Science.gov

Sample records for acinar proliferation asap

  1. Comparison of prostate MRI-3D transrectal ultrasound fusion biopsy for first-time and repeat biopsy patients with previous atypical small acinar proliferation

    PubMed Central

    Cool, Derek W.; Romagnoli, Cesare; Izawa, Jonathan I.; Chin, Joseph; Gardi, Lori; Tessier, David; Mercado, Ashley; Mandel, Jonathan; Ward, Aaron D.; Fenster, Aaron

    2016-01-01

    Introduction: This study evaluates the clinical benefit of magnetic resonance-transrectal ultrasound (MR-TRUS) fusion biopsy over systematic biopsy between first-time and repeat prostate biopsy patients with prior atypical small acinar proliferation (ASAP). Materials: 100 patients were enrolled in a single-centre prospective cohort study: 50 for first biopsy, 50 for repeat biopsy with prior ASAP. Multiparameteric magnetic resonance imaging (MP-MRI) and standard 12-core ultrasound biopsy (Std-Bx) were performed on all patients. Targeted biopsy using MRI-TRUS fusion (Fn-Bx) was performed f suspicious lesions were identified on the pre-biopsy MP-MRI. Classification of clinically significant disease was assessed independently for the Std-Bx vs. Fn-Bx cores to compare the two approaches. Results: Adenocarcinoma was detected in 49/100 patients (26 first biopsy, 23 ASAP biopsy), with 25 having significant disease (17 first, 8 ASAP). Fn-Bx demonstrated significantly higher per-core cancer detection rates, cancer involvement, and Gleason scores for first-time and ASAP patients. However, Fn-Bx was significantly more likely to detect significant cancer missed on Std-Bx for ASAP patients than first-time biopsy patients. The addition of Fn-Bx to Std-Bx for ASAP patients had a 166.7% relative risk reduction for missing Gleason ≥ 3 + 4 disease (number needed to image with MP-MRI=10 patients) compared to 6.3% for first biopsy (number to image=50 patients). Negative predictive value of MP-MRI for negative biopsy was 79% for first-time and 100% for ASAP patients, with median followup of 32.1 ± 15.5 months. Conclusions: MR-TRUS Fn-Bx has a greater clinical impact for repeat biopsy patients with prior ASAP than biopsy-naïve patients by detecting more significant cancers that are missed on Std-Bx. PMID:27800057

  2. Fibronectin Expression Modulates Mammary Epithelial Cell Proliferation during Acinar Differentiation

    PubMed Central

    Williams, Courtney M.; Engler, Adam J.; Slone, R. Daniel; Galante, Leontine L.; Schwarzbauer, Jean E.

    2009-01-01

    The mammary gland consists of a polarized epithelium surrounded by a basement membrane matrix that forms a series of branching ducts ending in hollow, sphere-like acini. Essential roles for the epithelial basement membrane during acinar differentiation, in particular laminin and its integrin receptors, have been identified using mammary epithelial cells cultured on a reconstituted basement membrane. Contributions from fibronectin, which is abundant in the mammary gland during development and tumorigenesis, have not been fully examined. Here, we show that fibronectin expression by mammary epithelial cells is dynamically regulated during the morphogenic process. Experiments with synthetic polyacrylamide gel substrates implicate both specific extracellular matrix components, including fibronectin itself, and matrix rigidity in this regulation. Alterations in fibronectin levels perturbed acinar organization. During acinar development, increased fibronectin levels resulted in overproliferation of mammary epithelial cells and increased acinar size. Addition of fibronectin to differentiated acini stimulated proliferation and reversed growth arrest of mammary epithelial cells negatively affecting maintenance of proper acinar morphology. These results show that expression of fibronectin creates a permissive environment for cell growth that antagonizes the differentiation signals from the basement membrane. These effects suggest a link between fibronectin expression and epithelial cell growth during development and oncogenesis in the mammary gland. PMID:18451144

  3. Electronic expert consultation using digital still images for evaluation of atypical small acinar proliferations of the prostate: a comparison with immunohistochemistry.

    PubMed

    Banihashemi, Amir; Asgari, Mojgan; Shooshtarizade, Tina; Abolhasani, Maryam; Mireskandari, Masoud

    2014-06-01

    This study was performed on a series of prostate needle biopsies with diagnosis of atypical small acinar proliferation (ASAP) to verify to what extent the application of immunohistochemistry (IHC) for p504s and p63 markers as well as expert consultation by still images could affect the diagnosis. The results of these 2 methods were compared. Immunohistochemistry staining for p504s and p63 was performed on sections from 42 patients with a primary diagnosis of ASAP. Meanwhile, digital still images were taken from hematoxylin and eosin-stained slides of cases and were sent to an expert uropathologist, blind to IHC staining interpretations. The results of IHC staining were compared with diagnostic interpretations of the consultant pathologist. In 13 cases, the focus of concern was not detectable on IHC slides. In the remaining 29 cases, IHC showed a benign and malignant expression pattern in 17 and 9 patients, respectively. In 3 cases, IHC findings were inconclusive and retained the diagnosis of ASAP. The consultant pathologist diagnosed 11 cases of benign and 7 cases of malignant processes. He retained the diagnosis of ASAP in 11 cases. There was high concordance between the results of IHC and electronic consultation in the group of benign cases. All 11 cases with the diagnosis of benignancy by electronic consultation showed a benign IHC pattern. Among 7 cases with the diagnosis of malignancy by the consultant pathologist, 5 were classified as malignant, 1 as benign, and 1 as inconclusive IHC groups. Considering problems with IHC staining of prostate needle biopsy, including loss of focus of interest, expert consultation using still images can provide very useful diagnostic information. This approach can be used as an adjunct to other diagnostic activities like IHC or even as an independent source of information to reach more accurate diagnoses in ASAP cases, particularly in institutions with limited resources.

  4. NASA's Software Bank (ASAP)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA-developed Artificial Satellite Analysis Program (ASAP), was purchased from COSMIC and used to enhance OPNET, a program for developing simulations of communications satellite networks. OPNET's developer, MIL3, applied ASAP to support predictions of low Earth orbit, enabling the company to offer satellite modeling capability to customers earlier than if they had to actually develop the program.

  5. Inactivation of TGFβ receptor II signalling in pancreatic epithelial cells promotes acinar cell proliferation, acinar-to-ductal metaplasia and fibrosis during pancreatitis.

    PubMed

    Grabliauskaite, Kamile; Saponara, Enrica; Reding, Theresia; Bombardo, Marta; Seleznik, Gitta M; Malagola, Ermanno; Zabel, Anja; Faso, Carmen; Sonda, Sabrina; Graf, Rolf

    2016-02-01

    Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor-β (TGFβ) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFβ receptor II (TGFβ-RII) using a Cre-LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein-induced pancreatitis. We show that TGFβ-RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFβ-RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell-autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFβ-RII signalling stimulates the expression of cyclin-dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFβ-RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFβ-based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFβ as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer.

  6. Inactivation of TGFβ receptor II signalling in pancreatic epithelial cells promotes acinar cell proliferation, acinar-to-ductal metaplasia and fibrosis during pancreatitis.

    PubMed

    Grabliauskaite, Kamile; Saponara, Enrica; Reding, Theresia; Bombardo, Marta; Seleznik, Gitta M; Malagola, Ermanno; Zabel, Anja; Faso, Carmen; Sonda, Sabrina; Graf, Rolf

    2016-02-01

    Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor-β (TGFβ) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFβ receptor II (TGFβ-RII) using a Cre-LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein-induced pancreatitis. We show that TGFβ-RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFβ-RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell-autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFβ-RII signalling stimulates the expression of cyclin-dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFβ-RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFβ-based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFβ as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer. PMID:26510396

  7. Ongoing developments in ASAP

    NASA Astrophysics Data System (ADS)

    Turner, Mary G.

    2004-11-01

    As optical and illumination systems increase in complexity, it is important that the tools used to design and analyze these systems provide better and more efficient methods for the engineer to correctly model the systems to achieve the most accurate results possible. Important considerations include better interoperability between different analytical tools sharing the total calculation as well as providing more robust interchange between the CAD and optical environments. Several new features in the Advanced Systems Analysis Program (ASAP) are directed at achieving these goals.

  8. ASAP- ARTIFICIAL SATELLITE ANALYSIS PROGRAM

    NASA Technical Reports Server (NTRS)

    Kwok, J.

    1994-01-01

    The Artificial Satellite Analysis Program (ASAP) is a general orbit prediction program which incorporates sufficient orbit modeling accuracy for mission design, maneuver analysis, and mission planning. ASAP is suitable for studying planetary orbit missions with spacecraft trajectories of reconnaissance (flyby) and exploratory (mapping) nature. Sample data is included for a geosynchronous station drift cycle study, a Venus radar mapping strategy, a frozen orbit about Mars, and a repeat ground trace orbit. ASAP uses Cowell's method in the numerical integration of the equations of motion. The orbital mechanics calculation contains perturbations due to non-sphericity (up to a 40 X 40 field) of the planet, lunar and solar effects, and drag and solar radiation pressure. An 8th order Runge-Kutta integration scheme with variable step size control is used for efficient propagation. The input includes the classical osculating elements, orbital elements of the sun relative to the planet, reference time and dates, drag coefficient, gravitational constants, and planet radius, rotation rate, etc. The printed output contains Cartesian coordinates, velocity, equinoctial elements, and classical elements for each time step or event step. At each step, selected output is added to a plot file. The ASAP package includes a program for sorting this plot file. LOTUS 1-2-3 is used in the supplied examples to graph the results, but any graphics software package could be used to process the plot file. ASAP is not written to be mission-specific. Instead, it is intended to be used for most planetary orbiting missions. As a consequence, the user has to have some basic understanding of orbital mechanics to provide the correct input and interpret the subsequent output. ASAP is written in FORTRAN 77 for batch execution and has been implemented on an IBM PC compatible computer operating under MS-DOS. The ASAP package requires a math coprocessor and a minimum of 256K RAM. This program was last

  9. A Field-Effect Transistor (FET) model for ASAP

    NASA Technical Reports Server (NTRS)

    Ming, L.

    1965-01-01

    The derivation of the circuitry of a field effect transistor (FET) model, the procedure for adapting the model to automated statistical analysis program (ASAP), and the results of applying ASAP on this model are described.

  10. Salivary gland homeostasis is maintained through acinar cell self-duplication.

    PubMed

    Aure, Marit H; Konieczny, Stephen F; Ovitt, Catherine E

    2015-04-20

    Current dogma suggests that salivary gland homeostasis is stem cell dependent. However, the extent of stem cell contribution to salivary gland maintenance has not been determined. We investigated acinar cell replacement during homeostasis, growth, and regeneration, using an inducible CreER(T2) expressed under the control of the Mist1 gene locus. Genetic labeling, followed by a chase period, showed that acinar cell replacement is not driven by the differentiation of unlabeled stem cells. Analysis using R26(Brainbow2.1) reporter revealed continued proliferation and clonal expansion of terminally differentiated acinar cells in all major salivary glands. Induced injury also demonstrated the regenerative potential of pre-labeled acinar cells. Our results support a revised model for salivary gland homeostasis based predominantly on self-duplication of acinar cells, rather than on differentiation of stem cells. The proliferative capacity of differentiated acinar cells may prove critical in the implementation of cell-based strategies to restore the salivary glands.

  11. Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas.

    PubMed

    Saponara, Enrica; Grabliauskaite, Kamile; Bombardo, Marta; Buzzi, Raphael; Silva, Alberto B; Malagola, Ermanno; Tian, Yinghua; Hehl, Adrian B; Schraner, Elisabeth M; Seleznik, Gitta M; Zabel, Anja; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-12-01

    The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone-stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation-mediated tissue injury. Specifically, lack of serotonin resulted in delayed up-regulation of progenitor genes and delayed the formation of acinar-to-ductal metaplasia and defective acinar cell proliferation. We identified serotonin-dependent acinar secretion as a key step in progenitor-based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1-Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells.

  12. Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas.

    PubMed

    Saponara, Enrica; Grabliauskaite, Kamile; Bombardo, Marta; Buzzi, Raphael; Silva, Alberto B; Malagola, Ermanno; Tian, Yinghua; Hehl, Adrian B; Schraner, Elisabeth M; Seleznik, Gitta M; Zabel, Anja; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-12-01

    The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone-stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation-mediated tissue injury. Specifically, lack of serotonin resulted in delayed up-regulation of progenitor genes and delayed the formation of acinar-to-ductal metaplasia and defective acinar cell proliferation. We identified serotonin-dependent acinar secretion as a key step in progenitor-based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1-Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells. PMID:26235267

  13. Application of ASAP in integral imaging

    NASA Astrophysics Data System (ADS)

    Wang, Hong-xia; Xu, Zhi-li; Wen, Shao-jie; Wu, Chun-hong

    2012-10-01

    Integral imaging (II) is a technique that is capable of displaying 3D images with continuous parallax in full natural color. At present Integral Imaging is a popular three-dimensional imaging technology. It is becoming the most perspective technique in developing next generation three-dimensional TV (3DTV) and visualization field due to its outstanding advantages. The micro-lens array is used in recording and replaying 3D scene information in this technique with true color, simply reconstruction and non-relevant light source. In order to research really many precision instrument are required. But the price is too high to set up a complicated authentic imaging system. In the same time the imaging condition is very difficult to satisfy. ASAP (Advanced System Analysis Program) is an advanced imitates optical software to solve reality optical questions. It is used in many research territories. In this paper the ASAP software is proposed to simulate and model the micro-lens array sheet. The ray tracing and energy distribution is completed. According to the study results we can optimum lens designing through modifying the focal length, aperture size and imaging position. We hope the study cost can be reduced and the efficiency can be improved through the use of simulation method to optical design software ASAP.

  14. TGF-β1 promotes acinar to ductal metaplasia of human pancreatic acinar cells

    PubMed Central

    Liu, Jun; Akanuma, Naoki; Liu, Chengyang; Naji, Ali; Halff, Glenn A.; Washburn, William K.; Sun, Luzhe; Wang, Pei

    2016-01-01

    Animal studies suggest that pancreatitis-induced acinar-to-ductal metaplasia (ADM) is a key event for pancreatic ductal adenocarcinoma (PDAC) initiation. However, there has not been an adequate system to explore the mechanisms of human ADM induction. We have developed a flow cytometry-based, high resolution lineage tracing method and 3D culture system to analyse ADM in human cells. In this system, well-known mouse ADM inducers did not promote ADM in human cells. In contrast, TGF-β1 efficiently converted human acinar cells to duct-like cells (AD) in a SMAD-dependent manner, highlighting fundamental differences between the species. Functionally, AD cells gained transient proliferative capacity. Furthermore, oncogenic KRAS did not induce acinar cell proliferation, but did sustain the proliferation of AD cells, suggesting that oncogenic KRAS requires ADM-associated-changes to promote PDAC initiation. This ADM model provides a novel platform to explore the mechanisms involved in the development of human pancreatic diseases. PMID:27485764

  15. Effects of Benzodiazepines on Acinar and Myoepithelial Cells

    PubMed Central

    Mattioli, Tatiana M. F.; Alanis, Luciana R. A.; Sapelli, Silvana da Silva; de Lima, Antonio A. S.; de Noronha, Lucia; Rosa, Edvaldo A. R.; Althobaiti, Yusuf S.; Almalki, Atiah H.; Sari, Youssef; Ignacio, Sergio A.; Johann, Aline C. B. R.; Gregio, Ana M. T.

