βIII-tubulin of fibroblasts after being cultured on PVDF was enhanced. Therefore, the present study represents the first description of the role of NT-4 in the expression of α-amylase of PGACs and the role of PVDF in the reprogramming fibroblasts into neural progenitor-like cells, indicating that PVDF could promote the expression of α-amylase by PGACs via the NT-4 produced by fibroblasts. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Kullmann, W
1982-01-01
This study of protease-catalyzed peptide synthesis reports the preparation of the COOH-terminal octapeptide amide of cholecystokinin. The octapeptide was assembled by chemical condensation of two tetrapeptide segments that had been synthesized through the concerted catalytic reactions of several proteases of different specificities. The resulting octapeptide derivative was subjected to catalytic transfer hydrogenation, followed by sulfation of its tyrosine residue and removal of the N alpha-protecting group. The homogeneous target peptide was obtained after purification via partition chromatography, gel filtration, and ion-exchange chromatography. The synthetic octapeptide stimulated amylase release from pancreatic acinar cells. Images PMID:6283547
Isolation of zymogen granules from rat pancreas.
Rindler, Michael J
2006-01-01
This unit describes methods for preparing zymogen granules from rat pancreas. Zymogen granules are storage organelles in pancreatic acinar cells containing digestive enzymes that are released into the pancreatic duct. The protocols in this unit take advantage of the large size (up to 1 microm diameter) and high density (>1.20 g/cm(3) on sucrose gradients) of the granules as compared to other cellular organelles. They use a combination of differential sedimentation and density gradient separation to accomplish the purification. Similar procedures can be used to isolate zymogen granules from mouse pancreas and canine pancreas. A protocol for preparing zymogen granules from dog pancreas is also included.
Identification of SNAREs that mediate zymogen granule exocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickett, James A.; Campos-Toimil, Manuel; Thomas, Paul
2007-08-03
A secretagogue-stimulated pancreatic acinar cell releases digestive enzymes from its apical pole. We attempted to identify the SNAREs involved in zymogen granule exocytosis. Antibodies against syntaxins 2 and 3, SNAP-23 and VAMP 8, and the corresponding recombinant SNAREs, inhibited amylase secretion from streptolysin O-permeabilised acini; other anti-SNARE antibodies and SNAREs had no effect. Botulinum neurotoxin C, which cleaved syntaxin 2 and (to a lesser extent) syntaxin 3, but not syntaxins 4, 7 or 8, also inhibited exocytosis. We propose that syntaxin 2, SNAP-23 and VAMP 8 mediate primary granule-plasma membrane fusion. Syntaxin 3 may be involved in secondary granule-granule fusion.
Teoh-Fitzgerald, ML; Fitzgerald, MP; Zhong, W; Askeland, RW; Domann, FE
2013-01-01
Expression of the antioxidant enzyme EcSOD in normal human mammary epithelial cells was not recognized until recently. Although expression of EcSOD was not detectable in non-malignant human mammary epithelial cells (HMEC) cultured in conventional two-dimensional (2D) culture conditions, EcSOD protein expression was observed in normal human breast tissues, suggesting that the 2D-cultured condition induces a repressive status of EcSOD gene expression in HMEC. With the use of laminin-enriched extracellular matrix (lrECM), we were able to detect expression of EcSOD when HMEC formed polarized acinar structures in a 3D-culture condition. Repression of the EcSOD-gene expression was again seen when the HMEC acini were sub-cultured as a monolayer, implying that lrECM-induced acinar morphogenesis is essential in EcSOD-gene activation. We have further shown the involvement of DNA methylation in regulating EcSOD expression in HMEC under these cell culture conditions. EcSOD mRNA expression was strongly induced in the 2D-cultured HMEC after treatment with a DNA methyltransferase inhibitor. In addition, epigenetic analyses showed a decrease in the degree of CpG methylation in the EcSOD promoter in the 3D versus 2D-cultured HMEC. More importantly, >80% of clinical mammary adenocarcinoma samples showed significantly decreased EcSOD mRNA and protein expression levels compared with normal mammary tissues and there is an inverse correlation between the expression levels of EcSOD and the clinical stages of breast cancer. Combined bisulfite restriction analysis analysis of some of the tumors also revealed an association of DNA methylation with the loss of EcSOD expression in vivo. Furthermore, overexpression of EcSOD inhibited breast cancer metastasis in both the experimental lung metastasis model and the syngeneic mouse model. This study suggests that epigenetic silencing of EcSOD may contribute to mammary tumorigenesis and that restoring the extracellular superoxide scavenging activity could be an effective strategy for breast cancer treatment. PMID:23318435
Munding, Johanna B; Adai, Alex T; Maghnouj, Abdelouahid; Urbanik, Aleksandra; Zöllner, Hannah; Liffers, Sven T; Chromik, Ansgar M; Uhl, Waldemar; Szafranska-Schwarzbach, Anna E; Tannapfel, Andrea; Hahn, Stephan A
2012-07-15
Pancreatic ductal adenocarcinoma (PDAC) is known for its poor prognosis resulting from being diagnosed at an advanced stage. Accurate early diagnosis and new therapeutic modalities are therefore urgently needed. MicroRNAs (miRNAs), considered a new class of biomarkers and therapeutic targets, may be able to fulfill those needs. Combining tissue microdissection with global miRNA array analyses, cell type-specific miRNA expression profiles were generated for normal pancreatic ductal cells, acinar cells, PDAC cells derived from xenografts and also from macrodissected chronic pancreatitis (CP) tissues. We identified 78 miRNAs differentially expressed between ND and PDAC cells providing new insights into the miRNA-driven pathophysiological mechanisms involved in PDAC development. Having filtered miRNAs which are upregulated in the three pairwise comparisons of PDAC vs. ND, PDAC vs. AZ and PDAC vs. CP, we identified 15 miRNA biomarker candidates including miR-135b. Using relative qRT-PCR to measure miR-135b normalized to miR-24 in 75 FFPE specimens (42 PDAC and 33 CP) covering a broad range of tumor content, we discriminated CP from PDAC with a sensitivity and specificity of 92.9% [95% CI=(80.5, 98.5)] and 93.4% [95% CI=(79.8, 99.3)], respectively. Furthermore, the area under the curve (AUC) value reached of 0.97 was accompanied by positive and negative predictive values of 95% and 91%, respectively. In conclusion, we report pancreatic cell-specific global miRNA profiles, which offer new candidate miRNAs to be exploited for functional studies in PDAC. Furthermore, we provide evidence that miRNAs are well-suited analytes for development of sensitive and specific aid-in-diagnosis tests for PDAC. Copyright © 2011 UICC.
Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane
Qin, Lizheng; Liu, Xibao; Sun, Qifei; Fan, Zhipeng; Xia, Dengsheng; Ding, Gang; Ong, Hwei Ling; Adams, David; Gahl, William A.; Zheng, Changyu; Qi, Senrong; Jin, Luyuan; Zhang, Chunmei; Gu, Liankun; He, Junqi; Deng, Dajun; Ambudkar, Indu S.; Wang, Songlin
2012-01-01
In vivo recycling of nitrate (NO3−) and nitrite (NO2−) is an important alternative pathway for the generation of nitric oxide (NO) and maintenance of systemic nitrate–nitrite–NO balance. More than 25% of the circulating NO3− is actively removed and secreted by salivary glands. Oral commensal bacteria convert salivary NO3− to NO2−, which enters circulation and leads to NO generation. The transporters for NO3− in salivary glands have not yet been identified. Here we report that sialin (SLC17A5), mutations in which cause Salla disease and infantile sialic acid storage disorder (ISSD), functions as an electrogenic 2NO3−/H+ cotransporter in the plasma membrane of salivary gland acinar cells. We have identified an extracellular pH-dependent anion current that is carried by NO3− or sialic acid (SA), but not by Br−, and is accompanied by intracellular acidification. Both responses were reduced by knockdown of sialin expression and increased by the plasma membrane-targeted sialin mutant (L22A-L23A). Fibroblasts from patients with ISSD displayed reduced SA- and NO3−-induced currents compared with healthy controls. Furthermore, expression of disease-associated sialin mutants in fibroblasts and salivary gland cells suppressed the H+-dependent NO3− conductance. Importantly, adenovirus-dependent expression of the sialinH183R mutant in vivo in pig salivary glands decreased NO3− secretion in saliva after intake of a NO3−-rich diet. Taken together, these data demonstrate that sialin mediates nitrate influx into salivary gland and other cell types. We suggest that the 2NO3−/H+ transport function of sialin in salivary glands can contribute significantly to clearance of serum nitrate, as well as nitrate recycling and physiological nitrite-NO homeostasis. PMID:22778404
Recent advances in prostate development and links to prostatic diseases
Powers, Ginny L.
