Science.gov

Sample records for acinar cell injury

  1. The ryanodine receptor is expressed in human pancreatic acinar cells and contributes to acinar cell injury.

    PubMed

    Lewarchik, Christopher M; Orabi, Abrahim I; Jin, Shunqian; Wang, Dong; Muili, Kamaldeen A; Shah, Ahsan U; Eisses, John F; Malik, Adeel; Bottino, Rita; Jayaraman, Thottala; Husain, Sohail Z

    2014-09-01

    Physiological calcium (Ca(2+)) signals within the pancreatic acinar cell regulate enzyme secretion, whereas aberrant Ca(2+) signals are associated with acinar cell injury. We have previously identified the ryanodine receptor (RyR), a Ca(2+) release channel on the endoplasmic reticulum, as a modulator of these pathological signals. In the present study, we establish that the RyR is expressed in human acinar cells and mediates acinar cell injury. We obtained pancreatic tissue from cadaveric donors and identified isoforms of RyR1 and RyR2 by qPCR. Immunofluorescence staining of the pancreas showed that the RyR is localized to the basal region of the acinar cell. Furthermore, the presence of RyR was confirmed from isolated human acinar cells by tritiated ryanodine binding. To determine whether the RyR is functionally active, mouse or human acinar cells were loaded with the high-affinity Ca(2+) dye (Fluo-4 AM) and stimulated with taurolithocholic acid 3-sulfate (TLCS) (500 μM) or carbachol (1 mM). Ryanodine (100 μM) pretreatment reduced the magnitude of the Ca(2+) signal and the area under the curve. To determine the effect of RyR blockade on injury, human acinar cells were stimulated with pathological stimuli, the bile acid TLCS (500 μM) or the muscarinic agonist carbachol (1 mM) in the presence or absence of the RyR inhibitor ryanodine. Ryanodine (100 μM) caused an 81% and 47% reduction in acinar cell injury, respectively, as measured by lactate dehydrogenase leakage (P < 0.05). Taken together, these data establish that the RyR is expressed in human acinar cells and that it modulates acinar Ca(2+) signals and cell injury.

  2. The MET Receptor Tyrosine Kinase Confers Repair of Murine Pancreatic Acinar Cells following Acute and Chronic Injury

    PubMed Central

    Gaziova, Ivana; Jackson, Daniel; Boor, Paul J.; Carter, Dwayne; Cruz-Monserrate, Zobeida; Elferink, Cornelis J.; Joshi, Aditya D.; Kaphalia, Bhupendra; Logsdon, Craig D.; Pereira de Castro, Karen; Soong, Lynn; Tao, Xinrong; Qiu, Suimin; Elferink, Lisa A.

    2016-01-01

    Acinar cells represent the primary target in necroinflammatory diseases of the pancreas, including pancreatitis. The signaling pathways guiding acinar cell repair and regeneration following injury remain poorly understood. The purpose of this study was to determine the importance of Hepatocyte Growth Factor Receptor/MET signaling as an intrinsic repair mechanism for acinar cells following acute damage and chronic alcohol-associated injury. Here, we generated mice with targeted deletion of MET in adult acinar cells (MET-/-). Acute and repetitive pancreatic injury was induced in MET-/- and control mice with cerulein, and chronic injury by feeding mice Lieber-DeCarli diets containing alcohol with or without enhancement of repetitive pancreatic injury. We examined the exocrine pancreas of these mice histologically for acinar death, edema, inflammation and collagen deposition and changes in the transcriptional program. We show that MET expression is relatively low in normal adult pancreas. However, MET levels were elevated in ductal and acinar cells in human pancreatitis specimens, consistent with a role for MET in an adaptive repair mechanism. We report that genetic deletion of MET in adult murine acinar cells was linked to increased acinar cell death, chronic inflammation and delayed recovery (regeneration) of pancreatic exocrine tissue. Notably, increased pancreatic collagen deposition was detected in MET knockout mice following repetitive injury as well alcohol-associated injury. Finally, we identified specific alterations of the pancreatic transcriptome associated with MET signaling during injury, involved in tissue repair, inflammation and endoplasmic reticulum stress. Together, these data demonstrate the importance of MET signaling for acinar repair and regeneration, a novel finding that could attenuate the symptomology of pancreatic injury. PMID:27798657

  3. Insulin Protects Pancreatic Acinar Cells from Palmitoleic Acid-induced Cellular Injury*

    PubMed Central

    Samad, Aysha; James, Andrew; Wong, James; Mankad, Parini; Whitehouse, John; Patel, Waseema; Alves-Simoes, Marta; Siriwardena, Ajith K.; Bruce, Jason I. E.

    2014-01-01

    Acute pancreatitis is a serious and sometimes fatal inflammatory disease where the pancreas digests itself. The non-oxidative ethanol metabolites palmitoleic acid (POA) and POA-ethylester (POAEE) are reported to induce pancreatitis caused by impaired mitochondrial metabolism, cytosolic Ca2+ ([Ca2+]i) overload and necrosis of pancreatic acinar cells. Metabolism and [Ca2+]i are linked critically by the ATP-driven plasma membrane Ca2+-ATPase (PMCA) important for maintaining low resting [Ca2+]i. The aim of the current study was to test the protective effects of insulin on cellular injury induced by the pancreatitis-inducing agents, ethanol, POA, and POAEE. Rat pancreatic acinar cells were isolated by collagenase digestion and [Ca2+]i was measured by fura-2 imaging. An in situ [Ca2+]i clearance assay was used to assess PMCA activity. Magnesium green (MgGreen) and a luciferase-based ATP kit were used to assess cellular ATP depletion. Ethanol (100 mm) and POAEE (100 μm) induced a small but irreversible Ca2+ overload response but had no significant effect on PMCA activity. POA (50–100 μm) induced a robust Ca2+ overload, ATP depletion, inhibited PMCA activity, and consequently induced necrosis. Insulin pretreatment (100 nm for 30 min) prevented the POA-induced Ca2+ overload, ATP depletion, inhibition of the PMCA, and necrosis. Moreover, the insulin-mediated protection of the POA-induced Ca2+ overload was partially prevented by the phosphoinositide-3-kinase (PI3K) inhibitor, LY294002. These data provide the first evidence that insulin directly protects pancreatic acinar cell injury induced by bona fide pancreatitis-inducing agents, such as POA. This may have important therapeutic implications for the treatment of pancreatitis. PMID:24993827

  4. Primary retroperitoneal acinar cell cystadenoma.

    PubMed

    Pesci, Anna; Castelli, Paola; Facci, Enrico; Romano, Luigi; Zamboni, Giuseppe

    2012-03-01

    In this report, we describe a case of hitherto unreported primary retroperitoneal acinar cell cystadenoma that morphologically and immunophenotypically resembled pancreatic acinar cell cystadenoma. Pancreatic acinar cell cystadenoma is a very uncommon benign lesion characterized by acinar cell differentiation, the evidence of pancreatic exocrine enzyme production, and the absence of cellular atypia. Our case occurred in a 55-year-old woman presenting a 10-cm multilocular cystic lesion in the retroperitoneum thought to be a mucinous cystic neoplasm. At laparotomy, the cystic mass, which showed no connection with any organ, was completely resected with a clinical diagnosis of cystic lymphangioma. The diagnosis of retroperitoneal acinar cell cystadenoma was based on the recognition of morphological acinar differentiation, the immunohistochemical demonstration of the acinar marker trypsin, and the absence of cellular atypia. These peculiar features can be used in the differential diagnosis with all the other cystic lesions of the retroperitoneum.

  5. Sulforaphane Protects Pancreatic Acinar Cell Injury by Modulating Nrf2-Mediated Oxidative Stress and NLRP3 Inflammatory Pathway

    PubMed Central

    Dong, Zhaojun; Shang, Haixiao; Chen, Yong Q.; Pan, Li-Long

    2016-01-01

    Acute pancreatitis (AP) is characterized by early activation of intra-acinar proteases followed by acinar cell death and inflammation. Cellular oxidative stress is a key mechanism underlying these pathological events. Sulforaphane (SFN) is a natural organosulfur antioxidant with undescribed effects on AP. Here we investigated modulatory effects of SFN on cellular oxidation and inflammation in AP. AP was induced by cerulean hyperstimulation in BALB/c mice. Treatment group received a single dose of 5 mg/kg SFN for 3 consecutive days before AP. We found that SFN administration attenuated pancreatic injury as evidenced by serum amylase, pancreatic edema, and myeloperoxidase, as well as by histological examination. SFN administration reverted AP-associated dysregulation of oxidative stress markers including pancreatic malondialdehyde and redox enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). In acinar cells, SFN treatment upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes including quinoneoxidoreductase-1, heme oxidase-1, SOD1, and GPx1. In addition, SFN selectively suppressed cerulein-induced activation of the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome, in parallel with reduced nuclear factor- (NF-) κB activation and modulated NF-κB-responsive cytokine expression. Together, our data suggested that SFN modulates Nrf2-mediated oxidative stress and NLRP3/NF-κB inflammatory pathways in acinar cells, thereby protecting against AP. PMID:27847555

  6. Pancreatic Fat Accumulation, Fibrosis, and Acinar Cell Injury in the Zucker Diabetic Fatty Rat Fed a Chronic High-Fat Diet

    PubMed Central

    Matsuda, Akiko; Makino, Naohiko; Tozawa, Tomohiro; Shirahata, Nakao; Honda, Teiichiro; Ikeda, Yushi; Sato, Hideyuki; Ito, Miho; Kakizaki, Yasuharu; Akamatsu, Manabu; Ueno, Yoshiyuki; Kawata, Sumio

    2014-01-01

    Objective The histological alteration of the exocrine pancreas in obesity has not been clarified. In the present study, we investigated biochemical and histological changes in the exocrine pancreas of obese model rats. Methods Zucker lean rats were fed a standard diet, and Zucker diabetic fatty (ZDF) rats were divided into 2 groups fed a standard diet and a high-fat diet, respectively. These experimental groups were fed each of the diets from 6 weeks until 12, 18, 24 weeks of age. We performed blood biochemical assays and histological analysis of the pancreas. Results In the ZDF rats fed a high-fat diet, the ratio of accumulated pancreatic fat area relative to exocrine gland area was increased significantly at 18 weeks of age in comparison with the other 2 groups (P < 0.05), and lipid droplets were observed in acinar cells. Subsequently, at 24 weeks of age in this group, pancreatic fibrosis and the serum exocrine pancreatic enzyme levels were increased significantly relative to the other 2 groups (P < 0.01). Conclusions In ZDF rats fed a chronic high-fat diet, fat accumulates in pancreatic acinar cells, and this fatty change seems to be related to subsequent pancreatic fibrosis and acinar cell injury. PMID:24717823

  7. Duct Cells Contribute to Regeneration of Endocrine and Acinar Cells Following Pancreatic Damage in Adult Mice

    PubMed Central

    CRISCIMANNA, ANGELA; SPEICHER, JULIE A.; HOUSHMAND, GOLBAHAR; SHIOTA, CHIYO; PRASADAN, KRISHNA; Ji, BAOAN; LOGSDON, CRAIG D.; GITTES, GEORGE K.; ESNI, FARZAD

    2015-01-01

    BACKGROUND & AIMS There have been conflicting results on a cell of origin in pancreatic regeneration. These discrepancies predominantly stem from lack of specific markers for the pancreatic precursors/stem cells, as well as differences in the targeted cells and severity of tissue injury in the experimental models so far proposed. We attempted to create a model that used diphtheria toxin receptor (DTR) to ablate specific cell populations, control the extent of injury, and avoid induction of the inflammatory response. METHODS To target specific types of pancreatic cells, we crossed R26DTR or R26dtR/lacZ mice with transgenic mice that express the Cre recombinase in the pancreas, under control of the Pdx1 (global pancreatic) or elastase (acinar-specific) promoters. RESULTS Exposure of PdxCre;R26DTR mice to diphtheria toxin resulted in extensive ablation of acinar and endocrine tissues but not ductal cells. Surviving cells within the ductal compartment contributed to regeneration of endocrine and acinar cells via recapitulation of the embryonic pancreatic developmental program. However, following selective ablation of acinar tissue in ElaCre-ERT2;R26DTR mice, regeneration likely occurred by reprogramming of ductal cells to acinar lineage. CONCLUSIONS In the pancreas of adult mice, epithelial cells within the ductal compartment contribute to regeneration of endocrine and acinar cells. The severity of injury determines the regenerative mechanisms and cell types that contribute to this process. PMID:21763240

  8. Case report. Acinar cell carcinoma with fatty change arising from the pancreas.

    PubMed

    Chung, W-S; Park, M-S; Kim, D W; Kim, K W

    2011-12-01

    Acinar cell carcinoma of the pancreas is a rare malignant tumour developing from acinar cells, accounting for approximately 1% of pancreatic exocrine tumours. We experienced a case of an acinar cell carcinoma with fatty change. To the best of our knowledge, this is the first case report of an acinar cell carcinoma with fatty change in the clinical literature.

  9. A Computer-Based Automated Algorithm for Assessing Acinar Cell Loss after Experimental Pancreatitis

    PubMed Central

    Eisses, John F.; Davis, Amy W.; Tosun, Akif Burak; Dionise, Zachary R.; Chen, Cheng; Ozolek, John A.; Rohde, Gustavo K.; Husain, Sohail Z.

    2014-01-01

    The change in exocrine mass is an important parameter to follow in experimental models of pancreatic injury and regeneration. However, at present, the quantitative assessment of exocrine content by histology is tedious and operator-dependent, requiring manual assessment of acinar area on serial pancreatic sections. In this study, we utilized a novel computer-generated learning algorithm to construct an accurate and rapid method of quantifying acinar content. The algorithm works by learning differences in pixel characteristics from input examples provided by human experts. HE-stained pancreatic sections were obtained in mice recovering from a 2-day, hourly caerulein hyperstimulation model of experimental pancreatitis. For training data, a pathologist carefully outlined discrete regions of acinar and non-acinar tissue in 21 sections at various stages of pancreatic injury and recovery (termed the “ground truth”). After the expert defined the ground truth, the computer was able to develop a prediction rule that was then applied to a unique set of high-resolution images in order to validate the process. For baseline, non-injured pancreatic sections, the software demonstrated close agreement with the ground truth in identifying baseline acinar tissue area with only a difference of 1%±0.05% (p = 0.21). Within regions of injured tissue, the software reported a difference of 2.5%±0.04% in acinar area compared with the pathologist (p = 0.47). Surprisingly, on detailed morphological examination, the discrepancy was primarily because the software outlined acini and excluded inter-acinar and luminal white space with greater precision. The findings suggest that the software will be of great potential benefit to both clinicians and researchers in quantifying pancreatic acinar cell flux in the injured and recovering pancreas. PMID:25343460

  10. TGF-β1 promotes acinar to ductal metaplasia of human pancreatic acinar cells

    PubMed Central

    Liu, Jun; Akanuma, Naoki; Liu, Chengyang; Naji, Ali; Halff, Glenn A.; Washburn, William K.; Sun, Luzhe; Wang, Pei

    2016-01-01

    Animal studies suggest that pancreatitis-induced acinar-to-ductal metaplasia (ADM) is a key event for pancreatic ductal adenocarcinoma (PDAC) initiation. However, there has not been an adequate system to explore the mechanisms of human ADM induction. We have developed a flow cytometry-based, high resolution lineage tracing method and 3D culture system to analyse ADM in human cells. In this system, well-known mouse ADM inducers did not promote ADM in human cells. In contrast, TGF-β1 efficiently converted human acinar cells to duct-like cells (AD) in a SMAD-dependent manner, highlighting fundamental differences between the species. Functionally, AD cells gained transient proliferative capacity. Furthermore, oncogenic KRAS did not induce acinar cell proliferation, but did sustain the proliferation of AD cells, suggesting that oncogenic KRAS requires ADM-associated-changes to promote PDAC initiation. This ADM model provides a novel platform to explore the mechanisms involved in the development of human pancreatic diseases. PMID:27485764

  11. Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Liou, Geou-Yarh; Döppler, Heike; Braun, Ursula B.; Panayiotou, Richard; Scotti Buzhardt, Michele; Radisky, Derek C.; Crawford, Howard C.; Fields, Alan P.; Murray, Nicole R.; Wang, Q. Jane; Leitges, Michael; Storz, Peter

    2015-02-01

    The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.

  12. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer.

    PubMed

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-08-21

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC.

  13. Effects of Benzodiazepines on Acinar and Myoepithelial Cells

    PubMed Central

    Mattioli, Tatiana M. F.; Alanis, Luciana R. A.; Sapelli, Silvana da Silva; de Lima, Antonio A. S.; de Noronha, Lucia; Rosa, Edvaldo A. R.; Althobaiti, Yusuf S.; Almalki, Atiah H.; Sari, Youssef; Ignacio, Sergio A.; Johann, Aline C. B. R.; Gregio, Ana M. T.

    2016-01-01

    Background: Benzodiazepines (BZDs), the most commonly prescribed psychotropic drugs with anxiolytic action, may cause hyposalivation. It has been previously shown that BZDs can cause hypertrophy and decrease the acini cell number. In this study, we investigated the effects of BZDs and pilocarpine on rat parotid glands, specifically on acinar, ductal, and myoepithelial cells. Methods: Ninety male Wistar rats were divided into nine groups. Control groups received a saline solution for 30 days (C30) and 60 days (C60), and pilocarpine (PILO) for 60 days. Experimental groups received lorazepam (L30) and midazolam (M30) for 30 days. Another group (LS60 or MS60) received lorazepam or midazolam for 30 days, respectively, and saline for additional 30 days. Finally, other groups (LP60 or MP60) received either lorazepam or midazolam for 30 days, respectively, and pilocarpine for additional 30 days. The expression of calponin in myoepithelial cells and the proliferating cell nuclear antigen (PCNA) in acinar and ductal cells were evaluated. Results: Animals treated with lorazepam showed an increase in the number of positive staining cells for calponin as compared to control animals (p < 0.05). Midazolam administered with pilocarpine (MP60) induced an increase in the proliferation of acinar and ductal cells and a decrease in the positive staining cells for calponin as compared to midazolam administered with saline (MS60). Conclusion: We found that myoepithelial cells might be more sensitive to the effects of BZD than acinar and ductal cells in rat parotid glands. PMID:27445812

  14. Aspirin Protects against Acinar Cells Necrosis in Severe Acute Pancreatitis in Mice

    PubMed Central

    Lu, Guotao; Tong, Zhihui; Ding, Yanbing; Liu, Jinjiao; Pan, Yiyuan; Gao, Lin; Tu, Jianfeng; Liu, George

    2016-01-01

    Aspirin has a clear anti-inflammatory effect and is used as an anti-inflammatory agent for both acute and long-term inflammation. Previous study has indicated that aspirin alleviated acute pancreatitis induced by caerulein in rat. However, the role of aspirin on severe acute pancreatitis (SAP) and the necrosis of pancreatic acinar cell are not yet clear. The aim of this study was to determine the effects of aspirin treatment on a SAP model induced by caerulein combined with Lipopolysaccharide. We found that aspirin reduced serum amylase and lipase levels, decreased the MPO activity, and alleviated the histopathological manifestations of pancreas and pancreatitis-associated lung injury. Proinflammatory cytokines were decreased and the expression of NF-κB p65 in acinar cell nuclei was suppressed after aspirin treatment. Furthermore, aspirin induced the apoptosis of acinar cells by TUNEL assay, and the expression of Bax and caspase 3 was increased and the expression of Bcl-2 was decreased. Intriguingly, the downregulation of critical necrosis associated proteins RIP1, RIP3, and p-MLKL was observed; what is more, we additionally found that aspirin reduced the COX level of pancreatic tissue. In conclusion, our data showed that aspirin could protect pancreatic acinar cell against necrosis and reduce the severity of SAP. Clinically, aspirin may potentially be a therapeutic intervention for SAP. PMID:28119929

  15. Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice

    PubMed Central

    Li, Ning; Wu, Xuefeng; Holzer, Ryan G.; Lee, Jun-Hee; Todoric, Jelena; Park, Eek-Joong; Ogata, Hisanobu; Gukovskaya, Anna S.; Gukovsky, Ilya; Pizzo, Donald P.; VandenBerg, Scott; Tarin, David; Atay, Çiǧdem; Arkan, Melek C.; Deerinck, Thomas J.; Moscat, Jorge; Diaz-Meco, Maria; Dawson, David; Erkan, Mert; Kleeff, Jörg; Karin, Michael

    2013-01-01

    Chronic pancreatitis is an inflammatory disease that causes progressive destruction of pancreatic acinar cells and, ultimately, loss of pancreatic function. We investigated the role of IκB kinase α (IKKα) in pancreatic homeostasis. Pancreas-specific ablation of IKKα (IkkαΔpan) caused spontaneous and progressive acinar cell vacuolization and death, interstitial fibrosis, inflammation, and circulatory release of pancreatic enzymes, clinical signs resembling those of human chronic pancreatitis. Loss of pancreatic IKKα causes defective autophagic protein degradation, leading to accumulation of p62-mediated protein aggregates and enhanced oxidative and ER stress in acinar cells, but none of these effects is related to NF-κB. Pancreas-specific p62 ablation prevented ER and oxidative stresses and attenuated pancreatitis in IkkαΔpan mice, suggesting that cellular stress induced by p62 aggregates promotes development of pancreatitis. Importantly, downregulation of IKKα and accumulation of p62 aggregates were also observed in chronic human pancreatitis. Our studies demonstrate that IKKα, which may control autophagic protein degradation through its interaction with ATG16L2, plays a critical role in maintaining pancreatic acinar cell homeostasis, whose dysregulation promotes pancreatitis through p62 aggregate accumulation. PMID:23563314

  16. Membrane Proteome Analysis of Cerulein-Stimulated Pancreatic Acinar Cells: Implication for Early Event of Acute Pancreatitis

    PubMed Central

    Lee, Jangwon; Seo, Ji Hye; Lim, Joo Weon

    2010-01-01

    Background/Aims Cerulein pancreatitis is similar to human edematous pancreatitis with dysregulation of the production and secretion of digestive enzymes, edema formation, cytoplasmic vacuolization and the death of acinar cells. We hypothesized that membrane proteins may be altered as the early event during the induction of acute pancreatitis. Present study aims to determine the differentially expressed proteins in the membranes of cerulein-treated pancreatic acinar cells. Methods Pancreatic acinar AR42J cells were treated with 10-8 M cerulein for 1 hour. Membrane proteins were isolated from the cells and separated by two-dimensional electrophoresis using pH gradients of 5-8. Membrane proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. The differentially expressed proteins, whose expression levels were more or less than three-fold in cerulein-treated cells, were analyzed. Results Two differentially expressed proteins (mannan-binding lectin-associated serine protease-2, heat shock protein 60) were up-regulated while four proteins (protein disulfide isomerase, γ-actin, isocitrate dehydrogenase 3, seven in absentia homolog 1A) were down-regulated by cerulein treatment in pancreatic acinar cells. These proteins are related to cell signaling, oxidative stress, and cytoskeleton arrangement. Conclusions Oxidative stress may induce cerulein-induced cell injury and disturbances in defense mechanism in pancreatic acinar cells. PMID:20479917

  17. Functional somatostatin receptors on a rat pancreatic acinar cell line

    SciTech Connect

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A. Mount Zion Hospital and Medical Center, San Francisco, CA Universite Libre de Bruxelles, Brussels )

    1988-07-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of {sup 125}I-(Tyr{sup 11})Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 {plus minus} 20 fmol/10{sup 6} cells. Somatostatin receptor structure was analyzed by covalently cross-linking {sup 125}I-(Tyr{sup 11})somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N{sub i} to inhibit adenylate cyclase.

  18. Ca2+-activated K channels in parotid acinar cells

    PubMed Central

    Romanenko, Victor G; Thompson, Jill

    2010-01-01

    Fluid secretion relies on a close interplay between Ca2+-activated Cl and K channels. Salivary acinar cells contain both large conductance, BK, and intermediate conductance, IK1, K channels. Physiological fluid secretion occurs with only modest (<500 nM) increases in intracellular Ca2+ levels but BK channels in many cell types and in heterologous expression systems require very high concentrations for significant activation. We report here our efforts to understand this apparent contradiction. We determined the Ca2+ dependence of IK1 and BK channels in mouse parotid acinar cells. IK1 channels activated with an apparent Ca2+ affinity of about 350 nM and a hill coefficient near 3. Native parotid BK channels activated at similar Ca2+ levels unlike the BK channels in other cell types. Since the parotid BK channel is encoded by an uncommon splice variant, we examined this clone in a heterologous expression system. In contrast to the native parotid channel, activation of this expressed “parslo” channel required very high levels of Ca2+. In order to understand the functional basis for the special properties of the native channels, we analyzed the parotid BK channel in the context of the horrigan-Aldrich model of BK channel gating. We found that the shifted activation of parotid BK channels resulted from a hyperpolarizing shift of the voltage dependence of voltage sensor activation and channel opening and included a large change in the coupling of these two processes. PMID:20519930

  19. PNA lectin for purifying mouse acinar cells from the inflamed pancreas.

    PubMed

    Xiao, Xiangwei; Fischbach, Shane; Fusco, Joseph; Zimmerman, Ray; Song, Zewen; Nebres, Philip; Ricks, David Matthew; Prasadan, Krishna; Shiota, Chiyo; Husain, Sohail Z; Gittes, George K

    2016-02-17

    Better methods for purifying human or mouse acinar cells without the need for genetic modification are needed. Such techniques would be advantageous for the specific study of certain mechanisms, such as acinar-to-beta-cell reprogramming and pancreatitis. Ulex Europaeus Agglutinin I (UEA-I) lectin has been used to label and isolate acinar cells from the pancreas. However, the purity of the UEA-I-positive cell fraction has not been fully evaluated. Here, we screened 20 widely used lectins for their binding specificity for major pancreatic cell types, and found that UEA-I and Peanut agglutinin (PNA) have a specific affinity for acinar cells in the mouse pancreas, with minimal affinity for other major pancreatic cell types including endocrine cells, duct cells and endothelial cells. Moreover, PNA-purified acinar cells were less contaminated with mesenchymal and inflammatory cells, compared to UEA-I purified acinar cells. Thus, UEA-I and PNA appear to be excellent lectins for pancreatic acinar cell purification. PNA may be a better choice in situations where mesenchymal cells or inflammatory cells are significantly increased in the pancreas, such as type 1 diabetes, pancreatitis and pancreatic cancer.

  20. PNA lectin for purifying mouse acinar cells from the inflamed pancreas

    PubMed Central

    Xiao, Xiangwei; Fischbach, Shane; Fusco, Joseph; Zimmerman, Ray; Song, Zewen; Nebres, Philip; Ricks, David Matthew; Prasadan, Krishna; Shiota, Chiyo; Husain, Sohail Z.; Gittes, George K.

    2016-01-01

    Better methods for purifying human or mouse acinar cells without the need for genetic modification are needed. Such techniques would be advantageous for the specific study of certain mechanisms, such as acinar-to-beta-cell reprogramming and pancreatitis. Ulex Europaeus Agglutinin I (UEA-I) lectin has been used to label and isolate acinar cells from the pancreas. However, the purity of the UEA-I-positive cell fraction has not been fully evaluated. Here, we screened 20 widely used lectins for their binding specificity for major pancreatic cell types, and found that UEA-I and Peanut agglutinin (PNA) have a specific affinity for acinar cells in the mouse pancreas, with minimal affinity for other major pancreatic cell types including endocrine cells, duct cells and endothelial cells. Moreover, PNA-purified acinar cells were less contaminated with mesenchymal and inflammatory cells, compared to UEA-I purified acinar cells. Thus, UEA-I and PNA appear to be excellent lectins for pancreatic acinar cell purification. PNA may be a better choice in situations where mesenchymal cells or inflammatory cells are significantly increased in the pancreas, such as type 1 diabetes, pancreatitis and pancreatic cancer. PMID:26884345

  1. Acinar cell carcinoma of exocrine pancreas in two horses.

    PubMed

    de Brot, S; Junge, H; Hilbe, M

    2014-05-01

    Two horses were presented with non-specific clinical signs of several weeks' duration and were humanely destroyed due to a poor prognosis. At necropsy examination, both horses had multiple small, white nodules replacing pancreatic tissue and involving the serosal surface of the abdominal cavity, the liver and the lung. Microscopically, neoplastic cells were organized in acini and contained abundant (case 1) or sparse (horse 2) intracytoplasmic zymogen granules. Immunohistochemically, both tumours expressed amylase and pan-cytokeratin, but not insulin or neuron-specific enolase. In case 2, a low percentage of neoplastic cells expressed glucagon and synaptophysin. The presence of zymogen granules was confirmed in both cases by electron microscopy and occasional fibrillary or glucagon granules were observed in cases 1 and 2, respectively. A diagnosis of pancreatic acinar cell carcinoma was established in both horses.

  2. Reversal of diabetes in rats using GLP-1-expressing adult pancreatic duct-like precursor cells transformed from acinar to ductal cells.

    PubMed

    Lee, Jieun; Wen, Jing; Park, Jeong Youp; Kim, Sun-A; Lee, Eun Jig; Song, Si Young

    2009-09-01

    Pancreatic injury induces replacement of exocrine acinar cells with ductal cells. These ductal cells have the potential to regenerate the pancreas, but their origin still remains unknown. It has been reported that adult pancreatic acinar cells have the potential to transdifferentiate to ductal progenitor cells. In this regards, we established novel adult pancreatic duct-like progenitor cell lines YGIC4 and YGIC5 and assessed the usefulness of these ductal progenitors in the cell therapy of diabetic rats. Acinar cells were cultured from pancreata of male Sprague Dawley rats and gradually attained ductal cell characteristics, such as expression of CK19 and CFTR with a concomitant down-regulation of amylase expression over time, suggesting transdifferentiation from acinar to ductal cells. During cell culture, the expression of Pdx-1, c-Kit, and vimentin peaked and then decreased, suggesting that transdifferentiation recapitulated embryogenesis. Overexpression of pancreas development regulatory genes and CK19, as well as the ability to differentiate into insulin-producing cells, suggests that the YGIC5 cells had characteristics of pancreatic progenitor cells. Finally, YGIC5 cells coexpressing Green fluorescent protein (GFP) and glucagon-like peptide (GLP)-1 under the activation of a zinc-inducible metallothionein promoter were intravenously infused to STZ-induced diabetic rats. Hyperglycemia was ameliorated with elevation of plasma insulin, and GFP-positive donor cells were colocalized in the acinar and islet areas of recipient pancreata following zinc treatment. In conclusion, after establishing pancreatic progenitor cell lines YGIC4 and YGIC5 under the concept of acinar to ductal transdifferentiation in vitro, we demonstrate how these adult pancreatic stem/progenitor cells can be used to regulate adult pancreatic differentiation toward developing therapy for pancreatic disease such as diabetes mellitus.

  3. The role of Ca2+ influx in endocytic vacuole formation in pancreatic acinar cells

    PubMed Central

    Voronina, Svetlana; Collier, David; Chvanov, Michael; Middlehurst, Ben; Beckett, Alison J.; Prior, Ian A.; Criddle, David N.; Begg, Malcolm; Mikoshiba, Katsuhiko; Sutton, Robert; Tepikin, Alexei V.

    2014-01-01

    The inducers of acute pancreatitis trigger a prolonged increase in the cytosolic Ca2+ concentration ([Ca2+]c), which is responsible for the damage to and eventual death of pancreatic acinar cells. Vacuolization is an important indicator of pancreatic acinar cell damage. Furthermore, activation of trypsinogen occurs in the endocytic vacuoles; therefore the vacuoles can be considered as ‘initiating’ organelles in the development of the cell injury. In the present study, we investigated the relationship between the formation of endocytic vacuoles and Ca2+ influx developed in response to the inducers of acute pancreatitis [bile acid taurolithocholic acid 3-sulfate (TLC-S) and supramaximal concentration of cholecystokinin-8 (CCK)]. We found that the inhibitor of STIM (stromal interaction molecule)/Orai channels, GSK-7975A, effectively suppressed both the Ca2+ influx (stimulated by inducers of pancreatitis) and the formation of endocytic vacuoles. Cell death induced by TLC-S or CCK was also inhibited by GSK-7975A. We documented the formation of endocytic vacuoles in response to store-operated Ca2+ entry (SOCE) induced by thapsigargin [TG; inhibitor of sarcoplasmic/endoplasmic reticulum (ER) Ca2+ pumps] and observed strong inhibition of TG-induced vacuole formation by GSK-7975A. Finally, we found that structurally-unrelated inhibitors of calpain suppress formation of endocytic vacuoles, suggesting that this Ca2+-dependent protease is a mediator between Ca2+ elevation and endocytic vacuole formation. PMID:25370603

  4. Involvement of thrombopoietin in acinar cell necrosis in L-arginine-induced acute pancreatitis in mice.

    PubMed

    Shen, Jiaqing; Wan, Rong; Hu, Guoyong; Wang, Feng; Shen, Jie; Wang, Xingpeng

    2012-10-01

    Thrombopoietin (TPO) plays an important role in injuries of different tissues. However, the role of TPO in acute pancreatitis (AP) is not yet known. The aim of the study was to determine the involvement of TPO in AP. Serum TPO was assayed in necrotizing pancreatitis induced by L-arginine in mice. Recombinant TPO and anti-TPO antibody were given to mice with necrotizing pancreatitis. Amylase, lipase, lactate dehydrogenase, myeloperoxidase activity and pancreatic water content were assayed in serum and tissue samples. Pancreas and lung tissue samples were also collected for histological evaluation. Immunohistochemistry of amylase α and PCNA were applied for the study of acinar regeneration and TUNEL assay for the detection of apoptosis in the pancreas. Increased levels of serum TPO were found in necrotizing pancreatitis. After TPO administration, more severe acinar necrosis was found and blockade of TPO reduced the acinar necrosis in this AP model. Acinar regeneration and apoptosis in the pancreas were affected by TPO and antibody treatment in necrotizing pancreatitis. The severity of pancreatitis-associated lung injury was worsened after TPO treatment, but attenuated after Anti-TPO antibody treatment. In conclusion, serum TPO is up-regulated in the necrotizing pancreatitis induced by L-arginine in mice and may be a risk factor for the pancreatic acinar necrosis in AP. As a pro-necrotic factor, blockade of TPO can attenuate the acinar necrosis in AP and may be a possible therapeutic intervention for AP.

  5. Hepcidin knockout mice spontaneously develop chronic pancreatitis owing to cytoplasmic iron overload in acinar cells.

    PubMed

    Lunova, Mariia; Schwarz, Peggy; Nuraldeen, Renwar; Levada, Kateryna; Kuscuoglu, Deniz; Stützle, Michael; Vujić Spasić, Maja; Haybaeck, Johannes; Ruchala, Piotr; Jirsa, Milan; Deschemin, Jean-Christophe; Vaulont, Sophie; Trautwein, Christian; Strnad, Pavel

    2017-01-01

    Iron is both an essential and a potentially toxic element, and its systemic homeostasis is controlled by the iron hormone hepcidin. Hepcidin binds to the cellular iron exporter ferroportin, causes its degradation, and thereby diminishes iron uptake from the intestine and the release of iron from macrophages. Given that hepcidin-resistant ferroportin mutant mice show exocrine pancreas dysfunction, we analysed pancreata of aging hepcidin knockout (KO) mice. Hepcidin and Hfe KO mice were compared with wild-type (WT) mice kept on standard or iron-rich diets. Twelve-month-old hepcidin KO mice were subjected to daily minihepcidin PR73 treatment for 1 week. Six-month-old hepcidin KO mice showed cytoplasmic acinar iron overload and mild pancreatitis, together with elevated expression of the iron uptake mediators DMT1 and Zip14. Acinar atrophy, massive macrophage infiltration, fatty changes and pancreas fibrosis were noted in 1-year-old hepcidin KO mice. As an underlying mechanism, 6-month-old hepcidin KO mice showed increased pancreatic oxidative stress, with elevated DNA damage, apoptosis and activated nuclear factor-κB (NF-κB) signalling. Neither iron overload nor pancreatic damage was observed in WT mice fed iron-rich diet or in Hfe KO mice. Minihepcidin application to hepcidin KO mice led to an improvement in general health status and to iron redistribution from acinar cells to macrophages. It also resulted in decreased NF-κB activation and reduced DNA damage. In conclusion, loss of hepcidin signalling in mice leads to iron overload-induced chronic pancreatitis that is not seen in situations with less severe iron accumulation. The observed tissue injury can be reversed by hepcidin supplementation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Pancreatic acinar cells: effects of micro-ionophoretic polypeptide application on membrane potential and resistance.

    PubMed

    Petersen, O H; Philpott, H G

    1979-05-01

    1. Acinar cell membrane potential and resistance were measured from superfused segments of mouse pancreas, in vitro, using intracellular glass micro-electrodes. One or two extracellular micropipettes containing caerulein, bombesin nonapeptide (Bn) or acetylcholine (ACh) were placed near to the surface of the impaled acinus. The secretagogues were ejected rapidly from the micropipettes by ionophoresis.2. Each secretagogue evoked a similar electrical response from the impaled acinar cell: membrane depolarization and a simultaneous reduction in input resistance. The duration of cell activation from caerulein ionophoresis was longer than that observed for ACh and Bn. The cell response to the peptide hormone applications could be repeated in the presence of atropine.3. The minimum interval before the onset of cell depolarization after caerulein ionophoresis was determined. Values ranged between 500 and 1000 msec. The minimum latencies after Bn ionophoresis were 500-1400 msec.4. With two electrodes inserted into electrically coupled acinar cells, direct measurements of the caerulein and Bn null potentials were made. At high negative membrane potentials an enhanced depolarization was evoked by caerulein ionophoresis. At low negative membrane potentials the caerulein stimulation produced a diminished depolarization, and at membrane potentials less than - 10 mV acinar cell hyperpolarizations were observed. A similar series of responses was obtained in experiments where Bn ionophoresis was used. The caerulein and the Bn null potentials were always contained within - 10 to - 15 mV.5. The results describe the almost identical electrical response of acinar cells to stimulation by ACh, caerulein and bombesin. All three secretagogues have similar null potentials and latencies of activation on acinar cells. The bombesin latency responses appear as short as those measured for caerulein and provide electro-physiological evidence that Bn acts directly on acinar cells. The findings

  7. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress

    PubMed Central

    Antonucci, Laura; Fagman, Johan B.; Kim, Ju Youn; Todoric, Jelena; Gukovsky, Ilya; Mackey, Mason; Ellisman, Mark H.; Karin, Michael

    2015-01-01

    Pancreatic acinar cells possess very high protein synthetic rates as they need to produce and secrete large amounts of digestive enzymes. Acinar cell damage and dysfunction cause malnutrition and pancreatitis, and inflammation of the exocrine pancreas that promotes development of pancreatic ductal adenocarcinoma (PDAC), a deadly pancreatic neoplasm. The cellular and molecular mechanisms that maintain acinar cell function and whose dysregulation can lead to tissue damage and chronic pancreatitis are poorly understood. It was suggested that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis, but it is unknown whether impaired autophagy is a cause or a consequence of pancreatitis. To address this question, we generated Atg7Δpan mice that lack the essential autophagy-related protein 7 (ATG7) in pancreatic epithelial cells. Atg7Δpan mice exhibit severe acinar cell degeneration, leading to pancreatic inflammation and extensive fibrosis. Whereas ATG7 loss leads to the expected decrease in autophagic flux, it also results in endoplasmic reticulum (ER) stress, accumulation of dysfunctional mitochondria, oxidative stress, activation of AMPK, and a marked decrease in protein synthetic capacity that is accompanied by loss of rough ER. Atg7Δpan mice also exhibit spontaneous activation of regenerative mechanisms that initiate acinar-to-ductal metaplasia (ADM), a process that replaces damaged acinar cells with duct-like structures. PMID:26512112

  8. Characterization of single potassium channels in mouse pancreatic acinar cells.

    PubMed Central

    Schmid, A; Schulz, I

    1995-01-01

    1. Single K(+)-selective channels with a conductance of about 48 pS (pipette, 145 mM KCl; bath, 140 mM NaCl + 4.7 mM KCl) were recorded in the patch-clamp whole-cell configuration in isolated mouse pancreatic acinar cells. 2. Neither application of the secretagogues acetylcholine (second messenger, inositol 1,4,5-trisphosphate) or secretin (second messenger, cAMP), nor addition of the catalytic subunit of protein kinase A to the pipette solution changed the activity of the 48 pS K+ channel. 3. Intracellular acidification with sodium propionate (20 mM) diminished activity of the 48 pS channel, whereas channel open probability was increased by cytosolic alkalization with 20 mM NH4Cl. 4. BaCl2 (5 mM), TEA (10 mM) or apamin (1 microM) added to the bath solution had no obvious effect on the kinetics of the 48 pS channel. Similarly, glibenclamide and diazoxide failed to influence the channel activity. 5. When extracellular NaCl was replaced by KCl, whole-cell recordings revealed an inwardly rectifying K+ current carried by a 17 pS K+ channel. 6. The inwardly rectifying K+ current was not pH dependent and could largely be blocked by Ba2+ but not by TEA. 7. Since the 48 pS K+ channel is neither Ca2+ nor cAMP regulated, we suggest that this channel could play a role in the maintenance of the negative cell resting potential. PMID:7623283

  9. Expression of claudin-5 in canine pancreatic acinar cell carcinoma - An immunohistochemical study.

    PubMed

    Jakab, Csaba; Rusvai, Miklós; Gálfi, Péter; Halász, Judit; Kulka, Janina

    2011-03-01

    Claudin-5 is an endothelium-specific tight junction protein. The aim of the present study was to detect the expression pattern of this molecule in intact pancreatic tissues and in well-differentiated and poorly differentiated pancreatic acinar cell carcinomas from dogs by the use of cross-reactive humanised anticlaudin-5 antibody. The necropsy samples taken from dogs included 10 nonneoplastic pancreatic tissues, 10 well-differentiated pancreatic acinar cell carcinomas, 10 poorly differentiated pancreatic acinar cell carcinomas, 5 intrahepatic metastases of well-differentiated and 5 intrahepatic metastases of poorly differentiated acinar cell carcinomas. A strong lateral membrane claudin-5 positivity was detected in exocrine cells in all intact pancreas samples. The endocrine cells of the islets of Langerhans and the epithelial cells of the ducts were negative for claudin-5. The endothelial cells of vessels and lymphatic channels in the stroma of the intact pancreas showed strong membrane positivity for this claudin. All well-differentiated exocrine pancreas carcinomas and all poorly-differentiated pancreatic acinar cell carcinoma samples showed a diffuse loss of claudin-5 expression. The claudin-5-positive peritumoural vessels and lymphatic channels facilitated the detection of vascular invasion of the claudin-5-negative cancer cells. In liver metastasis samples, the pancreatic carcinomas were negative for claudin-5. It seems that the loss of expression of claudin-5 may lead to carcinogenesis in canine exocrine pancreatic cells.

  10. Identification of miRNAs Involved in Reprogramming Acinar Cells into Insulin Producing Cells.

    PubMed

    Teichenne, Joan; Morró, Meritxell; Casellas, Alba; Jimenez, Veronica; Tellez, Noelia; Leger, Adrien; Bosch, Fatima; Ayuso, Eduard

    2015-01-01

    Reprogramming acinar cells into insulin producing cells using adenoviral (Ad)-mediated delivery of Pdx1, Ngn3 and MafA (PNM) is an innovative approach for the treatment of diabetes. Here, we aimed to investigate the molecular mechanisms involved in this process and in particular, the role of microRNAs. To this end, we performed a comparative study of acinar-to-β cell reprogramming efficiency in the rat acinar cell line AR42J and its subclone B13 after transduction with Ad-PNM. B13 cells were more efficiently reprogrammed than AR42J cells, which was demonstrated by a strong activation of β cell markers (Ins1, Ins2, IAPP, NeuroD1 and Pax4). miRNome panels were used to analyze differentially expressed miRNAs in acinar cells under four experimental conditions (i) non-transduced AR42J cells, (ii) non-transduced B13 cells, (iii) B13 cells transduced with Ad-GFP vectors and (iv) B13 cells transduced with Ad-PNM vectors. A total of 59 miRNAs were found to be differentially expressed between non-transduced AR42J and B13 cells. Specifically, the miR-200 family was completely repressed in B13 cells, suggesting that these cells exist in a less differentiated state than AR42J cells and as a consequence they present a greater plasticity. Adenoviral transduction per se induced dedifferentiation of acinar cells and 11 miRNAs were putatively involved in this process, whereas 8 miRNAs were found to be associated with PNM expression. Of note, Ad-PNM reprogrammed B13 cells presented the same levels of miR-137-3p, miR-135a-5p, miR-204-5p and miR-210-3p of those detected in islets, highlighting their role in the process. In conclusion, this study led to the identification of miRNAs that might be of compelling importance to improve acinar-to-β cell conversion for the future treatment of diabetes.

  11. Identification of miRNAs Involved in Reprogramming Acinar Cells into Insulin Producing Cells

    PubMed Central

    Teichenne, Joan; Morró, Meritxell; Casellas, Alba; Jimenez, Veronica; Tellez, Noelia; Leger, Adrien; Bosch, Fatima; Ayuso, Eduard

    2015-01-01

    Reprogramming acinar cells into insulin producing cells using adenoviral (Ad)-mediated delivery of Pdx1, Ngn3 and MafA (PNM) is an innovative approach for the treatment of diabetes. Here, we aimed to investigate the molecular mechanisms involved in this process and in particular, the role of microRNAs. To this end, we performed a comparative study of acinar-to-β cell reprogramming efficiency in the rat acinar cell line AR42J and its subclone B13 after transduction with Ad-PNM. B13 cells were more efficiently reprogrammed than AR42J cells, which was demonstrated by a strong activation of β cell markers (Ins1, Ins2, IAPP, NeuroD1 and Pax4). miRNome panels were used to analyze differentially expressed miRNAs in acinar cells under four experimental conditions (i) non-transduced AR42J cells, (ii) non-transduced B13 cells, (iii) B13 cells transduced with Ad-GFP vectors and (iv) B13 cells transduced with Ad-PNM vectors. A total of 59 miRNAs were found to be differentially expressed between non-transduced AR42J and B13 cells. Specifically, the miR-200 family was completely repressed in B13 cells, suggesting that these cells exist in a less differentiated state than AR42J cells and as a consequence they present a greater plasticity. Adenoviral transduction per se induced dedifferentiation of acinar cells and 11 miRNAs were putatively involved in this process, whereas 8 miRNAs were found to be associated with PNM expression. Of note, Ad-PNM reprogrammed B13 cells presented the same levels of miR-137-3p, miR-135a-5p, miR-204-5p and miR-210-3p of those detected in islets, highlighting their role in the process. In conclusion, this study led to the identification of miRNAs that might be of compelling importance to improve acinar-to-β cell conversion for the future treatment of diabetes. PMID:26690959

  12. Differentiation of pancreatic acinar carcinoma cells cultured on rat testicular seminiferous tubular basement membranes

    SciTech Connect

    Watanabe, T.K.; Hansen, L.J.; Reddy, N.K.; Kanwar, Y.S.; Reddy, J.K.

    1984-11-01

    The use of rat testicular seminiferous tubular basement membrane (STBM) segments as a model substratum for the in vitro maintenance of tumor cells dissociated from a transplantable pancreatic acinar rat carcinoma is described. Ultrastructurally pure, hollow tubular segments of STBM were prepared by mechanical disaggregation, DNase digestion, and deoxycholate treatment. Dissociated pancreatic acinar carcinoma cells adhered readily to STBM segments within 1 to 6 hr, and these STBM-tumor cell aggregates were maintained for up to 7 days in serum-free chemically defined medium supplemented with hydrocortisone, insulin, vitamin C, and soybean trypsin inhibitor. The tumor cells formed acinar-like clusters and displayed intercellular junctions and polarization of secretory granules toward the center of these clusters. By 4 days, virtually all cells of this acinar carcinoma maintained on STBM in supplemented chemically defined medium contained numerous secretory granules. Cell replication, as determined by (/sup 3/H)thymidine autoradiography, ceased within 18 hr of attachment of neoplastic cells to STBM; however, all cells incorporated (/sup 3/H)leucine as evidenced by light and electron microscopic autoradiography. In addition, two-dimensional analysis and fluorography of newly synthesized secretory proteins discharged by these cells in response to carbamylcholine revealed the presence of Mr 24,000 protein and 19 other secretory proteins characteristic of this tumor. The culture system utilizing STBM and supplemented chemically defined medium should allow investigation of the effects of a variety of factors on morphogenesis, cytodifferentiation, and gene expression in pancreatic acinar tumors.

  13. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells.

    PubMed

    Bhopale, Kamlesh K; Falzon, Miriam; Ansari, G A S; Kaphalia, Bhupendra S

    2014-04-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ∼1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol.

  14. Effect of taurine on acinar cell apoptosis and pancreatic fibrosis in dibutyltin dichloride-induced chronic pancreatitis.

    PubMed

    Matsushita, Koki; Mizushima, Takaaki; Shirahige, Akinori; Tanioka, Hiroaki; Sawa, Kiminari; Ochi, Koji; Tanimoto, Mitsune; Koide, Norio

    2012-01-01

    The relationship between pancreatic fibrosis and apoptosis of pancreatic acinar cells has not been fully elucidated. We reported that taurine had an anti-fibrotic effect in a dibutyltin dichloride (DBTC)-chronic pancreatitis model. However, the effect of taurine on apoptosis of pancreatic acinar cells is still unclear. Therefore, we examined apoptosis in DBTC-chronic pancreatitis and in the AR42J pancreatic acinar cell line with/without taurine. Pancreatic fibrosis was induced by a single administration of DBTC. Rats were fed a taurine-containing diet or a normal diet and were sacrificed at day 5. The AR42J pancreatic acinar cell line was incubated with/without DBTC with taurine chloramines. Apoptosis was determined by using terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) assay. The expression of Bad and Bcl-2 proteins in the AR42J cells lysates was detected by Western blot analysis. The apoptotic index of pancreatic acinar cells in DBTC-administered rats was significantly increased. Taurine treatment inhibited pancreatic fibrosis and apoptosis of acinar cells induced by DBTC. The number of TUNEL-positive cells in the AR42J pancreatic acinar cell lines was significantly increased by the addition of DBTC. Incubation with taurine chloramines ameliorated these changes. In conclusion, taurine inhibits apoptosis of pancreatic acinar cells and pancreatitis in experimental chronic pancreatitis.

  15. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    SciTech Connect

    Yu, Ge; Wan, Rong; Hu, Yanling; Ni, Jianbo; Yin, Guojian; Xing, Miao; Shen, Jie; Tang, Maochun; Chen, Congying; Fan, Yuting; Xiao, Wenqin; Zhao, Yan; Wang, Xingpeng; and others

    2014-01-31

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.

  16. Massive acinar cell apoptosis with secondary necrosis, origin of ducts in atrophic lobules and failure to regenerate in cyanohydroxybutene pancreatopathy in rats

    PubMed Central

    Kelly, Lyndell; Reid, Lynne; Walker, Neal I

    1999-01-01

    Cyanohydroxybutene (CHB), a glycosinolate breakdown product, causes pancreatic injury when given to animals in large amounts. To determine the course of CHB-induced pancreatopathy, rats were given a single subcutaneous dose of CHB and the pancreas weighed and examined by light and electron microscopy and immunohistochemistry at intervals from 2 h to 28 days. The pancreatic lesion was unusual in that there was marked early oedema with limited inflammatory cell infiltration, rapid synchronous onset of acinar cell apoptosis and early advanced atrophy engendering only a limited regenerative response. Acinar cell apoptosis was atypical in that cell fragmentation was limited and phagocytosis delayed, resulting in extensive secondary necrosis. As ducts were unaffected by CHB, the crowded ducts making up the epithelial component of atrophic lobules could be clearly shown to derive from their condensation and proliferation, not the redifferentiation of pre-existing acinar cells, widely held to produce this lesion. Although the basis of CHB selectivity and toxicity for pancreatic acinar cells remains unknown, the potential therapeutic benefit of such an agent in patients with pancreatitis or pancreatic tumours warrants further investigation. PMID:10583631

  17. CFTR-Mediated Cl− Transport in the Acinar and Duct Cells of Rabbit Lacrimal Gland

    PubMed Central

    Lu, Michael; Ding, Chuanqing

    2013-01-01

    Purpose We investigated the role that the cystic fibrosis transmembrane conductance regulator (CFTR) may play in Cl− transport in the acinar and ductal epithelial cells of rabbit lacrimal gland (LG). Methods Primary cultured LG acinar cells were processed for whole-cell patch-clamp electrophysiological recording of Cl− currents by using perfusion media with high and low [Cl−], 10 μM forskolin and 100 μM 3-isobutyl-1-methylxanthine (IBMX), the non-specific Cl− channel blocker 4,4′-disothiocyanostilbene-2, 2′ sulphonic acid (DIDS; 100 μM) and CFTRinh-172 (10 μM), a specific blocker for CFTR. Ex vivo live cell imaging of [Cl−] changes in duct cells was performed on freshly dissected LG duct with a multiphoton confocal laser scanning microscope using a Cl− sensitive fluorescence dye, N-[ethoxycarbonylmethyl]-6-methoxy-quinolinium bromide. Results Whole-cell patch-clamp studies demonstrated the presence of Cl− current in isolated acinar cells and revealed that this Cl− current was mediated by CFTR channel. Live cell imaging also showed the presence of CFTR-mediated Cl− transport across the plasma membrane of duct cells. Conclusions Our previous data showed the presence of CFTR in all acinar and duct cells within the rabbit LG, with expression most prominent in the apical membranes of duct cells. The present study demonstrates that CFTR is actively involved in Cl− transport in both acinar cells and epithelial cells from duct segments, suggesting that CFTR may play a significant role in LG secretion. PMID:22578307

  18. Acinar Cell Apoptosis in Serpini2-Deficient Mice Models Pancreatic Insufficiency

    PubMed Central

    Loftus, Stacie K; Cannons, Jennifer L; Incao, Arturo; Pak, Evgenia; Chen, Amy; Zerfas, Patricia M; Bryant, Mark A; Biesecker, Leslie G; Schwartzberg, Pamela L; Pavan, William J

    2005-01-01

    Pancreatic insufficiency (PI) when left untreated results in a state of malnutrition due to an inability to absorb nutrients. Frequently, PI is diagnosed as part of a larger clinical presentation in cystic fibrosis or Shwachman–Diamond syndrome. In this study, a mouse model for isolated exocrine PI was identified in a mouse line generated by a transgene insertion. The trait is inherited in an autosomal recessive pattern, and homozygous animals are growth retarded, have abnormal immunity, and have reduced life span. Mice with the disease locus, named pequeño (pq), exhibit progressive apoptosis of pancreatic acinar cells with severe exocrine acinar cell loss by 8 wk of age, while the islets and ductal tissue persist. The mutation in pq/pq mice results from a random transgene insertion. Molecular characterization of the transgene insertion site by fluorescent in situ hybridization and genomic deletion mapping identified an approximately 210-kb deletion on Chromosome 3, deleting two genes. One of these genes, Serpini2, encodes a protein that is a member of the serpin family of protease inhibitors. Reintroduction of only the Serpini2 gene by bacterial artificial chromosome transgenic complementation corrected the acinar cell defect as well as body weight and immune phenotypes, showing that deletion of Serpini2 causes the pequeño phenotype. Dietary supplementation of pancreatic enzymes also corrected body size, body weight, and immunodeficiency, and increased the life span of Serpini2-deficient mice, despite continued acinar cell loss. To our knowledge, this study describes the first characterized genetic animal model for isolated PI. Genetic complementation of the transgene insertion mutant demonstrates that Serpini2 deficiency directly results in the acinar cell apoptosis, malabsorption, and malnutrition observed in pq/pq mice. The rescue of growth retardation, immunodeficiency, and mortality by either Serpini2 bacterial artificial chromosome transgenic expression

  19. The effect of hyposmotic and isosmotic cell swelling on the intracellular [Ca2+] in lactating rat mammary acinar cells.

    PubMed

    Shennan, D B; Grant, A C G; Gow, I F

    2002-04-01

    The effect of hyposmotic and isosmotic cell swelling on the free intracellular calcium concentration ([Ca2+]i) in rat mammary acinar cells has been examined using the fura-2 dye technique. Ahyposmotic shock (40% reduction) increased the [Ca2+]i in rat mammary acinar cells in a fashion which was transient; the [Ca2+]i returned to a value similar to that found under isomotic conditions within 180 sec. The increase in the [Ca2+]i was dependent upon the extent of the osmotic shock. The hyposmotically-activated increase in the [Ca2+]i could not be attributed to a reduction in extracellular Na+ or a change in the ionic strength of the incubation medium. Thapsigargin (1 microM) enhanced the hyposmotically-activated increase in the [Ca2+]i. Isosmotic swelling of rat mammary acinar cells, using urea, had no significant effect on the [Ca2+]i. Similarly, a hyperosmotic shock did not affect the [Ca2+]i in rat mammary acinar cells. It appears that the effect of cell swelling on the [Ca2+]i in rat mammary acinar cells depends on how the cells are swollen (hyposmotic vs. isosmotic). This finding may have important physiological implications given that it is predicted that mammary cell volume will change in vivo under isomotic conditions.

  20. Intracellular mediators of Na -K pump activity in guinea pig pancreatic acinar cells

    SciTech Connect

    Hootman, S.R.; Ochs, D.L.; Williams, J.A.

    1985-10-01

    The involvement of CaS and cyclic nucleotides in neurohormonal regulation of Na -K -ATPase (Na -K pump) activity in guinea pig pancreatic acinar cells was investigated. Changes in Na+-K+ pump activity elicited by secretagogues were assessed by (3H)ouabain binding and by ouabain-sensitive YWRb uptake. Carbachol (CCh) and cholecystokinin octapeptide (CCK-8) each stimulated both ouabain-sensitive 86Rb+ uptake and equilibrium binding of (TH)ouabain by approximately 60%. Secretin increased both indicators of Na+-K+ pump activity by approximately 40% as did forskolin, 8-bromo- and dibutyryl cAMP, theophylline, and isobutylmethylxanthine. Incubation of acinar cells in CaS -free HEPES-buffered Ringer (HR) with 0.5 mM EGTA reduced the stimulatory effects of CCh and CCK-8 by up to 90% but caused only a small reduction in the effects of secretin, forskolin, and cAMP analogues. In addition, CCh, CCK-8, secretin, and forskolin each stimulated ouabain-insensitive 86Rb+ uptake by acinar cells. The increase elicited by CCh and CCK-8 was greatly reduced in the absence of extracellular CaS , while that caused by the latter two agents was not substantially altered. The effects of secretagogues on free CaS levels in pancreatic acinar cells also were investigated with quin-2, a fluorescent CaS chelator. Basal intracellular CaS concentration ((CaS )i) was 161 nM in resting cells and increased to 713 and 803 nM within 15 s after addition of 100 microM CCh or 10 nM CCK-8, respectively.

  1. Sudden disappearance of the blood flow in a case of pancreatic acinar cell carcinoma.

    PubMed

    Kanno, Atsushi; Masamune, Atsushi; Hamada, Shin; Kikuta, Kazuhiro; Kume, Kiyoshi; Hirota, Morihisa; Shima, Kentaro; Okada, Takaho; Motoi, Fuyuhiko; Fujishima, Fumiyoshi; Ishida, Kazuyuki; Unno, Michiaki; Shimosegawa, Tooru

    2014-01-01

    A 55-year-old man was referred to our hospital for a further examination of a pancreatic cystic tumor with a solid component exhibiting vascularity. A few days later, the patient was admitted with a complaint of sudden severe epigastric pain. Enhanced CT showed the loss of vascularity in the tumor. In particular, contrast-enhanced endoscopic ultrasonography (EUS) clearly demonstrated the disappearance of the blood flow, and a histological examination revealed acinar cell carcinoma with central necrosis. To our knowledge, this is the first case in the literature of acinar cell carcinoma associated with the sudden disappearance of vascularity. In this case, contrast-enhanced harmonic EUS was especially useful for assessing the degree of vascularity.

  2. Loss of Ifnar1 in Pancreatic Acinar Cells Ameliorates the Disease Course of Acute Pancreatitis

    PubMed Central

    Miller, Katharina J.; Raulefs, Susanne; Kong, Bo; Steiger, Katja; Regel, Ivonne; Gewies, Andreas; Kleeff, Jörg; Michalski, Christoph W.

    2015-01-01

    Type I interferon constitutes an essential component of the combinational therapy against viral disease. Acute pancreatitis is one side effect of type I interferon-based therapy, implying that activation of type I interferon signaling affects the homeostasis and integrity of pancreatic acinar cells. Here, we investigated the role of type I interferon signaling in pancreatic acinar cells using a caerulein-induced murine model of acute pancreatitis. Pancreas-specific ablation of interferon (alpha and beta) receptor 1 (Ifnar1) partially protected animals from caerulein-induced pancreatitis, as demonstrated by reduced tissue damage. Profiling of infiltrating immune cells revealed that this dampened tissue damage response correlated with the number of macrophages in the pancreas. Pharmacologic depletion of macrophages reversed the protective effect of Ifnar1 deficiency. Furthermore, expression of chemokine (C-C motif) ligand 2 (Ccl2), a potent factor for macrophage recruitment, was significantly increased in the Ifnar1-deficient pancreas. Thus, type I interferon signaling in pancreatic acinar cells controls pancreatic homeostasis by affecting the macrophage-mediated inflammatory response in the pancreas. PMID:26618925

  3. Altered Gene Expression in Cerulein-Stimulated Pancreatic Acinar Cells: Pathologic Mechanism of Acute Pancreatitis

    PubMed Central

    Yu, Ji Hoon; Lim, Joo Weon

    2009-01-01

    Acute pancreatitis is a multifactorial disease associated with the premature activation of digestive enzymes. The genes expressed in pancreatic acinar cells determine the severity of the disease. The present study determined the differentially expressed genes in pancreatic acinar cells treated with cerulein as an in vitro model of acute pancreatitis. Pancreatic acinar AR42J cells were stimulated with 10-8 M cerulein for 4 h, and genes with altered expression were identified using a cDNA microarray for 4,000 rat genes and validated by real-time PCR. These genes showed a 2.5-fold or higher increase with cerulein: lithostatin, guanylate cyclase, myosin light chain kinase 2, cathepsin C, progestin-induced protein, and pancreatic trypsin 2. Stathin 1 and ribosomal protein S13 showed a 2.5-fold or higher decreases in expression. Real-time PCR analysis showed time-dependent alterations of these genes. Using commercially available antibodies specific for guanylate cyclase, myosin light chain kinase 2, and cathepsin C, a time-dependent increase in these proteins were observed by Western blotting. Thus, disturbances in proliferation, differentiation, cytoskeleton arrangement, enzyme activity, and secretion may be underlying mechanisms of acute pancreatitis. PMID:20054485

  4. Early acinar cell changes in caerulein-induced interstitial acute pancreatitis in the rat.

    PubMed

    Grönroos, J M; Aho, H J; Hietaranta, A J; Nevalainen, T J

    1991-01-01

    Early ultrastructural and immunohistochemical changes caused by supramaximal secretory stimulation with caerulein were studied in the rat pancreas. The morphological basis for the earlier reported decrease of pancreatic juice secretion after supramaximal caerulein was the appearance of swollen and irregular zymogen-like material containing structures with short segments of budding bristle-coated membranes in the apical parts of acinar cells. Images of exocytosis of zymogen granules were only few. Later, marked vacuolization and signs of autophagocytosis are seen in the basal cytoplasm. Immunohistochemistry showed that the large zymogen containing structures were intensively labelled for trypsin at the early stages of the experiment (4-30 min). Later (1-2 h), the vacuoles were empty or contained occasional, small-labelled granules only. The pancreozymin-receptor antagonist proglumide as well as cycloleucine that inhibits protein synthesis by inhibiting the synthesis of S-adenosylmethionine, effectively prevented the caerulein induced acinar cell changes. The irregular zymogen containing structures with coated pits on their surface indicate disturbed zymogen granule formation leading to the accumulation of large lakes of zymogen material and finally to marked autophagocytosis in acinar cells. The effects of caerulein are receptor-mediated and depend on the process of methylation in the formation of zymogen granules.

  5. Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas.

    PubMed

    Saponara, Enrica; Grabliauskaite, Kamile; Bombardo, Marta; Buzzi, Raphael; Silva, Alberto B; Malagola, Ermanno; Tian, Yinghua; Hehl, Adrian B; Schraner, Elisabeth M; Seleznik, Gitta M; Zabel, Anja; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-12-01

    The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone-stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation-mediated tissue injury. Specifically, lack of serotonin resulted in delayed up-regulation of progenitor genes and delayed the formation of acinar-to-ductal metaplasia and defective acinar cell proliferation. We identified serotonin-dependent acinar secretion as a key step in progenitor-based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1-Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells.

  6. Encapsulation of primary salivary gland cells in enzymatically degradable poly(ethylene glycol) hydrogels promotes acinar cell characteristics.

    PubMed

    Shubin, Andrew D; Felong, Timothy J; Schutrum, Brittany E; Joe, Debria S L; Ovitt, Catherine E; Benoit, Danielle S W

    2017-03-01

    Radiation therapy for head and neck cancers leads to permanent xerostomia due to the loss of secretory acinar cells in the salivary glands. Regenerative treatments utilizing primary submandibular gland (SMG) cells show modest improvements in salivary secretory function, but there is limited evidence of salivary gland regeneration. We have recently shown that poly(ethylene glycol) (PEG) hydrogels can support the survival and proliferation of SMG cells as multicellular spheres in vitro. To further develop this approach for cell-based salivary gland regeneration, we have investigated how different modes of PEG hydrogel degradation affect the proliferation, cell-specific gene expression, and epithelial morphology within encapsulated salivary gland spheres. Comparison of non-degradable, hydrolytically-degradable, matrix metalloproteinase (MMP)-degradable, and mixed mode-degradable hydrogels showed that hydrogel degradation by any mechanism is required for significant proliferation of encapsulated cells. The expression of acinar phenotypic markers Aqp5 and Nkcc1 was increased in hydrogels that are MMP-degradable compared with other hydrogel compositions. However, expression of secretory acinar proteins Mist1 and Pip was not maintained to the same extent as phenotypic markers, suggesting changes in cell function upon encapsulation. Nevertheless, MMP- and mixed mode-degradability promoted organization of polarized cell types forming tight junctions and expression of the basement membrane proteins laminin and collagen IV within encapsulated SMG spheres. This work demonstrates that cellularly remodeled hydrogels can promote proliferation and gland-like organization by encapsulated salivary gland cells as well as maintenance of acinar cell characteristics required for regenerative approaches. Investigation is required to identify approaches to further enhance acinar secretory properties.