    2016-01-01

    Background: Benzodiazepines (BZDs), the most commonly prescribed psychotropic drugs with anxiolytic action, may cause hyposalivation. It has been previously shown that BZDs can cause hypertrophy and decrease the acini cell number. In this study, we investigated the effects of BZDs and pilocarpine on rat parotid glands, specifically on acinar, ductal, and myoepithelial cells. Methods: Ninety male Wistar rats were divided into nine groups. Control groups received a saline solution for 30 days (C30) and 60 days (C60), and pilocarpine (PILO) for 60 days. Experimental groups received lorazepam (L30) and midazolam (M30) for 30 days. Another group (LS60 or MS60) received lorazepam or midazolam for 30 days, respectively, and saline for additional 30 days. Finally, other groups (LP60 or MP60) received either lorazepam or midazolam for 30 days, respectively, and pilocarpine for additional 30 days. The expression of calponin in myoepithelial cells and the proliferating cell nuclear antigen (PCNA) in acinar and ductal cells were evaluated. Results: Animals treated with lorazepam showed an increase in the number of positive staining cells for calponin as compared to control animals (p < 0.05). Midazolam administered with pilocarpine (MP60) induced an increase in the proliferation of acinar and ductal cells and a decrease in the positive staining cells for calponin as compared to midazolam administered with saline (MS60). Conclusion: We found that myoepithelial cells might be more sensitive to the effects of BZD than acinar and ductal cells in rat parotid glands. PMID:27445812

  16. ASAP: a machine learning framework for local protein properties

    PubMed Central

    Brandes, Nadav; Ofer, Dan; Linial, Michal

    2016-01-01

    Determining residue-level protein properties, such as sites of post-translational modifications (PTMs), is vital to understanding protein function. Experimental methods are costly and time-consuming, while traditional rule-based computational methods fail to annotate sites lacking substantial similarity. Machine Learning (ML) methods are becoming fundamental in annotating unknown proteins and their heterogeneous properties. We present ASAP (Amino-acid Sequence Annotation Prediction), a universal ML framework for predicting residue-level properties. ASAP extracts numerous features from raw sequences, and supports easy integration of external features such as secondary structure, solvent accessibility, intrinsically disorder or PSSM profiles. Features are then used to train ML classifiers. ASAP can create new classifiers within minutes for a variety of tasks, including PTM prediction (e.g. cleavage sites by convertase, phosphoserine modification). We present a detailed case study for ASAP: CleavePred, an ASAP-based model to predict protein precursor cleavage sites, with state-of-the-art results. Protein cleavage is a PTM shared by a wide variety of proteins sharing minimal sequence similarity. Current rule-based methods suffer from high false positive rates, making them suboptimal. The high performance of CleavePred makes it suitable for analyzing new proteomes at a genomic scale. The tool is attractive to protein design, mass spectrometry search engines and the discovery of new bioactive peptides from precursors. ASAP functions as a baseline approach for residue-level protein sequence prediction. CleavePred is freely accessible as a web-based application. Both ASAP and CleavePred are open-source with a flexible Python API. Database URL: ASAP’s and CleavePred source code, webtool and tutorials are available at: https://github.com/ddofer/asap; http://protonet.cs.huji.ac.il/cleavepred. PMID:27694209

  17. ASAP: a machine learning framework for local protein properties

    PubMed Central

    Brandes, Nadav; Ofer, Dan; Linial, Michal

    2016-01-01

    Determining residue-level protein properties, such as sites of post-translational modifications (PTMs), is vital to understanding protein function. Experimental methods are costly and time-consuming, while traditional rule-based computational methods fail to annotate sites lacking substantial similarity. Machine Learning (ML) methods are becoming fundamental in annotating unknown proteins and their heterogeneous properties. We present ASAP (Amino-acid Sequence Annotation Prediction), a universal ML framework for predicting residue-level properties. ASAP extracts numerous features from raw sequences, and supports easy integration of external features such as secondary structure, solvent accessibility, intrinsically disorder or PSSM profiles. Features are then used to train ML classifiers. ASAP can create new classifiers within minutes for a variety of tasks, including PTM prediction (e.g. cleavage sites by convertase, phosphoserine modification). We present a detailed case study for ASAP: CleavePred, an ASAP-based model to predict protein precursor cleavage sites, with state-of-the-art results. Protein cleavage is a PTM shared by a wide variety of proteins sharing minimal sequence similarity. Current rule-based methods suffer from high false positive rates, making them suboptimal. The high performance of CleavePred makes it suitable for analyzing new proteomes at a genomic scale. The tool is attractive to protein design, mass spectrometry search engines and the discovery of new bioactive peptides from precursors. ASAP functions as a baseline approach for residue-level protein sequence prediction. CleavePred is freely accessible as a web-based application. Both ASAP and CleavePred are open-source with a flexible Python API. Database URL: ASAP’s and CleavePred source code, webtool and tutorials are available at: https://github.com/ddofer/asap; http://protonet.cs.huji.ac.il/cleavepred.

  18. Acinar-to-ductal metaplasia accompanies c-myc-induced exocrine pancreatic cancer progression in transgenic rodents.

    PubMed

    Grippo, Paul J; Sandgren, Eric P

    2012-09-01

    Several important characteristics of exocrine pancreatic tumor pathogenesis remain incompletely defined, including identification of the cell of origin. Most human pancreatic neoplasms are ductal adenocarcinomas. However, acinar cells have been proposed as the source of some ductal neoplasms through a process of acinar-to-ductal metaplasia. The oncogenic transcription factor c-myc is associated with human pancreatic neoplasms. Transgenic mice overexpressing c-myc under control of acinar cell-specific elastase (Ela) gene regulatory elements not only develop acinar cell carcinomas but also mixed neoplasms that display both acinar-like neoplastic cells and duct-like neoplastic cells. In this report, we demonstrate that, first, c-myc is sufficient to induce acinar hyperplasia, though neoplastic lesions develop focally. Second, cell proliferation remains elevated in the neoplastic duct cell compartment of mixed neoplasms. Third, the proliferation/apoptosis ratio in cells from all lesion types remains constant, suggesting that differential regulation of these processes is not a feature of cancer progression in this model. Fourth, before the development of mixed neoplasms, there is transcriptional activation of the duct cell-specific cytokeratin-19 gene promoter in multicellular foci of amylase-positive acinar neoplasms. This observation provides direct evidence for metaplasia as the mechanism underlying development of ductal neoplastic cells within the context of an acinar neoplasm and suggests that the stimulus for this transformation acts over a multicellular domain or field within a neoplasm. Finally, focal ductal elements develop in some acinar cell carcinomas in Ela-c-myc transgenic rats, indicating that myc-associated acinar-to-ductal metaplasia is not restricted to the mouse.

  19. Drug discovery in the next decade: innovation needed ASAP.

    PubMed

    Bennani, Youssef L

    2011-09-01

    Pharmaceutical companies must find a better way to increase their output of truly new drugs for the benefit of patients and for their business survival. Here, I highlight a general perspective from within pharmaceutical research as it pertains to research advances in chemistry, biology, pharmacology, pharmacokinetics and toxicology that, if well integrated, stands to put the industry on a productive path. In addition, I provide a complementary perspective on the corporate culture aspect of innovation. I also introduce a new concept, termed 'innovation ASAP' (iASAP; asking powerful questions, seeking the outliers, accepting defeat and populating astutely) and provide support for it using examples of several successful drugs. PMID:21704185

  20. Drug discovery in the next decade: innovation needed ASAP.

    PubMed

    Bennani, Youssef L

    2012-02-01

    Pharmaceutical companies must find a better way to increase their output of truly new drugs for the benefit of patients and for their business survival. Here, I highlight a general perspective from within pharmaceutical research as it pertains to research advances in chemistry, biology, pharmacology, pharmacokinetics and toxicology that, if well integrated, stands to put the industry on a productive path. In addition, I provide a complementary perspective on the corporate culture aspect of innovation. I also introduce a new concept, termed 'innovation ASAP' (iASAP; asking powerful questions, seeking the outliers, accepting defeat and populating astutely) and provide support for it using examples of several successful drugs. PMID:22178889

  1. Cell proliferation in the exocrine pancreas during development.

    PubMed Central

    Oates, P S; Morgan, R G

    1989-01-01

    This study examined the relative proliferation of the ductule cell compartment and the mononucleate and binucleate acinar cell populations in the developing pancreas in rats from 5 to 49 days of age. Proliferation of these cell types was assessed in the intact gland and in isolated acinar cells by autoradiography after in vivo labelling with tritiated thymidine at 5, 10, 17, 28, 35, 42 and 49 days of age. It was found that the acinar cell population was predominantly mononucleate at birth, but following weaning became progressively binucleate. At all times studied, DNA synthesis in mononucleate acinar cells was between 3- and 10-fold greater than in binucleate acinar cells. Ductule cell labelling was high relative to that seen in the adult from 5 to 17 days after birth, but after weaning duct cell labelling fell to levels seen in the adult. The results suggest that up to weaning acinus formation is derived from duct cell differentiation and mononucleate acinar cell proliferation, and that after weaning mononucleate acinar cells continue to replicate, either giving rise to binucleate acinar cells or continuing to divide as mononucleate cells. The mononucleate acinar cell thus appears to have the capacity to proliferate, while the binucleate acinar cell appears to be static and non-dividing. Images Fig. 1 Fig. 2 PMID:2630538

  2. Slug inhibits pancreatic cancer initiation by blocking Kras-induced acinar-ductal metaplasia

    PubMed Central

    Ebine, Kazumi; Chow, Christina R.; DeCant, Brian T.; Hattaway, Holly Z.; Grippo, Paul J.; Kumar, Krishan; Munshi, Hidayatullah G.

    2016-01-01

    Cells in the pancreas that have undergone acinar-ductal metaplasia (ADM) can transform into premalignant cells that can eventually become cancerous. Although the epithelial-mesenchymal transition regulator Snail (Snai1) can cooperate with Kras in acinar cells to enhance ADM development, the contribution of Snail-related protein Slug (Snai2) to ADM development is not known. Thus, transgenic mice expressing Slug and Kras in acinar cells were generated. Surprisingly, Slug attenuated Kras-induced ADM development, ERK1/2 phosphorylation and proliferation. Co-expression of Slug with Kras also attenuated chronic pancreatitis-induced changes in ADM development and fibrosis. In addition, Slug attenuated TGF-α-induced acinar cell metaplasia to ductal structures and TGF-α-induced expression of ductal markers in ex vivo acinar explant cultures. Significantly, blocking the Rho-associated protein kinase ROCK1/2 in the ex vivo cultures induced expression of ductal markers and reversed the effects of Slug by inducing ductal structures. In addition, blocking ROCK1/2 activity in Slug-expressing Kras mice reversed the inhibitory effects of Slug on ADM, ERK1/2 phosphorylation, proliferation and fibrosis. Overall, these results increase our understanding of the role of Slug in ADM, an early event that can eventually lead to pancreatic cancer development. PMID:27364947

  3. Epiregulin is critical for the acinar cell regeneration of the submandibular gland in a mouse duct ligation model.

    PubMed

    Nagai, Koichi; Arai, Hideo; Okudera, Michisato; Yamamura, Takashi; Oki, Hidero; Komiyama, Kazuo

    2014-05-01

    Acinar cell regeneration from tubular structures has been reported to occur in duct-deligated salivary glands. However, the detailed process of acinar cell regeneration has not been clarified. We have developed a mouse duct ligation model to clarify the mechanisms underlying acinar cell regeneration, and we analyzed the epidermal growth factor receptor (EGFR) and epidermal growth factor (EGF) ligands using the model. We studied these ligands expressions in the course of acinar cell regeneration using immunohistochemistry and RT-PCR methods. In the duct-ligated portion of the submandibular gland (SMG) that underwent atrophy, newly formed acinar cells were observed arising from the tubular structures after the release of the duct obstruction. The constitutive expression of EGFR was observed by immunohistochemistry in both the duct-ligated and duct-deligated animals as well as in normal controls. The EGFR phosphorylation detected on the tubular structures after duct ligation paralleled the acinar cell regeneration. RT-PCR showed an increase in the epiregulin and heparin-binding EGF levels from day 0 to day 3 after the release of the duct obstruction. The EGF level was increased only after day 7. In vitro, cultured cells isolated from ligated SMGs proliferated and produced EGF ligands following the addition of epiregulin to the culture medium. These findings suggest that the tubular structures localized in an atrophic gland are the source of acinar cell regeneration of the salivary gland. The induction of EGF ligands, in particular epiregulin, may play an important role in acinar cell regeneration in this model.

  4. Prototype Training Materials for Acceptance Criteria of Maintenance ASAP Events Occurring Within Social Context

    NASA Technical Reports Server (NTRS)

    Taylor, J. C.

    2004-01-01

    The aviation maintenance community is at a crossroads with respect to implementing the Aviation Safety Action Program (ASAP). While there is considerable interest, several key issues have emerged that cast doubt on how to assure a successful implementation, including buy-in from all levels of the company and training for key participants. There are two objectives for the present report. The first is to provide an examination of limits (or more properly, examples) of the degree of acceptability of more problematic events for risk-based decisions within the current ASAP guidelines. The second objective is to apply these limits of community standards to a set of further refined ASAP training scenarios.

  5. Regeneration of acinar cells following ligation of rat submandibular gland retraces the embryonic-perinatal pathway of cytodifferentiation.

    PubMed

    Cotroneo, Emanuele; Proctor, Gordon B; Carpenter, Guy H

    2010-02-01

    Rat submandibular gland can regenerate following ligation-induced atrophy, eventually recovering its normal morphology and function. Previous studies have suggested that the regeneration process implies both self-proliferation of existing acini and formation of new acinar cells. One hypothesis is that new acinar cells may differentiate from the ductal cells in a similar fashion to the process of cytodifferentiation occurring during submandibular glandular development. In this study atrophy was induced, under recovery anaesthesia, by applying a metal clip on the main duct of the submandibular gland without including the chorda lingual nerve. After 2 weeks the duct was deligated for 3, 5 or 7 days or 8 weeks and the glands collected. Tissue was prepared for immunohistochemistry, biochemical analysis and RNA extraction. The histology of the regenerated glands shows several normal-looking acini, which have regained their glycoprotein content (AB/PAS positive), data also confirmed by biochemical analysis (SDS-PAGE/PAS). Regenerating tissue was characterized by the presence of embryonic-like branched structures ending with AB/PAS positive acinar cells. The proteins SMG-B and PSP are normally expressed in acinar cell precursors during development but only by intercalated ductal cells in the adult stage. In the adult regenerating gland mRNA levels of both SMG-B and PSP were found to be up-regulated compared to ligated glands and SMG-B expression localized to acinar cells whilst the ductal cells were negative. This study of rat submandibular gland regeneration suggests new acinar cells have differentiated from ducts and express markers of acinar cell precursors in a similar manner to the cytodifferentiation process occurring during glandular development.

  6. The ASAP II database: analysis and comparative genomics of alternative splicing in 15 animal species.

    PubMed

    Kim, Namshin; Alekseyenko, Alexander V; Roy, Meenakshi; Lee, Christopher

    2007-01-01

    We have greatly expanded the Alternative Splicing Annotation Project (ASAP) database: (i) its human alternative splicing data are expanded approximately 3-fold over the previous ASAP database, to nearly 90,000 distinct alternative splicing events; (ii) it now provides genome-wide alternative splicing analyses for 15 vertebrate, insect and other animal species; (iii) it provides comprehensive comparative genomics information for comparing alternative splicing and splice site conservation across 17 aligned genomes, based on UCSC multigenome alignments; (iv) it provides an approximately 2- to 3-fold expansion in detection of tissue-specific alternative splicing events, and of cancer versus normal specific alternative splicing events. We have also constructed a novel database linking orthologous exons and orthologous introns between genomes, based on multigenome alignment of 17 animal species. It can be a valuable resource for studies of gene structure evolution. ASAP II provides a new web interface enabling more detailed exploration of the data, and integrating comparative genomics information with alternative splicing data. We provide a set of tools for advanced data-mining of ASAP II with Pygr (the Python Graph Database Framework for Bioinformatics) including powerful features such as graph query, multigenome alignment query, etc. ASAP II is available at http://www.bioinformatics.ucla.edu/ASAP2.

  7. PD2/Paf1 depletion in pancreatic acinar cells promotes acinar-to-ductal metaplasia

    PubMed Central

    Dey, Parama; Rachagani, Satyanarayana; Vaz, Arokia P.; Ponnusamy, Moorthy P.; Batra, Surinder K.

    2014-01-01

    Pancreatic differentiation 2 (PD2), a PAF (RNA Polymerase II Associated Factor) complex subunit, is overexpressed in pancreatic cancer cells and has demonstrated potential oncogenic property. Here, we report that PD2/Paf1 expression was restricted to acinar cells in the normal murine pancreas, but its expression increased in the ductal cells of Pdx1Cre; KrasG12D (KC) mouse model of pancreatic cancer with increasing age, showing highest expression in neoplastic ductal cells of 50 weeks old mice. PD2/Paf1 was specifically expressed in amylase and CK19 double positive metaplastic ducts, representing intermediate structures during pancreatic acinar-to-ductal metaplasia (ADM). Similar PD2/Paf1 expression was observed in murine pancreas that exhibited ADM-like histology upon cerulein challenge. In normal mice, cerulein-mediated inflammation induced a decrease in PD2/Paf1 expression, which was later restored upon recovery of the pancreatic parenchyma. In KC mice, however, PD2/Paf1 mRNA level continued to decrease with progressive dysplasia and subsequent neoplastic transformation. Additionally, knockdown of PD2/Paf1 in pancreatic acinar cells resulted in the abrogation of Amylase, Elastase and Lipase (acinar marker) mRNA levels with simultaneous increase in CK19 and CAII (ductal marker) transcripts. In conclusion, our studies indicate loss of PD2/Paf1 expression during acinar transdifferentiation in pancreatic cancer initiation and PD2/Paf1 mediated regulation of lineage specific markers. PMID:24947474

  8. No Significant Effect of ASAP1 Gene Variants on the Susceptibility to Tuberculosis in Chinese Population

    PubMed Central

    Hu, Xuejiao; Peng, Wu; Chen, Xuerong; Zhao, Zhenzhen; Zhang, Jingya; Zhou, Juan; Cai, Bei; Chen, Jie; Zhou, Yanhong; Lu, Xiaojun; Ying, Binwu

    2016-01-01

    Abstract Recent studies have proposed that the ASAP1 gene participates in regulating the adaptive immune response to Mycobacterium tuberculosis infection. A GWAS study has reported that ASAP1 polymorphisms (rs4733781 and rs10956514) were associated with the risk of tuberculosis (TB) in Russians. But due to population heterogeneity, different races would have different causative polymorphisms, and the aim of this study was to investigate the association between single nucleotide polymorphisms (SNPs) of the ASAP1 gene and TB risk in Chinese population. A total of 7 SNPs in the ASAP1 gene were genotyped in 1115 Western Chinese Han and 914 Tibetan population using an improved multiplex ligation detection reaction (iMLDR) method. The associations of SNPs with TB risk and clinical phenotypes were determined based on the distributions of allelic frequencies and different genetic models. A meta-analysis was carried out to further assess the relationship between ASAP1 polymorphism and TB risk. Statistical comparisons of cases and controls after correction for multiple testing did not yield any significant associations with the risk of TB via analyses of a single locus, haplotype, and subgroup differences. Meta-analysis showed no evidence supporting association between rs10956514 and overall risk for TB. Subsequent analysis referring to the genotypes of SNPs in relationship to clinical phenotypes identified that rs4236749 was associated with different serum C-reactive protein levels, suggesting a role of this locus in influencing the inflammatory state of Western Chinese Han patients with TB. Our present data revealed that ASAP1 polymorphisms are unlikely to confer susceptibility to TB in the Western Chinese Han and Tibetan populations, which challenges the promising roles of the ASAP1 gene in the development of TB and highlights the importance of validating the association findings across ethnicities. PMID:27227929

  9. Venus and Beyond Using the Ariane ASAP Launch Capability

    NASA Technical Reports Server (NTRS)

    Penzo, Paul A.