2013-01-01
The prostate is a branched ductal-acinar gland that is part of the male reproductive tract. Prostate development depends upon the integration of steroid hormone signals, paracrine interactions between the stromal and epithelial tissue layers, and the actions of cell autonomous factors. Several genes and signalling pathways are known to be required for one or more steps of prostate development including epithelial budding, duct elongation, branching morphogenesis, and/or cellular differentiation. Recent progress in the field of prostate development has included the application of genome-wide technologies including serial analysis of gene expression (SAGE), expression profiling microarrays, and other large scale approaches to identify new genes and pathways that are essential for prostate development. The aggregation of experimental results into online databases by organized multi-lab projects including the Genitourinary Developmental Molecular Atlas Project (GUDMAP) has also accelerated the understanding of molecular pathways that function during prostate development and identified links between prostate anatomy and molecular signaling. Rapid progress has also recently been made in understanding the nature and role of candidate stem cells in the developing and adult prostate. This has included the identification of putative prostate stem cell markers, lineage tracing, and organ reconstitution studies. However, several issues regarding their origin, precise nature, and possible role(s) in disease remain unresolved. Nevertheless, several links between prostatic developmental mechanisms and the pathogenesis of prostatic diseases including benign prostatic hyperplasia and prostate cancer have led to recent progress on targeting developmental pathways as therapeutic strategies for these diseases. PMID:23335485
Li, Rong; Zhang, Xiaoxi; Yu, Lan; Zou, Xia; Zhao, Hailu
2016-01-01
The adult pancreatic duct system accommodates endocrine cells that have the potential to produce insulin. Here we report the characterization and distribution of insulin-immunoreactive cells and endocrine cells within the ductal units of adult human pancreas. Sequential pancreas sections from 12 nondiabetic adults were stained with biomarkers of ductal epithelial cells (cytokeratin 19), acinar cells (amylase), endocrine cells (chromogranin A; neuron-specific enolase), islet hormones (insulin, glucagon, somatostatin, pancreatic polypeptide), cell proliferation (Ki-67), and neogenesis (CD29). The number of islet hormone-immunoreactive cells increased from large ducts to the terminal branches. The insulin-producing cells outnumbered endocrine cells reactive for glucagon, somatostatin, or pancreatic polypeptide. The proportions of insulin-immunoreactive count compared with local islets (100% as a baseline) were 1.5% for the main ducts, 7.2% for interlobular ducts, 24.8% for intralobular ducts, 67.9% for intercalated ducts, and 348.9% for centroacinar cells. Both Ki-67- and CD29-labeled cells were predominantly localized in the terminal branches around the islets. The terminal branches also showed cells coexpressing islet hormones and cytokeratin 19. The adult human pancreatic ducts showed islet hormone-producing cells. The insulin-reactive cells predominantly localized in terminal branches where they may retain potential capability for β-cell neogenesis.
Lacrimal drainage-associated lymphoid tissue (LDALT): a part of the human mucosal immune system.
Knop, E; Knop, N
2001-03-01
Mucosa-associated lymphoid tissue (MALT) specifically protects mucosal surfaces. In a previous study of the human conjunctiva, evidence was also found for the presence of MALT in the lacrimal sac. The present study, therefore, aims to investigate its morphology and topographical distribution in the human lacrimal drainage system. Lacrimal drainage systems (n = 51) obtained from human cadavers were investigated by clearing flat wholemounts or by serial sections of tissue embedded in paraffin, OCT compound, or epoxy resin. These were further analyzed by histology, immunohistochemistry, and electron microscopy. All specimens showed the presence of lymphocytes and plasma cells as a diffuse lymphoid tissue in the lamina propria, together with intraepithelial lymphocytes and occasional high endothelial venules (HEV). It formed a narrow layer along the canaliculi that became thicker in the cavernous parts. The majority of lymphocytes were T cells, whereas B cells were interspersed individually or formed follicular centers. T cells were positive for CD8 and the human mucosa lymphocyte antigen (HML-1). Most plasma cells were positive for IgA and the overlying epithelium expressed its transporter molecule secretory component (SC). Basal mucous glands were present in the lacrimal canaliculi and in the other parts accompanied by alveolar and acinar glands, all producing IgA-rich secretions. Primary and secondary lymphoid follicles possessing HEV were present in about half of the specimens. The term lacrimal drainage-associated lymphoid tissue (LDALT) is proposed here to describe the lymphoid tissue that is regularly present and belongs to the common mucosal immune system and to the secretory immune system. It is suggested that it may form a functional unit together with the lacrimal gland and conjunctiva, connected by tear flow, lymphocyte recirculation, and probably the neural reflex arc, and play a major role in preserving ocular surface integrity.
2011-01-01
Background Among the digestive enzymes, phospholipase A2 (PLA2) hydrolyzes the essential dietary phospholipids in marine fish and shellfish. However, we know little about the organs that produce PLA2, and the ontogeny of the PLA2-cells. Accordingly, accurate localization of PLA2 in marine snails might afford a better understanding permitting the control of the quality and composition of diets and the mode of digestion of lipid food. Results We have previously producted an antiserum reacting specifically with mSDPLA2. It labeled zymogen granules of the hepatopancreatic acinar cells and the secretory materials of certain epithelial cells in the depths of epithelial crypts in the hepatopancreas of snail. To confirm this localization a laser capture microdissection was performed targeting stained cells of hepatopancreas tissue sections. A Western blot analysis revealed a strong signal at the expected size (30 kDa), probably corresponding to the PLA2. Conclusions The present results support the presence of two hepatopancreatic intracellular and extracellular PLA2 in the prosobranchs gastropods molluscs, Littorina littorea and Buccinum undatum and bring insights on their localizations. PMID:22114916
AIDS and the pancreas in the HAART era: a cross sectional study
2013-01-01
Backgrounds The aim of this study is identify the main morphological patterns of the pancreas in AIDS patients in use of Higly Active Antiretorviral Therapy (HAART). Methods We conducted a cross sectional study in the year of 2010. The inclusion criteria were patients older than 18 years who died of AIDS with the use of HAART (2006–2009) and underwent to autopsy . They were compared with a group of 109 patients who died of AIDS in 1995 before the HAART therapy. All the autopsies were made in the Death Verification Service of São Paulo. Results The HAART group presented pancreas abnormalities lighter than no HAART users. In the HAART group, histology shows: reduction of zymogen granules in the acinar cells (ZG) higher percentage of cases, “dysplasia-like” presents lower and pancreatic acinar atrophy, presents higher percentage of cases compared to no HAART group. The exocrine pancreas in treated patients was distinguished by the high level of atrophy, sharp reduction of zymogen granules and high level of apoptosis, reflecting degeneration and lower level of protein-caloric malnutrition. Conclusions The islets of Langerhans in HAART group were increased in number and volume and with high level of nuclear dysplasia. The antiviral therapy and a longer survival resulted in a higher atrophy and reduction of enzymes, increasing the apoptosis and generated important changes in the pancreatic islets, probably resulting in clinical laboratory repercussion. We found no evidence of pancreatic histopathological lesions secondary to antiretroviral therapy. PMID:23856035
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, R.J.; George, J.N.
1988-03-01
The presence of a sodium-independent electroneutral Cl{sup {minus}}-anion exchanger in a basolateral membrane vesicle preparation from the rabbit parotid is demonstrated. This exchanger is shared by HCO{sub 3}{sup {minus}}, NO{sub 3}{sup {minus}}, Br{sup {minus}}, F{sup {minus}}, and formate, but not by thiocyanate, acetate, methylsulfate, gluconate, or hydroxyl ions. In order of relative potency, the exchanger is inhibited by SITS {ge} phloretin > furosemide > bumetanide {ge} phlorizin. A Na{sup +}-K{sup +}-dependent component of chloride flux, presumably due to the Na{sup +}-K{sup +}-Cl{sup {minus}} cotransporter already characterized in this preparation, was also observed. {sup 36}Cl uptake into vesicles loaded with KClmore » exhibited an overshoot of intravesicular ({sup 36}Cl) due to {sup 36}Cl-Cl exchange. However, when vesicles were loaded with both KCl and NaCl the height of the overshoot was considerably decreased indicating a Na{sup +}-K{sup +}-dependent dissipation of the intravesicular to extravesicular chloride gradient. This experiment provides strong evidence that the Na{sup +}-K{sup +}Cl{sup {minus}} cotransporter and the Cl{sup {minus}} HCO{sub 3}{sup {minus}} exchange are present in the same membrane vesicles. These results indicate that Cl{sup {minus}}-HCO{sub 3}{sup {minus}} exchange is present in the basolateral membrane of parotid acinar cells and thus that this transporter may play a significant role in salivary secretion.« less
A pathological study of the tongues of rabid dogs in the Philippines.
Shiwa, Nozomi; Kimitsuki, Kazunori; Manalo, Daria Llenaresas; Inoue, Satoshi; Park, Chun-Ho
2018-06-01
During rabies virus infections, the minor salivary glands are one of the important organs for virus replication and excretion into the oral cavity. However, details of pathological findings and viral antigen distribution in the minor salivary glands remain poorly understood. In this study, we conducted pathological tests on the tongues of 71 rabid dogs in the Philippines; the minor salivary glands (von Ebner's glands, lingual glands), circumvallate papilla, autonomic ganglia, and skeletal muscles were evaluated. Inflammatory changes were observed in the von Ebner's glands of 20/71 dogs, in the circumvallate papilla of 10/71, and in the tongue muscle of 1/71. Conversely, no morphological changes were observed in the lingual glands and autonomic ganglia. Viral antigens were detected via immunohistochemistry-based methods in the cytoplasm of the acinar epithelium in the von Ebner's glands of all 71 dogs. Virus particles were confirmed in the intercellular canaliculi and acinar lumen via electron microscopy. In the autonomic ganglia, viral antigens were detected in 67/71 rabid dogs. Viral antigens were detected in the taste buds of all 71 dogs, and were distributed mainly in type II and III taste bud cells. In tongue muscle fibers, viral antigens were detected in 11/71 dogs. No virus antigens were detected in lingual glands. These findings suggest that rabies virus descends in the tongue along the glossopharyngeal nerve after proliferation in the brain, and von Ebner's glands and taste buds are one of the portals of virus excretion into the saliva in rabid dogs.