  7. Transplantable pancreatic acinar carcinoma

    SciTech Connect

    Warren, J.R.; Reddy, J.K.

    1981-03-15

    Fragments of the nafenopin-induced pancreatic acinar cell carcinoma of rat have been examined in vitro for patterns of intracellular protein transport and carbamylcholine-induced protein discharge. Continuous incubation of the fragments with (3H)-leucine for 60 minutes resulted in labeling of rough endoplasmic reticulum, Golgi cisternae, and mature zymogen granules, revealed by electron microscope autoradiography. This result indicates transport of newly synthesized protein from the rough endoplasmic reticulum to mature zymogen granules in approximately 60 minutes. The secretagogue carbamylcholine induced the discharge of radioactive protein by carcinoma fragments pulse-chase labeled with (3H)-leucine. A maximal effective carbamylcholine concentration of 10(-5) M was determined. The acinar carcinoma resembles normal exocrine pancreas in the observed rate of intracellular protein transport and effective secretagogue concentration. However, the acinar carcinoma fragments demonstrated an apparent low rate of carbamylcholine-induced radioactive protein discharge as compared with normal pancreatic lobules or acinar cells. It is suggested that the apparent low rate of radioactive protein discharge reflects functional immaturity of the acinar carcinoma. Possible relationships of functional differentiation to the heterogeneous cytodifferentiation of the pancreatic acinar carcinoma are discussed.

  8. Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells

    PubMed Central

    Yoon, Mi Na; Kim, Dong Kwan; Kim, Se Hoon

    2017-01-01

    Intracellular calcium (Ca2+) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide (H2O2) on intracellular Ca2+ accumulation in mouse pancreatic acinar cells. Perfusion of H2O2 at 300 µM resulted in additional elevation of intracellular Ca2+ levels and termination of oscillatory Ca2+ signals induced by carbamylcholine (CCh) in the presence of normal extracellular Ca2+. Antioxidants, catalase or DTT, completely prevented H2O2-induced additional Ca2+ increase and termination of Ca2+ oscillation. In Ca2+-free medium, H2O2 still enhanced CCh-induced intracellular Ca2+ levels and thapsigargin (TG) mimicked H2O2-induced cytosolic Ca2+ increase. Furthermore, H2O2-induced elevation of intracellular Ca2+ levels was abolished under sarco/endoplasmic reticulum Ca2+ ATPase-inactivated condition by TG pretreatment with CCh. H2O2 at 300 µM failed to affect store-operated Ca2+ entry or Ca2+ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial Ca2+ uniporter blocker, failed to attenuate H2O2-induced intracellular Ca2+ elevation. These results provide evidence that excessive generation of H2O2 in pathological conditions could accumulate intracellular Ca2+ by attenuating refilling of internal Ca2+ stores rather than by inhibiting Ca2+ extrusion to extracellular fluid or enhancing Ca2+ mobilization from extracellular medium in mouse pancreatic acinar cells. PMID:28280417

  9. Pancreatic panniculitis as a paraneoplastic phenomenon of a pancreatic acinar cell carcinoma.

    PubMed

    Naeyaert, Charlotte; de Clerck, Frederik; De Wilde, Vincent

    2016-12-01

    We present the case of a 59-year-old patient admitted with extreme painful erythematous subcutaneous nodules of the lower extremities in association with arthritis and peripheral eosinophilia. Upon skin biopsy, the diagnosis of pancreatic panniculitis was made. On further investigation, an underlying acinar cell type pancreas carcinoma was revealed. This clinical case does illustrate how a seemingly innocuous skin condition may herald an underlying malignant disease. The presence of pancreatic panniculitis should trigger clinicians to undertake further thorough diagnostic investigation of the pancreas.

  10. Glycyrrhizin down-regulates CCL2 and CXCL2 expression in cerulein-stimulated pancreatic acinar cells

    PubMed Central

    Panahi, Yaser; Fakhari, Shohreh; Mohammadi, Mehdi; Rahmani, Mohammad Reza; Hakhamaneshi, Mohammad Saeid; Jalili, Ali

    2015-01-01

    Many inflammatory chemokines release from leukocytes and pancreatic acinar cells which play important roles in pathophysiology of acute pancreatitis (AP). Of interests, CXCL2 and CCL2 have been shown elevated in the plasma of patients with AP. We have recently found that Glycyrrhizin (GZ) attenuates AP in mice model. In this study, we aimed to investigate the direct effect of GZ on expression levels of CCL2 and CXCl2 in isolated pancreatic acinar cells. Isolated acinar cells were isolated from the pancreas of healthy C57BL/6 mice, stimulated with cerulein (10-7 M) and then treated with either PBS or different doses of GZ. The levels of CCL2 and CXCL2 expression at mRNA were assessed by qRT-PCR. Conditioned media from supernatants of each cells culture condition were collected for detection of CCL2 and CXCL2 levels by ELISA. First, we observed that cerulein significantly upregulates both cytokines expression in acinar cells. Moreover, we treated the acinar cells with GZ and found that GZ significantly downregulates CCL2 and CXCL2 expression at mRNA levels in a dose-dependent manner. Consistently, the conditioned media of GZ-treated cells contained a significant lower levels of CCL2 and CXCL2 (p<0.05). In conclusion, our data demonstrate for the first time that GZ directly downregulates CCL2 and CXCL2 levels in cerulein-stimulated acinar cells which may explain the mechanism of therapeutic effects of GZ in cerulein-induced AP in mice. PMID:26155433

  11. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    NASA Astrophysics Data System (ADS)

    Pradhan, Swati

    Xerostomia, a condition resulting from irradiation of the head and neck, affects over 40,000 cancer patients each year in the United States. Direct radiation damage of the acinar cells that secrete fluid and protein results in salivary gland hypofunction. Present medical management for xerostomia for patients treated for upper respiratory cancer is largely ineffective. Patients who have survived their terminal diagnosis are often left with a diminished quality of life and are unable to enjoy the simple pleasures of eating and drinking. This project aims to ultimately reduce human suffering by developing a functional implantable artificial salivary gland. The goal was to create an extracellular matrix (ECM) modified hyaluronic acid (HA) based hydrogel culture system that allows for the growth and differentiation of salivary acinar cells into functional acini-like structures capable of secreting large amounts of protein and fluid unidirectionally and to ultimately engineer a functional artificial salivary gland that can be implanted into an animal model. A tissue collection protocol was established and salivary gland tissue was obtained from patients undergoing head and neck surgery. The tissue specimen was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Hematoxylin and eosin staining confirmed normal glandular tissue structures including intercalated ducts, striated ducts and acini. alpha-Amylase and periodic acid schiff stain, used for structures with a high proportion of carbohydrate macromolecules, preferentially stained acinar cells in the tissue. Intercalated and striated duct structures were identified using cytokeratins 19 and 7 staining. Myoepithelial cells positive for cytokeratin 14 were found wrapped around the serous and mucous acini. Tight junction components including ZO-1 and E-cadherin were present between both ductal and acinar cells. Ductal and acinar

  12. The econobiology of pancreatic acinar cells granule inventory and the stealthy nano-machine behind it.

    PubMed

    Hammel, Ilan; Meilijson, Isaac

    2016-03-01

    The pancreatic gland secretes most of the enzymes and many other macromolecules needed for food digestion in the gastrointestinal tract. These molecules play an important role in digestion, host defense and lubrication. The secretion of pancreatic proteins ensures the availability of the correct mix of proteins when needed. This review describes model systems available for the study of the econobiology of secretory granule content. The secretory pancreatic molecules are stored in large dense-core secretory granules that may undergo either constitutive or evoked secretion, and constitute the granule inventory of the cell. It is proposed that the Golgi complex functions as a distribution center for secretory proteins in pancreatic acinar cells, packing the newly formed secretory molecules into maturing secretory granules, also known functionally as condensing vacuoles. Mathematical modelling brings forward a process underlying granule inventory maintenance at various physiological states of condensation and aggregation by homotypic fusion. These models suggest unique but simple mechanisms accountable for inventory buildup and size, as well as for the distribution of secretory molecules into different secretory pathways in pancreatic acinar cells.

  13. Label retaining cells (LRCs) with myoepithelial characteristic from the proximal acinar region define stem cells in the sweat gland.

    PubMed

    Leung, Yvonne; Kandyba, Eve; Chen, Yi-Bu; Ruffins, Seth; Kobielak, Krzysztof

    2013-01-01

    Slow cycling is a common feature shared among several stem cells (SCs) identified in adult tissues including hair follicle and cornea. Recently, existence of unipotent SCs in basal and lumenal layers of sweat gland (SG) has been described and label retaining cells (LRCs) have also been localized in SGs; however, whether these LRCs possess SCs characteristic has not been investigated further. Here, we used a H2BGFP LRCs system for in vivo detection of infrequently dividing cells. This system allowed us to specifically localize and isolate SCs with label-retention and myoepithelial characteristics restricted to the SG proximal acinar region. Using an alternative genetic approach, we demonstrated that SG LRCs expressed keratin 15 (K15) in the acinar region and lineage tracing determined that K15 labeled cells contributed long term to the SG structure but not to epidermal homeostasis. Surprisingly, wound healing experiments did not activate proximal acinar SG cells to participate in epidermal healing. Instead, predominantly non-LRCs in the SG duct actively divided, whereas the majority of SG LRCs remained quiescent. However, when we further challenged the system under more favorable isolated wound healing conditions, we were able to trigger normally quiescent acinar LRCs to trans-differentiate into the epidermis and adopt its long term fate. In addition, dissociated SG cells were able to regenerate SGs and, surprisingly, hair follicles demonstrating their in vivo plasticity. By determining the gene expression profile of isolated SG LRCs and non-LRCs in vivo, we identified several Bone Morphogenetic Protein (BMP) pathway genes to be up-regulated and confirmed a functional requirement for BMP receptor 1A (BMPR1A)-mediated signaling in SG formation. Our data highlight the existence of SG stem cells (SGSCs) and their primary importance in SG homeostasis. It also emphasizes SGSCs as an alternative source of cells in wound healing and their plasticity for regenerating

  14. Bromoenol lactone enhances the permeabilization of rat submandibular acinar cells by P2X7 agonists

    PubMed Central

    Chaïb, N; Kabré, E; Alzola, E; Pochet, S; Dehaye, J P

    2000-01-01

    The permeabilizing effect of P2X7 agonists was tested in rat submandibular acinar cells using the uptake of ethidium bromide as an index. The uptake of ethidium bromide by acini incubated at 37°C in the presence of 1 mM ATP increased with time and reached after 5 min about 10% of maximal uptake measured in the presence of digitonin. The response to ATP was dose-dependent (half-maximal concentration around 40 μM) and it was decreased when the temperature was lowered to 25°C. Benzoyl-ATP reproduced the response to ATP (half-maximal concentration around 10 μM). UTP or 2-methylthioATP had no effect. The permeabilization in response to ATP was blocked by oxidized ATP and by magnesium and inhibited by Coomassie blue. ATP increased the activity of a calcium-insensitive phospholipase A2 (iPLA2). Bromoenol lactone (BEL) inhibited the iPLA2 stimulated by ATP but potentiated the uptake of ethidium bromide in response to the purinergic agonist. From these results it is concluded that the activation of P2X7 receptors permeabilizes rat submandibular acinar cells. The pore-forming activity of the receptor might be negatively regulated by the concomitant activation of the iPLA2 by the receptor. PMID:10683195

  15. Rhein Induces a Necrosis-Apoptosis Switch in Pancreatic Acinar Cells

    PubMed Central

    Zhao, Xianlin; Li, Juan; Zhu, Shifeng; Liu, Yiling; Zhao, Jianlei; Wan, Meihua; Tang, Wenfu

    2014-01-01

    Objectives. The Chinese herbal medicine Da-Cheng-Qi decoction can regulate a necrosis-apoptosis switch in injured pancreatic acinar cells. This study investigated the effects of rhein, a component of this medicine, on a necrosis-apoptosis switch in pancreatic rat AR42J cells. Methods. Cerulein-treated AR42J cells were used. After pretreatment with 479, 119.8, or 29.9 μg/L rhein, cells were cocultured with rhein and cerulein (10−8 M) for 4, 8, or 16 h. Apoptosis and necrosis were examined using annexin V and propidium iodide costaining. Mitochondria-dependent apoptosis-associated proteins were examined using enzyme-linked immunosorbent assays and western blotting. Results. Few cells died in untreated samples. The number was significantly higher in 16-h-cerulein-treated samples and treatment with 479 μg/L rhein most effectively increased the apoptotic-to-necrotic cell ratio (P < 0.05). In cerulein-treated cells, rhein increased the concentrations of p53, cytochrome C, and caspase-3, and increased the Bax/Bcl-2 ratio in a time- and dose-dependent manner, with the maximum effect in cells treated with 479 μg/L rhein for 16 h (P < 0.05). Conclusions. Rhein induces the necrosis-apoptosis switch in injured pancreatic acinar cells in a time- and dose-dependent manner. Mitochondria-dependent apoptosis signaling pathways might play an important role in this effect. PMID:24959186

  16. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells

    PubMed Central

    Fernández-Sánchez, Marcela; del Castillo-Vaquero, Angel; Salido, Ginés M; González, Antonio

    2009-01-01

    Background A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Results Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS) production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 μM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. Conclusion ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis. PMID:19878551

  17. Polyethylenimine-mediated expression of transgenes in the acinar cells of rats salivary glands in vivo

    PubMed Central

    Sramkova, Monika; Parente, Laura; Wigand, Timothy; Aye, Myo-Pale'; Shitara, Akiko; Weigert, Roberto

    2015-01-01

    Non viral-mediated transfection of plasmid DNA provides a fast and reliable way to express various transgenes in selected cell populations in live animals. Here, we show an improvement of a previously published method that is based on injecting plasmid DNA into the ductal system of the salivary glands in live rats. Specifically, using complexes between plasmid DNA and polyethyleneimine (PEI) we show that the expression of the transgenes is directed selectively to the salivary acinar cells. PEI does not affect the ability of cells to undergo regulated exocytosis, which was one of the main drawbacks of the previous methods. Moreover PEI does not affect the proper localization and targeting of transfected proteins, as shown for the apical plasma membrane water channel aquaporin 5 (AQP5). Overall, this approach, coupled with the use of intravital microscopy, permits to conduct localization and functional studies under physiological conditions, in a rapid, reliable, and affordable fashion. PMID:25621283

  18. Effect of glucagon on digestive enzyme synthesis, transport and secretion in mouse pancreatic acinar cells.

    PubMed Central

    Singh, M

    1980-01-01

    1. Effect of glucagon on amylase secretion and lactic dehydrogenase (LDH) release from functionally intact dissociated pancreatic acinar cells and acini was studied. 2. In dissociated rat pancreatic acinar cells, the rate of amylase secretion was increased by 70% with bethanechol (maximally effective concentration, 10(-4) M) and 125% with A23187 (10(-5) M), but the response to cholecystokinin-pancreozymin (CCK-PZ) was inconsistent. In dissociated cells from mouse pancreas, the increases amounted to 78% with bethanechol (10(-4) M), 134% with A23187 (10(-5) M) and 82% with CCK-PZ (maximally effective concentration, 0 . 01 u. ml.-1). Glucagon in concentrations ranging from 10(-7) to 10(-4) M increased amylase secretion by 3, 26, 67 and 80%, whereas secretin (10(-8)--10(-5) M) increased amylase secretion by 8, 39, 88 and 138%. LDH release was increased with A23187 in concentrations greater than 10(-6) M. 3. CCK-PZ, bethanechol and A23187 used in maximal concentrations potentiated the effect of a submaximal dose of glucagon whereas secretin did not have an additive or a potentiating effect. 4. Pancreatic acini were approximately 3 times more responsive to secretagogues than cells. The dose--response curves to bethanechol, glucagon and CCK-PZ for increase in amylase secretion were similar. LDH release was not increased by these agents. Cytochalasin B (5 microgram ml.-1) which is known to disrupt the integrity of luminal membrane inhibited the amylase secretion stimulated by glucagon, bethanechol and CCK-PZ. 5. Glucagon inhibited incorporation of a mixture of fifteen 14C-labelled amino acids (algal profile, Schwarz Mann) into perchloric acid precipitable proteins in dissociated mouse pancreatic acini within 30 min. 6. In 'pulse-chase' experiments, glucagon decreased the specific activity of zymogen granules isolated by differential centrifugation, from pancreatic lobules (120 min) and increased the specific activity of radiolabelled proteins in the medium (60 and 120 min

  19. The relation between apoptosis of acinar cells and nitric oxide during acute rejection of pancreas transplantation in rats.

    PubMed

    Xiaoguang, Ni; Zhong, Liu; Hailong, Chen; Ping, Zhao; Xiaofeng, Bai; Fenglin, Guan

    2003-01-01

    Apoptosis is an important mechanism of immune-mediated graft damage. Nitric oxide (NO) generated by inducible NO synthase (iNOS) has been demonstrated to induce apoptosis. This study investigated whether apoptosis occurs during pancreas allograft rejection and examined the relationship of apoptosis of acinar cells and NO. The rats were divided into three groups: untreated isograft group, untreated allograft group and aminoguanidine (AG)-treated group. The pancreatic grafts were harvested on the post-transplantation day 3, 5 and 7 and were used to detect the histopathological rejection grade, the expression of iNOS and the apoptotic index (AI) of the graft. iNOS presented faint positive in the acinar cells of untreated isografts and did not change greatly after transplantation (P>0.05), the level of iNOS in the untreated allografts increased progressively (P<0.01) and at the same time point was significantly higher than that of untreated isograft group and AG-treated group (P<0.01). The transferase-mediated dUTP nick end labeling showed that the apoptotic cells were mainly acinar cells. A significant correlation between AI and iNOS was noted (P<0.01, r=0.611). Therefore, NO-mediated apoptosis of acinar cells plays an important role in acute rejection of pancreas transplantation, AG can mitigate the damage of pancreas allografts.

  20. A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation

    PubMed Central

    Metzler, Melissa A.; Venkatesh, Srirangapatnam G.; Lakshmanan, Jaganathan; Carenbauer, Anne L.; Perez, Sara M.; Andres, Sarah A.; Appana, Savitri; Brock, Guy N.; Wittliff, James L.; Darling, Douglas S.

    2015-01-01

    Objective The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process. Methodology A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM) was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation. Results Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a) progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1Mist1 promoter. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp) gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation. Conclusion This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a

  1. Variations in the expression and distribution pattern of AQP5 in acinar cells of patients with sialadenosis.

    PubMed

    Teymoortash, Afshin; Wiegand, Susanne; Borkeloh, Martin; Bette, Michael; Ramaswamy, Annette; Steinbach-Hundt, Silke; Neff, Andreas; Werner, Jochen A; Mandic, Robert

    2012-01-01

    Previously, we pointed out on a possible role of aquaporin 5 (AQP5) in the development of sialadenosis. The goal of the present study was to further assess the association of AQP5 in the development of this salivary gland disease. The acinar diameter and mean surface area appeared elevated in sialadenosis tissues, which is a typical observation in this disease. AQP5 expression was evaluated by immunohistochemistry using tissue samples derived from salivary glands of patients with confirmed sialadenosis either as a primary diagnosis or as a secondary diagnosis within the framework of other salivary gland diseases. Normal salivary gland tissue served as a control. In sialadenosis tissues, the AQP5 signal at the apical plasma membrane of acinar cells frequently appeared stronger compared with that in normal salivary glands. In addition, the distribution of AQP5 at the apical region seemed to differ between normal and sialadenosis tissues, where AQP5 frequently was diffusely distributed near or at the apical plasma membrane of the acinar cells in contrast to normal controls where the AQP5 signal was strictly confined to the apical plasma membrane. These observations suggest that sialadenosis is associated with a different AQP5 expression and distribution pattern in salivary acinar cells.

  2. Chronic alcohol exposure inhibits biotin uptake by pancreatic acinar cells: possible involvement of epigenetic mechanisms.

    PubMed

    Srinivasan, Padmanabhan; Kapadia, Rubina; Biswas, Arundhati; Said, Hamid M

    2014-11-01

    Chronic exposure to alcohol affects different physiological aspects of pancreatic acinar cells (PAC), but its effect on the uptake process of biotin is not known. We addressed this issue using mouse-derived pancreatic acinar 266-6 cells chronically exposed to alcohol and wild-type and transgenic mice (carrying the human SLC5A6 5'-promoter) fed alcohol chronically. First we established that biotin uptake by PAC is Na(+) dependent and carrier mediated and involves sodium-dependent multivitamin transporter (SMVT). Chronic exposure of 266-6 cells to alcohol led to a significant inhibition in biotin uptake, expression of SMVT protein, and mRNA as well as in the activity of the SLC5A6 promoter. Similarly, chronic alcohol feeding of wild-type and transgenic mice carrying the SLC5A6 promoter led to a significant inhibition in biotin uptake by PAC, as well as in the expression of SMVT protein and mRNA and the activity of the SLC5A6 promoters expressed in the transgenic mice. We also found that chronic alcohol feeding of mice is associated with a significant increase in the methylation status of CpG islands predicted to be in the mouse Slc5a6 promoters and a decrease in the level of expression of transcription factor KLF-4, which plays an important role in regulating SLC5A6 promoter activity. These results demonstrate, for the first time, that chronic alcohol exposure negatively impacts biotin uptake in PAC and that this effect is exerted (at least in part) at the level of transcription of the SLC5A6 gene and may involve epigenetic/molecular mechanisms.

  3. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca2+ oscillations in mouse pancreatic acinar cells

    PubMed Central

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P.; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca2+ signals may protect pancreatic acinar cells against Ca2+ overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca2+ signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca2+ oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca2+ oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca2+ oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca2+ oscillations and L-arginine-induced enhancement of Ca2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  4. Autophagy in pancreatic acinar cells in caerulein-treated mice: immunolocalization of related proteins and their potential as markers of pancreatitis.

    PubMed

    Zhang, Leshuai; Zhang, Jun; Shea, Katherine; Xu, Lin; Tobin, Grainne; Knapton, Alan; Sharron, Stewart; Rouse, Rodney

    2014-01-01

    Drug-induced pancreatitis (DIP) is an underdiagnosed condition that lacks sensitive and specific biomarkers. To better understand the mechanisms of DIP and to identify potential tissue biomarkers, we studied experimental pancreatitis induced in male C57BL/6 mice by intraperitoneal injection of caerulein (10 or 50 μg/kg) at 1-hr intervals for a total of 7 injections. Pancreata from caerulein-treated mice exhibited consistent acinar cell autophagy and apoptosis with infrequent necrosis. Kinetic assays for serum amylase and lipase also showed a dose-dependent increase. Terminal deoxynucleotidyl transferase-mediated biotin-dNTP nick labeling (TUNEL) detected dose-dependent acinar cell apoptosis. By light microscopy, autophagy was characterized by the formation of autophagosomes and autolysosomes (ALs) within the cytoplasm of acinar cells. Immunohistochemical studies with specific antibodies for proteins related to autophagy and pancreatic stress were conducted to evaluate these proteins as potential biomarkers of pancreatitis. Western blots were used to confirm immunohistochemical results using pancreatic lysates from control and treated animals. Autophagy was identified as a contributing process in caerulein-induced pancreatitis and proteins previously associated with autophagy were upregulated following caerulein treatment. Autophagosomes and ALs were found to be a common pathway, in which cathepsins, lysosome-associated membrane protein 2, vacuole membrane protein 1, microtubule-associated protein 1 light chain 3 (LC3), autophagy-related protein 9, Beclin1, and pancreatitis-associated proteins were simultaneously involved in response to caerulein stimulus. Regenerating islet-derived 3 gamma (Reg3γ), a pancreatic acute response protein, was dose-dependently induced in caerulein-treated mice and colocalized with the autophagosomal marker, LC3. This finding supports Reg3γ as a candidate biomarker for pancreatic injury.

  5. FK506 induces biphasic Ca2+ release from microsomal vesicles of rat pancreatic acinar cells.

    PubMed

    Ozawa, Terutaka

    2006-07-01

    The effect of the immunosuppressant drug FK506 on microsomal Ca2+ release was investigated in rat pancreatic acinar cells. When FK506 (0.1-200 microM) was added to the microsomal vesicles at a steady state of ATP-dependent 45Ca2+ uptake, FK506 caused a dose-dependent and a biphasic release of 45Ca2+. Almost 10% of total 45Ca2+ uptake was released at FK506 concentrations up to 10 microM (Km=0.47 microM), and 60% of total 45Ca2+ uptake was released at FK506 concentrations over 10 microM (Km=55 microM). Preincubation of the vesicles with cyclic ADP-ribose (cADPR, 0.5 microM) increased the FK506 (< or =10 microM)-induced 45Ca2+ release (Ozawa T, Biochim Biophys Acta 1693: 159-166, 2004). Preincubation with heparin (200 microg/ml) resulted in significant inhibition of the FK506 (30 microM)-induced 45Ca2+ release. Subsequent addition of inositol 1,4,5-trisphosphate (IP3, 5 microM) after FK506 (100 microM)-induced 45Ca2+ release did not cause any release of 45Ca2+. These results indicate that two types of FK506-induced Ca2+ release mechanism operate in the endoplasmic reticulum of rat pancreatic acinar cells: a high-affinity mechanism of Ca2+ release, which involves activation of the ryanodine receptor, and a low-affinity mechanism of Ca2+ release, which involves activation of the IP3 receptor.

  6. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini

    PubMed Central

    Gaiko-Shcherbak, Aljona; Fabris, Gloria; Dreissen, Georg; Merkel, Rudolf; Hoffmann, Bernd; Noetzel, Erik

    2015-01-01

    The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa) experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN) without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function. PMID:26674091

  7. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    PubMed

    Gaiko-Shcherbak, Aljona; Fabris, Gloria; Dreissen, Georg; Merkel, Rudolf; Hoffmann, Bernd; Noetzel, Erik

    2015-01-01

    The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa) experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN) without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  8. Interaction of bombesin and litorin with specific membrane receptors on pancreatic acinar cells

    PubMed Central

    Jensen, R. T.; Moody, T.; Pert, C.; Rivier, J. E.; Gardner, J. D.

    1978-01-01

    We have prepared 125I-labeled [Tyr4]bombesin and have examined the kinetics, stoichiometry, and chemical specificity with which the labeled peptide binds to dispersed acini from guinea pig pancreas. Binding of 125I-labeled [Tyr4]-bombesin was saturable, temperature-dependent, and reversible and reflected interaction of the labeled peptide with a single class of binding sites on the plasma membrane of pancreatic acinar cells. Each acinar cell possessed approximately 5000 binding sites, and binding of the tracer to these sites could be inhibited by [Tyr4]bombesin [concentration for half-maximal effect (Kd), 2 nM], bombesin (Kd, 4 nM), or litorin (Kd, 40 nM) but not by eledoisin, physalemin, somatostatin, carbachol, atropine, secretin, vasocative intestinal peptide, neurotensin, or bovine pancreatic polypeptide. At high concentrations (>0.1 μM), cholecystokinin and caerulein each caused a small (15-20%) reduction in binding of lableled [Tyr4]bombesin. With bombesin, litorin, and [Tyr4]bombesin, there was a close correlation between the relative potency for inhibition of binding of labeled [Tyr4]bombesin and that for stimulation of amylase secretion. For a given peptide, however, a 10-fold higher concentration was required for half-maximal inhibition of binding than for half-maximal stimulation of amylase secretion, calcium outflux, or cyclic GMP accumulation. These results indicate that dispersed acini from guinea pig pancreas possess a single class of receptors that interact with [Tyr4]bombesin, bombesin, and litorin and that occupation of 25% of these receptors will cause a maximal biological response. PMID:216015

  9. Apoptotic Mechanisms of Peroxisome Proliferator–Activated Receptor-γ Activation in Acinar Cells During Acute Pancreatitis

    PubMed Central

    Xu, Ping; Lou, Xiao-Li; Chen, Cheng

    2016-01-01

    Objective The objective of this study was to determine the mechanism by which activation of peroxisome proliferator–activated receptor-γ promotes apoptosis of acinar cells in pancreatitis. Methods AR42j cells pretreated with the peroxisome proliferator–activated receptor-γ agonist pioglitazone were activated by cerulein as an in vitro model of acute pancreatitis. Inflammatory cytokines and amylase were detected by enzyme-linked immunosorbent assay. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis was measured by flow cytometry and terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling staining. Activity of caspases was determined. Bax and Bcl-2 levels were assayed by Western blot. Results Cytokines, amylase, and cellular proliferation decreased in pioglitazone-pretreated cells. Pioglitazone increased the activity of caspases 3, 8, and 9 in cerulein-activated AR42j cells as well as in the pancreas of rats 3 hours after induction of severe acute pancreatitis. Acinar cell apoptosis was induced by reducing the mitochondrial membrane potential in the pioglitazone group. Pioglitazone increased expression of proapoptotic Bax proteins and decreased antiapoptotic Bcl-2 in cerulein-induced AR42j cells and decreased Bcl-2 levels in pancreatic tissue of severe acute pancreatitis rats 1 and 3 hours after induction. Conclusion Pioglitazone may promote apoptosis of acinar cells through both intrinsic and extrinsic apoptotic pathways in acute pancreatitis. PMID:26495791

  10. The role of alpha 6 beta 1 integrin and EGF in normal and malignant acinar morphogenesis of human prostatic epithelial cells.

    PubMed

    Bello-DeOcampo, D; Kleinman, H K; Webber, M M

    2001-09-01

    Complex multiple interactions between cells and extracellular matrix occur during acinar morphogenesis involving integrin receptors and growth factors. Changes in these interactions occur during carcinogenesis as cells progress from a normal to a malignant, invasive phenotype. We have developed human prostatic epithelial cell lines of the same lineage, which represent multiple steps in carcinogenesis, similar to prostatic intraepithelial neoplasia and subsequent tumor progression. The non-tumorigenic, RWPE-1 and the tumorigenic WPE1-NB27 and WPE1-NB26 cell lines were used to examine their ability to undergo acinar morphogenesis in a 3-D cell culture model and its relationship to invasion, integrin expression and EGF presence. An inverse relationship between the degree of acinar formation and invasive ability was observed. The non-tumorigenic, non-invasive RWPE-1 and the low tumorigenic, low invasive, WPE1-NB27 cells show high and decreased acinar forming ability, respectively, while the more invasive WPE1-NB26 cells show a loss of acinar formation. While RWPE-1 acini show basal expression of alpha 6 beta 1 integrin, which correlates with their ability to polarize and form acini, WPE1-NB27 cells lack alpha 6 but show basal, but weaker expression of beta 1 integrin. WPE1-NB26 cells show loss alpha 6 and abnormal, diffused beta 1 integrin expression. A dose-dependent decrease in acinar formation was observed in RWPE-1 cells when cell proliferation was induced by EGF. Anti-functional antibody to EGF caused an increase in acinar formation in RWPE-1 cells. These results suggest that malignant cells lose the ability to undergo acinar morphogenesis and that the degree of this loss appears to be related to invasive ability, EGF levels and alterations in laminin-specific integrin expression. This model system mimics different steps in prostate carcinogenesis and has applications in the secondary and tertiary prevention of prostate cancer.

  11. TNF-α inhibits aquaporin 5 expression in human salivary gland acinar cells via suppression of histone H4 acetylation.

    PubMed

    Yamamura, Yoshiko; Motegi, Katsumi; Kani, Kouichi; Takano, Hideyuki; Momota, Yukihiro; Aota, Keiko; Yamanoi, Tomoko; Azuma, Masayuki

    2012-08-01

    Sjögren's syndrome is a systemic autoimmune disease characterized by reductions in salivary and lacrimal secretions. The mechanisms underlying these reductions remain unclear. We have previously shown that TNF-α plays an important role in the destruction of acinar structures. Here we examined TNF-α's function in the expression of aquaporin (AQP) 5 in human salivary gland acinar cells. Immortalized human salivary gland acinar (NS-SV-AC) cells were treated with TNF-α, and then the expression levels of AQP5 mRNA and protein were analysed. In addition, the mechanisms underlying the reduction of AQP5 expression by TNF-α treatment were investigated. TNF-α-treatment of NS-SV-AC cells significantly suppressed the expression levels of AQP5 mRNA and protein, and reduced the net fluid secretion rate. We examined the expression and activation levels of DNA methyltransferases (Dnmts) in NS-SV-AC cells treated with TNF-α. However, no significant changes were observed in the expression or activation levels of Dnmt1, Dnmt3a or Dnmt3b. Although we also investigated the role of NF-κB activity in the TNF-α-induced suppression of AQP5 expression in NS-SV-AC cells, we detected similar TNF-α suppression of AQP5 expression in non-transfected cells and in a super-repressor form of IκBα cDNA-transfected cell clones. However, interestingly, chromatin immunoprecipitation analysis demonstrated a remarkable decrease in levels of acetylated histone H4 associated with the AQP5 gene promoter after treatment with TNF-α in NS-SV-AC cells. Therefore, our results may indicate that TNF-α inhibition of AQP5 expression in human salivary gland acinar cells is due to the epigenetic mechanism by suppression of acetylation of histone H4.

  12. Metabotropic glutamate receptor 1 disrupts mammary acinar architecture and initiates malignant transformation of mammary epithelial cells

    PubMed Central

    Teh, Jessica L. F.; Shah, Raj; La Cava, Stephanie; Dolfi, Sonia C.; Mehta, Madhura S.; Kongara, Sameera; Price, Sandy; Ganesan, Shridar; Reuhl, Kenneth R.; Hirshfield, Kim M.

    2016-01-01

    Metabotropic glutamate receptor 1 (mGluR1/Grm1) is a member of the G-protein-coupled receptor superfamily, which was once thought to only participate in synaptic transmission and neuronal excitability, but has more recently been implicated in non-neuronal tissue functions. We previously described the oncogenic properties of Grm1 in cultured melanocytes in vitro and in spontaneous melanoma development with 100 % penetrance in vivo. Aberrant mGluR1 expression was detected in 60–80 % of human melanoma cell lines and biopsy samples. As most human cancers are of epithelial origin, we utilized immortalized mouse mammary epithelial cells (iMMECs) as a model system to study the transformative properties of Grm1. We introduced Grm1 into iMMECs and isolated several stable mGluR1-expressing clones. Phenotypic alterations in mammary acinar architecture were assessed using three-dimensional morphogenesis assays. We found that mGluR1-expressing iMMECs exhibited delayed lumen formation in association with decreased central acinar cell death, disrupted cell polarity, and a dramatic increase in the activation of the mitogen-activated protein kinase pathway. Orthotopic implantation of mGluR1-expressing iMMEC clones into mammary fat pads of immunodeficient nude mice resulted in mammary tumor formation in vivo. Persistent mGluR1 expression was required for the maintenance of the tumorigenic phenotypes in vitro and in vivo, as demonstrated by an inducible Grm1-silencing RNA system. Furthermore, mGluR1 was found be expressed in human breast cancer cell lines and breast tumor biopsies. Elevated levels of extracellular glutamate were observed in mGluR1-expressing breast cancer cell lines and concurrent treatment of MCF7 xenografts with glutamate release inhibitor, riluzole, and an AKT inhibitor led to suppression of tumor progression. Our results are likely relevant to human breast cancer, highlighting a putative role of mGluR1 in the pathophysiology of breast cancer and the potential

  13. Long-term dexamethasone treatment alters the histomorphology of acinar cells in rat parotid and submandibular glands

    PubMed Central

    Bighetti, Bruna B; Assis, Gerson F d; Vieira, Danilo C; Violato, Natalia M; Cestari, Tania M; Taga, Rumio; Bosqueiro, José R; Rafacho, Alex

    2014-01-01

    Glucocorticoids (GCs) induce insulin resistance (IR), a condition known to alter oral homeostasis. This study investigated the effects of long-term dexamethasone administration on morphofunctional aspects of salivary glands. Male Wistar rats received daily injections of dexamethasone [0.1 mg/kg body weight (b.w.), intraperitoneally] for 10 days (DEX), whereas control rats received saline. Subsequently, glycaemia, insulinaemia, insulin secretion and salivary flow were analysed. The parotid and submandibular glands were collected for histomorphometric evaluation and Western blot experiments. The DEX rats were found to be normoglycaemic, hyperinsulinaemic, insulin resistant and glucose intolerant (P < 0.05). DEX rat islets secreted more insulin in response to glucose (P < 0.05). DEX rats had significant reductions in the masses of the parotid (29%) and submandibular (16%) glands (P < 0.05) that was associated with reduced salivary flux rate. The hypotrophy in both glands observed in the DEX group was associated with marked reduction in the volume of the acinar cells in these glands of 50% and 26% respectively (P < 0.05). The total number of acinar cells was increased in the submandibular glands of the DEX rats (P < 0.05) but not in the parotid glands. The levels of proteins related to insulin and survival signalling in both glands did not differ between the groups. In conclusion, the long-term administration of dexamethasone caused IR, which was associated with significant reductions in both mass and flux rate of the salivary glands. The parotid and submandibular glands exhibited reduced acinar cell volume; however, the submandibular glands displayed acinar hyperplasia, indicating a gland-specific response to GCs. Our data emphasize that GC-based therapies and insulin-resistant states have a negative impact on salivary gland homeostasis. PMID:25186305

  14. Pancreatic panniculitis associated with acinar cell carcinoma of the pancreas: a case report.

    PubMed

    Zheng, Zhen Jiang; Gong, Jun; Xiang, Guang Ming; Mai, Gang; Liu, Xu Bao

    2011-05-01

    Pancreatic panniculitis is a rare type of disorder associated with pancreatic diseases. We describe here a case of 54-year-old man who was admitted to the Department of Dermatology with the diagnosis of erythema nodosum. The patient presented with a 9-month history of painful erythematous nodules on the extremities, joint pain and swelling, and weight loss. A highly elevated level of pancreatic lipase was found on the laboratory examinations. The biopsy specimens from the skin lesions showed subcutaneous fat necrosis. Abdominal computed tomography (CT) revealed a large mass with central necrosis in the body and tail of the pancreas. Distal pancreatectomy, splenectomy and partial transverse colectomy were successfully performed on day 17 of the hospitalization. The histopathologic findings supported the diagnosis of acinar cell carcinoma of the pancreas (ACCP). Postoperatively, the level of serum lipase returned to normal, and the skin lesions and joint manifestations gradually regressed. However, the swelling did not significantly resolve in the left knee. In view of the non-specific clinical presentation of this disease, clinicians should be alert and have a high index of suspicion for pancreatic panniculitis.

  15. Pancreatic ducts as an important route of tumor extension for acinar cell carcinoma of the pancreas.

    PubMed

    Ban, Daisuke; Shimada, Kazuaki; Sekine, Shigeki; Sakamoto, Yoshihiro; Kosuge, Tomoo; Kanai, Yae; Hiraoka, Nobuyoshi

    2010-07-01

    Acinar cell carcinoma (ACC) of the pancreas is very rare, which usually grows expansively. Recently, a variant of ACC with predominant growth in the pancreatic ducts has been proposed, and is speculated to have potentially less aggressive behavior. The aim of this study was to investigate how the pancreatic duct system is related to the growth and extension of ACC. We reviewed the detailed gross and histologic features of 13 cases of ACC, of which 7 (54%) showed intraductal polypoid growth (IPG) of the tumor in the large pancreatic ducts with a mean IPG length of 24.8 mm. Tumors with IPG were found to spread characteristically along the pancreatic ducts as extending polypoid projections, filling the ducts and destroying the duct walls, although tumors did not tend to extend beyond the pancreatic parenchyma. Comparison of the clinicopathologic characteristics showed that ACC with IPG had less infiltrative features including lymphatic, venous, and neural invasion, formation of tumor thrombus in the portal vein, nodal metastasis, and invasion beyond the pancreas to the surrounding organs; death in only 1 case (14%) of ACC with IPG was the result of ACC itself. In contrast, ACC without IPG frequently showed more infiltrative growth, and was the cause of death in 50% of patients with this type of tumor. Intraductal dissemination of ACC in pancreatic ducts was proven in 1 case of ACC with IPG. These findings suggest that a significant proportion of ACC shows IPG, which is potentially linked to less aggressive clinicopathologic characteristics.

  16. [Protein malnutrition and response of pancreatic acinar cells to stimulation by cholecystokinin].

    PubMed

    Prost, J; Belleville, J

    1988-01-01

    Pancreatic lobules were isolated from 2 groups of male Wistar rats after 23 days of diet. A control group (C) fed on a 20% protein diet (16% gluten + 4% casein) and an experimental group (E) on a 5% protein diet (4% gluten + 1% casein). After isolation, lobules were preincubated 10 min with 10 muCi [3H]-leucine, washed, then incubate within Krebs Ringer bicarbonate Hepes. Basal secretion, then stimulated secretion (50 pM of cholecystokinin (CCK] of radioactive and non-radioactive protein and amylase outputs were measured. During basal secretion, in (E) group, lobules secreted more proteins than (C) one, the same outputs of amylase and radioactive protein were observed in both groups. The stimulated secretion by CCK increased the outputs of non-radioactive protein and amylase of lobules (T) (2-3 fold), but was without effect on lobule (E) outputs. Therefore, a low-protein diet involved a decrease of CCK sensibility on acinar cells, this fact might be mediated by a decreasing number and/or affinity of their CCK receptors.

  17. Ca²⁺ signaling and regulation of fluid secretion in salivary gland acinar cells.

    PubMed

    Ambudkar, Indu S

    2014-06-01

    Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca(2+) signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca(2+) is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca(2+)] ([Ca(2+)]i) triggered by IP3-induced release of Ca(2+) from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca(2+)]i signal in the cell. However, Ca(2+) entry into the cell is required to sustain the elevation of [Ca(2+)]i and fluid secretion. This Ca(2+) influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca(2+) entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca(2+) signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca(2+) signal can be ascribed to the polarized arrangement of the Ca(2+) channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca(2+) signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca(2+) signals in the regulation of fluid secretion.

  18. Carbachol activates a K+ channel of very small conductance in the basolateral membrane of rat pancreatic acinar cells.

    PubMed

    Köttgen, M; Hoefer, A; Kim, S J; Beschorner, U; Schreiber, R; Hug, M J; Greger, R

    1999-10-01

    Secretion of Cl- requires the presence of a K+ conductance to hyperpolarize the cell, and to provide the driving force for Cl- exit via luminal Cl- channels. In the exocrine pancreas Cl- secretion is mediated by an increase in cytosolic Ca2+ ([Ca2+]i). Two types of Ca2+-activated K+ channels could be shown in pancreatic acinar cells of different species. However, there are no data on Ca2+-activated K+ channels in rat pancreatic acini. Here we examine the basolateral K+ conductance of freshly isolated rat pancreatic acinar cells in cell-attached and cell-excised patch-clamp experiments. Addition of carbachol (CCH, 1 micromol/l) to the bath led to the activation of very small conductance K+ channels in cell-attached patches (n=27), producing a noisy macroscopic outward current. The respective outward conductance increased significantly by a factor of 2.1+/-0.1 (n=27). Noise analysis revealed a Lorentzian noise component with a corner frequency (f(c)) of 30.3+/-3.5 Hz (n=19), consistent with channel activity in these patches. The estimated single-channel conductance was 1.5+/-0.4 pS (n=19). In cell-excised patches (inside out) from cells previously stimulated with CCH, channel activity was only observed in the presence of K+ in the bath solution. Under these conditions f(c) was 47.6+/-11.9 Hz (estimated single-channel conductance 1.1+/-0.2 pS, n=20). The current/voltage relationship of the noise showed weak inward rectification and the reversal potential shifted towards E(K+) when Na+ in the bath was replaced by K+. Channel activity in cell-excised patches was slightly reduced by 10 mmol/l Ba2+ (23.6+/-2.1% of the total outward current) and was completely absent when K+ in the bath was replaced by Na+. Reduction of the [Ca2+]i from 1 mmol/l to 1 micromol/l in cell-excised experiments decreased the current by 52.3+/-12.3% (n=5). Expression of K(v)LQT1, one of the possible candidates for a small-conductance K+ channel in rat pancreatic acinar cells, was shown by reverse

  19. Atp2c2 Is Transcribed From a Unique Transcriptional Start Site in Mouse Pancreatic Acinar Cells.

    PubMed

    Fenech, Melissa A; Sullivan, Caitlin M; Ferreira, Lucimar T; Mehmood, Rashid; MacDonald, William A; Stathopulos, Peter B; Pin, Christopher L

    2016-12-01

    Proper regulation of cytosolic Ca(2+) is critical for pancreatic acinar cell function. Disruptions in normal Ca(2+) concentrations affect numerous cellular functions and are associated with pancreatitis. Membrane pumps and channels regulate cytosolic Ca(2+) homeostasis by promoting rapid Ca(2+) movement. Determining how expression of Ca(2+) modulators is regulated and the cellular alterations that occur upon changes in expression can provide insight into initiating events of pancreatitis. The goal of this study was to delineate the gene structure and regulation of a novel pancreas-specific isoform for Secretory Pathway Ca(2+) ATPase 2 (termed SPCA2C), which is encoded from the Atp2c2 gene. Using Next Generation Sequencing of RNA (RNA-seq), chromatin immunoprecipitation for epigenetic modifications and promoter-reporter assays, a novel transcriptional start site was identified that promotes expression of a transcript containing the last four exons of the Atp2c2 gene (Atp2c2c). This region was enriched for epigenetic marks and pancreatic transcription factors that promote gene activation. Promoter activity for regions upstream of the ATG codon in Atp2c2's 24th exon was observed in vitro but not in in vivo. Translation from this ATG encodes a protein aligned with the carboxy terminal of SPCA2. Functional analysis in HEK 293A cells indicates a unique role for SPCA2C in increasing cytosolic Ca(2+) . RNA analysis indicates that the decreased Atp2c2c expression observed early in experimental pancreatitis reflects a global molecular response of acinar cells to reduce cytosolic Ca(2+) levels. Combined, these results suggest SPCA2C affects Ca(2+) homeostasis in pancreatic acinar cells in a unique fashion relative to other Ca(2+) ATPases. J. Cell. Physiol. 231: 2768-2778, 2016. © 2016 Wiley Periodicals, Inc.

  20. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells.

    PubMed

    Li, Weida; Cavelti-Weder, Claudia; Zhang, Yingying; Zhang, Yinying; Clement, Kendell; Donovan, Scott; Gonzalez, Gabriel; Zhu, Jiang; Stemann, Marianne; Xu, Ke; Hashimoto, Tatsu; Yamada, Takatsugu; Nakanishi, Mio; Zhang, Yuemei; Zeng, Samuel; Gifford, David; Meissner, Alexander; Weir, Gordon; Zhou, Qiao

    2014-12-01

    Direct lineage conversion is a promising approach to generate therapeutically important cell types for disease modeling and tissue repair. However, the survival and function of lineage-reprogrammed cells in vivo over the long term has not been examined. Here, using an improved method for in vivo conversion of adult mouse pancreatic acinar cells toward beta cells, we show that induced beta cells persist for up to 13 months (the length of the experiment), form pancreatic islet-like structures and support normoglycemia in diabetic mice. Detailed molecular analyses of induced beta cells over 7 months reveal that global DNA methylation changes occur within 10 d, whereas the transcriptional network evolves over 2 months to resemble that of endogenous beta cells and remains stable thereafter. Progressive gain of beta-cell function occurs over 7 months, as measured by glucose-regulated insulin release and suppression of hyperglycemia. These studies demonstrate that lineage-reprogrammed cells persist for >1 year and undergo epigenetic, transcriptional, anatomical and functional development toward a beta-cell phenotype.

  1. ptf1a+, ela3l− cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae

    PubMed Central

    Schmitner, Nicole; Kohno, Kenji

    2017-01-01

    ABSTRACT The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b. In

  2. Calcium and pancreatic secretion-dynamics of subcellur calcium pools in resting and stimulated acinar cells.

    PubMed Central

    Clemente, F; Meldolesi, J

    1975-01-01

    1 Pulse-chase experiments were carried out on pancreatic tissue lobules incubated in vitro, with 45Ca as the tracer, in order to shed some light on the functional significance of the calcium pools associated with the various cell organelles of the acinar cell, especially in relation to stimulus-secretion coupling. 2 The kinetics of tracer uptake and release which were observed in the intact lobules suggest the existence of a number of intracellular pools, whose rate of exchange is slower than that across teh plasmalemma. 3 The various subcellular fractions accumulate the tracer in different amounts: some (rough microsomes and postmicrosomal supernatant) showed little radioactivity and some (smooth microsomes and zymogen granule membranes) were heavily labelled; mitochondria and zymogen granules showed intermediate values. 4 The fractions are heterogeneous also in relation to the time course of uptake and release of the tracer: in rough and smooth microsomes and, especially, in the postmicrosomal supernatant both rates were fast; zymogen granules and zymogen granule membranes showed slow rates of uptake and little release during chase; intermediate rates were found in mitochondria. 5 In agreement with previous findings we observed that in 45Ca preloaded lobules, stimulation of secretion (brought about by the secretagogue polypeptide caerulein) results in an increase of the tracer release which seems to be due primarily to the rise of the intracellular concentration of free Ca2+ and to the consequent increase of the transmembrane Ca2+ efflux. Among the cell fractions isolated from stimulated lobules only the mitochondria exhibited a significantly lower 45Ca level relative to the unstimulated controls. 6 It is concluded that, of the organelle-bound calcium pools, that associated with the mitochondria might be involved in the regulation of the calcium-dependent functions, including stimulus-secretion coupling; the calcium associated with the zymogen granule content

  3. Inhibitory effects of sho-seiryu-to on acetylcholine-induced responses in nasal gland acinar cells.

    PubMed

    Ikeda, K; Wu, D Z; Ishigaki, M; Sunose, H; Takasaka, T

    1994-01-01

    Sho-seiryu-to, a traditional Japanese herbal medicine, has been used extensively in the treatment of allergic rhinitis. The effects of Sho-seiryu-to on electrical responses induced by acetylcholine in dissociated nasal gland acinar cells were investigated using patch-clamp and microfluorimetric imaging techniques. The application of Sho-seiryu-to inhibited both K+ and Cl- currents augmented by acetylcholine. The elevation of intracellular Ca2+ and Na+ concentrations induced by acetylcholine was also inhibited by Sho-seriyu-to. These findings suggest that Sho-seiryu-to attenuated the secretion of water and electrolytes from the nasal glands through an anti-cholinergic effect.

  4. DNA quantification as prognostic factor in a case of acinar cell carcinoma of the parotid gland, diagnosed by FNA.

    PubMed

    Azúa-Romeo, Javier; Sánchez-Garnica, Juan Carlos; Azúa-Blanco, Javier; Tovar-Lázaro, Mayte

    2005-01-01

    Hereby we present a case of a 43-years-old male who complained of a three years history preauricular painful mass. Fine needle aspiration cytology was performed, diagnosing of compatible with acinar cell carcinoma, thus DNA quantification by image cytometry was carried out. Biological parameters studied (ploidy, S-phase, 5-c exceeding rate) showed that it is a low grade of malignancy lesion. Total parotidectomy conservative of facial nerve was recommended, without regional lymphadenectomy. Patient remains, one year later, asymptomatic and free of disease.

  5. Low-level (gallium-aluminum-arsenide) laser irradiation of Par-C10 cells and acinar cells of rat parotid gland.

    PubMed

    Onizawa, Katsuhiro; Muramatsu, Takashi; Matsuki, Miwako; Ohta, Kazumasa; Matsuzaka, Kenichi; Oda, Yutaka; Shimono, Masaki

    2009-03-01

    We investigated cell response, including cell proliferation and expression of heat stress protein and bcl-2, to clarify the influence of low-level [gallium-aluminum-arsenide (Ga-Al-As) diode] laser irradiation on Par-C10 cells derived from the acinar cells of rat parotid glands. Furthermore, we also investigated amylase release and cell death from irradiation in acinar cells from rat parotid glands. The number of Par-C10 cells in the laser-irradiated groups was higher than that in the non-irradiated group at days 5 and 7, and the difference was statistically significant (P < 0.01). Greater expression of heat shock protein (HSP)25 and bcl-2 was seen on days 1 and 3 in the irradiated group. Assay of the released amylase showed no significant difference statistically between the irradiated group and the non-irradiated group. Trypan blue exclusion assay revealed that there was no difference in the ratio of dead to live cells between the irradiated and the non-irradiated groups. These results suggest that low-level laser irradiation promotes cell proliferation and expression of anti-apoptosis proteins in Par-C10 cells, but it does not significantly affect amylase secretion and does not induce rapid cell death in isolated acinar cells from rat parotid glands.

  6. Beneficial effect of the bioflavonoid quercetin on cholecystokinin-induced mitochondrial dysfunction in isolated rat pancreatic acinar cells.

    PubMed

    Weber, Heike; Jonas, Ludwig; Wakileh, Michael; Krüger, Burkhard

    2014-03-01

    The pathogenesis of acute pancreatitis (AP) is still poorly understood. Thus, a reliable pharmacological therapy is currently lacking. In recent years, an impairment of the energy metabolism of pancreatic acinar cells, caused by Ca(2+)-mediated depolarization of the inner mitochondrial membrane and a decreased ATP supply, has been implicated as an important pathological event. In this study, we investigated whether quercetin exerts protection against mitochondrial dysfunction. Following treatment with or without quercetin, rat pancreatic acinar cells were stimulated with supramaximal cholecystokinin-8 (CCK). CCK caused a decrease in the mitochondrial membrane potential (MMP) and ATP concentration, whereas the mitochondrial dehydrogenase activity was significantly increased. Quercetin treatment before CCK application exerted no protection on MMP but increased ATP to a normal level, leading to a continuous decrease in the dehydrogenase activity. The protective effect of quercetin on mitochondrial function was accompanied by a reduction in CCK-induced changes to the cell membrane. Concerning the molecular mechanism underlying the protective effect of quercetin, an increased AMP/ATP ratio suggests that the AMP-activated protein kinase system may be activated. In addition, quercetin strongly inhibited CCK-induced trypsin activity. The results indicate that the use of quercetin may be a therapeutic strategy for reducing the severity of AP.

  7. Incorporation of (/sup 35/S)sulfate in normal and neoplastic rat pancreatic acinar cells in relationship to cytodifferentiation

    SciTech Connect

    Kanwar, Y.S.; Rao, M.S.; Longnecker, D.S.; Reddy, J.K.

    1984-11-01

    The rates of (/sup 35/S)sulfate incorporation in highly differentiated acinar cells from normal pancreas, moderately differentiated cells of nafenopin-induced transplantable pancreatic carcinoma, and poorly differentiated cells from azaserine-induced transplantable pancreatic carcinoma were examined in an attempt to determine if sulfation is a property of acinar cells with well-developed secretory granules. The cells were dissociated, pulsed with (/sup 35/S)sulfate (specific activity, approximately 1000 Ci/mmol) for 10 and 60 min, and chased with medium containing 100 X excess of cold inorganic sulfate for 0, 15, 60, and 120 min. The cells were then processed for determining their pool size and light and electron microscopic autoradiography. No significant differences among their pool sizes were observed. However, the light microscopic autoradiograms revealed the (/sup 35/S)sulfate incorporation as follows: azaserine-induced transplantable pancreatic carcinoma greater than nafenopin-induced transplantable pancreatic carcinoma greater than normal pancreas. Electron microscopic autoradiograms revealed similar trends. The grain densities (concentration of radiation) were highest in the Golgi regions immediately postpulse (0 min) and gradually shifted toward the secretory granules over a 120-min period. In addition, the grain density values of the secretory granule-rich cells of nafenopin-induced transplantable pancreatic carcinoma were relatively similar to the cells of normal pancreas, whereas the grain density values of secretory granule-deficient cells from this tumor were similar to those of poorly differentiated neoplastic cells of azaserine-induced transplantable pancreatic carcinoma. These results show that poorly differentiated neoplastic cells incorporate more (/sup 35/S)sulfate than do the well-differentiated cells, but the reasons for this unexpected differential incorporation are at present unknown.

  8. Insulation of a G protein-coupled receptor on the plasmalemmal surface of the pancreatic acinar cell

    PubMed Central

    1995-01-01

    Receptor desensitization is a key process for the protection of the cell from continuous or repeated exposure to high concentrations of an agonist. Well-established mechanisms for desensitization of guanine nucleotide-binding protein (G protein)-coupled receptors include phosphorylation, sequestration/internalization, and down-regulation. In this work, we have examined some mechanisms for desensitization of the cholecystokinin (CCK) receptor which is native to the pancreatic acinar cell, and have found the predominant mechanism to be distinct from these recognized processes. Upon fluorescent agonist occupancy of the native receptor, it becomes "insulated" from the effects of acid washing and becomes immobilized on the surface of the plasma membrane in a time- and temperature-dependent manner. This localization was assessed by ultrastructural studies using a colloidal gold conjugate of CCK, and lateral mobility of the receptor was assessed using fluorescence recovery after photobleaching. Of note, recent application of the same morphologic techniques to a CCK receptor-bearing Chinese hamster ovary cell line demonstrated prominent internalization via the clathrin-dependent endocytic pathway, as well as entry into caveolae (Roettger, B.F., R.U. Rentsch, D. Pinon, E. Holicky, E. Hadac, J.M. Larkin, and L.J. Miller, 1995, J. Cell Biol. 128: 1029-1041). These organelles are not observed to represent prominent compartments for the same receptor to traverse in the acinar cell, although fluorescent insulin is clearly internalized in these cells via receptor-mediated endocytosis. In this work, the rate of lateral mobility of the CCK receptor is observed to be similar in both cell types (1-3 x 10(-10) cm2/s), while the fate of the agonist-occupied receptor is quite distinct in each cell. This supports the unique nature of desensitization processes which occur in a cell-specific manner. A plasmalemmal site of insulation of this important receptor on the pancreatic acinar cell

  9. Lycopene protects pancreatic acinar cells against severe acute pancreatitis by abating the oxidative stress through JNK pathway.

    PubMed

    Lv, J C; Wang, G; Pan, S H; Bai, X W; Sun, B

    2015-02-01

    This study investigated the anti-oxidative and anti-inflammatory effects of lycopene on severe acute pancreatitis (SAP) in both in vivo and in vitro models. Utilizing a rat model, we found that lycopene administration protected against SAP, as indicated by the decreased levels of serum amylase and C-reactive protein. Pathological changes were alleviated by pretreatment with lycopene. The serum levels of tumor necrosis factor-α, interleukin-6, macrophage inflammatory protein-1α, and monocyte chemotactic protein-1 were decreased by lycopene. The decreased reactive oxygen species (ROS) content in the pancreatic tissues of the lycopene-treated group were indirectly evaluated by measuring the levels of myeloperoxidase, lipid peroxidase, and superoxide dismutase. Lycopene protected acinar cells against necrosis and apoptosis by relieving the mitochondrial and endoplasmic stress caused by ROS which was shown in electron microscopy and immunohistochemistry staining of active nuclear factor-κB p65. The protective effect was also observed in a simulated SAP model in a rat acinar cell line. ROS and apoptotic staining were compared between groups. Lycopene exerts protective effects against SAP in rats that may be related to its anti-inflammatory property through inhibiting the expression of damage-associated molecular patterns, and anti-oxidative property which can thus maintain cellular homeostasis and prevent the phosphorylation of JNK pathway.

  10. Postnatal Pancreas of Mice Contains Tripotent Progenitors Capable of Giving Rise to Duct, Acinar, and Endocrine Cells In Vitro.

    PubMed

    Ghazalli, Nadiah; Mahdavi, Alborz; Feng, Tao; Jin, Liang; Kozlowski, Mark T; Hsu, Jasper; Riggs, Arthur D; Tirrell, David A; Ku, H Teresa

    2015-09-01

    Postnatal pancreas is a potential source for progenitor cells to generate endocrine β-cells for treating type 1 diabetes. However, it remains unclear whether young (1-week-old) pancreas harbors multipotent progenitors capable of differentiating into duct, acinar, and endocrine cells. Laminin is an extracellular matrix (ECM) protein important for β-cells' survival and function. We established an artificial extracellular matrix (aECM) protein that contains the functional IKVAV (Ile-Lys-Val-Ala-Val) sequence derived from laminin (designated aECM-lam). Whether IKVAV is necessary for endocrine differentiation in vitro is unknown. To answer these questions, we cultured single cells from 1-week-old pancreas in semi-solid media supplemented with aECM-lam, aECM-scr (which contains a scrambled sequence instead of IKVAV), or Matrigel. We found that colonies were generated in all materials. Individual colonies were examined by microfluidic reverse transcription-polymerase chain reaction, immunostaining, and electron microscopy analyses. The majority of the colonies expressed markers for endocrine, acinar, and ductal lineages, demonstrating tri-lineage potential of individual colony-forming progenitors. Colonies grown in aECM-lam expressed higher levels of endocrine markers Insulin1, Insulin2, and Glucagon compared with those grown in aECM-scr and Matrigel, indicating that the IKVAV sequence enhances endocrine differentiation. In contrast, Matrigel was inhibitory for endocrine gene expression. Colonies grown in aECM-lam displayed the hallmarks of functional β-cells: mature insulin granules and glucose-stimulated insulin secretion. Colony-forming progenitors were enriched in the CD133(high) fraction and among 230 micro-manipulated single CD133(high) cells, four gave rise to colonies that expressed tri-lineage markers. We conclude that young postnatal pancreas contains multipotent progenitor cells and that aECM-lam promotes differentiation of β-like cells in vitro.

  11. Distinct contributions by ionotropic purinoceptor subtypes to ATP-evoked calcium signals in mouse parotid acinar cells

    PubMed Central

    Bhattacharya, Sumit; Verrill, Douglas S; Carbone, Kristopher M; Brown, Stefanie; Yule, David I; Giovannucci, David R

    2012-01-01

    There is emerging consensus that P2X4 and P2X7 ionotropic purinoceptors (P2X4R and P2X7R) are critical players in regulating [Ca2+]i dynamics and fluid secretion in the salivary gland. In contrast, details regarding their compartmentalization and selective activation, contributions to the spatiotemporal properties of intracellular signals and roles in regulating protein exocytosis and ion channel activity have remained largely undefined. To address these concerns, we profiled mouse parotid acinar cells using live-cell imaging to follow the spatial and temporal features of ATP-evoked Ca2+ dynamics and exocytotic activity. Selective activation of P2X7Rs revealed an apical-to-basal [Ca2+]i signal that initiated at the sub-luminal border and propagated with a wave speed estimated at 17.3 ± 4.3 μm s−1 (n = 6). The evoked Ca2+ spike consisted of Ca2+ influx and Ca2+-induced Ca2+ release from intracellular Ca2+ channels. In contrast, selective activation of P2X4Rs induced a Ca2+ signal that initiated basally and propagated toward the lumen with a wave speed of 4.3 ± 0.2 μm s−1 (n = 8) that was largely independent of intracellular Ca2+ channel blockade. Consistent with these observations, P2X7R expression was enriched in the sub-luminal regions of acinar cells while P2X4R appeared localized to basal areas. In addition, we showed that P2X4R and P2X7R activation evokes exocytosis in parotid acinar cells. Our studies also demonstrate that the P2X4R-mediated [Ca2+]i rise and subsequent protein exocytosis was enhanced by ivermectin (IVR). Thus, in addition to furthering our understanding of salivary gland physiology, this study identifies P2X4R as a potential target for treatment of salivary hypofunction diseases. PMID:22451435

  12. Deoxycholic acid inhibited proliferation and induced apoptosis and necrosis by regulating the activity of transcription factors in rat pancreatic acinar cell line AR42J.

    PubMed

    Zhang, Guixin; Zhang, Jingwen; Shang, Dong; Qi, Bing; Chen, Hailong

    2015-09-01

    The objective of this study is to investigate the effect of deoxycholic acid (DCA) on rat pancreatic acinar cell line AR42J and the functional mechanisms of DCA on AR42J cells. AR42J cells were treated with various concentrations of DCA for 24 h and also treated with 0.4 mmol/L DCA for multiple times, and then, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to detect the AR42J cell survival rate. Flow cytometric was used to detect the cell apoptosis and necrosis in AR42J cells treated with 0.4 mmol/L and 0.8 mmol/L DCA. The cells treated with phosphate buffer saline (PBS) were served as control. In addition, the DNA-binding activity assays of transcription factors (TFs) in nuclear proteins of cells treated with DCA were determined using Panomics Procarta Transcription Factor Assay Kit. The relative survival rates were markedly decreased (P < 0.05) in a dose- and time-dependent manner. Compared with control group, the cell apoptosis and necrosis ratio were both significantly elevated in 0.4 mmol/L DCA and 0.8 mmol/L DCA groups (P < 0.01). A significant increase (P < 0.05) in the activity of transcription factor 2 (ATF2), interferon-stimulated response element (ISRE), NKX-2.5, androgen receptor (AR), p53, and hypoxia-inducible factor-1 (HIF-1) was observed, and the activity of peroxisome proliferator-activated receptor (PPAR), activator protein 1 (AP1), and E2F1 was reduced (P < 0.05). In conclusion, DCA inhibited proliferation and induced apoptosis and necrosis in AR42J cells. The expression changes of related genes regulated by TFs might be the molecular mechanism of AR42J cell injury.

  13. Agonist activation of arachidonate-regulated Ca2+-selective (ARC) channels in murine parotid and pancreatic acinar cells.