    1999-01-01

    The cost of executing planetary missions in the next ten years is expected to decrease significantly. The principle reason is that new technology is reducing spacecraft mass while increasing capability. Another reason is that launch costs are expected to decrease. A move in this direction is to permit important planetary missions to fly as secondary payloads, and this opportunity is now provided by the French on the Ariane 5 using the Ariane Structure for Auxiliary Payloads (ASAP). The ASAP will fly on GEO missions, and can boost up to eight 100 kg (or 200 kg, if paired) payloads into the elliptical geosynchronous transfer orbit (GTO), which delivers large communication satellites to GEO. An efficient multi-burn method has been developed by this author to deliver these small spacecraft from GTO to Mars and other destinations. This method, referred to here as Moon-Earth Gravity Assist (MEGA), requires 3 or more major maneuvers together with close flybys of the earth and moon. An example for a Mars 2003 mission (not to scale) is shown in Figure 1, where, once in GTO, the first burn sends the spacecraft beyond the Moon to a distance of 1.2 million kilometers. At apogee, the second burn targets to an encounter with the Moon such that a swingby returns the spacecraft to the Earth with a 300 km perigee, and with an inclination such that a perigee burn will send the spacecraft off to Mars with the required escape velocity vector. Details of this method, specifically for Mars missions, can be found in Reference 3. A similar strategy works for Venus, with some caveats. This method is required to work for any Ariane 5 launch date over a three month period, to ensure a high probability of getting off the ground. The launch period is provided by fixing the Earth escape date (3rd burn), but allowing the high ellipse (beyond the Moon) period to vary by one or two months, and also allowing a one to two month wait time in GTO (or other orbit) before the first burn is performed

  10. Efficiency of Airborne Sample Analysis Platform (ASAP) bioaerosol sampler for pathogen detection

    PubMed Central

    Sharma, Anurag; Clark, Elizabeth; McGlothlin, James D.; Mittal, Suresh K.

    2015-01-01

    The threat of bioterrorism and pandemics has highlighted the urgency for rapid and reliable bioaerosol detection in different environments. Safeguarding against such threats requires continuous sampling of the ambient air for pathogen detection. In this study we investigated the efficacy of the Airborne Sample Analysis Platform (ASAP) 2800 bioaerosol sampler to collect representative samples of air and identify specific viruses suspended as bioaerosols. To test this concept, we aerosolized an innocuous replication-defective bovine adenovirus serotype 3 (BAdV3) in a controlled laboratory environment. The ASAP efficiently trapped the surrogate virus at 5 × 103 plaque-forming units (p.f.u.) [2 × 105 genome copy equivalent] concentrations or more resulting in the successful detection of the virus using quantitative PCR. These results support the further development of ASAP for bioaerosol pathogen detection. PMID:26074900

  11. A Microfluidic Model of Biomimetically Breathing Pulmonary Acinar Airways.

    PubMed

    Fishler, Rami; Sznitman, Josué

    2016-01-01

    Quantifying respiratory flow characteristics in the pulmonary acinar depths and how they influence inhaled aerosol transport is critical towards optimizing drug inhalation techniques as well as predicting deposition patterns of potentially toxic airborne particles in the pulmonary alveoli. Here, soft-lithography techniques are used to fabricate complex acinar-like airway structures at the truthful anatomical length-scales that reproduce physiological acinar flow phenomena in an optically accessible system. The microfluidic device features 5 generations of bifurcating alveolated ducts with periodically expanding and contracting walls. Wall actuation is achieved by altering the pressure inside water-filled chambers surrounding the thin PDMS acinar channel walls both from the sides and the top of the device. In contrast to common multilayer microfluidic devices, where the stacking of several PDMS molds is required, a simple method is presented to fabricate the top chamber by embedding the barrel section of a syringe into the PDMS mold. This novel microfluidic setup delivers physiological breathing motions which in turn give rise to characteristic acinar air-flows. In the current study, micro particle image velocimetry (µPIV) with liquid suspended particles was used to quantify such air flows based on hydrodynamic similarity matching. The good agreement between µPIV results and expected acinar flow phenomena suggest that the microfluidic platform may serve in the near future as an attractive in vitro tool to investigate directly airborne representative particle transport and deposition in the acinar regions of the lungs.

  12. Active and Passive Supplier Assessment Program (ASAP & PSAP) WWW Sites http://nepp.nasa.gov/imd/asap http://nepp.nasa.gov/imd/psap

    NASA Technical Reports Server (NTRS)

    Brusse, Jay

    2000-01-01

    The Active and Passive Supplier Assessment Programs (ASAP and PSAP) WWW Sites provide general information to the electronic parts community regarding the availability of electronic parts. They also provide information to NASA regarding modifications to commonly used procurement specifications and test methods. The ASAP and PSAP www sites are ongoing resources produced by Code 562 in support of the NASA HQ funded NASA Electronic Parts and Packaging (NEPP) Program. These WWW sites do not provide information pertaining to patented or proprietary information. All of the information contained in these www sites is available through various other public domain resources such as US Military Qualified Producers Listings (QPLs) and Qualified Manufacturer Listings (QMLs) and industry working groups such as the Electronics Industry Alliance (EIA) and the Space Parts Working Group (SPWG).

  13. 77 FR 14006 - Proposed Development of the Alaska Stand Alone Gas Pipeline Project (ASAP), From the North Slope...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... January 20, 2012, issue of the Federal Register (77 FR No. 13), the U.S. Army Corps of Engineers (Corps... Project (ASAP), From the North Slope to South Central Alaska, Draft Environmental Impact Statement...

  14. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer.

    PubMed

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-08-21

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC. PMID:27610015

  15. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer

    PubMed Central

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRasG12D mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC.

  16. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer

    PubMed Central

    Wong, Chi-Hin; Li, You-Jia; Chen, Yang-Chao

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRasG12D mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC. PMID:27610015

  17. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs.

    PubMed

    Eisses, John F; Criscimanna, Angela; Dionise, Zachary R; Orabi, Abrahim I; Javed, Tanveer A; Sarwar, Sheharyar; Jin, Shunqian; Zhou, Lili; Singh, Sucha; Poddar, Minakshi; Davis, Amy W; Tosun, Akif Burak; Ozolek, John A; Lowe, Mark E; Monga, Satdarshan P; Rohde, Gustavo K; Esni, Farzad; Husain, Sohail Z

    2015-12-01

    The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations-that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury-we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained β-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury.

  18. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs.

    PubMed

    Eisses, John F; Criscimanna, Angela; Dionise, Zachary R; Orabi, Abrahim I; Javed, Tanveer A; Sarwar, Sheharyar; Jin, Shunqian; Zhou, Lili; Singh, Sucha; Poddar, Minakshi; Davis, Amy W; Tosun, Akif Burak; Ozolek, John A; Lowe, Mark E; Monga, Satdarshan P; Rohde, Gustavo K; Esni, Farzad; Husain, Sohail Z

    2015-12-01

    The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations-that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury-we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained β-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury. PMID:26476347

  19. Polypeptide N-acetylgalactosaminyltransferase 6 disrupts mammary acinar morphogenesis through O-glycosylation of fibronectin.

    PubMed

    Park, Jae-Hyun; Katagiri, Toyomasa; Chung, Suyoun; Kijima, Kyoko; Nakamura, Yusuke

    2011-04-01

    A high expression of short and immature O-glycans is one of the prominent features of breast cancer cells, which would be attributed to the upregulated expression of glycosyltransferases. Therefore, a detailed elucidation of glycosyltransferases and their substrate(s) may improve our understandings for their roles in mammary carcinogenesis. Here we report that overexpression of polypeptide N-acetylgalactosaminyltransferase 6 (GALNT6), a glycosyltransferase involved in the initial step of O-glycosylation, has transformational potentials through disruptive acinar morphogenesis and cellular changes similar to epithelial-to-mesenchymal transition in normal mammary epithelial cell, MCF10A. As one of the critical O-glycan substrates, we identified fibronectin that was O-glycosylated in vivo and thereby stabilized by GALNT6. Because knockdown of fibronectin abrogated the disruptive proliferation caused by introduction of GALNT6 into epithelial cells, our findings suggest that GALNT6-fibronectin pathway should be a critical component for breast cancer development and progression.

  20. Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice

    PubMed Central

    Li, Ning; Wu, Xuefeng; Holzer, Ryan G.; Lee, Jun-Hee; Todoric, Jelena; Park, Eek-Joong; Ogata, Hisanobu; Gukovskaya, Anna S.; Gukovsky, Ilya; Pizzo, Donald P.; VandenBerg, Scott; Tarin, David; Atay, Çiǧdem; Arkan, Melek C.; Deerinck, Thomas J.; Moscat, Jorge; Diaz-Meco, Maria; Dawson, David; Erkan, Mert; Kleeff, Jörg; Karin, Michael

    2013-01-01

    Chronic pancreatitis is an inflammatory disease that causes progressive destruction of pancreatic acinar cells and, ultimately, loss of pancreatic function. We investigated the role of IκB kinase α (IKKα) in pancreatic homeostasis. Pancreas-specific ablation of IKKα (IkkαΔpan) caused spontaneous and progressive acinar cell vacuolization and death, interstitial fibrosis, inflammation, and circulatory release of pancreatic enzymes, clinical signs resembling those of human chronic pancreatitis. Loss of pancreatic IKKα causes defective autophagic protein degradation, leading to accumulation of p62-mediated protein aggregates and enhanced oxidative and ER stress in acinar cells, but none of these effects is related to NF-κB. Pancreas-specific p62 ablation prevented ER and oxidative stresses and attenuated pancreatitis in IkkαΔpan mice, suggesting that cellular stress induced by p62 aggregates promotes development of pancreatitis. Importantly, downregulation of IKKα and accumulation of p62 aggregates were also observed in chronic human pancreatitis. Our studies demonstrate that IKKα, which may control autophagic protein degradation through its interaction with ATG16L2, plays a critical role in maintaining pancreatic acinar cell homeostasis, whose dysregulation promotes pancreatitis through p62 aggregate accumulation. PMID:23563314

  1. Characterization of cysteine string protein in rat parotid acinar cells.

    PubMed

    Shimomura, Hiromi; Imai, Akane; Nashida, Tomoko

    2013-10-01

    Cysteine string proteins (CSPs) are secretory vesicle chaperone proteins that contain: (i) a heavily palmitoylated cysteine string (comprised of 14 cysteine residues, responsible for the localization of CSP to secretory vesicle membranes), (ii) an N-terminal J-domain (DnaJ domain of Hsc70, 70kDa heat-shock cognate protein family of co-chaperones), and (iii) a linker domain (important in mediating CSP effects on secretion). In this study, we investigated the localization of CSP1 in rat parotid acinar cells and evaluated the role of CSP1 in parotid secretion. RT-PCR and western blotting revealed that CSP1 was expressed and associated with Hsc70 in rat parotid acinar cells. Further, CSP1 associated with syntaxin 4, but not with syntaxin 3, on the apical plasma membrane. Introduction of anti-CSP1 antibody into SLO-permeabilized acinar cells enhanced isoproterenol (IPR)-induced amylase release. Introduction of GST-CSP11-112, containing both the J-domain and the adjacent linker region, enhanced IPR-induced amylase release, whereas neither GST-CSP11-82, containing the J-domain only, nor GST-CSP183-112, containing the linker region only, did produce detectable enhancement. These results indicated that both the J-domain and the linker domain of CSP1 are necessary to function an important role in acinar cell exocytosis.

  2. Regulation of Acinar Cell Function in The Pancreas

    PubMed Central

    Williams, John A.

    2011-01-01

    Purpose of Review This review identifies and puts into context the recent articles which have advanced understanding of the functions of pancreatic acinar cells and the mechanisms by which these functions are regulated. Recent Findings Receptors present on acinar cells, particularly those for cholecystokinin and secretin, have been better characterized as to the molecular nature of the ligand-receptor interaction. Other reports have described the potential regulation of acinar cells by GLP-1 and cannabinoids. Intracellular Ca2+ signaling remains at the center of stimulus secretion coupling and its regulation has been further defined. Recent studies have identified specific channels mediating Ca2+ release from intracellular stores and influx across the plasma membrane.Work downstream of intracellular mediators has focused on molecular mechanisms of exocytosis particularly involving small G proteins, SNARE proteins and chaperone molecules. In addition to secretion, recent studies have further defined the regulation of pancreatic growth both in adaptive regulation to diet and hormones in the regeneration that occurs after pancreatic damage. Lineage tracing has been used to show the contribution of different cell types. The importance of specific amino acids as signaling molecules to activate the mTOR pathway is being elucidated. Summary Understanding the mechanisms that regulate pancreatic acinar cell function is contributing to knowledge of normal pancreatic function and alterations in disease. PMID:20625287

  3. The Platinum Bullet: An Experimental Evaluation of CUNY's Accelerated Study in Associate Program (ASAP)--New Three-Year Impacts, Cost Analyses, and Implementation Findings

    ERIC Educational Resources Information Center

    Weiss, Michael; Scrivener, Susan; Fresques, Hannah; Ratledge, Alyssa; Rudd, Tim; Sommo, Colleen

    2014-01-01

    The City University of New York's (CUNY's) Accelerated Study in Associate Programs (ASAP) combines many of the ideas from a range of programs into a comprehensive model that requires students to attend school full-time, and provides supports and incentives for three years. ASAP's financial aid reforms, enhanced student services, and scheduling…

  4. More Graduates: Two-Year Results from an Evaluation of Accelerated Study in Associate Programs (ASAP) for Developmental Education Students. Policy Brief

    ERIC Educational Resources Information Center

    Scrivener, Susan; Weiss, Michael J.

    2013-01-01

    This policy brief presents results from a random assignment evaluation of the City University of New York's Accelerated Study in Associate Programs (ASAP). An ambitious and promising endeavor, ASAP provides a comprehensive array of services and supports to help community college students graduate and to help them graduate sooner. The…

  5. Evaluation of an Internet-Based, Bibliographic Database: Results of the NASA STI Program's ASAP User Test

    NASA Technical Reports Server (NTRS)

    Reid, John; Egge, Robert; McAfee, Nancy

    2000-01-01

    This document summarizes the feedback gathered during the user-testing phase in the development of an electronic library application: the Aeronautics and Space Access Pages (ASAP). It first provides some historical background on the NASA Scientific and Technical Information (STI) program and its efforts to enhance the services it offers the aerospace community. Following a brief overview of the ASAP project, it reviews the results of an online user survey, and from the lessons learned therein, outlines direction for future development of the project.

  6. Low-level (gallium-aluminum-arsenide) laser irradiation of Par-C10 cells and acinar cells of rat parotid gland.

    PubMed

    Onizawa, Katsuhiro; Muramatsu, Takashi; Matsuki, Miwako; Ohta, Kazumasa; Matsuzaka, Kenichi; Oda, Yutaka; Shimono, Masaki

    2009-03-01

    We investigated cell response, including cell proliferation and expression of heat stress protein and bcl-2, to clarify the influence of low-level [gallium-aluminum-arsenide (Ga-Al-As) diode] laser irradiation on Par-C10 cells derived from the acinar cells of rat parotid glands. Furthermore, we also investigated amylase release and cell death from irradiation in acinar cells from rat parotid glands. The number of Par-C10 cells in the laser-irradiated groups was higher than that in the non-irradiated group at days 5 and 7, and the difference was statistically significant (P < 0.01). Greater expression of heat shock protein (HSP)25 and bcl-2 was seen on days 1 and 3 in the irradiated group. Assay of the released amylase showed no significant difference statistically between the irradiated group and the non-irradiated group. Trypan blue exclusion assay revealed that there was no difference in the ratio of dead to live cells between the irradiated and the non-irradiated groups. These results suggest that low-level laser irradiation promotes cell proliferation and expression of anti-apoptosis proteins in Par-C10 cells, but it does not significantly affect amylase secretion and does not induce rapid cell death in isolated acinar cells from rat parotid glands.