Martínez-Bosch, Neus; Fernández-Barrena, Maite G.; Moreno, Mireia; Ortiz-Zapater, Elena; André, Sabine; Gabius, Hans-Joachim; Hwang, Rosa F.; Poirier, Françoise; Munné-Collado, Jessica; Iglesias, Mar; Navas, Carolina; Guerra, Carmen; Fernández-Zapico, Martin E.; Navarro, Pilar
2015-01-01
Pancreatic ductal adenocarcinoma (PDA) is the most aggressive tumor, showing incidence and mortality values almost identical. Despite remarkable advances in PDA molecular characterization, this disease is still refractory to current treatments. Desmoplastic stroma, a constant hallmark of PDA, has recently emerged as the major responsible for PDA therapeutic resistance, therefore representing a promising target. Galectin-1 (Gal1), a glycan-binding protein, is highly expressed in PDA stroma but its role remains unknown. Here, we aim to understand in vivo Gal1 functions and the molecular pathways responsible for its oncogenic properties. Genetic ablation of Gal1 in Ela-myc mice dampens tumor progression through inhibition of proliferation, angiogenesis, desmoplasia and stimulation of tumor-associated immune response, resulting in a 20% increase on the animal life span. In vitro and in vivo studies unveil that these effects are mediated by modulation of the tumor microenvironment in a non-cell autonomous manner. Importantly, acinar-to-ductal metaplasia, a crucial step for PDA initiation, is also regulated by Gal1. Finally, high-throughput gene expression studies and molecular analysis aimed at identifying the underlying mechanism revealed that Gal1 promotes Hedgehog pathway both in PDA cells and stromal fibroblasts. In summary, our studies define a novel role of Gal1 in PDA tumor epithelium-stroma crosstalk and suggest this lectin as potential molecular target for therapy of neoplasms overexpressing Gal1. PMID:24812270
Heparanase cooperates with Ras to drive breast and skin tumorigenesis.
Boyango, Ilanit; Barash, Uri; Naroditsky, Inna; Li, Jin-Ping; Hammond, Edward; Ilan, Neta; Vlodavsky, Israel
2014-08-15
Heparanase has been implicated in cancer but its contribution to the early stages of cancer development is uncertain. In this study, we utilized nontransformed human MCF10A mammary epithelial cells and two genetic mouse models [Hpa-transgenic (Hpa-Tg) and knockout mice] to explore heparanase function at early stages of tumor development. Heparanase overexpression resulted in significantly enlarged asymmetrical acinar structures, indicating increased cell proliferation and decreased organization. This phenotype was enhanced by coexpression of heparanase variants with a mutant H-Ras gene, which was sufficient to enable growth of invasive carcinoma in vivo. These observations were extended in vivo by comparing the response of Hpa-Tg mice to a classical two-stage 12-dimethylbenz(a)anthracene (DMBA)/12-o-tetradecanoylphorbol-13-acetate (TPA) protocol for skin carcinogenesis. Hpa-Tg mice overexpressing heparanase were far more sensitive than control mice to DMBA/TPA treatment, exhibiting a 10-fold increase in the number and size of tumor lesions. Conversely, DMBA/TPA-induced tumor formation was greatly attenuated in Hpa-KO mice lacking heparanase, pointing to a critical role of heparanase in skin tumorigenesis. In support of these observations, the heparanase inhibitor PG545 potently suppressed tumor progression in this model system. Taken together, our findings establish that heparanase exerts protumorigenic properties at early stages of tumor initiation, cooperating with Ras to dramatically promote malignant development. ©2014 American Association for Cancer Research.
Tawhai, M. H.; Clark, A. R.; Donovan, G. M.; Burrowes, K. S.
2011-01-01
Computational models of lung structure and function necessarily span multiple spatial and temporal scales, i.e., dynamic molecular interactions give rise to whole organ function, and the link between these scales cannot be fully understood if only molecular or organ-level function is considered. Here, we review progress in constructing multiscale finite element models of lung structure and function that are aimed at providing a computational framework for bridging the spatial scales from molecular to whole organ. These include structural models of the intact lung, embedded models of the pulmonary airways that couple to model lung tissue, and models of the pulmonary vasculature that account for distinct structural differences at the extra- and intra-acinar levels. Biophysically based functional models for tissue deformation, pulmonary blood flow, and airway bronchoconstriction are also described. The development of these advanced multiscale models has led to a better understanding of complex physiological mechanisms that govern regional lung perfusion and emergent heterogeneity during bronchoconstriction. PMID:22011236
Liu, Yong; Chen, Xiao-Dong; Yu, Jiang; Chi, Jun-Lin; Long, Fei-Wu; Yang, Hong-Wei; Chen, Ke-Ling; Lv, Zhao-Ying; Zhou, Bin; Peng, Zhi-Hai; Sun, Xiao-Feng; Li, Yuan; Zhou, Zong-Guang
2017-01-01
Severe acute pancreatitis (SAP) still remains a clinical challenge, not only for its high mortality but the uncontrolled inflammatory progression from acute pancreatitis (AP) to SAP. Cell death, including apoptosis and necrosis are critical pathology of AP, since the severity of pancreatitis correlates directly with necrosis and inversely with apoptosis Therefore, regulation of cell death from necrosis to apoptosis may have practicably therapeutic value. X-linked inhibitor of apoptosis protein (XIAP) is the best characterized member of the inhibitor of apoptosis proteins (IAP) family, but its function in AP remains unclear. In the present study, we investigated the potential role of XIAP in regulation of cell death and inflammation during acute pancreatitis. The in vivo pancreatitis model was induced by the administration of cerulein with or without lipopolysaccharide (LPS) or by the administration of l-arginine in wild-type or XIAP-deficient mice, and ex vivo model was induced by the administration of cerulein+LPS in AR42J cell line following XIAP inhibition. The severity of acute pancreatitis was determined by serum amylase activity and histological grading. XIAP deletion on cell apoptosis, necrosis and inflammatory response were examined. Caspases activities, nuclear factor-κB (NF-κB) activation and receptor-interacting protein kinase1 (RIP1) degradation were assessed by western blot. Deletion of XIAP resulted in the reduction of amylase activity, decrease of NF-κB activation and less release of TNF-α and IL-6, together with increased caspases activities and RIP1 degradation, leading to enhanced apoptosis and reduced necrosis in pancreatic acinar cells and ameliorated the severity of acute pancreatitis. Our results indicate that deletion of XIAP switches cell death away from necrosis to apoptosis and decreases the inflammatory response, effectively attenuating the severity of AP/SAP. The critical role of XIAP in cell death and inflammation suggests that inhibition of XIAP represents a potential therapeutic strategy for the treatment of acute pancreatitis. PMID:28300832
Korytnikov, Roman; Nostro, Maria Cristina
2016-05-15
Generation of pancreatic β-cells from human pluripotent stem cells (hPSCs) has enormous importance in type 1 diabetes (T1D), as it is fundamental to a treatment strategy based on cellular therapeutics. Being able to generate β-cells, as well as other mature pancreatic cells, from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) will also enable the development of platforms that can be used for disease modeling and drug testing for a variety of pancreas-associated diseases, including cystic fibrosis. For this to occur, it is crucial to develop differentiation strategies that are robust and reproducible across cell lines and laboratories. In this article we describe two serum-free differentiation protocols designed to generate specific pancreatic lineages from hPSCs. Our approach employs a variety of cytokines and small molecules to mimic developmental pathways active during pancreatic organogenesis and allows for the in vitro generation of distinct pancreatic populations. The first protocol is designed to give rise to polyhormonal cells that have the potential to differentiate into glucagon-producing cells. The second protocol is geared to generate multipotent pancreatic progenitor cells, which harbor the potential to generate all pancreatic lineages including: monohormonal endocrine cells, acinar, and ductal cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Surgical and molecular pathology of pancreatic neoplasms.
Hackeng, Wenzel M; Hruban, Ralph H; Offerhaus, G Johan A; Brosens, Lodewijk A A
2016-06-07
Histologic characteristics have proven to be very useful for classifying different types of tumors of the pancreas. As a result, the major tumor types in the pancreas have long been classified based on their microscopic appearance. Recent advances in whole exome sequencing, gene expression profiling, and knowledge of tumorigenic pathways have deepened our understanding of the underlying biology of pancreatic neoplasia. These advances have not only confirmed the traditional histologic classification system, but also opened new doors to early diagnosis and targeted treatment. This review discusses the histopathology, genetic and epigenetic alterations and potential treatment targets of the five major malignant pancreatic tumors - pancreatic ductal adenocarcinoma, pancreatic neuroendocrine tumor, solid-pseudopapillary neoplasm, acinar cell carcinoma and pancreatoblastoma.
Ionizing radiation induces heritable disruption of epithelial cell interactions
NASA Technical Reports Server (NTRS)
Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)
2003-01-01
Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.