    PubMed

    Mignen, Olivier; Thompson, Jill L; Yule, David I; Shuttleworth, Trevor J

    2005-05-01

    ARC channels (arachidonate-regulated Ca(2+)-selective channels) are a novel type of highly Ca(2+)-selective channel that are specifically activated by low concentrations of agonist-induced arachidonic acid. This activation occurs in the absence of any depletion of internal Ca(2+) stores (i.e. they are 'non-capacitative'). Previous studies in HEK293 cells have shown that these channels provide the predominant pathway for the entry of Ca(2+) seen at low agonist concentrations where oscillatory [Ca(2+)](i) signals are typically produced. In contrast, activation of the more widely studied store-operated Ca(2+) channels (e.g. CRAC channels) is only seen at higher agonist concentrations where sustained 'plateau-type'[Ca(2+)](i) responses are observed. We have now demonstrated the presence of ARC channels in both parotid and pancreatic acinar cells and shown that, again, they are specifically activated by the low concentrations of appropriate agonists (carbachol in the parotid, and both carbachol and cholecystokinin in the pancreas) that are associated with oscillatory [Ca(2+)](i) signals in these cells. Uncoupling the receptor-mediated activation of cytosolic phospholipase A(2) (cPLA(2)) with isotetrandrine reduces the activation of the ARC channels by carbachol and, correspondingly, markedly inhibits the [Ca(2+)](i) signals induced by low carbachol concentrations, whilst those signals seen at high agonist concentrations are essentially unaffected. Interestingly, in the pancreatic acinar cells, activation by cholecystokinin induces a current through the ARC channels that is only approximately 60% of that seen with carbachol. This is consistent with previous reports indicating that carbachol-induced [Ca(2+)](i) signals in these cells are much more dependent on Ca(2+) entry than are the cholecystokinin-induced responses.

  14. The effects of sigma ligands on protein release from lacrimal acinar cells: a potential agonist/antagonist assay.

    PubMed

    Schoenwald, R D; Barfknecht, C F; Shirolkar, S; Xia, E

    1995-03-03

    Sigma receptor antagonists have been proposed as leading clinical candidates for use in various psychotic disorders. Prior to clinical testing, it is imperative that a new agent be correctly identified as an antagonist and not an agonist since the latter may worsen the psychosis. For sigma-ligands many behavioral and pharmacological assays have been developed in an attempt to classify agonist/antagonist activity. These assays evaluate a response or a behavior in an animal model that can be related to clinical efficacy. However, is the action by the presumed antagonist a consequence of sigma-receptor activity? Previously we have identified sigma-receptors in acinar cells of the main lacrimal gland of the New Zealand white rabbit and have measured protein release after the addition of various N,N-disubstituted phenylalkylamine derivatives known to be sigma-ligands by receptor binding studies. Although protein release from acinar cells has been attributed to either muscarinic or alpha-adrenergic stimulation, protein release from sigma-receptor stimulation was also confirmed. In the reported studies here, we isolated and incubated acinar cells with varying concentrations of known sigma-ligands and measured protein concentration. A knowledge of the receptor profile for the disubstituted phenylalkylamines permitted experiments to be designed in which various alpha, muscarinic, serotonergic, and dopaminergic antagonists could be added in equimolar concentrations. Under the conditions of these experiments, statistically significant increases in protein release for sigma-ligands could be attributed to stimulation of sigma-receptors. Haloperidol, an apparent sigma-antagonist, caused a statistically significant decrease in protein release and also inhibited protein release when tested with a known sigma-ligand, AF2975 [N,N-dimethyl-2-phenylethylamine]. In this system, stimulation and inhibition of protein release were defined as agonist and antagonist behavior, respectively

  15. Collagen type IV stimulates an increase in intracellular Ca2+ in pancreatic acinar cells via activation of phospholipase C.

    PubMed Central

    Somogyi, L; Lasić, Z; Vukicević, S; Banfić, H

    1994-01-01

    Intracellular Ca2+ responses to extracellular matrix molecules were studied in suspensions of pancreatic acinar cells loaded with Fura-2. Collagen type I, laminin, fibrinogen and fibronectin were unable to raise cytosolic free Ca2+ concentration ([Ca2+]i), whereas collagen type IV, at concentrations from 5 to 50 micrograms/ml, significantly increased it. The effect of collagen type IV was not due to possible contamination with type-I transforming growth factor beta or plasminogen, as neither of these agents was able to increase [Ca2+]i. Using highly specific mass assays, concentrations of inositol lipids, 1,2-diacylglycerol (DAG) and Ins(1,4,5) P3 were measured in pancreatic acinar cells stimulated with collagen type IV. A decrease in the concentrations of PtdIns(4,5) P2 and PtdIns4 P with a concomitant increase in the concentrations of DAG and InsP3 mass were observed, showing that collagen type IV increases [Ca2+]i by activation of phospholipase C. The observed [Ca2+]i signals had two components, the first resulting from Ca2+ release from the intracellular stores, and the second resulting from Ca2+ flux from the extracellular medium through the verapamil-insensitive channels. A tyrosine kinase inhibitor (tyrphostine) was able to block inositol lipid signalling caused by collagen type IV, which together with the insensitivity of this pathway to cholera toxin and pertussis toxin or to preactivation of protein kinase C, the longer duration of the increase in [Ca2+]i and a longer lag period needed for observation of increases in DAG and InsP3 concentration with collagen type IV than with carbachol (50 mM) suggest that activation of phospholipase C by collagen type IV is caused by tyrosine kinase activation. Inositol lipid signalling and increases in [Ca2+]i were also observed with Arg-Gly-Asp (RGD)-containing peptide but not with Arg-Asp-Gly (RDG)-containing peptide. Collagen type IV and RGD-containing peptide, but not carbachol, competed in increasing [Ca2+]i and

  16. Role of protein kinase C in caerulein induced expression of substance P and neurokinin-1-receptors in murine pancreatic acinar cells

    PubMed Central

    Koh, Yung-Hua; Tamizhselvi, Ramasamy; Moochhala, Shabbir; Bian, Jin-Song; Bhatia, Madhav

    2011-01-01

    Substance P (SP) is involved in the pathophysiology of acute pancreatitis (AP) via binding to its high-affinity receptor, neurokinin-1-receptor (NK1R). An up-regulation of SP and NK1R expression was observed in experimental AP and in caerulein-stimulated pancreatic acinar cells. However, the mechanisms that lead to this up-regulation are not fully understood. In this study, we showed the role of protein kinase C (PKC) in caerulein-induced SP and NK1R production in isolated mouse pancreatic acinar cells. Caerulein (10−7 M) stimulation rapidly activated the conventional PKC-α and novel PKC-δ as observed by the phosphorylation of these molecules. Pre-treatment of pancreatic acinar cells with Gö6976 (1–10 nM) and rottlerin (1–10 μM) inhibited PKC-α and PKC-δ phosphorylation, respectively, but not the other way round. At these concentrations used, PKC-α and PKC-δ inhibition reversed the caerulein-induced up-regulation of SP and NK1R, indicating an important role of PKCs in the modulation of SP and NK1R expression. Further experiments looking into signalling mechanisms showed that treatment of pancreatic acinar cells with both Gö6976 and rottlerin inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Inhibition of PKC-α or PKC-δ also affected caerulein-induced transcription factor activation, as represented by nuclear factor-κB and AP-1 DNA-binding activity. The findings in this study suggested that PKC is upstream of the mitogen-activated protein kinases and transcription factors, which then lead to the up-regulation of SP/NK1R expression in caerulein-treated mouse pancreatic acinar cells. PMID:20973912

  17. Role of protein kinase C in caerulein induced expression of substance P and neurokinin-1-receptors in murine pancreatic acinar cells.

    PubMed

    Koh, Yung-Hua; Tamizhselvi, Ramasamy; Moochhala, Shabbir; Bian, Jin-Song; Bhatia, Madhav

    2011-10-01

    Substance P (SP) is involved in the pathophysiology of acute pancreatitis (AP) via binding to its high-affinity receptor, neurokinin-1-receptor (NK1R). An up-regulation of SP and NK1R expression was observed in experimental AP and in caerulein-stimulated pancreatic acinar cells. However, the mechanisms that lead to this up-regulation are not fully understood. In this study, we showed the role of protein kinase C (PKC) in caerulein-induced SP and NK1R production in isolated mouse pancreatic acinar cells. Caerulein (10(-7) M) stimulation rapidly activated the conventional PKC-α and novel PKC-δ as observed by the phosphorylation of these molecules. Pre-treatment of pancreatic acinar cells with Gö6976 (1-10 nM) and rottlerin (1-10 μM) inhibited PKC-α and PKC-δ phosphorylation, respectively, but not the other way round. At these concentrations used, PKC-α and PKC-δ inhibition reversed the caerulein-induced up-regulation of SP and NK1R, indicating an important role of PKCs in the modulation of SP and NK1R expression. Further experiments looking into signalling mechanisms showed that treatment of pancreatic acinar cells with both Gö6976 and rottlerin inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Inhibition of PKC-α or PKC-δ also affected caerulein-induced transcription factor activation, as represented by nuclear factor-κB and AP-1 DNA-binding activity. The findings in this study suggested that PKC is upstream of the mitogen-activated protein kinases and transcription factors, which then lead to the up-regulation of SP/NK1R expression in caerulein-treated mouse pancreatic acinar cells.

  18. Effects of Baicalin on inflammatory mediators and pancreatic acinar cell apoptosis in rats with sever acute pancreatitis

    PubMed Central

    Xiping, Zhang; Hua, Tian; Hanqing, Chen; Li, Chen; Binyan, Yu; Jing, Ma

    2009-01-01

    BACKGROUND: To investigate the effects of Baicalin and Octreotide on inflammatory mediators and pancreatic acinar cells apoptosis of rats with severe acute pancreatitis (SAP). METHODS: SD rats were randomly divided into sham operated group (I group), model control group (II group), Baicalin treated group (III group) and Octreotide treated group (IV group). Each group was also divided into subgroup of 3, 6 and 12 h (n = 15). The mortality rate, ascites/body weight ratio as well as the level of endotoxin, NO and ET-1 in blood were measured. The pathological severity score of pancreas, apoptotic indexes, and expression levels of Bax and Bcl-2 proteins in each group were investigated. RESULTS: The survival rate of III and IV group has a significant difference compared with II group (P12 h < 0.05). The ascites volume, contents of inflammatory mediators in blood and pathological severity score of pancreas of III and IV group declined at different degrees compared to II group (P < 0.05, P < 0.01 or P < 0.001). Apoptotic index in III group was significantly higher than that in II group at 3 and 6 h (P3, 6 h < 0.05). Apoptotic index in IV group was significantly higher than that in II group at pancreatic tail at 6 h (P6 h < 0.05). Expression level of Bax in III group was significantly higher than that in II group (pancreatic head P3 h,6 h < 0.01, pancreatic tail P3 h < 0.001). CONCLUSIONS: Compared with Octreotide in the treatment of SAP, the protective mechanisms of Baicalin include reducing the excessive inflammatory mediators’ release, inducing the pancreatic acinar cells apoptosis. PMID:21772857

  19. Expression pattern of REIC/Dkk-3 in various cell types and the implications of the soluble form in prostatic acinar development.

    PubMed

    Zhang, Kai; Watanabe, Masami; Kashiwakura, Yuji; Li, Shun-Ai; Edamura, Kohei; Huang, Peng; Yamaguchi, Ken; Nasu, Yasutomo; Kobayashi, Yasuyuki; Sakaguchi, Masakiyo; Ochiai, Kazuhiko; Yamada, Hiroshi; Takei, Kohji; Ueki, Hideo; Huh, Nam-Ho; Li, Ming; Kaku, Haruki; Na, Yanqun; Kumon, Hiromi

    2010-12-01

    The tumor suppressor REIC/Dkk-3 is a secretory protein which was originally identified to be downregulated in human immortalized cells. In the present study, we investigated the expression pattern of REIC/Dkk-3 in various cell types to characterize its physiological functions. We first examined the expression level of REIC/Dkk-3 in a broad range of cancer cell types and confirmed that it was significantly downregulated in all of the cell types. We also examined the tissue distribution pattern in a variety of normal mouse organs. Ubiquitous REIC/Dkk-3 protein expression was observed in the organs. The expression was abundant in the liver, heart and brain tissue, but was absent in the spleen and peripheral blood mononuclear cells. The immunohistochemical analyses revealed that the subcellular localization of REIC/Dkk-3 had a punctate pattern around the nucleus, indicating its association with secretory vesicles. In cancer cells stably transfected with REIC/Dkk-3, the protein was predominantly localized to the endoplasmic reticulum (ER) under observation with confocal microscopy. Because REIC/Dkk-3 was found to be abundantly expressed in the acinar epithelial cells of the mouse prostate, we analyzed the effects of recombinant REIC/Dkk-3 protein on the acinar morphogenesis of RWPE-1 cells, which are derived from human normal prostate epithelium. Statistically significant acinar growth was observed in the culture condition with 10 µg/ml REIC/Dkk-3 protein, implicating the soluble form in prostatic acinar development. Current results suggest that REIC/Dkk-3 may play a role in regulating the morphological process of normal tissue architecture through an autocrine and/or paracrine manner.

  20. Metastatic pancreatic acinar cell carcinoma in a younger male with marked AFP production: A potential pitfall on fine needle aspiration biopsy.

    PubMed

    Valente, Kari; Yacoub, George; Cappellari, James O; Parks, Graham

    2017-02-01

    A 30-year-old male presented to his doctor with complaints of abdominal pain and was found to have retroperitoneal as well as multiple hepatic masses. A serum alpha-fetoprotein (AFP) level was significantly elevated (17,373 ng mL(-1) ), raising suspicions for a metastatic germ cell tumor. Fine needle aspiration biopsy of the pancreatic lesion revealed atypical epithelioid cells with round nuclei, large prominent nucleoli, and granular cytoplasm. The morphologic differential diagnosis included pancreatic neoplasm, metastatic germ cell tumor, other metastatic carcinoma, and melanoma. An extensive panel of immunohistochemical stains confirmed the diagnosis of acinar cell carcinoma. The diagnosis of acinar cell carcinoma could be confounded by the markedly increased AFP level, particularly in the setting of a retroperitoneal mass in a younger male. The increased AFP level in the setting of an acinar cell tumor is a potential pitfall to correct diagnosis by cytology. As the treatment for these two entities differs considerably, acute awareness of the phenomenon is important. We present a case of pancreatic ACC with an increased AFP level diagnosed on a cytology specimen. Diagn. Cytopathol. 2017;45:133-136. © 2016 Wiley Periodicals, Inc.

  1. Endoscopic ultrasound in the diagnosis of acinar cell carcinoma of the pancreas: contrast-enhanced endoscopic ultrasound, endoscopic ultrasound elastography, and pathological correlation.

    PubMed

    Chantarojanasiri, Tanyaporn; Hirooka, Yoshiki; Kawashima, Hiroki; Ohno, Eizaburo; Yamamura, Takeshi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Ishigami, Masatoshi; Watanabe, Osamu; Nakaguro, Masato; Shimoyama, Yoshie; Nakamura, Shigeo; Goto, Hidemi

    2016-11-01

    We report a case series of five patients with pancreatic acinar cell carcinoma who received surgical treatment and compared the preoperative contrast-enhanced endoscopic ultrasound (EUS) and EUS elastography patterns with the surgical specimens. The contrast-enhanced EUS indicated vascular tumors with gradual enhancement in four patients and a hypovascular tumor in one patient. The elastography indicated an elastic score of 3 (hard lesion with softer border) in two patients and a score of 5 (hard lesion, which included the surrounding area) in two patients. In tumors with an elastic score of 5, the pathology exhibited abundant hyalinizing fibrous stroma or massive tumor invasion to the surrounding tissue. We concluded that acinar cell carcinoma of the pancreas has various patterns of EUS contrast-enhancement and elastography, depending on the pathologic phenotype.

  2. Endoscopic ultrasound in the diagnosis of acinar cell carcinoma of the pancreas: contrast-enhanced endoscopic ultrasound, endoscopic ultrasound elastography, and pathological correlation

    PubMed Central

    Chantarojanasiri, Tanyaporn; Hirooka, Yoshiki; Kawashima, Hiroki; Ohno, Eizaburo; Yamamura, Takeshi; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Ishigami, Masatoshi; Watanabe, Osamu; Nakaguro, Masato; Shimoyama, Yoshie; Nakamura, Shigeo; Goto, Hidemi

    2016-01-01

    We report a case series of five patients with pancreatic acinar cell carcinoma who received surgical treatment and compared the preoperative contrast-enhanced endoscopic ultrasound (EUS) and EUS elastography patterns with the surgical specimens. The contrast-enhanced EUS indicated vascular tumors with gradual enhancement in four patients and a hypovascular tumor in one patient. The elastography indicated an elastic score of 3 (hard lesion with softer border) in two patients and a score of 5 (hard lesion, which included the surrounding area) in two patients. In tumors with an elastic score of 5, the pathology exhibited abundant hyalinizing fibrous stroma or massive tumor invasion to the surrounding tissue. We concluded that acinar cell carcinoma of the pancreas has various patterns of EUS contrast-enhancement and elastography, depending on the pathologic phenotype. PMID:27853750

  3. Successful Salvage Chemotherapy with FOLFIRINOX for Recurrent Mixed Acinar Cell Carcinoma and Ductal Adenocarcinoma of the Pancreas in an Adolescent Patient.

    PubMed

    Pfrommer, Sarah; Weber, Achim; Dutkowski, Philipp; Schäfer, Niklaus G; Müllhaupt, Beat; Bourquin, Jean-Pierre; Breitenstein, Stefan; Pestalozzi, Bernhard C; Stenner, Frank; Renner, Christoph; D'Addario, Giannicola; Graf, Hans-Jörg; Knuth, Alexander; Clavien, Pierre-Alain; Samaras, Panagiotis

    2013-01-01

    Pancreatic tumors are rare in children and adolescents. Here, we report the case of a 15-year-old boy who presented with a mixed acinar cell carcinoma/ductal adenocarcinoma with blastomatous components. He received multimodal treatment including various chemotherapy regimens and multistep surgery including liver transplantation. Introduction of FOLFIRINOX after relapse repeatedly achieved a durable metabolic and clinical response with good quality of life.

  4. Successful Salvage Chemotherapy with FOLFIRINOX for Recurrent Mixed Acinar Cell Carcinoma and Ductal Adenocarcinoma of the Pancreas in an Adolescent Patient

    PubMed Central

    Pfrommer, Sarah; Weber, Achim; Dutkowski, Philipp; Schäfer, Niklaus G.; Müllhaupt, Beat; Bourquin, Jean-Pierre; Breitenstein, Stefan; Pestalozzi, Bernhard C.; Stenner, Frank; Renner, Christoph; D'Addario, Giannicola; Graf, Hans-Jörg; Knuth, Alexander; Clavien, Pierre-Alain; Samaras, Panagiotis

    2013-01-01

    Pancreatic tumors are rare in children and adolescents. Here, we report the case of a 15-year-old boy who presented with a mixed acinar cell carcinoma/ductal adenocarcinoma with blastomatous components. He received multimodal treatment including various chemotherapy regimens and multistep surgery including liver transplantation. Introduction of FOLFIRINOX after relapse repeatedly achieved a durable metabolic and clinical response with good quality of life. PMID:24163668

  5. E-cadherin-negative acinar cell carcinoma of the pancreas: report of a case showing a solid pseudopapillary growth pattern.

    PubMed

    Tajima, Shogo; Waki, Michihiko; Azuma, Masaki; Koda, Kenji; Ohata, Akihiko

    2016-09-01

    E-cadherin expression patterns in acinar cell carcinomas (ACCs) of the pancreas have not been well documented. Herein, we present a hitherto undescribed case of E-cadherin-negative ACC with a solid pseudopapillary growth pattern in a 65-year-old man. We used an antibody against the extracellular domain of E-cadherin. As a further unusual status in ACC, faint β-catenin expression was observed in the cytoplasm of carcinoma cells. Morphological distinction from a solid pseudopapillary neoplasm (SPN) of the pancreas might be problematic in such a case, because of their similarities concerned with the growth pattern and E-cadherin negativity. Without nuclear accumulation of β-catenin, a diagnosis of SPN was almost excluded. Immunoreactivity for trypsin and BCL10 made an accurate diagnosis of ACC to this case. The tumor recurred 10 months post-surgery as rapidly enlarging masses in the liver, presumably indicating the aggressiveness of the E-cadherin-negative phenotype among ACCs.

  6. RAS inhibitors decrease apoptosis of acinar cells and increase elimination of pancreatic stellate cells after in the course of experimental chronic pancreatitis induced by dibutyltin dichloride.

    PubMed

    Madro, A; Korolczuk, A; Czechowska, G; Celiński, K; Słomka, M; Prozorow-Król, B; Korobowicz, E

    2008-08-01

    Chronic pancreatitis (CP) is a progressive disease, in which the exocrine function of the gland is gradually lost and fibrosis develops due to repeated episodes of acute pancreatitis. The aim of the study was to investigate the effects of RAS inhibitors on the apoptosis of acinar cells and pancreatic stellate cells (PSCs) elimination in experimental CP induced by dibutyltin dichloride (DBTC). CP was induced by administration of DBTC to the femoral vein. Simultaneously captopril, losartan, enalapril and lisinopril were administered intraperitoneally. The rats were decapitated after 60 days and tissue of pancreas was collected. In rats treated by DBTC the features of inflammatory infiltration, ductal lumen dilatation, fibrosis were found. Strong reactivity with caspase2(L) and clusterin-beta antibodies was observed in areas of fibrosis. In animals treated with RAS inhibitors inflammatory changes and fibrosis were less severe. In groups of rats treated with DBTC and RAS inhibitors immunoreactivity of caspase(2L) and clusterin-beta was weak. Positive immunostaining against smooth muscle actine and desmin was observed in the elongated cells (PSC-s). This reaction was weak in groups of rat treated with DBTC and RAS inhibitors. Treatment of CP rats with RAS inhibitors alleviate apoptosis of pancreatic acinar cells and induces PSCs elimination.

  7. TP53 alterations in pancreatic acinar cell carcinoma: new insights into the molecular pathology of this rare cancer.

    PubMed

    La Rosa, Stefano; Bernasconi, Barbara; Frattini, Milo; Tibiletti, Maria Grazia; Molinari, Francesca; Furlan, Daniela; Sahnane, Nora; Vanoli, Alessandro; Albarello, Luca; Zhang, Lizhi; Notohara, Kenji; Casnedi, Selenia; Chenard, Marie-Pierre; Adsay, Volkan; Asioli, Sofia; Capella, Carlo; Sessa, Fausto

    2016-03-01

    The molecular alterations of pancreatic acinar cell carcinomas (ACCs) are poorly understood and have been reported as being different from those in ductal adenocarcinomas. Loss of TP53 gene function in the pathogenesis of ACCs is controversial since contradictory findings have been published. A comprehensive analysis of the different possible genetic and epigenetic mechanisms leading to TP53 alteration in ACC has never been reported and hence the role of TP53 in the pathogenesis and/or progression of ACC remains unclear. We investigated TP53 alterations in 54 tumor samples from 44 patients, including primary and metastatic ACC, using sequencing analysis, methylation-specific multiplex ligation probe amplification, fluorescence in situ hybridization, and immunohistochemistry. TP53 mutations were found in 13 % of primary ACCs and in 31 % of metastases. Primary ACCs and metastases showed the same mutational profile, with the exception of one case, characterized by a wild-type sequence in the primary carcinoma and a mutation in the corresponding metastasis. FISH analysis revealed deletion of the TP53 region in 53 % of primary ACCs and in 50 % of metastases. Promoter hypermethylation was found in one case. The molecular alterations correlated well with the immunohistochemical findings. A statistically significant association was found between the combination of mutation of one allele and loss of the other allele of TP53 and worse survival.

  8. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    SciTech Connect

    Lee, Jingu; Park, Sangkyu; Roh, Sangho

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.

  9. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation

    SciTech Connect

    Tateishi, Yoshihisa Sasabe, Eri; Ueta, Eisaku; Yamamoto, Tetsuya

    2008-02-08

    Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by {gamma}-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10 Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment.

  10. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades.

    PubMed

    Sancho, Veronica; Berna, Marc J; Thill, Michelle; Jensen, R T

    2011-12-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal (GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin (CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA was present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCK(A)-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125(FAK) and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ's direct association with AKT, RafA, RafC and Lyn. These results show for the first time the PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth).

  11. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades

    PubMed Central

    Sancho, Veronica; Berna, Marc J.; Thill, Michelle; Jensen, R. T.

    2011-01-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal(GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin(CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA were present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCKA-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125FAK and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ’s direct association with AKT, RafA, RafC and Lyn. These results show for the first time PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth). PMID:21810446

  12. Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin) Uptake by Pancreatic Acinar Cells.

    PubMed

    Srinivasan, Padmanabhan; Thrower, Edwin C; Loganathan, Gopalakrishnan; Balamurugan, A N; Subramanian, Veedamali S; Gorelick, Fred S; Said, Hamid M

    2015-01-01

    Thiamin (vitamin B1), a member of the water-soluble family of vitamins, is essential for normal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunction. Pancreatic acinar cells (PAC) obtain thiamin from the circulation using a specific carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and THTR-2; encoded by the SLC19A2 and SLC19A3 genes, respectively). The aim of the current study was to examine the effect of chronic exposure of mouse PAC in vivo and human PAC in vitro to nicotine (a major component of cigarette smoke that has been implicated in pancreatic diseases) on thiamin uptake and to delineate the mechanism involved. The results showed that chronic exposure of mice to nicotine significantly inhibits thiamin uptake in murine PAC, and that this inhibition is associated with a marked decrease in expression of THTR-1 and THTR-2 at the protein, mRNA and hnRNAs level. Furthermore, expression of the important thiamin-metabolizing enzyme, thiamin pyrophosphokinase (TPKase), was significantly reduced in PAC of mice exposed to nicotine. Similarly, chronic exposure of cultured human PAC to nicotine (0.5 μM, 48 h) significantly inhibited thiamin uptake, which was also associated with a decrease in expression of THTR-1 and THTR-2 proteins and mRNAs. This study demonstrates that chronic exposure of PAC to nicotine impairs the physiology and the molecular biology of the thiamin uptake process. Furthermore, the study suggests that the effect is, in part, mediated through transcriptional mechanism(s) affecting the SLC19A2 and SLC19A3 genes.

  13. Chronic alcohol exposure affects pancreatic acinar mitochondrial thiamin pyrophosphate uptake: studies with mouse 266-6 cell line and primary cells

    PubMed Central

    Srinivasan, Padmanabhan; Nabokina, Svetlana

    2015-01-01

    Thiamin is essential for normal metabolic activity of all mammalian cells, including those of the pancreas. Cells obtain thiamin from their surroundings and enzymatically convert it into thiamin pyrophosphate (TPP) in the cytoplasm; TPP is then taken up by mitochondria via a specific carrier the mitochondrial TPP transporter (MTPPT; product of the SLC25A19 gene). Chronic alcohol exposure negatively impacts the health of pancreatic acinar cells (PAC), but its effect on physiological/molecular parameters of MTPPT is not known. We addressed this issue using mouse pancreatic acinar tumor cell line 266-6 and primary PAC of wild-type and transgenic mice carrying the SLC25A19 promoter that were fed alcohol chronically. Chronic alcohol exposure of 266-6 cells (but not to its nonoxidative metabolites ethyl palmitate and ethyl oleate) led to a significant inhibition in mitochondrial TPP uptake, which was associated with a decreased expression of MTPPT protein, mRNA, and activity of the SLC25A19 promoter. Similarly, chronic alcohol feeding of mice led to a significant inhibition in expression of MTPPT protein, mRNA, heterogeneous nuclear RNA, as well as in activity of SLC25A19 promoter in PAC. While chronic alcohol exposure did not affect DNA methylation of the Slc25a19 promoter, a significant decrease in histone H3 euchromatin markers and an increase in H3 heterochromatin marker were observed. These findings show, for the first time, that chronic alcohol exposure negatively impacts pancreatic MTPPT, and that this effect is exerted, at least in part, at the level of Slc25a19 transcription and appears to involve epigenetic mechanism(s). PMID:26316591

  14. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology.

    PubMed

    Marciniak, Anja; Cohrs, Christian M; Tsata, Vasiliki; Chouinard, Julie A; Selck, Claudia; Stertmann, Julia; Reichelt, Saskia; Rose, Tobias; Ehehalt, Florian; Weitz, Jürgen; Solimena, Michele; Slak Rupnik, Marjan; Speier, Stephan

    2014-12-01

    Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.

  15. Comparison of several radiation effects in human MCF10A mammary epithelial cells cultured as 2D monolayers or 3D acinar stuctures in matrigel.

    PubMed

    Lin, Yu-Fen; Nagasawa, Hatsumi; Peng, Yuanlin; Chuang, Eric Y; Bedford, Joel S

    2009-06-01

    It has been argued that the cell-cell and cell-matrix interaction networks in normal tissues are disrupted by radiation and that this largely controls many of the most important cellular radiation responses. This has led to the broader assertion that individual cells in normal tissue or a 3D normal-tissue-like culture will respond to radiation very differently than the same cells in a 2D monolayer culture. While many studies have shown that, in some cases, cell-cell contact in spheroids of transformed or tumor cell lines can alter radiation responses relative to those for the same cells in monolayer cultures, a question remains regarding the possible effect of the above-mentioned disruption of signaling networks that operate more specifically for cells in normal tissues or in a 3D tissue-like context. To test the generality of this notion, we used human MCF-10A cells, an immortalized mammary epithelial cell line that produces acinar structures in culture with many properties of human mammary ducts. We compared the dose responses for these cells in the 2D monolayer and in 3D ductal or acinar structures. The responses examined were reproductive cell death, induction of chromosomal aberrations, and the levels of gamma-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 h of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose responses of these cells in 2D or 3D growth conditions. While this does not mean that such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur.

  16. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    SciTech Connect

    Loo, Jr., Billy W.

    2000-06-01

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  17. Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, acinar cell damage, and systemic inflammation in acute pancreatitis.

    PubMed

    Seyhun, Ersin; Malo, Antje; Schäfer, Claus; Moskaluk, Christopher A; Hoffmann, Ralf-Thorsten; Göke, Burkhard; Kubisch, Constanze H

    2011-11-01

    In acute pancreatitis, endoplasmic reticulum (ER) stress prompts an accumulation of malfolded proteins inside the ER, initiating the unfolded protein response (UPR). Because the ER chaperone tauroursodeoxycholic acid (TUDCA) is known to inhibit the UPR in vitro, this study examined the in vivo effects of TUDCA in an acute experimental pancreatitis model. Acute pancreatitis was induced in Wistar rats using caerulein, with or without prior TUDCA treatment. UPR components were analyzed, including chaperone binding protein (BiP), phosphorylated protein kinase-like ER kinase (pPERK), X-box binding protein (XBP)-1, phosphorylated c-Jun NH(2)-terminal kinase (pJNK), CCAAT/enhancer binding protein homologues protein, and caspase 12 and 3 activation. In addition, pancreatitis biomarkers were measured, such as serum amylase, trypsin activation, edema formation, histology, and the inflammatory reaction in pancreatic and lung tissue. TUDCA treatment reduced intracellular trypsin activation, edema formation, and cell damage, while leaving amylase levels unaltered. The activation of myeloperoxidase was clearly reduced in pancreas and lung. Furthermore, TUDCA prevented caerulein-induced BiP upregulation, reduced XBP-1 splicing, and caspase 12 and 3 activation. It accelerated the downregulation of pJNK. In controls without pancreatitis, TUDCA showed cytoprotective effects including pPERK signaling and activation of downstream targets. We concluded that ER stress responses activated in acute pancreatitis are grossly attenuated by TUDCA. The chaperone reduced the UPR and inhibited ER stress-associated proapoptotic pathways. TUDCA has a cytoprotective potential in the exocrine pancreas. These data hint at new perspectives for an employment of chemical chaperones, such as TUDCA, in prevention of acute pancreatitis.

  18. Stimulus-secretion coupling in pancreatic acinar cells: inhibitory effects of calcium removal and manganese addition on pancreozymin-induced amylase release.

    PubMed Central

    Kanno, T; Nishimura, O

    1976-01-01

    The role of Ca ions in stimulus-secretion coupling has been analysed in the isolated and perfused rat pancreas. 2. The omission of [Ca2+]O diminished but did not abolish the release of amylase in response to continuous stimulation with 5 m-u. pancreozymin (Pz)/ml. The addition of Mn2+ (1-0 mM) to this Ca-deficient environment abolished the residual release of amylase. This was followed by a complete recovery of amylase output when the control [Ca2+]O was reestablished. 3. The addition of Mn2+ (1-0 mM) to the extracellular environment containing 2-5 mM-Ca2+ reversibly inhibited the Pz-induced release of amylase. 4. A kinetic scheme based on competition of Ca and Mn at a carrier in the acinar cell membrane could quantitatively explain the effects of Ca and Mn upon the Pz-induced amylase release. 5. These results support the view that the Ca2+ influx into the acinar cells is the major contributor to the rise in [Ca2+]i which, in turn, mediates the processes in the stimulus-secretion coupling in the exocrine pancreas, and suggest that the mode of Ca influx is a facilitated diffusion. PMID:950596

  19. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system.

    PubMed

    Lee, Jingu; Park, Sangkyu; Roh, Sangho

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage.

  20. Direct Imaging of RAB27B-Enriched Secretory Vesicle Biogenesis in Lacrimal Acinar Cells Reveals Origins on a Nascent Vesicle Budding Site

    PubMed Central

    Chiang, Lilian; Karvar, Serhan; Hamm-Alvarez, Sarah F.

    2012-01-01

    This study uses YFP-tagged Rab27b expression in rabbit lacrimal gland acinar cells, which are polarized secretory epithelial cells, to characterize early stages of secretory vesicle trafficking. Here we demonstrate the utility of YFP-Rab27b to delineate new perspectives on the mechanisms of early vesicle biogenesis in lacrimal gland acinar cells, where information is significantly limited. Protocols were developed to deplete the mature YFP-Rab27b-enriched secretory vesicle pool in the subapical region of the cell, and confocal fluorescence microscopy was used to track vesicle replenishment. This analysis revealed a basally-localized organelle, which we termed the “nascent vesicle site,” from which nascent vesicles appeared to emerge. Subapical vesicular YFP-Rab27b was co-localized with p150Glued, a component of the dynactin cofactor of cytoplasmic dynein. Treatment with the microtubule-targeted agent, nocodazole, did not affect release of mature secretory vesicles, although during vesicle repletion it significantly altered nascent YFP-Rab27b-enriched secretory vesicle localization. Instead of moving to the subapical region, these vesicles were trapped at the nascent vesicle site which was adjacent to, if not a sub-compartment of, the trans-Golgi network. Finally, YFP-Rab27b-enriched secretory vesicles which reached the subapical cytoplasm appeared to acquire the actin-based motor protein, Myosin 5C. Our findings show that Rab27b enrichment occurs early in secretory vesicle formation, that secretory vesicles bud from a visually discernable nascent vesicle site, and that transport from the nascent vesicle site to the subapical region requires intact microtubules. PMID:22363735

  1. Promoting effect of arachidonic acid supplementation on N-methyl-N-nitrosourea-induced pancreatic acinar cell hyperplasia in young Lewis rats.

    PubMed

    Yoshizawa, Katsuhiko; Uehara, Norihisa; Kimura, Ayako; Emoto, Yuko; Kinoshita, Yuichi; Yuri, Takashi; Takada, Hideho; Moriguchi, Toru; Hamazaki, Tomohito; Tsubura, Airo

    2013-01-01

    Arachidonic acid (AA) is naturally found in human breast milk. AA, together with docosahexaenoic acid, is commonly added as a functional food ingredient to commercial infant formula worldwide, in accordance with the international standard of Codex Alimentarius. However, few studies have been performed that are concerned with the possible carcinogenic effects of AA supplementation during neonatal life. The effect of dietary AA supplementation in dams, during gestation and lactation, was investigated in N-methyl-N-nitrosourea (MNU)-induced preneoplastic lesions in the exocrine pancreas of young Lewis rats. Dams were fed either an AA (2.0% AA) or a basal (<0.01% AA) diet. On postnatal day 0 (at birth), male and female pups received a single intraperitoneal injection of either 35 mg/kg MNU or vehicle. The morphology and proliferating activity of the exocrine pancreas were examined by proliferative cell nuclear antigen immunohistochemistry 7, 14, 21, 28 and/or 60 days post-MNU. Histopathologically, acinar cell hyperplasia (ACH) occurred in the MNU-treated groups 60 days after MNU injection, irrespecitive of whether the rats had been fed an AA diet. Morphometrically, the number and area of ACH per 1 mm(2) in MNU-treated rats increased significantly in the AA diet-fed rats, compared with basal diet-fed rats. The number of proliferative cell nuclear antigen-positive acinar cells in both the normal and hyperplastic areas of MNU-treated rats increased significantly in the AA diet-fed rats. In conclusion, providing dams with an AA-rich diet during gestation and lactation promotes MNU-induced pancreatic ACH in young Lewis rats.

  2. Effects of the type of dietary fat on acetylcholine-evoked amylase secretion and calcium mobilization in isolated rat pancreatic acinar cells.

    PubMed

    Yago, María D; Díaz, Ricardo J; Martínez, María A; Audi, Nama'a; Naranjo, José A; Martínez-Victoria, Emilio; Mañas, Mariano

    2006-04-01

    Olive oil is a major component of the Mediterranean diet, and its role in human health is being actively debated. This study aimed to clarify the mechanism of pancreatic adaptation to dietary fat. For this purpose, we examined whether dietary-induced modification of pancreatic membranes affects acinar cell function in response to the secretagogue acetylcholine (ACh). Weaning male Wistar rats were assigned to one of two experimental groups and fed for 8 weeks with a commercial chow (C) or a semisynthetic diet containing virgin olive oil as dietary fat (OO). The fatty acid composition of pancreatic plasma membranes was determined by gas-liquid chromatography. For assessment of secretory function, viable acini were incubated with ACh and amylase of supernatant was further assayed with a substrate reagent. Changes in cytosolic Ca(2+) concentration in response to ACh were measured by fura-2 AM fluorimetry. Compared to C rats, pancreatic cell membranes of OO rats had a higher level of monounsaturated fatty acids and a lower level of both saturated and polyunsaturated fatty acids, thus, reflecting the type of dietary fat given. Net amylase secretion in response to ACh was greatly enhanced after OO feeding, although this was not paralleled by enhancement of ACh-evoked Ca(2+) peak increases. In conclusion, chronic intake of diets that differ in the fat type influences not only the fatty acid composition of rat pancreatic membranes but also the responsiveness of acinar cells to ACh. This mechanism may be, at least in part, responsible for the adaptation of the exocrine pancreas to the type of fat available.

  3. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs.

    PubMed

    Eisses, John F; Criscimanna, Angela; Dionise, Zachary R; Orabi, Abrahim I; Javed, Tanveer A; Sarwar, Sheharyar; Jin, Shunqian; Zhou, Lili; Singh, Sucha; Poddar, Minakshi; Davis, Amy W; Tosun, Akif Burak; Ozolek, John A; Lowe, Mark E; Monga, Satdarshan P; Rohde, Gustavo K; Esni, Farzad; Husain, Sohail Z

    2015-12-01

    The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations-that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury-we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained β-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury.

  4. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs

    PubMed Central

    Eisses, John F.; Criscimanna, Angela; Dionise, Zachary R.; Orabi, Abrahim I.; Javed, Tanveer A.; Sarwar, Sheharyar; Jin, Shunqian; Zhou, Lili; Singh, Sucha; Poddar, Minakshi; Davis, Amy W.; Tosun, Akif Burak; Ozolek, John A.; Lowe, Mark E.; Monga, Satdarshan P.; Rohde, Gustavo K.; Esni, Farzad; Husain, Sohail Z.

    2016-01-01

    The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations—that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury—we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained β-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury. PMID:26476347

  5. Acinar neoplasms of the pancreas-A summary of 25 years of research.

    PubMed

    Klimstra, David S; Adsay, Volkan

    2016-09-01

    Our understanding about the family of acinar neoplasms of the pancreas has grown substantially over the past 25 years. The prototype is acinar cell carcinoma, an uncommon variant of pancreatic carcinoma that demonstrates production of pancreatic exocrine enzymes, verifiable using immunohistochemistry, and exhibits characteristic histologic features. Related neoplasms include mixed acinar carcinomas such as mixed acinar neuroendocrine carcinoma and mixed acinar ductal carcinoma. In the pediatric age group, pancreatoblastoma is also closely related. Cystic and extrapancreatic forms have been described. These neoplasms share molecular alterations that are distinct from the more common ductal and neuroendocrine neoplasms of the pancreas. Although there is a broad range of genetic findings, a number of potential therapeutic targets have emerged. This review explores the clinical and pathologic features of pancreatic acinar neoplasms along with their more common molecular phenotypes. The differential diagnosis with other pancreatic neoplasms is explored as well.

  6. Pancreatic Acinar Cells Employ miRNAs as Mediators of Intercellular Communication to Participate in the Regulation of Pancreatitis-Associated Macrophage Activation

    PubMed Central

    Zhao, Yong; Wang, Hao; Qiao, Xin; Sun, Bei

    2016-01-01

    Macrophage activation plays an important role in the inflammatory response in acute pancreatitis. In the present study, the activation of AR42J pancreatic acinar cells was induced by taurolithocholate treatment. The results showed that the culture medium from the activated AR42J cells significantly enhanced NFκB activation in the macrophages compared to that without taurolithocholate treatment. Additionally, the precipitates obtained from ultracentrifugation of the culture media that were rich in exosomes were markedly more potent in activating macrophages compared with the supernatant fraction lacking exosomes. The results indicated that the mediators carried by the exosomes played important roles in macrophage activation. Exosomal miRNAs were extracted and examined using microarrays. A total of 115 differentially expressed miRNAs were identified, and 30 showed upregulated expression, while 85 displayed downregulated expression. Target genes of the differentially expressed miRNAs were predicted using TargetScan, MiRanda, and PicTar software programs. The putative target genes were subjected to KEGG functional analysis. The functions of the target genes were primarily enriched in MAPK pathways. Specifically, the target genes regulated macrophage activation through the TRAF6-TAB2-TAK1-NIK/IKK-NFκB pathway. As the mediators of signal transduction, miRNAs and their predicted target mRNAs regulate every step in the MAPK pathway. PMID:27546996

  7. Novel Lipophilic Probe for Detecting Near-Membrane Reactive Oxygen Species Responses and Its Application for Studies of Pancreatic Acinar Cells: Effects of Pyocyanin and L-Ornithine

    PubMed Central

    Chvanov, Michael; Huang, Wei; Jin, Tao; Wen, Li; Armstrong, Jane; Elliot, Vicky; Alston, Ben; Burdyga, Alex; Criddle, David N.; Sutton, Robert

    2015-01-01

    Abstract Aims: The aim of this study was to develop a fluorescent reactive oxygen species (ROS) probe, which is preferentially localized in cellular membranes and displays a strong change in fluorescence upon oxidation. We also aimed to test the performance of this probe for detecting pathophysiologically relevant ROS responses in isolated cells. Results: We introduced a novel lipophilic ROS probe dihydrorhodamine B octadecyl ester (H2RB-C18). We then applied the new probe to characterize the ROS changes triggered by inducers of acute pancreatitis in pancreatic acinar cells. We resolved ROS changes produced by L-ornithine, L-arginine, cholecystokinin-8, acetylcholine, taurolithocholic acid 3-sulfate, palmitoleic acid ethyl ester, and the bacterial toxin pyocyanin. Particularly prominent ROS responses were induced by pyocyanin and L-ornithine. These ROS responses were accompanied by changes in cytosolic Ca2+concentration ([Ca2+]i), mitochondrial membrane potential (ΔΨ), and NAD(P)H concentration. Innovation: The study describes a novel sensitive lipophilic ROS probe. The probe is particularly suitable for detecting ROS in near-membrane regions and therefore for reporting the ROS environment of plasma membrane channels and pumps. Conclusions: In our experimental conditions, the novel probe was more sensitive than 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein (CM-H2DCF) and dihydrorhodamine123 (H2R123) and allowed us to resolve ROS responses to secretagogues, pyocyanin, and L-ornithine. Changes in the fluorescence of the new probe were particularly prominent in the peripheral plasma membrane-associated regions. Our findings suggest that the new probe will be a useful tool in studies of the contribution of ROS to the pathophysiology of exocrine pancreas and other organs/tissues. Antioxid. Redox Signal. 22, 451–464. PMID:24635199

  8. Pathology and genetics of pancreatic neoplasms with acinar differentiation.

    PubMed

    Wood, Laura D; Klimstra, David S

    2014-11-01

    Pancreatic neoplasms with acinar differentiation, including acinar cell carcinoma, pancreatoblastoma, and carcinomas with mixed differentiation, are distinctive pancreatic neoplasms with a poor prognosis. These neoplasms are clinically, pathologically, and genetically unique when compared to other more common pancreatic neoplasms. Most occur in adults, although pancreatoblastomas usually affect children under 10 years old. All of these neoplasms exhibit characteristic histologic features including a solid or acinar growth pattern, dense neoplastic cellularity, uniform nuclei with prominent nucleoli, and granular eosinophilic cytoplasm. Exocrine enzymes are detectable by immunohistochemistry and, for carcinomas with mixed differentiation, neuroendocrine or ductal lineage markers are also expressed. The genetic alterations of this family of neoplasms largely differ from conventional ductal adenocarcinomas, with only rare mutations in TP53, KRAS, and p16, but no single gene or neoplastic pathway is consistently altered in acinar neoplasms. Instead, there is striking genomic instability, and a subset of cases has mutations in the APC/β-catenin pathway, mutations in SMAD4, RAF gene family fusions, or microsatellite instability. Therapeutically targetable mutations are often present. This review summarizes the clinical and pathologic features of acinar neoplasms and reviews the current molecular data on these uncommon tumors.

  9. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion

    PubMed Central

    Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra

    2015-01-01

    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression. PMID:25723869

  10. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion.

    PubMed

    Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra

    2015-01-01

    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression.

  11. The Src kinase Yes is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters, but not pancreatic growth factors, which stimulate its association with numerous other signaling molecules.

    PubMed

    Sancho, Veronica; Nuche-Berenguer, Bernardo; Jensen, R T

    2012-08-01

    For growth factors, cytokines, G-protein-coupled receptors and numerous other stimuli, the Src Family of kinases (SFK) play a central signaling role. SFKs also play an important role in pancreatic acinar cell function including metabolism, secretion, endocytosis, growth and cytoskeletal integrity, although the specific SFKs involved are not fully known. In the present study we used specific antibodies for the SFK, Yes, to determine its presence, activation by pancreatic secretagogues or growth factors, and interaction with cellular signaling cascades mediated by CCK in which Yes participates in to cause acinar cell responses. Yes was identified in acini and secretagogues known to activate phospholipase C (PLC) [CCK, carbachol, bombesin] as well as post-receptor stimulants activating PKC [TPA] or mobilizing cellular calcium [thapsigargin/calcium ionophore (A23187)] each activated Yes. Secretin, which activates adenylate cyclase did not stimulate Yes, nor did pancreatic growth factors. CCK activation of Yes required both high- and low-affinity CCK(1)-receptor states. TPA-/CCK-stimulated Yes activation was completely inhibited by thapsigargin and the PKC inhibitor, GF109203X. CCK/TPA stimulated the association of Yes with focal adhesion kinases (Pyk2, FAK) and its autophosphorylated forms (pY397FAK, pY402Pyk2). Moreover, CCK/TPA stimulated Yes interacted with a number of other signaling proteins, including Shc, PKD, p130(Cas), PI3K and PTEN. This study demonstrates that in rat pancreatic acini, the SFK member Yes is expressed and activated by CCK and other gastrointestinal hormones/neurotransmitters. Because its activation results in the direct activation of many cellular signaling cascades that have been shown to mediate CCK's effect in acinar cell function our results suggest that it is one of the important pancreatic SFKs mediating these effects.

  12. PP2C phosphatase activity is coupled to cAMP-mediated pathway in rat parotid acinar cells.

    PubMed

    Yokoyama, N; Kobayashi, T; Tamura, S; Sugiya, H

    1995-07-01

    A 26 kDa particulate protein is phosphorylated during stimulation of amylase secretion by a beta-adrenergic agonist in the rat parotid gland. Previous study has shown that PP2C phosphatase is involved in dephosphorylation of this 26 kDa protein [Yokoyama, N. et al. (1994) Biochem. Biophys. Res. Commun. 200, 497-503]. In this study, immunotransblot analysis using anti-PP2C phosphatase antibody showed that PP2C phosphatase was found prominently in the cystolic fractions and less in secretory granule membranes. When cells were stimulated by isoproterenol, cytosolic PP2C phosphatase activity increased to 145% at 5 min and returned to basal level at 30 min. Forskolin increased PP2C phosphatase activity. H89 inhibited increase of PP2C phosphatase activity following beta-adrenergic stimulation. These results suggest that PP2C phosphatase activity is regulated by cAMP-mediated signaling following beta-adrenergic stimulation and participates in dephosphorylation of this 26 kDa protein.

  13. Cell injury by electric forces.

    PubMed

    Lee, Raphael C

    2005-12-01

    The molecular architecture of biological systems is heavily influenced by the highly polar interactions of water. Thus, macromolecules such as proteins that are highly water soluble must be electrically polar. Energy generation methods needed to support cell metabolic processes depend on compartmentalizing mobile ions and thus require electrical ion transport barriers such as membranes. One consequence of these biological design constraints is vulnerability to injury by electrical forces. Supraphysiological electric forces cause damage to cells and tissues by disrupting cell membranes and altering the conformation of biomolecules. In addition, prolonged passage of electrical current leads to damage by thermal mechanisms. This review will focus on the non-thermal effects.

  14. Damage to pancreatic acinar cells and preservation of islets of Langerhans in a rat model of acute pancreatitis induced by Karwinskia humboldtiana (buckthorn).

    PubMed

    Carcano-Diaz, Katya; Garcia-Garcia, Aracely; Segoviano-Ramirez, Juan Carlos; Rodriguez-Rocha, Humberto; Loera-Arias, Maria de Jesus; Garcia-Juarez, Jaime

    2016-09-01

    Karwinskia humboldtiana (Kh) is a poisonous plant that grows in some regions of the American continent. Consuming large amounts of Kh fruit results in acute intoxication leading to respiratory failure, culminating in death within days. There is evidence of histological damage to the lungs, liver, and kidneys following accidental and experimental Kh intoxication. To date, the microscopic effect of Kh consumption on the pancreas has not been described. We examined the early effects of Kh fruit on pancreatic tissue at different stages of acute intoxication in the Wistar rat. We found progressive damage confined to the exocrine pancreas, starting with a reduction in the number of zymogen granules, loss of acinar architecture, the presence of autophagy-like vesicles, apoptosis and inflammatory infiltrate. The pancreatic pathology culminated in damaged acini characterized by necrosis and edema, with a complete loss of lobular architecture. Interestingly, the morphology of the islets of Langerhans was conserved throughout our evaluations. Taken together, our results indicate the damage induced by a high dose of Kh fruit in the Wistar rat is consistent with an early acute necrotizing pancreatitis that exclusively affects the exocrine pancreas. Therefore, this system might be useful as an animal model to study the treatment of pancreatic diseases. More importantly, as the islets of Langerhans were preserved, the active compounds of Kh fruit could be utilized for the treatment of acinar pancreatic cancer. Further studies might provide insight into the severity of acute Kh intoxication in humans and influence the design of treatments for pancreatic diseases and acinar pancreatic cancer.

  15. Live pancreatic acinar imaging of exocytosis using syncollin-pHluorin.

    PubMed

    Fernandez, Nestor A; Liang, Tao; Gaisano, Herbert Y

    2011-06-01

    In this report, a novel live acinar exocytosis imaging technique is described. An adenovirus was engineered, encoding for an endogenous zymogen granule (ZG) protein (syncollin) fused to pHluorin, a pH-dependent green fluorescent protein (GFP). Short-term culture of mouse acini infected with this virus permits exogenous adenoviral protein expression while retaining acinar secretory competence and cell polarity. The syncollin-pHluorin fusion protein was shown to be correctly localized to ZGs, and the pH-dependent fluorescence of pHluorin was retained. Coupled with the use of a spinning disk confocal microscope, the syncollin-pHluorin fusion protein exploits the ZG luminal pH changes that occur during exocytosis to visualize exocytic events of live acinar cells in real-time with high spatial resolution in three dimensions. Apical and basolateral exocytic events were observed on stimulation of acinar cells with maximal and supramaximal cholecystokinin concentrations, respectively. Sequential exocytic events were also observed. Coupled with the use of transgenic mice and/or adenovirus-mediated protein expression, this syncollin-pHluorin imaging method offers a superior approach to studying pancreatic acinar exocytosis. This assay can also be applied to acinar disease models to elucidate the mechanisms implicated in pancreatitis.

  16. Total pancreatectomy for metachronous mixed acinar-ductal carcinoma in a remnant pancreas.

    PubMed

    Shonaka, Tatsuya; Inagaki, Mitsuhiro; Akabane, Hiromitsu; Yanagida, Naoyuki; Shomura, Hiroki; Yanagawa, Nobuyuki; Oikawa, Kensuke; Nakano, Shiro

    2014-09-07

    In October 2009, a 71-year-old female was diagnosed with a cystic tumor in the tail of the pancreas with an irregular dilatation of the main pancreatic duct in the body and tail of the pancreas. A distal pancreatectomy with splenectomy, and partial resection of the duodenum, jejunum and transverse colon was performed. In March 2011, a follow-up computed tomography scan showed a low density mass at the head of the remnant pancreas. We diagnosed it as a recurrence of the tumor and performed a total pancreatectomy for the remnant pancreas. In the histological evaluation of the resected specimen of the distal pancreas, the neoplastic cells formed an acinar and papillary structure that extended into the main pancreatic duct. Mucin5AC, α1-antitrypsin (α-AT) and carcinoembryonic antigen (CEA) were detected in the tumor cells by immunohistochemistry. In the resected head of the pancreas, the tumor was composed of both acinar and ductal elements with a mottled pattern. The proportions of each element were approximately 40% and 60%, respectively. Strongly positive α-AT cells were detected in the acinar element. Some tumor cells were also CEA positive. However, the staining for synaptophysin and chromogranin A was negative in the tumor cells. Ultimately, we diagnosed the tumor as a recurrence of mixed acinar-ductal carcinoma in the remnant pancreas. In conclusion, we report here a rare case of repeated pancreatic resection for multicentric lesions of mixed acinar-ductal carcinoma of the pancreas.

  17. The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma

    PubMed Central

    Krah, Nathan M; De La O, Jean-Paul; Swift, Galvin H; Hoang, Chinh Q; Willet, Spencer G; Chen Pan, Fong; Cash, Gabriela M; Bronner, Mary P; Wright, Christopher VE; MacDonald, Raymond J; Murtaugh, L Charles

    2015-01-01

    Understanding the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) may provide therapeutic strategies for this deadly disease. Recently, we and others made the surprising finding that PDAC and its preinvasive precursors, pancreatic intraepithelial neoplasia (PanIN), arise via reprogramming of mature acinar cells. We therefore hypothesized that the master regulator of acinar differentiation, PTF1A, could play a central role in suppressing PDAC initiation. In this study, we demonstrate that PTF1A expression is lost in both mouse and human PanINs, and that this downregulation is functionally imperative in mice for acinar reprogramming by oncogenic KRAS. Loss of Ptf1a alone is sufficient to induce acinar-to-ductal metaplasia, potentiate inflammation, and induce a KRAS-permissive, PDAC-like gene expression profile. As a result, Ptf1a-deficient acinar cells are dramatically sensitized to KRAS transformation, and reduced Ptf1a greatly accelerates development of invasive PDAC. Together, these data indicate that cell differentiation regulators constitute a new tumor suppressive mechanism in the pancreas. DOI: http://dx.doi.org/10.7554/eLife.07125.001 PMID:26151762

  18. Radial transport along the human acinar tree.

    PubMed

    Henry, F S; Tsuda, A

    2010-10-01

    A numerical model of an expanding asymmetric alveolated duct was developed and used to investigate lateral transport between the central acinar channel and the surrounding alveoli along the acinar tree. Our results indicate that some degree of recirculation occurs in all but the terminal generations. We found that the rate of diffusional transport of axial momentum from the duct to the alveolus was by far the largest contributor to the resulting momentum in the alveolar flow but that the magnitude of the axial momentum is critical in determining the nature of the flow in the alveolus. Further, we found that alveolar flow rotation, and by implication chaotic mixing, is strongest in the entrance generations. We also found that the expanding alveolus provides a pathway by which particles with little intrinsic motion can enter the alveoli. Thus, our results offer a possible explanation for why submicron particles deposit preferentially in the acinar-entrance region.

  19. RADIAL TRANSPORT ALONG THE HUMAN ACINAR TREE

    PubMed Central

    Henry, F.S.; Tsuda, A.

    2013-01-01

    A numerical model of an expanding asymmetric alveolated duct was developed and used to investigate lateral transport between the central acinar channel and the surrounding alveoli along the acinar tree. Our results indicate that some degree of recirculation occurs in all but the terminal generations. We found that the rate of diffusional transport of axial momentum, from the duct to the alveolus, was by far the largest contributor to the resulting momentum in the alveolar flow but that the magnitude of the axial momentum is critical in determining the nature of the flow in the alveolus. Further, we found that alveolar flow rotation, and by implication chaotic mixing, are strongest in the entrance generations. We also found that the expanding alveolus provides a pathway by which particles with little intrinsic motion can enter the alveoli. Thus, our results offer a possible explanation for why submicron particles deposit preferentially in acinar entrance region. PMID:20887011

  20. Purification and characterization of protein phosphatase 2C in rat parotid acinar cells: two forms of Mg(2+)-activated histone phosphatase and phosphorylation by cAMP-dependent protein kinase.

    PubMed

    Yokoyama, N; Kobayashi, T; Tamura, S; Sugiya, H

    1996-07-01

    Two forms of Mg(2+)-activated histone phosphatase activities were partially purified from rat parotid acinar cells using Mono Q and gel filtration chromatography. Both enzymes activities were dependent on the presence of Mg2+, showing little activity in the presence of EDTA. The activities fractionated on the Mono Q column into two peaks: the first was a minor peak of histone phosphatase activity; the second was a major peak. These two peaks eluted at distinct positions on the gel filtration column. The molecular masses of the two peak fractions corresponded to 46 and 55 kDa, respectively on SDS-gels. The first 46-kDa peak immunoreacted with anti-PP2Calpha phosphatase antibody and like PP2Calpha phosphatase could be phosphorylated by cAMP-dependent protein kinase. The second 55-kDa peak showed neither reactivity with anti-PP2Calpha phosphatase antibody nor phosphorylability by cAMP-dependent protein kinase, but retained a Mg2+ or Mn2+ dependence for its histone phosphatase activity. Ca2+ showed a strong inhibition on this activity. On the basis of these observations, we have identified the first peak enzyme as PP2Calpha phosphatase and the second peak as a novel PP2C-like phosphatase.

  1. Pancreatic (acinar) metaplasia of the gastric mucosa. Histology, ultrastructure, immunocytochemistry, and clinicopathologic correlations of 101 cases.

    PubMed

    Doglioni, C; Laurino, L; Dei Tos, A P; De Boni, M; Franzin, G; Braidotti, P; Viale, G

    1993-11-01

    The occasional finding within the gastric mucosa of unidentified epithelial cells with morphological features closely resembling those of pancreatic acinar cells has prompted us to investigate a retrospective series of 8,430 consecutive gastric biopsies and of 126 surgical specimens of gastric resection and total gastrectomy. The aims of the study were to morphologically and immunocytochemically characterize these cells, to define their actual prevalence in a large series of unselected cases, and to assess the clinicopathologic correlates of their occurrence. Pancreatic acinar-like cells characterized by abundant cytoplasm, which was acidophilic and finely granular in the apical and middle portions and basophilic in the basal compartment, have been identified in 101 cases (84 gastric biopsies and 17 gastrectomies). These cells, arranged in nests or in variably sized lobules among the gastric glands, were morphologically indistinguishable from pancreatic acinar cells, both by light and by electron microscopy. Furthermore, they were consistently immunoreactive for pancreatic lipase and trypsinogen and, in 75% of the cases, for pancreatic alpha-amylase. The appearance of these cells within the gastric mucosa was correlated significantly with chronic gastritis (p = 0.032) and with the simultaneous occurrence of intestinal and pyloric types of gastric metaplasia (p = 0.021). The findings indicate that this is a previously unrecognized pancreatic (acinar) metaplasia of the gastric mucosa, clinically and morphologically distinct from pancreatic heterotopia.

  2. Snail1 is required for the maintenance of the pancreatic acinar phenotype

    PubMed Central

    Loubat-Casanovas, Jordina; Peña, Raúl; Gonzàlez, Núria; Alba-Castellón, Lorena; Rosell, Santi; Francí, Clara; Navarro, Pilar; de Herreros, Antonio García

    2016-01-01

    The Snail1 transcriptional factor is required for correct embryonic development, yet its expression in adult animals is very limited and its functional roles are not evident. We have now conditionally inactivated Snail1 in adult mice and analyzed the phenotype of these animals. Snail1 ablation rapidly altered pancreas structure: one month after Snail1 depletion, acinar cells were markedly depleted, and pancreas accumulated adipose tissue. Snail1 expression was not detected in the epithelium but was in pancreatic mesenchymal cells (PMCs). Snail1 ablation in cultured PMCs downregulated the expression of several β-catenin/Tcf-4 target genes, modified the secretome of these cells and decreased their ability to maintain acinar markers in cultured pancreas cells. Finally, Snail1 deficiency modified the phenotype of pancreatic tumors generated in transgenic mice expressing c-myc under the control of the elastase promoter. Specifically, Snail1 depletion did not significantly alter the size of the tumors but accelerated acinar-ductal metaplasia. These results demonstrate that Snail1 is expressed in PMCs and plays a pivotal role in maintaining acinar cells within the pancreas in normal and pathological conditions. PMID:26735179

  3. Neurogenin 3-directed cre deletion of Tsc1 gene causes pancreatic acinar carcinoma.

    PubMed

    Ding, Li; Han, Lingling; Li, Yin; Zhao, Jing; He, Ping; Zhang, Weizhen

    2014-11-01

    The role of tuberous sclerosis complex (TSC) in the pathogenesis of pancreatic cancers remains largely unknown. The present study shows that neurogenin 3 directed Cre deletion of Tsc1 gene induces the development of pancreatic acinar carcinoma. By cross-breeding the Neurog3-cre mice with Tsc1 (loxp/loxp) mice, we generated the Neurog3-Tsc1-/- transgenic mice in which Tsc1 gene is deleted and mTOR signaling activated in the pancreatic progenitor cells. All Neurog3-Tsc1-/- mice developed notable adenocarcinoma-like lesions in pancreas starting from the age of 100 days old. The tumor lesions are composed of cells with morphological and molecular resemblance to acinar cells. Metastasis of neoplasm to liver and lung was detected in 5% of animals. Inhibition of mTOR signaling by rapamycin significantly attenuated the growth of the neoplasm. Relapse of the neoplasm occurred within 14 days upon cessation of rapamycin treatment. Our studies indicate that activation of mTOR signaling in the pancreatic progenitor cells may trigger the development of acinar carcinoma. Thus, mTOR may serve as a potential target for treatment of pancreatic acinar carcinoma.

  4. Choroid plexus acinar adenoma: a case report.

    PubMed

    Rembao-Bojórquez, Daniel; Vega, Rosalba; Bermúdez-Maldonado, Luis; Gutiérrez, Ramón; Salinas, Citlaltepetl; Tena-Suck, Martha

    2007-06-01

    Mucus-secreting adenomas or acinar adenoma of the choroid plexus are very rare. We report the case of a 79-year-old male with a 3-year history of occipital headaches with vomiting, ataxia and cerebellar signs. He was first seen due to difficulty while walking. He was admitted to the hospital with significant tumor expansion and clinical deterioration. CT and MRI revealed obstructive hydrocephalus secondary to a large fourth ventricular cyst mass, which enhanced markedly on contrast administration. Pathological findings were consistent with an acinar choroid plexus adenoma. The tumor was attached to the ependymal lining and was strongly adhered to the walls and floor of the IV ventricle. Post-operative bleeding complicated partial removal of this tumor. The patient died 6 h after surgery.

  5. Characterization of a novel model of pancreatic fibrosis and acinar atrophy.

    PubMed

    Murayama, K M; Barent, B L; Gruber, M; Brooks, A; Eliason, S; Brunt, E M; Smith, G S

    1999-01-01

    Significant fibrosis and acinar atrophy are characteristics of chronic pancreatitis; however, because of the lack of a reproducible model, early phases of these changes are poorly understood. We have developed a model of severe hyperstimulation and obstruction pancreatitis (SHOP) to better define the mechanisms of early pancreatic fibrogenesis. Sprague-Dawley rats were used and SHOP was induced by complete pancreatic duct obstruction and daily cerulein hyperstimulation (50 microg/kg intraperitoneally). Animals were killed at 24, 48, 72, and 96 hours. Control animals underwent sham operation and received no cerulein. Pancreata were prepared for hematoxylin and eosin and sirius red (collagen-specific) staining and for hydroxyproline assay (measure of total collagen content). We found moderate amounts of edema and inflammation but minimal parenchymal necrosis. Significant loss of acinar cell mass was noted by 48 hours, and normal acinar cells were essentially absent by 96 hours. Tissue collagen content increased with time and large amounts of interstitial collagen were detected by 72 hours. In conclusion, SHOP is a novel model of early pancreatic fibrosis associated with minimal necrosis and a significant decrease in acinar cell mass, making it an ideal model to study the early cellular mechanisms of pancreatic fibrogenesis.