  7. Integrin adhesion in regulation of lacrimal gland acinar cell secretion.

    PubMed

    Andersson, Sofia V; Hamm-Alvarez, Sarah F; Gierow, J Peter

    2006-09-01

    The extracellular microenvironment regulates lacrimal gland acinar cell secretion. Culturing isolated rabbit lacrimal gland acinar cells on different extracellular matrix proteins revealed that laminin enhances carbachol-stimulated secretion to a greater extent than other extracellular matrix proteins investigated. Furthermore, immunofluorescence indicated that integrin subunits, potentially functioning as laminin receptors are present in acinar cells. Among these, the integrin alpha6 and beta1 subunit mRNA expression was also confirmed by RT-PCR and sequence analysis. Secretion assays, which measured beta-hexosaminidase activity released in the culture media, demonstrated that function-blocking integrin alpha6 and beta1 monoclonal antibodies (mAbs) induce a rapid, transient and dose-dependent secretory response in cultured cells. To determine the intracellular pathways by which integrin alpha6 and beta1 mAbs could induce secretion, selected second messenger molecules were inhibited. Although inhibitors of protein kinase C and IP(3)-induced Ca(2+) mobilization attenuated carbachol-stimulated secretion, no effect on integrin mAb-induced release was observed. In addition, protein tyrosine kinases do not appear to have a role in transducing signals arising from mAb interactions. Our data clearly demonstrate, though, that cell adhesion through integrins regulates secretion from lacrimal gland acinar cells. The fact that the integrin mAbs affect the cholinergic response differently and that the integrin beta1 mAb secretion, but not the alpha6, was attenuated by the phosphatase inhibitor, sodium orthovanadate, suggests that each subunit utilizes separate intracellular signaling pathways to induce exocytosis. The results also indicate that the secretory response triggered by the beta1 integrin mAb is generated through dephosphorylation events.

  8. The Impact of the Advancing Social-Communication and Play (ASAP) Intervention on Preschoolers with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Dykstra, Jessica R.; Boyd, Brian A.; Watson, Linda R.; Crais, Elizabeth R.; Baranek, Grace T.

    2012-01-01

    This study evaluates an intervention targeting social-communication and play skills (Advancing Social-communication and Play; ASAP) implemented by school staff in a public preschool setting. With increases in enrollment of children with autism spectrum disorder (ASD) in school systems, establishing the effectiveness and feasibility of…

  9. The Impact of the Advancing Social-Communication and Play (ASAP) Intervention on Preschoolers with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Dykstra, Jessica R.; Boyd, Brian A.; Watson, Linda R.; Crais, Elizabeth R.; Baranek, Grace T.

    2012-01-01

    This study evaluates an intervention targeting social-communication and play skills (Advancing Social-communication And Play; ASAP) implemented by school staff in a public preschool setting. With increases in enrollment of children with autism spectrum disorder (ASD) in school systems, establishing the effectiveness and feasibility of…

  10. Comparison of Risk Scoring Systems to Predict the Outcome in ASA-PS V Patients Undergoing Surgery

    PubMed Central

    Yurtlu, Derya Arslan; Aksun, Murat; Ayvat, Pınar; Karahan, Nagihan; Koroglu, Lale; Aran, Gülcin Önder

    2016-01-01

    Abstract Operative decision in American Society of Anesthesiology Physical Status (ASA-PS) V patient is difficult as this group of patients expected to have high mortality rate. Another risk scoring system in this ASA-PS V subset of patients can aid to ease this decision. Data of ASA-PS V classified patients between 2011 and 2013 years in a single hospital were analyzed in this study. Predicted mortality of these patients was determined with acute physiology and chronic health evaluations (APACHE) II, simplified acute physiology score (SAPS II), Charlson comorbidity index (CCI), Porthsmouth physiological and operative severity score for enumeration of mortality and morbidity (P-POSSUM), Surgical apgar score (SAS), and Goldman cardiac risk index (GCRI) scores. Observed and predicted mortality rates according to the risk indexes in these patients were compared at survivor and nonsurvivor group of patients. Risk stratification was made with receiver operator characteristic (ROC) curve analysis. Data of 89 patients were included in the analyses. Predicted mortality rates generated by APACHE II and SAPS II scoring systems were significantly different between survivor and nonsurvivor group of patients. Risk stratification with ROC analysis revealed that area under curve was 0.784 and 0.681 for SAPS II and APACHE II scoring systems, respectively. Highest sensitivity (77.3) is reached with SAPS II score. APACHE II and SAPS II are better predictive tools of mortality in ASA-PS V classified subset of patients. Discrimination power of SAPS II score is the best among the compared risk stratification scores. SAPS II can be suggested as an additional risk scoring system for ASA-PS V patients. PMID:27043696

  11. Micro-elastometry on whole blood clots using actuated surface-attached posts (ASAPs)

    PubMed Central

    Judith, Robert M.; Fisher, Jay K.; Spero, Richard Chasen; Fiser, Briana L.; Turner, Adam; Oberhardt, Bruce; Taylor, R.M.; Falvo, Michael R.; Superfine, Richard

    2015-01-01

    We present a novel technology for microfluidic elastometry and demonstrate its ability to measure stiffness of blood clots as they form. A disposable micro-capillary strip draws small volumes (20 μL) of whole blood into a chamber containing a surface-mounted micropost array. The posts are magnetically actuated, thereby applying a shear stress to the blood clot. The posts’ response to magnetic field changes as the blood clot forms; this response is measured by optical transmission. We show that a quasi-static model correctly predicts the torque applied to the microposts. We experimentally validate the ability of the system to measure clot stiffness by correlating our system with a commercial thromboelastograph. We conclude that actuated surface-attached post (ASAP) technology addresses a clinical need for point-of-care and small-volume elastic haemostatic assays. PMID:25592158

  12. ASAP progress and expenditure report for the month of February 1--29, 1996

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Chambers, D.H.; Mantrom, D.M.; Miller, M.G.; Newman, M.J.; Robey, H.F.; Vigars, M.

    1996-03-20

    This is the ASAP progress and expenditure report for the month of February, 1996. The individual projects` report includes the sponsoring organization, the project identification, the principal investigator, long term objectives, short term objectives, accomplishments this reporting period, identification of issues or concerns, project budget estimate for the fiscal year, and monthly actual and year to date expenditures. The research project concerns a joint US/UK program to develop a high-priority radar system based on real aperture and synthetic aperature radar. Topics being researched include airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; radar field experiments; data analysis and detection theory; program management; modeling and analysis; UCSB wave tank; stratified wave tank; and experiments in a thermo-stratified tank at the Institute of Applied Physics, Russia.

  13. The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis

    PubMed Central

    Patel, Aniruddh D.; Iversen, John R.

    2013-01-01

    Every human culture has some form of music with a beat: a perceived periodic pulse that structures the perception of musical rhythm and which serves as a framework for synchronized movement to music. What are the neural mechanisms of musical beat perception, and how did they evolve? One view, which dates back to Darwin and implicitly informs some current models of beat perception, is that the relevant neural mechanisms are relatively general and are widespread among animal species. On the basis of recent neural and cross-species data on musical beat processing, this paper argues for a different view. Here we argue that beat perception is a complex brain function involving temporally-precise communication between auditory regions and motor planning regions of the cortex (even in the absence of overt movement). More specifically, we propose that simulation of periodic movement in motor planning regions provides a neural signal that helps the auditory system predict the timing of upcoming beats. This “action simulation for auditory prediction” (ASAP) hypothesis leads to testable predictions. We further suggest that ASAP relies on dorsal auditory pathway connections between auditory regions and motor planning regions via the parietal cortex, and suggest that these connections may be stronger in humans than in non-human primates due to the evolution of vocal learning in our lineage. This suggestion motivates cross-species research to determine which species are capable of human-like beat perception, i.e., beat perception that involves accurate temporal prediction of beat times across a fairly broad range of tempi. PMID:24860439

  14. Astrobiology Sample Analysis Program (ASAP) for Advanced Life Detection Instrumentation Development and Calibration

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Brinkerhoff, Will; Dworkin, Jason; Eigenbrode, Jennifer; Franz, Heather; Mahaffy, Paul; Stern, Jen; Blake, Daid; Sandford, Scott; Fries, marc; Steele, Andrew; Amashukeli, Xenia; Fisher, Anita; Grunthaner, Frank; Aubrey, Andrew; Bada, Jeff; Chiesl, Tom; Stockton, Amanda; Mathies, Rich

    2008-01-01

    Scientific ground-truth measurements for near-term Mars missions, such as the 2009 Mars Science Laboratory (MSL) mission, are essential for validating current in situ flight instrumentation and for the development of advanced instrumentation technologies for life-detection missions over the next decade. The NASA Astrobiology Institute (NAI) has recently funded a consortium of researchers called the Astrobiology Sample Analysis Program (ASAP) to analyze an identical set of homogenized martian analog materials in a "round-robin" style using both state-of-the-art laboratory techniques as well as in-situ flight instrumentation including the SAM gas chromatograph mass spectrometer and CHEMIN X-ray diffraction/fluorescence instruments on MSL and the Urey and MOMA organic analyzer instruments under development for the 2013 ExoMars missions. The analog samples studied included an Atacama Desert soil from Chile, the Murchison meteorite, a gypsum sample from the 2007 AMASE Mars analog site, jarosite from Panoche Valley, CA, a hydrothermal sample from Rio Tinto, Spain, and a "blind" sample collected during the 2007 MSL slow-motion field test in New Mexico. Each sample was distributed to the team for analysis to: (1) determine the nature and inventory of organic compounds, (2) measure the bulk carbon and nitrogen isotopic composition, (3) investigate elemental abundances, mineralogy and matrix, and (4) search for biological activity. The experimental results obtained from the ASAP Mars analog research consortium will be used to build a framework for understanding the biogeochemistry of martian analogs, help calibrate current spaceflight instrumentation, and enhance the scientific return from upcoming missions.

  15. Developing and establishing the validity and reliability of the perceptions toward Aviation Safety Action Program (ASAP) and Line Operations Safety Audit (LOSA) questionnaires

    NASA Astrophysics Data System (ADS)

    Steckel, Richard J.

    Aviation Safety Action Program (ASAP) and Line Operations Safety Audits (LOSA) are voluntary safety reporting programs developed by the Federal Aviation Administration (FAA) to assist air carriers in discovering and fixing threats, errors and undesired aircraft states during normal flights that could result in a serious or fatal accident. These programs depend on voluntary participation of and reporting by air carrier pilots to be successful. The purpose of the study was to develop and validate a measurement scale to measure U.S. air carrier pilots' perceived benefits and/or barriers to participating in ASAP and LOSA programs. Data from these surveys could be used to make changes to or correct pilot misperceptions of these programs to improve participation and the flow of data. ASAP and LOSA a priori models were developed based on previous research in aviation and healthcare. Sixty thousand ASAP and LOSA paper surveys were sent to 60,000 current U.S. air carrier pilots selected at random from an FAA database of pilot certificates. Two thousand usable ASAP and 1,970 usable LOSA surveys were returned and analyzed using Confirmatory Factor Analysis. Analysis of the data using confirmatory actor analysis and model generation resulted in a five factor ASAP model (Ease of use, Value, Improve, Trust and Risk) and a five factor LOSA model (Value, Improve, Program Trust, Risk and Management Trust). ASAP and LOSA data were not normally distributed, so bootstrapping was used. While both final models exhibited acceptable fit with approximate fit indices, the exact fit hypothesis and the Bollen-Stine p value indicated possible model mis-specification for both ASAP and LOSA models.

  16. Murine pulmonary acinar mechanics during quasi-static inflation using synchrotron refraction-enhanced computed tomography.

    PubMed

    Sera, Toshihiro; Yokota, Hideo; Tanaka, Gaku; Uesugi, Kentaro; Yagi, Naoto; Schroter, Robert C

    2013-07-15

    We visualized pulmonary acini in the core regions of the mouse lung in situ using synchrotron refraction-enhanced computed tomography (CT) and evaluated their kinematics during quasi-static inflation. This CT system (with a cube voxel of 2.8 μm) allows excellent visualization of not just the conducting airways, but also the alveolar ducts and sacs, and tracking of the acinar shape and its deformation during inflation. The kinematics of individual alveoli and alveolar clusters with a group of terminal alveoli is influenced not only by the connecting alveolar duct and alveoli, but also by the neighboring structures. Acinar volume was not a linear function of lung volume. The alveolar duct diameter changed dramatically during inflation at low pressures and remained relatively constant above an airway pressure of ∼8 cmH2O during inflation. The ratio of acinar surface area to acinar volume indicates that acinar distension during low-pressure inflation differed from that during inflation over a higher pressure range; in particular, acinar deformation was accordion-like during low-pressure inflation. These results indicated that the alveoli and duct expand differently as total acinar volume increases and that the alveolar duct may expand predominantly during low-pressure inflation. Our findings suggest that acinar deformation in the core regions of the lung is complex and heterogeneous.

  17. Pancreatic acinar cells: molecular insight from studies of signal-transduction using transgenic animals.

    PubMed

    Yule, David I

    2010-11-01

    Pancreatic acinar cells are classical exocrine gland cells. The apical regions of clusters of coupled acinar cells collectively form a lumen which constitutes the blind end of a tube created by ductal cells - a structure reminiscent of a "bunch of grapes". When activated by neural or hormonal secretagogues, pancreatic acinar cells are stimulated to secrete a variety of proteins. These proteins are predominately inactive digestive enzyme precursors called "zymogens". Acinar cell secretion is absolutely dependent on secretagogue-induced increases in intracellular free Ca(2+). The increase in [Ca(2+)](i) has precise temporal and spatial characteristics as a result of the exquisite regulation of the proteins responsible for Ca(2+) release, Ca(2+) influx and Ca(2+) clearance in the acinar cell. This brief review discusses recent studies in which transgenic animal models have been utilized to define in molecular detail the components of the Ca(2+) signaling machinery which contribute to these characteristics.

  18. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells

    PubMed Central

    Bhopale, Kamlesh K.; Falzon, Miriam; Ansari, G. A. S.

    2016-01-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with l,10-PT + ethanol and ~1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I—III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol. PMID:24281792

  19. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells.

    PubMed

    Bhopale, Kamlesh K; Falzon, Miriam; Ansari, G A S; Kaphalia, Bhupendra S

    2014-04-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ∼1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol.

  20. Proteoglycans support proper granule formation in pancreatic acinar cells.

    PubMed

    Aroso, Miguel; Agricola, Brigitte; Hacker, Christian; Schrader, Michael

    2015-10-01

    Zymogen granules (ZG) are specialized organelles in the exocrine pancreas which allow digestive enzyme storage and regulated secretion. The molecular mechanisms of their biogenesis and the sorting of zymogens are still incompletely understood. Here, we investigated the role of proteoglycans in granule formation and secretion of zymogens in pancreatic AR42J cells, an acinar model system. Cupromeronic Blue cytochemistry and biochemical studies revealed an association of proteoglycans primarily with the granule membrane. Removal of proteoglycans by carbonate treatment led to a loss of membrane curvature indicating a supportive role in the maintenance of membrane shape and stability. Chemical inhibition of proteoglycan synthesis impaired the formation of normal electron-dense granules in AR42J cells and resulted in the formation of unusually small granule structures. These structures still contained the zymogen carboxypeptidase, a cargo molecule of secretory granules, but migrated to lighter fractions after density gradient centrifugation. Furthermore, the basal secretion of amylase was increased in AR42J cells after inhibitor treatment. In addition, irregular-shaped granules appeared in pancreatic lobules. We conclude that the assembly of a proteoglycan scaffold at the ZG membrane is supporting efficient packaging of zymogens and the proper formation of stimulus-competent storage granules in acinar cells of the pancreas.

  1. Active SAmpling Protocol (ASAP) to Optimize Individual Neurocognitive Hypothesis Testing: A BCI-Inspired Dynamic Experimental Design

    PubMed Central

    Sanchez, Gaëtan; Lecaignard, Françoise; Otman, Anatole; Maby, Emmanuel; Mattout, Jérémie

    2016-01-01

    The relatively young field of Brain-Computer Interfaces has promoted the use of electrophysiology and neuroimaging in real-time. In the meantime, cognitive neuroscience studies, which make extensive use of functional exploration techniques, have evolved toward model-based experiments and fine hypothesis testing protocols. Although these two developments are mostly unrelated, we argue that, brought together, they may trigger an important shift in the way experimental paradigms are being designed, which should prove fruitful to both endeavors. This change simply consists in using real-time neuroimaging in order to optimize advanced neurocognitive hypothesis testing. We refer to this new approach as the instantiation of an Active SAmpling Protocol (ASAP). As opposed to classical (static) experimental protocols, ASAP implements online model comparison, enabling the optimization of design parameters (e.g., stimuli) during the course of data acquisition. This follows the well-known principle of sequential hypothesis testing. What is radically new, however, is our ability to perform online processing of the huge amount of complex data that brain imaging techniques provide. This is all the more relevant at a time when physiological and psychological processes are beginning to be approached using more realistic, generative models which may be difficult to tease apart empirically. Based upon Bayesian inference, ASAP proposes a generic and principled way to optimize experimental design adaptively. In this perspective paper, we summarize the main steps in ASAP. Using synthetic data we illustrate its superiority in selecting the right perceptual model compared to a classical design. Finally, we briefly discuss its future potential for basic and clinical neuroscience as well as some remaining challenges. PMID:27458364

  2. Automated Sanger Analysis Pipeline (ASAP): A Tool for Rapidly Analyzing Sanger Sequencing Data with Minimum User Interference

    PubMed Central

    Singh, Aditya; Bhatia, Prateek

    2016-01-01

    Sanger sequencing platforms, such as applied biosystems instruments, generate chromatogram files. Generally, for 1 region of a sequence, we use both forward and reverse primers to sequence that area, in that way, we have 2 sequences that need to be aligned and a consensus generated before mutation detection studies. This work is cumbersome and takes time, especially if the gene is large with many exons. Hence, we devised a rapid automated command system to filter, build, and align consensus sequences and also optionally extract exonic regions, translate them in all frames, and perform an amino acid alignment starting from raw sequence data within a very short time. In full capabilities of Automated Mutation Analysis Pipeline (ASAP), it is able to read "*.ab1" chromatogram files through command line interface, convert it to the FASTQ format, trim the low-quality regions, reverse-complement the reverse sequence, create a consensus sequence, extract the exonic regions using a reference exonic sequence, translate the sequence in all frames, and align the nucleic acid and amino acid sequences to reference nucleic acid and amino acid sequences, respectively. All files are created and can be used for further analysis. ASAP is available as Python 3.x executable at https://github.com/aditya-88/ASAP. The version described in this paper is 0.28. PMID:27790076

  3. PNA lectin for purifying mouse acinar cells from the inflamed pancreas

    PubMed Central

    Xiao, Xiangwei; Fischbach, Shane; Fusco, Joseph; Zimmerman, Ray; Song, Zewen; Nebres, Philip; Ricks, David Matthew; Prasadan, Krishna; Shiota, Chiyo; Husain, Sohail Z.; Gittes, George K.