Loganathan, G; Dawra, R K; Pugazhenthi, S; Wiseman, A C; Sanders, M A; Saluja, A K; Sutherland, D E R; Hering, B J; Balamurugan, A N
2010-01-01
Exocrine tissue is commonly cotransplanted with islets in autografting and allotransplantation of impure preparations. Proteases and insulin are released by acinar cells and islets, respectively, during pretransplantation culture and also systemically after transplantation. We hypothesized that released proteases could cleave insulin molecules and that addition of alpha-1 antitrypsin (A1AT) to impure islet cultures would block this cleavage, improving islet recovery and function. Trypsin, chymotrypsin, and elastase (TCE) activity and insulin levels were measured in culture supernates of pure (n = 5) and impure (n = 5) islet fractions, which were isolated from deceased donors. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect insulin after incubation with proteases. We assessed the effects of A1AT supplementation (0.5 mg/mL; n = 4] on TCE activity, insulin levels, culture recovery, and islet quality. The ultrastructure of islets exposed to TCE versus control medium was examined using electron microscopy (EM). Protease (TCE) activity in culture supernatants was indirectly proportional to the percentage purity of islets: pure, impure, or highly impure. Increasingly lower levels of insulin were detected in culture supernatants when higher protease activity levels were present. Insulin levels measured from supernatants of impure and highly impure islet preparations were 61 +/- 23.7% and 34 +/- 33% of that in pure preparations, respectively. Incubation with commercially available proteases (TCE) or exocrine acinar cell supernatant cleaved insulin molecules as assessed using SDS-PAGE. Addition of A1AT to impure islet preparations reduced protease activity and restored normal insulin levels as detected using enzyme-linked immunosorbent assay (ELISA) and SDS-PAGE of culture supernates. A1AT improved insulin levels to 98% +/- 1.3% in impure and 78% +/- 34.2% in highly impure fractions compared with pure islet fractions. A1AT supplementation improved postculture recovery of islets in impure preparations compared with nontreated controls (72% +/- 9% vs 47% +/- 15%). Islet viability as measured using membrane integrity assays was similar in both the control (98% +/- 2%) and the A1AT-treated groups (99% +/- 1%). EM results revealed a reduction or absence of secretory granules after exposure to proteases (TCE). Culture of impure human islet fractions in the presence of A1AT prevented insulin cleavage and improved islet recovery. A1AT supplementation of islet culture media, therefore, may increase the proportion of human islet products that meet release criteria for transplantation. Copyright 2010 Elsevier Inc. All rights reserved.
Impaired mitochondria and intracellular calcium transients in the salivary glands of obese rats.
Ittichaicharoen, Jitjiroj; Apaijai, Nattayaporn; Tanajak, Pongpan; Sa-Nguanmoo, Piangkwan; Chattipakorn, Nipon; Chattipakorn, Siriporn C
2017-04-01
Long-term consumption of a high-fat diet (HFD) causes not only obese-insulin resistance, but is also associated with mitochondrial dysfunction in several organs. However, the effect of obese-insulin resistance on salivary glands has not been investigated. We hypothesized that obese-insulin resistance induced by HFD impaired salivary gland function by reducing salivation, increasing inflammation, and fibrosis, as well as impairing mitochondrial function and calcium transient signaling. Male Wistar rats (200-220 g) were fed either a ND or an HFD (n = 8/group) for 16 weeks. At the end of week 16, salivary flow rates, metabolic parameters, and plasma oxidative stress were determined. Rats were then sacrificed and submandibular glands were removed to determine inflammation, fibrosis, apoptosis, mitochondrial function and dynamics, and intracellular calcium transient signaling. Long-term consumption of an HFD caused obese-insulin resistance and increased oxidative stress, fibrosis, inflammation, and apoptosis in the salivary glands. In addition, impaired mitochondrial function, as indicated by increased mitochondrial reactive oxygen species, mitochondrial membrane depolarization, and mitochondrial swelling in salivary glands and impaired intracellular calcium regulation, as indicated by a reduced intracellular calcium transient rising rate, decay rates, and amplitude of salivary acinar cells, were observed in HFD-fed rats. However, salivary flow rate and level of aquaporin 5 protein were not different between both groups. Although HFD consumption did not affect salivation, it caused obese-insulin resistance, leading to pathophysiological alteration of salivary glands, including impaired intracellular calcium transients, increased oxidative stress and inflammation, and salivary mitochondrial dysfunction.
Lipotoxicity Causes Multisystem Organ Failure and Exacerbates Acute Pancreatitis in Obesity
Navina, Sarah; Acharya, Chathur; DeLany, James P.; Orlichenko, Lidiya S.; Baty, Catherine J.; Shiva, Sruti S.; Durgampudi, Chandra; Karlsson, Jenny M.; Lee, Kenneth; Bae, Kyongtae T.; Furlan, Alessandro; Behari, Jaideep; Liu, Shiguang; McHale, Teresa; Nichols, Larry; Papachristou, Georgios Ioannis; Yadav, Dhiraj; Singh, Vijay P.
2012-01-01
Obesity increases the risk of adverse outcomes during acute critical illnesses such as burns, severe trauma, and acute pancreatitis. Although individuals with more body fat and higher serum cytokines and lipase are more likely to experience problems, the roles that these characteristics play are not clear. We used severe acute pancreatitis as a representative disease to investigate the effects of obesity on local organ function and systemic processes. In obese humans, we found that an increase in the volume of intrapancreatic adipocytes was associated with more extensive pancreatic necrosis during acute pancreatitis and that acute pancreatitis was associated with multisystem organ failure in obese individuals. In vitro studies of pancreatic acinar cells showed that unsaturated fatty acids were proinflammatory, releasing intracellular calcium, inhibiting mitochondrial complexes I and V, and causing necrosis. Saturated fatty acids had no such effects. Inhibition of lipolysis in obese (ob/ob) mice with induced pancreatitis prevented a rise in serum unsaturated fatty acids and prevented renal injury, lung injury, systemic inflammation, hypocalcemia, reduced pancreatic necrosis, and mortality. Thus, therapeutic approaches that target unsaturated fatty acid–mediated lipotoxicity may reduce adverse outcomes in obese patients with critical illnesses such as severe acute pancreatitis. PMID:22049070
Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude.
Hsia, Connie C W; Carbayo, Juan J Polo; Yan, Xiao; Bellotto, Dennis J
2005-05-12
To examine the effects of chronic high altitude (HA) exposure on lung structure during somatic maturation, we raised male weanling guinea pigs at HA (3800m) for 1, 3, or 6 months, while their respective male littermates were simultaneously raised at low altitude (LA, 1200m). Under anaesthesia, airway pressure was measured at different lung volumes. The right lung was fixed at a constant airway pressure for morphometric analysis under light and electron microscopy. In animals raised at HA for 1 month, lung volume, alveolar surface area and alveolar-capillary blood volume (V(c)) were elevated above LA control values. Following 3-6 months of HA exposure, increases in lung volume and alveolar surface area persisted while the initial increase in V(c) normalized. Additional adaptation occurred, including a higher epithelial cell volume, septal tissue volume and capillary surface area, a lower alveolar duct volume and lower harmonic mean diffusion barrier resulting in higher membrane and lung diffusing capacities. These data demonstrate enhanced alveolar septal growth and progressive acinar remodeling during chronic HA exposure with long-term augmentation of alveolar dimensions as well as functional compensation in lung compliance and diffusive gas transport.
FERRARI, C. C.; CARMANCHAHI, P. D.; ALDANA MARCOS, H. J.; AFFANNI, J. M.
2000-01-01
The ultrastructure of the olfactory mucosa of the armadillo Dasypus hybridus was studied. A comparison with the olfactory mucosa of another armadillo (Chaetophractus villosus) was made. The olfactory mucosa of D. hybridus shows many features which are similar to those of other mammals. Interestingly, it differs from the olfactory mucosa of the armadillo C. villosus. A suggestion is made that these differences may be due to differences in the digging habits of these species. In Dasypus, the supporting cells (SCs) showed dense vacuoles, multivesicular bodies and lysosome-like bodies probably related with the endocytotic system. The SCs show a dense network of SER presumably associated with xenobiotic mechanisms. The olfactory receptor neurons exhibit lysosome-like bodies and multivesicular bodies in their perikarya. These organelles suggest the presence of an endocytotic system. Duct cells of Bowman's glands exhibit secretory activities. Bowman's glands are compound-branched tubulo-acinar mixed glands with merocrine secretory mechanisms. PMID:10739023
Measurement of flow and dispersion in an in-vitro model of a single human alveolus
NASA Astrophysics Data System (ADS)
Chhabra, Sudhaker; Prasad, Ajay
2006-11-01
The acinar region of the lung consists of alveoli and respiratory bronchioles. Alveoli are the smallest units which participate in gas exchange with the blood. Alveoli can also be exploited as a delivery site for inhaled therapeutic aerosols. While gas transport is governed primarily by diffusion due to the small length scales associated with the acinar region (of the order of 500 microns), the transport and deposition of inhaled aerosol particles is influenced by convective airflow patterns. The current work focuses on measuring the airflow patterns in the acinar region using an in-vitro model of a single alveolus located on a bronchiole. The model consists of a single transparent 5/6^th hemispherical oscillating alveolus attached to a rigid circular tube. The alveolus, fabricated from an elastic latex film, is capable of expanding and contracting in phase with the oscillatory flow through the rigid tube. Realistic breathing conditions were achieved by matching Reynolds and Womersley numbers. Particle image velocimetry was used to measure the resulting flow patterns. Data will be presented to show the effect of oscillatory flow in the bronchiole and alveolar wall motion on the flow and dispersion within the alveolus. In particular, measurement of the recirculating flow within the alveolus, and the fluid exchange between the bronchiole and the alveolus provide insights for the transport, mixing and deposition of inhaled aerosols.