  6. Acinar autolysis and mucous extravasation in human sublingual glands: a microscopic postmortem study

    PubMed Central

    AZEVEDO-ALANIS, Luciana Reis; TOLENTINO, Elen de Souza; de ASSIS, Gerson Francisco; CESTARI, Tânia Mary; LARA, Vanessa Soares; DAMANTE, José Humberto

    2015-01-01

    Although some morphological investigations on aged human sublingual glands (HSG) found eventual phenomena identified as autolysis and mucous extravasation, the exact meaning of these findings has not been elucidated. Objective The aim of this work is to investigate whether acinar autolysis and mucous extravasation are related to the aging process in human sublingual glands. We also speculate if autolytic changes may assist forensic pathologists in determining time of death. Material and Methods 186 cadavers’ glands were allocated to age groups: I (0–30 years); II (31–60), and III (61–90). Time and mode of death were also recorded. Acinar autolysis and mucous extravasation were classified as present or absent. Ultrastructural analysis was performed using transmission electron microscopy (TEM). Data were compared using Mann-Whitney U, Spearman’s correlation coefficient, Kruskal-Wallis, and Dunn tests (p<0.05). Results There was correlation between age and acinar autolysis (r=0.38; p=0.0001). However, there was no correlation between autolysis and time of death. No differences were observed between genders. TEM showed mucous and serous cells presenting nuclear and membrane alterations and mucous cells were more susceptible to autolysis. Conclusion Acinar autolysis occurred in all age groups and increased with age while mucous extravasation was rarely found. Both findings are independent. Autolysis degrees in HSG could not be used to determine time of death. PMID:26537715

  7. An introduction to acinar pressures in BPH and prostate cancer.

    PubMed

    Wadhera, Panikar

    2013-06-01

    Intra-acinar and peri-acinar pressures in the prostate might be key factors in the evolution of its zonal morphology and the pathogenesis of BPH and cancer. Herein, I hypothesize that intra-acinar pressures lead to a decrease in apoptosis by distending or stretching acinar epithelium and its surrounding stroma. Increased prostatic smooth muscle content and tone might generate peri-acinar pressures, which could, in the long-term, counteract intra-acinar pressures and decrease epithelial stretch. Thus, it is proposed that BPH (characterized by increased prostatic smooth muscle and, therefore, raised peri-acinar pressures) might decrease the risk of prostate cancer progression by counteracting intra-acinar pressures. In the context of this theory, the transition zone might have evolved as a specialized region within the prostate that can mount a concerted stromal-epithelial response to increased urethral and intra-acinar pressures (BPH), and the urethral angulation, anterior stroma and the prostatic capsule have an adjunctive evolutionary role in this phenomenon.

  8. Role and regulation of autophagy in the development of acinar structures formed by bovine BME-UV1 mammary epithelial cells.

    PubMed

    Sobolewska, Agnieszka; Motyl, Tomasz; Gajewska, Malgorzata

    2011-10-01

    Autophagy is a catabolic process providing an alternative energy source for cells under stressful conditions such as starvation, growth factor deprivation or hypoxia. During involution of the bovine mammary gland autophagy is induced in mammary epithelial cells (MECs) as a survival mechanism, and is tightly regulated by hormones and growth factors necessary for gland development. In the present study we adapted the three-dimensional culture model to investigate the role of autophagy during formation of alveoli-like structures by bovine BME-UV1 MECs grown on extracellular matrix (ECM) components. Using confocal microscopy and Western-blot analyses of autophagic and apoptotic markers: LC3, and cleaved caspase-3, we showed that autophagy was induced in centrally localized cells within the developing acini. These cells lacked a direct contact with ECM, and formed a distinct population from the outer layer of cells. Induction of autophagy preceded apoptosis, but did not inhibit the formation of a hollow lumen. In the presence of steroid hormones: 17β-estradiol and progesterone, although autophagy was augmented, acini formation proceeded normally. In contrast, the major lactogenic hormone: prolactin, which supports functional differentiation of alveoli, did not alter induction of autophagy within the spheroids. BME-UV1 cells cultured on Matrigel in the presence of growth factors IGF-I and EGF formed larger, underdeveloped acini without lumens due to caspase-3 inhibition, and sustained autophagy in the centre of the spheroids, while TGF-β1 accelerated apoptosis, and increased autophagy significantly. Our observations suggest that sex steroids 17β-estradiol and progesterone, as well as growth factor TGF-β1 may regulate the development of the bovine mammary gland by inducing autophagy in addition to regulating proliferation and apoptosis of MECs. These data indicate that autophagy may play an important role during alveolargenesis.

  9. High mobility group box 1 induces the activation of the Janus kinase 2 and signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway in pancreatic acinar cells in rats, while AG490 and rapamycin inhibit their activation

    PubMed Central

    Wang, Guoliang; Zhang, Jingchao; Dui, Danhua; Ren, Haoyuan; Liu, Jin

    2016-01-01

    The pathogenesis of severe acute pancreatitis (SAP) remains unclear. The Janus kinase and signal transducer and activator of transcription (JAK/STAT) pathway is important for various cytokines and growth factors. This study investigated the effect of the late inflammatory factor high mobility group box 1 (HMGB1) on the activation of JAK2/STAT3 in pancreatic acinar cells and the inhibitory effects of AG490 (a JAK2 inhibitor) and rapamycin (a STAT3 inhibitor) on this pathway. Rat pancreatic acinar cells were randomly divided into the control, HMGB1, AG490, and rapamycin groups. The mRNA levels of JAK2 and STAT3 at 10, 30, 60, and 120 minutes were detected using reverse transcription polymerase chain reaction (RT-PCR). The protein levels of JAK2 and STAT3 at 60 and 120 minutes were observed using Western blotting. Compared with the control group, the HMGB1 group exhibited significantly increased levels of JAK2 mRNA at each time point; STAT3 mRNA at 30, 60, and 120 minutes; and JAK2 and STAT3 proteins at 60 and 120 minutes (p < 0.01). Compared with the HMGB1 group, the AG490 and rapamycin groups both exhibited significantly decreased levels of JAK2 mRNA at each time point (p < 0.05); STAT3 mRNA at 30, 60, and 120 minutes (p < 0.01); and JAK2 and STAT3 proteins at 60 and 120 minutes (p < 0.01). HMGB1 induces the activation of the JAK2/STAT3 signaling pathway in rat pancreatic acinar cells, and this activation can be inhibited by AG490 and rapamycin. The results of this study may provide new insights for the treatment of SAP. PMID:27754827

  10. Mechanisms of kidney cell injury from metals

    SciTech Connect

    Fowler, B.A. )

    1993-04-01

    The most environmentally abundant toxic metals/metalloids (arsenic, cadmium, lead, and mercury) are each known to produce cell injury in the kidney but the molecular mechanisms underlying these events are now being elucidated. It is clear that the nephrotoxicity of these agents is due, in part, to the fact that urinary elimination is a major route of excretion from the body. The role(s) of molecular factors such as metal-binding proteins, inclusion bodies, and cell-specific receptorlike proteins that appear to influence renal tubule cell expression, have attracted increased interest as determinants that modulate cell populations as special risk for toxicity and renal cancer. The future of mechanistic toxicology studies with regard to how and why only certain renal cell populations become targets for toxicity from these metals/metalloids and other less common inorganic nephrotoxicants must focus on the molecular handling of these agents by target cell populations. 90 refs.

  11. Mechanical injury and repair of cells

    NASA Technical Reports Server (NTRS)

    Miyake, Katsuya; McNeil, Paul L.

    2003-01-01

    OBJECTIVE: To concisely review the field of cell plasma membrane disruption (torn cell surface) and repair. MAIN POINTS: Plasma membrane disruption is a common form of cell injury under physiologic conditions, after trauma, in certain muscular dystrophies, and during certain forms of clinical intervention. Rapid repair of a disruption is essential to cell survival and involves a complex and active cell response that includes membrane fusion and cytoskeletal activation. Tissues, such as cardiac and skeletal muscle, adapt to a disruption injury by hypertrophying. Cells adapt by increasing the efficiency of their resealing response. CONCLUSION: Plasma membrane disruption is an important cellular event in both health and disease. The disruption repair mechanism is now well understood at the cellular level, but much remains to be learned at the molecular level. Cell and tissue level adaptational responses to the disruption either prevent its further occurrence or facilitate future repairs. Therapeutically useful drugs might result if, using this accumulating knowledge, chemical agents can be developed that can enhance repair or adaptive responses.

  12. Reg proteins promote acinar-to-ductal metaplasia and act as novel diagnostic and prognostic markers in pancreatic ductal adenocarcinoma

    PubMed Central

    Zogopoulos, George; Shao, Qin; Dong, Kun; Lv, Fudong; Nwilati, Karam; Gui, Xian-yong; Cuggia, Adeline; Liu, Jun-Li; Gao, Zu-hua

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignant tumor. Acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) are both precursor lesions that lead to the development of PDAC. Reg family proteins (Reg1A, 1B, 3A/G, 4) are a group of calcium-dependent lectins that promote islet growth in response to inflammation and/or injuries. The aim of this study was to establish a role for Reg proteins in the development of PDAC and their clinical value as biomarkers. We found that Reg1A and Reg3A/G were highly expressed in the ADM tissues by immunohistochemistry. In the 3-dimensional culture of mouse acinar cells, Reg3A promoted ADM formation with concurrent activation of mitogen-acitvated protein kinase. Upregulation of Reg1A and Reg1B levels was observed as benign ductal epithelium progresses from PanIN to invasive PDAC. Patients with PDAC showed significantly higher serum levels of Reg1A and Reg1B than matching healthy subjects. These results were further validated by the quantification of Reg 1A and 1B mRNA levels in the microdissected tissues (22- and 6-fold increases vs. non-tumor tissues). Interestingly, patients with higher levels of Reg1A and 1B exhibited improved survival rate than those with lower levels. Furthermore, tissue expressions of Reg1A, Reg1B, and Reg4 could differentiate metastatic PDAC in the liver from intrahepatic cholangiocarcinoma with 92% sensitivity and 95% specificity. Overall, our results demonstrate the upregulation of Reg proteins during PDAC development. If validated in larger scale, Reg1A and Reg1B could become clinical markers for detecting early stages of PDAC, monitoring therapeutic response, and/or predicting patient's prognosis. PMID:27788482

  13. Cell Biology of Ischemia/Reperfusion Injury

    PubMed Central

    Kalogeris, Theodore; Baines, Christopher P.; Krenz, Maike; Korthuis, Ronald J.

    2014-01-01

    Disorders characterized by ischemia/reperfusion (I/R), such as myocardial infarction, stroke, and peripheral vascular disease, continue to be among the most frequent causes of debilitating disease and death. Tissue injury and/or death occur as a result of the initial ischemic insult, which is determined primarily by the magnitude and duration of the interruption in the blood supply, and then subsequent damage induced by reperfusion. During prolonged ischemia, ATP levels and intracellular pH decrease as a result of anaerobic metabolism and lactate accumulation. As a consequence, ATPase-dependent ion transport mechanisms become dysfunctional, contributing to increased intracellular and mitochondrial calcium levels (calcium overload), cell swelling and rupture, and cell death by necrotic, necroptotic, apoptotic, and autophagic mechanisms. Although oxygen levels are restored upon reperfusion, a surge in the generation of reactive oxygen species occurs and proinflammatory neutrophils infiltrate ischemic tissues to exacerbate ischemic injury. The pathologic events induced by I/R orchestrate the opening of the mitochondrial permeability transition pore, which appears to represent a common end-effector of the pathologic events initiated by I/R. The aim of this treatise is to provide a comprehensive review of the mechanisms underlying the development of I/R injury, from which it should be apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues. PMID:22878108

  14. Epiplakin deficiency aggravates murine caerulein-induced acute pancreatitis and favors the formation of acinar keratin granules.

    PubMed

    Wögenstein, Karl L; Szabo, Sandra; Lunova, Mariia; Wiche, Gerhard; Haybaeck, Johannes; Strnad, Pavel; Boor, Peter; Wagner, Martin; Fuchs, Peter

    2014-01-01

    Epiplakin, a member of the plakin protein family, is exclusively expressed in epithelial tissues and was shown to bind to keratins. Epiplakin-deficient (EPPK-/-) mice showed no obvious spontaneous phenotype, however, EPPK-/- keratinocytes displayed faster keratin network breakdown in response to stress. The role of epiplakin in pancreas, a tissue with abundant keratin expression, was not yet known. We analyzed epiplakin's expression in healthy and inflamed pancreatic tissue and compared wild-type and EPPK-/- mice during caerulein-induced acute pancreatitis. We found that epiplakin was expressed primarily in ductal cells of the pancreas and colocalized with apicolateral keratin bundles in murine pancreatic acinar cells. Epiplakin's diffuse subcellular localization in keratin filament-free acini of K8-deficient mice indicated that its filament-associated localization in acinar cells completely depends on its binding partner keratin. During acute pancreatitis, epiplakin was upregulated in acinar cells and its redistribution closely paralleled keratin reorganization. EPPK-/- mice suffered from aggravated pancreatitis but showed no obvious regeneration phenotype. At the most severe stage of the disease, EPPK-/- acinar cells displayed more keratin aggregates than those of wild-type mice. Our data propose epiplakin to be a protective protein during acute pancreatitis, and that its loss causes impaired disease-associated keratin reorganization.

  15. The role of anisotropic expansion for pulmonary acinar aerosol deposition

    PubMed Central

    Hofemeier, Philipp; Sznitman, Josué

    2016-01-01

    Lung deformations at the local pulmonary acinar scale are intrinsically anisotropic. Despite progress in imaging modalities, the true heterogeneous nature of acinar expansion during breathing remains controversial, where our understanding of inhaled aerosol deposition still widely emanates from studies under self-similar, isotropic wall motions. Building on recent 3D models of multi-generation acinar networks, we explore in numerical simulations how different hypothesized scenarios of anisotropic expansion influence deposition outcomes of inhaled aerosols in the acinar depths. While the broader range of particles acknowledged to reach the acinar region (dp = 0.005–5.0 μm) are largely unaffected by the details of anisotropic expansion under tidal breathing, our results suggest nevertheless that anisotropy modulates the deposition sites and fractions for a narrow band of sub-micron particles (dp ~ 0.5–0.75 μm), where the fate of aerosols is greatly intertwined with local convective flows. Our findings underscore how intrinsic aerosol motion (i.e. diffusion, sedimentation) undermines the role of anisotropic wall expansion that is often attributed in determining aerosol mixing and acinar deposition. PMID:27614613

  16. Stem cell therapy for spinal cord injury.

    PubMed

    Kan, E M; Ling, E A; Lu, J

    2010-01-01

    Spinal cord injury (SCI) damages axons and disrupts myelination interrupting sensory and motor neuronal transmission to and from the brain. Patients suffering from SCI although continue to survive, are often left chronically disabled and with no promise of a cure. Advances in stem cell biology has opened up doors for the use of human embryonic, adult neural and induced pluripotent stem cell strategies for SCI. Despite great promise from animal research, clinical trials have been limited and the jury is still out on its safety and efficacy. This review discusses the advantages and disadvantages of the various stem cell types, barriers hindering translation from animal to humans, and the need for established guidelines for standardization of clinical trials ensuring subsequent implementation. Ultimately, unrealistic expectations of stem cell therapy (SCT) as the elixir for SCI should be managed. The success of SCT for SCI lies in the network of research scientists, medical professionals and patients working cooperatively to build up a knowledge-intensive platform for a comprehensive risk-benefit assessment of SCT for SCI.

  17. Inductive and Deductive Approaches to Acute Cell Injury

    PubMed Central

    DeGracia, Donald J.; Tri Anggraini, Fika; Taha, Doaa Taha Metwally; Huang, Zhi-Feng

    2014-01-01

    Many clinically relevant forms of acute injury, such as stroke, traumatic brain injury, and myocardial infarction, have resisted treatments to prevent cell death following injury. The clinical failures can be linked to the currently used inductive models based on biological specifics of the injury system. Here we contrast the application of inductive and deductive models of acute cell injury. Using brain ischemia as a case study, we discuss limitations in inductive inferences, including the inability to unambiguously assign cell death causality and the lack of a systematic quantitative framework. These limitations follow from an overemphasis on qualitative molecular pathways specific to the injured system. Our recently developed nonlinear dynamical theory of cell injury provides a generic, systematic approach to cell injury in which attractor states and system parameters are used to quantitatively characterize acute injury systems. The theoretical, empirical, and therapeutic implications of shifting to a deductive framework are discussed. We illustrate how a deductive mathematical framework offers tangible advantages over qualitative inductive models for the development of therapeutics of acutely injured biological systems. PMID:27437490

  18. Renin lineage cells repopulate the glomerular mesangium after injury.

    PubMed

    Starke, Charlotte; Betz, Hannah; Hickmann, Linda; Lachmann, Peter; Neubauer, Björn; Kopp, Jeffrey B; Sequeira-Lopez, Maria Luisa S; Gomez, R Ariel; Hohenstein, Bernd; Todorov, Vladimir T; Hugo, Christian P M

    2015-01-01

    Mesangial cell injury has a major role in many CKDs. Because renin-positive precursor cells give rise to mesangial cells during nephrogenesis, this study tested the hypothesis that the same phenomenon contributes to glomerular regeneration after murine experimental mesangial injury. Mesangiolysis was induced by administration of an anti-mesangial cell serum in combination with LPS. In enhanced green fluorescent protein-reporter mice with constitutively labeled renin lineage cells, the size of the enhanced green fluorescent protein-positive area in the glomerular tufts increased after mesangial injury. Furthermore, we generated a novel Tet-on inducible triple-transgenic LacZ reporter line that allowed selective labeling of renin cells along renal afferent arterioles of adult mice. Although no intraglomerular LacZ expression was detected in healthy mice, about two-thirds of the glomerular tufts became LacZ positive during the regenerative phase after severe mesangial injury. Intraglomerular renin descendant LacZ-expressing cells colocalized with mesangial cell markers α8-integrin and PDGF receptor-β but not with endothelial, podocyte, or parietal epithelial cell markers. In contrast with LacZ-positive cells in the afferent arterioles, LacZ-positive cells in the glomerular tuft did not express renin. These data demonstrate that extraglomerular renin lineage cells represent a major source of repopulating cells for reconstitution of the intraglomerular mesangium after injury.

  19. B cells and Autoantibodies: Complex Roles in CNS Injury

    PubMed Central

    Ankeny, Daniel P.; Popovich, Phillip G.

    2010-01-01

    Emerging data indicate that traumatic injury to the brain or spinal cord activates B lymphocytes, culminating in the production of antibodies specific for antigens found within and outside the central nervous system (CNS). In this article, we summarize what is known about the effects of CNS injury on B cells. We outline the potential mechanisms for CNS trauma-induced B cell activation and discuss the potential consequences of these injury-induced B cell responses. Based on recent data, we hypothesize that a subset of autoimmune B cell responses initiated by CNS injury are pathogenic and that targeted inhibition of B cells could improve recovery in brain and spinal cord injured patients. PMID:20691635

  20. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    NASA Astrophysics Data System (ADS)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  1. Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury

    PubMed Central

    Ma, Ki H.; Hung, Holly A.

    2016-01-01

    The rapid and dynamic transcriptional changes of Schwann cells in response to injury are critical to peripheral nerve repair, yet the epigenomic reprograming that leads to the induction of injury-activated genes has not been characterized. Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3), which produces a transcriptionally repressive chromatin environment. We find that many promoters and/or gene bodies of injury-activated genes of mature rat nerves are occupied with H3K27me3. In contrast, the majority of distal enhancers that gain H3K27 acetylation after injury are not repressed by H3K27 methylation before injury, which is normally observed in developmentally poised enhancers. Injury induces demethylation of H3K27 in many genes, such as Sonic hedgehog (Shh), which is silenced throughout Schwann cell development before injury. In addition, experiments using a Schwann cell-specific mouse knock-out of the Eed subunit of PRC2 indicate that demethylation is a rate-limiting step in the activation of such genes. We also show that some transcription start sites of H3K27me3-repressed injury genes of uninjured nerves are bound with a mark of active promoters H3K4me3, for example, Shh and Gdnf, and the reduction of H3K27me3 results in increased trimethylation of H3K4. Our findings identify reversal of polycomb repression as a key step in gene activation after injury. SIGNIFICANCE STATEMENT Peripheral nerve regeneration after injury is dependent upon implementation of a novel genetic program in Schwann cells that supports axonal survival and regeneration. Identifying means to enhance Schwann cell reprogramming after nerve injury could be used to foster effective remyelination in the treatment of demyelinating disorders and in identifying pathways involved in regenerative process of myelination. Although recent progress has identified transcriptional determinants of successful reprogramming of the Schwann cell transcriptome

  2. Cell-based therapy for traumatic brain injury.

    PubMed

    Gennai, S; Monsel, A; Hao, Q; Liu, J; Gudapati, V; Barbier, E L; Lee, J W

    2015-08-01

    Traumatic brain injury is a major economic burden to hospitals in terms of emergency department visits, hospitalizations, and utilization of intensive care units. Current guidelines for the management of severe traumatic brain injuries are primarily supportive, with an emphasis on surveillance (i.e. intracranial pressure) and preventive measures to reduce morbidity and mortality. There are no direct effective therapies available. Over the last fifteen years, pre-clinical studies in regenerative medicine utilizing cell-based therapy have generated enthusiasm as a possible treatment option for traumatic brain injury. In these studies, stem cells and progenitor cells were shown to migrate into the injured brain and proliferate, exerting protective effects through possible cell replacement, gene and protein transfer, and release of anti-inflammatory and growth factors. In this work, we reviewed the pathophysiological mechanisms of traumatic brain injury, the biological rationale for using stem cells and progenitor cells, and the results of clinical trials using cell-based therapy for traumatic brain injury. Although the benefits of cell-based therapy have been clearly demonstrated in pre-clinical studies, some questions remain regarding the biological mechanisms of repair and safety, dose, route and timing of cell delivery, which ultimately will determine its optimal clinical use.

  3. Axin2-expressing cells execute regeneration after skeletal injury

    PubMed Central

    Ransom, R. C.; Hunter, D. J.; Hyman, S.; Singh, G.; Ransom, S. C.; Shen, E. Z.; Perez, K. C.; Gillette, M.; Li, J.; Liu, B.; Brunski, J. B.; Helms, J. A.

    2016-01-01

    The mammalian skeleton performs a diverse range of vital functions, requiring mechanisms of regeneration that restore functional skeletal cell populations after injury. We hypothesized that the Wnt pathway specifies distinct functional subsets of skeletal cell types, and that lineage tracing of Wnt-responding cells (WRCs) using the Axin2 gene in mice identifies a population of long-lived skeletal cells on the periosteum of long bone. Ablation of these WRCs disrupts healing after injury, and three-dimensional finite element modeling of the regenerate delineates their essential role in functional bone regeneration. These progenitor cells in the periosteum are activated upon injury and give rise to both cartilage and bone. Indeed, our findings suggest that WRCs may serve as a therapeutic target in the setting of impaired skeletal regeneration. PMID:27853243

  4. Calcium accentuates injury induced by ethanol in human gastric cells.

    PubMed

    Kokoska, E R; Smith, G S; Deshpande, Y; Wolff, A B; Rieckenberg, C; Miller, T A

    1999-01-01

    The mechanism(s) whereby ethanol induces cellular injury remains poorly understood. Furthermore, the role of calcium in gastric mucosal injury under in vitro conditions is poorly defined. The major objectives of this study were to (1) define the temporal relationship between intracellular calcium accumulation induced by ethanol and cellular injury, (2) characterize the mechanism(s) whereby ethanol increases cellular calcium content, and (3) determine whether calcium removal would attenuate ethanol-induced cellular injury. Human gastric cells (AGS) were used for all experiments. Sustained intracellular calcium accumulation induced by ethanol, but not transient changes, preceded and directly correlated with cellular injury. Cells exposed to damaging concentrations of ethanol demonstrated an initial calcium surge that appeared to be a consequence of inositol 1,4,5-triphosphate (IP3) generation and subsequent internal store release followed by a sustained plateau resulting from extracellular calcium influx through store-operated calcium channels. Finally, both morphologic (cellular injury) and functional (clearance of bovine serum albumin) changes induced by ethanol were significantly attenuated when extracellular Ca(+&plus) influx was prevented, and further decreased when intracellular Ca(++) stores were depleted. These data indicate that calcium plays a significant role in cellular injury induced by ethanol.

  5. Purkinje cell vulnerability to mild traumatic brain injury.

    PubMed

    Fukuda, K; Aihara, N; Sagar, S M; Sharp, F R; Pitts, L H; Honkaniemi, J; Noble, L J

    1996-05-01

    In this study we examined the cerebellar response to mild traumatic brain injury by assessing microglial activation and Purkinje cell loss. Activated microglia were identified using the antibodies OX-42 and ED-1 as well as isolectin B4. The anti-Purkinje cell antibody PEP-19 was used to evaluate Purkinje cell loss after injury. The mechanism of cell injury was examined using a monoclonal antibody to the inducible 72-kDa heat shock protein. A monoclonal antibody to the N-terminal sequence of Fos was used as a marker for neuronal activation. There was progressive activation of microglia in the cerebellar vermis within a few days after forebrain injury. In coronal sections the processes of activated microglia were oriented in "stripes" perpendicular to the cortical surface. In sagittal sections the activated microglia were in irregularly shaped clusters or in a fan-like distribution that radiated from the Purkinje cell layer toward the cortical surface. There was a significant loss of Purkinje cells 7 days postinjury as compared to the control group. There was no evidence of induction of heat shock protein in the cerebellum. In addition, there was no evidence of induction of c-Fos protein in either the cerebellar cortex or inferior olivary nuclei within the first 3 h after injury. These studies demonstrate that a fluid percussive impact to the forebrain results in cerebellar damage. The close anatomical association between activated microglia and Purkinje cells suggests that Purkinje cell injury is the cause of the microglial activation. The mechanism of Purkinje cell death, however, remains unclear.

  6. Contribution of apoptotic cell death to renal injury.

    PubMed

    Ortiz, A; Lorz, C; Justo, P; Catalán, M P; Egido, J

    2001-01-01

    Cell number abnormalities are frequent in renal diseases, and range from the hypercellularity of postinfectious glomerulonephritis to the cell depletion of chronic renal atrophy. Recent research has shown that apoptosis and its regulatory mechanisms contribute to cell number regulation in the kidney. The role of apoptosis ranges from induction to repair and progression of renal injury. Death ligands and receptors, such as TNF and FasL, proapoptotic and antiapoptotic Bcl-2 family members and caspases have all been shown to participate in apoptosis regulation in the course of renal injury. These proteins represent potential therapeutic targets, which should be further explored.

  7. Contribution of mast cells to injury mechanisms in a mouse model of pediatric traumatic brain injury.

    PubMed

    Moretti, Raffaella; Chhor, Vibol; Bettati, Donatella; Banino, Elena; De Lucia, Silvana; Le Charpentier, Tifenn; Lebon, Sophie; Schwendimann, Leslie; Pansiot, Julien; Rasika, Sowmyalakshmi; Degos, Vincent; Titomanlio, Luigi; Gressens, Pierre; Fleiss, Bobbi

    2016-12-01

    The cognitive and behavioral deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than injuries to the adult brain. Understanding this developmental sensitivity is critical because children under 4 years of age of sustain TBI more frequently than any other age group. One of the first events after TBI is the infiltration and degranulation of mast cells (MCs) in the brain, releasing a range of immunomodulatory substances; inhibition of these cells is neuroprotective in other types of neonatal brain injury. This study investigates for the first time the role of MCs in mediating injury in a P7 mouse model of pediatric contusion-induced TBI. We show that various neural cell types express histamine receptors and that histamine exacerbates excitotoxic cell death in primary cultured neurons. Cromoglycate, an inhibitor of MC degranulation, altered the inflammatory phenotype of microglia activated by TBI, reversing several changes but accentuating others, when administered before TBI. However, without regard to the time of cromoglycate administration, inhibiting MC degranulation did not affect cell loss, as evaluated by ventricular dilatation or cleaved caspase-3 labeling, or the density of activated microglia, neurons, or myelin. In double-heterozygous cKit mutant mice lacking MCs, this overall lack of effect was confirmed. These results suggest that the role of MCs in this model of pediatric TBI is restricted to subtle effects and that they are unlikely to be viable neurotherapeutic targets. © 2016 Wiley Periodicals, Inc.

  8. Role of mesenchymal cell death in lung remodeling after injury.

    PubMed Central

    Polunovsky, V A; Chen, B; Henke, C; Snover, D; Wendt, C; Ingbar, D H; Bitterman, P B

    1993-01-01

    Repair after acute lung injury requires elimination of granulation tissue from the alveolar airspace. We hypothesized that during lung repair, signals capable of inducing the death of the two principal cellular elements of granulation tissue, fibroblasts and endothelial cells, would be present at the air-lung interface. Bronchoalveolar lavage fluid obtained from patients during lung repair induced both fibroblast and endothelial cell death, while fluid obtained at the time of injury or from patient controls did not. The mode of cell death for endothelial cells was apoptosis. Fibroblast death, while morphologically distinct from necrosis, also differed from typical apoptosis. Only proliferating cells were susceptible to the bioactivities in lavage fluid, which were trypsin sensitive and lipid insoluble. Histological examination of lung tissue from patients after lung injury revealed evidence of apoptotic cells within airspace granulation tissue. Our results suggest that cell death induced by peptide(s) present at the air-lung interface may participate in the remodeling process that accompanies tissue repair after injury. Images PMID:8326006

  9. Transcranial amelioration of inflammation and cell death after brain injury

    NASA Astrophysics Data System (ADS)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.

    2014-01-01

    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  10. Kidney injury molecule-1: more than just an injury marker of tubular epithelial cells?

    PubMed

    Lim, Ai Ing; Tang, Sydney C W; Lai, Kar Neng; Leung, Joseph C K

    2013-05-01

    Regardless of the original causes and etiology, the progression to renal function declines follows a final common pathway associated with tubulointerstitial injury, in which the proximal tubular epithelial cells (PTEC) are instrumental. Kidney injury molecule-1 (KIM-1) is an emerging biomarker, and its expression and release are induced in PTEC upon injury. KIM-1 plays the role as a double-edged sword and implicates in the process of kidney injury and healing. Expression of KIM-1 is also associated with tubulointerstitial inflammation and fibrosis. More importantly, KIM-1 expressing PTEC play the role as the residential phagocytes, contribute to the removal of apoptotic cells and facilitate the regeneration of injured tubules. The precise mechanism of KIM-1 and its sheded ectodomain on restoration of tubular integrity after injury is not fully understood. Other than PTEC, macrophages (Mø) also implicate in tubular repair. Understanding the crosstalk between Mø and the injured PTEC is essential for designing appropriate methods for controlling the sophisticated machinery in tubular regeneration and healing. This article will review the current findings of KIM-1, beginning with its basic structure, utility as a biomarker, and possible functions, with focus on the role of KIM-1 in regeneration and healing of injured PTEC.

  11. TMIGD1 is a novel adhesion molecule that protects epithelial cells from oxidative cell injury.

    PubMed

    Arafa, Emad; Bondzie, Philip A; Rezazadeh, Kobra; Meyer, Rosana D; Hartsough, Edward; Henderson, Joel M; Schwartz, John H; Chitalia, Vipul; Rahimi, Nader

    2015-10-01

    Oxidative damage to renal tubular epithelial cells is a fundamental pathogenic mechanism implicated in both acute kidney injury and chronic kidney diseases. Because epithelial cell survival influences the outcome of acute kidney injury and chronic kidney diseases, identifying its molecular regulators could provide new insight into pathobiology and possible new therapeutic strategies for these diseases. We have identified transmembrane and immunoglobulin domain-containing 1 (TMIGD1) as a novel adhesion molecule, which is highly conserved in humans and other species. TMIGD1 is expressed in renal tubular epithelial cells and promotes cell survival. The extracellular domain of TMIGD1 contains two putative immunoglobulin domains and mediates self-dimerization. Our data suggest that TMIGD1 regulates transepithelial electric resistance and permeability of renal epithelial cells. TMIGD1 controls cell migration, cell morphology, and protects renal epithelial cells from oxidative- and nutrient-deprivation-induced cell injury. Hydrogen peroxide-induced oxidative cell injury downregulates TMIGD1 expression and targets it for ubiquitination. Moreover, TMIGD1 expression is significantly affected in both acute kidney injury and in deoxy-corticosterone acetate and sodium chloride (deoxy-corticosterone acetate salt)-induced chronic hypertensive kidney disease mouse models. Taken together, we have identified TMIGD1 as a novel cell adhesion molecule expressed in kidney epithelial cells that protects kidney epithelial cells from oxidative cell injury to promote cell survival.

  12. Pathogenesis of Cell Injury by Rickettsia conorii

    DTIC Science & Technology

    1986-11-26

    R. conorii is a member of the spotted fever group of rickettsiae along wlthiother human nathogens including R. rickettsii (Rocky Mountain spotted...of rickettsiae rather than the tickbite itself is crucial. Inocu- lation of a large dose of R. rickettsii , a generally nonescharogenic rickettsia , into...hypothetical rickettsia -mediated mechanisms of injury, currently no toxin of R. rickettsii ’ has been identified’, and there is avidence t against the existence

  13. Intestinal stem cell injury and protection during cancer therapy

    PubMed Central

    Yu, Jian

    2014-01-01

    Radiation and chemotherapy remain the most effective and widely used cancer treatments. These treatments cause DNA damage and selectively target rapidly proliferating cells such as cancer cells, as well as inevitably cause damage to normal tissues, particularly those undergoing rapid self renewal. The side effects associated with radiation and chemotherapy are most pronounced in the hematopoietic (HP) system and gastrointestinal (GI) tract. These tissues are fast renewing and have a well-defined stem cell compartment that plays an essential role in homeostasis, and in treatment-induced acute injury that is dose limiting. Using recently defined intestinal stem cell markers and mouse models, a great deal of insight has been gained in the biology of intestinal stem cells (ISCs), which will undoubtedly help further mechanistic understanding of their injury. This review will cover historic discoveries and recent advances in the identification and characterization of intestinal stem cells, their responses to genotoxic stress, and a new crypt and intestinal stem cell culture system. The discussion will include key pathways regulating intestinal crypt and stem cell injury and regeneration caused by cancer treatments, and strategies for their protection. The focus will be on the acute phase of cell killing in mouse radiation models, where our understanding of the mechanisms in relation to intestinal stem cells is most advanced and interventions appear most effective. PMID:24683536

  14. An implication of novel methodology to study pancreatic acinar mitochondria under in situ conditions.

    PubMed

    Manko, Bohdan O; Klevets, Myron Yu; Manko, Volodymyr V

    2013-03-01

    Mitochondria maintain numerous energy-consuming processes in pancreatic acinar cells, yet characteristics of pancreatic mitochondrial oxidative phosphorylation in native conditions are poorly studied. Besides, it is not known which type of solution is most adequate to preserve functions of pancreatic mitochondria in situ. Here we propose a novel experimental protocol suitable for in situ analysis of pancreatic mitochondria metabolic states. Isolated rat pancreatic acini were permeabilized with low doses of digitonin. Different metabolic states of mitochondria were examined in KCl- and sucrose-based solutions using Clark oxygen electrode. Respiration of digitonin-treated, unlike of intact, acini was substantially intensified by succinate or mixture of pyruvate plus malate. Substrate-stimulated respiration rate did not depend on solution composition. In sucrose-based solution, oligomycin inhibited State 3 respiration at succinate oxidation by 65.4% and at pyruvate plus malate oxidation by 60.2%, whereas in KCl-based solution, by 32.0% and 36.1%, respectively. Apparent respiratory control indices were considerably higher in sucrose-based solution. Rotenone or thenoyltrifluoroacetone severely inhibited respiration, stimulated by pyruvate plus malate or succinate, respectively. This revealed low levels of non-mitochondrial oxygen consumption of permeabilized acinar cells. These results suggest a stronger coupling between respiration and oxidative phosphorylation in sucrose-based solution.

  15. Cell Therapy Augments Functional Recovery Subsequent to Spinal Cord Injury under Experimental Conditions

    PubMed Central

    Sabapathy, Vikram; Tharion, George; Kumar, Sanjay

    2015-01-01

    The spinal cord injury leads to enervation of normal tissue homeostasis ultimately leading to paralysis. Until now there is no proper cure for the treatment of spinal cord injury. Recently, cell therapy in animal spinal cord injury models has shown some progress of recovery. At present, clinical trials are under progress to evaluate the efficacy of cell transplantation for the treatment of spinal cord injury. Different types of cells such as pluripotent stem cells derived neural cells, mesenchymal stromal cells, neural stem cells, glial cells are being tested in various spinal cord injury models. In this review we highlight both the advances and lacuna in the field of spinal cord injury by discussing epidemiology, pathophysiology, molecular mechanism, and various cell therapy strategies employed in preclinical and clinical injury models and finally we discuss the limitations and ethical issues involved in cell therapy approach for treating spinal cord injury. PMID:26240569

  16. [Systemic inflammatory response syndrome (SIRS) and endothelial cell injury].

    PubMed

    Gando, Satoshi

    2004-12-01

    During recent years, evidences have been accumulated demonstrating bidirectional crosstalk between coagulation and inflammation. This review outlines the influences that coagulation and inflammation exert on each other to the endothelium and how these systems induce systemic inflammatory response syndrome (SIRS). Then we discussed the implications of leucocyte-endothelial activation to endothelial cell injury followed by multiple organ dysfunction syndrome (MODS) in patients with sustained SIRS. Last we demonstrated an important role of inflammatory circulation disturbance induced by endothelial cell injury for the pathogenesis of MODS in SIRS and sepsis.

  17. Effects of amniotic epithelial cell transplantation in endothelial injury

    PubMed Central

    Vácz, Gabriella; Cselenyák, Attila; Cserép, Zsuzsanna; Benkő, Rita; Kovács, Endre; Pankotai, Eszter; Lindenmair, Andrea; Wolbank, Susanne; Schwarz, Charlotte M.; Horváthy, Dénes B.; Kiss, Levente; Hornyák, István; Lacza, Zsombor

    2016-01-01

    Purpose Human amniotic epithelial cells (hAECs) are promising tools for endothelial repair in vascular regenerative medicine. We hypothesized that these epithelial cells are capable of repairing the damaged endothelial layer following balloon injury of the carotid artery in adult male rats. Results Two days after injury, the transplanted hAECs were observed at the luminal side of the arterial wall. Then, 4 weeks after the injury, significant intimal thickening was observed in both untreated and cell implanted vessels. Constriction was decreased in both implanted and control animals. Immunohistochemical analysis showed a few surviving cells in the intact arterial wall, but no cells were observed at the site of injury. Interestingly, acetylcholine-induced dilation was preserved in the intact side and the sham-transplanted injured arteries, but it was a trend toward decreased vasodilation in the hAECs’ transplanted vessels. Conclusion We conclude that hAECs were able to incorporate into the arterial wall without immunosuppression, but failed to improve vascular function, highlighting that morphological implantation does not necessarily result in functional benefits and underscoring the need to understand other mechanisms of endothelial regeneration. PMID:28180006

  18. Altered coupling of muscarinic acetylcholine receptors in pancreatic acinar carcinoma of rat

    SciTech Connect

    Chien, J.L.; Warren, J.R.

    1986-03-05

    The structure and function of muscarinic acetylcholine receptors (mAChR) in acinar carcinoma cells have been compared to mAChR in normal pancreatic acinar cells. Similar 80 kD proteins identified by SDS-PAGE of tumor and normal mAChR affinity-labeled with the muscarinic antagonist /sup 3/H-propylbenzilyl-choline mustards, and identical binding of the antagonist N-methylscopolamine to tumor and normal cells (K/sub D/approx.4x10/sup -10/ M), indicate conservation of mAChR proteins in carcinoma cells. Carcinoma mAChR display homogeneous binding of the agonists carbamylcholine (CCh), K/sub D/approx.3x10/sup -5/ M, and oxotremorine (Oxo), K/sub D/approx.x10/sup -6/ M, whereas normal cells display heterogeneous binding, with a minor component of high affinity interactions for CCh, K/sub D/approx.3x10/sup -6/ M, and Oxo, K/sub D/approx.2x/sup -17/ M, and a major component of low affinity interactions for CCh, K/sub D/approx.1x10/sup -4/ M, and Oxo, K/sub D/approx.2x10/sup -5/ M. Both carcinoma and normal cells exhibit concentration-dependent CCh-stimulated increase in cytosolic free Ca/sup 2 +/, as measured by intracellular Quin 2 fluorescence and /sup 45/Ca/sup 2 +/ efflux. However, carcinoma cells demonstrate 50% maximal stimulation of intracellular Ca/sup 2 +/ release at a CCh concentration (EC/sub 50/approx.6x10/sup -7/ M) one log below that observed for normal cells. The authors propose an altered coupling of mAChR to intracellular Ca/sup 2 +/ homeostasis in carcinoma cells, which is manifest as a single activated receptor state for agonist binding, and increased sensitivity to muscarinic receptor stimulation of Ca/sup 2 +/ release.

  19. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    PubMed Central

    Tian, Mei; Zhang, Hong

    2014-01-01

    Spinal cord injury (SCI) is a serious disease of the center nervous system (CNS). It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET), magnetic resonance imaging (MRI), optical imaging (i.e., bioluminescence imaging (BLI)) gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI. PMID:24701583

  20. Could Cord Blood Cell Therapy Reduce Preterm Brain Injury?

    PubMed Central

    Li, Jingang; McDonald, Courtney A.; Fahey, Michael C.; Jenkin, Graham; Miller, Suzanne L.

    2014-01-01

    Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB) contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia–ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia–ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB-derived from preterm and term infants for use in clinical applications. PMID:25346720

  1. Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration

    PubMed Central

    Assunção-Silva, Rita C.; Gomes, Eduardo D.; Silva, Nuno A.; Salgado, António J.

    2015-01-01

    Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration. PMID:26124844

  2. Notch1 is not required for acinar-to-ductal metaplasia in a model of Kras-induced pancreatic ductal adenocarcinoma.

    PubMed

    Avila, Jacqueline L; Troutman, Scott; Durham, Amy; Kissil, Joseph L

    2012-01-01

    Pancreatic ductal adenocarcinoma is believed to arise from precursor lesions termed pancreatic intraepithelial neoplasia (PanIN). Mouse models have demonstrated that targeted expression of activated K-ras to mature acinar cells in the pancreas induces the spontaneous development of PanIN lesions; implying acinar-to-ductal metaplasia (ADM) is a key event in this process. Recent studies suggest Notch signaling is a key regulator of ADM. To assess if Notch1 is required for K-ras driven ADM we employed both an in vivo mouse model and in vitro explant culture system, in which an oncogenic allele of K-ras is activated and Notch1 is deleted simultaneously in acinar cells. Our results demonstrate that oncogenic K-ras is sufficient to drive ADM both in vitro and in vivo but that loss of Notch1 has a minimal effect on this process. Interestingly, while loss of Notch1 in vivo does not affect the severity of PanIN lesions observed, the overall numbers of lesions were greater in mice with deleted Notch1. This suggests Notch1 deletion renders acinar cells more susceptible to formation of K-ras-induced PanINs.

  3. Cell proliferation contributes to PNEC hyperplasia after acute airway injury.

    PubMed

    Stevens, T P; McBride, J T; Peake, J L; Pinkerton, K E; Stripp, B R

    1997-03-01

    Pulmonary neuroendocrine cells (PNECs) are airway epithelial cells that are capable of secreting a variety of neuropeptides. PNECs are scattered throughout the bronchial tree either as individual cells or clusters of cells termed neuroepithelial bodies (NEBs). PNECs and their secretory peptides have been considered to play a role in fetal lung development. Although the normal physiological function of PNECs and neuropeptides in normal adult lungs and in repair from lung injury is not known, PNEC hyperplasia has been associated with chronic lung diseases, such as bronchopulmonary dysplasia, and with chronic exposures, such as hypoxia, tobacco smoke, nitrosamines, and ozone. To evaluate changes in PNEC number and distribution after acute airway injury, FVB/n mice were treated with either naphthalene or vehicle. Naphthalene is an aromatic hydrocarbon that, at the dose used in this study, selectively destroys nonciliated bronchial epithelial cells (Clara cells) through cytochrome P-450-mediated metabolic activation into cytotoxic epoxides. PNECs were identified by immunohistochemical analysis of calcitonin gene-related peptide-like immunoreactivity (CGRP-IR). Proliferating cells were marked with [(3)H]thymidine incorporation. Acute naphthalene toxicity results in PNEC hyperplasia that is detectable after 5 days of recovery. PNEC hyperplasia is characterized by increased numbers of NEBs without significant changes in the number of isolated PNECs and by increased [(3)H]thymidine labeling of CGRP-IR cells. These data show that cell proliferation contributes to PNEC hyperplasia after acute airway injury and suggest that PNECs may be capable of more rapidly increasing their number in response to injury than previously recognized.

  4. Cell Therapy in Spinal Cord Injury: a Mini- Reivew

    PubMed Central

    Mehrabi, Soraya; Eftekhari, Sanaz; Moradi, Fateme; Delaviz, Hamdollah; Pourheidar, Bagher; Azizi, Monir; Zendehdel, Adib; Shahbazi, Ali; Joghataei, Mohammad Taghi

    2013-01-01

    Spinal cord injury (SCI) is a debilitating disease which leads to progressive functional damages. Because of limited axonal regeneration in the central nervous system, there is no or little recovery expected in the patients. Different cellular and molecular approaches were investigated in SCI animal models. Cellular transplantation of stem cells can potentially replace damaged tissue and provide a suitable microenvironment for axons to regenerate. Here, we reviewed the last approaches applied by our colleagues and others in order to improve axonal regeneration following SCI. We used different types of stem cells via different methods. First, fetal olfactory mucosa, schwann, and bone marrow stromal cells were transplanted into the injury sites in SCI models. In later studies, was applied simultaneous transplantation of stem cells with chondroitinase ABC in SCI models with the aid of nanoparticles. Using these approaches, considerable functional recovery was observed. However, considering some challenges in stem cell therapy such as rejection, infection, and development of a new cancer, our more recent strategy was application of cytokines. We observed a significant improvement in motor function of rats when stromal derived factor-1 was used to attract innate stem cells to the injury site. In conclusion, it seems that co-transplantation of different cells accompanies with other factors like enzymes and growth factors via new delivery systems may yield better results in SCI. PMID:25337345

  5. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury

    PubMed Central

    Doulames, Vanessa M.; Plant, Giles W.

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  6. Mesenchymal stem cells induce dermal fibroblast responses to injury

    SciTech Connect

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.

  7. Emerging concepts in myeloid cell biology after spinal cord injury.

    PubMed

    Hawthorne, Alicia L; Popovich, Phillip G

    2011-04-01

    Traumatic spinal cord injury (SCI) affects the activation, migration, and function of microglia, neutrophils and monocyte/macrophages. Because these myeloid cells can positively and negatively affect survival of neurons and glia, they are among the most commonly studied immune cells. However, the mechanisms that regulate myeloid cell activation and recruitment after SCI have not been adequately defined. In general, the dynamics and composition of myeloid cell recruitment to the injured spinal cord are consistent between mammalian species; only the onset, duration, and magnitude of the response vary. Emerging data, mostly from rat and mouse SCI models, indicate that resident and recruited myeloid cells are derived from multiple sources, including the yolk sac during development and the bone marrow and spleen in adulthood. After SCI, a complex array of chemokines and cytokines regulate myelopoiesis and intraspinal trafficking of myeloid cells. As these cells accumulate in the injured spinal cord, the collective actions of diverse cues in the lesion environment help to create an inflammatory response marked by tremendous phenotypic and functional heterogeneity. Indeed, it is difficult to attribute specific reparative or injurious functions to one or more myeloid cells because of convergence of cell function and difficulties in using specific molecular markers to distinguish between subsets of myeloid cell populations. Here we review each of these concepts and include a discussion of future challenges that will need to be overcome to develop newer and improved immune modulatory therapies for the injured brain or spinal cord.

  8. Alterations of natural killer cells in traumatic brain injury.

    PubMed

    Kong, Xiao-Dong; Bai, Sheng; Chen, Xin; Wei, Hui-Jie; Jin, Wei-Na; Li, Min-Shu; Yan, Yaping; Shi, Fu-Dong

    2014-12-01

    To investigate the relationship between natural killer (NK) cells and traumatic brain injury (TBI), we tracked an established phenotype of circulating NK cells at several time points in patients with different grades of TBI. In serial peripheral blood samples, NK cells were prospectively measured by flow cytometry of CD3(-) CD56(+) lymphocytes. Compared to healthy controls, TBI patients had reductions in both the percentage and the absolute number of NK cells. Furthermore, the magnitude of NK cell reduction correlated with the degree of TBI severity at several time points. That is, NK cell population size was independently associated with lower Glasgow Coma Scale scores. In addition, at some time points, a positive correlation was found between the NK cell counts and Glasgow Outcome Scale scores. Our results indicate that TBI induces a reduction in the number of NK cells, and the magnitude of the reduction appears to parallel the severity of TBI.

  9. Therapeutic Potential of Olfactory Ensheathing Cells and Mesenchymal Stem Cells in Spinal Cord Injuries

    PubMed Central

    Anna, Zadroga; Joanna, Czarzasta; Barczewska, Monika; Wojciech, Maksymowicz

    2017-01-01

    Spinal cord injury (SCI) is a devastating neurological condition that affects individuals worldwide, significantly reducing quality of life, for both patients and their families. In recent years there has been a growing interest in cell therapy potential in the context of spinal cord injuries. The present review aims to discuss and compare the restorative approaches based on the current knowledge, available spinal cord restorative cell therapies, and use of selected cell types. However, treatment options for spinal cord injury are limited, but rehabilitation and experimental technologies have been found to help maintain or improve remaining nerve function in some cases. Mesenchymal stem cells as well as olfactory ensheathing cells seem to show therapeutic impact on damaged spinal cord and might be useful in neuroregeneration. Recent research in animal models and first human trials give patients with spinal cord injuries hope for recovery. PMID:28298927

  10. Therapeutic Potential of Olfactory Ensheathing Cells and Mesenchymal Stem Cells in Spinal Cord Injuries.

    PubMed

    Anna, Zadroga; Katarzyna, Jezierska-Woźniak; Joanna, Czarzasta; Barczewska, Monika; Joanna, Wojtkiewicz; Wojciech, Maksymowicz

    2017-01-01

    Spinal cord injury (SCI) is a devastating neurological condition that affects individuals worldwide, significantly reducing quality of life, for both patients and their families. In recent years there has been a growing interest in cell therapy potential in the context of spinal cord injuries. The present review aims to discuss and compare the restorative approaches based on the current knowledge, available spinal cord restorative cell therapies, and use of selected cell types. However, treatment options for spinal cord injury are limited, but rehabilitation and experimental technologies have been found to help maintain or improve remaining nerve function in some cases. Mesenchymal stem cells as well as olfactory ensheathing cells seem to show therapeutic impact on damaged spinal cord and might be useful in neuroregeneration. Recent research in animal models and first human trials give patients with spinal cord injuries hope for recovery.

  11. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury

    PubMed Central

    Hasan, Anwarul; Deeb, George; Rahal, Rahaf; Atwi, Khairallah; Mondello, Stefania; Marei, Hany Elsayed; Gali, Amr; Sleiman, Eliana

    2017-01-01

    Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed. PMID:28265255

  12. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury.

    PubMed

    Hasan, Anwarul; Deeb, George; Rahal, Rahaf; Atwi, Khairallah; Mondello, Stefania; Marei, Hany Elsayed; Gali, Amr; Sleiman, Eliana

    2017-01-01

    Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed.

  13. Cell Delivery System for Traumatic Brain Injury

    DTIC Science & Technology

    2008-03-21

    from collagen sponges using the dish test method (Figure 16B). The advantage of the dish test over the diffusion cells test is that samples can be...composite mat with collagen fibers and some chitosan fibers as well as globules but were not able to test for cell response to these matrices...dimensional collagen scaffold. MSCs cultured in monolayer and on a three- dimensional collagen sponge were treated with retinoic acid (RA) for up to

  14. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    PubMed

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  15. Obstructive renal injury: from fluid mechanics to molecular cell biology

    PubMed Central

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-01-01

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making. PMID:24198613

  16. Caustic esophageal injury by impaction of cell batteries.

    PubMed

    García Fernández, Francisco José; León Montañés, Rafael; Bozada Garcia, Juan Manuel

    2016-12-01

    The ingestion of cell batteries can cause serious complications (fistula, perforation or stenosis) at the esophageal level. The damage starts soon after ingestion (approximately 2 hours) and is directly related to the amount of time the battery is lodged in said location, the amount of electrical charge remaining in the battery, and the size of the battery itself. Injury is produced by the combination of electrochemical and chemical mechanisms and pressure necrosis. The ingestion of multiple cells and a size > = 20 mm are related with more severe and clinically significant outcomes. A female patient, 39 years old, with a history of previous suicide attempts, was admitted to the Emergency Room with chest pain and dysphagia after voluntary ingestion of 2 cell batteries. Two cell batteries are easily detected in a routine chest X-ray, presenting a characteristic double-ring shadow, or peripheral halo. Urgent oral endoscopy was performed 10 hours after ingestion, showing a greenish-gray lumpy magma-like consistency due to leakage of battery contents. The 2 batteries were sequentially removed with alligator-jaw forceps. After flushing and aspiration of the chemical material, a broad and circumferential injury with denudation of the mucosa and two deep ulcerations with necrosis were observed where the batteries had been. The batteries' seals were eroded, releasing chemical contents. Despite the severity of the injuries, the patient progressed favorably and there was no esophageal perforation. Esophageal impaction of cell batteries should always be considered an endoscopic urgency.

  17. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer

    PubMed Central

    Sullivan, Robert; Dailey, Travis; Duncan, Kelsey; Abel, Naomi; Borlongan, Cesario V.

    2016-01-01

    Peripheral nerve injury can lead to great morbidity in those afflicted, ranging from sensory loss, motor loss, chronic pain, or a combination of deficits. Over time, research has investigated neuronal molecular mechanisms implicated in nerve damage, classified nerve injury, and developed surgical techniques for treatment. Despite these advancements, full functional recovery remains less than ideal. In this review, we discuss historical aspects of peripheral nerve injury and introduce nerve transfer as a therapeutic option, as well as an adjunct therapy to transplantation of Schwann cells and their stem cell derivatives for repair of the damaged nerve. This review furthermore, will provide an elaborated discussion on the sources of Schwann cells, including sites to harvest their progenitor and stem cell lines. This reflects the accessibility to an additional, concurrent treatment approach with nerve transfers that, predicated on related research, may increase the efficacy of the current approach. We then discuss the experimental and clinical investigations of both Schwann cells and nerve transfer that are underway. Lastly, we provide the necessary consideration that these two lines of therapeutic approaches should not be exclusive, but conversely, should be pursued as a combined modality given their mutual role in peripheral nerve regeneration. PMID:27983642

  18. Cell Adhesion Molecules in Chemically-Induced Renal Injury

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.

    2007-01-01

    Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion, and in some cases, act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules such as the cadherins, the catenins, ZO-1, occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules such as ICAM-1, the integrins and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include Cd, Hg, Bi, cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl-L-cysteine) (DCVC) and various venom toxins. This review also includes a discussion of the various mechanisms by which these substances can affect cell adhesion molecules in the kidney. PMID:17316817

  19. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    PubMed Central

    Simon, R H; DeHart, P D; Todd, R F

    1986-01-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neutrophils with an antibody (anti-Mo1) that reduced neutrophil adherence to epithelial cells limited killing. Although a variety of serine protease inhibitors partially inhibited cytotoxicity, we found that neutrophil cytoplasts, neutrophil lysates, neutrophil-conditioned medium, purified azurophilic or specific granule contents, and purified human neutrophil elastase did not duplicate the injury. We conclude that stimulated neutrophils can kill alveolar epithelial cells in an oxygen metabolite-independent manner. Tight adherence of stimulated neutrophils to epithelial cell monolayers appears to promote epithelial cell killing. Images PMID:3771800

  20. Stem Cells for Ischemic Brain Injury: A Critical Review

    PubMed Central

    Burns, Terry C.; Verfaillie, Catherine M.; Low, Walter C.

    2014-01-01

    No effective therapy is currently available to promote recovery following ischemic stroke. Stem cells have been proposed as a potential source of new cells to replace those lost due to central nervous system injury, as well as a source of trophic molecules to minimize damage and promote recovery. We undertook a detailed review of data from recent basic science and preclinical studies to investigate the potential application of endogenous and exogenous stem cell therapies for treatment of cerebral ischemia. To date, spontaneous endogenous neurogenesis has been observed in response to ischemic injury, and can be enhanced via infusion of appropriate cytokines. Exogenous stem cells from multiple sources can generate neural cells that survive and form synaptic connections after transplantation in the stroke-injured brain. Stem cells from multiple sources cells also exhibit neuroprotective properties that may ameliorate stroke deficits. In many cases, functional benefits observed are likely independent of neural differentiation, though exact mechanisms remain poorly understood. Future studies of neuroregeneration will require the demonstration of function in endogenously born neurons following focal ischemia. Further, methods are currently lacking to definitively demonstrate the therapeutic effect of newly introduced neural cells. Increased plasticity following stroke may facilitate the functional integration of new neurons, but the loss of appropriate guidance cues and supporting architecture in the infarct cavity will likely impede the restoration of lost circuitry. As such careful investigation of the mechanisms underlying trophic benefits will be essential. Evidence to date suggest that continued development of stem cell therapies may ultimately lead to viable treatment options for ischemic brain injury. PMID:19399885

  1. Induced Pluripotent Stem Cells for Traumatic Spinal Cord Injury

    PubMed Central

    Khazaei, Mohamad; Ahuja, Christopher S.; Fehlings, Michael G.

    2017-01-01

    Spinal cord injury (SCI) is a common cause of mortality and neurological morbidity. Although progress had been made in the last decades in medical, surgical, and rehabilitation treatments for SCI, the outcomes of these approaches are not yet ideal. The use of cell transplantation as a therapeutic strategy for the treatment of SCI is very promising. Cell therapies for the treatment of SCI are limited by several translational road blocks, including ethical concerns in relation to cell sources. The use of iPSCs is particularly attractive, given that they provide an autologous cell source and avoid the ethical and moral considerations of other stem cell sources. In addition, different cell types, that are applicable to SCI, can be created from iPSCs. Common cell sources used for reprogramming are skin fibroblasts, keratinocytes, melanocytes, CD34+ cells, cord blood cells and adipose stem cells. Different cell types have different genetic and epigenetic considerations that affect their reprogramming efficiencies. Furthermore, in SCI the iPSCs can be differentiated to neural precursor cells, neural crest cells, neurons, oligodendrocytes, astrocytes, and even mesenchymal stromal cells. These can produce functional recovery by replacing lost cells and/or modulating the lesion microenvironment. PMID:28154814

  2. Susceptibility of irradiated bovine aortic endothelial cells to injury

    SciTech Connect

    Zhou, M.H.; Dong, Q.; Ts'ao, C.

    1988-11-01

    Using cultured bovine aortic endothelial cells (BAEC), the authors attempted to determine whether prior irradiation would alter the susceptibility of these cells to three known injurious stimuli and, if so, whether the alteration would be related to radiation dose. BAEC were irradiated with 0, 5, or 10 Gy of gamma rays and, on the third postirradiation day, exposed to fibrin, nicotine, or bacterial endotoxin (lipopolysaccharide, LPS). Release of prelabeled 51Cr, representing cell lysis, cell detachment, or a combination of the two, was determined. Significant differences between irradiated and control cells were determined by using paired Student's t-tests. Irradiation did not appear to have altered the sensitivity of BAEC to fibrin-induced injury. Cells irradiated with 10 Gy of gamma rays, but generally not those irradiated with half this dose, showed a heightened susceptibility to nicotine. Contrary to the nicotine results, irradiated cells showed less cell detachment and lysis after exposure to LPS. These results suggest that the susceptibility of irradiated BAEC to harmful stimuli depends largely on the nature of the stimulus as well as the radiation dose.

  3. Amniotic fluid stem cells increase embryo survival following injury.

    PubMed

    Prasongchean, Weerapong; Bagni, Marinella; Calzarossa, Cinzia; De Coppi, Paolo; Ferretti, Patrizia

    2012-03-20

    Although amniotic fluid cells can differentiate into several mesenchymal lineages and have been proposed as a valuable therapeutic cell source, their ability to undergo terminal neuronal differentiation remains a cause of controversy. The aim of this study was to investigate the neuronal differentiation ability of the c-Kit-positive population from GFP-transgenic rat amniotic fluid, amniotic fluid stem (AFS) cells, and to assess how they affected injury response in avian embryos. AFS cells were found to express several neural stem/progenitor cell markers. However, no overt neuronal differentiation was apparent after either treatment with small molecules known to stimulate neuronal differentiation, attempts to differentiate AFS cell-derived embryoid body-like structures, or grafting AFS cells into environments known to support neuronal differentiation (organotypic rat hippocampal cultures, embryonic chick nervous system). Nonetheless, AFS cells significantly reduced hemorrhage and increased survival when grafted at the site of an extensive thoracic crush injury in E2.5 chick embryos. Increased embryo survival was induced neither by desmopressin treatment, which also reduced hemorrhage, nor by grafting other mesenchymal or neural cells, indicating a specific effect of AFS cells. This was found to be mediated by soluble factors in a transwell coculture model. Altogether, this study shows that AFS cells reduce tissue damage and increase survival in injured embryos, providing a potentially valuable tool as therapeutic agents for tissue repair, particularly prenatal/perinatal repair of defects diagnosed during gestation, but this effect is mediated via paracrine mechanisms rather than the ability of AFS cells to fully differentiate into neuronal cells.

  4. Mechanisms of Cell Injury with Hepatotoxic Chemicals

    DTIC Science & Technology

    1985-05-01

    McLean (1982), Dis- sociation of cell death from covalent binding of paracetamol by flavones in a hepatocyte system, Biochem. Pharmacol., 31:3745-3749...MacDonald, and R. D. HarbJson (1977), Effect of N-acetylcysteine on hepatic covalent binding of paracetamol (acetaminophen), Lancet, 1:657-658...Williams (1977), Paracetamol -induced hepatic necrosis in the mouse-relationship between covalent binding, hepatic glutathione depletion, and the

  5. Pathogenesis of Cell Injury by Rickettsia conorii

    DTIC Science & Technology

    1985-05-17

    tionships among various strains of R. conorlil including rickettsiae associated with the severe disease occurring in Isra-el nd . rickettsii . Many...suggests that inhi’bition of rickettsia ] adsorption delays the cytopathic effect of R. rickettsii In primary chick embryo cells. Phente’rine Is a drug which...plaques induced by Rickettsia rickettsii . Infect Immun 37:301-306, 19a2. 44. Walker OH, Gay RM, Valdes-Ospena M: The occurene of eschars in Rocky

  6. Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury

    PubMed Central

    Ren, Yilong; Ao, Yan; O’Shea, Timothy M.; Burda, Joshua E.; Bernstein, Alexander M.; Brumm, Andrew J.; Muthusamy, Nagendran; Ghashghaei, H. Troy; Carmichael, S. Thomas; Cheng, Liming; Sofroniew, Michael V.

    2017-01-01

    Ependyma have been proposed as adult neural stem cells that provide the majority of newly proliferated scar-forming astrocytes that protect tissue and function after spinal cord injury (SCI). This proposal was based on small, midline stab SCI. Here, we tested the generality of this proposal by using a genetic knock-in cell fate mapping strategy in different murine SCI models. After large crush injuries across the entire spinal cord, ependyma-derived progeny remained local, did not migrate and contributed few cells of any kind and less than 2%, if any, of the total newly proliferated and molecularly confirmed scar-forming astrocytes. Stab injuries that were near to but did not directly damage ependyma, contained no ependyma-derived cells. Our findings show that ependymal contribution of progeny after SCI is minimal, local and dependent on direct ependymal injury, indicating that ependyma are not a major source of endogenous neural stem cells or neuroprotective astrocytes after SCI. PMID:28117356

  7. Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury.

    PubMed

    Ren, Yilong; Ao, Yan; O'Shea, Timothy M; Burda, Joshua E; Bernstein, Alexander M; Brumm, Andrew J; Muthusamy, Nagendran; Ghashghaei, H Troy; Carmichael, S Thomas; Cheng, Liming; Sofroniew, Michael V

    2017-01-24

    Ependyma have been proposed as adult neural stem cells that provide the majority of newly proliferated scar-forming astrocytes that protect tissue and function after spinal cord injury (SCI). This proposal was based on small, midline stab SCI. Here, we tested the generality of this proposal by using a genetic knock-in cell fate mapping strategy in different murine SCI models. After large crush injuries across the entire spinal cord, ependyma-derived progeny remained local, did not migrate and contributed few cells of any kind and less than 2%, if any, of the total newly proliferated and molecularly confirmed scar-forming astrocytes. Stab injuries that were near to but did not directly damage ependyma, contained no ependyma-derived cells. Our findings show that ependymal contribution of progeny after SCI is minimal, local and dependent on direct ependymal injury, indicating that ependyma are not a major source of endogenous neural stem cells or neuroprotective astrocytes after SCI.

  8. Impulsive pressurization of neuronal cells for traumatic brain injury study.

    PubMed

    Nienaber, Matthew; Lee, Jeong Soon; Feng, Ruqiang; Lim, Jung Yul

    2011-10-12

    A novel impulsive cell pressurization experiment has been developed using a Kolsky bar device to investigate blast-induced traumatic brain injury (TBI). We demonstrate in this video article how blast TBI-relevant impulsive pressurization is applied to the neuronal cells in vitro. This is achieved by using well-controlled pressure pulse created by a specialized Kolsky bar device, with complete pressure history within the cell pressurization chamber recorded. Pressurized neuronal cells are inspected immediately after pressurization, or further incubated to examine the long-term effects of impulsive pressurization on neurite/axonal outgrowth, neuronal gene expression, apoptosis, etc. We observed that impulsive pressurization at about 2 MPa induces distinct neurite loss relative to unpressurized cells. Our technique provides a novel method to investigate the molecular/cellular mechanisms of blast TBI, via impulsive pressurization of brain cells at well-controlled pressure magnitude and duration.

  9. Mesangial cell immune injury. Synthesis, origin, and role of eicosanoids.

    PubMed Central

    Lianos, E A; Bresnahan, B A; Pan, C

    1991-01-01

    The synthesis, cell origin, and physiologic role of eicosanoids were investigated in a model of mesangial cell immune injury induced by a monoclonal antibody against the rat thymocyte antigen Thy 1.1 also expressed in rat mesangial cells. A single intravenous injection of the antibody resulted in enhanced glomerular synthesis of thromboxane (Tx)B2, leukotriene (LT)B4, and 12-hydroxyeicosatetraenoic acid (HETE), whereas that of PGE2 and PGF2 alpha was either unaltered or impaired. The enhanced eicosanoid synthesis was associated with decrements in glomerular filtration rate (GFR) and renal blood flow (RBF). Complement activation mediated both the increments in TxB2, LTB4, and 12-HETE and the decrements in GFR and RBF. The decrements in GFR were abolished by the TxA2 receptor antagonist SQ-29,548. Although both neutrophiles and Ia (+) leukocytes infiltrated glomeruli, glomerular LTB4 originated mainly from the latter. Platelets entirely accounted for the enhanced 12-HETE synthesis in isolated glomeruli and to a lesser extent for that of LTB4 and TxB2. Glomerular PGE2 and PGF2 alpha originated from mesangial cells as their impaired synthesis coincided with extensive mesangial cell lysis. The observations indicate that in mesangial cell immune injury vasoactive and proinflammatory eicosanoids originate from recruited or activated Ia (+) leukocytes and platelets and may exert paracrine effects on mesangial cells. Images PMID:1677947

  10. Parasympathetic non-adrenergic, non-cholinergic mechanisms in reflex secretion of parotid acinar granules in conscious rats.