    2016-01-01

    Better methods for purifying human or mouse acinar cells without the need for genetic modification are needed. Such techniques would be advantageous for the specific study of certain mechanisms, such as acinar-to-beta-cell reprogramming and pancreatitis. Ulex Europaeus Agglutinin I (UEA-I) lectin has been used to label and isolate acinar cells from the pancreas. However, the purity of the UEA-I-positive cell fraction has not been fully evaluated. Here, we screened 20 widely used lectins for their binding specificity for major pancreatic cell types, and found that UEA-I and Peanut agglutinin (PNA) have a specific affinity for acinar cells in the mouse pancreas, with minimal affinity for other major pancreatic cell types including endocrine cells, duct cells and endothelial cells. Moreover, PNA-purified acinar cells were less contaminated with mesenchymal and inflammatory cells, compared to UEA-I purified acinar cells. Thus, UEA-I and PNA appear to be excellent lectins for pancreatic acinar cell purification. PNA may be a better choice in situations where mesenchymal cells or inflammatory cells are significantly increased in the pancreas, such as type 1 diabetes, pancreatitis and pancreatic cancer. PMID:26884345

  4. Acinar cell carcinoma of exocrine pancreas in two horses.

    PubMed

    de Brot, S; Junge, H; Hilbe, M

    2014-05-01

    Two horses were presented with non-specific clinical signs of several weeks' duration and were humanely destroyed due to a poor prognosis. At necropsy examination, both horses had multiple small, white nodules replacing pancreatic tissue and involving the serosal surface of the abdominal cavity, the liver and the lung. Microscopically, neoplastic cells were organized in acini and contained abundant (case 1) or sparse (horse 2) intracytoplasmic zymogen granules. Immunohistochemically, both tumours expressed amylase and pan-cytokeratin, but not insulin or neuron-specific enolase. In case 2, a low percentage of neoplastic cells expressed glucagon and synaptophysin. The presence of zymogen granules was confirmed in both cases by electron microscopy and occasional fibrillary or glucagon granules were observed in cases 1 and 2, respectively. A diagnosis of pancreatic acinar cell carcinoma was established in both horses.

  5. KRAS Mutations in Canine and Feline Pancreatic Acinar Cell Carcinoma.

    PubMed

    Crozier, C; Wood, G A; Foster, R A; Stasi, S; Liu, J H W; Bartlett, J M S; Coomber, B L; Sabine, V S

    2016-07-01

    Companion animals may serve as valuable models for studying human cancers. Although KRAS is the most commonly mutated gene in human ductal pancreatic cancers (57%), with mutations frequently occurring at codons 12, 13 and 61, human pancreatic acinar cell carcinomas (ACCs) lack activating KRAS mutations. In the present study, 32 pancreatic ACC samples obtained from 14 dogs and 18 cats, including seven metastases, were analyzed for six common activating KRAS mutations located in codons 12 (n = 5) and 13 (n = 1) using Sequenom MassARRAY. No KRAS mutations were found, suggesting that, similar to human pancreatic ACC, KRAS mutations do not play a critical role in feline or canine pancreatic ACC. Due to the similarity of the clinical disease in dogs and cats to that of man, this study confirms that companion animals offer potential as a suitable model for investigating this rare subtype of pancreatic carcinoma.

  6. Segmentation of SOHO/MDI continuum and magnetogram images with the ASAP tool for SSI reconstruction

    NASA Astrophysics Data System (ADS)

    Qahwaji, Rami; Haberreiter, Margit; Ipson, Stan; Ahmed, Omar; Nibouche, Omar

    2014-05-01

    The variation of the solar spectral irradiance is an important driver for the energy balance in the Earth's atmosphere. There is real need for new imaging technologies that would enable us to detect different solar features and calculate their filling factors that are important for SSI reconstruction. Using the ASAP tool, developed at Bradford University, we identify the regions of the solar disk that are believed to be responsible for the SSI variations, these are sunspots umbra and penumbra, active regions, active and quiet network, and the quiet sun. The tools developed in this research were applied to the entire SOHO/MDI continuum and magnetogram images from mid 1996 till the end of 2010. Here, we present first results of the decomposed MDI images along with their segmentaion maps and the reconstructed spectra. Acknowledgements SOHO is a project of international cooperation between ESA and NASA. The authors acknowledge that the research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7 2012) under grant agreement no 313188 (SOLID: First European SOLar Irradiance Data Exploitation)).

  7. A Computer-Based Automated Algorithm for Assessing Acinar Cell Loss after Experimental Pancreatitis

    PubMed Central

    Eisses, John F.; Davis, Amy W.; Tosun, Akif Burak; Dionise, Zachary R.; Chen, Cheng; Ozolek, John A.; Rohde, Gustavo K.; Husain, Sohail Z.

    2014-01-01

    The change in exocrine mass is an important parameter to follow in experimental models of pancreatic injury and regeneration. However, at present, the quantitative assessment of exocrine content by histology is tedious and operator-dependent, requiring manual assessment of acinar area on serial pancreatic sections. In this study, we utilized a novel computer-generated learning algorithm to construct an accurate and rapid method of quantifying acinar content. The algorithm works by learning differences in pixel characteristics from input examples provided by human experts. HE-stained pancreatic sections were obtained in mice recovering from a 2-day, hourly caerulein hyperstimulation model of experimental pancreatitis. For training data, a pathologist carefully outlined discrete regions of acinar and non-acinar tissue in 21 sections at various stages of pancreatic injury and recovery (termed the “ground truth”). After the expert defined the ground truth, the computer was able to develop a prediction rule that was then applied to a unique set of high-resolution images in order to validate the process. For baseline, non-injured pancreatic sections, the software demonstrated close agreement with the ground truth in identifying baseline acinar tissue area with only a difference of 1%±0.05% (p = 0.21). Within regions of injured tissue, the software reported a difference of 2.5%±0.04% in acinar area compared with the pathologist (p = 0.47). Surprisingly, on detailed morphological examination, the discrepancy was primarily because the software outlined acini and excluded inter-acinar and luminal white space with greater precision. The findings suggest that the software will be of great potential benefit to both clinicians and researchers in quantifying pancreatic acinar cell flux in the injured and recovering pancreas. PMID:25343460

  8. Necro-inflammatory response of pancreatic acinar cells in the pathogenesis of acute alcoholic pancreatitis.

    PubMed

    Gu, H; Werner, J; Bergmann, F; Whitcomb, D C; Büchler, M W; Fortunato, F

    2013-01-01

    The role of pancreatic acinar cells in initiating necro-inflammatory responses during the early onset of alcoholic acute pancreatitis (AP) has not been fully evaluated. We investigated the ability of acinar cells to generate pro- and anti-inflammatory mediators, including inflammasome-associated IL-18/caspase-1, and evaluated acinar cell necrosis in an animal model of AP and human samples. Rats were fed either an ethanol-containing or control diet for 14 weeks and killed 3 or 24 h after a single lipopolysaccharide (LPS) injection. Inflammasome components and necro-inflammation were evaluated in acinar cells by immunofluorescence (IF), histology, and biochemical approaches. Alcohol exposure enhanced acinar cell-specific production of TNFα, IL-6, MCP-1 and IL-10, as early as 3 h after LPS, whereas IL-18 and caspase-1 were evident 24 h later. Alcohol enhanced LPS-induced TNFα expression, whereas blockade of LPS signaling diminished TNFα production in vitro, indicating that the response of pancreatic acinar cells to LPS is similar to that of immune cells. Similar results were observed from acinar cells in samples from patients with acute/recurrent pancreatitis. Although morphologic examination of sub-clinical AP showed no visible signs of necrosis, early loss of pancreatic HMGB1 and increased systemic levels of HMGB1 and LDH were observed, indicating that this strong systemic inflammatory response is associated with little pancreatic necrosis. These results suggest that TLR-4-positive acinar cells respond to LPS by activating the inflammasome and producing pro- and anti-inflammatory mediators during the development of mild, sub-clinical AP, and that these effects are exacerbated by alcohol injury.

  9. Necro-inflammatory response of pancreatic acinar cells in the pathogenesis of acute alcoholic pancreatitis

    PubMed Central

    Gu, H; Werner, J; Bergmann, F; Whitcomb, D C; Büchler, M W; Fortunato, F

    2013-01-01

    The role of pancreatic acinar cells in initiating necro-inflammatory responses during the early onset of alcoholic acute pancreatitis (AP) has not been fully evaluated. We investigated the ability of acinar cells to generate pro- and anti-inflammatory mediators, including inflammasome-associated IL-18/caspase-1, and evaluated acinar cell necrosis in an animal model of AP and human samples. Rats were fed either an ethanol-containing or control diet for 14 weeks and killed 3 or 24 h after a single lipopolysaccharide (LPS) injection. Inflammasome components and necro-inflammation were evaluated in acinar cells by immunofluorescence (IF), histology, and biochemical approaches. Alcohol exposure enhanced acinar cell-specific production of TNFα, IL-6, MCP-1 and IL-10, as early as 3 h after LPS, whereas IL-18 and caspase-1 were evident 24 h later. Alcohol enhanced LPS-induced TNFα expression, whereas blockade of LPS signaling diminished TNFα production in vitro, indicating that the response of pancreatic acinar cells to LPS is similar to that of immune cells. Similar results were observed from acinar cells in samples from patients with acute/recurrent pancreatitis. Although morphologic examination of sub-clinical AP showed no visible signs of necrosis, early loss of pancreatic HMGB1 and increased systemic levels of HMGB1 and LDH were observed, indicating that this strong systemic inflammatory response is associated with little pancreatic necrosis. These results suggest that TLR-4-positive acinar cells respond to LPS by activating the inflammasome and producing pro- and anti-inflammatory mediators during the development of mild, sub-clinical AP, and that these effects are exacerbated by alcohol injury. PMID:24091659

  10. Unsteady diffusional screening in 3D pulmonary acinar structures: from infancy to adulthood.

    PubMed

    Hofemeier, Philipp; Shachar-Berman, Lihi; Tenenbaum-Katan, Janna; Filoche, Marcel; Sznitman, Josué

    2016-07-26

    Diffusional screening in the lungs is a physical phenomenon where the specific topological arrangement of alveolated airways of the respiratory region leads to a depletion, or 'screening', of oxygen molecules with increasing acinar generation. Here, we revisit diffusional screening phenomena in anatomically-inspired pulmonary acinar models under realistic breathing maneuvers. By modelling 3D bifurcating alveolated airways capturing both convection and diffusion, unsteady oxygen transport is investigated under cyclic breathing motion. To evaluate screening characteristics in the developing lungs during growth, four representative stages of lung development were chosen (i.e. 3 months, 1 year and 9 months, 3 years and adulthood) that capture distinct morphological acinar changes spanning alveolarization phases to isotropic alveolar growth. Numerical simulations unveil the dramatic changes in O2 transport occurring during lung development, where young infants exhibit highest acinar efficiencies that rapidly converge with age to predictions at adulthood. With increased ventilatory effort, transient dynamics of oxygen transport is fundamentally altered compared to tidal breathing and emphasizes the augmented role of convection. Resolving the complex convective acinar flow patterns in 3D acinar trees allows for the first time a spatially-localized and time-resolved characterization of oxygen transport in the pulmonary acinus, from infancy to adulthood.

  11. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress

    PubMed Central

    Antonucci, Laura; Fagman, Johan B.; Kim, Ju Youn; Todoric, Jelena; Gukovsky, Ilya; Mackey, Mason; Ellisman, Mark H.; Karin, Michael

    2015-01-01

    Pancreatic acinar cells possess very high protein synthetic rates as they need to produce and secrete large amounts of digestive enzymes. Acinar cell damage and dysfunction cause malnutrition and pancreatitis, and inflammation of the exocrine pancreas that promotes development of pancreatic ductal adenocarcinoma (PDAC), a deadly pancreatic neoplasm. The cellular and molecular mechanisms that maintain acinar cell function and whose dysregulation can lead to tissue damage and chronic pancreatitis are poorly understood. It was suggested that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis, but it is unknown whether impaired autophagy is a cause or a consequence of pancreatitis. To address this question, we generated Atg7Δpan mice that lack the essential autophagy-related protein 7 (ATG7) in pancreatic epithelial cells. Atg7Δpan mice exhibit severe acinar cell degeneration, leading to pancreatic inflammation and extensive fibrosis. Whereas ATG7 loss leads to the expected decrease in autophagic flux, it also results in endoplasmic reticulum (ER) stress, accumulation of dysfunctional mitochondria, oxidative stress, activation of AMPK, and a marked decrease in protein synthetic capacity that is accompanied by loss of rough ER. Atg7Δpan mice also exhibit spontaneous activation of regenerative mechanisms that initiate acinar-to-ductal metaplasia (ADM), a process that replaces damaged acinar cells with duct-like structures. PMID:26512112

  12. Human salivary gland acinar cells spontaneously form three-dimensional structures and change the protein expression patterns.

    PubMed

    Chan, Yen-Hui; Huang, Tsung-Wei; Young, Tai-Horng; Lou, Pei-Jen

    2011-11-01

    Applying tissue engineering principles to design an auto-secretory device is a potential solution for patients suffering loss of salivary gland function. However, the largest challenge in implementing this solution is the primary culture of human salivary gland cells, because the cells are highly differentiated and difficult to expand in vitro. This situation leads to the lack of reports on the in vitro cell biology and physiology of human salivary gland cells. This study used a low-calcium culture system to selectively cultivate human parotid gland acinar (PGAC) cells from tissues with high purity in cell composition. This condition enables PGAC cells to continuously proliferate and retain the phenotypes of epithelial acinar cells to express secreting products (α-amylase) and function-related proteins (aquaporin-3, aquaporin-5, and ZO-1). Notably, when the cells reached confluence, three-dimensional (3D) cell aggregates were observed in crowded regions. These self-formed cell spheres were termed post-confluence structures (PCSs). Unexpectedly, despite being cultured in the same media, cells in PCSs exhibited higher expression levels and different expression patterns of function-related proteins compared to the two-dimensional (2D) cells. Translocation of aquoporin-3 from cytosolic to alongside the cell boundaries, and of ZO-1 molecules to the boundary of the PCSs were also observed. These observations suggest that when PGAC cells cultured on the 2D substrate would form PCSs without the help of 3D scaffolds and retain certain differentiation and polarity. This phenomenon implies that it is possible to introduce 2D substrates instead of 3D scaffolds into artificial salivary gland tissue engineering.

  13. Effect of sialodacryoadenitis virus exposure on acinar epithelial cells from the rat lacrimal gland.

    PubMed

    Wickham, L A; Huang, Z; Lambert, R W; Sullivan, D A

    1997-09-01

    Sialodacryoadenitis virus (SDAV), a RNA coronavirus, induces degenerative, necrotic and atrophic alterations in acinar epithelial cells of the rat lacrimal gland. To begin to explore the underlying mechanism(s) of this viral effect, we sought in the present study to: (1) determine whether SDAV invades and replicates in lacrimal gland acinar cells in vitro and (2) assess whether short-term SDAV challenge interferes with the viability or function of acinar cells in vitro. For comparison we also evaluated the relative infectivity of SDAV in acinar epithelial cells from lacrimal, submandibular and parotid glands, given that salivary tissues are known to be highly susceptible to SDAV infection in vivo. Acinar epithelial cells from lacrimal, submandibular or parotid glands were isolated from male rats, exposed briefly to SDAV or control cell antigen and then cultured for four, eight or twelve days. At experimental termination, SDAV titers in both media and sonicated cell extracts were evaluated by plaque assay titration on mouse L2 cell monolayers. To evaluate functional aspects of lacrimal gland acinar cells, SDAV-infected cells were incubated in the presence or absence of dihydrotestosterone and culture media were analyzed by RIA to measure the extent of the androgen-induced increase in secretory component (SC) production. Our results showed that: (1) SDAV invades and replicates in lacrimal gland acinar cells, Viral challenge resulted in a significant, time-dependent increase in SDAV titers, that were primarily cell-associated and greatly exceeded amounts contained in the original inoculum; (2) SDAV infection did not compromise lacrimal acinar cell viability or prevent the cellular SC response to androgens. Viral presence, though, did often attenuate the magnitude of this hormone action; and (3) SDAV infects salivary acinar cells, but the kinetics and magnitude or viral replication in lacrimal, submandibular and parotid cells showed considerable variations. These

  14. Acinar cell-specific knockout of the PTHrP gene decreases the proinflammatory and profibrotic responses in pancreatitis

    PubMed Central

    Bhatia, Vandanajay; Rastellini, Cristiana; Han, Song; Aronson, Judith F.; Greeley, George H.