Regeneration of the Exocrine Pancreas Is Delayed in Telomere-Dysfunctional Mice
von Figura, Guido; Wagner, Martin; Nalapareddy, Kodandaramireddy; Hartmann, Daniel; Kleger, Alexander; Guachalla, Luis Miguel; Rolyan, Harshvardhan; Adler, Guido; Rudolph, Karl Lenhard
2011-01-01
Introduction Telomere shortening is a cell-intrinsic mechanism that limits cell proliferation by induction of DNA damage responses resulting either in apoptosis or cellular senescence. Shortening of telomeres has been shown to occur during human aging and in chronic diseases that accelerate cell turnover, such as chronic hepatitis. Telomere shortening can limit organ homeostasis and regeneration in response to injury. Whether the same holds true for pancreas regeneration in response to injury is not known. Methods In the present study, pancreatic regeneration after acute cerulein-induced pancreatitis was studied in late generation telomerase knockout mice with short telomeres compared to telomerase wild-type mice with long telomeres. Results Late generation telomerase knockout mice exhibited impaired exocrine pancreatic regeneration after acute pancreatitis as seen by persistence of metaplastic acinar cells and markedly reduced proliferation. The expression levels of p53 and p21 were not significantly increased in regenerating pancreas of late generation telomerase knockout mice compared to wild-type mice. Conclusion Our results indicate that pancreatic regeneration is limited in the context of telomere dysfunction without evidence for p53 checkpoint activation. PMID:21364961
Abnormalities at chromosome region 3p12-14 characterize clear cell renal carcinoma.
Carroll, P R; Murty, V V; Reuter, V; Jhanwar, S; Fair, W R; Whitmore, W F; Chaganti, R S
1987-06-01
In an effort to determine whether or not any characteristic chromosomal abnormalities exist in renal cancer, cytogenetic findings were correlated with tumor histology in nine cases of renal adenocarcinoma. Metaphase preparations adequate for analysis were obtained from cultures harvested between day 3 and day 21. Model chromosome number was diploid in three cases, hypodiploid in three, and hyperdiploid in the remaining three. One clear cell adenocarcinoma failed to reveal any chromosomal abnormality. Two tumors, a tubular/papillary carcinoma and an acinar/papillary carcinoma, showed the clonal abnormalities del(1)(p2l),+2,+7,+8,+12,+13,+16,+17,-21 and t(2;10)(q14-21;q26),+7q,+11q,-18, respectively. Interestingly, five of six clear cell tumors studied had clonal abnormalities affecting the short arm of chromosome #3 in the 3p12-21 region, and in the remaining case, of 15 karyotyped metaphases suitable for interpretation, one showed a deletion in 3p. These data indicate that clear cell carcinoma of the kidney may be associated with a nonrandom chromosomal abnormality involving the 3p12-14 region.
Maruyama, Toshiaki; Saito, Ichiro; Hayashi, Yoshio; Kompfner, Elizabeth; Fox, Robert I.; Burton, Dennis R.; Ditzel, Henrik J.
2004-01-01
Lymphocyte infiltration of salivary and lacrimal glands leading to diminished secretion and gland destruction as a result of apoptosis is thought to be pivotal in the pathogenesis of Sjögren’s syndrome (SS). The cytoskeletal protein α-fodrin is cleaved during this apoptotic process, and a strong antibody (Ab) response is elicited to a 120-kd fragment of cleaved α-fodrin in the majority of SS patients, but generally not in other diseases in which apoptosis also occurs. Little is known about the anti-α-fodrin autoantibody response on a molecular level. To address this issue, IgG phage display libraries were generated from the bone marrow of two SS donors and a panel of anti-α-fodrin IgGs was isolated by selection on α-fodrin immunoblots. All of the human monoclonal Abs (hmAbs) reacted with a 150-kd fragment and not with the 120-kd fragment or intact α-fodrin, indicating that the epitope recognized became exposed after α-fodrin cleavage. Analysis of a large panel of SS patients (defined by the strict San Diego diagnostic criteria) showed that 25% of SS sera exhibited this 150-kd α-fodrin specificity. The hmAbs stained human cultured salivary acinar cells and the staining was redistributed to surface blebs during apoptosis. They also stained inflamed acinar/ductal epithelial cells in SS salivary tissue biopsies, and only partially co-localized with monoclonal Abs recognizing the full-length α-fodrin. Our study shows that in SS patients, neoepitopes on the 150-kd cleaved product of α-fodrin become exposed to the immune system, frequently eliciting anti-150-kd α-fodrin Abs in addition to the previously reported anti-120-kd Abs. The anti-150-kd α-fodrin hmAbs may serve as valuable reagents for the study of SS pathogenesis and diagnostic analyses of SS salivary gland tissue. PMID:15215161
Riesle, E; Friess, H; Zhao, L; Wagner, M; Uhl, W; Baczako, K; Gold, L I; Korc, M; Büchler, M W
1997-01-01
BACKGROUND: Transforming growth factor beta isoforms (TGF beta s) belong to a family of multifunctional regulators of cellular growth and differentiation. They are mitogenic and chemotactic for fibroblasts and are potent stimulators of extracellular matrix production (collagen) and deposition. Upregulation of TGF beta transcription has been reported for several in vivo systems during repair after injury. AIMS: To study the expression of the three mammalian isoforms of TGF beta (TGF beta 1-3) and their relation to collagen expression as a marker for fibroblast response in acute oedematous pancreatitis in rats. METHODS: Using northern blot analysis and immunohistochemistry, the expression and localisation of TGF beta isoforms, collagen, and amylase were analysed during the course of acute oedematous pancreatitis in rats, experimentally induced by intravenous caerulein infusion. RESULTS: Induction of acute pancreatitis resulted in a biphasic peak pattern of expression of TGF beta 1, beta 2, and beta 3 mRNA, with a pronounced increase from day 1 to day 3 (sixfold, 2.5-fold, fivefold, respectively) and again from day 5 to day 7 (three-fold, 2.3-fold, 3.5-fold, respectively). The temporal changes in TGF beta mRNA identically paralleled the expression in collagen mRNA. In contrast, amylase mRNA expression, used as a general indicator of acinar cell integrity, was slightly decreased after induction of acute pancreatitis. Immunohistochemical analysis of pancreatitis tissue showed that increased expression of TGF beta s was mainly present in the pancreatic acinar and ductal cells; this was evident within one day after pancreatitis induction. CONCLUSION: Overexpression of TGF beta s after induction of acute pancreatitis suggests a role for these proteins in pancreatic repair and remodelling. The increased levels of TGF beta s may help suppress immune activation, and may contribute to the increase in the extracellular matrix including collagen and to the repair of the pancreatic parenchyma. Images PMID:9155579
The Research of Acellular pancreatic bioscaffoldas a natural 3D platform In Vitro
NASA Astrophysics Data System (ADS)
Wang, Xin; Li, Zhao
2018-03-01
AIM: To investigate the biochemical and functional properties of a rat acellular pancreatic bioscaffold (APB). METHODS: Fresh pancreata were soaked and perfused. The histological structure, the extracellular matrix (ECM) composition, and the DNA content of the APBs were evaluated. After biocompatibility studies, the proliferation, apoptosis and differentiation of AR42J pancreatic acinar cells cultured on APBs were assessed. RESULTS: The pancreatic tissues became translucent after decellularization. The native macroscopic 3D architecture and the ECM ultrastructure were preserved, with large ductal structures and vascular tissue branching from the greater pancreatic artery, but there were no visible vascular endothelial cells, cellular components or cracked cellular debris. The ECM components, including collagen I, collagen IV, fibronectin, laminin and sGAG, were not decreased after decellularization of the APB (P>0.05) however, the DNA content was decreased significantly (P<0.05). The subcutaneous implantation sites showed low immunological response and low cytotoxicity around the APB. The proliferation rate was higher and the apoptosis rate was lower when AR42J cells were cultured on APB than when they were cultured in media alone, on artificial scaffold or ECM (P<0.05). The gene expression of pancreatic duodenal homeodomain containing transcription factor (PDX-1) and pancreatic exocrine transcription factor (PTF-1) and the protein expression of α-Amy, cytokeratin 7 (CK7) and fetal liver kinase-1 (Flk-1) were higher for the APB group than for the other groups (P<0.001). CONCLUSION: Our findings support the biological utility of whole pancreas APBs as biomaterial scaffolds, which provides an improved approach for regenerative medicine.
Weber, Heike; Hühns, Saskia; Lüthen, Frank; Jonas, Ludwig
2009-08-01
The cytosolic cysteine protease calpain is implicated in a multitude of cellular functions but also plays a role in cell damage. Our previous results suggest that an activation of calpain accompanied by a decrease in its endogenous inhibitor calpastatin may contribute to pancreatic damage during cerulein-induced acute pancreatitis. The present study aimed at the time course of secretagogue-induced calpain activation and cellular substrates of the protease. Isolated rat pancreatic acini were incubated with a supramaximal concentration of cholecystokinin (0.1 microM CCK) for 30 min in the presence or absence of the calpain inhibitor Z-Val-Phe methyl ester (100 microM ZVP). The activation of calpain and the expression of calpastatin and the actin cytoskeleton-associated proteins alphaII-spectrin, E-cadherin and vinculin were studied by immunoblotting. The cell damage was assessed by lactate dehydrogenase release and ultrastructural analysis including fluorescence-labelled actin filaments. Immediately after administration, CCK led to activation of both calpain isoforms, mu- and m-calpain. The protease activation was accompanied by a decrease in the E-cadherin level and formation of calpain-specific breakdown products of alphaII-spectrin. A calpain-specific cleavage product of vinculin appeared concomitantly with changes in the actin filament organization. No effect of CCK on calpastatin was found. Inhibition of calpain by ZVP reduced CCK-induced damage of the actin-associated proteins and the cellular ultrastructure including the actin cytoskeleton. The results suggest that CCK-induced acinar cell damage requires activation of calpain and that the actin cytoskeleton belongs to the cellular targets of the protease.