    PubMed Central

    Ekström, J; Helander, H F; Tobin, G

    1993-01-01

    1. Female adult rats were subjected to sympathetic denervation of the parotid glands by bilateral removal of the superior cervical ganglion 10-12 days before acute experiments. The sympathectomy was in some of the experimental groups combined with either bilateral adrenal medullectomy, treatment with the sensory neurotoxin capsaicin or parasympathetic denervation of the gland by cutting the auriculotemporal nerve. 2. Food but not water was withheld for 29-32 h before acute experiments. All animals were given an intraperitoneal injection of phentolamine (2 mg kg-1) and propranolol (1 mg kg-1) and, when appropriate, also atropine (1 mg kg-1). Then the experimental animals were fed their ordinary food of hard chow for 60-90 min. Thereafter, these animals and their non-fed controls were killed, and the parotid glands were removed and used for either morphometric assessment or measurement of amylase activity. 3. In the atropinized rats subjected to sympathectomy alone, eating reduced the numerical density of acinar secretory granules by 50% and the total activity of amylase by 55%; the corresponding figures were, when sympathectomy was combined with adrenal medullectomy, 51 and 63%. Also, in atropinized animals subjected to sympathectomy and capsaicin pretreatment, eating reduced the numerical density of acinar granules and the total amylase activity, in this case by 45 and 35%, respectively. 4. In the atropinized rats subjected to sympathectomy and parasympathectomy, eating caused no change in the numerical density of acinar granules but reduced the total amylase activity by 35%. 5. In the non-atropinized rats subjected to sympathectomy alone, eating reduced the numerical density of acinar granules by 22%, while there was no change in the total amylase activity. 6. In conclusion, eating evoked a reflex activation of the sympathectomized parotid gland that engaged non-adrenergic non-cholinergic receptors of the acinar cells. The present results give weight to a

  11. Characterization of nicardipine hydrochloride-induced cell injury in human vascular endothelial cells.

    PubMed

    Ochi, Masanori; Kawai, Yoshiko; Tanaka, Yoshiyuki; Toyoda, Hiromu

    2015-02-01

    Nicardipine hydrochloride (NIC), a dihydropyridine calcium-channel blocking agent, has been widely used for the treatment of hypertension. Especially, nicardipine hydrochloride injection is used as first-line therapy for emergency treatment of abnormally high blood pressure. Although NIC has an attractive pharmacological profile, one of the dose-limiting factors of NIC is severe peripheral vascular injury after intravenous injection. The goal of this study was to better understand and thereby reduce NIC-mediated vascular injury. Here, we investigated the mechanism of NIC-induced vascular injury using human dermal microvascular endothelial cells (HMVECs). NIC decreased cell viability and increased percent of dead cells in a dose-dependent manner (10-30 μg/mL). Although cell membrane injury was not significant over 9 hr exposure, significant changes of cell morphology and increases in vacuoles in HMVECs were observed within 30 min of NIC exposure (30 μg/mL). Autophagosome labeling with monodansylcadaverine revealed increased autophagosomes in the NIC-treated cells, whereas caspase 3/7 activity was not increased in the NIC-treated cells (30 μg/mL). Additionally, NIC-induced reduction of cell viability was inhibited by 3-methyladenine, an inhibitor of autophagosome formation. These findings suggest that NIC causes severe peripheral venous irritation via induction of autophagic cell death and that inhibition of autophagy could contribute to the reduction of NIC-induced vascular injury.

  12. Role of stem cells during diabetic liver injury.

    PubMed

    Wan, Ying; Garner, Jessica; Wu, Nan; Phillip, Levine; Han, Yuyan; McDaniel, Kelly; Annable, Tami; Zhou, Tianhao; Francis, Heather; Glaser, Shannon; Huang, Qiaobing; Alpini, Gianfranco; Meng, Fanyin

    2016-02-01

    Diabetes mellitus is one of the most severe endocrine metabolic disorders in the world that has serious medical consequences with substantial impacts on the quality of life. Type 2 diabetes is one of the main causes of diabetic liver diseases with the most common being non-alcoholic fatty liver disease. Several factors that may explain the mechanisms related to pathological and functional changes of diabetic liver injury include: insulin resistance, oxidative stress and endoplasmic reticulum stress. The realization that these factors are important in hepatocyte damage and lack of donor livers has led to studies concentrating on the role of stem cells (SCs) in the prevention and treatment of liver injury. Possible avenues that the application of SCs may improve liver injury include but are not limited to: the ability to differentiate into pancreatic β-cells (insulin producing cells), the contribution for hepatocyte regeneration, regulation of lipogenesis, glucogenesis and anti-inflammatory actions. Once further studies are performed to explore the underlying protective mechanisms of SCs and the advantages and disadvantages of its application, there will be a greater understand of the mechanism and therapeutic potential. In this review, we summarize the findings regarding the role of SCs in diabetic liver diseases.

  13. Injury mechanism dictates contribution of bone marrow-derived cells to murine hepatic vascular regeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem and progenitor cells derived from adult marrow have been shown to regenerate vascular cells in response to injury. However, it is unclear whether the type of injury dictates the contribution of such cells to neovascularization and which subpopulations of cells contribute to vascular regeneratio...

  14. Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion.

    PubMed

    Ahluwalia, Neil; Grasberger, Paula E; Mugo, Brian M; Feghali-Bostwick, Carol; Pardo, Annie; Selman, Moisés; Lagares, David; Tager, Andrew M

    2016-06-01

    Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.

  15. iPS cell transplantation for traumatic spinal cord injury

    PubMed Central

    Goulão, Miguel; Lepore, Angelo C.

    2016-01-01

    A large body of work has been published on transplantation of a wide range of neural stem and progenitor cell types derived from the developing and adult CNS, as well as from pluripotent embryonic stem cells, in models of traumatic spinal cord injury (SCI). However, many of these cell-based approaches present practical issues for clinical translation such as ethical cell derivation, generation of potentially large numbers of homogenously prepared cells, and immune rejection. With the advent of induced Pluripotent Stem (iPS) cell technology, many of these issues may potentially be overcome. To date, a number of studies have demonstrated integration, differentiation into mature CNS lineages, migration and long-term safety of iPS cell transplants in a variety of SCI models, as well as therapeutic benefits in some cases. Given the clinical potential of this advance in stem cell biology, we present a concise review of studies published to date involving iPS cell transplantation in animal models of SCI. PMID:26201863

  16. Cell Transplantation for Spinal Cord Injury: A Systematic Review

    PubMed Central

    Li, Jun; Lepski, Guilherme

    2013-01-01

    Cell transplantation, as a therapeutic intervention for spinal cord injury (SCI), has been extensively studied by researchers in recent years. A number of different kinds of stem cells, neural progenitors, and glial cells have been tested in basic research, and most have been excluded from clinical studies because of a variety of reasons, including safety and efficacy. The signaling pathways, protein interactions, cellular behavior, and the differentiated fates of experimental cells have been studied in vitro in detail. Furthermore, the survival, proliferation, differentiation, and effects on promoting functional recovery of transplanted cells have also been examined in different animal SCI models. However, despite significant progress, a “bench to bedside” gap still exists. In this paper, we comprehensively cover publications in the field from the last years. The most commonly utilized cell lineages were covered in this paper and specific areas covered include survival of grafted cells, axonal regeneration and remyelination, sensory and motor functional recovery, and electrophysiological improvements. Finally we also review the literature on the in vivo tracking techniques for transplanted cells. PMID:23484157

  17. Alveolar Epithelial Cell Injury Due to Zinc Oxide Nanoparticle Exposure

    PubMed Central

    Kim, Yong Ho; Fazlollahi, Farnoosh; Kennedy, Ian M.; Yacobi, Nazanin R.; Hamm-Alvarez, Sarah F.; Borok, Zea; Kim, Kwang-Jin; Crandall, Edward D.

    2010-01-01

    Rationale: Although inhalation of zinc oxide (ZnO) nanoparticles (NPs) is known to cause systemic disease (i.e., metal fume fever), little is known about mechanisms underlying injury to alveolar epithelium. Objectives: Investigate ZnO NP–induced injury to alveolar epithelium by exposing primary cultured rat alveolar epithelial cell monolayers (RAECMs) to ZnO NPs. Methods: RAECMs were exposed apically to ZnO NPs or, in some experiments, to culture fluid containing ZnCl2 or free Zn released from ZnO NPs. Transepithelial electrical resistance (RT) and equivalent short-circuit current (IEQ) were assessed as functions of concentration and time. Morphologic changes, lactate dehydrogenase release, cell membrane integrity, intracellular reactive oxygen species (ROS), and mitochondrial activity were measured. Measurements and Main Results: Apical exposure to 176 μg/ml ZnO NPs decreased RT and IEQ of RAECMs by 100% over 24 hours, whereas exposure to 11 μg/ml ZnO NPs had little effect. Changes in RT and IEQ caused by 176 μg/ml ZnO NPs were irreversible. ZnO NP effects on RT yielded half-maximal concentrations of approximately 20 μg/ml. Apical exposure for 24 hours to 176 μg/ml ZnO NPs induced decreases in mitochondrial activity and increases in lactate dehydrogenase release, permeability to fluorescein sulfonic acid, increased intracellular ROS, and translocation of ZnO NPs from apical to basolateral fluid (most likely across injured cells and/or damaged paracellular pathways). Conclusions: ZnO NPs cause severe injury to RAECMs in a dose- and time-dependent manner, mediated, at least in part, by free Zn released from ZnO NPs, mitochondrial dysfunction, and increased intracellular ROS. PMID:20639441

  18. Stem Cells and Labeling for Spinal Cord Injury

    PubMed Central

    Gazdic, Marina; Volarevic, Vladislav; Arsenijevic, Aleksandar; Erceg, Slaven; Moreno-Manzano, Victoria; Arsenijevic, Nebojsa; Stojkovic, Miodrag

    2016-01-01

    Spinal cord injury (SCI) is a devastating condition that usually results in sudden and long-lasting locomotor and sensory neuron degeneration below the lesion site. During the last two decades, the search for new therapies has been revolutionized with the improved knowledge of stem cell (SC) biology. SCs therapy offers several attractive strategies for spinal cord repair. The transplantation of SCs promotes remyelination, neurite outgrowth and axonal elongation, and activates resident or transplanted progenitor cells across the lesion cavity. However, optimized growth and differentiation protocols along with reliable safety assays should be established prior to the clinical application of SCs. Additionally, the ideal method of SCs labeling for efficient cell tracking after SCI remains a challenging issue that requires further investigation. This review summarizes the current findings on the SCs-based therapeutic strategies, and compares different SCs labeling approaches for SCI. PMID:28035961

  19. Protective effects of alpha lipoic acid on radiation-induced salivary gland injury in rats

    PubMed Central

    Kim, Jin Hyun; Kim, Kyung Mi; Jung, Myeong Hee; Jung, Jung Hwa; Kang, Ki Mun; Jeong, Bae Kwon; Kim, Jin Pyeong; Park, Jung Je; Woo, Seung Hoon

    2016-01-01

    Purpose Radiation therapy is a treatment for patients with head and neck (HN) cancer. However, radiation exposure to the HN often induces salivary gland (SG) dysfunction. We investigated the effect of α-lipoic acid (ALA) on radiation-induced SG injury in rats. Results ALA preserved acinoductal integrity and acinar cell secretary function following irradiation. These results are related to the mechanisms by which ALA inhibits oxidative stress by inhibiting gp91 mRNA and 8-OHdG expression and apoptosis of acinar cells and ductal cells by inactivating MAPKs in the early period and expression of inflammation-related factors including NF-κB, IκB-α, and TGF-β1 and fibrosis in late irradiated SG. ALA effects began in the acute phase and persisted for at least 56 days after irradiation. Materials and Methods Rats were assigned to followings: control, ALA only (100 mg/kg, i.p.), irradiated, and ALA administered 24 h and 30 min prior to irradiation. The neck area including the SG was evenly irradiated with 2 Gy per minute (total dose, 18 Gy) using a photon 6-MV linear accelerator. Rats were killed at 4, 7, 28, and 56 days after radiation. Conclusions Our results show that ALA could be used to ameliorate radiation-induced SG injury in patients with HN cancer. PMID:27072584

  20. Mitofusin-2 protects against cold stress-induced cell injury in HEK293 cells.

    PubMed

    Zhang, Wenbin; Chen, Yaomin; Yang, Qun; Che, Honglei; Chen, Xiangjun; Yao, Ting; Zhao, Fang; Liu, Mingchao; Ke, Tao; Chen, Jingyuan; Luo, Wenjing

    2010-06-25

    Mitochondrial impairment is hypothesized to contribute to cell injury during cold stress. Mitochondria fission and fusion are closely related in the function of the mitochondria, but the precise mechanisms whereby these processes regulate cell injury during cold stress remain to be determined. HEK293 cells were cultured in a cold environment (4.0+/-0.1 degrees C) for 2, 4, 8, or 12h. Western blot analyses showed that these cells expressed decreased fission-related protein Drp1 and increased fusion-related protein Mfn2 at 4h; meanwhile, electron microscopy analysis revealed large and long mitochondrial morphology within these cells, indicating increased mitochondrial fusion. With silencing of Mfn2 but not of Mfn1 by siRNA promoted cold-stress-induced cell death with decreased ATP production in HEK293 cells. Our results show that increased expression of Mfn2 and mitochondrial fusion are important for mitochondrial function as well as cell survival during cold stress. These findings have important implications for understanding the mechanisms of mitochondrial fusion and fission in cold-stress-induced cell injury.

  1. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells.

    PubMed

    Nakamura, Masaya; Okano, Hideyuki

    2013-01-01

    Stimulated by the 2012 Nobel Prize in Physiology or Medicine awarded for Shinya Yamanaka and Sir John Gurdon, there is an increasing interest in the induced pluripotent stem (iPS) cells and reprograming technologies in medical science. While iPS cells are expected to open a new era providing enormous opportunities in biomedical sciences in terms of cell therapies and regenerative medicine, safety-related concerns for iPS cell-based cell therapy should be resolved prior to the clinical application of iPS cells. In this review, the pre-clinical investigations of cell therapy for spinal cord injury (SCI) using neural stem/progenitor cells derived from iPS cells, and their safety issues in vivo, are outlined. We also wish to discuss the strategy for the first human trails of iPS cell-based cell therapy for SCI patients.

  2. TRAM1 protects AR42J cells from caerulein-induced acute pancreatitis through ER stress-apoptosis pathway.

    PubMed

    Cai, Yongxia; Shen, Yanbo; Xu, Guangling; Tao, Ran; Yuan, Weiyan; Huang, Zhongwei; Zhang, Dongmei

    2016-05-01

    Chronic endoplasmic reticulum (ER) stress in pancreatic acinar cells has emerged as a major contributor to the recovery of acute pancreatitis (AP). However, the molecular mechanisms linking AP and ER stress remain not fully understood. In this study, we employed caerulein to induce AP-like inflammation in the AR42J rat pancreatic acinar cells to mimic the AP-like acinar cell injury. Caerulein can activate ER stress in AR42J cells, but the molecular link between AP and ER stress remains to be identified. We here reported that translocating chain-associated membrane protein 1 (TRAM1), an ER-resident multispanning membrane protein, was involved in the onset of AP-like injury on AR42J cells. TRAM1 was significantly elevated in caerulein-treated AR42J cells. Furthermore, we showed that knockdown of TRAM1 led to hyperactivation of 78 kDa glucose-regulated protein precursor (GRP78) and C/EBP homologous protein (CHOP) and the activation of downstream apoptosis pathway. Given the fact that the activation of ER stress played a protection role in AP, the pro-inflammatory mediators TNF-α and IL-6 and the marker of cell injury LDH were also analyzed. We found that depletion of TRAM1 markedly increased the secretion of TNF-α, IL-6, and LDH in the cells. Moreover, flow cytometry indicated that treatment with caerulein induced a significant decrease of apoptotic index and increase of necrosis index in TRAM1-siRNA cells, compared with control groups, as indicated by downregulated expression of cleaved caspase-3, caspase-8, and caspase-9 mRNA expression activity in TRAM1-siRNA cells. These data implicated that TRAM1 might protect AR42J cells against caerulein-induced AP in AR42J cells through alleviating ER stress.

  3. Temporal patterns of cortical proliferation of glial cell populations after traumatic brain injury in mice

    PubMed Central

    Susarla, Bala T.S.; Villapol, Sonia; Yi, Jae-Hyuk; Geller, Herbert M.; Symes, Aviva J.

    2014-01-01

    TBI (traumatic brain injury) triggers an inflammatory cascade, gliosis and cell proliferation following cell death in the pericontusional area and surrounding the site of injury. In order to better understand the proliferative response following CCI (controlled cortical impact) injury, we systematically analyzed the phenotype of dividing cells at several time points post-lesion. C57BL/6 mice were subjected to mild to moderate CCI over the left sensory motor cortex. At different time points following injury, mice were injected with BrdU (bromodeoxyuridine) four times at 3-h intervals and then killed. The greatest number of proliferating cells in the pericontusional region was detected at 3 dpi (days post-injury). At 1 dpi, NG2+ cells were the most proliferative population, and at 3 and 7 dpi the Iba-1+ microglial cells were proliferating more. A smaller, but significant number of GFAP+ (glial fibrillary acidic protein) astrocytes proliferated at all three time points. Interestingly, at 3 dpi we found a small number of proliferating neuroblasts [DCX+ (doublecortin)] in the injured cortex. To determine the cell fate of proliferative cells, mice were injected four times with BrdU at 3 dpi and killed at 28 dpi. Approximately 70% of proliferative cells observed at 28 dpi were GFAP+ astrocytes. In conclusion, our data suggest that the specific glial cell types respond differentially to injury, suggesting that each cell type responds to a specific pattern of growth factor stimulation at each time point after injury. PMID:24670035

  4. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin.

    PubMed

    Wang, Yuan Min; Zhang, Geoff Yu; Wang, Yiping; Hu, Min; Wu, Huiling; Watson, Debbie; Hori, Shohei; Alexander, Ian E; Harris, David C H; Alexander, Stephen I

    2006-03-01

    Chronic proteinuric renal injury is a major cause of ESRD. Adriamycin nephropathy is a murine model of chronic proteinuric renal disease whereby chemical injury is followed by immune and structural changes that mimic human disease. Foxp3 is a gene that induces a regulatory T cell (Treg) phenotype. It was hypothesized that Foxp3-transduced Treg could protect against renal injury in Adriamycin nephropathy. CD4+ T cells were transduced with either a Foxp3-containing retrovirus or a control retrovirus. Foxp3-transduced T cells had a regulatory phenotype by functional and phenotypic assays. Adoptive transfer of Foxp3-transduced T cells protected against renal injury. Urinary protein excretion and serum creatinine were reduced (P<0.05), and there was significantly less glomerulosclerosis, tubular damage, and interstitial infiltrates (P<0.01). It is concluded that Foxp3-transduced Treg cells may have a therapeutic role in protecting against immune injury and disease progression in chronic proteinuric renal disease.

  5. Hematopoietic Stem Cell Injury Induced by Ionizing Radiation

    PubMed Central

    Shao, Lijian; Luo, Yi

    2014-01-01

    Abstract Significance: Exposure to ionizing radiation (IR) as the result of nuclear accidents or terrorist attacks is a significant threat and a major medical concern. Hematopoietic stem cell (HSC) injury is the primary cause of death after accidental or intentional exposure to a moderate or high dose of IR. Protecting HSCs from IR should be a primary goal in the development of novel medical countermeasures against radiation. Recent Advances: Significant progress has been made in our understanding of the mechanisms by which IR causes HSC damage. The mechanisms include (i) induction of HSC apoptosis via the p53-Puma pathway; (ii) promotion of HSC differentiation via the activation of the G-CSF/Stat3/BATF-dependent differentiation checkpoint; (iii) induction of HSC senescence via the ROS-p38 pathway; and (iv) damage to the HSC niche. Critical Issues: Induction of apoptosis in HSCs and hematopoietic progenitor cells is primarily responsible for IR-induced acute bone marrow (BM) injury. Long-term BM suppression caused by IR is mainly attributable to the induction of HSC senescence. However, the promotion of HSC differentiation and damage to the HSC niche can contribute to both the acute and long-term effects of IR on the hematopoietic system. Future Directions: In this review, we have summarized a number of recent findings that provide new insights into the mechanisms whereby IR damages HSCs. These findings will provide new opportunities for developing a mechanism-based strategy to prevent and/or mitigate IR-induced BM suppression. Antioxid. Redox Signal. 20, 1447–1462. PMID:24124731

  6. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury.

    PubMed

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-05-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 10(6) rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.

  7. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    PubMed Central

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells. PMID:25206912

  8. Regulatory T cells participate in CD39-mediated protection from renal injury.

    PubMed

    Wang, Yuan Min; McRae, Jennifer L; Robson, Simon C; Cowan, Peter J; Zhang, Geoff Yu; Hu, Min; Polhill, Tania; Wang, Yiping; Zheng, Guoping; Wang, Ya; Lee, Vincent W S; Unwin, Robert J; Harris, David C H; Dwyer, Karen M; Alexander, Stephen I

    2012-09-01

    CD39 is an ecto-enzyme that degrades extracellular nucleotides, such as ATP, and is highly expressed on by the vasculature and circulating cells including Foxp3+ regulatory T (Treg) cells. To study the role of purinergic regulation in renal disease, we used the adriamycin nephropathy (AN) mouse model of chronic renal injury, using human CD39-transgenic (hCD39Tg) and wild-type (WT) BALB/c mice. Effects of CD39 expression by Treg cells were assessed in AN by adoptive transfer of CD4(+) CD25(+) and CD4(+) CD25(-) T cells isolated from hCD39Tg and WT mice. hCD39Tg mice were protected from renal injury in AN with decreased urinary protein and serum creatinine, and significantly less renal injury compared with WT mice. While WT CD25(+) and hCD39Tg CD25(-) T cells conferred some protection against AN, hCD39Tg CD25(+) Treg cells offered greater protection. In vitro studies showed direct pro-apoptotic effects of ATP on renal tubular cells. In conclusion, hCD39 expressed by circulating leukocytes and intrinsic renal cells limits innate AN injury. Specifically, CD39 expression by Treg cells contributes to its protective role in renal injury. These findings suggest that extracellular nucleotides mediate AN kidney injury and that CD39, expressed by Treg cells and other cells, is protective in this model.

  9. Endothelial cell injury and coagulation system activation during synergistic hepatotoxicity from monocrotaline and bacterial lipopolysaccharide coexposure.

    PubMed

    Yee, Steven B; Hanumegowda, Umesh M; Copple, Bryan L; Shibuya, Masabumi; Ganey, Patricia E; Roth, Robert A

    2003-07-01

    A small, noninjurious dose of bacterial lipopolysaccharide (LPS; 7.4 x 106 EU/kg) administered 4 h after a small, nontoxic dose of monocrotaline (MCT; 100 mg/kg) produces synergistic hepatotoxicity in rats within 6 to 12 h after MCT exposure. The resulting centrilobular (CL) and midzonal (MZ) liver lesions are characterized by hepatic parenchymal cell (HPC) necrosis. Pronounced hemorrhage, disruption of sinusoidal architecture, and loss of central vein intima suggest that an additional component to injury may be the liver vasculature. In the present investigation, the hypothesis that sinusoidal endothelial cell (SEC) injury and coagulation system activation occur in this model was tested. Plasma hyaluronic acid (HA) concentration, a biomarker for SEC injury, was significantly increased in cotreated animals before the onset of HPC injury and remained elevated through the time of maximal HPC injury (i.e., 18 h). SEC injury was confirmed by immunohistochemistry and electron microscopy. Pyrrolic metabolites were produced from MCT by SECs in vitro, which suggests that MCT may injure SECs directly through the formation of its toxic metabolite, monocrotaline pyrrole. Inasmuch as SEC activation and injury can promote hemostasis, activation of the coagulation system was evaluated. Coagulation system activation, as marked by a decrease in plasma fibrinogen, occurred before the onset of HPC injury. Furthermore, extensive fibrin deposition was observed immunohistochemically within CL and MZ regions after MCT/LPS cotreatment. Taken together, these results suggest that SEC injury and coagulation system activation are components of the synergistic liver injury resulting from MCT and LPS coexposure.

  10. Endogenous Neural Stem/Progenitor Cells Stabilize the Cortical Microenvironment after Traumatic Brain Injury

    PubMed Central

    Dixon, Kirsty J.; Theus, Michelle H.; Nelersa, Claudiu M.; Mier, Jose; Travieso, Lissette G.; Yu, Tzong-Shiue; Kernie, Steven G.

    2015-01-01

    Abstract Although a myriad of pathological responses contribute to traumatic brain injury (TBI), cerebral dysfunction has been closely linked to cell death mechanisms. A number of therapeutic strategies have been studied in an attempt to minimize or ameliorate tissue damage; however, few studies have evaluated the inherent protective capacity of the brain. Endogenous neural stem/progenitor cells (NSPCs) reside in distinct brain regions and have been shown to respond to tissue damage by migrating to regions of injury. Until now, it remained unknown whether these cells have the capacity to promote endogenous repair. We ablated NSPCs in the subventricular zone to examine their contribution to the injury microenvironment after controlled cortical impact (CCI) injury. Studies were performed in transgenic mice expressing the herpes simplex virus thymidine kinase gene under the control of the nestinδ promoter exposed to CCI injury. Two weeks after CCI injury, mice deficient in NSPCs had reduced neuronal survival in the perilesional cortex and fewer Iba-1-positive and glial fibrillary acidic protein-positive glial cells but increased glial hypertrophy at the injury site. These findings suggest that the presence of NSPCs play a supportive role in the cortex to promote neuronal survival and glial cell expansion after TBI injury, which corresponds with improvements in motor function. We conclude that enhancing this endogenous response may have acute protective roles after TBI. PMID:25290253

  11. Mixed acinar-neuroendocrine-ductal carcinoma of the pancreas: a tale of three lineages.

    PubMed

    Anderson, Mark J; Kwong, Christina A; Atieh, Mohammed; Pappas, Sam G

    2016-06-02

    Most pancreatic cancers arise from a single cell type, although mixed pancreatic carcinomas represent a rare exception. The rarity of these aggressive malignancies and the limitations of fine-needle aspiration (FNA) pose significant barriers to diagnosis and appropriate management. We report a case of a 54-year-old man presenting with abdominal pain, jaundice and a hypodense lesion within the uncinate process on CT. FNA suggested poorly differentiated adenocarcinoma, which was subsequently resected via pancreaticoduodenectomy. Pathological analysis yielded diagnosis of invasive mixed acinar-neuroendocrine-ductal pancreatic carcinoma. Given the rare and deadly nature of these tumours, clinicians must be aware of their pathophysiology and do practice with a high degree of clinical suspicion, when appropriate. Surgical resection and thorough pathological analysis with immunohistochemical staining and electron microscopy remain the standards of care for mixed pancreatic tumours without gross evidence of metastasis. Diligent characterisation of the presentation and histological findings associated with these neoplasms should continue in order to promote optimal diagnostic and therapeutic strategies.

  12. Chronic alcohol exposure exacerbates inflammation and triggers pancreatic acinar-to-ductal metaplasia through PI3K/Akt/IKK

    PubMed Central

    HUANG, XIN; LI, XUQI; MA, QINGYONG; XU, QINHONG; DUAN, WANXING; LEI, JIANJUN; ZHANG, LUN; WU, ZHENG

    2015-01-01

    Pancreatic acinar-to-ductal metaplasia (ADM) has been identified as an initiating event that can progress to pancreatic intraepithelial neoplasia (PanIN) or pancreatic ductal adenocarcinoma (PDAC). Acini transdifferentiation can be induced by persistent inflammation. Notably, compelling evidence has emerged that chronic alcohol exposure may trigger an inflammatory response of macrophages/monocytes stimulated by endotoxins. In the present study, we aimed to evaluate the role of inflammation induced by chronic alcohol and lipopolysaccharide (LPS) exposure in the progression of pancreatic ADM, as well as to elucidate the possible mechanisms involved. For this purpose, cultured macrophages were exposed to varying doses of alcohol for 1 week prior to stimulation with LPS. Tumor necrosis factor-α (TNF-α) and regulated upon activation, normal T cell expression and secreted (RANTES) expression were upregulated in the intoxicated macrophages with activated nuclear factor-κB (NF-κB). Following treatment with the supernatant of intoxicated macrophages, ADM of primary acinar cells was induced. Furthermore, the expression of TNF-α and RANTES, as well as the phosphatidylinositol-3-kinase (PI3K)/protein kinase B(Akt)/inhibitory κB kinase (IKK) signaling pathway have been proven to be involved in the ADM of acinar cells. Moreover, Sprague-Dawley (SD) rats were employed to further explore the induction of pancreatic ADM by chronic alcohol and LPS exposure in vivo. At the end of the treatment period, a number of physiological parameters, such as body weight, liver weight and pancreatic weight were reduced in the exposed rats. Plasma alcohol concentrations and oxidative stress levels in the serum, as well as TNF-α and RANTES expression in monocytes were also induced following chronic alcohol and LPS exposure. In addition, pancreatic ADM was induced through the PI3K/Akt/IKK signaling pathway by the augmented TNF-α and RANTES expression levels in the exposed rats. Overall, we

  13. Plant recombinant erythropoietin attenuates inflammatory kidney cell injury.

    PubMed

    Conley, Andrew J; Mohib, Kanishka; Jevnikar, Anthony M; Brandle, Jim E

    2009-02-01

    Human erythropoietin (EPO) is a pleiotropic cytokine with remarkable tissue-protective activities in addition to its well-established role in red blood cell production. Unfortunately, conventional mammalian cell cultures are unlikely to meet the anticipated market demands for recombinant EPO because of limited capacity and high production costs. Plant expression systems may address these limitations to enable practical, cost-effective delivery of EPO in tissue injury prevention therapeutics. In this study, we produced human EPO in tobacco and demonstrated that plant-derived EPO had tissue-protective activity. Our results indicated that targeting to the endoplasmic reticulum (ER) provided the highest accumulation levels of EPO, with a yield approaching 0.05% of total soluble protein in tobacco leaves. The codon optimization of the human EPO gene for plant expression had no clear advantage; furthermore, the human EPO signal peptide performed better than a tobacco signal peptide. In addition, we found that glycosylation was essential for the stability of plant recombinant EPO, whereas the presence of an elastin-like polypeptide fusion had a limited positive impact on the level of EPO accumulation. Confocal microscopy showed that apoplast and ER-targeted EPO were correctly localized, and N-glycan analysis demonstrated that complex plant glycans existed on apoplast-targeted EPO, but not on ER-targeted EPO. Importantly, plant-derived EPO had enhanced receptor-binding affinity and was able to protect kidney epithelial cells from cytokine-induced death in vitro. These findings demonstrate that tobacco plants may be an attractive alternative for the production of large amounts of biologically active EPO.

  14. Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury

    PubMed Central

    Gong, Wei; Guo, Mengzheng; Han, Zhibo; Wang, Yan; Yang, Ping; Xu, Chang; Wang, Qin; Du, Liqing; Li, Qian; Zhao, Hui; Fan, Feiyue; Liu, Qiang

    2016-01-01

    The loss of stem cells residing in the base of the intestinal crypt has a key role in radiation-induced intestinal injury. In particular, Lgr5+ intestinal stem cells (ISCs) are indispensable for intestinal regeneration following exposure to radiation. Mesenchymal stem cells (MSCs) have previously been shown to improve intestinal epithelial repair in a mouse model of radiation injury, and, therefore, it was hypothesized that this protective effect is related to Lgr5+ ISCs. In this study, it was found that, following exposure to radiation, transplantation of MSCs improved the survival of the mice, ameliorated intestinal injury and increased the number of regenerating crypts. Furthermore, there was a significant increase in Lgr5+ ISCs and their daughter cells, including Ki67+ transient amplifying cells, Vil1+ enterocytes and lysozyme+ Paneth cells, in response to treatment with MSCs. Crypts isolated from mice treated with MSCs formed a higher number of and larger enteroids than those from the PBS group. MSC transplantation also reduced the number of apoptotic cells within the small intestine at 6 h post-radiation. Interestingly, Wnt3a and active β-catenin protein levels were increased in the small intestines of MSC-treated mice. In addition, intravenous delivery of recombinant mouse Wnt3a after radiation reduced damage in the small intestine and was radioprotective, although not to the same degree as MSC treatment. Our results show that MSCs support the growth of endogenous Lgr5+ ISCs, thus promoting repair of the small intestine following exposure to radiation. The molecular mechanism of action mediating this was found to be related to increased activation of the Wnt/β-catenin signaling pathway. PMID:27685631

  15. Inhibition of hepatic cells pyroptosis attenuates CLP-induced acute liver injury

    PubMed Central

    Chen, Yuan-Li; Xu, Guo; Liang, Xiao; Wei, Juan; Luo, Jing; Chen, Guan-Nan; Yan, Xiao-Di; Wen, Xue-Ping; Zhong, Ming; Lv, Xin

    2016-01-01

    Pyroptosis is a programmed cell death associated with caspase-1 and accompanied by the secretion of a large number of pro-inflammatory cytokines. In the acute stage of sepsis, the release of several pro-inflammatory cytokines aggravates hepatic cell death, and acute liver injury is aggravated with the progress of the disease, resulting in acute liver failure with a very high mortality rate. The present study investigated the effect of inhibiting hepatic cell pyroptosis on the septic acute liver injury. Septic acute liver injury mice model was established by cecal ligation and puncture (CLP model). The liver tissues were assessed for inflammatory infiltration by HE, serum concentrations of ALT, AST, IL-1β, and IL-18 were examined by ELISA, hepatic cell pyroptosis was determined by flow cytometry, and expressions of caspase-1 and NLRP3 were assessed by Western blot. CLP-induced acute liver injury was distinct at 24 h post-operation, with the highest hepatic cell pyroptosis rate. The pyroptosis rate and liver injury indexes were positively correlated. Western blot showed that the expressions of pyroptosis-related proteins, caspase-1, and NLRP3, were increased. Normal mouse hepatic cells were cultured in vitro and LPS+ATP introduced to establish the cell model of septic acute liver injury. The expressions of caspase-1, NLRP3, IL-1β, and IL-18 in LPS+ATP group were significantly higher than the control group by Western blot and ELISA. The inhibitors of NLRP3 (Glyburide) and caspase-1 (AC-YVAD-CMK) alone or in combination were used to pre-treat the hepatic cells, which revealed that the pyroptosis rate was decreased and the cell damage alleviated. The in vivo assay in rats showed that post inhibitor treatment, the 10-days survival was significantly improved and the liver damage reduced. Therefore, inhibiting the hepatic cell pyroptosis could alleviate CLP-induced acute liver injury, providing a novel treatment target for septic acute liver injury. PMID:28078039

  16. The Influence of Copper (Cu) Deficiency in a Cardiomyocyte Cell Model (HL-1 Cell) of Ischemia/Reperfusion Injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mitochondria are important mediators of cell death and this study examines whether mitochondrial dysfunction caused by Cu deprivation promotes cell death in a cell culture model for ischemia/reperfusion injury in cardiomyocytes. HL-1 cells (kindly donated by Dr. William C. Claycomb, LSU Health Scien...

  17. Endogenous glucocorticoids improve myelination via Schwann cells after peripheral nerve injury: An in vivo study using a crush injury model.

    PubMed

    Morisaki, Shinsuke; Nishi, Mayumi; Fujiwara, Hiroyoshi; Oda, Ryo; Kawata, Mitsuhiro; Kubo, Toshikazu

    2010-06-01

    Glucocorticoids improve the symptoms of peripheral nerve disorders, such as carpal tunnel syndrome and peripheral neuropathy. The effects of glucocorticoids are mainly anti-inflammatory, but the mechanisms of their effects in peripheral nerve disorders remain unclear. Schwann cells of the peripheral nerves express glucocorticoid receptors (GR), and glucocorticoids enhance the rate of myelin formation in vitro. Therefore, it is possible that the clinical improvement of peripheral nerve disorders by glucocorticoids is due, at least in part, to the modulation of myelination. In this study, an adrenalectomy (ADX) was performed, and followed by a daily injection of either low dose (1 mg/kg) or high dose (10 mg/kg) corticosterone (CORT). We then simulated a crush injury of the sciatic nerves. A sham ADX operation, followed by a simulated crush injury, was conducted as a control. Immunohistochemistry showed that the nuclei of in vivo Schwann cells expressed GR and that glucocorticoids impacted the GR immunoreactivity of the Schwann cells. The mRNA and protein expression of myelin basic protein was significantly lower in the animals given ADX with vehicle than in the sham operation group. However, the expression was restored in the low-dose CORT replacement group. Morphological analyses showed that the ADX with vehicle group had a significantly lower myelin thickness than did the low-dose CORT replacement group and the sham operation group. These results suggest that endogenous glucocorticoids have an important role in myelination through the GR in Schwann cells after an in vivo peripheral nerve injury.

  18. Acute Kidney Injury in Hematopoietic Stem Cell Transplantation: A Review

    PubMed Central

    Gupta, Mohit; Manu, Gurusidda; Kwatra, Shivani; Owusu, Osei-Tutu

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) is a highly effective treatment strategy for lymphoproliferative disorders and bone marrow failure states including aplastic anemia and thalassemia. However, its use has been limited by the increased treatment related complications, including acute kidney injury (AKI) with an incidence ranging from 20% to 73%. AKI after HSCT has been associated with an increased risk of mortality. The incidence of AKI reported in recipients of myeloablative allogeneic transplant is considerably higher in comparison to other subclasses mainly due to use of cyclosporine and development of graft-versus-host disease (GVHD) in allogeneic groups. Acute GVHD is by itself a major independent risk factor for the development of AKI in HSCT recipients. The other major risk factors are sepsis, nephrotoxic medications (amphotericin B, acyclovir, aminoglycosides, and cyclosporine), hepatic sinusoidal obstruction syndrome (SOS), thrombotic microangiopathy (TMA), marrow infusion toxicity, and tumor lysis syndrome. The mainstay of management of AKI in these patients is avoidance of risk factors contributing to AKI, including use of reduced intensity-conditioning regimen, close monitoring of nephrotoxic medications, and use of alternative antifungals for prophylaxis against infection. Also, early identification and effective management of sepsis, tumor lysis syndrome, marrow infusion toxicity, and hepatic SOS help in reducing the incidence of AKI in HSCT recipients. PMID:27885340

  19. B Cell Subsets Contribute to Both Renal Injury and Renal Protection after Ischemia/Reperfusion

    PubMed Central

    Renner, Brandon; Strassheim, Derek; Amura, Claudia R.; Kulik, Liudmila; Ljubanovic, Danica; Glogowska, Magdalena J.; Takahashi, Kazue; Carroll, Michael C.; Holers, V. Michael; Thurman, Joshua M.

    2011-01-01

    Ischemia/reperfusion (I/R) triggers a robust inflammatory response within the kidney. Numerous components of the immune system contribute to the resultant renal injury including the complement system. We sought to identify whether natural antibodies bind to the post-ischemic kidney and contribute to complement activation after I/R. We depleted peritoneal B cells in mice by hypotonic shock. Depletion of the peritoneal B cells prevented the deposition of IgM within the glomeruli after renal I/R, and attenuated renal injury after I/R. We found that glomerular IgM activates the classical pathway of complement but does not cause substantial deposition of C3 within the kidney. Furthermore, mice deficient in classical pathway proteins were not protected from injury, indicating that glomerular IgM does not cause injury through activation of the classical pathway. We also subjected mice deficient in all mature B cells (μMT mice) to renal I/R and found that they sustained worse renal injury than wild-type controls. Serum IL-10 levels were lower in the μMT mice. Regarded together, these results indicate that natural antibody produced by peritoneal B cells binds within the glomerulus after renal I/R and contributes to functional renal injury. However, non-peritoneal B cells attenuate renal injury after I/R, possibly through the production of IL-10. PMID:20810984

  20. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    PubMed

    Andrade, Bruno M; Baldanza, Marcelo R; Ribeiro, Karla C; Porto, Anderson; Peçanha, Ramon; Fortes, Fabio S A; Zapata-Sudo, Gisele; Campos-de-Carvalho, Antonio C; Goldenberg, Regina C S; Werneck-de-Castro, João Pedro

    2015-01-01

    Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC) injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively). Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  1. Bone Marrow Mesenchymal Cells Improve Muscle Function in a Skeletal Muscle Re-Injury Model

    PubMed Central

    Ribeiro, Karla C.; Porto, Anderson; Peçanha, Ramon; Fortes, Fabio S. A.; Zapata-Sudo, Gisele; Campos-de-Carvalho, Antonio C.; Goldenberg, Regina C. S.; Werneck-de-Castro, João Pedro

    2015-01-01

    Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC) injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively). Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model. PMID:26039243

  2. Tranexamic Acid and Hyaluronate/Carboxymethylcellulose Create Cell Injury

    PubMed Central

    Yılmaz, Bayram; Dilbaz, Serdar; Üstün, Yusuf; Kumru, Selahattin

    2014-01-01

    Background and Objectives: Postoperative pelvic adhesions are associated with chronic pelvic pain, dyspareunia, and infertility. The aim of this study was to evaluate the adhesion prevention effects of tranexamic acid (TA) and hyaluronate/carboxymethylcellulose (HA/CMC) barrier in the rat uterine horn models on the basis of macroscopic and microscopic adhesion scores and histopathological as well as biochemical parameters of inflammation. Methods: Twenty-one Wistar rats were randomly divided into 3 groups. Ten lesions were created on the antimesenteric surface of both uterine horns by bipolar cautery. Three milliliters of 0.9% sodium chloride solution were administered in the control group. A single layer of 2 × 2 cm HA/CMC was plated in group 2. Two milliliters of TA was applied in the last group. All rats were sacrificed at postoperative day 21. Results: No significant difference was found among the control group, the HA/CMC group, and the TA group in terms of macro-adhesion score (P = .206) and microadhesion score (P = .056). No significant difference was found among the 3 groups in terms of inflammation score (P = .815) and inflammatory cell activity (P = .835). Malondialdehyde levels were significantly lower in the control group than in the TA group and HA/CMC group (P = .028). Superoxide dismutase and glutathione S-transferase activities were found to be higher in the control group than in the TA group (P = .005) and HA/CMC group (P = .009). Conclusions: TA and HA/CMC had no efficacy in preventing macroscopic or microscopic adhesion formation and decreasing inflammatory cell activity or inflammation score in our rat models. TA and HA/CMC increased the levels of free radicals and reduced the activities of superoxide dismutase and glutathione S-transferase enzymes, which act to reduce tissue injury. PMID:25392658

  3. Interactions of Aspergillus fumigatus with endothelial cells: internalization, injury, and stimulation of tissue factor activity.

    PubMed

    Lopes Bezerra, Leila M; Filler, Scott G

    2004-03-15

    Invasive aspergillosis causes significant mortality among patients with hematologic malignancies. This infection is characterized by vascular invasion and thrombosis. To study the pathogenesis of invasive aspergillosis, we investigated the interactions of Aspergillus fumigatus conidia and hyphae with endothelial cells in vitro. We found that both forms of the organism induced endothelial cell microfilament rearrangement and subsequent endocytosis. Conidia were endocytosed 2-fold more avidly than hyphae, and endocytosis was independent of fungal viability. Endocytosed conidia and hyphae caused progressive endothelial cell injury after 4 hours of infection. Live conidia induced more endothelial cell injury than did live hyphae. However, endothelial cell injury caused by conidia was dependent on fungal viability, whereas injury caused by hyphae was not, indicating that conidia and hyphae injure endothelial cells by different mechanisms. Neither live nor killed conidia increased tissue factor activity of endothelial cells. In contrast, both live and killed hyphae stimulated significant endothelial cell tissue factor activity, as well as the expression of tissue factor antigen on the endothelial cell surface. These results suggest that angioinvasion and thrombosis caused by A fumigatus hyphae in vivo may be due in part to endothelial cell invasion, induction of injury, and stimulation of tissue factor activity.

  4. Role of calcium in adaptive cytoprotection and cell injury induced by deoxycholate in human gastric cells.

    PubMed

    Kokoska, E R; Smith, G S; Wolff, A B; Deshpande, Y; Rieckenberg, C L; Banan, A; Miller, T A

    1998-08-01

    We have developed an in vitro model of adaptive cytoprotection induced by deoxycholate (DC) in human gastric cells and have shown that pretreatment with a low concentration of DC (mild irritant, 50 microM) significantly attenuates injury induced by a damaging concentration of DC (250 microM). This study was undertaken to assess the effect of the mild irritant on changes in intracellular Ca2+ and to determine if these perturbations account for its protective action. Protection conferred by the mild irritant was lost when any of its effects on intracellular Ca2+ were prevented: internal Ca2+ store release via phospholipase C and inositol 1,4, 5-trisphosphate sustained Ca2+ influx through store-operated Ca2+ channels or eventual Ca2+ efflux. We also investigated the relationship between Ca2+ accumulation and cellular injury induced by damaging concentrations of DC. In cells exposed to high concentrations of DC, sustained Ca2+ accumulation as a result of extracellular Ca2+ influx, but not transient changes in intracellular Ca2+ content, appeared to precede and induce cellular injury. We propose that the mild irritant disrupts normal Ca2+ homeostasis and that this perturbation elicits a cellular response (involving active Ca2+ efflux) that subsequently provides a protective action by limiting the magnitude of intracellular Ca2+ accumulation.

  5. Endotoxin-induced lung alveolar cell injury causes brain cell damage

    PubMed Central

    Rodríguez-González, Raquel; Ramos-Nuez, Ángela; Martín-Barrasa, José Luis; López-Aguilar, Josefina; Baluja, Aurora; Álvarez, Julián; Rocco, Patricia RM; Pelosi, Paolo

    2015-01-01

    Sepsis is the most common cause of acute respiratory distress syndrome, a severe lung inflammatory disorder with an elevated morbidity and mortality. Sepsis and acute respiratory distress syndrome involve the release of inflammatory mediators to the systemic circulation, propagating the cellular and molecular response and affecting distal organs, including the brain. Since it has been reported that sepsis and acute respiratory distress syndrome contribute to brain dysfunction, we investigated the brain-lung crosstalk using a combined experimental in vitro airway epithelial and brain cell injury model. Conditioned medium collected from an in vitro lipopolysaccharide-induced airway epithelial cell injury model using human A549 alveolar cells was subsequently added at increasing concentrations (no conditioned, 2%, 5%, 10%, 15%, 25%, and 50%) to a rat mixed brain cell culture containing both astrocytes and neurons. Samples from culture media and cells from mixed brain cultures were collected before treatment, and at 6 and 24 h for analysis. Conditioned medium at 15% significantly increased apoptosis in brain cell cultures 24 h after treatment, whereas 25% and 50% significantly increased both necrosis and apoptosis. Levels of brain damage markers S100 calcium binding protein B and neuron-specific enolase, interleukin-6, macrophage inflammatory protein-2, as well as matrix metalloproteinase-9 increased significantly after treating brain cells with ≥2% conditioned medium. Our findings demonstrated that human epithelial pulmonary cells stimulated with bacterial lipopolysaccharide release inflammatory mediators that are able to induce a translational clinically relevant and harmful response in brain cells. These results support a brain-lung crosstalk during sepsis and sepsis-induced acute respiratory distress syndrome. PMID:25135986

  6. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury

    PubMed Central

    Mitra, Srabani

    2015-01-01

    Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC) apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1) induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control) nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury. PMID:26710067

  7. Differential Activation of Infiltrating Monocyte-Derived Cells After Mild and Severe Traumatic Brain Injury.

    PubMed

    Trahanas, Diane M; Cuda, Carla M; Perlman, Harris; Schwulst, Steven J

    2015-03-01

    Microglia are the resident innate immune cells of the brain. Although embryologically and functionally distinct, they are morphologically similar to peripheral monocyte-derived cells, resulting in a poor ability to discriminate between the two cell types. The purpose of this study was to develop a rapid and reliable method to simultaneously characterize, quantify, and discriminate between whole populations of myeloid cells from the brain in a murine model of traumatic brain injury. Male C57BL/6 mice underwent traumatic brain injury (n = 16) or sham injury (n = 14). Brains were harvested at 24 h after injury. Multiparameter flow cytometry and sequential gating analysis were performed, allowing for discrimination between microglia and infiltrating leukocytes as well as for the characterization and quantification of individual subtypes within the infiltrating population. The proportion of infiltrating leukocytes within the brain increased with the severity of injury, and the predominant cell types within the infiltrating population were monocyte derived (P = 0.01). In addition, the severity of injury altered the overall makeup of the infiltrating monocyte-derived cells. In conclusion, we describe a flow cytometry-based technique for gross discrimination between infiltrating leukocytes and microglia as well as the ability to simultaneously characterize and quantify individual myeloid subtypes and their maturation states within these populations.

  8. Merkel cells are long-lived cells whose production is stimulated by skin injury.

    PubMed

    Wright, Margaret C; Logan, Gregory J; Bolock, Alexa M; Kubicki, Adam C; Hemphill, Julie A; Sanders, Timothy A; Maricich, Stephen M

    2017-02-01

    Mechanosensitive Merkel cells are thought to have finite lifespans, but controversy surrounds the frequency of their replacement and which precursor cells maintain the population. We found by embryonic EdU administration that Merkel cells undergo terminal cell division in late embryogenesis and survive long into adulthood. We also found that new Merkel cells are produced infrequently during normal skin homeostasis and that their numbers do not change during natural or induced hair cycles. In contrast, live imaging and EdU experiments showed that mild mechanical injury produced by skin shaving dramatically increases Merkel cell production. We confirmed with genetic cell ablation and fate-mapping experiments that new touch dome Merkel cells in adult mice arise from touch dome keratinocytes. Together, these independent lines of evidence show that Merkel cells in adult mice are long-lived, are replaced rarely during normal adult skin homeostasis, and that their production can be induced by repeated shaving. These results have profound implications for understanding sensory neurobiology and human diseases such as Merkel cell carcinoma.

  9. In vitro study of injury on human bronchial epithelial cells caused by gunpowder smog.

    PubMed

    Lan, Xiaomei; Feng, Liang; Liu, Yifan; Zhou, Ying; Shao, Lingli; Pang, Wei; Lan, Yating; Wang, Chengbin

    2013-02-01

    Smog inhalation is associated with acute respiratory symptoms in exposed victims. However, despite the evidence from cell injury caused by smog, a stable and practical apparatus used to treat cells with smog is necessary. The aim of this study is to develop a cell research platform of smoke inhalation injury. In the smog-generation device, a wireless electromagnetic heater was used to ignite gunpowder and generate smog. The quality of black powder was checked by the black powder burn rate, and experimental smog was indirectly checked by the amount of cell damage. The temperature and humidity were set at 37 °C ± 1 °C and ≥95% in the smog-cells reaction chamber, respectively. Factors including gunpowder dosages, smog-exposure time, the cell density, modes of exposure, volumes of smog, test durations, volumes of the cell culture medium and combustion velocity were measured. Coefficient variation of different batches of gunpowder and smog were less than 4% and 9%, respectively. With larger gunpowder dosage and longer exposure time, cell injury appeared to increase. When cells were cultured in 4 × 10(4)/well density in culture medium (1 mL/well), exposed to more than 10 L smog with filter screens above plates, detected after 24 h culture in cell incubator and gunpowder burned out within 5 s, smog had the best effect on cell injury. In conclusion, the experimental device can produce test smog stably and safely. The apparatus treating cells with smog can induce cell injury effectively, and the injury is positively correlated with smog concentration and exposure time.

  10. A population of Pax7-expressing muscle progenitor cells show differential responses to muscle injury dependent on developmental stage and injury extent

    PubMed Central

    Knappe, Stefanie; Zammit, Peter S.; Knight, Robert D.

    2015-01-01

    Skeletal muscle regeneration in vertebrates occurs by the activation of quiescent progenitor cells that express pax7 to repair and replace damaged myofibers. We have developed a mechanical injury paradigm in zebrafish to determine whether developmental stage and injury size affect the regeneration dynamics of skeletal muscle. We found that both small focal injuries, and large injuries affecting the entire myotome, lead to expression of myf5 and myogenin, which was prolonged in older larvae, indicating a slower process of regeneration. We characterized the endogenous behavior of a population of muscle-resident Pax7-expressing cells using a pax7a:eGFP transgenic line and found that GFP+ cell migration in the myotome dramatically declined between 5 and 7 days post-fertilization (dpf). Following a small single myotome injury, GFP+ cells responded by extending processes, before migrating to the injured myofibers. Furthermore, these cells responded more rapidly to injury in 4 dpf larvae compared to 7 dpf. Interestingly, we did not see GFP+ myofibers after repair of small injuries, indicating that pax7a-expressing cells did not contribute to myofiber formation in this injury context. On the contrary, numerous GFP+ myofibers could be observed after an extensive single myotome injury. Both injury models were accompanied by an increased number of proliferating GFP+ cells, which was more pronounced in larvae injured at 4 dpf than 7 dpf. This indicates intriguing developmental differences, at these early ages. Our data also suggests an interesting disparity in the role that pax7a-expressing muscle progenitor cells play during skeletal muscle regeneration, which may reflect the extent of muscle damage. PMID:26379543

  11. Bone marrow (BM) transplantation promotes beta-cell regeneration after acute injury through BM cell mobilization.

    PubMed

    Hasegawa, Yutaka; Ogihara, Takehide; Yamada, Tetsuya; Ishigaki, Yasushi; Imai, Junta; Uno, Kenji; Gao, Junhong; Kaneko, Keizo; Ishihara, Hisamitsu; Sasano, Hironobu; Nakauchi, Hiromitsu; Oka, Yoshitomo; Katagiri, Hideki

    2007-05-01

    There is controversy regarding the roles of bone marrow (BM)-derived cells in pancreatic beta-cell regeneration. To examine these roles in vivo, mice were treated with streptozotocin (STZ), followed by bone marrow transplantation (BMT; lethal irradiation and subsequent BM cell infusion) from green fluorescence protein transgenic mice. BMT improved STZ-induced hyperglycemia, nearly normalizing glucose levels, with partially restored pancreatic islet number and size, whereas simple BM cell infusion without preirradiation had no effects. In post-BMT mice, most islets were located near pancreatic ducts and substantial numbers of bromodeoxyuridine-positive cells were detected in islets and ducts. Importantly, green fluorescence protein-positive, i.e. BM-derived, cells were detected around islets and were CD45 positive but not insulin positive. Then to examine whether BM-derived cell mobilization contributes to this process, we used Nos3(-/-) mice as a model of impaired BM-derived cell mobilization. In streptozotocin-treated Nos3(-/-) mice, the effects of BMT on blood glucose, islet number, bromodeoxyuridine-positive cells in islets, and CD45-positive cells around islets were much smaller than those in streptozotocin-treated Nos3(+/+) controls. A series of BMT experiments using Nos3(+/+) and Nos3(-/-) mice showed hyperglycemia-improving effects of BMT to correlate inversely with the severity of myelosuppression and delay of peripheral white blood cell recovery. Thus, mobilization of BM-derived cells is critical for BMT-induced beta-cell regeneration after injury. The present results suggest that homing of donor BM-derived cells in BM and subsequent mobilization into the injured periphery are required for BMT-induced regeneration of recipient pancreatic beta-cells.

  12. LOXL2 induces aberrant acinar morphogenesis via ErbB2 signaling

    PubMed Central

    2013-01-01

    Introduction Lysyl oxidase-like 2 (LOXL2) is a matrix-remodeling enzyme that has been shown to play a key role in invasion and metastasis of breast carcinoma cells. However, very little is known about its role in normal tissue homeostasis. Here, we investigated the effects of LOXL2 expression in normal mammary epithelial cells to gain insight into how LOXL2 mediates cancer progression. Methods LOXL2 was expressed in MCF10A normal human mammary epithelial cells. The 3D acinar morphogenesis of these cells was assessed, as well as the ability of the cells to form branching structures on extracellular matrix (ECM)-coated surfaces. Transwell-invasion assays were used to assess the invasive properties of the cells. Clinically relevant inhibitors of ErbB2, lapatinib and Herceptin (traztuzumab), were used to investigate the role of ErbB2 signaling in this model. A retrospective study on a previously published breast cancer patient dataset was carried out by using Disease Specific Genomic Analysis (DSGA) to investigate the correlation of LOXL2 mRNA expression level with metastasis and survival of ErbB2-positive breast cancer patients. Results Fluorescence staining of the acini revealed increased proliferation, decreased apoptosis, and disrupted polarity, leading to abnormal lumen formation in response to LOXL2 expression in MCF10A cells. When plated onto ECM, the LOXL2-expressing cells formed branching structures and displayed increased invasion. We noted that LOXL2 induced ErbB2 activation through reactive oxygen species (ROS) production, and ErbB2 inhibition by using Herceptin or lapatinib abrogated the effects of LOXL2 on MCF10A cells. Finally, we found LOXL2 expression to be correlated with decreased overall survival and metastasis-free survival in breast cancer patients with ErbB2-positive tumors. Conclusions These findings suggest that LOXL2 expression in normal epithelial cells can induce abnormal changes that resemble oncogenic transformation and cancer progression

  13. Depressed immunity and impaired proliferation of hematopoietic progenitor cells in patients with complete spinal cord injury.

    PubMed

    Iversen, P O; Hjeltnes, N; Holm, B; Flatebo, T; Strom-Gundersen, I; Ronning, W; Stanghelle, J; Benestad, H B

    2000-09-15

    The bone marrow is supplied with both sensory and autonomic neurons, but their roles in regulating hematopoietic and immunocompetent cells are unknown. Leukocyte growth and activity in patients with stable and complete spinal cord injuries were studied. The innervation of the bone marrow below the injury level lacked normal supraspinal activity, that is, a decentralized bone marrow. Lymphocyte functions were markedly decreased in injured patients. Long-term colony formation of all hematopoietic cell lineages, including dendritic cells, by decentralized bone marrow cells was substantially reduced. It was concluded that nonspecific and adaptive lymphocyte-mediated immunity and growth of early hematopoietic progenitor cells are impaired in patients with spinal cord injuries. Possibly, this reflects cellular defects caused by the malfunctioning neuronal regulation of immune and bone marrow function.

  14. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury.

    PubMed

    Tang, Yuewen; Cheng, Lin

    2017-02-11

    Tissue damage induces cells into reprogramming-like cellular state, which contributes to tissue regeneration. However, whether factors promoting the cell reprogramming favor tissue regeneration remains elusive. Here we identified combination of small chemical compounds including drug cocktails robustly promoting in vitro cell reprogramming. We then administrated the drug cocktails to mice with acute liver injuries induced by partial hepatectomy or toxic treatment. Our results demonstrated that the drug cocktails which promoted cell reprogramming in vitro improved liver regeneration and hepatic function in vivo after acute injuries. The underlying mechanism could be that expression of pluripotent genes activated after injury is further upregulated by drug cocktails. Thus our study offers proof-of-concept evidence that cocktail of clinical compounds improving cell reprogramming favors tissue recovery after acute damages, which is an attractive strategy for regenerative purpose.

  15. Rat umbilical cord blood cells attenuate hypoxic–ischemic brain injury in neonatal rats

    PubMed Central

    Nakanishi, Keiko; Sato, Yoshiaki; Mizutani, Yuka; Ito, Miharu; Hirakawa, Akihiro; Higashi, Yujiro

    2017-01-01

    Increasing evidence has suggested that human umbilical cord blood cells (hUCBC) have a favorable effect on hypoxic–ischemic (HI) brain injury. However, the efficacy of using hUCBCs to treat this injury has been variable and the underlying mechanism remains elusive. Here, we investigated its effectiveness using stereological analysis in an allogeneic system to examine whether intraperitoneal injection of cells derived from UCBCs of green fluorescent protein (GFP)-transgenic rats could ameliorate brain injury in neonatal rats. Three weeks after the HI event, the estimated residual brain volume was larger and motor function improved more in the cell-injected rats than in the control (PBS-treated) rats. The GFP-positive cells were hardly detectable in the brain (0.0057% of injected cells) 9 days after injection. Although 60% of GFP-positive cells in the brain were Iba1-positive, none of these were positive for NeuroD or DCX. While the number of proliferating cells increased in the hippocampus, that of activated microglia/macrophages decreased and a proportion of M2 microglia/macrophages increased in the ipsilateral hemisphere of cell-injected rats. These results suggest that intraperitoneal injection of cells derived from UCBCs could ameliorate HI injury, possibly through an endogenous response and not by supplying differentiated neurons derived from the injected stem cells. PMID:28281676

  16. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury

    PubMed Central

    Wang, Ting-gang; Xu, Jie; Zhu, Ai-hua; Lu, Hua; Miao, Zong-ning; Zhao, Peng; Hui, Guo-zhen; Wu, Wei-jiang

    2016-01-01

    Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithelial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the transplant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial cells combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells. PMID:27904501

  17. Disruption of TIM-4 in dendritic cell ameliorates hepatic warm IR injury through the induction of regulatory T cells.

    PubMed

    Li, Ji; Zhao, Xin; Liu, Xiaoliang; Liu, Huanqiu

    2015-08-01

    Hepatic ischaemia reperfusion (IR) injury results from the infiltration of multiple immune cells especially dendritic cells (DC). T-cell immunoglobulin-domain and mucin-domain 4 (TIM-4) is a type I cell-surface glycoprotein which is extensively expressed on antigen presenting cells (APC) like DC and macrophages. TIM-4 has been demonstrated to be implicated in mucosal allergy, skin allograft rejection and tumour-immune tolerance. However, the role of TIM-4 expressed on DC in hepatic IR injury remains largely unknown. In the present study, we aimed to investigate whether and how DC expressed TIM-4 was involved in hepatic IR injury. With segmental hepatic warm ischaemia mice models, we demonstrated that promoted DC infiltration and increased TIM-4 expression were induced by hepatic IR. Blockade of TIM-4 by anti-TIM-4 mAb (0.35mg/mouse) markedly ameliorated hepatic injury and reduced inflammatory cytokine secretion. Furthermore, in a DC:CD4+ T cell co-culture system, blockade of TIM-4 on DC significantly inhibited T helper-2 cell differentiation and facilitated induced CD4+ CD25+ Foxp3+ T regulatory cell (iTreg) expansion. Interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (Stat 6) signalling was shown to be impeded by TIM-4 blockade and involved in iTreg generation. Additionally, adoptive transfer of iTreg produced by TIM-4 blockade into hepatic IR mice models remarkably attenuated liver injury. We conclude that TIM-4 on DC play a critical role in hepatic IR injury and may be an efficient target for the prevention of liver or other organ IR injury.

  18. Importance of adenosine triphosphate in phospholipase A2-induced rabbit renal proximal tubule cell injury.

    PubMed Central

    Nguyen, V D; Cieslinski, D A; Humes, H D

    1988-01-01

    The pathogenesis of ischemic renal tubular cell injury involves a complex interaction of different processes, including membrane phospholipid alterations and depletion of high-energy phosphate stores. To assess the role of membrane phospholipid changes due to activation of phospholipases in renal tubule cell injury, suspensions enriched in rabbit renal proximal tubule segments were incubated with exogenous phospholipase A2 (PLA2). Exogenous PLA2 did not produce any significant change in various metabolic parameters reflective of cell injury in control nonhypoxic preparations despite a significant decrease in phosphatidylethanolamine (PE) and moderate increases in lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). In contrast, exogenous PLA2 treatment of hypoxic tubules resulted in a severe degree of cell injury, as demonstrated by marked declines in tubule K+ and ATP contents and significant decreases in tubule uncoupled respiratory rates, and was associated with significant phospholipid alterations, including marked declines in phosphatidylcholine (PC) and PE and significant rises in LPC, LPE, and free fatty acids (FFA). The injurious metabolic effects of exogenous PLA2 on hypoxic tubules were reversed by addition of ATP-MgCl2 to the tubules. The protective effect of ATP-MgCl2 was associated with increases in tubule PC and PE contents and declines in LPC, LPE, and FFA contents. These experiments thus indicate that an increase in exogenous PLA2 activity produces renal proximal tubule cell injury when cell ATP levels decline, at which point phospholipid resynthesis cannot keep pace with phospholipid degradation with resulting depletion of phospholipids and accumulation of lipid by-products. High-energy phosphate store depletion appears to be an important condition for exogenous PLA2 activity to induce renal tubule cell injury. PMID:3417866

  19. Imaging findings in a case of mixed acinar-endocrine carcinoma of the pancreas.

    PubMed

    Chung, Won Jung; Byun, Jae Ho; Lee, Seung Soo; Lee, Moon-Gyu

    2010-01-01

    Mixed acinar-endocrine carcinoma (MAEC) of the pancreas is extremely uncommon. We report here a rare case of MAEC of the pancreas presenting as watery diarrhea. This is the first report in the English-language literature that describes the imaging findings of MAEC of the pancreas, including computed tomography (CT), magnetic resonance (MR) imaging, and MR cholangiopancreatography features.