    2014-01-01

    Pancreatitis is a necroinflammatory disease with acute and chronic manifestations. Accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic pancreatitis (CP). Pancreatic parathyroid hormone-related protein (PTHrP) levels are elevated in a mouse model of cerulein-induced AP. Here, we show elevated PTHrP levels in mouse models of pancreatitis induced by chronic cerulein administration and pancreatic duct ligation. Because acinar cells play a major role in the pathophysiology of pancreatitis, mice with acinar cell-specific targeted disruption of the Pthrp gene (PTHrPΔacinar) were generated to assess the role of acinar cell-secreted PTHrP in pancreatitis. These mice were generated using Cre-LoxP technology and the acinar cell-specific elastase promoter. PTHrPΔacinar exerted protective effects in cerulein and pancreatic duct ligation models, evident as decreased edema, histological damage, amylase secretion, pancreatic stellate cell (PSC) activation, and extracellular matrix deposition. Treating acinar cells in vitro with cerulein increased IL-6 expression and NF-κB activity; these effects were attenuated in PTHrPΔacinar cells, as were the cerulein- and carbachol-induced elevations in amylase secretion. The cerulein-induced upregulation of procollagen I expression was lost in PSCs from PTHrPΔacinar mice. PTHrP immunostaining was elevated in human CP sections. The cerulein-induced upregulation of IL-6 and ICAM-1 (human acinar cells) and procollagen I (human PSCs) was suppressed by pretreatment with the PTH1R antagonist, PTHrP (7–34). These findings establish PTHrP as a novel mediator of inflammation and fibrosis associated with CP. Acinar cell-secreted PTHrP modulates acinar cell function via its effects on proinflammatory cytokine release and functions via a paracrine pathway to activate PSCs. PMID:25035110

  15. Stromal ETS2 Regulates Chemokine Production and Immune Cell Recruitment during Acinar-to-Ductal Metaplasia.

    PubMed

    Pitarresi, Jason R; Liu, Xin; Sharma, Sudarshana M; Cuitiño, Maria C; Kladney, Raleigh D; Mace, Thomas A; Donohue, Sydney; Nayak, Sunayana G; Qu, Chunjing; Lee, James; Woelke, Sarah A; Trela, Stefan; LaPak, Kyle; Yu, Lianbo; McElroy, Joseph; Rosol, Thomas J; Shakya, Reena; Ludwig, Thomas; Lesinski, Gregory B; Fernandez, Soledad A; Konieczny, Stephen F; Leone, Gustavo; Wu, Jinghai; Ostrowski, Michael C

    2016-09-01

    Preclinical studies have suggested that the pancreatic tumor microenvironment both inhibits and promotes tumor development and growth. Here we establish the role of stromal fibroblasts during acinar-to-ductal metaplasia (ADM), an initiating event in pancreatic cancer formation. The transcription factor V-Ets avian erythroblastosis virus E26 oncogene homolog 2 (ETS2) was elevated in smooth muscle actin-positive fibroblasts in the stroma of pancreatic ductal adenocarcinoma (PDAC) patient tissue samples relative to normal pancreatic controls. LSL-Kras(G12D/+); LSL-Trp53(R172H/+); Pdx-1-Cre (KPC) mice showed that ETS2 expression initially increased in fibroblasts during ADM and remained elevated through progression to PDAC. Conditional ablation of Ets-2 in pancreatic fibroblasts in a Kras(G12D)-driven mouse ADM model decreased the amount of ADM events. ADMs from fibroblast Ets-2-deleted animals had reduced epithelial cell proliferation and increased apoptosis. Surprisingly, fibroblast Ets-2 deletion significantly altered immune cell infiltration into the stroma, with an increased CD8+ T-cell population, and decreased presence of regulatory T cells (Tregs), myeloid-derived suppressor cells, and mature macrophages. The mechanism involved ETS2-dependent chemokine ligand production in fibroblasts. ETS2 directly bound to regulatory sequences for Ccl3, Ccl4, Cxcl4, Cxcl5, and Cxcl10, a group of chemokines that act as potent mediators of immune cell recruitment. These results suggest an unappreciated role for ETS2 in fibroblasts in establishing an immune-suppressive microenvironment in response to oncogenic Kras(G12D) signaling during the initial stages of tumor development. PMID:27659014

  16. Marked differences in immunocytological localization of ( sup 3 H)estradiol-binding protein in rat pancreatic acinar tumor cells compared to normal acinar cells

    SciTech Connect

    Beaudoin, A.R.; Grondin, G.; St Jean, P.; Pettengill, O.; Longnecker, D.S.; Grossman, A. )

    1991-03-01

    ({sup 3}H)Estradiol can bind to a specific protein in normal rat pancreatic acinar cells. Electron microscopic immunocytochemical analysis has shown this protein to be localized primarily in the rough endoplasmic reticulum and mitochondria. Rat exocrine pancreatic tumor cell lines, whether grown in tissue culture (AR42J) or as a tumor mass after sc injection into rats (DSL-2), lacked detectable amounts of this ({sup 3}H)estradiol-binding protein (EBP), as determined by the dextran-coated charcoal assay. Furthermore, primary exocrine pancreatic neoplasms induced with the carcinogen azaserine contained little or no detectable ({sup 3}H)estradiol-binding activity. However, electron immunocytochemical studies of transformed cells indicated the presence of material that cross-reacted with antibodies prepared against the ({sup 3}H)EBP. The immunopositive reaction in transformed cells was localized almost exclusively in lipid granules. Such lipid organelles in normal acinar cells, although present less frequently than in transformed cells, have never been observed to contain EBP-like immunopositive material. Presumably, the aberrant localization of EBP in these acinar tumor cells results in loss of function of this protein, which in normal pancreatic acinar cells appears to exert a modulating influence on zymogen granule formation and the process of secretion.

  17. The small GTPase Rab33A participates in regulation of amylase release from parotid acinar cells.

    PubMed

    Imai, Akane; Tsujimura, Maiko; Yoshie, Sumio; Fukuda, Mitsunori

    2015-06-01

    Amylase is released from exocrine parotid acinar cells via typical exocytosis. Exocytosis of amylase-containing granules occurs through several steps, including formation, maturation, and transport of granules. These steps are thought to be regulated by members of the small GTPase Rab family. We previously demonstrated that Rab27 and its effectors mediate amylase release from parotid acinar cells, but the functional involvement of other Rab proteins in exocrine granule exocytosis remains largely unknown. Here, we studied isoproterenol (IPR)-induced amylase release from parotid acinar cells to investigate the possible involvement of Rab33A, which was recently suggested to regulate exocytosis in hippocampal neurons and PC12 cells. Rab33A was endogenously expressed in parotid acinar cells and present in secretory granules and the Golgi body. Functional ablation of Rab33A with anti-Rab33A antibody or a dominant-negative Rab33A-T50N mutant significantly reduced IPR-induced amylase release. Our results indicated that Rab33A is a novel component of IPR-stimulated amylase secretion from parotid acinar cells.

  18. Formation of salivary acinar cell spheroids in vitro above a polyvinyl alcohol-coated surface.

    PubMed

    Chen, Min-Huey; Chen, Yi-Jane; Liao, Chih-Chen; Chan, Yen-Hui; Lin, Chia-Yung; Chen, Rung-Shu; Young, Tai-Hong

    2009-09-15

    Tissue engineering of salivary glands offers the potential for future use in the treatment of patients with salivary hypofunction. Biocompatible materials that promote acinar cell aggregation and function in vitro are an essential part of salivary gland tissue engineering. In this study, rat parotid acinar cells assembled into three-dimensional aggregates above the polyvinyl alcohol (PVA)-coated surface. These aggregates developed compact acinar cell spheroids resembling in vivo physiological condition, which were different from the traditional monolayered morphology in vitro. Cells remained viable and with better functional activity in response to acetylcholine in the spheroids and could form monolayered acinar cells when they were reinoculated on tissue culture polystyrene wells. To interpret the phenomenon further, we proposed that the formation of acinar cell spheroids on the PVA is mediated by a balance between two competing forces: the interactions of cell-PVA and cell-cell. This study demonstrated the formation of functional cell spheroids above a PVA-coated surface may provide an in vitro system for investigating cell behaviors for tissue engineering of artificial salivary gland.

  19. Improving Student Outcomes via Comprehensive Supports: Three-Year Outcomes from CUNY's Accelerated Study in Associate Programs (ASAP)

    ERIC Educational Resources Information Center

    Kolenovic, Zineta; Linderman, Donna; Karp, Melinda Mechur

    2013-01-01

    Community colleges are grappling with low rates of degree completion and transfer. The City University of New York's (CUNY) Accelerated Study in Associate Programs (ASAP) aims to improve graduation rates by providing a range of comprehensive support services to community college students in select majors. Using student-unit record data, we…

  20. Characterization of single potassium channels in mouse pancreatic acinar cells.

    PubMed Central

    Schmid, A; Schulz, I

    1995-01-01

    1. Single K(+)-selective channels with a conductance of about 48 pS (pipette, 145 mM KCl; bath, 140 mM NaCl + 4.7 mM KCl) were recorded in the patch-clamp whole-cell configuration in isolated mouse pancreatic acinar cells. 2. Neither application of the secretagogues acetylcholine (second messenger, inositol 1,4,5-trisphosphate) or secretin (second messenger, cAMP), nor addition of the catalytic subunit of protein kinase A to the pipette solution changed the activity of the 48 pS K+ channel. 3. Intracellular acidification with sodium propionate (20 mM) diminished activity of the 48 pS channel, whereas channel open probability was increased by cytosolic alkalization with 20 mM NH4Cl. 4. BaCl2 (5 mM), TEA (10 mM) or apamin (1 microM) added to the bath solution had no obvious effect on the kinetics of the 48 pS channel. Similarly, glibenclamide and diazoxide failed to influence the channel activity. 5. When extracellular NaCl was replaced by KCl, whole-cell recordings revealed an inwardly rectifying K+ current carried by a 17 pS K+ channel. 6. The inwardly rectifying K+ current was not pH dependent and could largely be blocked by Ba2+ but not by TEA. 7. Since the 48 pS K+ channel is neither Ca2+ nor cAMP regulated, we suggest that this channel could play a role in the maintenance of the negative cell resting potential. PMID:7623283

  1. Innate and adaptive immune responses of Arctic charr (Salvelinus alpinus, L.) during infection with Aeromonas salmonicida subsp. achromogenes and the effect of the AsaP1 toxin.

    PubMed

    Schwenteit, Johanna M; Breithaupt, Angele; Teifke, Jens P; Koppang, Erling O; Bornscheuer, Uwe T; Fischer, Uwe; Gudmundsdottir, Bjarnheidur K

    2013-09-01

    Aeromonas salmonicida subsp. achromogenes, the causative agent of atypical furunculosis in many fish species, secretes the toxic metalloendopeptidase AsaP1. This study aimed to analyze innate and adaptive immune parameters induced in Arctic charr (Salvelinus alpinus, L.) infected with wild type (wt) A. salmonicida subsp. achromogenes and its isogenic asaP1 deletion mutant (AsaP1-deficient). Head-kidney, liver and spleen were obtained from i.p. infected charr (wt, AsaP1-deficient), during a time schedule of 7 d post infection. Reverse transcription quantitative real-time PCR (RT-qPCR) was applied to study the expression of immune parameters: pro-inflammatory cytokines IL-1β and TNF-α; anti-inflammatory cytokine IL-10; chemokines CXCL-8 (IL-8) and CC-chemokine; the cytokines IFN-γ and IL-4/13A as tracers for Th1 and Th2 immune responses, respectively; and the cell markers CD8α and CD83. In addition, lymphoid organs were histopathologically examined at days 3 and 7 post infection, including B (IgM) and T (CD3ε) cell staining. The detected immune responses were initially driven by innate mechanisms represented by the up-regulation of pro-inflammatory cytokines and chemokines and later on by adaptive Th2 related responses cumulating in B-cell recruitment as shown by regulation of immune parameters in spleen and head-kidney, with significant differences between mutant and wt infected fish. Histological sections revealed IgM-positive cells around ellipsoid arterioles in spleen, while CD3ε positive cells were found in clusters scattered all over the section. However, histopathological differences were only detected between infected and non-infected fish, but not between AsaP1-deficient mutant and wt infected fish. This work represents the first study on innate and adaptive immune responses of Arctic charr induced by a bacterial infection. PMID:23811350

  2. Comparison of Risk Scoring Systems to Predict the Outcome in ASA-PS V Patients Undergoing Surgery: A Retrospective Cohort Study.

    PubMed

    Yurtlu, Derya Arslan; Aksun, Murat; Ayvat, Pnar; Karahan, Nagihan; Koroglu, Lale; Aran, Gülcin Önder

    2016-03-01

    Operative decision in American Society of Anesthesiology Physical Status (ASA-PS) V patient is difficult as this group of patients expected to have high mortality rate. Another risk scoring system in this ASA-PS V subset of patients can aid to ease this decision. Data of ASA-PS V classified patients between 2011 and 2013 years in a single hospital were analyzed in this study. Predicted mortality of these patients was determined with acute physiology and chronic health evaluations (APACHE) II, simplified acute physiology score (SAPS II), Charlson comorbidity index (CCI), Porthsmouth physiological and operative severity score for enumeration of mortality and morbidity (P-POSSUM), Surgical apgar score (SAS), and Goldman cardiac risk index (GCRI) scores. Observed and predicted mortality rates according to the risk indexes in these patients were compared at survivor and nonsurvivor group of patients. Risk stratification was made with receiver operator characteristic (ROC) curve analysis. Data of 89 patients were included in the analyses. Predicted mortality rates generated by APACHE II and SAPS II scoring systems were significantly different between survivor and nonsurvivor group of patients. Risk stratification with ROC analysis revealed that area under curve was 0.784 and 0.681 for SAPS II and APACHE II scoring systems, respectively. Highest sensitivity (77.3) is reached with SAPS II score. APACHE II and SAPS II are better predictive tools of mortality in ASA-PS V classified subset of patients. Discrimination power of SAPS II score is the best among the compared risk stratification scores. SAPS II can be suggested as an additional risk scoring system for ASA-PS V patients. PMID:27043696

  3. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    SciTech Connect

    Lee, Jingu; Park, Sangkyu; Roh, Sangho

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.

  4. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    SciTech Connect

    Yu, Ge; Wan, Rong; Hu, Yanling; Ni, Jianbo; Yin, Guojian; Xing, Miao; Shen, Jie; Tang, Maochun; Chen, Congying; Fan, Yuting; Xiao, Wenqin; Zhao, Yan; Wang, Xingpeng; and others

    2014-01-31

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.

  5. Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Liou, Geou-Yarh; Döppler, Heike; Braun, Ursula B.; Panayiotou, Richard; Scotti Buzhardt, Michele; Radisky, Derek C.; Crawford, Howard C.; Fields, Alan P.; Murray, Nicole R.; Wang, Q. Jane; Leitges, Michael; Storz, Peter

    2015-02-01

    The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.

  6. Activation of Soluble Adenylyl Cyclase Protects against Secretagogue Stimulated Zymogen Activation in Rat Pancreaic Acinar Cells

    PubMed Central

    Kolodecik, Thomas R.; Shugrue, Christine A.; Thrower, Edwin C.; Levin, Lonny R.; Buck, Jochen; Gorelick, Fred S.

    2012-01-01

    An early feature of acute pancreatitis is activation of zymogens, such as trypsinogen, within the pancreatic acinar cell. Supraphysiologic concentrations of the hormone cholecystokinin (CCK; 100 nM), or its orthologue cerulein (CER), induce zymogen activation and elevate levels of cAMP in pancreatic acinar cells. The two classes of adenylyl cyclase, trans-membrane (tmAC) and soluble (sAC), are activated by distinct mechanisms, localize to specific subcellular domains, and can produce locally high concentrations of cAMP. We hypothesized that sAC activity might selectively modulate acinar cell zymogen activation. sAC was identified in acinar cells by PCR and immunoblot. It localized to the apical region of the cell under resting conditions and redistributed intracellularly after treatment with supraphysiologic concentrations of cerulein. In cerulein-treated cells, pre-incubation with a trans-membrane adenylyl cyclase inhibitor did not affect zymogen activation or amylase secretion. However, treatment with a sAC inhibitor (KH7), or inhibition of a downstream target of cAMP, protein kinase A (PKA), significantly enhanced secretagogue-stimulated zymogen activation and amylase secretion. Activation of sAC with bicarbonate significantly inhibited secretagogue-stimulated zymogen activation; this response was decreased by inhibition of sAC or PKA. Bicarbonate also enhanced secretagogue-stimulated cAMP accumulation; this effect was inhibited by KH7. Bicarbonate treatment reduced secretagogue-stimulated acinar cell vacuolization, an early marker of pancreatitis. These data suggest that activation of sAC in the pancreatic acinar cell has a protective effect and reduces the pathologic activation of proteases during pancreatitis. PMID:22844459

  7. Establishment of functional acinar-like cultures from human salivary glands.

    PubMed

    Jang, S I; Ong, H L; Gallo, A; Liu, X; Illei, G; Alevizos, I

    2015-02-01

    Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers-namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after β-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients.