Identification of Newly Committed Pancreatic Cells in the Adult Mouse Pancreas.
Socorro, Mairobys; Criscimanna, Angela; Riva, Patricia; Tandon, Manuj; Prasadan, Krishna; Guo, Ping; Humar, Abhinav; Husain, Sohail Z; Leach, Steven D; Gittes, George K; Esni, Farzad
2017-12-13
Multipotent epithelial cells with high Aldehyde dehydrogenase activity have been previously reported to exist in the adult pancreas. However, whether they represent true progenitor cells remains controversial. In this study, we isolated and characterized cells with ALDH activity in the adult mouse or human pancreas during physiological conditions or injury. We found that cells with ALDH activity are abundant in the mouse pancreas during early postnatal growth, pregnancy, and in mouse models of pancreatitis and type 1 diabetes (T1D). Importantly, a similar population of cells is found abundantly in healthy children, or in patients with pancreatitis or T1D. We further demonstrate that cells with ALDH activity can commit to either endocrine or acinar lineages, and can be divided into four sub-populations based on CD90 and Ecadherin expression. Finally, our in vitro and in vivo studies show that the progeny of ALDH1 + /CD90 - /Ecad - cells residing in the adult mouse pancreas have the ability to initiate Pancreatic and duodenal homeobox (Pdx1) expression for the first time. In summary, we provide evidence for the existence of a sortable population of multipotent non-epithelial cells in the adult pancreas that can commit to the pancreatic lineage following proliferation and mesenchymal to epithelial transition (MET).
Chai, Renjie; Chen, Shuyuan; Ding, Jiahuan; Grayburn, Paul A
2009-01-01
This study was done to improve efficiency and islet specificity of the rat insulin promoter (RIP). Various rat insulin promoter lengths were prepared and tested in vitro to drive luciferase reporter gene expression in INS1-cells, alpha-cells, acinar cells, ductal cells, and fibroblasts. The CMV promoter was used as a positive control. In addition, the DsRed reporter gene was administered in vivo to rat pancreas by ultrasound-targeted microbubble destruction (UTMD). Confocal microscopy was used to detect the presence and distribution of DsRed within the pancreas after UTMD. A modified RIP3.1 promoter, which includes portions of the insulin gene after its transcription start site is 5-fold more active in INS-1 cells than the full length RIP promoter or the CMV promoter. RIP3.1 is regulated by glucose level and various islet transcription factors in vitro, and exhibits activity in alpha-cells, but not exocrine cells. In vivo delivery of RIP3.1-DsRed resulted in expression of DsRed protein in beta-cells, and to a lesser extent alpha cells under normal glucose conditions. No DsRed signal was present in exocrine pancreas under RIP3.1. A modified rat insulin promoter, RIP3.1, efficiently and specifically directs gene expression to endocrine pancreas. PMID:19727136
Xiong, Yuxia; Chen, Li; Fan, Ling; Wang, Lulu; Zhou, Yejiang; Qin, Dalian; Sun, Qin; Wu, Jianming; Cao, Shousong
2018-01-01
Intestinal mucosal immune barrier dysfunction plays a key role in the pathogenesis of severe acute pancreatitis (SAP). Rhubarb is a commonly used traditional Chinese medicine as a laxative in China. It markedly protects pancreatic acinar cells from trypsin-induced injury in rats. Free total rhubarb anthraquinones (FTRAs) isolated and extracted from rhubarb display the beneficial effects of antibacteria, anti-inflammation, antivirus, and anticancer. The principal aim of the present study was to investigate the effects of FTRAs on the protection of intestinal injury and modification of the intestinal barrier function through regulation of intestinal immune function in rats with SAP. We established a rat model of SAP by injecting 3.5% sodium taurocholate (STC, 350 mg/kg) into the biliopancreatic duct via retrograde injection and treated the rats with FTRAs (36 or 72 mg/kg) or normal saline (control) immediately and 12 h after STC injection. Then, we evaluated the protective effect of FTRAs on intestinal injury by pathological analysis and determined the levels of endotoxin (ET), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), nitric oxide (NO), myeloperoxidase (MPO), capillary permeability, nucleotide-binding oligomerization domain-like receptors 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD domain (ASC), casepase-1, secretary immunoglobulin A (SIgA), regulatory T cells (Tregs), and the ratio of Th1/Th2 in the blood and/or small intestinal tissues or mesenteric lymph node (MLN) cells. Moreover, the chemical profile of FTRAs was analyzed by HPLC-UV chromatogram. The results showed that FTRAs significantly protected intestinal damage and decreased the levels of ET, IL-1β, TNF-α, and NO in the blood and TNF-α, IL-1β, and protein extravasation in the intestinal tissues in SAP rats. Furthermore, FTRAs significantly decreased the expressions of NLRP3, ASC, and caspase-1, the number of Tregs and the ratio of Th1/Th2, while significantly increased the expression of SIgA in the intestinal tissues and/or MLN cells in SAP rats. Our results indicate that FTRAs could protect intestinal injury and improve intestinal mucosal barrier function through regulating immune function of SAP rats. Therefore, FTRAs may have the potential to be developed as the novel agent for the treatment of SAP clinically. PMID:29487524
Yaniv, Adi; Neumann, Yoav; David, Ran; Stiubea-Cohen, Raluca; Orbach, Yoav; Lang, Stephan; Rotter, Nicole; Dvir-Ginzberg, Mona; Aframian, Doron J; Palmon, Aaron
2011-01-01
Adult salivary gland stem cells are promising candidates for cell therapy and tissue regeneration in cases of irreversible damage to salivary glands in head and neck cancer patients undergoing irradiation therapy. At present, the major restriction in handling such cells is their relatively limited life span during in vitro cultivation, resulting in an inadequate experimental platform to explore the salivary gland-originated stem cells as candidates for future clinical application in therapy. We established a spontaneous immortal integrin α6β1-expressing cell line of adult salivary progenitor cells from rats (rat salivary clone [RSC]) and investigated their ability to sustain cellular properties. This line was able to propagate for more than 400 doublings without loss of differentiation potential. RSC could differentiate in vitro to both acinar- and ductal-like structures and could be further manipulated upon culturing on a 3D scaffolds with different media supplements. Moreover, RSC expressed salivary-specific mRNAs and proteins as well as epithelial stem cell markers, and upon differentiation process their expression was changed. These results suggest RSC as a good model for further studies exploring cellular senescence, differentiation, and in vitro tissue engineering features as a crucial step toward reengineering irradiation-impaired salivary glands.
Nishimura, Wataru; Kapoor, Archana; El Khattabi, Ilham; Jin, Wanzhu; Yasuda, Kazuki; Bonner-Weir, Susan; Sharma, Arun
2015-01-01
Early in pancreatic development, epithelial cells of pancreatic buds function as primary multipotent progenitor cells (1°MPC) that specify all three pancreatic cell lineages, i.e., endocrine, acinar and duct. Bipotent "Trunk" progenitors derived from 1°MPC are implicated in directly regulating the specification of endocrine progenitors. It is unclear if this specification process is initiated in the 1°MPC where some 1°MPC become competent for later specification of endocrine progenitors. Previously we reported that in Pdx1 tTA/+ ;tetO MafA (bigenic) mice inducing expression of transcription factor MafA in Pdx1-expressing (Pdx1+) cells throughout embryonic development inhibited the proliferation and differentiation of 1°MPC cells, resulting in reduced pancreatic mass and endocrine cells by embryonic day (E) 17.5. Induction of the transgene only until E12.5 in Pdx1+ 1°MPC was sufficient for this inhibition of endocrine cells and pancreatic mass at E17.5. However, by birth (P0), as we now report, such bigenic pups had significantly increased pancreatic and endocrine volumes with endocrine clusters containing all pancreatic endocrine cell types. The increase in endocrine cells resulted from a higher proliferation of tubular epithelial cells expressing the progenitor marker Glut2 in E17.5 bigenic embryos and increased number of Neurog3-expressing cells at E19.5. A BrdU-labeling study demonstrated that inhibiting proliferation of 1°MPC by forced MafA-expression did not lead to retention of those progenitors in E17.5 tubular epithelium. Our data suggest that the forced MafA expression in the 1°MPC inhibits their competency to specify endocrine progenitors only until E17.5, and after that compensatory proliferation of tubular epithelium gives rise to a distinct pool of endocrine progenitors. Thus, these bigenic mice provide a novel way to characterize the competency of 1°MPC for their ability to specify endocrine progenitors, a critical limitation in our understanding of endocrine differentiation. PMID:26540252
The role of Cajal cells in chronic prostatitis.
Haki Yuksel, Ozgur; Urkmez, Ahmet; Verit, Ayhan
2016-07-04
Types of prostatitis can be defined as groups of syndromes in adult men associated with infectious and noninfectious causes characterized frequently by lower abdominal and perineal signs and diverse clinical symptoms and complications. Etiopathogenesis of chronic prostatitis is not well defined. Moreover, its treatment outcomes are not satisfactory. Presence of c-kit positive interstitial cells in human prostate is already known. It has been demonstrated that these cells can be pacemaker cells which trigger spontaneous slow-wave electrical activity in the prostate and can be responsible for the transport of glandular secretion from acinar cells into major and minor prostatic ducts and finally into urethra. In the light of all these data, when presence of a possible inflammatory pathology is thought to involve prostate that secretes and has a reservoir which drains its secretion (for prostate, prostatic urethra), two points are worth mentioning. Impairment of secretion mechanism and collection of secretion within the organ with reflux of the microbial material from its reservoir back into prostate gland. Both of these potential conditions can be explained by ductal neuromuscular mechanism, which induces secretion. We think that in this neuromuscular mechanism interstitial Cajal cells have an important role in chronic prostatitis. Our hypothesis is that curability of prostatitis is correlated with the number of Cajal cells not subjected to apoptosis.