  20. Binge ethanol exposure causes endoplasmic reticulum stress, oxidative stress and tissue injury in the pancreas

    PubMed Central

    Ren, Zhenhua; Wang, Xin; Xu, Mei; Yang, Fanmuyi; Frank, Jacqueline A.; Ke, Zun-ji; Luo, Jia

    2016-01-01

    Alcohol abuse is associated with both acute and chronic pancreatitis. Repeated episodes of acute pancreatitis or pancreatic injury may result in chronic pancreatitis. We investigated ethanol-induced pancreatic injury using a mouse model of binge ethanol exposure. Male C57BL/6 mice were exposed to ethanol intragastrically (5 g/kg, 25% ethanol w/v) daily for 10 days. Binge ethanol exposure caused pathological changes in pancreas demonstrated by tissue edema, acinar atrophy and moderate fibrosis. Ethanol caused both apoptotic and necrotic cell death which was demonstrated by the increase in active caspase-3, caspase-8, cleaved PARP, cleaved CK-18 and the secretion of high mobility group protein B1 (HMGB1). Ethanol altered the function of the pancreas which was indicated by altered levels of alpha-amylase, glucose and insulin. Ethanol exposure stimulated cell proliferation in the acini, suggesting an acinar regeneration. Ethanol caused pancreatic inflammation which was indicated by the induction of TNF-alpha, IL-1beta, IL-6, MCP-1 and CCR2, and the increase of CD68 positive macrophages in the pancreas. Ethanol-induced endoplasmic reticulum stress was demonstrated by a significant increase in ATF6, CHOP, and the phosphorylation of PERK and eiF-2alpha. In addition, ethanol increased protein oxidation, lipid peroxidation and the expression of iNOS, indicating oxidative stress. Therefore, this paradigm of binge ethanol exposure caused a spectrum of tissue injury and cellular stress to the pancreas, offering a good model to study alcoholic pancreatitis. PMID:27527870

  1. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury*

    PubMed Central

    Mei, Chen; He, Sha-sha; Yin, Peng; Xu, Lei; Shi, Ya-ran; Yu, Xiao-hong; Lyu, An; Liu, Feng-hua; Jiang, Lin-shu

    2016-01-01

    Objective: Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. Materials and methods: An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. Results: HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Conclusions: Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock. PMID:27256675

  2. Bone injury and late giant-cell tumor occurrence: a possible relation. A case report.

    PubMed

    De Nayer, P P; Delloye, C; Malghem, J

    1987-09-01

    A giant-cell tumor of the upper end of the fibula, five years after a documented bone injury at the same site is reported. The histologic diagnosis was corroborated by the patient's age, tumor localization, radiologic and pathologic aspects. The role of a bone injury as a promoting factor in the development of this tumor is discussed. The tumoral occurrence as a reactive process to trauma in this case may not be ruled out.

  3. Deleterious effects of endotoxin on cultured endothelial cells: an in vitro model of vascular injury

    SciTech Connect

    Yamada, O.; Moldow, C.F.; Sacks, T.; Craddock, P.R.; Boogaerts, M.A.; Jacob, H.S.

    1981-06-01

    The effects of endotoxin-triggered granulocytes on the viability of endothelial cells in vitro was investigated. Endotoxin or its lipid A component caused granulocytes to adhere to and significantly damage cultured endothelial cells. Fresh serum is not necessary but does amplify both adherence and endothelial injury. Much of the endothelial injury was inhibited by free-radical scavengers or by blocking granulocyte adhesion to endothelial cells and appears to result from free radical production by the stimulated granulocyte. Studies in this model suggest a pathogenic role for the endotoxin-triggered granulocyte in the Shwartzman reaction and perhaps related clinical disorders.

  4. Analysis of non-thermal plasma-induced cell injury in human lung cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kurita, Hirofumi; Sano, Kaori; Wada, Motoi; Mizuno, Kazue; Ono, Ryo; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2015-09-01

    Recent progress of biomedical application of atmospheric pressure plasma shows that the biological effects are mainly due to reactive oxygen and nitrogen species (RONS) in liquid produced by the plasma exposure. To elucidate the cellular responses induced by exposure to the plasma, we focused on identification and quantification of reactive chemical species in plasma-exposed cell culture medium, and cell injury in mammalian cells after treatment of the plasma-exposed medium. In this study, we examined human lung cancer cell lines. The contribution of H2O2 to the cellular responses was considered. Here, an atmospheric pressure plasma jet (APPJ) sustained by a pulsed power supply in argon was used. After APPJ exposure to cell culture medium, RONS detection in liquid was conducted. It showed that OH radical, ONOO-, NO2-, NO3-, and H2O2 were produced in the plasma-exposed medium. Cellular responses of human lung cancer cell lines to the plasma-exposed medium in a concentration-dependence manner were also studied. It showed that the plasma-exposed medium and the H2O2 treatment gave similar reduction in viability and induction of apoptosis. This work was partly supported by MEXT KAKENHI Grant Number 24108005 and JSPS KAKENHI Grant Number 26390096.

  5. Stretch Injury of Human Induced Pluripotent Stem Cell Derived Neurons in a 96 Well Format

    PubMed Central

    Sherman, Sydney A.; Phillips, Jack K.; Costa, J. Tighe; Cho, Frances S.; Oungoulian, Sevan R.; Finan, John D.

    2016-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity with limited therapeutic options. Traumatic axonal injury (TAI) is an important component of TBI pathology. It is difficult to reproduce TAI in animal models of closed head injury, but in vitro stretch injury models reproduce clinical TAI pathology. Existing in vitro models employ primary rodent neurons or human cancer cell line cells in low throughput formats. This in vitro neuronal stretch injury model employs human induced pluripotent stem cell-derived neurons (hiPSCNs) in a 96 well format. Silicone membranes were attached to 96 well plate tops to create stretchable, culture substrates. A custom-built device was designed and validated to apply repeatable, biofidelic strains and strain rates to these plates. A high content approach was used to measure injury in a hypothesis-free manner. These measurements are shown to provide a sensitive, dose-dependent, multi-modal description of the response to mechanical insult. hiPSCNs transition from healthy to injured phenotype at approximately 35% Lagrangian strain. Continued development of this model may create novel opportunities for drug discovery and exploration of the role of human genotype in TAI pathology. PMID:27671211

  6. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration

    PubMed Central

    Wang, Jinhu; Karra, Ravi; Dickson, Amy L.; Poss, Kenneth D.

    2013-01-01

    Unlike adult mammals, adult zebrafish vigorously regenerate lost heart muscle in response to injury. The epicardium, a mesothelial cell layer enveloping the myocardium, is activated to proliferate after cardiac injury and can contribute vascular support cells or provide mitogens to regenerating muscle. Here, we applied proteomics to identify secreted proteins that are associated with heart regeneration. We found that Fibronectin, a main component of the extracellular matrix, is induced and deposited after cardiac damage. In situ hybridization and transgenic reporter analyses indicated that expression of two fibronectin paralogues, fn1 and fn1b, are induced by injury in epicardial cells, while the itgb3 receptor is induced in cardiomyocytes near the injury site. fn1, the more dynamic of these paralogs, is induced chamber-wide within one day of injury before localizing epicardial Fn1 synthesis to the injury site. fn1 loss-of-function mutations disrupted zebrafish heart regeneration, as did induced expression of a dominant-negative Fibronectin cassette, defects that were not attributable to direct inhibition of cardiomyocyte proliferation. These findings reveal a new role for the epicardium in establishing an extracellular environment that supports heart regeneration. PMID:23988577

  7. 4-Phenylbutyric Acid Attenuates Pancreatic Beta-Cell Injury in Rats with Experimental Severe Acute Pancreatitis

    PubMed Central

    Guo, Wen-yi; Zhao, Liang; Xiang, Ming-wei; Mei, Fang-chao; Abliz, Ablikim; Hu, Peng; Deng, Wen-hong; Yu, Jia

    2016-01-01

    Endoplasmic reticulum (ER) stress is a particular process with an imbalance of homeostasis, which plays an important role in pancreatitis, but little is known about how ER stress is implicated in severe acute pancreatitis (SAP) induced pancreatic beta-cell injury. To investigate the effect of 4-phenylbutyric acid (4-PBA) on the beta-cell injury following SAP and the underlying mechanism, twenty-four Sprague-Dawley rats were randomly divided into sham-operation (SO) group, SAP model group, and 4-PBA treatment group. SAP model was induced by infusion of 5% sodium taurocholate into the biliopancreatic duct. 4-PBA or normal saline was injected intraperitoneally for 3 days in respective group before successful modeling. Results showed that 4-PBA attenuated the following: (1) pancreas and islet pathological injuries, (2) serum TNF-α and IL-1β, (3) serum insulin and glucose, (4) beta-cell ultrastructural changes, (5) ER stress markers (BiP, ORP150, and CHOP), Caspase-3, and insulin expression in islet. These results suggested that 4-PBA mitigates pancreatic beta-cell injury and endocrine disorder in SAP, presumably because of its role in inhibiting excessive endoplasmic reticulum stress. This may serve as a new therapeutic target for reducing pancreatic beta-cell injury and endocrine disorder in SAP upon 4-PBA treatment. PMID:27656209

  8. Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury.

    PubMed

    Hansen, Christopher N; Norden, Diana M; Faw, Timothy D; Deibert, Rochelle; Wohleb, Eric S; Sheridan, John F; Godbout, Jonathan P; Basso, D Michele

    2016-08-01

    Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. Previously, high levels of the gelatinase, matrix metalloproteinase-9 (MMP-9) occurred within the lumbar enlargement after thoracic SCI and impeded activity-dependent recovery. Since SCI-induced MMP-9 potentially increases vascular permeability, myeloid cell infiltration may drive inflammatory toxicity in locomotor networks. Therefore, we examined neurovascular reactivity and myeloid cell infiltration in the lumbar cord after thoracic SCI. We show evidence of region-specific recruitment of myeloid cells into the lumbar but not cervical region. Myeloid infiltration occurred with concomitant increases in chemoattractants (CCL2) and cell adhesion molecules (ICAM-1) around lumbar vasculature 24h and 7days post injury. Bone marrow GFP chimeric mice established robust infiltration of bone marrow-derived myeloid cells into the lumbar gray matter 24h after SCI. This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9.

  9. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells

    PubMed Central

    Costantini, Todd W.; Bansal, Vishal; Krzyzaniak, Michael; Putnam, James G.; Peterson, Carrie Y.; Loomis, William H.; Wolf, Paul; Baird, Andrew; Eliceiri, Brian P.

    2010-01-01

    The enteric nervous system may have an important role in modulating gastrointestinal barrier response to disease through activation of enteric glia cells. In vitro studies have shown that enteric glia activation improves intestinal epithelial barrier function by altering the expression of tight junction proteins. We hypothesized that severe injury would increase expression of glial fibrillary acidic protein (GFAP), a marker of enteric glial activation. We also sought to define the effects of vagal nerve stimulation on enteric glia activation and intestinal barrier function using a model of systemic injury and local gut mucosal involvement. Mice with 30% total body surface area steam burn were used as model of severe injury. Vagal nerve stimulation was performed to assess the role of parasympathetic signaling on enteric glia activation. In vivo intestinal permeability was measured to assess barrier function. Intestine was collected to investigate changes in histology; GFAP expression was assessed by quantitative PCR, by confocal microscopy, and in GFAP-luciferase transgenic mice. Stimulation of the vagus nerve prevented injury-induced intestinal barrier injury. Intestinal GFAP expression increased at early time points following burn and returned to baseline by 24 h after injury. Vagal nerve stimulation prior to injury increased GFAP expression to a greater degree than burn alone. Gastrointestinal bioluminescence was imaged in GFAP-luciferase transgenic animals following either severe burn or vagal stimulation and confirmed the increased expression of intestinal GFAP. Injection of S-nitrosoglutathione, a signaling molecule released by activated enteric glia cells, following burn exerts protective effects similar to vagal nerve stimulation. Intestinal expression of GFAP increases following severe burn injury. Stimulation of the vagus nerve increases enteric glia activation, which is associated with improved intestinal barrier function. The vagus nerve may mediate the

  10. Schwann cells express erythropoietin receptor and represent a major target for Epo in peripheral nerve injury.

    PubMed

    Li, Xiaoqing; Gonias, Steven L; Campana, W Marie

    2005-09-01

    Erythropoietin (Epo) expresses potent neuroprotective activity in the peripheral nervous system; however, the underlying mechanism remains incompletely understood. In this study, we demonstrate that Epo is upregulated in sciatic nerve after chronic constriction injury (CCI) and crush injury in rats, largely due to local Schwann cell production. In uninjured and injured nerves, Schwann cells also express Epo receptor (EpoR), and its expression is increased during Wallerian degeneration. CCI increased the number of Schwann cells at the injury site and the number was further increased by exogenously administered recombinant human Epo (rhEpo). To explore the activity of Epo in Schwann cells, primary cultures were established. These cells expressed cell-surface Epo receptors, with masses of 71 and 62 kDa, as determined by surface protein biotinylation and affinity precipitation. The 71-kDa species was rapidly but transiently tyrosine-phosphorylated in response to rhEpo. ERK/MAP kinase was also activated in rhEpo-treated Schwann cells; this response was blocked by pharmacologic antagonism of JAK-2. RhEpo promoted Schwann cell proliferation, as determined by BrdU incorporation. Cell proliferation was ERK/MAP kinase-dependent. These results support a model in which Schwann cells are a major target for Epo in injured peripheral nerves, perhaps within the context of an autocrine signaling pathway. EpoR-induced cell signaling and Schwann cell proliferation may protect injured peripheral nerves and promote regeneration.

  11. Transplantation of Embryonic Spinal Cord Derived Cells Helps to Prevent Muscle Atrophy after Peripheral Nerve Injury

    PubMed Central

    Ruven, Carolin; Li, Wen; Li, Heng; Wong, Wai-Man; Wu, Wutian

    2017-01-01

    Injuries to peripheral nerves are frequent in serious traumas and spinal cord injuries. In addition to surgical approaches, other interventions, such as cell transplantation, should be considered to keep the muscles in good condition until the axons regenerate. In this study, E14.5 rat embryonic spinal cord fetal cells and cultured neural progenitor cells from different spinal cord segments were injected into transected musculocutaneous nerve of 200–300 g female Sprague Dawley (SD) rats, and atrophy in biceps brachii was assessed. Both kinds of cells were able to survive, extend their axons towards the muscle and form neuromuscular junctions that were functional in electromyographic studies. As a result, muscle endplates were preserved and atrophy was reduced. Furthermore, we observed that the fetal cells had a better effect in reducing the muscle atrophy compared to the pure neural progenitor cells, whereas lumbar cells were more beneficial compared to thoracic and cervical cells. In addition, fetal lumbar cells were used to supplement six weeks delayed surgical repair after the nerve transection. Cell transplantation helped to preserve the muscle endplates, which in turn lead to earlier functional recovery seen in behavioral test and electromyography. In conclusion, we were able to show that embryonic spinal cord derived cells, especially the lumbar fetal cells, are beneficial in the treatment of peripheral nerve injuries due to their ability to prevent the muscle atrophy. PMID:28264437

  12. Transplantation of Embryonic Spinal Cord Derived Cells Helps to Prevent Muscle Atrophy after Peripheral Nerve Injury.

    PubMed

    Ruven, Carolin; Li, Wen; Li, Heng; Wong, Wai-Man; Wu, Wutian

    2017-02-27

    Injuries to peripheral nerves are frequent in serious traumas and spinal cord injuries. In addition to surgical approaches, other interventions, such as cell transplantation, should be considered to keep the muscles in good condition until the axons regenerate. In this study, E14.5 rat embryonic spinal cord fetal cells and cultured neural progenitor cells from different spinal cord segments were injected into transected musculocutaneous nerve of 200-300 g female Sprague Dawley (SD) rats, and atrophy in biceps brachii was assessed. Both kinds of cells were able to survive, extend their axons towards the muscle and form neuromuscular junctions that were functional in electromyographic studies. As a result, muscle endplates were preserved and atrophy was reduced. Furthermore, we observed that the fetal cells had a better effect in reducing the muscle atrophy compared to the pure neural progenitor cells, whereas lumbar cells were more beneficial compared to thoracic and cervical cells. In addition, fetal lumbar cells were used to supplement six weeks delayed surgical repair after the nerve transection. Cell transplantation helped to preserve the muscle endplates, which in turn lead to earlier functional recovery seen in behavioral test and electromyography. In conclusion, we were able to show that embryonic spinal cord derived cells, especially the lumbar fetal cells, are beneficial in the treatment of peripheral nerve injuries due to their ability to prevent the muscle atrophy.

  13. Neuroglial ATP release through innexin channels controls microglial cell movement to a nerve injury

    PubMed Central

    Lipitz, Jeffrey B.; Dahl, Gerhard

    2010-01-01

    Microglia, the immune cells of the central nervous system, are attracted to sites of injury. The injury releases adenosine triphosphate (ATP) into the extracellular space, activating the microglia, but the full mechanism of release is not known. In glial cells, a family of physiologically regulated unpaired gap junction channels called innexons (invertebrates) or pannexons (vertebrates) located in the cell membrane is permeable to ATP. Innexons, but not pannexons, also pair to make gap junctions. Glial calcium waves, triggered by injury or mechanical stimulation, open pannexon/innexon channels and cause the release of ATP. It has been hypothesized that a glial calcium wave that triggers the release of ATP causes rapid microglial migration to distant lesions. In the present study in the leech, in which a single giant glial cell ensheathes each connective, hydrolysis of ATP with 10 U/ml apyrase or block of innexons with 10 µM carbenoxolone (CBX), which decreased injury-induced ATP release, reduced both movement of microglia and their accumulation at lesions. Directed movement and accumulation were restored in CBX by adding ATP, consistent with separate actions of ATP and nitric oxide, which is required for directed movement but does not activate glia. Injection of glia with innexin2 (Hminx2) RNAi inhibited release of carboxyfluorescein dye and microglial migration, whereas injection of innexin1 (Hminx1) RNAi did not when measured 2 days after injection, indicating that glial cells’ ATP release through innexons was required for microglial migration after nerve injury. Focal stimulation either mechanically or with ATP generated a calcium wave in the glial cell; injury caused a large, persistent intracellular calcium response. Neither the calcium wave nor the persistent response required ATP or its release. Thus, in the leech, innexin membrane channels releasing ATP from glia are required for migration and accumulation of microglia after nerve injury. PMID:20876360

  14. The protective effect of dopamine against OGD/R injury-induced cell death in HT22 mouse hippocampal cells.

    PubMed

    Wang, Wenzhu; Zhao, Lixi; Bai, Fan; Zhang, Tong; Dong, Hao; Liu, Lixu

    2016-03-01

    Previous studies have shown that levo-dopamine (L-dopa) can improve the consciousness of certain patients with prolonged coma after cerebral ischemia-reperfusion injury, and promote cell growth in vivo. This study aimed to investigate whether L-dopa, which is used clinically to treat Parkinson's disease, might also ameliorate ischemia-reperfusion injury-induced cell death. The oxygen-glucose deprivation and re-oxygenation (OGD/R) model was used to mimic the ischemia-reperfusion pathological process in vitro. HT22 cells were treated with dopamine hydrochloride at different times (i.e., 2 h prior to OGD, during the period of OGD, during the period of R, and throughout the period of OGD/R) and at different concentrations (i.e., 25 μM, 50 μM, 100 μM). Lactate dehydrogenase (LDH) release, flow cytometry-annexin V, and propidium iodide staining with light microscopy showed that dopamine hydrochloride (added during re-oxygenation) promoted cell proliferation and facilitated maintenance of normal cell morphology. However, when present during oxygen-glucose deprivation for 18 h and present throughout OGD/R, dopamine hydrochloride increased cell damage as manifested by shrinkage, rounding up, and reduced viability. In conclusion, dopamine protected HT22 cells from OGD/R injury-induced cell death only at a particular point in time, suggesting that it may be useful for treating severe ischemia-reperfusion brain injury.

  15. A Nanoconjugate Apaf-1 Inhibitor Protects Mesothelial Cells from Cytokine-Induced Injury

    PubMed Central

    Santamaría, Beatriz; Benito-Martin, Alberto; Ucero, Alvaro Conrado; Aroeira, Luiz Stark; Reyero, Ana; Vicent, María Jesús; Orzáez, Mar; Celdrán, Angel; Esteban, Jaime; Selgas, Rafael; Ruíz-Ortega, Marta; Cabrera, Manuel López; Egido, Jesús; Pérez-Payá, Enrique; Ortiz, Alberto

    2009-01-01

    Background Inflammation may lead to tissue injury. We have studied the modulation of inflammatory milieu-induced tissue injury, as exemplified by the mesothelium. Peritoneal dialysis is complicated by peritonitis episodes that cause loss of mesothelium. Proinflammatory cytokines are increased in the peritoneal cavity during peritonitis episodes. However there is scarce information on the modulation of cell death by combinations of cytokines and on the therapeutic targets to prevent desmesothelization. Methodology Human mesothelial cells were cultured from effluents of stable peritoneal dialysis patients and from omentum of non-dialysis patients. Mesothelial cell death was studied in mice with S. aureus peritonitis and in mice injected with tumor necrosis factor alpha and interferon gamma. Tumor necrosis factor alpha and interferon gamma alone do not induce apoptosis in cultured mesothelial cells. By contrast, the cytokine combination increased the rate of apoptosis 2 to 3-fold over control. Cell death was associated with the activation of caspases and a pancaspase inhibitor prevented apoptosis. Specific caspase-8 and caspase-3 inhibitors were similarly effective. Co-incubation with both cytokines also impaired mesothelial wound healing in an in vitro model. However, inhibition of caspases did not improve wound healing and even impaired the long-term recovery from injury. By contrast, a polymeric nanoconjugate Apaf-1 inhibitor protected from apoptosis and allowed wound healing and long-term recovery. The Apaf-1 inhibitor also protected mesothelial cells from inflammation-induced injury in vivo in mice. Conclusion Cooperation between tumor necrosis factor alpha and interferon gamma contributes to mesothelial injury and impairs the regenerative capacity of the monolayer. Caspase inhibition attenuates mesothelial cell apoptosis but does not facilitate regeneration. A drug targeting Apaf-1 allows protection from apoptosis as well as regeneration in the course of

  16. Th17 cells: critical mediators of host responses to burn injury and sepsis

    PubMed Central

    Rendon, Juan L.; Choudhry, Mashkoor A.

    2012-01-01

    Th cells have long been recognized as vital components of the adaptive immune system. Until recently, CD3+CD4+ Th cells were divided into cell-mediated Th1 or humoral Th2 responses. However, the Th1-Th2 hypothesis failed to accommodate the more recently described Th17 cells. Today, the major Th cell subsets include Th1, Th2, Th9, Th17, Th22, and Tregs, each of which produce specific effector cytokines under unique transcriptional regulation. Specifically, Th17 cells produce effector cytokines IL-17, IL-21, and IL-22 under the regulation of ROR-γt. Th17 lymphocytes were first described as orchestrators of neutrophil recruitment and activation and as key players in chronic inflammation and autoimmunity. More recent evidence suggest that Th17 lymphocytes and their effector cytokines play a crucial role in maintaining mucosal immunity and barrier integrity, including the skin, lung, and gut. Burn injury induces global changes to the systemic immune response, including suppressed immune function and increased susceptibility to infection. Moreover, burn trauma is associated with remote organ injury. This relationship between burn and remote organ injury supports the hypothesis that immune suppression may facilitate the development of sepsis, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome in critically ill burn patients. Herein, we discuss this emerging adaptive cell subset in critical care settings, including burn injury and clinical sepsis, and highlight the potential therapeutic role of IL-22. PMID:22753950

  17. Enterogenous bacterial glycolipids are required for the generation of natural killer T cells mediated liver injury

    PubMed Central

    Wei, Yingfeng; Zeng, Benhua; Chen, Jianing; Cui, Guangying; Lu, Chong; Wu, Wei; Yang, Jiezuan; Wei, Hong; Xue, Rufeng; Bai, Li; Chen, Zhi; Li, Lanjuan; Iwabuchi, Kazuya; Uede, Toshimitsu; Van Kaer, Luc; Diao, Hongyan

    2016-01-01

    Glycolipids are potent activator of natural killer T (NKT) cells. The relationship between NKT cells and intestinal bacterial glycolipids in liver disorders remained unclear. We found that, in sharp contrast to specific pathogen-free (SPF) mice, germ-free (GF) mice are resistant to Concanavalin A (ConA)-induced liver injury. ConA treatment failed to trigger the activation of hepatic NKT cells in GF mice. These defects correlated with the sharply reduced levels of CD1d-presented glycolipid antigens in ConA-treated GF mice compared with SPF counterparts. Nevertheless, CD1d expression was similar between these two kinds of mice. The absence of intestinal bacteria did not affect the incidence of αGalCer-induced liver injury in GF mice. Importantly, we found the intestinal bacteria contain glycolipids which can be presented by CD1d and recognized by NKT cells. Furthermore, supplement of killed intestinal bacteria was able to restore ConA-mediated NKT cell activation and liver injury in GF mice. Our results suggest that glycolipid antigens derived from intestinal commensal bacteria are important hepatic NKT cell agonist and these antigens are required for the activation of NKT cells during ConA-induced liver injury. These finding provide a mechanistic explanation for the capacity of intestinal microflora to control liver inflammation. PMID:27821872

  18. Glomerular endothelial cell injury and cross talk in diabetic kidney disease.

    PubMed

    Fu, Jia; Lee, Kyung; Chuang, Peter Y; Liu, Zhihong; He, John Cijiang

    2015-02-15

    Diabetic kidney disease (DKD) remains a leading cause of new-onset end-stage renal disease (ESRD), and yet, at present, the treatment is still very limited. A better understanding of the pathogenesis of DKD is therefore necessary to develop more effective therapies. Increasing evidence suggests that glomerular endothelial cell (GEC) injury plays a major role in the development and progression of DKD. Alteration of the glomerular endothelial cell surface layer, including its major component, glycocalyx, is a leading cause of microalbuminuria observed in early DKD. Many studies suggest a presence of cross talk between glomerular cells, such as between GEC and mesangial cells or GEC and podocytes. PDGFB/PDGFRβ is a major mediator for GEC and mesangial cell cross talk, while vascular endothelial growth factor (VEGF), angiopoietins, and endothelin-1 are the major mediators for GEC and podocyte communication. In DKD, GEC injury may lead to podocyte damage, while podocyte loss further exacerbates GEC injury, forming a vicious cycle. Therefore, GEC injury may predispose to albuminuria in diabetes either directly or indirectly by communication with neighboring podocytes and mesangial cells via secreted mediators. Identification of novel mediators of glomerular cell cross talk, such as microRNAs, will lead to a better understanding of the pathogenesis of DKD. Targeting these mediators may be a novel approach to develop more effective therapy for DKD.

  19. Glomerular endothelial cell injury and cross talk in diabetic kidney disease

    PubMed Central

    Fu, Jia; Lee, Kyung; Chuang, Peter Y.; Liu, Zhihong

    2014-01-01

    Diabetic kidney disease (DKD) remains a leading cause of new-onset end-stage renal disease (ESRD), and yet, at present, the treatment is still very limited. A better understanding of the pathogenesis of DKD is therefore necessary to develop more effective therapies. Increasing evidence suggests that glomerular endothelial cell (GEC) injury plays a major role in the development and progression of DKD. Alteration of the glomerular endothelial cell surface layer, including its major component, glycocalyx, is a leading cause of microalbuminuria observed in early DKD. Many studies suggest a presence of cross talk between glomerular cells, such as between GEC and mesangial cells or GEC and podocytes. PDGFB/PDGFRβ is a major mediator for GEC and mesangial cell cross talk, while vascular endothelial growth factor (VEGF), angiopoietins, and endothelin-1 are the major mediators for GEC and podocyte communication. In DKD, GEC injury may lead to podocyte damage, while podocyte loss further exacerbates GEC injury, forming a vicious cycle. Therefore, GEC injury may predispose to albuminuria in diabetes either directly or indirectly by communication with neighboring podocytes and mesangial cells via secreted mediators. Identification of novel mediators of glomerular cell cross talk, such as microRNAs, will lead to a better understanding of the pathogenesis of DKD. Targeting these mediators may be a novel approach to develop more effective therapy for DKD. PMID:25411387

  20. Dynamic Tracking Human Mesenchymal Stem Cells Tropism following Smoke Inhalation Injury in NOD/SCID Mice

    PubMed Central

    Song, MeiJuan; Zhang, XiuWei; Sun, ShuLi; Xiao, PeiXin; Hou, ShiKe; Ding, Hui; Liu, ZiQuan; Dong, WenLong; Wang, JinQiang; Wang, Xue; Sun, ZhiGuang

    2016-01-01

    Multiple preclinical evidences have supported the potential value of mesenchymal stem cells (MSCs) for treatment of acute lung injury (ALI). However, few studies focus on the dynamic tropism of MSCs in animals with acute lung injury. In this study, we track systemically transplanted human bone marrow-derived mesenchymal stem cells (hBMSCs) in NOD/SCID mice with smoke inhalation injury (SII) through bioluminescence imaging (BLI). The results showed that hBMSCs systemically delivered into healthy NOD/SCID mouse initially reside in the lungs and then partially translocate to the abdomen after 24 h. Compared with the uninjured control group treated with hBMSCs, higher numbers of hBMSCs were found in the lungs of the SII NOD/SCID mice. In both the uninjured and SII mice, the BLI signals in the lungs steadily decreased over time and disappeared by 5 days after treatment. hBMSCs significantly attenuated lung injury, elevated the levels of KGF, decreased the levels of TNF-α in BALF, and inhibited inflammatory cell infiltration in the mice with SII. In conclusion, our findings demonstrated that more systemically infused hBMSCs localized to the lungs in mice with SII. hBMSC xenografts repaired smoke inhalation-induced lung injury in mice. This repair was maybe due to the effect of anti-inflammatory and secreting KGF of hMSCs but not associated with the differentiation of the hBMSCs into alveolar epithelial cells. PMID:27725837

  1. Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration

    PubMed Central

    Brügger, Valérie; Duman, Mert; Bochud, Maëlle; Münger, Emmanuelle; Heller, Manfred; Ruff, Sophie; Jacob, Claire

    2017-01-01

    The peripheral nervous system (PNS) regenerates after injury. However, regeneration is often compromised in the case of large lesions, and the speed of axon reconnection to their target is critical for successful functional recovery. After injury, mature Schwann cells (SCs) convert into repair cells that foster axonal regrowth, and redifferentiate to rebuild myelin. These processes require the regulation of several transcription factors, but the driving mechanisms remain partially understood. Here we identify an early response to nerve injury controlled by histone deacetylase 2 (HDAC2), which coordinates the action of other chromatin-remodelling enzymes to induce the upregulation of Oct6, a key transcription factor for SC development. Inactivating this mechanism using mouse genetics allows earlier conversion into repair cells and leads to faster axonal regrowth, but impairs remyelination. Consistently, short-term HDAC1/2 inhibitor treatment early after lesion accelerates functional recovery and enhances regeneration, thereby identifying a new therapeutic strategy to improve PNS regeneration after lesion. PMID:28139683

  2. Upregulation of complement inhibitors in association with vulnerable cells following contusion-induced spinal cord injury.

    PubMed

    Anderson, Aileen J; Najbauer, Joseph; Huang, Wencheng; Young, Wise; Robert, Stephanie

    2005-03-01

    We have previously described the activation of the classical, alternative, and terminal complement cascade pathways after acute contusion spinal cord injury using the New York University (NYU) weight-drop impactor. In the present study, we examined the induction of protein regulators of the complement cascade, factor H (FH), and clusterin, in the same experimental paradigm. The spinal cord of laminectomized adult rats was subjected to mild or severe injury using impactor weight-drop heights of 12.5 and 50 mm, respectively. The spinal cords of control and injured animals were evaluated at 1, 7, and 42 days after injury. Immunocytochemistry revealed a robust increase in the numbers and intensity of staining of FH, and clusterin-positive cells in the injured cord at all three time points, with the highest increases observed at 1 and 42 days after injury. FH and clusterin-positive cells were observed among neurons as well as oligodendrocytes. The increased expression was detected both rostrally and caudally from the injury site, in the latter case at distances up to 20 mm. The precise biological significance of injury-induced upregulation of these proteins remains to be determined. However, FH and clusterin are potent regulators of complement activity targeting upstream (FH) and downstream (clusterin) molecules of the pro-inflammatory cascade, which could be of vital importance in preventing a "runaway" inflammatory reaction in the injured spinal cord.

  3. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury

    PubMed Central

    DiRocco, Derek P.; Bisi, John; Roberts, Patrick; Strum, Jay; Wong, Kwok-Kin; Sharpless, Norman

    2013-01-01

    Acute kidney injury (AKI) is common and urgently requires new preventative therapies. Expression of a cyclin-dependent kinase (CDK) inhibitor transgene protects against AKI, suggesting that manipulating the tubular epithelial cell cycle may be a viable therapeutic strategy. Broad spectrum small molecule CDK inhibitors are protective in some kidney injury models, but these have toxicities and epithelial proliferation is eventually required for renal repair. Here, we tested a well-tolerated, novel and specific small molecule inhibitor of CDK4 and CDK6, PD 0332991, to investigate the effects of transient cell cycle inhibition on epithelial survival in vitro and kidney injury in vivo. We report that CDK4/6 inhibition induced G0/G1 cycle arrest in cultured human renal proximal tubule cells (hRPTC) at baseline and after injury. Induction of transient G0/G1 cycle arrest through CDK4/6 inhibition protected hRPTC from DNA damage and caspase 3/7 activation following exposure to the nephrotoxins cisplatin, etoposide, and antimycin A. In vivo, mice treated with PD 0332991 before ischemia-reperfusion injury (IRI) exhibited dramatically reduced epithelial progression through S phase 24 h after IRI. Despite reduced epithelial proliferation, PD 0332991 ameliorated kidney injury as reflected by improved serum creatinine and blood urea nitrogen levels 24 h after injury. Inflammatory markers and macrophage infiltration were significantly decreased in injured kidneys 3 days following IRI. These results indicate that induction of proximal tubule cell cycle arrest with specific CDK4/6 inhibitors, or “pharmacological quiescence,” represents a novel strategy to prevent AKI. PMID:24338822

  4. P53 inhibitor pifithrin-α prevents the renal tubular epithelial cells against injury

    PubMed Central

    Shen, Yun-Lin; Sun, Lei; Hu, Yu-Jie; Liu, Hua-Jie; Kuang, Xin-Yu; Niu, Xiao-Ling; Huang, Wen-Yan

    2016-01-01

    The injury and repair of renal tubular epithelial cells play an important role in the pathological process of acute kidney injury (AKI). This study aimed to clarify the role of cell cycle change in renal tubular epithelial cell injury and repair in vivo and in vitro. Sprague-Dawley rats received bilateral renal pedicle clamping for 45 min (ischemia) followed by reperfusion. Pifithrin-α, a p53 inhibitor, was administered at 24 h before renal ischemia and 3 and 14 days after reperfusion. Results showed the tubular epithelial cells in M phase increased significantly at 2 h to 72 h after ischemia/reperfusion (I/R), while pifithrin-α decreased them. Renal I/R caused renal tubular epithelial damage in rats, which was improved by pifithrin-α. The α-SMA mRNA expression was up-regulated significantly after I/R, while it was down-regulated by pifithrin-α.NRK-52E cells were cultured in vitro, cell damage was induced by addition of TNF-α, and then cells were treated with pifithrin-α. Cells treated with TNF-α alone in G2/M phase increased significantly, but they were reduced in the presence of pifithrin-α. In NRK-52E cells treated with pifithrin-α for 6 h, NGAL mRNA expression was significantly lower than in cells without pifithrin-α treatment. After NRK-52E cells were treated with pifithrin-α for 24 h, α-SMA and FN mRNA expression was significantly lower than in cells without the treatment. In summary, pifithrin-α can facilitate the progression of renal tubular epithelial cells through G2/M phase, protecting them against injury. PMID:27829991

  5. Dynamics of PDGFRβ expression in different cell types after brain injury.

    PubMed

    Kyyriäinen, Jenni; Ekolle Ndode-Ekane, Xavier; Pitkänen, Asla

    2017-02-01

    Platelet-derived growth factor receptor β (PDGFRβ) is upregulated after brain injury and its depletion results in the blood-brain barrier (BBB) damage. We investigated the time-window and localization of PDGFRβ expression in mice with intrahippocampal kainic acid-induced status epilepticus (SE) and in rats with lateral fluid-percussion-induced traumatic brain injury (TBI). Tissue immunohistochemistry was evaluated at several time-points after SE and TBI. The distribution of PDGFRβ was analyzed, and its cell type-specific expression was verified with double/triple-labeling of astrocytes (GFAP), NG2 cells, and endothelial cells (RECA-1). In normal mouse hippocampus, we found evenly distributed PDGFRβ+ parenchymal cells. In double-labeling, all NG2+ and 40%-60% GFAP+ cells were PDGFRβ+. After SE, PDGFRβ+ cells clustered in the ipsilateral hilus (178% of that in controls at fourth day, 225% at seventh day, P < 0.05) and in CA3 (201% at seventh day, P < 0.05), but the total number of PDGFRβ+ cells was not altered. As in controls, PDGFRβ-immunoreactivity was detected in parenchymal NG2+ and GFAP+ cells. We also observed PDGFRβ+ structural pericytes, detached reactive pericytes, and endothelial cells. After TBI, PDGFRβ+ cells clustered in the perilesional cortex and thalamus, particularly during the first post-injury week. PDGFRβ immunopositivity was observed in NG2+ and GFAP+ cells, structural pericytes, detached reactive pericytes, and endothelial cells. In some animals, PDGFRβ vascular staining was observed around the cortical glial scar for up to 3 months. Our data revealed an acute accumulation of PDGFRβ+ BBB-related cells in degenerating brain areas, which can be long lasting, suggesting an active role for PDGFRβ-signaling in blood vessel and post-injury tissue recovery. GLIA 2017;65:322-341.

  6. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    NASA Astrophysics Data System (ADS)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  7. Molecular Response of Chorioretinal Endothelial Cells to Complement Injury: Implications for Macular Degeneration

    PubMed Central

    Zeng, Shemin; Whitmore, S. Scott; Sohn, Elliott H.; Riker, Megan J.; Wiley, Luke A.; Scheetz, Todd E.; Stone, Edwin M.; Tucker, Budd A.; Mullins, Robert F.

    2016-01-01

    Age-related macular degeneration (AMD) is a common, blinding disease of the elderly in which macular photoreceptor cells, retinal pigment epithelium, and choriocapillaris endothelial cells ultimately degenerate. Recent studies have found that degeneration of the choriocapillaris occurs early in this disease and that this endothelial cell dropout is concomitant with increased deposition of the complement membrane attack complex (MAC) at the choroidal endothelium. However, the impact of MAC injury to choroidal endothelial cells is poorly understood. To model this event in vitro, and to study the downstream consequences of MAC injury, endothelial cells were exposed to complement from human serum, compared to heat inactivated serum which lacks complement components. Cells exposed to complement components in human serum showed increased labeling with antibodies directed against the MAC, time and dose dependent cell death as assessed by lactate dehydrogenase assay, and increased permeability. RNA-Seq analysis following complement injury revealed increased expression of genes associated with angiogenesis including matrix metalloproteases (MMPs) 3 and 9, and VEGF-A. The MAC-induced increase in MMP9 RNA expression was validated using C5 depleted serum compared to C5 reconstituted serum. Increased levels of MMP9 were also determined using Western blot and zymography. These data suggest that, in addition to cell lysis, complement attack on choroidal endothelial cells promotes an angiogenic phenotype in surviving cells. PMID:26564985

  8. Intestinal stem cells and their roles during mucosal injury and repair.

    PubMed

    Neal, Matthew D; Richardson, Ward M; Sodhi, Chhinder P; Russo, Anthony; Hackam, David J

    2011-05-01

    The ability of the host to respond to intestinal injury requires the regeneration of native tissue through a highly orchestrated response from the intestinal stem cells, a population of cells located within the intestinal crypts that have the capability to repopulate the entire villous. The field of intestinal stem cell biology is thus of great interest to surgeons and non-surgeons alike, given its relevance to diseases of intestinal injury and inflammation such as inflammatory bowel disease, trauma, and necrotizing enterocolitis. The field of intestinal stem cell research has been advanced recently by the identification of the putative marker, Lgr5, which has allowed for the isolation and further characterization of the intestinal stem cell. Under the control of the WNT signaling pathway, Lgr5 marks the rapidly dividing cells of the intestinal crypt, and identifies a population of cells that is capable of regenerating the entire villous. We now review the identification of Lgr5 as an intestinal stem cell marker, identify controversies in the intestinal stem cell field, and highlight the response of the intestinal stem cell to injury within the intestinal mucosa that may occur clinically.

  9. Molecular response of chorioretinal endothelial cells to complement injury: implications for macular degeneration.

    PubMed

    Zeng, Shemin; Whitmore, S Scott; Sohn, Elliott H; Riker, Megan J; Wiley, Luke A; Scheetz, Todd E; Stone, Edwin M; Tucker, Budd A; Mullins, Robert F

    2016-02-01

    Age-related macular degeneration (AMD) is a common, blinding disease of the elderly in which macular photoreceptor cells, retinal pigment epithelium and choriocapillaris endothelial cells ultimately degenerate. Recent studies have found that degeneration of the choriocapillaris occurs early in this disease and that endothelial cell drop-out is concomitant with increased deposition of the complement membrane attack complex (MAC) at the choroidal endothelium. However, the impact of MAC injury to choroidal endothelial cells is poorly understood. To model this event in vitro, and to study the downstream consequences of MAC injury, endothelial cells were exposed to complement from human serum, compared to heat-inactivated serum, which lacks complement components. Cells exposed to complement components in human serum showed increased labelling with antibodies directed against the MAC, time- and dose-dependent cell death, as assessed by lactate dehydrogenase assay and increased permeability. RNA-Seq analysis following complement injury revealed increased expression of genes associated with angiogenesis including matrix metalloproteinase (MMP)-3 and -9, and VEGF-A. The MAC-induced increase in MMP9 RNA expression was validated using C5-depleted serum compared to C5-reconstituted serum. Increased levels of MMP9 were also established, using western blot and zymography. These data suggest that, in addition to cell lysis, complement attack on choroidal endothelial cells promotes an angiogenic phenotype in surviving cells.

  10. Neurogenin 3 Expressing Cells in the Human Exocrine Pancreas Have the Capacity for Endocrine Cell Fate

    PubMed Central

    Gomez, Danielle L.; O’Driscoll, Marci; Sheets, Timothy P.; Hruban, Ralph H.; Oberholzer, Jose; McGarrigle, James J.; Shamblott, Michael J.

    2015-01-01

    Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment. PMID:26288179

  11. An update on application of nanotechnology and stem cells in spinal cord injury regeneration.

    PubMed

    Nejati-Koshki, Kazem; Mortazavi, Yousef; Pilehvar-Soltanahmadi, Younes; Sheoran, Sumit; Zarghami, Nosratollah

    2017-03-23

    Spinal cord injury (SCI) is damage to the spinal cord that leads to sudden loss of motor and autonomic function and sensory under the level of the injury. The pathophysiological advancement of SCI is divided into two categories: primary injury and secondary injury. Due to the loss of motor, sensory, or cognitive function, a patient's quality of life is likely reduced and places a great burden on society in order to supply health care costs. Therefore, it is important to develop suitable therapeutic strategies for SCI therapy. Nano biomedical systems and stem cell based therapy have the potential to provide new therapeutic availability and efficacy over conventional medicine. Due to their unique properties, nanomaterials and mesenchymal stem cells can be used to offer efficient treatments. Nanoparticles have a potential to deliver therapeutic molecules to the target tissue of interest, reducing side effects of untargeted therapies in unwanted areas. Mesenchymal stem cells (MSCs) can reduce activating inflammation responses that lead to cell death and promote functional recovery and cell growth. We review recent uses of nanomaterials and stem cells in regeneration of SCI.

  12. Arginase-1 is expressed exclusively by infiltrating myeloid cells in CNS injury and disease.

    PubMed

    Greenhalgh, Andrew D; Passos Dos Santos, Rosmarini; Zarruk, Juan Guillermo; Salmon, Christopher K; Kroner, Antje; David, Samuel

    2016-08-01

    Resident microglia and infiltrating myeloid cells play important roles in the onset, propagation, and resolution of inflammation in central nervous system (CNS) injury and disease. Identifying cell type-specific mechanisms will help to appropriately target interventions for tissue repair. Arginase-1 (Arg-1) is a well characterised modulator of tissue repair and its expression correlates with recovery after CNS injury. Here we assessed the cellular localisation of Arg-1 in two models of CNS damage. Using microglia specific antibodies, P2ry12 and Fc receptor-like S (FCRLS), we show the LysM-EGFP reporter mouse is an excellent model to distinguish infiltrating myeloid cells from resident microglia. We show that Arg-1 is expressed exclusively in infiltrating myeloid cells but not microglia in models of spinal cord injury (SCI) and experimental autoimmune encephalomyelitis (EAE). Our in vitro studies suggest that factors in the CNS environment prevent expression of Arg-1 in microglia in vivo. This work suggests different functional roles for these cells in CNS injury and repair and shows that such repair pathways can be switched on in infiltrating myeloid cells in pro-inflammatory environments.

  13. Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time.

    PubMed

    Li, Xiaofei; Floriddia, Elisa M; Toskas, Konstantinos; Fernandes, Karl J L; Guérout, Nicolas; Barnabé-Heider, Fanie

    2016-11-01

    Stem cells have a high therapeutic potential for the treatment of spinal cord injury (SCI). We have shown previously that endogenous stem cell potential is confined to ependymal cells in the adult spinal cord which could be targeted for non-invasive SCI therapy. However, ependymal cells are an understudied cell population. Taking advantage of transgenic lines, we characterize the appearance and potential of ependymal cells during development. We show that spinal cord stem cell potential in vitro is contained within these cells by birth. Moreover, juvenile cultures generate more neurospheres and more oligodendrocytes than adult ones. Interestingly, juvenile ependymal cells in vivo contribute to glial scar formation after severe but not mild SCI, due to a more effective sealing of the lesion by other glial cells. This study highlights the importance of the age-dependent potential of stem cells and post-SCI environment in order to utilize ependymal cell's regenerative potential.

  14. Inhibition of eIF2α dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis

    PubMed Central

    Sequeira, Sharon J; Wen, Huei Chi; Avivar-Valderas, Alvaro; Farias, Eduardo F; Aguirre-Ghiso, Julio A

    2009-01-01

    Background The ErbB2/Her2/Neu receptor tyrosine kinase is amplified in ~30% of human breast cancers. Phosphorylation of the translation initiation factor, eIF2α inhibits global protein synthesis and activates a stress signaling and growth suppressive program. We have shown that forced phosphorylation of eIF2α can suppress head and neck, colorectal carcinoma and multiple myeloma tumor growth and/or survival. Here we explore whether ErbB2 modulates eIF2α phosphorylation and whether forced phosphorylation of the latter can antagonize ErbB2 deregulation of mammary acinar morphogenesis. Results We tested whether ErbB2 signaling influenced eIF2α signaling and whether enhanced phosphorylation of the latter affected ErbB2-deregulated mammary acinar development. We obtained stable MCF10A cells overexpressing wild-type (Wt) Neu/ErbB2 or a constitutively active (CA) variant via retroviral delivery or mammary tumor cells from MMTV-Neu tumors. Western blotting, RT-PCR and confocal microscopy were used to analyze the effects of ErbB2 activation on eIF2α signaling and the effect of the GADD34-PP1C inhibitor salubrinal. Wt- and MMTV-Neu cells formed aberrant acini structures resembling DCIS, while CA-ErbB2 overexpression induced invasive lesions. In these structures we found that CA-ErbB2 but not the Wt variant significantly down-regulated the pro-apoptotic gene CHOP. This occurred without apparent modulation of basal phosphorylation of PERK and eIF2α or induction of its downstream target ATF4. However, inhibition of eIF2α dephosphorylation with salubrinal was sufficient to inhibit Wt- and CA-ErbB2- as well as MMTV-Neu-induced deregulation of acinar growth. This was linked to enhanced CHOP expression, inhibition of proliferation, induction of apoptosis and luminal clearing in Wt-ErbB2 and to inhibition of cyclin D1 levels and subsequent proliferation in CA-ErbB2 cells. Conclusion Depending on the strength of ErbB2 signaling there is a differential regulation of CHOP and e

  15. DRAM1 protects neuroblastoma cells from oxygen-glucose deprivation/reperfusion-induced injury via autophagy.

    PubMed

    Yu, Mengqiang; Jiang, Yugang; Feng, Qingliang; Ouyang, Yi'an; Gan, Jie

    2014-10-23

    DNA damage-regulated autophagy modulator protein 1 (DRAM1), a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53) target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R) injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R) Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein-Green fluorescent protein-microtubule associated protein 1 light chain 3 (RFP-GFP-LC3) construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I) are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA) inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases.

  16. Evaluation of stem cell administration in a model of kidney ischemia-reperfusion injury.

    PubMed

    da Silva, Léa Bueno Lucas; Palma, Patrícia Viana Bonini; Cury, Patrícia Maluf; Bueno, Valquiria

    2007-12-15

    Ischemia-reperfusion injury is a common early event in kidney transplantation and contributes to a delay in organ function. Acute tubular necrosis, impaired kidney function and organ leukocyte infiltration are the major findings. The therapeutic potential of stem cells has been the focus of recent research as these cells possess capabilities such as self-renewal, multipotent differentiation and aid in regeneration after organ injury. FTY720 is a new synthetic compound that has been associated with preferential migration of blood lymphocytes to peripheral lymph nodes instead of inflammatory sites. Bone marrow stem cells (BMSC) and/or FTY720 were used as therapy to promote recovery of tubule cells and avoid inflammation at the renal site, respectively. Mice were submitted to renal ischemia-reperfusion injury and were either treated with two doses of FTY720, 10x10(6) BMSC, or both in order to compare the therapeutic effect with non-treated and control animals. Renal function and structure were investigated as were cell numbers in peripheral blood and spleen. Activation and apoptosis markers were also evaluated in splenocytes using flow cytometry. We found that the combined therapy (FTY720+BMSC) was associated with more significant changes in renal function and structure after ischemia-reperfusion injury when compared with the other groups. Also a decrease at cell numbers and prevention of spleen cells activation and apoptosis was observed. In conclusion, in our model it was not possible to demonstrate the potential of stem cells alone or in combination with FTY720 to promote early kidney recovery after ischemia-reperfusion injury.

  17. Vitexin alleviates lipopolysaccharide-induced islet cell injury by inhibiting HMGB1 release

    PubMed Central

    Wang, Feifei; Yin, Jiajing; Ma, Yujin; Jiang, Hongwei; Li, Yanbo

    2017-01-01

    Diabetes mellitus (DM) is a chronic metabolic disease, where the predominant pathogenesis is pancreatic β-cells dysfunction or injury. It has been well established that inflammation leads to a gradual exhaustion of pancreatic β-cell function with decreased β-cell mass likely resulting from pancreatic β-cells apoptosis or death. Vitexin, a major bioactive flavonoid compound in plants has numerous pharmacological properties, including antioxidant, anti-inflammatory and antimyeloperoxidase. Whether vitexin can protect pancreatic β-cells against lipopolysaccharide (LPS)-induced pro-inflammatory cytokine production and apoptosis has received little attention. The present study investigated the potential effects of vitexin on LPS-induced pancreatic β-cell injury and apoptosis. It was revealed that apoptosis and damage induced by LPS in islet tissue of rats and INS-1 cells was significantly decreased in response to vitexin treatment. In addition, pretreatment with vitexin decreased the levels of the pro-inflammatory cytokines tumor necrosis factor-α and high mobility group box 1 (HMGB1) in LPS-induced rats. Further experiments demonstrated that vitexin pretreatment suppressed the activation of P38 mitogen-activated protein kinase signaling pathways in LPS-induced INS-1 cells. In conclusion, the results indicated that vitexin prevented LPS-induced islet tissue damage in rats, and INS-1 cells injury and apoptosis by inhibiting HMGB1 release. Therefore, the present study provided clear evidence indicating that vitexin may be a viable therapeutic strategy for the treatment of DM. PMID:28098903

  18. Indomethacin increases susceptibility to injury in human gastric cells independent of PG synthesis inhibition.

    PubMed

    Kokoska, E R; Smith, G S; Deshpande, Y; Wolff, A B; Miller, T A

    1998-10-01

    Indomethacin and other nonsteroidal anti-inflammatory drugs are commonly used to indirectly deduce the possible role of PGs in a process being studied. The objective of this study was to determine if indomethacin, at concentrations comparable to plasma and tissue levels obtained in humans taking therapeutic doses, predisposes human gastric cells to injury through inhibition of PGs or acts through an alternate mechanism. The role of intracellular Ca2+ in this damaging process was also assessed. Indomethacin pretreatment, although by itself nondamaging, was associated with elevated intracellular Ca2+ concentrations and an increased cellular permeability, an effect that was dependent on extracellular Ca2+. Furthermore, indomethacin pretreatment significantly predisposed AGS cells to injury induced by two dissimilar agents (deoxycholate and A-23187), both of which are associated with intracellular Ca2+ accumulation. The addition of exogenous PGs did not reverse the predisposition to injury induced by indomethacin. The observed effects of indomethacin were dependent on concentration and not on ability to inhibit PG synthesis. Similar effects were not observed with equipotent concentrations of ibuprofen or aspirin. Finally, the exacerbation of deoxycholate-induced injury induced by indomethacin was not observed when extracellular Ca2+ was removed. Indomethacin, by disturbing intracellular Ca2+ homeostasis, predisposes human gastric cells to injury through mechanisms independent of PG synthesis. The current study suggests that data resulting from studies employing only indomethacin as a PG synthesis inhibitor should be interpreted with caution.

  19. Role of Kupffer cells in failure of fatty livers following liver transplantation and alcoholic liver injury.

    PubMed

    Thurman, R G; Gao, W; Connor, H D; Adachi, Y; Stachlewitz, R F; Zhong, Z; Knecht, K T; Bradford, B U; Mason, R P; Lemasters, J J

    1995-01-01

    Kupffer cells have been implicated in mechanisms of pathophysiology following liver transplantation. Recently, postoperative injury in ethanol-induced fatty liver has been evaluated because fatty livers often fail following transplantation. The low-flow, reflow liver perfusion model was used to study the role of Kupffer cells (KC) in reperfusion injury to fatty livers from rats fed a diet containing ethanol for 4-5 weeks. Treatment with GdCl3, which selectively destroys KC, decreased cell death significantly. Thus, destruction of KC minimized hepatic reperfusion injury, most likely by inhibiting free radical formation and improving microcirculation. Since it was demonstrated recently that destruction of KC prevented the hypermetabolic state observed with acute alcohol exposure, their involvement in events leading to alcohol-induced liver disease was investigated. In rats exposed to ethanol continuously via intragastric feeding for up to 4 weeks, GdCl3 treatment prevented elevation of aspartate aminotransferase (AST) and dramatically reduced the average hepatic pathological score. These results indicate that KC participate in the early phases of alcohol-induced liver injury. Endotoxaemia occurs in alcoholics and activates KC; therefore, we evaluated the effect of minimizing bacterial endotoxin by intestinal sterilization with the antibiotics polymyxin B and neomycin. Antibiotics diminished plasma endotoxin levels significantly and prevented ethanol-induced increases in AST values. These results indicate that endotoxin is involved in the mechanism of ethanol-induced liver injury. A six-line radical spectrum was detected with electron paramagnetic resonance spectroscopy in bile from alcohol-treated rats which was blocked by GdCl3. The free radical adducts had hyperfine coupling constants characteristic of lipid-derived free radical products. In conclusion, these studies demonstrate that KC are involved in reperfusion injury to ethanol-induced fatty livers and hepatic

  20. NG2 cell response in the CNP-EGFP mouse after contusive spinal cord injury

    PubMed Central

    Lytle, Judith M.; Chittajallu, Ramesh; Wrathall, Jean R.; Gallo, Vittorio

    2009-01-01

    NG2+ cells in the adult CNS are a heterogeneous population. The extent to which the subpopulation of NG2+ cells that function as oligodendrocyte progenitor cells (OPCs) respond to spinal cord injury (SCI) and recapitulate their normal developmental progression remains unclear. We used the CNP-EGFP mouse, in which oligodendrocyte lineage cells express EGFP, to study NG2+ cells in the normal and injured spinal cord. In white matter of uninjured mice, bipolar EGFP+NG2+ cells and multipolar EGFPnegNG2+ cells were identified. After SCI, EGFP+NG2+ cell proliferation in residual white matter peaked at 3 days post injury (DPI) rostral to the epicenter, while EGFPnegNG2+ cell proliferation peaked at 7 DPI at the epicenter. The expression of transcription factors Olig2, Sox10 and Sox17, and the basic electrophysiological membrane parameters and potassium current phenotype of the EGFP+NG2+ population after injury were consistent with those of proliferative OPCs during development. EGFPnegNG2+ cells did not express transcription factors involved in oligodendrogenesis. EGFP+CC1+ oligodendrocytes at 6 weeks included cells that incorporated BrdU during the peak of EGFP+NG2+ cell proliferation. EGFPnegCC1+ oligodendrocytes were never observed. Treatment with glial growth factor 2 and fibroblast growth factor 2 enhanced oligodendrogenesis and increased the number of EGFPnegNG2+ cells. Therefore, based on EGFP and transcription factor expression, spatio-temporal proliferation patterns, and response to growth factors, two populations of NG2+ cells can be identified that react to SCI. The EGFP+NG2+ cells undergo cellular and physiological changes in response to SCI that are similar to those that occur in early postnatal NG2+ cells during developmental oligodendrogenesis. PMID:18756526

  1. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl

    PubMed Central

    Sabin, Keith; Santos-Ferreira, Tiago; Essig, Jaclyn; Rudasill, Sarah; Echeverri, Karen

    2016-01-01

    Salamanders, such as the Mexican axolotl, are some of the few vertebrates fortunate in their ability to regenerate diverse structures after injury. Unlike mammals they are able to regenerate a fully functional spinal cord after injury. However, the molecular circuitry required to initiate a pro-regenerative response after spinal cord injury is not well understood. To address this question we developed a spinal cord injury model in axolotls and used in vivo imaging of labeled ependymoglial cells to characterize the response of these cells to injury. Using in vivo imaging of ion sensitive dyes we identified that spinal cord injury induces a rapid and dynamic change in the resting membrane potential of ependymoglial cells. Prolonged depolarization of ependymoglial cells after injury inhibits ependymoglial cell proliferation and subsequent axon regeneration. Using transcriptional profiling we identified c-Fos as a key voltage sensitive early response gene that is expressed specifically in the ependymoglial cells after injury. This data establishes that dynamic changes in the membrane potential after injury are essential for regulating the specific spatiotemporal expression of c-Fos that is critical for promoting faithful spinal cord regeneration in axolotl. PMID:26477559

  2. Increase in the radioresistance of normal skin fibroblasts but not tumor cells by mechanical injury.

    PubMed

    Chen, Zelin; Wang, Xin; Jin, Taotao; Wang, Yu; Hong, Christopher S; Tan, Li; Dai, Tingyu; Wu, Liao; Zhuang, Zhengping; Shi, Chunmeng

    2017-02-02

    The timing of radiation after mechanical injury such as in the case of surgery is considered a clinical challenge because radiation is assumed to impair wound healing. However, the physiological responses and underlying mechanisms of this healing impairment are still unclear. Here, we show that mechanical injury occurring before ionizing radiation decreases radiation-induced cell damage and increases cell repair in normal fibroblasts but not tumor cells in vitro and in vivo. At the molecular level, mechanical injury interrupts focal adhesion complexes and cell-cell cadherin interactions, transducing mechanical signals into intracellular chemical signals via activation of the phosphatidylinositol 3-kinase (PI3K), Akt, and glycogen synthase kinase 3 beta (GSK-3β) pathways. We show that subsequent nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and β-catenin strengthen the stemness, antioxidant capabilities, and DNA double-strand break repair abilities of fibroblasts, ultimately contributing to increased radioresistance. Our findings demonstrate that mechanical injury to normal fibroblasts enhances radioresistance and may therefore question conventional wisdom surrounding the timing of radiation after surgery.

  3. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice.

    PubMed

    Eldredge, Laurie C; Treuting, Piper M; Manicone, Anne M; Ziegler, Steven F; Parks, William C; McGuire, John K

    2016-02-01

    Bronchopulmonary dysplasia (BPD) is a common consequence of life-saving interventions for infants born with immature lungs. Resident tissue myeloid cells regulate lung pathology, but their role in BPD is poorly understood. To determine the role of lung interstitial myeloid cells in neonatal responses to lung injury, we exposed newborn mice to hyperoxia, a neonatal mouse lung injury model with features of human BPD. In newborn mice raised in normoxia, we identified a CD45(+) F4/80(+) CD11b(+), Ly6G(lo-int) CD71(+) population of cells in lungs of neonatal mice present in significantly greater percentages than in adult mice. In response to hyperoxia, surface marker and gene expression in whole lung macrophages/monocytes was biased to an alternatively activated phenotype. Partial depletion of these CD11b(+) mononuclear cells using CD11b-diphtheria toxin (DT) receptor transgenic mice resulted in 60% mortality by 40 hours of hyperoxia exposure with more severe lung injury, perivascular edema, and alveolar hemorrhage compared with DT-treated CD11b-DT receptor-negative controls, which displayed no mortality. These results identify an antiinflammatory population of CD11b(+) mononuclear cells that are protective in hyperoxia-induced neonatal lung injury in mice, and suggest that enhancing their beneficial functions may be a treatment strategy in infants at risk for BPD.

  4. Migration of bovine aortic smooth muscle cells after wounding injury. The role of hyaluronan and RHAMM.

    PubMed Central

    Savani, R C; Wang, C; Yang, B; Zhang, S; Kinsella, M G; Wight, T N; Stern, R; Nance, D M; Turley, E A

    1995-01-01

    The migration of smooth muscle cells is a critical event in the pathogenesis of vascular diseases. We have investigated the role of hyaluronan (HA) and the hyaluronan receptor RHAMM in the migration of adult bovine aortic smooth muscle cells (BASMC). Cultured BASMC migrated from the leading edge of a single scratch wound with increased velocity between 1 and 24 h. Polyclonal anti-RHAMM antisera that block HA binding with this receptor abolished smooth muscle cell migration following injury. HA stimulated the random locomotion of BASMC and its association with the cell monolayer increased following wounding injury. Immunoblot analysis of wounded monolayers demonstrated a novel RHAMM protein isoform that appeared within one hour after injury. At the time of increased cell motility after wounding, FACS analysis demonstrated an increase in the membrane localization in approximately 25% of the cell population. Confocal microscopy of injured monolayers confirmed that membrane expression of this receptor was limited to cells at the wound edge. Collectively, these data demonstrate that RHAMM is necessary for the migration of smooth muscle cells and that expression and distribution of this receptor is tightly regulated following wounding of BASMC monolayers. Images PMID:7533785

  5. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    PubMed Central

    Zhang, Rui-ping; Xu, Cheng; Liu, Yin; Li, Jian-ding; Xie, Jun

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7-8. Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury. PMID:25878588

  6. Establishing the flow cytometric assessment of myeloid cells in kidney ischemia/reperfusion injury.

    PubMed

    Williams, Timothy M; Wise, Andrea F; Alikhan, Maliha A; Layton, Daniel S; Ricardo, Sharon D

    2014-03-01

    Polychromatic flow cytometry is a powerful tool for assessing populations of cells in the kidney through times of homeostasis, disease and tissue remodeling. In particular, macrophages have been identified as having central roles in these three settings. However, because of the plasticity of myeloid cells it has been difficult to define a specific immunophenotype for these cells in the kidney. This study developed a gating strategy for identifying and assessing monocyte and macrophage subpopulations, along with neutrophils and epithelial cells in the healthy kidney and following ischemia/reperfusion (IR) injury in mice, using antibodies against CD45, CD11b, CD11c, Ly6C, Ly6G, F4/80, CSF-1R (CD115), MHC class II, mannose receptor (MR or CD206), an alternatively activated macrophage marker, and the epithelial cell adhesion marker (EpCAM or CD326). Backgating analysis and assessment of autofluorescence was used to extend the knowledge of various cell types and the changes that occur in the kidney at various time-points post-IR injury. In addition, the impact of enzymatic digestion of kidneys on cell surface markers and cell viability was assessed. Comparisons of kidney myeloid populations were also made with those in the spleen. These results provide a useful reference for future analyses of therapies aimed at modulating inflammation and enhancing endogenous remodeling following kidney injury.

  7. Cell Injury and Repair Resulting from Sleep Loss and Sleep Recovery in Laboratory Rats

    PubMed Central

    Everson, Carol A.; Henchen, Christopher J.; Szabo, Aniko; Hogg, Neil

    2014-01-01

    Study Objectives: Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. Design: Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. Measurements and Results: Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Two days of recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. Conclusions: These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury. Citation: Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats

  8. Human Kidney-Derived Cells Ameliorate Acute Kidney Injury Without Engrafting into Renal Tissue.

    PubMed

    Santeramo, Ilaria; Herrera Perez, Zeneida; Illera, Ana; Taylor, Arthur; Kenny, Simon; Murray, Patricia; Wilm, Bettina; Gretz, Norbert

    2017-04-04

    Previous studies have suggested that CD133(+) cells isolated from human kidney biopsies have the potential to ameliorate injury following intravenous (IV) administration in rodent models of kidney disease by integrating into damaged renal tissue and generating specialized renal cells. However, whether renal engraftment of CD133(+) cells is a prerequisite for ameliorating injury has not yet been unequivocally resolved. Here, we have established a cisplatin-induced nephropathy model in immunodeficient rats to assess the efficacy of CD133(+) human kidney cells in restoring renal health, and to determine the fate of these cells after systemic administration. Specifically, following IV administration, we evaluated the impact of the CD133(+) cells on renal function by undertaking longitudinal measurements of the glomerular filtration rate using a novel transcutaneous device. Using histological assays, we assessed whether the human kidney cells could promote renal regeneration, and if this was related to their ability to integrate into the damaged kidneys. Our results show that both CD133(+) and CD133(-) cells improve renal function and promote renal regeneration to a similar degree. However, this was not associated with engraftment of the cells into the kidneys. Instead, after IV administration, both cell types were exclusively located in the lungs, and had disappeared by 24 hours. Our data therefore indicate that renal repair is not mediated by CD133(+) cells homing to the kidneys and generating specialized renal cells. Instead, renal repair is likely to be mediated by paracrine or endocrine factors. © Stem Cells Translational Medicine 2017.