  8. Sclerosing polycystic adenosis of salivary glands: a review with some emphasis on intraductal epithelial proliferations.

    PubMed

    Petersson, Fredrik

    2013-07-01

    Sclerosing polycystic adenosis (SPA) is a rare condition of salivary glands. The most common site is the parotid gland (80 % of cases). SPA shows no gender predilection and occurs over a wide age spectrum (9-84 years). SPA is mostly unifocal, but may rarely be multifocal. Histologically, SPA are sharply circumscribed mostly unencapsulated lesions composed of acinar and ductal components with variable cytomorphological characteristics, including foamy, vacuolated, apocrine, mucous, clear/ballooned, squamous, columnar and oncocyte-like cells. Characteristic for SPA is the presence of large acinar cells with abundant eosinophilic cytoplasmic granules. The stroma is densely collagenized, frequently harbouring a variably intense chronic inflammatory infiltrate and may contain fat. Rarely the stroma is myxoid. Some degree of intraductal epithelial proliferations have been reported in at least 50 % of cases. The proportion of cases with epithelial proliferations that fulfill criteria for high-grade ductal carcinoma in-situ is <10 %. Immunohistochemically, both ductal and acinar cells are positive for broad spectrum cytokeratins. There is variable immunoreactivity for epithelial membrane antigen and S-100 protein. CEA, p53 and HER2 is reportedly negative. Gross cystic disease fluid protein-15 is strongly expressed in the acinar component. There is consistent but variable expression of estrogen and progesterone receptors. The proliferative index (Ki-67) is low (1-2 %) in the benign (acinar and ductal) components. Using HUMARA methodology (non-random inactivation of X-chromosomes), six cases with atypical epithelial proliferations have been shown to be clonal processes. Recurrences have been reported in up to 19 % of cases.

  9. MiR-203 is downregulated in laryngeal squamous cell carcinoma and can suppress proliferation and induce apoptosis of tumours.

    PubMed

    Tian, Linli; Li, Minghua; Ge, Jingchun; Guo, Yan; Sun, Yanan; Liu, Ming; Xiao, Hui

    2014-06-01

    MicroRNAs (miRNAs) have been recognised to regulate cancer development and progression in carcinogenesis as either oncogenes or tumour suppressor genes. However, whether miR-203 plays a crucial role in human laryngeal squamous cell carcinoma (LSCC) remains largely unclear. In the study, we have found that miR-203 expression was significantly lower in LSCC tissues than that in corresponding adjacent non-neoplastic tissues and was negatively correlated with ASAP1 expression level. Lower expression of miR-203 was significantly related to poor differentiation, advanced clinical stages, T3-4 tumour grade, lymph node metastasis and decreased 5-year overall survival. Transfection with miR-203 inhibited proliferation, reduced invasion, induced apoptosis and caused G1 phase cell cycle arrest of Hep-2 cells in vitro, suggesting that miR-203 functioned as a tumour suppressor. We have also tested that over-expression of miR-203 may both suppress the growth of xenograft tumours in mice and downregulate the expressions of ASAP1 in vivo. Furthermore, miR-203 may regulate the expressions of mesenchymal transition (EMT) marker of E-cadherin and cancer stem cells (CSCs) marker of CD44. These findings suggest that miR-203 plays a role as a tumour suppressor in LSCC, likely by regulating ASAP1, probably in relation to EMT and CSCs and may serve as a potential target for therapeutic intervention.

  10. Acinar autolysis and mucous extravasation in human sublingual glands: a microscopic postmortem study

    PubMed Central

    AZEVEDO-ALANIS, Luciana Reis; TOLENTINO, Elen de Souza; de ASSIS, Gerson Francisco; CESTARI, Tânia Mary; LARA, Vanessa Soares; DAMANTE, José Humberto

    2015-01-01

    Although some morphological investigations on aged human sublingual glands (HSG) found eventual phenomena identified as autolysis and mucous extravasation, the exact meaning of these findings has not been elucidated. Objective The aim of this work is to investigate whether acinar autolysis and mucous extravasation are related to the aging process in human sublingual glands. We also speculate if autolytic changes may assist forensic pathologists in determining time of death. Material and Methods 186 cadavers’ glands were allocated to age groups: I (0–30 years); II (31–60), and III (61–90). Time and mode of death were also recorded. Acinar autolysis and mucous extravasation were classified as present or absent. Ultrastructural analysis was performed using transmission electron microscopy (TEM). Data were compared using Mann-Whitney U, Spearman’s correlation coefficient, Kruskal-Wallis, and Dunn tests (p<0.05). Results There was correlation between age and acinar autolysis (r=0.38; p=0.0001). However, there was no correlation between autolysis and time of death. No differences were observed between genders. TEM showed mucous and serous cells presenting nuclear and membrane alterations and mucous cells were more susceptible to autolysis. Conclusion Acinar autolysis occurred in all age groups and increased with age while mucous extravasation was rarely found. Both findings are independent. Autolysis degrees in HSG could not be used to determine time of death. PMID:26537715

  11. Ectrodactyly and Lethal Pulmonary Acinar Dysplasia Associated with Homozygous FGFR2 Mutations Identified by Exome Sequencing.

    PubMed

    Barnett, Christopher P; Nataren, Nathalie J; Klingler-Hoffmann, Manuela; Schwarz, Quenten; Chong, Chan-Eng; Lee, Young K; Bruno, Damien L; Lipsett, Jill; McPhee, Andrew J; Schreiber, Andreas W; Feng, Jinghua; Hahn, Christopher N; Scott, Hamish S

    2016-09-01

    Ectrodactyly/split hand-foot malformation is genetically heterogeneous with more than 100 syndromic associations. Acinar dysplasia is a rare congenital lung lesion of unknown etiology, which is frequently lethal postnatally. To date, there have been no reports of combinations of these two phenotypes. Here, we present an infant from a consanguineous union with both ectrodactyly and autopsy confirmed acinar dysplasia. SNP array and whole-exome sequencing analyses of the affected infant identified a novel homozygous Fibroblast Growth Factor Receptor 2 (FGFR2) missense mutation (p.R255Q) in the IgIII domain (D3). Expression studies of Fgfr2 in development show localization to the affected limbs and organs. Molecular modeling and genetic and functional assays support that this mutation is at least a partial loss-of-function mutation, and contributes to ectrodactyly and acinar dysplasia only in homozygosity, unlike previously reported heterozygous activating FGFR2 mutations that cause Crouzon, Apert, and Pfeiffer syndromes. This is the first report of mutations in a human disease with ectrodactyly with pulmonary acinar dysplasia and, as such, homozygous loss-of-function FGFR2 mutations represent a unique syndrome. PMID:27323706

  12. Snail1 is required for the maintenance of the pancreatic acinar phenotype

    PubMed Central

    Loubat-Casanovas, Jordina; Peña, Raúl; Gonzàlez, Núria; Alba-Castellón, Lorena; Rosell, Santi; Francí, Clara; Navarro, Pilar; de Herreros, Antonio García

    2016-01-01

    The Snail1 transcriptional factor is required for correct embryonic development, yet its expression in adult animals is very limited and its functional roles are not evident. We have now conditionally inactivated Snail1 in adult mice and analyzed the phenotype of these animals. Snail1 ablation rapidly altered pancreas structure: one month after Snail1 depletion, acinar cells were markedly depleted, and pancreas accumulated adipose tissue. Snail1 expression was not detected in the epithelium but was in pancreatic mesenchymal cells (PMCs). Snail1 ablation in cultured PMCs downregulated the expression of several β-catenin/Tcf-4 target genes, modified the secretome of these cells and decreased their ability to maintain acinar markers in cultured pancreas cells. Finally, Snail1 deficiency modified the phenotype of pancreatic tumors generated in transgenic mice expressing c-myc under the control of the elastase promoter. Specifically, Snail1 depletion did not significantly alter the size of the tumors but accelerated acinar-ductal metaplasia. These results demonstrate that Snail1 is expressed in PMCs and plays a pivotal role in maintaining acinar cells within the pancreas in normal and pathological conditions. PMID:26735179

  13. Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity.

    PubMed

    Cantara, Shraddha I; Soscia, David A; Sequeira, Sharon J; Jean-Gilles, Riffard P; Castracane, James; Larsen, Melinda

    2012-11-01

    Epithelial cell types typically lose apicobasal polarity when cultured on 2D substrates, but apicobasal polarity is required for directional secretion by secretory cells, such as salivary gland acinar cells. We cultured salivary gland epithelial cells on poly(lactic-co-glycolic acid) (PLGA) nanofiber scaffolds that mimic the basement membrane, a specialized extracellular matrix, and examined cell proliferation and apicobasal polarization. Although cells proliferated on nanofibers, chitosan-coated nanofiber scaffolds stimulated proliferation of salivary gland epithelial cells. Although apicobasal cell polarity was promoted by the nanofiber scaffolds relative to flat surfaces, as determined by the apical localization of ZO-1, it was antagonized by the presence of chitosan. Neither salivary gland acinar nor ductal cells fully polarized on the nanofiber scaffolds, as determined by the homogenous membrane distribution of the mature tight junction marker, occludin. However, nanofiber scaffolds chemically functionalized with the basement membrane protein, laminin-111, promoted more mature tight junctions, as determined by apical localization of occludin, but did not affect cell proliferation. To emulate the multifunctional capabilities of the basement membrane, bifunctional PLGA nanofibers were generated. Both acinar and ductal cell lines responded to signals provided by bifunctional scaffolds coupled to chitosan and laminin-111, demonstrating the applicability of such scaffolds for epithelial cell types.

  14. The Soleil View on Prototypical Organic Nitriles: Selected Vibrational Modes of Ethyl Cyanide, C_2H_5CN, and Spectroscopic Analysis Using AN Automated Spectral Assignment Procedure (asap)

    NASA Astrophysics Data System (ADS)

    Endres, Christian; Caselli, Paola; Martin-Drumel, Marie-Aline; McCarthy, Michael C.; Pirali, Olivier; Wehres, Nadine; Schlemmer, Stephan; Thorwirth, Sven

    2016-06-01

    Vibrational spectra of small organic nitriles, propionitrile and n-butyronitrile, have been investigated at high spectral resolution at the French national synchroton facility SOLEIL using Fourier-transform far-infrared spectroscopy (< 700 cm-1). The Automated Spectral Assignment Procedure (ASAP) has been used for line assignement and accurate determination of rotational level energies, in particular, of the ν20=1 and the ν12=1 states of propionitrile. The analysis does not only confirm the applicability of the ASAP in the treatment of (dense) high-resolution infrared spectra but also reveals some of its limitations which will be discussed in some detail. M. A. Martin-Drumel, C. P. Endres, O. Zingsheim, T. Salomon, J. van Wijngaarden, O. Pirali, S. Gruet, F. Lewen, S. Schlemmer, M. C. McCarthy, and S. Thorwirth 2015, J. Mol. Spectrosc. 315, 72

  15. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, Biogeography, Ecology, and Population Genetics of Arthropods of the Madrean Sky Islands

    PubMed Central

    Moore, Wendy; Meyer, Wallace M.; Eble, Jeffrey A.; Franklin, Kimberly; Wiens, John F.; Brusca, Richard C.

    2014-01-01

    The Arizona Sky Island Arthropod Project (ASAP) is a new multi-disciplinary research program at the University of Arizona that combines systematics, biogeography, ecology, and population genetics to study origins and patterns of arthropod diversity along elevation gradients and among mountain ranges in the Madrean Sky Island Region. Arthropods represent taxonomically and ecologically diverse organisms that drive key ecosystem processes in this mountain archipelago. Using data from museum specimens and specimens we obtain during long-term collecting and monitoring programs, ASAP will document arthropod species across Arizona's Sky Islands to address a number of fundamental questions about arthropods of this region. Baseline data will be used to determine climatic boundaries for target species, which will then be integrated with climatological models to predict future changes in arthropod communities and distributions in the wake of rapid climate change. ASAP also makes use of the natural laboratory provided by the Sky Islands to investigate ecological and genetic factors that influence diversification and patterns of community assembly. Here, we introduce the project, outline overarching goals, and describe preliminary data from the first year of sampling ground-dwelling beetles and ants in the Santa Catalina Mountains. PMID:25505938

  16. Wakayama Symposium: Peroxisome Proliferator-Activated Receptor-gamma (PPARγ) and Meibomian Gland Dysfunction

    PubMed Central

    Jester, James V.; Brown, Donald J.

    2012-01-01

    Recently we have shown that mouse and human meibomian glands undergo specific age-related changes, including decreased acinar cell proliferation, acinar atrophy, and altered peroxisome proliferator-activated receptor gamma (PPARγ) localization from cytoplasmic-vesicular/nuclear in young mice and humans to nuclear in old mice and humans. Since PPARγ is a lipid-sensitive, nuclear receptor implicated in regulating adipocyte and sebocyte differentiation and lipogenesis, our findings suggest that PPARγ may be involved in modulating meibomian gland differentiation during aging. Based on these findings, we propose that aging of the meibomian gland results in downregulation of PPARγ, leading to decreased meibocyte differentiation and lipid synthesis, gland atrophy, and a hyposecretory meibomian gland dysfunction. PMID:23084144

  17. Wakayama Symposium: Peroxisome proliferator-activated receptor-gamma (PPARγ) and meibomian gland dysfunction.

    PubMed

    Jester, James V; Brown, Donald J

    2012-10-01

    Recently we have shown that mouse and human meibomian glands undergo specific age-related changes, including decreased acinar cell proliferation, acinar atrophy, and altered peroxisome proliferator-activated receptor gamma (PPARγ) localization from cytoplasmic-vesicular/nuclear in young mice and humans to nuclear in old mice and humans. Since PPARγ is a lipid-sensitive, nuclear receptor implicated in regulating adipocyte and sebocyte differentiation and lipogenesis, our findings suggest that PPARγ may be involved in modulating meibomian gland differentiation during aging. Based on these findings, we propose that aging of the meibomian gland results in downregulation of PPARγ, leading to decreased meibocyte differentiation and lipid synthesis, gland atrophy, and a hyposecretory meibomian gland dysfunction.

  18. Intracellular calcium signalling in rat parotid acinar cells that lack secretory vesicles.

    PubMed Central

    Liu, P; Scott, J; Smith, P M

    1998-01-01

    Secretory vesicles from pancreatic acinar cells have recently been shown to release Ca2+ after stimulation with Ins(1,4,5)P3 [Gerasimenko, Gerasimenko, Belan and Petersen, (1996) Cell 84, 473-480]. These observations have been used in support of the hypothesis that Ca2+ release from secretory vesicles could be an important component of stimulus secretion coupling in exocrine acinar cells. In the rat, ligation of the parotid duct causes a reversible atrophy of the parotid gland. Most notably, after atrophy the acinar cells are reduced in size and no longer contain secretory vesicles [Liu, Smith, and Scott (1996) J. Dent. Res. 74, 900]. We have measured cytosolic free-Ca2+ concentration ([Ca2+]i) in single, acutely isolated, rat parotid acinar cells, and compared Ca2+ mobilization in response to acetylcholine (ACh) stimulation in cells obtained from control animals to that in cells lacking secretory vesicles obtained after atrophy of the parotid gland. Application of 50-5000 nM ACh to control cells gave rise to a typical, dose-dependent, biphasic increase in [Ca2+]i, of which the later, plateau, phase was acutely dependent on the extracellular Ca2+ concentration. An identical pattern of response was observed with cells obtained from atrophic glands. Low concentrations of ACh (10-100 nM) occasionally produced [Ca2+]i oscillations of a similar pattern in cells from both control and atrophic glands. We were able to show that Ca2+ rises first in the apical pole of the cell and the increase then spreads to the rest of the cell in cells from control glands but not in cells from atrophic glands. However, at present we are unable to determine whether this is due to the lack of secretory vesicles or whether the separation is too small to measure in the smaller acinar cells obtained from atrophic glands. We conclude therefore, that secretory vesicles make no significant contribution to overall Ca2+ mobilization in rat parotid acinar cells, nor are they required for oscillatory

  19. Glycosylations in demilunar and central acinar cells of the submandibular salivary gland of ferret investigated by lectin histochemistry.