Gryshchenko, Oleksiy; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H
2016-01-15
Bradykinin may play a role in the autodigestive disease acute pancreatitis, but little is known about its pancreatic actions. In this study, we have investigated bradykinin-elicited Ca(2+) signal generation in normal mouse pancreatic lobules. We found complete separation of Ca(2+) signalling between pancreatic acinar (PACs) and stellate cells (PSCs). Pathophysiologically relevant bradykinin concentrations consistently evoked Ca(2+) signals, via B2 receptors, in PSCs but never in neighbouring PACs, whereas cholecystokinin, consistently evoking Ca(2+) signals in PACs, never elicited Ca(2+) signals in PSCs. The bradykinin-elicited Ca(2+) signals were due to initial Ca(2+) release from inositol trisphosphate-sensitive stores followed by Ca(2+) entry through Ca(2+) release-activated channels (CRACs). The Ca(2+) entry phase was effectively inhibited by a CRAC blocker. B2 receptor blockade reduced the extent of PAC necrosis evoked by pancreatitis-promoting agents and we therefore conclude that bradykinin plays a role in acute pancreatitis via specific actions on PSCs. Normal pancreatic stellate cells (PSCs) are regarded as quiescent, only to become activated in chronic pancreatitis and pancreatic cancer. However, we now report that these cells in their normal microenvironment are far from quiescent, but are capable of generating substantial Ca(2+) signals. We have compared Ca(2+) signalling in PSCs and their better studied neighbouring acinar cells (PACs) and found complete separation of Ca(2+) signalling in even closely neighbouring PACs and PSCs. Bradykinin (BK), at concentrations corresponding to the slightly elevated plasma BK levels that have been shown to occur in the auto-digestive disease acute pancreatitis in vivo, consistently elicited substantial Ca(2+) signals in PSCs, but never in neighbouring PACs, whereas the physiological PAC stimulant cholecystokinin failed to evoke Ca(2+) signals in PSCs. The BK-induced Ca(2+) signals were mediated by B2 receptors and B2 receptor blockade protected against PAC necrosis evoked by agents causing acute pancreatitis. The initial Ca(2+) rise in PSCs was due to inositol trisphosphate receptor-mediated release from internal stores, whereas the sustained phase depended on external Ca(2+) entry through Ca(2+) release-activated Ca(2+) (CRAC) channels. CRAC channel inhibitors, which have been shown to protect PACs against damage caused by agents inducing pancreatitis, therefore also inhibit Ca(2+) signal generation in PSCs and this may be helpful in treating acute pancreatitis. © 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Mullins, Stefanie R; Sameni, Mansoureth; Blum, Galia; Bogyo, Matthew; Sloane, Bonnie F; Moin, Kamiar
2012-12-01
The expression of the cysteine protease cathepsin B is increased in early stages of human breast cancer.To assess the potential role of cathepsin B in premalignant progression of breast epithelial cells, we employed a 3D reconstituted basement membrane overlay culture model of MCF10A human breast epithelial cells and isogenic variants that replicate the in vivo phenotypes of hyper plasia(MCF10AneoT) and atypical hyperplasia (MCF10AT1). MCF10A cells developed into polarized acinar structures with central lumens. In contrast, MCF10AneoT and MCF10AT1 cells form larger structures in which the lumens are filled with cells. CA074Me, a cell-permeable inhibitor selective for the cysteine cathepsins B and L,reduced proliferation and increased apoptosis of MCF10A, MCF10AneoT and MCF10AT1 cells in 3D culture. We detected active cysteine cathepsins in the isogenic MCF10 variants in 3D culture with GB111, a cell-permeable activity based probe, and established differential inhibition of cathepsin B in our 3D cultures. We conclude that cathepsin B promotes proliferation and premalignant progression of breast epithelial cells. These findings are consistent with studies by others showing that deletion of cathepsin B in the transgenic MMTV-PyMT mice, a murine model that is predisposed to development of mammary cancer, reduces malignant progression.
May, Randal; Sureban, Sripathi M; Lightfoot, Stan A; Hoskins, Aimee B; Brackett, Daniel J; Postier, Russell G; Ramanujam, Rama; Rao, Chinthalapally V; Wyche, James H; Anant, Shrikant; Houchen, Courtney W
2010-08-01
Stem cells are critical in maintaining adult homeostasis and have been proposed to be the origin of many solid tumors, including pancreatic cancer. Here we demonstrate the expression patterns of the putative intestinal stem cell marker DCAMKL-1 in the pancreas of uninjured C57BL/6 mice compared with other pancreatic stem/progenitor cell markers. We then determined the viability of isolated pancreatic stem/progenitor cells in isotransplantation assays following DCAMKL-1 antibody-based cell sorting. Sorted cells were grown in suspension culture and injected into the flanks of athymic nude mice. Here we report that DCAMKL-1 is expressed in the main pancreatic duct epithelia and islets, but not within acinar cells. Coexpression was observed with somatostatin, NGN3, and nestin, but not glucagon or insulin. Isolated DCAMKL-1+ cells formed spheroids in suspension culture and induced nodule formation in isotransplantation assays. Analysis of nodules demonstrated markers of early pancreatic development (PDX-1), glandular epithelium (cytokeratin-14 and Ep-CAM), and isletlike structures (somatostatin and secretin). These data taken together suggest that DCAMKL-1 is a novel putative stem/progenitor marker, can be used to isolate normal pancreatic stem/progenitors, and potentially regenerates pancreatic tissues. This may represent a novel tool for regenerative medicine and a target for anti-stem cell-based therapeutics in pancreatic cancer.
May, Randal; Sureban, Sripathi M.; Lightfoot, Stan A.; Hoskins, Aimee B.; Brackett, Daniel J.; Postier, Russell G.; Ramanujam, Rama; Rao, Chinthalapally V.; Wyche, James H.; Anant, Shrikant
2010-01-01
Stem cells are critical in maintaining adult homeostasis and have been proposed to be the origin of many solid tumors, including pancreatic cancer. Here we demonstrate the expression patterns of the putative intestinal stem cell marker DCAMKL-1 in the pancreas of uninjured C57BL/6 mice compared with other pancreatic stem/progenitor cell markers. We then determined the viability of isolated pancreatic stem/progenitor cells in isotransplantation assays following DCAMKL-1 antibody-based cell sorting. Sorted cells were grown in suspension culture and injected into the flanks of athymic nude mice. Here we report that DCAMKL-1 is expressed in the main pancreatic duct epithelia and islets, but not within acinar cells. Coexpression was observed with somatostatin, NGN3, and nestin, but not glucagon or insulin. Isolated DCAMKL-1+ cells formed spheroids in suspension culture and induced nodule formation in isotransplantation assays. Analysis of nodules demonstrated markers of early pancreatic development (PDX-1), glandular epithelium (cytokeratin-14 and Ep-CAM), and isletlike structures (somatostatin and secretin). These data taken together suggest that DCAMKL-1 is a novel putative stem/progenitor marker, can be used to isolate normal pancreatic stem/progenitors, and potentially regenerates pancreatic tissues. This may represent a novel tool for regenerative medicine and a target for anti-stem cell-based therapeutics in pancreatic cancer. PMID:20522640
Dong, Ying; Matigian, Nick; Harvey, Tracey J; Samaratunga, Hemamali; Hooper, John D; Clements, Judith A
2008-02-01
Abstract Tissue kallikrein (kallikrein 1) was first identified in pancreas and is the namesake of the kallikrein-related peptidase (KLK) family. KLK1 and the other 14 members of the human KLK family are encoded by 15 serine protease genes clustered at chromosome 19q13.4. Our Northern blot analysis of 19 normal human tissues for expression of KLK4 to KLK15 identified pancreas as a common expression site for the gene cluster spanning KLK5 to KLK13, as well as for KLK15 which is located adjacent to KLK1. Consistent with previous reports detailing the ability of KLK genes to generate organ- and disease-specific transcripts, detailed molecular and in silico analyses indicated that KLK5 and KLK7 generate transcripts in pancreas variant from those in skin or ovary. Consistently, we identified in the promoters of these KLK genes motifs which conform with consensus binding sites for transcription factors conferring pancreatic expression. In addition, immunohistochemical analysis revealed predominant localisation of KLK5 and KLK7 in acinar cells of the exocrine pancreas, suggesting roles for these enzymes in digestion. Our data also support expression patterns derived from gene duplication events in the human KLK cluster. These findings suggest that, in addition to KLK1, other related KLK enzymes will function in the exocrine pancreas.
Common spectrum of polypeptides occurs in secretion granule membranes of different exocrine glands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, R.S.; Cameron, P.L.; Castle, J.D.