  9. Delayed olfactory ensheathing cell transplants reduce nociception after dorsal root injury.

    PubMed

    Wu, Ann; Lauschke, Jenny L; Gorrie, Catherine A; Cameron, Nicholas; Hayward, Ian; Mackay-Sim, Alan; Waite, Phil M E

    2011-05-01

    Injury to cervical dorsal roots mimics the deafferentation component of brachial plexus injury in humans, with intractable neuropathic pain in the deafferented limb being a common consequence. Such lesions are generally not amenable to surgical repair. The use of olfactory ensheathing cells (OECs) for dorsal root repair, via acute transplantation, has been successful in several studies. From a clinical point of view, delayed transplantation of OECs would provide a more realistic timeframe for repair. In this study we investigated the effect of delayed OEC transplantation on functional recovery of skilled forepaw movements and amelioration of neuropathic pain, using a C7 and C8 dorsal root injury rat model previously established in our lab. We found that OEC transplantation to the dorsal horn 1 week after root injury effectively attenuated neuropathic disturbances associated with dorsal root injury, including spontaneous pain behavior, tactile allodynia and thermal hyperalgesia. The sensory controls of complex, goal-oriented skilled reaching and ladder walking, however, were not improved by delayed OEC transplantation. We did not detect any significant influence of transplanted OECs on injury-induced central reorganisation and afferent sprouting. The anti-nociceptive effect mediated by OEC transplants may therefore be explained by alternative mechanisms such as modification of inflammation and astrogliosis. The significant effect of OEC transplants in mitigating neuropathic pain may be clinically useful in intractable pain syndromes arising from deafferentation. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.

  10. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury

    PubMed Central

    Cole, Alistair E.; Murray, Simon S.; Xiao, Junhua

    2016-01-01

    Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS). The bone morphogenetic proteins (BMPs), in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research. PMID:27293450

  11. Treatment of Severe Adult Traumatic Brain Injury Using Bone Marrow Mononuclear Cells.

    PubMed

    Cox, Charles S; Hetz, Robert A; Liao, George P; Aertker, Benjamin M; Ewing-Cobbs, Linda; Juranek, Jenifer; Savitz, Sean I; Jackson, Margaret L; Romanowska-Pawliczek, Anna M; Triolo, Fabio; Dash, Pramod K; Pedroza, Claudia; Lee, Dean A; Worth, Laura; Aisiku, Imoigele P; Choi, Huimahn A; Holcomb, John B; Kitagawa, Ryan S

    2017-04-01

    Preclinical studies using bone marrow derived cells to treat traumatic brain injury have demonstrated efficacy in terms of blood-brain barrier preservation, neurogenesis, and functional outcomes. Phase 1 clinical trials using bone marrow mononuclear cells infused intravenously in children with severe traumatic brain injury demonstrated safety and potentially a central nervous system structural preservation treatment effect. This study sought to confirm the safety, logistic feasibility, and potential treatment effect size of structural preservation/inflammatory biomarker mitigation in adults to guide Phase 2 clinical trial design. Adults with severe traumatic brain injury (Glasgow Coma Scale 5-8) and without signs of irreversible brain injury were evaluated for entry into the trial. A dose escalation format was performed in 25 patients: 5 controls, followed 5 patients in each dosing cohort (6, 9, 12 ×10(6) cells/kg body weight), then 5 more controls. Bone marrow harvest, cell processing to isolate the mononuclear fraction, and re-infusion occurred within 48 hours after injury. Patients were monitored for harvest-related hemodynamic changes, infusional toxicity, and adverse events. Outcome measures included magnetic resonance imaging-based measurements of supratentorial and corpus callosal volumes as well as diffusion tensor imaging-based measurements of fractional anisotropy and mean diffusivity of the corpus callosum and the corticospinal tract at the level of the brainstem at 1 month and 6 months postinjury. Functional and neurocognitive outcomes were measured and correlated with imaging data. Inflammatory cytokine arrays were measured in the plasma pretreatment, posttreatment, and at 1 and 6 month follow-up. There were no serious adverse events. There was a mild pulmonary toxicity of the highest dose that was not clinically significant. Despite the treatment group having greater injury severity, there was structural preservation of critical regions of interest

  12. Sweat gland regeneration after burn injury: is stem cell therapy a new hope?

    PubMed

    Zhang, Cuiping; Chen, Yan; Fu, Xiaobing

    2015-05-01

    Stem cells are the seeds of tissue repair and regeneration and a promising source for novel therapies. The skin of patients with an extensive deep burn injury is repaired by a hypertrophic scar without regeneration of sweat glands and therefore loses the function of perspiration. Stem cell therapy provides the possibility of sweat gland regeneration. In particular, recent studies have reported the reprogramming of mesenchymal stromal cells into sweat gland-like (SGL) cells. We present an overview of recent researches into sweat gland regeneration with stem cells. Difficulties of sweat gland regeneration after deep burns have been elaborated. The advantage and disadvantage of several stem cell types in sweat gland regeneration have been discussed. Additionally, the possible mechanisms for reprogramming stem cells to SGL cells are summarized. A brief discussion on clinical application of stem cell-derived SGL cells is also presented. This review may possibly provide some implications for sweat gland regeneration.

  13. Directional delivery of RSPO1 by mesenchymal stem cells ameliorates radiation-induced intestinal injury.

    PubMed

    Chen, Wei; Ju, Songwen; Lu, Ting; Xu, Yongfang; Zheng, Xiaocui; Wang, Haiyan; Ge, Yan; Ju, Songguang

    2017-02-16

    Radiation-induced intestinal injury (RIII) commonly occurs in patients who received radiotherapy for pelvic or abdominal cancer, or who suffered from whole-body irradiation during a nuclear accident. RIII can lead to intestinal disorders and even death given its integrity damage that results from intestinal stem cell (ISC) loss. Recovery from RIII relies on the intensity of supportive treatment, which can attenuate lethal infection and give surviving stem cells an opportunity to regenerate. It has been reported that RSPO1 is a cytokine with potent and specific proliferative effects on intestinal crypt cells. MSCs have multiple RIII-healing effects, including anti-inflammatory and anti-irradiation injury properties, due to its negative immune regulation and its homing ability to the damaged intestinal epithelia. To combine the comprehensive anti-injury potential of MSCs, and the potent ability of RSPO1 as a mitogenic factor for ISCs, we constructed RSPO1-modified C3H10 T1/2 cells and expected that RSPO1, the ISC-proliferative cytokine, could be delivered to the site of injury in a targeted manner. In this study, we transferred C3H10/RSPO1 intravenously via the retro-orbital sinus into mice suffering from abdominal irradiation at lethal dosages. Our findings demonstrated that C3H10/RSPO1 cells are able to directionally migrate to the injury site; enhance ISC survival, proliferation, and differentiation; and effectively repair the radiation-damaged intestinal epithelial cells. This study suggests that the directional delivery of RSPO1 by MSCs is a promising strategy to ameliorate, and even cure, RIII.

  14. Adaptive response of human melanoma cells to methylglyoxal injury.

    PubMed

    Amicarelli, F; Bucciarelli, T; Poma, A; Aimola, P; Di Ilio, C; Ragnelli, A M; Miranda, M

    1998-03-01

    The effects of methylglyoxal on the growth of a line of human melanoma cells are investigated. Methylglyoxal inhibits cell growth in a dose-dependent manner and causes an increase in glyceraldehyde 3-phosphate dehydrogenase, and glyoxalase 1 and glyoxalase 2 specific activities. The cellular response to increasing concentrations of methylglyoxal in the culture medium is also studied by measuring L-lactate production, reduced-oxidized glutathione levels and apoptotic cell death. Methylglyoxal seems to promote a change of cell population phenotypic repertoire toward a more monomorphic phenotype. In conclusion, methylglyoxal seems to induce an enzymatic cellular response that lowers methylglyoxal levels and selects the most resistant cells.

  15. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    SciTech Connect

    Sakamoto, C.; Matozaki, T.; Nagao, M.; Baba, S.

    1987-09-01

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate (Gpp(NH)p)>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg/sup 2 +/. When pancreatic acini were treated with 1 ..mu..g/ml pertussis toxin for 4 h, subsequent /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor.

  16. Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury

    SciTech Connect

    Eto, Hideyuki; Miyata, Masaaki . E-mail: miyatam@m3.kufm.kagoshima-u.ac.jp; Kume, Noriaki; Minami, Manabu; Itabe, Hiroyuki; Orihara, Koji; Hamasaki, Shuichi; Biro, Sadatoshi; Otsuji, Yutaka; Kita, Toru; Tei, Chuwa

    2006-03-10

    Lectin-like oxidized LDL receptor-1 (LOX-1) is an oxidized LDL receptor, and its role in restenosis after angioplasty remains unknown. We used a balloon-injury model of rabbit aorta, and reverse transcription-polymerase chain reaction revealed that LOX-1 mRNA expression was modest in the non-injured aorta, reached a peak level 2 days after injury, and remained elevated until 24 weeks after injury. Immunohistochemistry and in situ hybridization showed that LOX-1 was not detected in the media of non-injured aorta but expressed in both medial and neointimal smooth muscle cells (SMC) at 2 and 24 weeks after injury. Low concentrations of ox-LDL (10 {mu}g/mL) stimulated the cultured SMC proliferation, which was inhibited by antisense oligonucleotides of LOX-1 mRNA. Double immunofluorescense staining showed the colocalization of LOX-1 and proliferating cell nuclear antigen in human restenotic lesion. These results suggest that LOX-1 mediates ox-LDL-induced SMC proliferation and plays a role in neointimal formation after vascular injury.

  17. Implanted electro-acupuncture electric stimulation improves outcome of stem cells' transplantation in spinal cord injury.

    PubMed

    Liu, Haichun; Yang, Kaiyun; Xin, Tao; Wu, Wenliang; Chen, Yunzhen

    2012-10-01

    Spinal cord injury (SCI) is one of the most serious disorders in clinics, and the high disability rate and functional deficits are common issues in patients. Transplantation of bone-marrow-derived mesenchymal stromal cells (BMSCs) into the injured spinal cord is emerging as a novel method in the therapeutics of SCI; however, its application is limited by the poor survival rate of the transplanted cells and low differentiation rate into neurons. Our laboratory recently reported that electrical stimulation (ES) dramatically improves the survival rate of transplanted BMSCs and increases spinal cord functions in animals with spinal cord injury. In this paper, we asked whether implanted electro-acupuncture (iEA) can advance the beneficial effects from the ES treatment in animals with spinal cord injury. We showed that BMSCs transplantation alone resulted in significant functional recovery in animals. Interestingly, iEA with BMSCs treatment induced a significantly higher functional improvement in locomotor functions and SSEP compared to the BMSCs treatment alone. Additionally, we used molecular biology techniques and showed that BMSCs transplantation with iEA treatment significantly increased the number of surviving BMSCs compared to the BMSCs alone group. In conclusion, our experiment showed that the approach of coupling iEA electric stimulation and BMSCs transplantation remarkably promotes functional improvements in animals with spinal cord injury and holds promising potential to treat spinal cord injury in humans.

  18. Therapeutic potential of mesenchymal stem cells in acute kidney injury is affected by administration timing.

    PubMed

    Liu, Xiaoyan; Cai, Jieru; Jiao, Xiaoyan; Yu, Xiaofang; Ding, Xiaoqiang

    2017-03-10

    Mesenchymal stem cell (MSC) transplantation is a promising therapy for acute kidney injury; however, the efficacy is limited due to poor survival after transplantation. In this study, we investigated how MSC transplantation timing affected the survival and therapeutic potential of MSCs in the kidney ischemia-reperfusion (I/R) injury model. After kidney I/R injury, the inflammatory process and tissue damage were characterized over 1 week post-I/R, we found that inflammation peaked at 12-24 h post-I/R (h.p.i.), and urine  neutrophil gelatinase-associated lipocalin (NGAL) measurements correlated highly with measures of inflammation. We cultured MSCs with supernatants from I/R injured kidney tissue homogenates collected at different time points and found that kidney homogenates from 12 and 24 h.p.i. were most toxic to MSCs, whereas homogenates from 1 h.p.i. were not as cytotoxic as those from 12 and 24 h.p.i. Compared with MSCs administered at 12, or 24 h.p.i., cells administered immediately after ischemia or 1 h.p.i. yielded the highest renoprotective and anti-inflammatory effects. Our findings indicate that MSC treatment for acute kidney injury is most effective when applied prior to the development of a potent inflammatory microenvironment, and urine NGAL may be helpful for detecting inflammation and selecting MSC transplantation timing in I/R kidney injury.

  19. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats.

    PubMed

    Park, Kevin K; Luo, Xueting; Mooney, Skyler J; Yungher, Benjamin J; Belin, Stephane; Wang, Chen; Holmes, Melissa M; He, Zhigang

    2017-02-01

    In the adult mammalian central nervous system (CNS), axonal damage often triggers neuronal cell death and glial activation, with very limited spontaneous axon regeneration. In this study, we performed optic nerve injury in adult naked mole-rats, the longest living rodent, with a maximum life span exceeding 30 years, and found that injury responses in this species are quite distinct from those in other mammalian species. In contrast to what is seen in other mammals, the majority of injured retinal ganglion cells (RGCs) survive with relatively high spontaneous axon regeneration. Furthermore, injured RGCs display activated signal transducer and activator of transcription-3 (STAT3), whereas astrocytes in the optic nerve robustly occupy and fill the lesion area days after injury. These neuron-intrinsic and -extrinsic injury responses are reminiscent of those in "cold-blooded" animals, such as fish and amphibians, suggesting that the naked mole-rat is a powerful model for exploring the mechanisms of neuronal injury responses and axon regeneration in mammals. J. Comp. Neurol. 525:380-388, 2017. © 2016 Wiley Periodicals, Inc.

  20. Bone marrow-derived endothelial progenitor cells protect postischemic axons after traumatic brain injury.

    PubMed

    Park, Katya J; Park, Eugene; Liu, Elaine; Baker, Andrew J

    2014-02-01

    White matter sparing after traumatic brain injury (TBI) is an important predictor of survival and outcome. Blood vessels and axons are intimately associated anatomically and developmentally. Neural input is required for appropriate vascular patterning, and vascular signaling is important for neuron development and axon growth. Owing to this codependence between endothelial cells and axons during development and the contribution of endothelial progenitor cells (EPCs) in ischemic injury, we hypothesized that EPCs are important in axonal survival after TBI. We examined the effects of allogenic-cultured EPCs on white matter protection and microvascular maintenance after midline fluid percussion injury in adult Sprague-Dawley rats. We used two in vitro models of injury, mechanical stretch and oxygen-glucose deprivation (OGD), to examine the effects of EPCs on the mechanical and ischemic components of brain trauma, respectively. Our results indicate that EPCs improve the white matter integrity and decrease capillary breakdown after injury. Cultured cortical neurons exposed to OGD had less axon degeneration when treated with EPC-conditioned media, whereas no effect was seen in axons injured by mechanical stretch. The results indicate that EPCs are important for the protection of the white matter after trauma and represent a potential avenue for therapy.

  1. L-carnitine attenuates oxidant injury in HK-2 cells via ROS-mitochondria pathway.

    PubMed

    Ye, Junsheng; Li, Juan; Yu, Yuming; Wei, Qiang; Deng, Wenfeng; Yu, Lixin

    2010-04-09

    Oxidative stress has been considered as the possible mechanism of renal ischemia/reperfusion injury. L-carnitine is an endogenous mitochondrial membrane compound and could effectively protect ischemia-reperfusion injury in the kidney. To elucidate the nephroprotective effects of L-carnitine, here we assessed the effect of L-carnitine on hydrogen peroxide (H(2)O(2))-mediated oxidative stress in the human proximal tubule epithelial cell line, HK-2 cells. The results showed that pretreatment with L-carnitine 12h inhibited H(2)O(2)-induced cell viability loss, intracellular reactive oxygen species generation and lipid peroxidation in a concentration-dependent manner. Also L-carnitine promoted endogenous antioxidant defense components including total antioxidative capacity, glutathione peroxidase, catalase and superoxide dismutase. In parallel, cell apoptosis triggered by H(2)O(2) characterized with the DNA fragment and caspase-3 activity were also inhibited by L-carnitine. Furthermore, mitochondrial dysfunction associated with cell apoptosis including membrane potential loss, down-regulation of Bcl-2 and up-regulation of Bax and the release of cytochrome c were abrogated in the presence of L-carnitine. These results suggested that L-carnitine could protect HK-2 cells from H(2)O(2)-induced injury through the inhibition of oxidative damage, mitochondria dysfunction and ultimately inhibition of cell apoptosis, which indicates that L-carnitine may be a promising approach for the treatment of oxidative stress in renal diseases.

  2. Role of Immune Cells in the Course of Central Nervous System Injury: Modulation with Natural Products.

    PubMed

    Magrone, Thea; Russo, Matteo Antonio; Jirillo, Emilio

    2016-01-01

    Immune cells actively participate to the central nervous system (CNS) injury either damaging or protecting neural tissue with release of various mediators. Residential microglia and monocyte-derived macrophages play a fundamental role within the injured CNS and, here, special emphasis will be placed on M1 and M2 macrophages for their different functional activities. On the other hand, peripheral T regulatory (Treg) cells exert antiinflammatory activities in the diseased host. In this respect, activation of Treg cells by nutraceuticals may represent a novel approach to treat neuroinflammation. Omega-3 fatty acids and polyphenols will be described as substances endowed with antioxidant and anti-inflammatory activities. However, taking into account that Treg cells act in the later phase of CNS injury, favoring immune suppression, manipulation of host immune system with both substances requires caution to avoid undesired side effects.

  3. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury

    PubMed Central

    Embree, Mildred C.; Chen, Mo; Pylawka, Serhiy; Kong, Danielle; Iwaoka, George M.; Kalajzic, Ivo; Yao, Hai; Shi, Chancheng; Sun, Dongming; Sheu, Tzong-Jen; Koslovsky, David A.; Koch, Alia; Mao, Jeremy J.

    2016-01-01

    Tissue regeneration using stem cell-based transplantation faces many hurdles. Alternatively, therapeutically exploiting endogenous stem cells to regenerate injured or diseased tissue may circumvent these challenges. Here we show resident fibrocartilage stem cells (FCSCs) can be used to regenerate and repair cartilage. We identify FCSCs residing within the superficial zone niche in the temporomandibular joint (TMJ) condyle. A single FCSC spontaneously generates a cartilage anlage, remodels into bone and organizes a haematopoietic microenvironment. Wnt signals deplete the reservoir of FCSCs and cause cartilage degeneration. We also show that intra-articular treatment with the Wnt inhibitor sclerostin sustains the FCSC pool and regenerates cartilage in a TMJ injury model. We demonstrate the promise of exploiting resident FCSCs as a regenerative therapeutic strategy to substitute cell transplantation that could be beneficial for patients suffering from fibrocartilage injury and disease. These data prompt the examination of utilizing this strategy for other musculoskeletal tissues. PMID:27721375

  4. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action

    PubMed Central

    Ionescu, Lavinia; Byrne, Roisin N.; van Haaften, Tim; Vadivel, Arul; Alphonse, Rajesh S.; Rey-Parra, Gloria J.; Weissmann, Gaia; Hall, Adam; Eaton, Farah

    2012-01-01

    Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 “healer” phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I. PMID:23023971

  5. Cell tracking technologies for acute ischemic brain injury

    PubMed Central

    Gavins, Felicity NE; Smith, Helen K

    2015-01-01

    Stem cell therapy has showed considerable potential in the treatment of stroke over the last decade. In order that these therapies may be optimized, the relative benefits of growth factor release, immunomodulation, and direct tissue replacement by therapeutic stem cells are widely under investigation. Fundamental to the progress of this research are effective imaging techniques that enable cell tracking in vivo. Direct analysis of the benefit of cell therapy includes the study of cell migration, localization, division and/or differentiation, and survival. This review explores the various imaging tools currently used in clinics and laboratories, addressing image resolution, long-term cell monitoring, imaging agents/isotopes, as well as safety and costs associated with each technique. Finally, burgeoning tracking techniques are discussed, with emphasis on multimodal imaging. PMID:25966948

  6. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells.

    PubMed

    Chen, Yi-Xing; Zeng, Zhao-Chong; Sun, Jing; Zeng, Hai-Ying; Huang, Yan-; Zhang, Zhen-Yu

    2015-07-01

    Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow-derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague-Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury.

  7. Ependymal stem cells divide asymmetrically and transfer progeny into the subventricular zone when activated by injury.

    PubMed

    Gleason, D; Fallon, J H; Guerra, M; Liu, J-C; Bryant, P J

    2008-09-22

    Evidence is presented to show that cells of the ependymal layer surrounding the ventricles of the mammalian (rat) forebrain act as neural stem cells (NSCs), and that these cells can be activated to divide by a combination of injury and growth factor stimulation. Several markers of asymmetric cell division (ACD), a characteristic of true stem cells, are expressed asymmetrically in the ependymal layer but not in the underlying subventricular zone (SVZ), and when the brain is treated with a combination of local 6-hydroxydopamine (6-OHDA) with systemic delivery of transforming growth factor-alpha (TGFalpha), ependymal cells divide asymmetrically and transfer progeny into the SVZ. The SVZ cells then divide as transit amplifying cells (TACs) and their progeny enter a differentiation pathway. The stem cells in the ependymal layer may have been missed in many previous studies because they are usually quiescent and divide only in response to strong stimuli.

  8. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury.

    PubMed

    Sarkar, Chinmoy; Zhao, Zaorui; Aungst, Stephanie; Sabirzhanov, Boris; Faden, Alan I; Lipinski, Marta M

    2014-01-01

    Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) transgenic mice, we observed accumulation of autophagosomes in ipsilateral cortex and hippocampus between 1 and 7 d. This accumulation was not due to increased initiation of autophagy but rather to a decrease in clearance of autophagosomes, as reflected by accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1). This was confirmed by ex vivo studies, which demonstrated impaired autophagic flux in brain slices from injured as compared to control animals. Increased SQSTM1 peaked at d 1-3 but resolved by d 7, suggesting that the defect in autophagy flux is temporary. The early impairment of autophagy is at least in part caused by lysosomal dysfunction, as evidenced by lower protein levels and enzymatic activity of CTSD (cathepsin D). Furthermore, immediately after injury both autophagosomes and SQSTM1 accumulated predominantly in neurons. This was accompanied by appearance of SQSTM1 and ubiquitin-positive puncta in the affected cells, suggesting that, similar to the situation observed in neurodegenerative diseases, impaired autophagy may contribute to neuronal injury. Consistently, GFP-LC3 and SQSTM1 colocalized with markers of both caspase-dependent and caspase-independent cell death in neuronal cells proximal to the injury site. Taken together, our data indicated for the first time that autophagic clearance is impaired early after TBI due to lysosomal dysfunction, and correlates with neuronal cell death.

  9. Transient neuroprotection by SRY upregulation in dopamine cells following injury in males.

    PubMed

    Czech, Daniel P; Lee, Joohyung; Correia, Jeanne; Loke, Hannah; Möller, Eva K; Harley, Vincent R

    2014-07-01

    Emerging evidence suggest sex-specific regulation of dopamine neurons may underlie susceptibility of males to disorders such as Parkinson's disease (PD). In healthy male dopamine neurons, the Y-chromosome gene product, the sex-determining region on the Y chromosome (SRY) modulates dopamine biosynthesis and motor function. We investigated the regulation and function of SRY in a model of dopamine cell injury. Treatment with the dopaminergic toxin, 6-hydroxydopamine (6-OHDA), significantly elevated SRY mRNA expression (9-fold) in human male dopamine M17 cells. SRY up-regulation occurred via the p-quinone pathway, associated with a 3.5-fold increase in expression of GADD45γ, a DNA damage inducible factor gene and known SRY regulator. In turn, a signaling cascade involving GADD45γ/p38-MAPK/GATA activated the SRY promoter. Knockdown of SRY mRNA in 6-OHDA-treated M17 cells was deleterious, increasing levels of reactive oxygen species (ROS), pro-apoptotic marker PUMA mRNA, and cell injury (+25%, +32% and +34%, respectively). Conversely, ectopic over-expression of SRY in 6-OHDA-treated female SH-SY5Y cells was protective, decreasing ROS, PUMA, and cell injury (-40%, -46%, and -30%, respectively). However, the 6-OHDA-induced increase in SRY expression was diminished with higher concentrations of toxins or with chronic exposure to 6-OHDA. We conclude that SRY upregulation after dopamine cell injury is initially a protective response in males, but diminishes with gradual loss in dopamine cells. We speculate that dysregulation of SRY may contribute the susceptibility of males to PD.

  10. Hepatitis C virus load in parenchyma cells correlates with hepatic injury in infected patients

    PubMed Central

    Xu, Zhen; Lin, Ji-Zong; Lin, Guo-Li; Wei, Fang-Fang; Liu, Jing; Zhao, Zhi-Xin; Zhang, Ying; Ke, Wei-Ming; Zhang, Xiao-Hong

    2017-01-01

    The association between serum hepatitis C virus (HCV) load and hepatic injury in HCV-infected patients has been extensively investigated. The present study aimed to investigate the association between HCV load in hepatic parenchyma cells and hepatic injury in HCV-infected patients. A total of 56 HCV-infected patients were included in the present retrospective study. The serum HCV mRNA was determined using quantitative polymerase chain reaction, while the hepatic parenchyma cell volume and HCV mRNA in hepatic parenchyma cells were also determined. Hepatic injury was evaluated on the basis of the severity of inflammation and fibrosis. The results demonstrated that there were evident differences in the mean serum HCV RNA levels and the HCV load/parenchyma cell volume among the various grades of hepatic inflammation (G1-G4) when groups with the least and most inflammation were compared (G1 vs. G4; P<0.05). Significant differences in the HCV load existed between groups divided according to the fibrosis grade; in addition, differences existed between fibrosis grades S1 and S2, and S2 and S4 when comparing serum HCV RNA levels (P<0.05). Similarly, differences existed between every two fibrosis stages (S0 vs. S4, S2 vs. S3, and S2 vs. S4; P<0.05) when viral loads and parenchyma cell volumes were compared (F=2.860, P<0.05). Furthermore, the fibrosis staging was correlated with the viral load/parenchyma cell volume (F=2.670, P<0.05). In conclusion, hepatic fibrosis grade was found to be associated with HCV load in parenchyma cells. The results of the present study demonstrated that the viral load in parenchyma cells is a more appropriate index compared with the serum viral load for evaluating HCV replication in hepatocytes, and may function as an important factor in HCV-infected hepatic injury evaluation. PMID:28123484

  11. SDF-1 activates papillary label-retaining cells during kidney repair from injury.

    PubMed

    Oliver, Juan A; Maarouf, Omar; Cheema, Faisal H; Liu, Charles; Zhang, Qing-Yin; Kraus, Carl; Zeeshan Afzal, M; Firdous, Mamoona; Klinakis, Apostolos; Efstratiadis, Argiris; Al-Awqati, Qais

    2012-06-01

    The adult kidney contains a population of low-cycling cells that resides in the papilla. These cells retain for long periods S-phase markers given as a short pulse early in life; i.e., they are label-retaining cells (LRC). In previous studies in adult rat and mice, we found that shortly after acute kidney injury many of the quiescent papillary LRC started proliferating (Oliver JA, Klinakis A, Cheema FH, Friedlander J, Sampogna RV, Martens TP, Liu C, Efstratiadis A, Al-Awqati Q. J Am Soc Nephrol 20: 2315-2327, 2009; Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q. J Clin Invest 114: 795-804, 2004) and, with cell-tracking experiments, we found upward migration of some papillary cells including LRC (Oliver JA, Klinakis A, Cheema FH, Friedlander J, Sampogna RV, Martens TP, Liu C, Efstratiadis A, Al-Awqati Q. J Am Soc Nephrol 20: 2315-2327, 2009). To identify molecular cues involved in the activation (i.e., proliferation and/or migration) of the papillary LRC that follows injury, we isolated these cells from the H2B-GFP mice and found that they migrated and proliferated in response to the cytokine stromal cell-derived factor-1 (SDF-1). Moreover, in a papillary organ culture assay, the cell growth out of the upper papilla was dependent on the interaction of SDF-1 with its receptor Cxcr4. Interestingly, location of these two proteins in the kidney revealed a complementary location, with SDF-1 being preferentially expressed in the medulla and Cxcr4 more abundant in the papilla. Blockade of Cxcr4 in vivo prevented mobilization of papillary LRC after transient kidney ischemic injury and worsened its functional consequences. The data indicate that the SDF-1/Cxcr4 axis is a critical regulator of papillary LRC activation following transient kidney injury and during organ repair.

  12. Relationship between oxygen-induced alveolar macrophage injury and cell antioxidant defence.

    PubMed

    Aerts, C; Wallaert, B; Gosset, P; Voisin, C

    1995-01-01

    Exposure to hyperoxia causes alveolar macrophage (AM) injury. The present study investigates the roles of intracellular antioxidant enzymes and of glutathione in the protection of AMs against hyperoxia in a biphasic cell culture system in aerobiosis. The effect of normoxia or hyperoxia on the integrity of AMs was related to indices of cell injury (ATP cell content and lactate dehydrogenase release into culture medium) and cell mass (protein content of AMs). Antioxidant activities were measured in guinea-pig AMs exposed to 95% O2 or to normoxia (control cells) for 3 days. A 3-day AM culture in normoxia showed a significant decrease in protein and catalase, whereas ATP cell content, superoxide dismutase (SOD) (both Cu,Zn-SOD and Mn-SOD) and glutathione peroxidase (GPx) activities significantly increased. The content of reduced glutathione (GSH) did not change. Using the ATP content in AMs expressed as a cell injury index (CII), AM injury increased with increasing O2 exposure time (1 day: 13 +/- 4.4%; 2 days: 34 +/- 3.8%; 3 days: 40 +/- 4.1%; 4 days: 55 +/- 7.3%; 6 days: 87.5 +/- 5.4%). Exposure to 95% O2 for 3 days was associated with a significant decrease in ATP cell content, protein, catalase and GSH to the total glutathione ratio, whereas SOD, GSH and total glutathione did not change significantly. The GPx activities increased significantly. There was no significant correlation between the AM CII and SOD or GPx content. In contrast, a significant correlation was observed between hyperoxia-induced AM CII and catalase content (r = 0.71) and glutathione content (r = 0.71).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Hepatitis C virus load in parenchyma cells correlates with hepatic injury in infected patients.

    PubMed

    Xu, Zhen; Lin, Ji-Zong; Lin, Guo-Li; Wei, Fang-Fang; Liu, Jing; Zhao, Zhi-Xin; Zhang, Ying; Ke, Wei-Ming; Zhang, Xiao-Hong

    2017-01-01

    The association between serum hepatitis C virus (HCV) load and hepatic injury in HCV-infected patients has been extensively investigated. The present study aimed to investigate the association between HCV load in hepatic parenchyma cells and hepatic injury in HCV-infected patients. A total of 56 HCV-infected patients were included in the present retrospective study. The serum HCV mRNA was determined using quantitative polymerase chain reaction, while the hepatic parenchyma cell volume and HCV mRNA in hepatic parenchyma cells were also determined. Hepatic injury was evaluated on the basis of the severity of inflammation and fibrosis. The results demonstrated that there were evident differences in the mean serum HCV RNA levels and the HCV load/parenchyma cell volume among the various grades of hepatic inflammation (G1-G4) when groups with the least and most inflammation were compared (G1 vs. G4; P<0.05). Significant differences in the HCV load existed between groups divided according to the fibrosis grade; in addition, differences existed between fibrosis grades S1 and S2, and S2 and S4 when comparing serum HCV RNA levels (P<0.05). Similarly, differences existed between every two fibrosis stages (S0 vs. S4, S2 vs. S3, and S2 vs. S4; P<0.05) when viral loads and parenchyma cell volumes were compared (F=2.860, P<0.05). Furthermore, the fibrosis staging was correlated with the viral load/parenchyma cell volume (F=2.670, P<0.05). In conclusion, hepatic fibrosis grade was found to be associated with HCV load in parenchyma cells. The results of the present study demonstrated that the viral load in parenchyma cells is a more appropriate index compared with the serum viral load for evaluating HCV replication in hepatocytes, and may function as an important factor in HCV-infected hepatic injury evaluation.

  14. Nestin(+) kidney resident mesenchymal stem cells for the treatment of acute kidney ischemia injury.

    PubMed

    Jiang, Mei Hua; Li, Guilan; Liu, Junfeng; Liu, Longshan; Wu, Bingyuan; Huang, Weijun; He, Wen; Deng, Chunhua; Wang, Dong; Li, Chunling; Lahn, Bruce T; Shi, Chenggang; Xiang, Andy Peng

    2015-05-01

    Renal resident mesenchymal stem cells (MSCs) are important regulators of kidney homeostasis, repair or regeneration. However, natural distribution and the starting population properties of these cells remain elusive because of the lack of specific markers. Here, we identified post-natal kidney derived Nestin(+) cells that fulfilled all of the criteria as a mesenchymal stem cell. These isolated Nestin(+) cells expressed the typical cell-surface marker of MSC, including Sca-1, CD44, CD106, NG2 and PDGFR-α. They were capable of self-renewal, possessed high clonogenic potential and extensive proliferation for more than 30 passages. Under appropriate differentiation conditions, these cells could differentiate into adipocytes, osteocytes, chondrocytes and podocytes. After intravenous injection into acute kidney injury mice, Nestin(+) cells contributed to functional improvement by significantly decreasing the peak level of serum creatinine and BUN, and reducing the damaged cell apoptosis. Furthermore, conditioned medium from Nestin(+) cells could protect against ischemic acute renal failure partially through paracrine factor VEGF. Taken together, our findings indicate that renal resident Nestin(+) MSCs can be derived, propagated, differentiated, and repair the acute kidney injury, which may shed new light on understanding MSCs biology and developing cell replacement therapies for kidney disease.

  15. ADULT NEURAL STEM CELLS: RESPONSE TO STROKE INJURY AND POTENTIAL FOR THERAPEUTIC APPLICATIONS

    PubMed Central

    Barkho, Basam Z.; Zhao, Xinyu

    2011-01-01

    The plasticity of neural stem/progenitor cells allows a variety of different responses to many environmental cues. In the past decade, significant research has gone into understanding the regulation of neural stem/progenitor cell properties, because of their promise for cell replacement therapies in adult neurological diseases. Both endogenous and grafted neural stem/progenitor cells are known to have the ability to migrate long distances to lesioned sites after brain injury and differentiate into new neurons. Several chemokines and growth factors, including stromal cell-derived factor-1 and vascular endothelial growth factor, have been shown to stimulate the proliferation, differentiation, and migration of neural stem/progenitor cells, and investigators have now begun to identify the critical downstream effectors and signaling mechanisms that regulate these processes. Both our own lab and others have shown that the extracellular matrix and matrix remodeling factors play a critical role in directing cell differentiation and migration of adult neural stem/progenitor cells within injured sites. Identification of these and other molecular pathways involved in stem cell homing into ischemic areas is vital for the development of new treatments. To ensure the best functional recovery, regenerative therapy may require the application of a combination approach that includes cell replacement, trophic support, and neural protection. Here we review the current state of our knowledge about endogenous adult and exogenous neural stem/progenitor cells as potential therapeutic agents for central nervous system injuries. PMID:21466483

  16. Adoptive transfer of hepatic stellate cells ameliorates liver ischemia reperfusion injury through enriching regulatory T cells.

    PubMed

    Feng, Min; Wang, Quanrongzi; Wang, Hao; Wang, Meng; Guan, Wenxian; Lu, Ling

    2014-04-01

    Our previous study indicated that adoptive transferred regulatory T cells (Tregs) attenuated liver ischemia reperfusion injury (IRI). Recent studies demonstrated that hepatic stellate cells (HSCs) were producers of induced Tregs (iTregs) via retinoic acid. This study aimed to investigate the role of adoptive transferred HSCs in liver IRI. Mice were treated with gradient doses of HSCs before surgery at 24h or 72h. The levels of serum aminotransferases and hepatic cytokines were evaluated after reperfusion. Meanwhile, hepatic Tregs and their subsets were analyzed by flow cytometry. We found that adoptive transferred HSCs attenuated liver IRI. Administration of HSCs expanded the number of hepatic iTregs and natural Tregs (nTregs) after reperfusion. In addition, we found that the increased Tregs were almost Helios-Tregs before surgery. These Helios-Tregs were considered as iTregs and protected liver from IRI partially. Furthermore, adoptive transferred HSCs stabilized nTregs and prevented nTregs from reducing after reperfusion. These nTregs also attenuated liver IRI partially. Depletion of Tregs abolished the protective effect of HSCs. Thus, we conclude that adoptive transferred HSCs ameliorate liver IRI in Tregs-dependent manner.

  17. Apoptotic cell death following traumatic injury to the central nervous system.

    PubMed

    Springer, Joe E

    2002-01-31

    Apoptotic cell death is a fundamental and highly regulated biological process in which a cell is instructed to actively participate in its own demise. This process of cellular suicide is activated by developmental and environmental cues and normally plays an essential role in eliminating superfluous, damaged, and senescent cells of many tissue types. In recent years, a number of experimental studies have provided evidence of widespread neuronal and glial apoptosis following injury to the central nervous system (CNS). These studies indicate that injury-induced apoptosis can be detected from hours to days following injury and may contribute to neurological dysfunction. Given these findings, understanding the biochemical signaling events controlling apoptosis is a first step towards developing therapeutic agents that target this cell death process. This review will focus on molecular cell death pathways that are responsible for generating the apoptotic phenotype. It will also summarize what is currently known about the apoptotic signals that are activated in the injured CNS, and what potential strategies might be pursued to reduce this cell death process as a means to promote functional recovery.

  18. A Mouse Model for Fetal Maternal Stem Cell Transfer During Ischemic Cardiac Injury

    PubMed Central

    Kara, Rina J.; Bolli, Paola; Matsunaga, Iwao; Tanweer, Omar; Altman, Perry; Chaudhry, Hina W.

    2012-01-01

    Fetal cells enter the maternal circulation during pregnancies and can persist in blood and tissues for decades, creating a state of physiologic microchimerism. Microchimerism refers to acquisition of cells from another individual and can be due to bi-directional cell traffic between mother and fetus during pregnancy. Peripartum cardiomyopathy, a rare cardiac disorder associated with high mortality rates has the highest recovery rate amongst all etiologies of heart failure although the reason is unknown. Collectively, these observations led us to hypothesize that fetal cells enter the maternal circulation and may be recruited to the sites of myocardial disease or injury. The ability to genetically modify mice makes them an ideal system for studying the phenomenon of microchimerism in cardiac disease. Described here is a mouse model for ischemic cardiac injury during pregnancy designed to study microchimerism. Wild-type virgin female mice mated with eGFP male mice underwent ligation of the left anterior descending artery to induce a myocardial infarction at gestation day 12. We demonstrate the selective homing of eGFP cells to the site of cardiac injury without such homing to nonfinjured tissues suggesting the presence of precise signals sensed by fetal cells enabling them to target diseased myocardium specifically. PMID:22883609

  19. Relationship of intracellular calcium and oxygen radicals to Cisplatin-related renal cell injury.

    PubMed

    Kawai, Yoshiko; Nakao, Takafumi; Kunimura, Naoshi; Kohda, Yuka; Gemba, Munekazu

    2006-01-01

    We investigated the involvement of reactive oxygen species (ROS) and intracellular calcium in nephrotoxicity related to an antitumor agent, cisplatin. In this study, we employed cultured renal epithelial cells (LLC-PK1). Cisplatin at 500 microM significantly increased the production of ROS 5 h and caused cell injury. This agent significantly increased the intracellular calcium level ([Ca2+]i) in a dose-dependent manner 1 h or more after exposure. DPPD (N,N'-diphenyl-p-phenylenediamine), an antioxidant, inhibited a cisplatin-related increase in active oxygen production and cell injury but did not inhibit an early increase in the [Ca2+]i level. An intracellular calcium-chelating compound BAPTA-AM (1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester) inhibited an increase in ROS production and cell injury induced by cisplatin. Furthermore, BAPTA-AM suppressed the rise of [Ca2+]i level in 1 h after exposure; however, an extracellular calcium chelator EGTA and a calcium antagonist nicardipine did not inhibit the rise in [Ca2+]i level in the early phase. An NADPH oxidase inhibitor inhibited a cisplatin-related increase in ROS production and cell disorder. These results suggest that cisplatin-related calcium release from the site of intracellular calcium storage in the early phase causes oxidative stress in renal tubular epithelial cells. Cisplatin may increase the intracellular production of ROS via NADPH oxidase.

  20. Cell-cycle arrest and acute kidney injury: the light and the dark sides

    PubMed Central

    Kellum, John A.; Chawla, Lakhmir S.

    2016-01-01

    Acute kidney injury (AKI) is a common consequence of systemic illness or injury and it complicates several forms of major surgery. Two major difficulties have hampered progress in AKI research and clinical management. AKI is difficult to detect early and its pathogenesis is still poorly understood. We recently reported results from multi-center studies where two urinary markers of cell-cycle arrest, tissue inhibitor of metalloproteinases-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7) were validated for development of AKI well ahead of clinical manifestations—azotemia and oliguria. Cell-cycle arrest is known to be involved in the pathogenesis of AKI and this ‘dark side’ may also involve progression to chronic kidney disease. However, cell-cycle arrest has a ‘light side’ as well, since this mechanism can protect cells from the disastrous consequences of entering cell division with damaged DNA or insufficient bioenergetic resources during injury or stress. Whether we can use the light side to help prevent AKI remains to be seen, but there is already evidence that cell-cycle arrest biomarkers are indicators of both sides of this complex physiology. PMID:26044835

  1. Early Phase Mast Cell Activation Determines the Chronic Outcome of Renal Ischemia-Reperfusion Injury.

    PubMed

    Danelli, Luca; Madjene, Lydia Celia; Madera-Salcedo, Iris; Gautier, Gregory; Pacreau, Emeline; Ben Mkaddem, Sanae; Charles, Nicolas; Daugas, Eric; Launay, Pierre; Blank, Ulrich

    2017-03-15

    Ischemia-reperfusion injury (IRI) is an important cause of acute kidney injury that can lead to end-stage renal failure. Although the ensuing inflammatory response can restore homeostasis, a consecutive maladaptive repair and persistent inflammation represent important risk factors for postischemic chronic kidney disease development. In this study, we investigated the role of mast cells in both the early and late phases of the inflammatory response in experimental models of acute and chronic renal IRI using our recently developed mouse model that allows conditional ablation of mast cells. Depletion of mast cells prior to IRI resulted in improved renal function due to diminished local inflammatory cytokine/chemokine levels and neutrophil recruitment to the kidneys after the acute injury phase (48 h post-IRI). Furthermore, although not completely protected, mast cell-depleted mice displayed less organ atrophy and fibrosis than did wild-type mice during the chronic phases (2 and 6 wk post-IRI) of disease development. Conversely, mast cell ablation after the acute phase of IRI had no impact on organ atrophy, tubular necrosis, or fibrosis. Thus, our results suggest a deleterious role of mast cells during the acute inflammatory phase of IRI promoting subsequent fibrosis development, but not during the chronic phase of the disease.

  2. Microchimeric fetal cells are recruited to maternal kidney following injury and activate collagen type I transcription.

    PubMed

    Bou-Gharios, George; Amin, Farhana; Hill, Peter; Nakamura, Hiroyuki; Maxwell, Patrick; Fisk, Nicholas M

    2011-01-01

    Fetal cells enter the maternal circulation from the early first trimester of pregnancy, where they persist in tissue decades later. We investigated in mice whether fetal microchimeric cells (FMCs) can be detected in maternal kidney, and whether they play a role in kidney homeostasis. FMCs were identified in vivo in two models: one an adaptive model following unilateral nephrectomy, the other an injury via unilateral renal ischaemia reperfusion. Both models were carried out in mothers that had been mated with transgenic mice expressing luciferase transgene under the control of collagen type I, and had given birth to either 1 or 3 litters. FMCs were detected by Y-probe fluorescent in situ hybridization (FISH) and bioluminescence, and the cell number quantified by real-time polymerase chain reaction. In the adaptive model, the remaining kidney showed more cells by all 3 parameters compared with the nephrectomized kidney, while ischaemia reperfusion resulted in higher levels of FMC participation in injured compared to contralateral kidneys. Bioluminescence showed that FMCs switch on collagen type I transcription implicating mesenchymal lineage cells. After injury, Y-probe in situ hydridization was found mainly in the tubular epithelial network. Finally, we compared FMCs with bone marrow cells and found similar dynamics but altered distribution within the kidney. We conclude that FMCs (1) are long-term sequelae of pregnancy and (2) are recruited to the kidney as a result of injury or adaptation, where they activate the transcriptional machinery of matrix proteins.

  3. Cell density signal protein suitable for treatment of connective tissue injuries and defects

    DOEpatents

    Schwarz, Richard I.

    2002-08-13

    Identification, isolation and partial sequencing of a cell density protein produced by fibroblastic cells. The cell density signal protein comprising a 14 amino acid peptide or a fragment, variant, mutant or analog thereof, the deduced cDNA sequence from the 14 amino acid peptide, a recombinant protein, protein and peptide-specific antibodies, and the use of the peptide and peptide-specific antibodies as therapeutic agents for regulation of cell differentiation and proliferation. A method for treatment and repair of connective tissue and tendon injuries, collagen deficiency, and connective tissue defects.

  4. Hydroxysafflor yellow A protects methylglyoxal-induced injury in the cultured human brain microvascular endothelial cells.

    PubMed

    Li, Wenlu; Liu, Jie; He, Ping; Ni, Zhenzhen; Hu, Yangmin; Xu, Huimin; Dai, Haibin

    2013-08-09

    Individuals with diabetes have high concentration of methylglyoxal (MGO) and have advanced glycation end-products (AGEs) which play an important role in vascular complications, such as stroke. Our previous data demonstrated that hydroxysafflor yellow A (HSYA), a major active chemical component of the safflower yellow pigment, had antiglycation effect on the AGEs formation in vitro. It is not known whether HSYA can protect against MGO-induced injury in cultured human brain microvascular endothelial cells (HBMEC). Using cultured HBMEC, cell injury was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formation, lactate dehydrogenase (LDH) release and AnnexinV/PI staining. Advanced glycogen end-products and caspase-3 formation were measured by Western blotting. Incubation of MGO for 24h concentration-dependently induced HBMEC injury, which was protected by HSYA from 10 to 100 μmol/l. Caspase-3 expression and AnnexinV/PI staining illustrated that the protection of HSYA was probably associated with inhibiting cell apoptosis. What's more, MGO promoted AGEs accumulation in the cultured HBMEC, which was also inhibited by 100 μmol/l HSYA. Thus, our results proved that HSYA could inhibit MGO-induced injury in the cultured HBMEC, which was associated with its antiglycation effect.

  5. Endothelial colony forming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury.

    PubMed

    Collett, Jason A; Mehrotra, Purvi; Crone, Allison; Shelley, W Christopher; Yoder, Mervin C; Basile, David P

    2017-02-22

    Damage to endothelial cells contributes to acute kidney injury (AKI) by leading to impaired perfusion. Endothelial colony-forming cells (ECFCs) are endothelial precursor cells with high proliferative capacity, pro-angiogenic activity, and in vivo vessel forming potential. We hypothesized that ECFCs may ameliorate the degree of AKI and/or promote repair of the renal vasculature following ischemia/reperfusion (I/R). Rat pulmonary microvascular ECs (PMVEC) with high proliferative potential were compared with pulmonary artery ECs (PAEC) with low proliferative potential in rats subjected to renal I/R. PMVEC administration reduced renal injury and hastened recovery as indicated by serum creatinine and tubular injury scores, while PAEC did not. Vehicle-treated control animals showed consistent reductions in renal medullary blood flow (MBF) within 2 hours of reperfusion, while PMVEC protected against loss in MBF as measured by laser Doppler. Interestingly, PMVEC mediated protection occurred in the absence of homing to the kidney. Conditioned medium (CM) from human cultured cord blood ECFC also conveyed beneficial effects against I/R injury and loss of MBF. Moreover, ECFC-CM significantly reduced the expression of adhesion molecules such as ICAM-1 and p-selectin, and decreased the number of differentiated lymphocytes typically recruited into the kidney following renal ischemia. Taken together, these data suggest that ECFC secrete factors that preserve renal function post ischemia, in part, by preserving microvascular function.

  6. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    PubMed

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-08-09

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  7. Glutathione reductase targeted to type II cells does not protect mice from hyperoxic lung injury.

    PubMed

    Heyob, Kathryn M; Rogers, Lynette K; Welty, Stephen E

    2008-12-01

    Exposure of the lung epithelium to reactive oxygen species without adequate antioxidant defenses leads to airway inflammation, and may contribute to lung injury. Glutathione peroxidase catalyzes the reduction of peroxides by oxidation of glutathione (GSH) to glutathione disulfide (GSSG), which can in turn be reduced by glutathione reductase (GR). Increased levels of GSSG have been shown to correlate negatively with outcome after oxidant exposure, and increased GR activity has been protective against hyperoxia in lung epithelial cells in vitro. We tested the hypothesis that increased GR expression targeted to type II alveolar epithelial cells would improve outcome in hyperoxia-induced lung injury. Human GR with a mitochondrial targeting sequence was targeted to mouse type II cells using the SPC promoter. Two transgenic lines were identified, with Line 2 having higher lung GR activities than Line 1. Both transgenic lines had lower lung GSSG levels and higher GSH/GSSG ratios than wild-type. Six-week-old wild-type and transgenic mice were exposed to greater than 95% O2 or room air (RA) for 84 hours. After exposure, Line 2 mice had higher right lung/body weight ratios and lavage protein concentrations than wild-type mice, and both lines 1 and 2 had lower GSSG levels than wild-type mice. These findings suggest that GSSG accumulation in the lung may not play a significant role in the development of hyperoxic lung injury, or that compensatory responses to unregulated GR expression render animals more susceptible to hyperoxic lung injury.

  8. Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice

    PubMed Central

    Toyohara, Takafumi; Mae, Shin-Ichi; Sueta, Shin-Ichi; Inoue, Tatsuyuki; Yamagishi, Yukiko; Kawamoto, Tatsuya; Kasahara, Tomoko; Hoshina, Azusa; Toyoda, Taro; Tanaka, Hiromi; Araoka, Toshikazu; Sato-Otsubo, Aiko; Takahashi, Kazutoshi; Sato, Yasunori; Yamaji, Noboru; Ogawa, Seishi; Yamanaka, Shinya

    2015-01-01

    Acute kidney injury (AKI) is defined as a rapid loss of renal function resulting from various etiologies, with a mortality rate exceeding 60% among intensive care patients. Because conventional treatments have failed to alleviate this condition, the development of regenerative therapies using human induced pluripotent stem cells (hiPSCs) presents a promising new therapeutic option for AKI. We describe our methodology for generating renal progenitors from hiPSCs that show potential in ameliorating AKI. We established a multistep differentiation protocol for inducing hiPSCs into OSR1+SIX2+ renal progenitors capable of reconstituting three-dimensional proximal renal tubule-like structures in vitro and in vivo. Moreover, we found that renal subcapsular transplantation of hiPSC-derived renal progenitors ameliorated the AKI in mice induced by ischemia/reperfusion injury, significantly suppressing the elevation of blood urea nitrogen and serum creatinine levels and attenuating histopathological changes, such as tubular necrosis, tubule dilatation with casts, and interstitial fibrosis. To our knowledge, few reports demonstrating the therapeutic efficacy of cell therapy with renal lineage cells generated from hiPSCs have been published. Our results suggest that regenerative medicine strategies for kidney diseases could be developed using hiPSC-derived renal cells. Significance This report is the first to demonstrate that the transplantation of renal progenitor cells differentiated from human induced pluripotent stem (iPS) cells has therapeutic effectiveness in mouse models of acute kidney injury induced by ischemia/reperfusion injury. In addition, this report clearly demonstrates that the therapeutic benefits come from trophic effects by the renal progenitor cells, and it identifies the renoprotective factors secreted by the progenitors. The results of this study indicate the feasibility of developing regenerative medicine strategy using iPS cells against renal diseases

  9. Supporting cell division is not required for regeneration of auditory hair cells after ototoxic injury in vitro.

    PubMed

    Shang, Jialin; Cafaro, Jon; Nehmer, Rachel; Stone, Jennifer

    2010-06-01

    In chickens, nonsensory supporting cells divide and regenerate auditory hair cells after injury. Anatomical evidence suggests that supporting cells can also transdifferentiate into hair cells without dividing. In this study, we characterized an organ culture model to study auditory hair cell regeneration, and we used these cultures to test if direct transdifferentiation alone can lead to significant hair cell regeneration. Control cultures (organs from posthatch chickens maintained without streptomycin) showed complete hair cell loss in the proximal (high-frequency) region by 5 days. In contrast, a 2-day treatment with streptomycin induced loss of hair cells from all regions by 3 days. Hair cell regeneration proceeded in culture, with the time course of supporting cell division and hair cell differentiation generally resembling in vivo patterns. The degree of supporting cell division depended upon the presence of streptomycin, the epithelial region, the type of culture media, and serum concentration. On average, 87% of the regenerated hair cells lacked the cell division marker BrdU despite its continuous presence, suggesting that most hair cells were regenerated via direct transdifferentiation. Addition of the DNA polymerase inhibitor aphidicolin to culture media prevented supporting cell division, but numerous hair cells were regenerated nonetheless. These hair cells showed signs of functional maturation, including stereociliary bundles and rapid uptake of FM1-43. These observations demonstrate that direct transdifferentiation is a significant mechanism of hair cell regeneration in the chicken auditory after streptomycin damage in vitro.

  10. Cell proliferation and apoptosis in optic nerve and brain integration centers of adult trout Oncorhynchus mykiss after optic nerve injury.

    PubMed

    Pushchina, Evgeniya V; Shukla, Sachin; Varaksin, Anatoly A; Obukhov, Dmitry K

    2016-04-01

    Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury. However, the underlying mechanism is poorly understood. In order to address this issue, we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves, after stab wound injury to the eye of an adult trout Oncorhynchus mykiss. Heterogenous population of proliferating cells was investigated at 1 week after injury. TUNEL labeling gave a qualitative and quantitative assessment of apoptosis in the cells of optic nerve of trout 2 days after injury. After optic nerve injury, apoptotic response was investigated, and mass patterns of cell migration were found. The maximal concentration of apoptotic bodies was detected in the areas of mass clumps of cells. It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia. At 1 week after optic nerve injury, we observed nerve cell proliferation in the trout brain integration centers: the cerebellum and the optic tectum. In the optic tectum, proliferating cell nuclear antigen (PCNA)-immunopositive radial glia-like cells were identified. Proliferative activity of nerve cells was detected in the dorsal proliferative (matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury. In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity, as evidenced by PCNA immunolabeling. Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1-4 days of culture. The present findings suggest that trout can be used as a novel model for studying neuronal regeneration.

  11. Cell proliferation and apoptosis in optic nerve and brain integration centers of adult trout Oncorhynchus mykiss after optic nerve injury

    PubMed Central

    Pushchina, Evgeniya V.; Shukla, Sachin; Varaksin, Anatoly A.; Obukhov, Dmitry K.

    2016-01-01

    Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury. However, the underlying mechanism is poorly understood. In order to address this issue, we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves, after stab wound injury to the eye of an adult trout Oncorhynchus mykiss. Heterogenous population of proliferating cells was investigated at 1 week after injury. TUNEL labeling gave a qualitative and quantitative assessment of apoptosis in the cells of optic nerve of trout 2 days after injury. After optic nerve injury, apoptotic response was investigated, and mass patterns of cell migration were found. The maximal concentration of apoptotic bodies was detected in the areas of mass clumps of cells. It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia. At 1 week after optic nerve injury, we observed nerve cell proliferation in the trout brain integration centers: the cerebellum and the optic tectum. In the optic tectum, proliferating cell nuclear antigen (PCNA)-immunopositive radial glia-like cells were identified. Proliferative activity of nerve cells was detected in the dorsal proliferative (matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury. In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity, as evidenced by PCNA immunolabeling. Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1–4 days of culture. The present findings suggest that trout can be used as a novel model for studying neuronal regeneration. PMID:27212918

  12. Desferrioxamine Attenuates Pancreatic Injury after Major Hepatectomy under Vascular Control of the Liver: Experimental Study in Pigs

    PubMed Central

    Varsos, Panagiotis; Nastos, Constantinos; Papoutsidakis, Nikolaos; Kalimeris, Konstantinos; Defterevos, George; Nomikos, Tzortzis; Pafiti, Agathi; Fragulidis, George; Economou, Emmanuel; Kostopanagiotou, Georgia; Smyrniotis, Vassilios; Arkadopoulos, Nikolaos

    2012-01-01

    Introduction. Pancreatic injury can manifest after major hepatectomy under vascular control. The main mechanism involved seems to be remote oxidative injury due to “spillage” of reactive oxygen species and cytokines from the liver. The aim of this study is to evaluate the role of desferrioxamine in the prevention of pancreatic injury following major hepatectomy. Methods. Twelve Landrace pigs were subjected to a combination of major hepatectomy (70–75%), using the Pringle maneuver for 150 minutes, after constructing a porta-caval side-to-side anastomosis. The duration of reperfusion was 24 hours. Animals were randomly divided into a control group (n = 6) and a desferrioxamine group (DFX, n = 6). DFX animals were treated with continuous IV infusion of desferrioxamine 100 mg/kg. Pancreatic tissue injury, c-peptide and amylase concentrations, and pancreatic tissue oxidative markers were evaluated. Results. Desferrioxamine-treated animals showed decreased c-peptide levels, decreased acinar cell necrosis, and decreased tissue malondialdehyde levels 24 hours after reperfusion compared with the control group. There was no difference in portal pressure or serum amylase levels between the groups. Conclusions. Desferrioxamine seems to attenuate pancreatic injury after major hepatectomy under vascular control possibly by preventing and reversing production and circulation of oxidative products. PMID:22791933

  13. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    SciTech Connect

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-11-15

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  14. Relationship between red cell distribution width and early renal injury in patients with gestational diabetes mellitus.

    PubMed

    Cheng, Dong; Zhao, Jiangtao; Jian, Liguo; Ding, Tongbin; Liu, Shichao

    2016-09-01

    Previous studies found that red cell distribution width was related to adverse cardiovascular events. However, few studies reported the relationship between red cell distribution width and early-stage renal injury in pregnant women with gestational diabetes mellitus. Using a cross-sectional design, 334 pregnant women with gestational diabetes mellitus were enrolled according to the criterion of inclusion and exclusion. Demographic and clinical examination data were collected. Depended on the urine albumin, study population were divided into case group (n = 118) and control group (n = 216). Compared with control group, the case group tend to be higher red cell distribution width level (13.6 ± 0.9 vs.12.5 ± 0.6, p < 0.001). The red cell distribution width was positively associated with albuminuria creatinine ratio (r = 0.567, p < 0.001). Multiple logistic regressions showed that red cell distribution width was still associated with early-stage renal injury after adjusting for many other potential cofounders. Compared with the first quartile, the risk ratio of the second, the third and the fourth quartile were 1.38 (95%CI: 1.06-1.80), 1.57 (95%CI: 1.21-2.97), 2.71 (95%CI: 2.08-3.54), respectively. Besides, systolic blood pressure, estimated glomerular filtration rate, uric acid and blood urea nitrogen were also significantly associated with renal injury in gestational diabetes mellitus patients. The elevated red cell distribution width level might be a predictor of early-stage renal injury in pregnant women with gestational diabetes mellitus. As an easy and routine examination index, red cell distribution width may provide better clinical guidance when combined with other important indices.

  15. Exocytosis of MTT formazan could exacerbate cell injury.

    PubMed

    Lü, Lanhai; Zhang, Lihong; Wai, Maria Sen Mun; Yew, David Tai Wai; Xu, Jie

    2012-06-01

    MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] method is one of the most widely used methods to analyze cell proliferation and viability. It is taken up through endocytosis and is reduced by mitochondrial enzymes as well as endosomal/lysosomal compartments, then is transported to cell surfaces to form needle-like MTT formazans; however the effect of MTT itself still remains elusive. Our objective was to investigate the direct effects of MTT on in vitro SH-SY5Y cells. Results showed that the endocytosis of MTT did not cause obvious lesion and induce cell death, but the metabolism and exocytosis of MTT could dramatically damage cells. Our results also indicated that MTT could activate apoptosis related factors such as caspase-8, caspase-3 or accelerate the leakage of cell contents after the appearance of MTT formazan crystals. The present data suggest MTT method should be carefully chosen; otherwise the cell viability would be underestimated and incomparable.

  16. Mast cells protect against Pseudomonas aeruginosa-induced lung injury.

    PubMed

    Junkins, Robert D; Carrigan, Svetlana O; Wu, Zhengli; Stadnyk, Andrew W; Cowley, Elizabeth; Issekutz, Thomas; Berman, Jason; Lin, Tong-Jun

    2014-08-01

    Pseudomonas aeruginosa, an opportunistic pathogen, is the leading cause of morbidity and mortality in immune-compromised individuals. Maintaining the integrity of the respiratory epithelium is critical for an effective host response to P. aeruginosa. Given the close spatial relationship between mast cells and the respiratory epithelium, and the importance of tightly regulated epithelial permeability during lung infections, we examined whether mast cells influence airway epithelial integrity during P. aeruginosa lung infection in a mouse model. We found that mast cell-deficient Kit(W-sh)/Kit(W-sh) mice displayed greatly increased epithelial permeability, bacterial dissemination, and neutrophil accumulation compared with wild-type animals after P. aeruginosa infection; these defects were corrected on reconstitution with mast cells. An in vitro Transwell co-culture model further demonstrated that a secreted mast cell factor decreased epithelial cell apoptosis and tumor necrosis factor production after P. aeruginosa infection. Together, our data demonstrate a previously unrecognized role for mast cells in the maintenance of epithelial integrity during P. aeruginosa infection, through a mechanism that likely involves prevention of epithelial apoptosis and tumor necrosis factor production. Our understanding of mechanisms of the host response to P. aeruginosa will open new avenues for the development of successful preventative and treatment strategies.

  17. Immunomodulatory and neuroprotective effect of cryopreserved allogeneic mesenchymal stem cells on spinal cord injury in rats.

    PubMed

    Rosado, I R; Carvalho, P H; Alves, E G L; Tagushi, T M; Carvalho, J L; Silva, J F; Lavor, M S L; Oliveira, K M; Serakides, R; Goes, A M; Melo, E G

    2017-03-22

    This study aimed to evaluate the immunomodulatory and neuroprotective effects of allogeneic and cryopreserved mesenchymal stem cells (MSCs) on spinal cord injury. A total of 120 rats were distributed into the following groups: negative control (NC) - without injury, positive control (PC) - with injury without treatment, and group treated with MSC (GMSC) - with injury and treated. Motor function was evaluated by the BBB test at 24, 48, and 72 h and at 8 and 21 postoperative days. Spinal cords were evaluated by histopathology and immunohistochemistry to determine the expression of CD68, NeuN, and GFAP. IL-10, TNF-α, IL-1β, TGF-β, BDNF, GDNF, and VEGF expression was quantified by RT-PCR. The GMSC presented higher scores for motor function at 72 h and 8 and 21 days after injury, lower expression of CD68 at 8 days, and lower expression of GFAP at 21 days compared to the PC. In addition, higher expression of NeuN and lower degeneration of the white matter occurred at 21 days. The GMSC also showed higher expression of IL-10 24 h after injury, GDNF at 48 h and 8 days, and VEGF at 21 days. Moreover, lower expression of TNF-α was observed at 8 and 21 days and TGF-β at 24 h and 21 days. There were no differences in the expression of IL-1β and BDNF between the GMSC and PC. Thus, cryopreserved MSCs promote immunomodulatory and neuroprotective effects in rats with spinal cord injury by increasing IL-10, GDNF, and VEGF expression and reducing TNF-α and TGF-β expression.

  18. Acute kidney injury in children with sickle cell disease-compounding a chronic problem.

    PubMed

    Mammen, Cherry; Bissonnette, Mei Lin; Matsell, Douglas G

    2017-03-28

    In an article recently published in Pediatric Nephrology, Baddam and colleagues discuss the relatively underreported clinical problem of repeated episodes of acute kidney injury (AKI) in children with sickle cell disease (SCD). Their report is a cautionary note about the importance of repeated kidney injury on the background of underlying chronic kidney injury and its potential implications on long-term kidney outcome. In children and adults with SCD, this includes the effects of repeated vaso-occlusive crises and the management of these painful episodes with non-steroidal anti-inflammatory drugs. Here we review the scope of kidney involvement in SCD in children and discuss the potential short- and long-term consequences of AKI in children with SCD.

  19. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation.

    PubMed

    Osorio, Karen M; Lee, Song Eun; McDermitt, David J; Waghmare, Sanjeev K; Zhang, Ying V; Woo, Hyun Nyun; Tumbar, Tudorita

    2008-03-01

    Aml1/Runx1 controls developmental aspects of several tissues, is a master regulator of blood stem cells, and plays a role in leukemia. However, it is unclear whether it functions in tissue stem cells other than blood. Here, we have investigated the role of Runx1 in mouse hair follicle stem cells by conditional ablation in epithelial cells. Runx1 disruption affects hair follicle stem cell activation, but not their maintenance, proliferation or differentiation potential. Adult mutant mice exhibit impaired de novo production of hair shafts and all temporary hair cell lineages, owing to a prolonged quiescent phase of the first hair cycle. The lag of stem cell activity is reversed by skin injury. Our work suggests a degree of functional overlap in Runx1 regulation of blood and hair follicle stem cells at an equivalent time point in the development of these two tissues.

  20. Elevation of susceptibility to ozone-induced acute tracheobronchial injury in transgenic mice deficient in Clara cell secretory protein

    SciTech Connect

    Plopper, C.G. . E-mail: cgplopper@ucdavis.edu; Mango, G.W.; Hatch, G.E.; Wong, V.J.; Toskala, E.; Reynolds, S.D.; Tarkington, B.K.; Stripp, B.R.