1986-10-01
A highly purified membrane preparation from rat parotid secretion granules has been used as a comparative probe to examine the extent of compositional overlap in granule membranes of three other exocrine secretory tissues - pancreatic, lacrimal, and submandibular - from several standpoints. First, indirect immunofluorescent studies using a polyclonal polyspecific anti-parotid granule membrane antiserum has indicated a selective staining of granule membrane profiles in all acinar cells of all tissues. Second, highly purified granule membrane subfractions have been isolated from each exocrine tissue; comparative two-dimensional (isoelectric focusing; SDS) PAGE of radioiodinated granule membranes has identified 10-15 polypeptides of identical pImore » and apparent molecular mass. These species are likely to be integral membrane components since they are not extracted by either saponin-sodium sulfate or sodium carbonate (pH 11.5) treatments, and they do not have counterparts in the granule content. Finally, the identity among selected parotid and pancreatic radioiodinated granule membrane polypeptides has been documented using two-dimensional peptide mapping of chymotryptic and tryptic digests. These findings clearly indicate that exocrine secretory granules, irrespective of the nature of stored secretion, comprise a type of vesicular carrier with a common (and probably refined) membrane composition. Conceivably, the polypeptides identified carry out general functions related to exocrine secretion.« less
Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling.
Serafimidis, Ioannis; Rodriguez-Aznar, Eva; Lesche, Mathias; Yoshioka, Kazuaki; Takuwa, Yoh; Dahl, Andreas; Pan, Duojia; Gavalas, Anthony
2017-03-01
During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches.
Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling
Serafimidis, Ioannis; Rodriguez-Aznar, Eva; Lesche, Mathias; Yoshioka, Kazuaki; Takuwa, Yoh; Dahl, Andreas; Pan, Duojia; Gavalas, Anthony
2017-01-01
During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches. PMID:28248965
Kamińska, K; Włodarczyk, A; Sonakowska, L; Ostróżka, A; Marchewka, A; Rost-Roszkowska, M
2016-11-01
The salivary glands (mandibular epidermal glands) of adult males and females of Lithobius forficatus (Myriapoda, Chilopoda) were isolated during spring, summer and autumn. In addition, the organs were isolated at different times of the day - at about 12:00 (noon) and about 00:00 (midnight). The ultrastructure of these organs depending on seasonal and circadian rhythms was analyzed using transmission and scanning electron microscopy and histochemical methods. The paired salivary glands of L. forficatus are situated in the vicinity of the foregut and they are formed by numerous acini that are surrounded by the fat body, hemocytes and tracheolae. The salivary glands are composed of a terminal acinar component and a system of tubular ducts that are lined with a cuticle. The glandular part is composed of secretory epithelial cells that are at various stages of their secretory activity. The saliva that is produced by the secretory cells of the acini is secreted into the salivary ducts, which are lined with a simple epithelium that is based on the non-cellular basal lamina. The ultrastructural variations suggest that salivary glands function differently depending on seasonal rhythms and prepare the animal for overwintering. Therefore, the salivary glands of the centipedes that were analyzed participate in the accumulation of proteins, lipids and polysaccharides during the spring, summer and autumn. Subtle differences in the ultrastructure of the secretory cells of the salivary glands during the circadian cycle must be related to the physiological reactions of the organism. The salivary ducts showed no differences in the specimens that were analyzed during the day/night cycle or during the seasonal cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.
Empty sella syndrome secondary to intrasellar cyst in adolescence.
Raiti, S; Albrink, M J; Maclaren, N K; Chadduck, W M; Gabriele, O F; Chou, S M
1976-09-01
A 15-year-old boy had growth failure and failure of sexual development. The probable onset was at age 10. Endocrine studies showed hypopituitarism with deficiency of growth hormone and follicle-stimulating hormone, an abnormal response to metyrapone, and deficiency of thyroid function. Luteinizing hormone level was in the low-normal range. Posterior pituitary function was normal. Roentgenogram showed a large sella with some destruction of the posterior clinoids. Transsphenoidal exploration was carried out. The sella was empty except for a whitish membrane; no pituitary tissue was seen. The sella was packed with muscle. Recovery was uneventful, and the patient was given replacement therapy. On histologic examination,the cyst wall showed low pseudostratified cuboidal epithelium and occasional squamous metaplasia. Hemosiderin-filled phagocytes and acinar structures were also seen. The diagnosis was probable rupture of an intrasellar epithelial cyst, leading to empty sella syndrome.
Thurman, Andrew L; Choi, Jiwoong; Choi, Sanghun; Lin, Ching-Long; Hoffman, Eric A; Lee, Chang Hyun; Chan, Kung-Sik
2017-05-10
Methacholine challenge tests are used to measure changes in pulmonary function that indicate symptoms of asthma. In addition to pulmonary function tests, which measure global changes in pulmonary function, computed tomography images taken at full inspiration before and after administration of methacholine provide local air volume changes (hyper-inflation post methacholine) at individual acinar units, indicating local airway hyperresponsiveness. Some of the acini may have extreme air volume changes relative to the global average, indicating hyperresponsiveness, and those extreme values may occur in clusters. We propose a Gaussian mixture model with a spatial smoothness penalty to improve prediction of hyperresponsive locations that occur in spatial clusters. A simulation study provides evidence that the spatial smoothness penalty improves prediction under different data-generating mechanisms. We apply this method to computed tomography data from Seoul National University Hospital on five healthy and ten asthmatic subjects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Jo, Il-Joo; Bae, Gi-Sang; Choi, Sun Bok; Kim, Dong-Goo; Shin, Joon-Yeon; Seo, Seung-Hee; Choi, Mee-Ok; Kim, Tae-Hyeon; Song, Ho-Joon; Park, Sung-Joo
2014-08-15
Acute pancreatitis (AP) is a complicated disease which is largely undiscovered. Fisetin, a natural flavonoid from fruits and vegetables, has been shown to have anti-inflammatory, antioxidant, and anti-cancer activities in various disease models. However, the effects of fisetin on AP have not been determined. Pre- and post- treatment of mice with fisetin reduced the severity of AP and pancreatitis-associated lung injury and inhibited several biochemical parameters (pancreatic weight to body weight ratio, amylase, lipase, and myeloperoxidase activity) and production of inflammatory cytokines. In pancreatic acinar cells, fisetin also inhibited cell death and production of inflammatory cytokines. In addition, fisetin inhibited activation of c-Jun NH2-terminal kinase (JNK) and nuclear factor (NF)-κB in vivo and in vitro. In conclusion, these results suggest that fisetin exhibits anti-inflammatory effect on AP and could be a beneficial agent in the treatment of AP and its pulmonary complications. Copyright © 2014 Elsevier B.V. All rights reserved.
KRAS Mutation and Epithelial-Macrophage Interplay in Pancreatic Neoplastic Transformation.
Bishehsari, Faraz; Zhang, Lijuan; Barlass, Usman; Preite, Nailliw; Turturro, Sanja; Najor, Matthew S; Shetuni, Brandon B; Zayas, Janet P; Mahdavinia, Mahboobeh; Abukhdeir, Abde M; Keshavarzian, Ali
2018-05-14
Pancreatic ductal adenocarcinoma (PDA) is characterized by epithelial mutations in KRAS and prominent tumor-associated inflammation, including macrophage infiltration. But knowledge of early interactions between neoplastic epithelium and macrophages in PDA carcinogenesis is limited. Using a pancreatic organoid model, we found that the expression of mutant KRAS in organoids increased i) ductal to acinar gene expression ratios, ii) epithelial cells proliferation, and iii) colony formation capacity in vitro, and endowed pancreatic cells with the ability to generate neoplastic tumors in vivo. KRAS mutations induced a pro-tumorigenic phenotype in macrophages. Altered macrophages decreased epithelial Pigment Epithelial Derived Factor (PEDF) expression and induced a cancerous phenotype. We validated our findings using annotated patient samples from The Cancer Genome Atlas (TCGA) as well as in our human PDA specimens. Epithelium-macrophage cross talk occurs early in pancreatic carcinogenesis where KRAS directly induces cancer-related phenotypes in epithelium, and also promotes a pro-tumorigenic phenotype in macrophages, in turn augmenting neoplastic growth. This article is protected by copyright. All rights reserved. © 2018 UICC.
Huang, Ling; Holtzinger, Audrey; Jagan, Ishaan; BeGora, Michael; Lohse, Ines; Ngai, Nicholas; Nostro, Cristina; Wang, Rennian; Muthuswamy, Lakshmi B.; Crawford, Howard C.; Arrowsmith, Cheryl; Kalloger, Steve E.; Renouf, Daniel J.; Connor, Ashton A; Cleary, Sean; Schaeffer, David F.; Roehrl, Michael; Tsao, Ming-Sound; Gallinger, Steven; Keller, Gordon; Muthuswamy, Senthil K.
2016-01-01
There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells (PSCs) into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53R175H induced cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. Culture conditions are also defined for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture, phenotypic heterogeneity of the primary tumor, and retain patient-specific physiologic changes including hypoxia, oxygen consumption, epigenetic marks, and differential sensitivity to EZH2 inhibition. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies. PMID:26501191
Diagnostic utility of alpha-methylacyl CoA racemase (P504S) on prostate needle biopsy.
Jiang, Zhong; Woda, Bruce A
2004-11-01
Alpha-methylacyl CoA racemase (AMACR), also known as P504S, was identified by the analysis of cDNA library subtraction in conjunction with high throughput microarray screening from prostate tissue and has been proven to be one of the very few biomarkers that can distinguish cancer from benign cells with high sensitivity and specificity for prostate carcinoma. It is a successful example of the translation of molecular findings into clinical practice. This review focuses on the study of AMACR (P504S) expression in small focal prostate cancer and atypical small acinar proliferation (ASAP) on needle biopsies and emphasizes the utility of AMACR (P504S) in routine surgical pathology practice. We also discuss the potential pitfalls and caveats in the interpretation of immunostaining results.