    2006-05-15

    Increases in Clara cell abundance or cellular expression of Clara cell secretory protein (CCSP) may cause increased tolerance of the lung to acute oxidant injury by repeated exposure to ozone (O{sub 3}). This study defines how disruption of the gene for CCSP synthesis affects the susceptibility of tracheobronchial epithelium to acute oxidant injury. Mice homozygous for a null allele of the CCSP gene (CCSP-/-) and wild type (CCSP+/+) littermates were exposed to ozone (0.2 ppm, 8 h; 1 ppm, 8 h) or filtered air. Injury was evaluated by light and scanning electron microscopy, and the abundance of necrotic, ciliated, and nonciliated cells was estimated by morphometry. Proximal and midlevel intrapulmonary airways and terminal bronchioles were evaluated. There was no difference in airway epithelial composition between CCSP+/+ and CCSP-/- mice exposed to filtered air, and exposure to 0.2 ppm ozone caused little injury to the epithelium of both CCSP+/+ and CCSP-/- mice. After exposure to 1.0 ppm ozone, CCSP-/- mice suffered from a greater degree of epithelial injury throughout the airways compared to CCSP+/+ mice. CCSP-/- mice had both ciliated and nonciliated cell injury. Furthermore, lack of CCSP was associated with a shift in airway injury to include proximal airway generations. Therefore, we conclude that CCSP modulates the susceptibility of the epithelium to oxidant-induced injury. Whether this is due to the presence of CCSP on the acellular lining layer surface and/or its intracellular distribution in the secretory cell population needs to be defined.

  1. EphrinB3 restricts endogenous neural stem cell migration after traumatic brain injury.

    PubMed

    Dixon, Kirsty J; Mier, Jose; Gajavelli, Shyam; Turbic, Alisa; Bullock, Ross; Turnley, Ann M; Liebl, Daniel J

    2016-11-01

    Traumatic brain injury (TBI) leads to a series of pathological events that can have profound influences on motor, sensory and cognitive functions. Conversely, TBI can also stimulate neural stem/progenitor cell proliferation leading to increased numbers of neuroblasts migrating outside their restrictive neurogenic zone to areas of damage in support of tissue integrity. Unfortunately, the factors that regulate migration are poorly understood. Here, we examine whether ephrinB3 functions to restrict neuroblasts from migrating outside the subventricular zone (SVZ) and rostral migratory stream (RMS). We have previously shown that ephrinB3 is expressed in tissues surrounding these regions, including the overlying corpus callosum (CC), and is reduced after controlled cortical impact (CCI) injury. Our current study takes advantage of ephrinB3 knockout mice to examine the influences of ephrinB3 on neuroblast migration into CC and cortex tissues after CCI injury. Both injury and/or ephrinB3 deficiency led to increased neuroblast numbers and enhanced migration outside the SVZ/RMS zones. Application of soluble ephrinB3-Fc molecules reduced neuroblast migration into the CC after injury and limited neuroblast chain migration in cultured SVZ explants. Our findings suggest that ephrinB3 expression in tissues surrounding neurogenic regions functions to restrict neuroblast migration outside the RMS by limiting chain migration.

  2. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury.

    PubMed

    Kabu, Shushi; Gao, Yue; Kwon, Brian K; Labhasetwar, Vinod

    2015-12-10

    Spinal cord injury (SCI) results in devastating neurological and pathological consequences, causing major dysfunction to the motor, sensory, and autonomic systems. The primary traumatic injury to the spinal cord triggers a cascade of acute and chronic degenerative events, leading to further secondary injury. Many therapeutic strategies have been developed to potentially intervene in these progressive neurodegenerative events and minimize secondary damage to the spinal cord. Additionally, significant efforts have been directed toward regenerative therapies that may facilitate neuronal repair and establish connectivity across the injury site. Despite the promise that these approaches have shown in preclinical animal models of SCI, challenges with respect to successful clinical translation still remain. The factors that could have contributed to failure include important biologic and physiologic differences between the preclinical models and the human condition, study designs that do not mirror clinical reality, discrepancies in dosing and the timing of therapeutic interventions, and dose-limiting toxicity. With a better understanding of the pathobiology of events following acute SCI, developing integrated approaches aimed at preventing secondary damage and also facilitating neuroregenerative recovery is possible and hopefully will lead to effective treatments for this devastating injury. The focus of this review is to highlight the progress that has been made in drug therapies and delivery systems, and also cell-based and tissue engineering approaches for SCI.

  3. Association of interstitial nephritis with tubule cell injury and proliferation in NZB/NZW mice.

    PubMed Central

    Hurd, E R; Ziff, M

    1978-01-01

    The relationship between renal interstitial mononuclear cell infiltration and renal tubule cell (TC) proliferation has been examined in (NZB X NZW) F1 hybrid (B/W) and control mice. TC proliferation was measured by tritiated thymidine ([3H]TdR) injection, autoradiographic examination of kidney sections and enumeration of labelled tubule cells. In B/W mice interstitial infiltration began at 5 months and reached a peak at 9 months. Proliferation of TC began at 7 months and also reached a peak at 9 months. Control mice consisting of NZB, CBA/J and C57Bl/6J mice showed no increase with age. When the percentages of labelled TC in areas adjacent to interstitial infiltrates and distant from them were compared, the TC adjacent to infiltrates showed an approximately four-fold greater amount of labelling. Ultrathin light and electron microscopic sections demonstrated TC injury in areas in close proximity to infiltrates. These studies suggest that mononuclear cells in the interstitial infiltrate may be injurious to TC, leading to a sequence of injury and subsequent regeneration of these cells. In diseases in which interstitial nephritis is present, such as Sjögren's syndrome, the interstitial infiltrate may contribute to the observed TC dysfunction. Images FIG. 1 FIG. 2 FIG. 5 FIG. 6 FIG. 7 FIG. 8 FIG. 9 PMID:668188

  4. Cell impermeant based low volume resuscitation in hemorrhagic shock: A biological basis for injury involving cell swelling

    PubMed Central

    Parrish, Dan; Lindell, Susanne L.; Reichstetter, Heather; Aboutanos, Michel; Mangino, Martin J.

    2014-01-01

    Objective To determine the role of cell swelling in severe hemorrhagic shock and resuscitation injury. Summary Background Data Circulatory shock induces the loss of energy dependent volume control mechanisms. As water enters ischemic cells, they swell, die, and compress nearby vascular structures, which further aggravates ischemia by reducing local microcirculatory flow and oxygenation. Loading the interstitial space with cell impermeant molecules prevents water movement into the cell by passive biophysical osmotic effects, which prevents swelling injury and no-reflow. Methods Adult rats were hemorrhaged to a pressure of 30–35 mm Hg, held there until the plasma lactate reached 10 mM, and given a low volume resuscitation (LVR) (10–20% blood volume) with saline or various cell impermeants (sorbitol, raffinose, trehalose, gluconate, and Polyethylene glycol-20k (PEG-20k). When lactate again reached 10 mM following LVR, full resuscitation was started with crystalloid and red cells. One hour after full resuscitation, the rats were euthanized. Capillary blood flow was measured by the colored microsphere technique. Results Impermeants prevented ischemia-induced cell swelling in liver tissue and dramatically improved LVR outcomes in shocked rats. Small cell impermeants and PEG-20k in LVR solutions increased tolerance to the low flow state by 2 and 5 fold, respectively, normalized arterial pressure during LVR, and lowered plasma lactate after full resuscitation, relative to saline. This was accompanied by higher capillary blood flow with cell impermeants. Conclusions Ischemia-induced lethal cell swelling during hemorrhagic shock is a key mediator of resuscitation injury, which can be prevented by cell impermeants in low volume resuscitation solutions. PMID:25915911

  5. Stem cell therapy in spinal cord injury: Hollow promise or promising science?

    PubMed Central

    Goel, Aimee

    2016-01-01

    Spinal cord injury (SCI) remains one of the most physically, psychologically and socially debilitating conditions worldwide. While rehabilitation measures may help limit disability to some extent, there is no effective primary treatment yet available. The efficacy of stem cells as a primary therapeutic option in spinal cord injury is currently an area under much scrutiny and debate. Several laboratory and some primary clinical studies into the use of bone marrow mesenchymal stem cells or embryonic stem cell-derived oligodentrocyte precursor cells have shown some promising results in terms of remyelination and regeneration of damaged spinal nerve tracts. More recently,laboratory and early clinical experiments into the use of Olfactory Ensheathing Cells, a type of glial cell derived from olfactory bulb and mucosa have provided some phenomenal preliminary evidence as to their neuroregenerative and neural bridging capacity. This report compares and evaluates some current research into selected forms of embryonic and mesenchymal stem cell therapy as well as olfactory ensheathing cell therapy in SCI, and also highlights some legal and ethical issues surrounding their use. While early results shows promise, more rigorous large scaleclinical trials are needed to shed light on the safety, efficacy and long term viability of stem cell and cellular transplant techniques in SCI. PMID:27217662

  6. Controversies on the Origin of Proliferating Epithelial Cells after Kidney Injury

    PubMed Central

    Kusaba, Tetsuro; Humphreys, Benjamin D.

    2014-01-01

    The kidney possesses the capacity to repair after an acute insult, even one that causes complete organ failure. This regenerative response is characterized by robust proliferation of epithelial cells, principally those located in the proximal tubule. Because defining the origin of these reparative cells has important consequences for stem cell and regenerative approaches to treat kidney injury, this area has been the subject of intense investigation and debate. While progress has been made in narrowing the possible origin of these cells to an intratubular source, there has been no consensus between the possibility of a preexisting intratubular stem or progenitor cell versus the possibility that fully differentiated epithelial cells re-enter the cell cycle after injury and generate new proximal tubule cells through self-duplication. This review will summarize the evidence on both sides of this active controversy and provide support for the notion that no preexisting proximal tubule stem cell population exists, but rather all differentiated proximal tubule epithelia have the capacity to proliferate during repair by a mechanism of dedifferentiation and self-duplication. PMID:24322596

  7. Controversies on the origin of proliferating epithelial cells after kidney injury.

    PubMed

    Kusaba, Tetsuro; Humphreys, Benjamin D

    2014-04-01

    The kidney possesses the capacity to repair after an acute insult, even one that causes complete organ failure. This regenerative response is characterized by robust proliferation of epithelial cells, principally those located in the proximal tubule. Because defining the origin of these reparative cells has important consequences for stem cell and regenerative approaches to treating kidney injury, this area has been the subject of intense investigation and debate. While progress has been made in narrowing the possible origin of these cells to an intratubular source, there has been no consensus between the possibility of a pre-existing intratubular stem or progenitor cell versus the possibility that fully differentiated epithelial cells re-enter the cell cycle after injury and generate new proximal tubule cells through self-duplication. This review will summarize the evidence on both sides of this active controversy and provide support for the notion that no pre-existing proximal tubule stem cell population exists, but rather all differentiated proximal tubule epithelia have the capacity to proliferate during repair by a mechanism of dedifferentiation and self-duplication.

  8. Mesenchymal stem cells preconditioned with trimetazidine promote neovascularization of hearts under hypoxia/reoxygenation injury

    PubMed Central

    Hu, Xiaowu; Yang, Junjie; Wang, Ying; Zhang, You; Ii, Masaaki; Shen, Zhenya; Hui, Jie

    2015-01-01

    Background: Cell-based angiogenesis is a promising treatment for ischemic diseases; however, survival of implanted cells is impaired by the ischemic microenvironment. In this study, mesenchymal stem cells (MSCs) for cell transplantation were preconditioned with trimetazidine (TMZ). We hypothesized that TMZ enhances the survival rate of MSCs under hypoxic stimuli through up-regulation of HIF1-α. Methods and results: Bone marrow-derived rat mesenchymal stem cells were preconditioned with 10 μM TMZ for 6 h. TMZ preconditioning of MSCs remarkably increased cell viability and the expression of HIF1-α and Bcl-2, when cells were under hypoxia/reoxygenation (H/R) stimuli. But the protective effects of TMZ were abolished after knocking down of HIF-1α. Three days after implantation of the cells into the peri-ischemic zone of rat myocardial ischemia-reperfusion (I/R) injury model, survival of the TMZ-preconditioned MSCs was high. Furthermore, capillary density and cardiac function were significantly better in the rats implanted with TMZ-preconditioned MSCs 28 days after cell injection. Conclusions: TMZ preconditioning increased the survival rate of MSCs, through up-regulation of HIF1-α, thus contributing to neovascularization and improved cardiac function of rats subjected to myocardial I/R injury. PMID:26629255

  9. Stem cell therapy: A novel & futuristic treatment modality for disaster injuries

    PubMed Central

    Gurudutta, G.U.; Satija, Neeraj Kumar; Singh, Vimal Kishor; Verma, Yogesh Kumar; Gupta, Pallavi; Tripathi, R.P.

    2012-01-01

    Stem cell therapy hold the potential to meet the demand for transplant cells/tissues needed for treating damages resulting from both natural and man-made disasters. Pluripotency makes embryonic stem cells and induced pluripotent stem cells ideal for use, but their teratogenic character is a major hindrance. Therapeutic benefits of bone marrow transplantation are well known but characterizing the potentialities of haematopoietic and mesenchymal cells is essential. Haematopoietic stem cells (HSCs) have been used for treating both haematopoietic and non-haematopoietic disorders. Ease of isolation, in vitro expansion, and hypoimmunogenecity have brought mesenchymal stem cells (MSCs) into limelight. Though differentiation of MSCs into tissue-specific cells has been reported, differentiation-independent mechanisms seem to play a more significant role in tissue repair which need to be addressed further. The safety and feasibility of MSCs have been demonstrated in clinical trials, and their use in combination with HSC for radiation injury treatment seems to have extended benefit. Therefore, using stem cells for treatment of disaster injuries along with the conventional medical practice would likely accelerate the repair process and improve the quality of life of the victim. PMID:22382178

  10. Fluoxetine prevents oligodendrocyte cell death by inhibiting microglia activation after spinal cord injury.

    PubMed

    Lee, Jee Y; Kang, So R; Yune, Tae Y

    2015-05-01

    Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans.

  11. Palmitoylethanolamide regulates development of intestinal radiation injury in a mast cell dependent manner

    PubMed Central

    Wang, Junru; Zheng, Junying; Kulkarni, Ashwini; Wang, Wen; Garg, Sarita; Prather, Paul L.; Hauer-Jensen, Martin

    2014-01-01

    Background Mast cells and neuroimmune interactions regulate the severity of intestinal radiation mucositis, a dose-limiting toxicity during radiation therapy of abdominal malignancies. Aims Because endocannabinoids regulate intestinal inflammation, we investigated the effect of the cannabimimetic, palmitoylethanolamide (PEA), in a mast competent (+/+) and mast cell deficient (Ws/Ws) rat model. Methods Rats underwent localized, fractionated intestinal irradiation and received daily injections with vehicle or PEA from 1 day before until 2 weeks after radiation. Intestinal injury was assessed non-invasively by luminol bioluminescence, and, at 2 weeks, by histology, morphometry, and immunohistochemical analysis, gene expression analysis, and pathway analysis. Results Compared to +/+ rats, Ws/Ws rats sustained more intestinal structural injury (p=0.01), mucosal damage (p=0.02), neutrophil infiltration (p=0.0003), and collagen deposition (p=0.004). PEA reduced structural radiation injury (p=0.02), intestinal wall thickness (p=0.03), collagen deposition (p=0.03), and intestinal inflammation (p=0.02) in Ws/Ws rats, but not in +/+ rats. PEA inhibited mast cell-derived cellular immune response and anti-inflammatory IL-6 and IL-10 signaling, and activated the prothrombin pathway in +/+ rats. In contrast, while PEA suppressed non-mast cell derived immune responses, it increased anti-inflammatory IL-10 and IL-6 signaling and decreased activation of the prothrombin pathway in Ws/Ws rats. Conclusions These data demonstrate that the absence of mast cells exacerbate radiation enteropathy by mechanisms that likely involve the coagulation system, anti-inflammatory cytokine signaling, and the innate immune system; and that these mechanisms are regulated by PEA in a mast cell-dependent manner. The endocannabinoid system should be explored as target for mitigating intestinal radiation injury. PMID:24848354

  12. Amputation induces stem cell mobilization to sites of injury during planarian regeneration.

    PubMed

    Guedelhoefer, Otto C; Sánchez Alvarado, Alejandro

    2012-10-01

    How adult stem cell populations are recruited for tissue renewal and repair is a fundamental question of biology. Mobilization of stem cells out of their niches followed by correct migration and differentiation at a site of tissue turnover or injury are important requirements for proper tissue maintenance and regeneration. However, we understand little about the mechanisms that control this process, possibly because the best studied vertebrate adult stem cell systems are not readily amenable to in vivo observation. Furthermore, few clear examples of the recruitment of fully potent stem cells, compared with limited progenitors, are known. Here, we show that planarian stem cells directionally migrate to amputation sites during regeneration. We also show that during tissue homeostasis they are stationary. Our study not only uncovers the existence of specific recruitment mechanisms elicited by amputation, but also sets the stage for the systematic characterization of evolutionarily conserved stem cell regulatory processes likely to inform stem cell function and dysfunction in higher organisms, including humans.

  13. Spinal cord injury in rats treated using bone marrow mesenchymal stem-cell transplantation.

    PubMed

    Chen, Yu-Bing; Jia, Quan-Zhang; Li, Dong-Jun; Sun, Jing-Hai; Xi, Shuang; Liu, Li-Ping; Gao, De-Xuan; Jiang, Da-Wei

    2015-01-01

    The aim of this study was to observe the effects of bone marrow mesenchymal stem-cell transplantation (BMSCs) in repairing acute spinal cord damage in rats and to examine the potential beneficial effects. 192 Wistar rats were randomized into 8 groups. Spinal cord injury was created. Behavior and limb functions were scored. Repairing effects of BMSCs transplantation was evaluated and compared. In vitro 4',6-diamidino-2-phenylindole (DAPI)-tagged BMSCs were observed, and whether they migrated to the area of spinal cord injury after intravenous tail injection was investigated. The expression of neuron-specific protein (NSE) on BMSCs was examined. Fifteen days after transplantation, the BMSCs-treated groups scored significantly higher in limb function tests than the untreated group. Pathological sections of the bone marrow after operation showed significant recovery in treated groups in comparison to the control group. After transplantation, small amounts of fluorescent-tagged BMSCs can be found in the blood vessels in the area of spinal cord injury, and fluorescent-tagged BMSCs were diffused in extravascular tissues, whereas the DAPI-tagged BMSCs could not be detected,and BrdU/NSE double-labeled cells were found in the injured marrow. BMSCs improve behavioral responses and can repair spinal cord injuries by migrating to the injured area, where they can differentiate into neurons.

  14. A unified cell biological perspective on axon–myelin injury

    PubMed Central

    2014-01-01

    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon–myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a local inflammatory disease process early in MS into the global progressive disorder seen during later stages. This mode of spreading could also apply to other neurological disorders. PMID:25092654

  15. NOTCH1 is required for regeneration of Clara cells during repair of airway injury.

    PubMed

    Xing, Yiming; Li, Aimin; Borok, Zea; Li, Changgong; Minoo, Parviz

    2012-05-01

    The airways of the mammalian lung are lined with highly specialized epithelial cell types that are the targets of airborne toxicants and injury. Notch signaling plays an important role in the ontogeny of airway epithelial cells, but its contributions to recruitment, expansion or differentiation of resident progenitor/stem cells, and repair and re-establishment of the normal composition of airway epithelium following injury have not been addressed. In this study, the role of a specific Notch receptor, Notch1, was investigated by targeted inactivation in the embryonic lung epithelium using the epithelial-specific Gata5-Cre driver line. Notch1-deficient mice are viable without discernible defects in pulmonary epithelial cell-fate determination and differentiation. However, in an experimental model of airway injury, activity of Notch1 is found to be required for normal repair of the airway epithelium. Absence of Notch1 reduced the ability of a population of cells distinguished by expression of PGP9.5, otherwise a marker of pulmonary neuroendocrine cells, which appears to serve as a reservoir for regeneration of Clara cells. Hairy/enhancer of split-5 (Hes5) and paired-box-containing gene 6 (Pax6) were found to be downstream targets of Notch1. Both Hes5 and Pax6 expressions were significantly increased in association with Clara cell regeneration in wild-type lungs. Ablation of Notch1 reduced Hes5 and Pax6 and inhibited airway epithelial repair. Thus, although dispensable in developmental ontogeny of airway epithelial cells, normal activity of Notch1 is required for repair of the airway epithelium. The signaling pathway by which Notch1 regulates the repair process includes stimulation of Hes5 and Pax6 gene expression.

  16. Involvement of activation of NADPH oxidase and extracellular signal-regulated kinase (ERK) in renal cell injury induced by zinc.

    PubMed

    Matsunaga, Yoshiko; Kawai, Yoshiko; Kohda, Yuka; Gemba, Munekazu

    2005-05-01

    Zinc is employed as a supplement; however, zinc-related nephropathy is not generally known. In this study, we investigated zinc-induced renal cell injury using a pig kidney-derived cultured renal epithelial cell line, LLC-PK(1), with proximal kidney tubule-like features, and examined the involvement of free radicals and extracellular signal-regulated kinase (ERK) in the cell injury. The LLC-PK(1) cells showed early uptake of zinc (30 microM), and the release of lactate dehydrogenase (LDH), an index of cell injury, was observed 24 hr after uptake. Three hours after zinc exposure, generation of reactive oxygen species (ROS) was increased. An antioxidant, N, N'-diphenyl-p-phenylenediamine (DPPD), inhibited a zinc-related increase in ROS generation and zinc-induced renal cell injury. An NADPH oxidase inhibitor, diphenyleneiodonium (DPI), inhibited a zinc-related increase in ROS generation and cell injury. We investigated translocation from the cytosol fraction of the p67(phox) subunit, which is involved in the activation of NADPH oxidase, to the membrane fraction, and translocation was induced 3 hr after zinc exposure. We examined the involvement of ERK1/2 in the deterioration of zinc-induced renal cell injury, and the association between ERK1/2 and an increase in ROS generation. Six hours after zinc exposure, the activation (phosphorylation) of ERK1/2 was observed. An antioxidant, DPPD, inhibited the zinc-related activation of ERK1/2. An MAPK/ERK kinase (MEK1/2) inhibitor, U0126, almost completely inhibited zinc-related cell injury (the release of LDH), but did not influence ROS generation. These results suggest that early intracellular uptake of zinc by LLC-PK(1) cells causes the activation of NADPH oxidase, and that ROS generation by the activation of the enzyme leads to the deterioration of renal cell injury via the activation of ERK1/2.

  17. Human CD133+ Renal Progenitor Cells Induce Erythropoietin Production and Limit Fibrosis After Acute Tubular Injury

    PubMed Central

    Aggarwal, Shikhar; Grange, Cristina; Iampietro, Corinne; Camussi, Giovanni; Bussolati, Benedetta

    2016-01-01

    Persistent alterations of the renal tissue due to maladaptive repair characterize the outcome of acute kidney injury (AKI), despite a clinical recovery. Acute damage may also limit the renal production of erythropoietin, with impairment of the hemopoietic response to ischemia and possible lack of its reno-protective action. We aimed to evaluate the effect of a cell therapy using human CD133+ renal progenitor cells on maladaptive repair and fibrosis following AKI in a model of glycerol-induced rhabdomyolysis. In parallel, we evaluated the effect of CD133+ cells on erythropoietin production. Administration of CD133+ cells promoted the restoration of the renal tissue, limiting the presence of markers of injury and pro-inflammatory molecules. In addition, it promoted angiogenesis and protected against fibrosis up to day 60. No effect of dermal fibroblasts was observed. Treatment with CD133+ cells, but not with PBS or fibroblasts, limited anemia and increased erythropoietin levels both in renal tissue and in circulation. Finally, CD133+ cells contributed to the local production of erythropoietin, as observed by detection of circulating human erythropoietin. CD133+ cells appear therefore an effective source for cell repair, able to restore renal functions, including erythropoietin release, and to limit long term maldifferentiation and fibrosis. PMID:27853265

  18. Recruitment of stem cells into the injured retina after laser injury.

    PubMed

    Singh, Tajinder; Prabhakar, Sudesh; Gupta, Amod; Anand, Akshay

    2012-02-10

    Retinal degeneration is a devastating complication of diabetes and other disorders. Stem cell therapy for retinal degeneration has shown encouraging results but functional regeneration has not been yet achieved. Our study was undertaken to evaluate the localization of stem cells delivered to the retina by intravenous versus intravitreal infusion, because stem cell localization is a key factor in ultimate in vivo function. We used lineage-negative bone marrow-derived stem cells in a model wherein retina of mice was induced by precise and reproducible laser injury. Lin(-ve) bone marrow cells (BMCs) were labeled with a tracking dye and their homing capacity was analyzed at time points after infusion. We found that Lin(-ve) BMCs get incorporated into laser-injured retina when transplanted through either the intravitreal or intravenous route. The intravenous route resulted in optimal localization of donor cells at the site of injury. These cells incorporated into injured retina in a dose-dependent manner. The data presented in this study reflect the importance of dose and route for stem cell-based treatment designed to result in retinal regeneration.

  19. Nonapoptotic cell death in acute kidney injury and transplantation.

    PubMed

    Linkermann, Andreas

    2016-01-01

    Acute tubular necrosis causes a loss of renal function, which clinically presents as acute kidney failure (AKI). The biochemical signaling pathways that trigger necrosis have been investigated in detail over the past 5 years. It is now clear that necrosis (regulated necrosis, RN) represents a genetically driven process that contributes to the pathophysiology of AKI. RN pathways such as necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-induced regulated necrosis (MPT-RN) may be mechanistically distinct, and the relative contributions to overall organ damage during AKI in living organisms largely remain elusive. In a synchronized manner, some necrotic programs induce the breakdown of tubular segments and multicellular functional units, whereas others are limited to killing single cells in the tubular compartment. Importantly, the means by which a renal cell dies may have implications for the subsequent inflammatory response. In this review, the recent advances in the field of renal cell death in AKI and key enzymes that might serve as novel therapeutic targets will be discussed. As a consequence of the interference with RN, the immunogenicity of dying cells in AKI in renal transplants will be diminished, rendering inhibitors of RN indirect immunosuppressive agents.

  20. Serratia marcescens is injurious to intestinal epithelial cells

    PubMed Central

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens. PMID:25426769

  1. Discrimination Between Lung Homeostatic and Injury-Induced Epithelial Progenitor Subsets by Cell-Density Properties

    PubMed Central

    Sen, Namita; Weprin, Samuel

    2013-01-01

    Stem/progenitor cells and their lineage derivatives are often identified by patterns and intensity of cell clusters of differentiation presentation. However, the cell biochemical façade can prove to be elusive, transient, and subject to interlaboratory disparities. To enhance current methods of lung stem cell isolation and identification and to investigate biophysical changes, which occur during homeostasis and in response to acute lung injury, we separated cells on a discontinuous density gradient, of 1.025–1.074 g/cm3, and characterized the eluted lineages. At homeostasis, surfactant protein-C (SFTPC)-expressing cells of the alveolar type (AT)-2 lineage possessed average densities ≥1.039 g/cm3 and aquaporin-5 producing AT1 cells equilibrated at densities <1.039 g/cm3. While 0.74%±0.32% of lung cells were determined proliferating or postmitotic by BrdU nucleotide uptake, 73% of CD49f-, 72% of c-KIT-, and 61% of SCA-1-positive cells (putative alveolar progenitor lineage markers) showed densities ≤1.039 g/cm3. CD49f/EpCAMhi progenitors, as well as c-KITpos/CD45neg cells, could be enriched at the 1.039 g/cm3 interface. Following acute bleomycin-induced injury, the frequency of BrdU-incorporating cells rose to 0.92%±0.36% and density could largely explain cell-lineage distribution. Specifically, a decline in the density of mitotic/postmitotic SFTPC-positive cells to ≤1.029 g/cm3, in conjunction with an increase in CD45-positive, and proliferating CD45 and c-KIT cells in the heaviest fraction (≥1.074 g/cm3) were observed. These data attest to the generation of AT2 cells from low-density precursors and emphasize a relationship between cell density and molecular expression following injury, expanding on our current understanding of lung and progenitor cell dynamics. PMID:23461422

  2. Discrimination between lung homeostatic and injury-induced epithelial progenitor subsets by cell-density properties.

    PubMed

    Sen, Namita; Weprin, Samuel; Peter, Yakov

    2013-07-15

    Stem/progenitor cells and their lineage derivatives are often identified by patterns and intensity of cell clusters of differentiation presentation. However, the cell biochemical façade can prove to be elusive, transient, and subject to interlaboratory disparities. To enhance current methods of lung stem cell isolation and identification and to investigate biophysical changes, which occur during homeostasis and in response to acute lung injury, we separated cells on a discontinuous density gradient, of 1.025-1.074 g/cm(3), and characterized the eluted lineages. At homeostasis, surfactant protein-C (SFTPC)-expressing cells of the alveolar type (AT)-2 lineage possessed average densities ≥1.039 g/cm(3) and aquaporin-5 producing AT1 cells equilibrated at densities <1.039 g/cm(3). While 0.74%±0.32% of lung cells were determined proliferating or postmitotic by BrdU nucleotide uptake, 73% of CD49f-, 72% of c-KIT-, and 61% of SCA-1-positive cells (putative alveolar progenitor lineage markers) showed densities ≤1.039 g/cm(3). CD49f/EpCAM(hi) progenitors, as well as c-KIT(pos)/CD45(neg) cells, could be enriched at the 1.039 g/cm(3) interface. Following acute bleomycin-induced injury, the frequency of BrdU-incorporating cells rose to 0.92%±0.36% and density could largely explain cell-lineage distribution. Specifically, a decline in the density of mitotic/postmitotic SFTPC-positive cells to ≤1.029 g/cm(3), in conjunction with an increase in CD45-positive, and proliferating CD45 and c-KIT cells in the heaviest fraction (≥1.074 g/cm(3)) were observed. These data attest to the generation of AT2 cells from low-density precursors and emphasize a relationship between cell density and molecular expression following injury, expanding on our current understanding of lung and progenitor cell dynamics.

  3. Utilizing pharmacotherapy and mesenchymal stem cell therapy to reduce inflammation following traumatic brain injury

    PubMed Central

    Mashkouri, Sherwin; Crowley, Marci G.; Liska, Michael G.; Corey, Sydney; Borlongan, Cesar V.

    2016-01-01

    The pathologic process of chronic phase traumatic brain injury is associated with spreading inflammation, cell death, and neural dysfunction. It is thought that sequestration of inflammatory mediators can facilitate recovery and promote an environment that fosters cellular regeneration. Studies have targeted post-traumatic brain injury inflammation with the use of pharmacotherapy and cell therapy. These therapeutic options are aimed at reducing the edematous and neurodegenerative inflammation that have been associated with compromising the integrity of the blood-brain barrier. Although studies have yielded positive results from anti-inflammatory pharmacotherapy and cell therapy individually, emerging research has begun to target inflammation using combination therapy. The joint use of anti-inflammatory drugs alongside stem cell transplantation may provide better clinical outcomes for traumatic brain injury patients. Despite the promising results in this field of research, it is important to note that most of the studies mentioned in this review have completed their studies using animal models. Translation of this research into a clinical setting will require additional laboratory experiments and larger preclinical trials. PMID:27857726

  4. Responses of proximal tubular cells to injury in congenital renal disease: fight or flight.

    PubMed

    Chevalier, Robert L; Forbes, Michael S; Galarreta, Carolina I; Thornhill, Barbara A

    2014-04-01

    Most chronic kidney disease in children results from congenital or inherited disorders, which can be studied in mouse models. Following 2 weeks of unilateral ureteral obstruction (UUO) in the adult mouse, nephron loss is due to proximal tubular mitochondrial injury and cell death. In neonatal mice, proximal tubular cell death is delayed beyond 2 weeks of complete UUO, and release of partial UUO allows remodeling of remaining nephrons. Progressive cyst expansion develops in polycystic kidney disease (PKD), a common inherited renal disorder. The polycystic kidney and fibrosis (pcy)-mutant mouse (which develops late-onset PKD) develops thinning of the glomerulotubular junction in parallel with growth of cysts in adulthood. Renal insufficiency in nephropathic cystinosis, a rare inherited renal disorder, results from progressive tubular cystine accumulation. In the Ctns knockout mouse (a model of cystinosis), proximal tubular cells become flattened, with loss of mitochondria and thickening of tubular basement membrane. In each model, persistent obstructive or metabolic stress leads ultimately to the formation of atubular glomeruli. The initial "fight" response (proximal tubular survival) switches to a "flight" response (proximal tubular cell death) with ongoing oxidative injury and mitochondrial damage. Therapies should be directed at reducing proximal tubular mitochondrial oxidative injury to enhance repair and regeneration.

  5. Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells

    PubMed Central

    Daniel, Nadia M.; van der Vlugt, Luciën E. P. M.; van Schadewijk, Annemarie; Taube, Christian; Hiemstra, Pieter S.

    2016-01-01

    Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression. PMID:27829065

  6. A parametric study of freezing injury in ELT-3 uterine leiomyoma tumour cells.

    PubMed

    Bischof, J; Fahssi, W; Smith, D; Nagel, T; Swanlund, D

    2001-02-01

    Cellular level freeze injury was investigated after controlled freezing of an Eker rat uterine fibroid cell line in both the presence and absence of oestradiol. The connection between thermal history and cell injury in single ELT-3 cells in suspension (without oestradiol) was studied through a two-level, four-parameter (2(4)) experiment with membrane dye exclusion as the end-point. The four parameters considered were cooling rate (CR), end temperature (ET), hold time (HT) and thawing rate (TR). A high and low value of each parameter was selected as follows: CR, 5-25 degrees C/min; ET, -20 to -30 degrees C; HT, 0-5 min; TR 20-200 degrees C/min. The greatest parameter effect on freeze injury in this range was ET followed by HT, then TR and finally CR. In addition, significant parameter interactions and curvature were found. Additional CR results outside the original parameter range showed a reduction in survival at both 1 and 50 degrees C/min suggestive of an inverted U-shaped survival curve. These results show that this tumour system is susceptible to cryoinjury, particularly at temperatures below -30 degrees C with HT of >5 min and slow thawing. In addition, the presence of oestradiol was found to increase the susceptibility of these cells to cryoinjury.

  7. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy.

    PubMed

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-09-15

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.

  8. Adult spinal cord ependymal layer: a promising pool of quiescent stem cells to treat spinal cord injury.

    PubMed

    Panayiotou, Elena; Malas, Stavros

    2013-11-28

    Spinal cord injury (SCI) is a major health burden and currently there is no effective medical intervention. Research performed over the last decade revealed that cells surrounding the central canal of the adult spinal cord and forming the ependymal layer acquire stem cell properties either in vitro or in response to injury. Following SCI activated ependymal cells generate progeny cells which migrate to the injury site but fail to produce the appropriate type of cells in sufficient number to limit the damage, rendering this physiological response mainly ineffective. Research is now focusing on the manipulation of ependymal cells to produce cells of the oligodendrocyte lineage which are primarily lost in such a situation leading to secondary neuronal degeneration. Thus, there is a need for a more focused approach to understand the molecular properties of adult ependymal cells in greater detail and develop effective strategies for guiding their response during SCI.

  9. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells.

    PubMed

    Erler, Piril; Sweeney, Alexandra; Monaghan, James R

    2017-01-01

    Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa(+) /BrdU(+) coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247.

  10. Transplanted Neural Progenitor Cells from Distinct Sources Migrate Differentially in an Organotypic Model of Brain Injury

    PubMed Central

    Ngalula, Kapinga P.; Cramer, Nathan; Schell, Michael J.; Juliano, Sharon L.

    2015-01-01

    Brain injury is a major cause of long-term disability. The possibility exists for exogenously derived neural progenitor cells to repair damage resulting from brain injury, although more information is needed to successfully implement this promising therapy. To test the ability of neural progenitor cells (NPCs) obtained from rats to repair damaged neocortex, we transplanted neural progenitor cell suspensions into normal and injured slice cultures of the neocortex acquired from rats on postnatal day 0–3. Donor cells from E16 embryos were obtained from either the neocortex, including the ventricular zone (VZ) for excitatory cells, ganglionic eminence (GE) for inhibitory cells or a mixed population of the two. Cells were injected into the ventricular/subventricular zone (VZ/SVZ) or directly into the wounded region. Transplanted cells migrated throughout the cortical plate with GE and mixed population donor cells predominately targeting the upper cortical layers, while neocortically derived NPCs from the VZ/SVZ migrated less extensively. In the injured neocortex, transplanted cells moved predominantly into the wounded area. NPCs derived from the GE tended to be immunoreactive for GABAergic markers while those derived from the neocortex were more strongly immunoreactive for other neuronal markers such as MAP2, TUJ1, or Milli-Mark. Cells transplanted in vitro acquired the electrophysiological characteristics of neurons, including action potential generation and reception of spontaneous synaptic activity. This suggests that transplanted cells differentiate into neurons capable of functionally integrating with the host tissue. Together, our data suggest that transplantation of neural progenitor cells holds great potential as an emerging therapeutic intervention for restoring function lost to brain damage. PMID:26500604

  11. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow.

    PubMed

    Park, Min Hee; Jin, Hee Kyung; Min, Woo-Kie; Lee, Won Woo; Lee, Jeong Eun; Akiyama, Haruhiko; Herzog, Herbert; Enikolopov, Grigori N; Schuchman, Edward H; Bae, Jae-sung

    2015-06-12

    Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY-deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy-induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide.

  12. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow

    PubMed Central

    Park, Min Hee; Jin, Hee Kyung; Min, Woo-Kie; Lee, Won Woo; Lee, Jeong Eun; Akiyama, Haruhiko; Herzog, Herbert; Enikolopov, Grigori N; Schuchman, Edward H; Bae, Jae-sung

    2015-01-01

    Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY-deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy-induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide. PMID:25916827

  13. Potential role of stem cells in severe spinal cord injury: current perspectives and clinical data

    PubMed Central

    Paspala, Syed AB; Vishwakarma, Sandeep K; Murthy, Tenneti VRK; Rao, Thiriveedi N; Khan, Aleem A

    2012-01-01

    Stem cell transplantation for spinal cord injury (SCI) along with new pharmacotherapy research offers the potential to restore function and ease the associated social and economic burden in the years ahead. Various sources of stem cells have been used in the treatment of SCI, but the most convincing results have been obtained with neural progenitor cells in preclinical models. Although the use of cell-based transplantation strategies for the repair of chronic SCI remains the long sought after holy grail, these approaches have been to date the most successful when applied in the subacute phase of injury. Application of cell-based strategies for the repair and regeneration of the chronically injured spinal cord will require a combinational strategy that may need to include approaches to overcome the effects of the glial scar, inhibitory molecules, and use of tissue engineering strategies to bridge the lesion. Nonetheless, cell transplantation strategies are promising, and it is anticipated that the Phase I clinical trials of some form of neural stem cell-based approach in SCI will commence very soon. PMID:24198535

  14. Effect of noble gases on oxygen and glucose deprived injury in human tubular kidney cells.

    PubMed

    Rizvi, Maleeha; Jawad, Noorulhuda; Li, Yuantao; Vizcaychipi, Marcela P; Maze, Mervyn; Ma, Daqing

    2010-07-01

    The noble gas xenon has been shown to be protective in preconditioning settings against renal ischemic injury. The aims of this study were to determine the protective effects of the other noble gases, helium, neon, argon, krypton and xenon, on human tubular kidney HK2 cells in vitro. Cultured human renal tubular cells (HK2) were exposed to noble gas preconditioning (75% noble gas; 20% O(2); 5% CO(2)) for three hours or mock preconditioning. Twenty-four hours after gas exposure, cell injury was provoked with oxygen-glucose deprived (OGD) culture medium for three hours. Cell viability was assessed 24 h post-OGD by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Other cohorts of cultured cells were incubated in the absence of OGD in 75% noble gas, 20% O(2) and 5% CO(2) and cellular signals phospho-Akt (p-Akt), hypoxia-inducible factor-1alpha (HIF-1alpha) and Bcl-2 were assessed by Western blotting. OGD caused a reduction in cell viability to 0.382 +/- 0.1 from 1.0 +/- 0.15 at control (P < 0.01). Neon, argon and krypton showed no protection from injury (0.404 +/- 0.03; 0.428 +/- 0.02; 0.452 +/- 0.02; P > 0.05). Helium by comparison significantly enhanced cell injury (0.191 +/- 0.05; P < 0.01). Xenon alone exerted a protective effect (0.678 +/- 0.07; P < 0.001). In the absence of OGD, helium was also detrimental (0.909 +/- 0.07; P < 0.01). Xenon caused an increased expression of p-Akt, HIF-1alpha and Bcl-2, while the other noble gases did not modify protein expression. These results suggest that unlike other noble gases, preconditioning with the anesthetic noble gas xenon may have a role in protection against renal ischemic injury.

  15. In vitro effects of hyperoxia on alveolar type II pneumocytes: inhibition of glutathione synthesis increases hyperoxic cell injury.

    PubMed

    Aerts, C; Wallaert, B; Voisin, C

    1992-01-01

    An in vitro model of alveolar epithelial oxidant injury was developed based on exposure to hyperoxia of cultured guinea pig type II pneumocytes using a biphasic cell culture system in aerobiosis. The present study investigates the roles of intracellular antioxidant enzymes and of glutathione in providing protection against hyperoxia. A 2-day type II cell culture in normoxia was associated with a significant decrease in protein, catalase, and Cu-Zn SOD cell content, whereas ATP cell content, Mn-SOD, and glutathione peroxidase (GPx) activities did not change and glutathione cell content significantly increased. Exposure of type II cells to hyperoxia did not induce significant changes in cell content in protein, SOD, catalase, GPx, or glutathione cell content when compared to control cells (exposed to normoxia). With ATP cell content expressed as a cell injury index (CII), type II cell injury was found to increase with increasing O2 concentrations. Indeed, a 2-day 50% O2 and 95% O2 exposure resulted in a CII of -7.5 +/- 6.2% and 17.9 +/- 5.9%, respectively, LDH release by type II cells was not significantly increased after hypoxic exposure. Cell injury effects of hyperoxia did not correlate with the endogenous antioxidant enzyme activities (SOD, Mn-SOD, catalase). In marked contrast, there was a significant correlation between the CII and total glutathione content of type II cells (p < .01). This correlation was largely due to the close relationship between CII and reduced glutathione. Hyperoxic induced cell injury (as demonstrated by CII > 0) was clearly associated with significantly lower intracellular glutathione level when compared to experiments without hyperoxia induced cell injury (CII < 0). In addition, in the presence of buthionine sulfoximine (BSO), the ability of type II cells to synthetize new glutathione was severely impaired, whereas ATP cell content and cell antioxidant enzyme activities did not change. As a consequence, the reduction of intracellular

  16. Bioengineered Skin From Stem Cells for Treatment of Cutaneous Vesicant Injury

    DTIC Science & Technology

    2006-11-01

    exposure to CEES, debridase (Mediwound, Israel) was applied to the injury site for 2 h to peel of the injured skin. In other cases, the dead skin of...stained samples of bioengineered skin-treated mice showed significant epidermal growth and formation of epidermis (Fig. 5 A and B). Where as CEES...after 3 µl CEES exposure showed necrosis of the epidermis (**), along with infiltration of inflammatory cells (arrowheads). B. The animals treated with

  17. Targeted Type 2 Alveolar Cell Depletion. A Dynamic Functional Model for Lung Injury Repair

    PubMed Central

    Garcia, Orquidea; Hiatt, Michael J.; Lundin, Amber; Lee, Jooeun; Reddy, Raghava; Navarro, Sonia; Kikuchi, Alex

    2016-01-01

    Type 2 alveolar epithelial cells (AEC2) are regarded as the progenitor population of the alveolus responsible for injury repair and homeostatic maintenance. Depletion of this population is hypothesized to underlie various lung pathologies. Current models of lung injury rely on either uncontrolled, nonspecific destruction of alveolar epithelia or on targeted, nontitratable levels of fixed AEC2 ablation. We hypothesized that discrete levels of AEC2 ablation would trigger stereotypical and informative patterns of repair. To this end, we created a transgenic mouse model in which the surfactant protein-C promoter drives expression of a mutant SR39TK herpes simplex virus-1 thymidine kinase specifically in AEC2. Because of the sensitivity of SR39TK, low doses of ganciclovir can be administered to these animals to induce dose-dependent AEC2 depletion ranging from mild (50%) to lethal (82%) levels. We demonstrate that specific levels of AEC2 depletion cause altered expression patterns of apoptosis and repair proteins in surviving AEC2 as well as distinct changes in distal lung morphology, pulmonary function, collagen deposition, and expression of remodeling proteins in whole lung that persist for up to 60 days. We believe SPCTK mice demonstrate the utility of cell-specific expression of the SR39TK transgene for exerting fine control of target cell depletion. Our data demonstrate, for the first time, that specific levels of type 2 alveolar epithelial cell depletion produce characteristic injury repair outcomes. Most importantly, use of these mice will contribute to a better understanding of the role of AEC2 in the initiation of, and response to, lung injury. PMID:26203800

  18. Treatment of Tourniquet-Induced Ischemia Reperfusion Injury with Muscle Progenitor Cells

    DTIC Science & Technology

    2011-09-01

    anti-inflammatories: Implications for treatment of Duch- ene muscular dystrophy . Cell Immunol 2010;260:75. 56. Marzaro M, Conconi MT, Perin L, et al...two groups; receiving either intra- muscular injection of MPCs or vehicle control into the injured tibialis anterior muscle 48 h after tourni- quet...muscle function in animal models of muscular diseases, dener- vation, toxins, cryo-injuries, and volumetricmuscle loss [21–24], and have been used to

  19. Indirect induction of endothelial cell injury by PU- or PTFE-mediated activation of monocytes.

    PubMed

    Liu, Xin; Xue, Yang; Sun, Jiao

    2010-01-01

    Polyurethanes (PUs) and polytetrafluoroethylene (PTFE) are widely used for making cardiovascular devices, but thrombus formation on the surfaces of these devices is inevitable. Since endothelial injury can lead to thrombosis, most of the studies on PUs or PTFE focused on their damage to endothelial cells. However, few studies have attempted to clarify whether the use of foreign objects as biomaterials can cause endothelial injury by activating the innate immune system. In this study, we aimed to investigate the roles of PU- or PTFE-stimulated immune cells in endothelial-cell injury. First, monocytes (THP-1 cells) were stimulated with PU or PTFE for 24 h and, subsequently, human umbilical vein endothelial cells (HUVECs) were treated with the supernatants of the stimulated cells for 24 h. We measured the generation of intracellular reactive oxygen species (ROS) from THP-1 cells treated with PU and PTFE for 24 h, meanwhile hydrogen dioxide (H(2)O(2)), tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the supernatants were also detected. Then, we assessed the apoptosis rate of the HUVECs and determined the expression of NO, inducible nitric oxide synthase (iNOS), and apoptosis-related proteins (p53, Bax, Bcl-2) in the HUVECs. The results showed that large amounts of ROS and low levels of pro-inflammatory cytokines (TNF-α and IL-1β) were produced by the stimulated THP-1 cells. After culturing with the supernatants of the PU- or PTFE-stimulated THP-1 cells, the apoptosis rate, NO production and expression of iNOS, p53 and Bax in the HUVECs were up-regulated, while Bcl-2 expression was down-regulated. In conclusion, the release of ROS by PU- or PTFE-treated THP-1 cells may induce iNOS expression and cause apoptosis in HUVECs via the p53, Bax and Bcl-2 proteins. These data provide the interesting finding that endothelial injury in the process of biomaterial-induced thrombosis can be initiated through the release of soluble mediators by monocytes.

  20. Curcumin protects endothelial cells against homocysteine induced injury through inhibiting inflammation

    PubMed Central

    Li, Jian; Luo, Ming; Xie, Nanzi; Wang, Jianxin; Chen, Li

    2016-01-01

    Objective: This study aimed to investigate the protective effects of curcumin on the homocysteine (HCY) induced injury to the endothelial cells. Methods: Endothelial cells were treated with HCY at different concentrations, and MTT assay was employed to determine an optimal concentration of HCY. Cells were divided into 3 groups: normal control group, HCY group and HCY + curcumin group. In curcumin group, cells were pretreated with 2.5 mmol/L HCY for 2 h and then incubated with curcumin at different concentrations. MTT assay was employed to detect the cell viability. ELISA was performed to detect the content of IL-8 in the supernatant. Western blotting was used to detect NF-κB expression in cells. Results: (1) Endothelial cells were polygonal or stone-like, or aggregated to form masses, and then gradually became long spindle shaped, cell body enlarged, cells were rich in cytoplasm, and immunohistochemistry for factor VIII showed positive. (2) MTT assay showed HCY at ≥2.5 mmol/L caused significant damage to endothelial cells as compared to control group. Thus, 2.5 mmol/L HCY was used in following experiments. (3) ELISA showed IL-8 in the supernatant increased significantly in a time dependent manner after HCY treatment (P<0.01), but curcumin could significantly inhibit the IL-8 secretion in endothelial cells after HCY treatment. (4) Western blotting showed HCY was able to markedly increase NF-κB expression, which, however, was significantly inhibited by curcumin. Conclusion: Curcumin is able to protect the endothelial cells against HCY induced injury through inhibiting NF-κB activation and down-regulating IL-8 expression. PMID:27904665

  1. Cell Injury-Induced Release of Fibroblast Growth Factor 2: Relevance to Intracerebral Mesenchymal Stromal Cell Transplantations

    PubMed Central

    Vinodkumar, Deepti; McGrogan, Michael; Bates, Damien

    2015-01-01

    Beneficial effects of intracerebral transplantation of mesenchymal stromal cells (MSC) and their derivatives are believed to be mediated mostly by factors produced by engrafted cells. However, the mesenchymal cell engraftment rate is low, and the majority of grafted cells disappear within a short post-transplantation period. Here, we hypothesize that dying transplanted cells can affect surrounding tissues by releasing their active intracellular components. To elucidate the type, amounts, and potency of these putative intracellular factors, freeze/thaw extracts of MSC or their derivatives were tested in enzyme-linked immunosorbent assays and bioassays. We found that fibroblast growth factor (FGF)2 and FGF1, but not vascular endothelial growth factor and monocyte chemoattractant protein 1 levels were high in extracts despite being low in conditioned media. Extracts induced concentration-dependent proliferation of rat cortical neural progenitor cells and human umbilical vein endothelial cells; these proliferative responses were specifically blocked by FGF2-neutralizing antibody. In the neuropoiesis assay with rat cortical cells, both MSC extracts and killed cells induced expression of nestin, but not astrocyte differentiation. However, suspensions of killed cells strongly potentiated the astrogenic effects of live MSC. In transplantation-relevant MSC injury models (peripheral blood cell-mediated cytotoxicity and high cell density plating), MSC death coincided with the release of intracellular FGF2. The data showed that MSC contain a major depot of active FGF2 that is released upon cell injury and is capable of acutely stimulating neuropoiesis and angiogenesis. We therefore propose that both dying and surviving grafted MSC contribute to tissue regeneration. PMID:25873141

  2. Functional defects in phagocytic cells following thermal injury. Application of flow cytometric analysis.

    PubMed Central

    Duque, R. E.; Phan, S. H.; Hudson, J. L.; Till, G. O.; Ward, P. A.

    1985-01-01

    Defective phagocytic cell function may partially account for the morbidity and mortality associated with thermal injury. In experimental thermal injury in the rat, small circulating blood volumes increase the difficulty in obtaining significant data. Furthermore, purification and or elicitation procedures have the potential for altering the cell surface characteristics and/or the functional response of the cell in question. We have examined the circulating neutrophils and pulmonary alveolar macrophages of anesthetized rats following a 16-20% body surface area scald injury to the shaved back. The circulating neutrophils of thermally injured rats were examined by flow cytometry following stimulation with phorbol myristate acetate (PMA) (100 ng/ml) in terms of the change in fluorescence intensity of the potentiometric cyanine dye, dipentyloxocarboxyanine and the formation of the oxidized product of 2',7'-dichlorofluorescin diacetate-loaded cells. The alveolar macrophages were examined after stimulation with PMA (100 ng/ml) in terms of the change in fluorescence intensity of the potentiometric dye, dipropylthiodicarbocyanine and the generation of superoxide production, as assessed by the superoxide dismutase inhibitable reduction of cytochrome c. Both cells exhibited a profound inhibition of cell function 4 hours after the insult, with partial return toward control values at later time points. Furthermore, the plasma of thermally injured rats, 4 hours after the burn was inhibitory to normal rat neutrophils. Fluorescent compounds suggestive of in vivo lipid peroxidation were maximally detectable at this time point. Further research is needed to establish the role of these products in the induction of phagocytic cell dysfunction. PMID:2981471

  3. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine.

    PubMed

    Starkebaum, G; Harlan, J M

    1986-04-01

    We have examined whether the toxic effects of homocysteine on cultured endothelial cells could result from the formation and action of hydrogen peroxide. In initial experiments with a cell-free system, micromolar amounts of copper were found to catalyze an oxygen-dependent oxidation of homocysteine. The molar ratio of homocysteine oxidized to oxygen consumed was approximately 4.0, which suggests that oxygen was reduced to water. The addition of catalase, however, decreased oxygen consumption by nearly one-half, which suggests that H2O2 was formed during the reaction. Confirming this hypothesis, H2O2 formation was detected using the horseradish peroxidase-dependent oxidation of fluorescent scopoletin. Ceruloplasmin was also found to catalyze oxidation of homocysteine and generation of H2O2 in molar amounts equivalent to copper sulfate. Finally, homocysteine oxidation was catalyzed by normal human serum in a concentration-dependent manner. Using cultured human and bovine endothelial cells, we found that homocysteine plus copper could lyse the cells in a dose-dependent manner, an effect that was completely prevented by catalase. Homocystine plus copper was not toxic to the cells. Specific injury to endothelial cells was seen only after 4 h of incubation with homocysteine plus copper. Confirming the biochemical studies, ceruloplasmin was also found to be equivalent to Cu++ in its ability to cause injury to endothelial cells in the presence of homocysteine. Since elevated levels of homocysteine have been implicated in premature development of atherosclerosis, these findings may be relevant to the mechanism of some types of chronic vascular injury.

  4. Macrophage recruitment and epithelial repair following hair cell injury in the mouse utricle.

    PubMed

    Kaur, Tejbeer; Hirose, Keiko; Rubel, Edwin W; Warchol, Mark E

    2015-01-01

    The sensory organs of the inner ear possess resident populations of macrophages, but the function of those cells is poorly understood. In many tissues, macrophages participate in the removal of cellular debris after injury and can also promote tissue repair. The present study examined injury-evoked macrophage activity in the mouse utricle. Experiments used transgenic mice in which the gene for the human diphtheria toxin receptor (huDTR) was inserted under regulation of the Pou4f3 promoter. Hair cells in such mice can be selectively lesioned by systemic treatment with diphtheria toxin (DT). In order to visualize macrophages, Pou4f3-huDTR mice were crossed with a second transgenic line, in which one or both copies of the gene for the fractalkine receptor CX3CR1 were replaced with a gene for GFP. Such mice expressed GFP in all macrophages, and mice that were CX3CR1(GFP/GFP) lacked the necessary receptor for fractalkine signaling. Treatment with DT resulted in the death of ∼70% of utricular hair cells within 7 days, which was accompanied by increased numbers of macrophages within the utricular sensory epithelium. Many of these macrophages appeared to be actively engulfing hair cell debris, indicating that macrophages participate in the process of 'corpse removal' in the mammalian vestibular organs. However, we observed no apparent differences in injury-evoked macrophage numbers in the utricles of CX3CR1(+/GFP) mice vs. CX3CR1(GFP/GFP) mice, suggesting that fractalkine signaling is not necessary for macrophage recruitment in these sensory organs. Finally, we found that repair of sensory epithelia at short times after DT-induced hair cell lesions was mediated by relatively thin cables of F-actin. After 56 days recovery, however, all cell-cell junctions were characterized by very thick actin cables.

  5. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury

    PubMed Central

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury. PMID:25317169

  6. [A case of the fatal injury by technical electricity from a mobile device (cell phone) connected to the circuit].

    PubMed

    Rudenko, I A; Kil'dyushov, E M; Koludarova, E M; Morozov, V Yu; Fetisov, V A

    2015-01-01

    The authors report a case of the fatal injury by technical electricity from a mobile device (cell phone) attached to the circuit in a moist environment as a result of the unsafe handling of the gadget (when taking the bath).

  7. In situ injury-induced release of basic-fibroblast growth factor from corneal epithelial cells.

    PubMed Central

    Adamis, A. P.; Meklir, B.; Joyce, N. C.

    1991-01-01

    Basic-fibroblast growth factor (b-FGF) binds to heparan sulfate proteoglycan in Bowman's layer of the cornea. The mechanism by which the molecule is deposited in Bowman's layer is the subject of controversy since b-FGF lacks a signal peptide sequence for extracellular secretion. Using immunofluorescence, the authors studied the presence and distribution of b-FGF in the bovine cornea and the conditions under which it could be released and bound to Bowman's layer. The results indicate that corneal epithelium contains b-FGF but that uninjured corneas do not contain detectable levels of b-FGF in Bowman's layer. Injury to the corneal epithelium results in the binding of b-FGF to Bowman's layer. Removal of the intact corneal epithelium without cell injury does not result in the binding of b-FGF to Bowman's layer. These findings suggest that one mechanism for the release of b-FGF from corneal epithelial cells is passive leakage after cell injury with secondary binding to Bowman's layer. Images Figure 1 Figure 2 Figure 3 PMID:1951634

  8. NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis

    PubMed Central

    Shen, Jianxiao; Wang, Ling; Jiang, Na; Mou, Shan; Zhang, Minfang; Gu, Leyi; Shao, Xinghua; Wang, Qin; Qi, Chaojun; Li, Shu; Wang, Wanpeng; Che, Xiajing; Ni, Zhaohui

    2016-01-01

    Iodinated contrast media serves as a direct causative factor of acute kidney injury (AKI) and is involved in the progression of cellular dysfunction and apoptosis. Emerging evidence indicates that NLRP3 inflammasome triggers inflammation, apoptosis and tissue injury during AKI. Nevertheless, the underlying renoprotection mechanism of NLRP3 inflammasome against contrast-induced AKI (CI-AKI) was still uncertain. This study investigated the role of NLRP3 inflammasome in CI-AKI both in vitro and in vivo. In HK-2 cells and unilateral nephrectomy model, NLRP3 and NLRP3 inflammasome member ASC were significantly augmented with the treatment of contrast media. Moreover, genetic disruption of NLRP3 notably reversed contrast-induced expression of apoptosis related proteins and secretion of proinflammatory factors, similarly to the effects of ASC deletion. Consistent with above results, absence of NLRP3 in mice undergoing unilateral nephrectomy also protected against contrast media-induced renal cells phenotypic alteration and cell apoptosis via modulating expression level of apoptotic proteins. Collectively, we demonstrated that NLRP3 inflammasome mediated CI-AKI through modulating the apoptotic pathway, which provided a potential therapeutic target for the treatment of contrast media induced acute kidney injury. PMID:27721494

  9. THE INJURY RESISTANT ABILITY OF MELANOPSIN-EXPRESSING INTRINSICALLY PHOTOSENSITIVE RETINAL GANGLION CELLS

    PubMed Central

    Cui, Q.; Ren, C.; Sollars, P. J.; Pickard, G. E.; So, K.-F.

    2015-01-01

    Neurons in the mammalian retina expressing the photopigment melanopsin have been identified as a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). This discovery more than a decade ago has opened up an exciting new field of retinal research, and following the initial identification of photosensitive ganglion cells, several subtypes have been described. A number of studies have shown that ipRGCs subserve photoentrainment of circadian rhythms. They also influence other non-image forming functions of the visual system, such as the pupillary light reflex, sleep, cognition, mood, light aversion and development of the retina. These novel photosensitive neurons also influence form vision by contributing to contrast detection. Furthermore, studies have shown that ipRGCs are more injury-resistant following optic nerve injury, in animal models of glaucoma, and in patients with mitochondrial optic neuropathies, i.e., Leber’s hereditary optic neuropathy and dominant optic atrophy. There is also an indication that these cells may be resistant to glutamate-induced excitotoxicity. Herein we provide an overview of ipRGCs and discuss the injury-resistant character of these neurons under certain pathological and experimental conditions. PMID:25446359

  10. A simian virus 40 large T-antigen segment containing amino acids 1 to 127 and expressed under the control of the rat elastase-1 promoter produces pancreatic acinar carcinomas in transgenic mice.

    PubMed Central

    Tevethia, M J; Bonneau, R H; Griffith, J W; Mylin, L

    1997-01-01

    The simian virus 40 large T antigen induces tumors in a wide variety of tissues in transgenic mice, the precise tissues depending on the tissue specificity of the upstream region controlling T-antigen expression. Expression of mutant T antigens that contain a subset of the protein's activities restricts the spectrum of tumors induced. Others showed previously that expression of a mutant large T antigen containing the N-terminal 121 amino acids (T1-121) under control of the lymphotropic papovavirus promoter resulted in slow-growing choroid plexus tumors, whereas full-length T antigen under the same promoter induced rapidly growing CPR tumors, T-cell lymphomas, and B-cell lymphomas. In those instances, the alteration in tumor induction or progression correlated with inability of the mutant large T antigen to bind the tumor suppressor p53. In the study reported here, we investigated the capacity of an N-terminal T antigen segment (T1-127) expressed in conjunction with small t antigen under control of the rat elastase-1 (E1) promoter to induce pancreatic tumors. The results show that pancreases of transgenic mice expressing T1-127 and small t antigen display acinar cell dysplasia at birth that progresses to neoplasia. The average age to death in these mice is within the range reported for transgenic mice expressing full-length T antigen under control of the E1 promoter. These results indicate that sequestering p53 by binding is not required for the development of rapidly growing acinar cell carcinomas. In addition, we provide evidence that small t antigen is unlikely to be required. Finally, we show that the p53 protein in acinar cell carcinomas is wild type in conformation. PMID:9343166

  11. Tissue resident NK cells mediate ischemic kidney injury and are not depleted by anti-Asialo GM1 antibody

    PubMed Central

    Victorino, Francisco; Sojka, Dorothy K.; Brodsky, Kelley S.; McNamee, Eoin N.; Masterson, Joanne C.; Homann, Dirk; Yokoyama, Wayne M.; Eltzschig, Holger K.; Clambey, Eric T.

    2015-01-01

    NK cells are innate lymphoid cells important for immune surveillance, identifying and responding to stress, infection, and/or transformation. While conventional NK (cNK) cells circulate systemically, many NK cells reside in tissues where they appear to be poised to locally regulate tissue function. Here we tested the contribution of tissue-resident NK (trNK) cells to tissue homeostasis by studying ischemic injury in the mouse kidney. Parabiosis experiments demonstrate that the kidney contains a significant fraction of trNK cells under homeostatic conditions. Kidney trNK cells developed independent of NFIL3 and Tbet, and expressed a distinct cell surface phenotype as compared to cNK cells. Among these, trNK cells had reduced asialo-GM1 (AsGM1) expression relative to cNK cells, a phenotype observed in trNK cells across multiple organs and mouse strains. Strikingly, anti-AsGM1 antibody treatment, commonly used as NK cell-depleting regimen, resulted in a robust and selective depletion of cNKs, leaving trNKs largely intact. Using this differential depletion, we tested the relative contribution of cNK and trNK cells in ischemic kidney injury. Whereas anti-NK1.1 antibody effectively depleted both trNK and cNK cells and protected against ischemic-reperfusion injury, anti-AsGM1 antibody preferentially depleted cNK cells and failed to protect against injury. These data demonstrate unanticipated specificity of anti-AsGM1 antibody depletion on NK cell subsets and reveal a new approach to study the contributions of cNK and trNK cells in vivo. In total, these data demonstrate that trNK cells play a key role in modulating local responses to ischemic tissue injury in the kidney and potentially other organs. PMID:26453755

  12. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    PubMed Central

    Rodrigues, L.P.; Iglesias, D.; Nicola, F.C.; Steffens, D.; Valentim, L.; Witczak, A.; Zanatta, G.; Achaval, M.; Pranke, P.; Netto, C.A.

    2011-01-01

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 106 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 106 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation. PMID:22183246

  13. Pulmonary Resection for Non–Small Cell Lung Cancer in Patients With Prior Spinal Cord Injury

    PubMed Central

    Brunworth, Louis S; Dharmasena, Dharson; Virgo, Katherine S; Johnson, Frank E

    2006-01-01

    Background/Objective: We sought to determine the clinical course of patients with spinal cord injury (SCI) who subsequently developed bronchogenic carcinoma and underwent pulmonary resection. Methods: A nationwide retrospective study was conducted of all veterans at Department of Veterans Affairs Medical Centers for fiscal years 1993–2002 who were diagnosed with SCI, subsequently developed non–small cell lung cancer, and were surgically treated with curative intent. Inclusion criteria included American Spinal Injury Association type A injury (complete loss of neural function distal to the injury site) and traumatic etiology. Data were compiled from national Department of Veterans Affairs data sets and supplemented by operative reports, pathology reports, progress notes, and discharge summaries. Results: Seven patients met the inclusion/exclusion criteria and were considered evaluable. Five (71%) had one or more comorbid conditions in addition to their SCIs. All 7 underwent pulmonary lobectomy. Postoperative complications occurred in 4 patients (57%). Two patients died postoperatively on days 29 and 499, yielding a 30-day mortality rate of 14% and an in-hospital mortality rate of 29%. Conclusions: This seems to be the only case study in the English language literature on this topic. Patients with SCI who had resectable lung cancer had a high incidence of comorbid conditions. Those who underwent curative-intent surgery had high morbidity and mortality rates. Available evidence suggests that SCI should be considered a risk factor for adverse outcomes in major surgery of all types, including operations for primary lung cancer. PMID:16739556

  14. Markers of coagulation activation and acute kidney injury in patients after hematopoietic cell transplantation

    PubMed Central

    Hingorani, Sangeeta R; Seidel, Kristy; Pao, Emily; Lawler, Rick; McDonald, George B.

    2015-01-01

    Acute kidney injury (AKI) is common after hematopoietic cell transplant (HCT). The etiology of AKI is unknown because biopsies are rarely performed. The pathophysiology of injury is inferred from clinical data. Thrombotic microangiopathy (TMA) is often invoked as the cause of renal injury. Patients > 2 years undergoing their first HCT at Fred Hutchinson Cancer Research Center (FHCRC) participated in this study. We prospectively measured plasma markers of coagulation activation, (PAI-1 and tPA) and fibrinolyis (D-dimer) weekly in 149 patients during the first 100 days post-transplant. Cox proportional hazards modeling was used to determine associations between these markers and AKI (doubling of baseline serum creatinine). Kruskal-Wallis test was used to determine associations between day 100 urinary albumin to creatinine ratios (ACR) and these markers. Thirty one percent of patients developed AKI. Though elevations in these markers occurr