    PubMed

    Triantafyllou, Asterios; Fletcher, David; Scott, John

    2004-09-01

    'Resting' submandibular salivary glands obtained post-mortem from mature ferrets of both sexes were examined here. The binding patterns of labelled lectins applied to paraffin sections of tissue slivers fixed in an aldehyde-HgCl2 mixture and the effects of pretreatment procedures on the results were assessed lightmicroscopically. Lectins with affinity for terminal GalNAc residues (DBA, SBA) bound preferentially to demilunar acinar cells which were also strongly reactive with Fuc-directed UEA I. In contrast, lectins with affinity for neuraminic acid (SNA, WGA) bound to central acinar cells where consistent binding of DBA and SNA occurred only after neuraminidase digestion, and variation in the binding of UEA I was seen. The reactivities corresponded with the distribution of secretory granules, but staining in Golgi-like areas occurred in central acinar cells with PNA lectin. The results suggest that glycosylations are more advanced in central than demilunar acinar cells of the ferret submandibular gland. Possibly demilunar and central acinar cells reflect phenotypic changes of a single secretory cell, the 'central' acinar phenotype being influenced by incorporation of neuraminic acid in glycoprotein side chains and by increased Golgi activity.

  20. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    NASA Astrophysics Data System (ADS)

    Pradhan, Swati

    Xerostomia, a condition resulting from irradiation of the head and neck, affects over 40,000 cancer patients each year in the United States. Direct radiation damage of the acinar cells that secrete fluid and protein results in salivary gland hypofunction. Present medical management for xerostomia for patients treated for upper respiratory cancer is largely ineffective. Patients who have survived their terminal diagnosis are often left with a diminished quality of life and are unable to enjoy the simple pleasures of eating and drinking. This project aims to ultimately reduce human suffering by developing a functional implantable artificial salivary gland. The goal was to create an extracellular matrix (ECM) modified hyaluronic acid (HA) based hydrogel culture system that allows for the growth and differentiation of salivary acinar cells into functional acini-like structures capable of secreting large amounts of protein and fluid unidirectionally and to ultimately engineer a functional artificial salivary gland that can be implanted into an animal model. A tissue collection protocol was established and salivary gland tissue was obtained from patients undergoing head and neck surgery. The tissue specimen was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Hematoxylin and eosin staining confirmed normal glandular tissue structures including intercalated ducts, striated ducts and acini. alpha-Amylase and periodic acid schiff stain, used for structures with a high proportion of carbohydrate macromolecules, preferentially stained acinar cells in the tissue. Intercalated and striated duct structures were identified using cytokeratins 19 and 7 staining. Myoepithelial cells positive for cytokeratin 14 were found wrapped around the serous and mucous acini. Tight junction components including ZO-1 and E-cadherin were present between both ductal and acinar cells. Ductal and acinar

  1. Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions.

    PubMed

    Ma, Baoshun; Darquenne, Chantal

    2011-05-01

    Although the major mechanisms of aerosol deposition in the lung are known, detailed quantitative data in anatomically realistic models are still lacking, especially in the acinar airways. In this study, an algorithm was developed to build multigenerational three-dimensional models of alveolated airways with arbitrary bifurcation angles and spherical alveolar shape. Using computational fluid dynamics, the deposition of 1- and 3-μm aerosol particles was predicted in models of human alveolar sac and terminal acinar bifurcation under rhythmic wall motion for two breathing conditions (functional residual capacity = 3 liter, tidal volume = 0.5 and 0.9 liter, breathing period = 4 s). Particles entering the model during one inspiration period were tracked for multiple breathing cycles until all particles deposited or escaped from the model. Flow recirculation inside alveoli occurred only during transition between inspiration and expiration and accounted for no more than 1% of the whole cycle. Weak flow irreversibility and convective transport were observed in both models. The average deposition efficiency was similar for both breathing conditions and for both models. Under normal gravity, total deposition was ~33 and 75%, of which ~67 and 96% occurred during the first cycle, for 1- and 3-μm particles, respectively. Under zero gravity, total deposition was ~2-5% for both particle sizes. These results support previous findings that gravitational sedimentation is the dominant deposition mechanism for micrometer-sized aerosols in acinar airways. The results also showed that moving walls and multiple breathing cycles are needed for accurate estimation of aerosol deposition in acinar airways.

  2. Elucidation of the Roles of the Src kinases in pancreatic acinar cell signaling

    PubMed Central

    Nuche-Berenguer, Bernardo; Moreno, Paola; Jensen, R. T.

    2014-01-01

    Recent studies report the Src-Family kinases(SFK’s) are important in a number of physiological and pathophysiological responses of pancreatic acinar cells(pancreatitis, growth, apoptosis), however, the role of SFKs in various signaling cascades important in mediating these cell functions is either not investigated or unclear. To address this we investigated the action of SFKs in these signaling cascades in rat pancreatic acini by modulating SFK activity using three methods:Adenovirus-induced expression of an inactive dominant-negative CSK(Dn-CSK-Advirus) or Wild-Type CSK(Wt-CSK-Advirus), which activate or inhibit SFK, respectively or using the chemical inhibitor, PP2, with its inactive control, PP3. CCK(0.3,100 nM) and TPA(1 µM) activated SFK and altered the activation of FAK proteins(PYK2, p125 FAK), adaptor proteins(p130CAS, paxillin), MAPK (p42/44, JNK, p38), Shc, PKC(PKD, MARCKS), Akt but not GSK3-β. Changes in SFK activity by using the three methods of altering SFK activity affected CCK/TPAs activation of SFK, PYK2, p125 FAK, p130CAS, Shc, paxillin, Akt but not p42/44, JNK, p38, PKC(PKD, MARCKS) or GSK3-β. With chemical inhibition the active SFK inhibitor, PP2, but not the inactive control analogue, PP3, showed these effects. For all stimulated changes pre-incubation with both adenoviruses showed similar effects to chemical inhibition of SFK activity. In conclusion, using three different approaches to altering Src activity allowed us to define fully for the first time the roles of SFKs in acinar cell signaling. Our results show that in pancreatic acinar cells, SFKs play a much wider role than previously reported in activating a number of important cellular signaling cascades shown to be important in mediating both acinar cell physiological and pathophysiological responses. PMID:25079913

  3. Functional differences in the acinar cells of the murine major salivary glands.

    PubMed

    Kondo, Y; Nakamoto, T; Jaramillo, Y; Choi, S; Catalan, M A; Melvin, J E

    2015-05-01

    In humans, approximately 90% of saliva is secreted by the 3 major salivary glands: the parotid (PG), the submandibular (SMG), and the sublingual glands (SLG). Even though it is known that all 3 major salivary glands secrete saliva by a Cl(-)-dependent mechanism, salivary secretion rates differ greatly among these glands. The goal of this study was to gain insight into the properties of the ion-transporting pathways in acinar cells that might account for the differences among the major salivary glands. Pilocarpine-induced saliva was simultaneously collected in vivo from the 3 major salivary glands of mice. When normalized by gland weight, the amount of saliva secreted by the PG was more than 2-fold larger than that obtained from the SMG and SLG. At the cellular level, carbachol induced an increase in the intracellular [Ca(2+)] that was more than 2-fold larger in PG and SMG than in SLG acinar cells. Carbachol-stimulated Cl(-) efflux and the protein levels of the Ca(2+)-activated Cl(-) channel TMEM16A, the major apical Cl(-) efflux pathway in salivary acinar cells, were significantly greater in PG compared with SMG and SLG. In addition, we evaluated the transporter activity of the Na(+)-K(+)-2Cl(-) cotransporters (NKCC1) and anion exchangers (AE), the 2 primary basolateral Cl(-) uptake mechanisms in acinar cells. The SMG NKCC1 activity was about twice that of the PG and more than 12-fold greater than that of the SLG. AE activity was similar in PG and SLG, and both PG and SLG AE activity was about 2-fold larger than that of SMG. In summary, the salivation kinetics of the 3 major glands are distinct, and these differences can be explained by the unique functional properties of each gland related to Cl(-) movement, including the transporter activities of the Cl(-) uptake and efflux pathways, and intracellular Ca(2+) mobilization.

  4. Intracellular mediators of Na -K pump activity in guinea pig pancreatic acinar cells

    SciTech Connect

    Hootman, S.R.; Ochs, D.L.; Williams, J.A.

    1985-10-01

    The involvement of CaS and cyclic nucleotides in neurohormonal regulation of Na -K -ATPase (Na -K pump) activity in guinea pig pancreatic acinar cells was investigated. Changes in Na+-K+ pump activity elicited by secretagogues were assessed by (3H)ouabain binding and by ouabain-sensitive YWRb uptake. Carbachol (CCh) and cholecystokinin octapeptide (CCK-8) each stimulated both ouabain-sensitive 86Rb+ uptake and equilibrium binding of (TH)ouabain by approximately 60%. Secretin increased both indicators of Na+-K+ pump activity by approximately 40% as did forskolin, 8-bromo- and dibutyryl cAMP, theophylline, and isobutylmethylxanthine. Incubation of acinar cells in CaS -free HEPES-buffered Ringer (HR) with 0.5 mM EGTA reduced the stimulatory effects of CCh and CCK-8 by up to 90% but caused only a small reduction in the effects of secretin, forskolin, and cAMP analogues. In addition, CCh, CCK-8, secretin, and forskolin each stimulated ouabain-insensitive 86Rb+ uptake by acinar cells. The increase elicited by CCh and CCK-8 was greatly reduced in the absence of extracellular CaS , while that caused by the latter two agents was not substantially altered. The effects of secretagogues on free CaS levels in pancreatic acinar cells also were investigated with quin-2, a fluorescent CaS chelator. Basal intracellular CaS concentration ((CaS )i) was 161 nM in resting cells and increased to 713 and 803 nM within 15 s after addition of 100 microM CCh or 10 nM CCK-8, respectively.

  5. Microtubule-associated protein 9 (Map9/Asap) is required for the early steps of zebrafish development

    PubMed Central

    Fontenille, Laura; Rouquier, Sylvie; Lutfalla, Georges; Giorgi, Dominique

    2014-01-01

    Microtubules are structural components of the cell cytoskeleton and key factors for mitosis and ciliogenesis in eukaryotes. The regulation of MT dynamics requires non-motor MAPs. We previously showed that, in human cells in culture, MAP9 (also named ASAP) is involved in MT dynamics and is essential for mitotic spindle formation and mitosis progression. Indeed, misexpression of MAP9 leads to severe mitotic defects and cell death. Here, we investigated the in vivo role of map9 during zebrafish development. Map9 is expressed mainly as a maternal gene. Within cells, Map9 is associated with the MT network of the mitotic spindle and with centrosomes. Morpholino-mediated depletion of map9 leads to early development arrest before completion of epiboly. Map9 localizes to the MT array of the YSL. This MT network is destroyed in Map9-depleted embryos, and injection of anti-map9 morpholinos directly in the nascent YSL leads to arrest of epiboly/gastrulation. Finally, map9 knockdown deregulates the expression of genes involved in endodermal differentiation, dorso–ventral and left–right patterning, and other MT-based functions. At low morpholino doses, the surviving embryos show dramatic developmental defects, spindle and mitotic defects, and increased apoptosis. Our findings suggest that map9 is a crucial factor in early zebrafish development by regulating different MT-based processes. PMID:24553125

  6. Calcium signaling of pancreatic acinar cells in the pathogenesis of pancreatitis.

    PubMed

    Li, Jun; Zhou, Rui; Zhang, Jian; Li, Zong-Fang

    2014-11-21

    Pancreatitis is an increasingly common and sometimes severe disease that lacks a specific therapy. The pathogenesis of pancreatitis is still not well understood. Calcium (Ca(2+)) is a versatile carrier of signals regulating many aspects of cellular activity and plays a central role in controlling digestive enzyme secretion in pancreatic acinar cells. Ca(2+) overload is a key early event and is crucial in the pathogenesis of many diseases. In pancreatic acinar cells, pathological Ca(2+) signaling (stimulated by bile, alcohol metabolites and other causes) is a key contributor to the initiation of cell injury due to prolonged and global Ca(2+) elevation that results in trypsin activation, vacuolization and necrosis, all of which are crucial in the development of pancreatitis. Increased release of Ca(2+) from stores in the intracellular endoplasmic reticulum and/or increased Ca(2+) entry through the plasma membrane are causes of such cell damage. Failed mitochondrial adenosine triphosphate (ATP) production reduces re-uptake and extrusion of Ca(2+) by the sarco/endoplasmic reticulum Ca(2+)-activated ATPase and plasma membrane Ca(2+)-ATPase pumps, which contribute to Ca(2+) overload. Current findings have provided further insight into the roles and mechanisms of abnormal pancreatic acinar Ca(2+) signals in pancreatitis. The lack of available specific treatments is therefore an objective of ongoing research. Research is currently underway to establish the mechanisms and interactions of Ca(2+) signals in the pathogenesis of pancreatitis.

  7. Confocal and electron microscopy to characterize sialoglycoconjugates in mouse sublingual gland acinar cells.

    PubMed

    Menghi, G; Bondi, A M; Marchetti, L; Ballarini, P; Materazzi, G

    1998-08-01

    Double lectin labeling for confocal microscopy and lectin-protein A-gold binding for electron microscopy were applied to the mouse sublingual gland in order to study surface and cytoplasmic sialoglycoconjugates. For this purpose, serially cut sections were submitted to sialidase followed by incubation with lectins recognizing usually acceptor sugars for terminal sialic acids. At the electron microscope level, the residues subtended to sialic acid were individually identified on adjacent sections by an indirect technique of labeling, whereas with confocal microscopy the above sugars were simultaneously visualized on the same section by a double staining method using fluorescein isothiocyanate (FITC)- and tetramethylrhodamine isothiocyanate (TRITC)-conjugated lectins. Acinar cells were found to contain the terminal sequence sialic acid-beta-galactose in abundance while the sequence sialic acid-alpha-N-acetylgalactosamine appeared to be present in modest amounts. Both sialoglycoconjugates were homogeneously codistributed inside acinar cells. The combination with a saponification method also allowed the occurrence of C4 acetylated sialic acids linked to beta-galactose to be discovered, at the electron microscope level, on acinar cell secretory products.

  8. Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows

    PubMed Central

    Kumar, Haribalan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2011-01-01

    Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan–Carpenter (KC) number. PMID:21580803

  9. Particle dynamics and deposition in true-scale pulmonary acinar models

    PubMed Central

    Fishler, Rami; Hofemeier, Philipp; Etzion, Yael; Dubowski, Yael; Sznitman, Josué

    2015-01-01

    Particle transport phenomena in the deep alveolated airways of the lungs (i.e. pulmonary acinus) govern deposition outcomes following inhalation of hazardous or pharmaceutical aerosols. Yet, there is still a dearth of experimental tools for resolving acinar particle dynamics and validating numerical simulations. Here, we present a true-scale experimental model of acinar structures consisting of bifurcating alveolated ducts that capture breathing-like wall motion and ensuing respiratory acinar flows. We study experimentally captured trajectories of inhaled polydispersed smoke particles (0.2 to 1 μm in diameter), demonstrating how intrinsic particle motion, i.e. gravity and diffusion, is crucial in determining dispersion and deposition of aerosols through a streamline crossing mechanism, a phenomenon paramount during flow reversal and locally within alveolar cavities. A simple conceptual framework is constructed for predicting the fate of inhaled particles near an alveolus by identifying capture and escape zones and considering how streamline crossing may shift particles between them. In addition, we examine the effect of particle size on detailed deposition patterns of monodispersed microspheres between 0.1–2 μm. Our experiments underline local modifications in the deposition patterns due to gravity for particles ≥0.5 μm compared to smaller particles, and show good agreement with corresponding numerical simulations. PMID:26358580

  10. Chronic hypoxia does not cause wall thickening of intra-acinar pulmonary supernumerary arteries.

    PubMed

    Oshima, Kaori; McLendon, Jared M; Wagner, Wiltz W; McMurtry, Ivan F; Oka, Masahiko

    2016-02-01

    Chronic exposure to hypoxia causes pulmonary hypertension and pulmonary arterial remodeling. Although the exact mechanisms of this remodeling are unclear, there is evidence that it is dependent on hemodynamic stress, rather than on hypoxia alone. Pulmonary supernumerary arteries experience low hemodynamic stress as a consequence of reduced perfusion due to 90° branching angles, small diameters, and "valve-like" structures at their orifices. We investigated whether or not intra-acinar supernumerary arteries undergo structural remodeling during the moderate pulmonary hypertension induced by chronic hypoxia. Rats were exposed to either normoxia or hypoxia for 6 weeks. The chronically hypoxic rats developed pulmonary hypertension. For both groups, pulmonary arteries were selectively filled with barium-gelatin mixture, and the wall thickness of intra-acinar pulmonary arteries was measured in histological samples. Only thin-walled arteries were observed in normoxic lungs. In hypertensive lungs, we found both thin- and thick-walled pulmonary arteries with similar diameters. Disproportionate degrees of arterial wall thickening between parent and daughter branches were observed with supernumerary branching patterns. While parent arteries developed significant wall thickening, their supernumerary branches did not. Thus, chronic hypoxia-induced pulmonary hypertension did not cause wall thickening of intra-acinar pulmonary supernumerary arteries. These findings are consistent with the idea that hemodynamic stress, rather than hypoxia alone, is the cause of structural remodeling during chronic exposure to hypoxia.

  11. The course and nature of acinar cell death following pancreatic ligation in the guinea pig.

    PubMed Central

    Zeligs, J. D.; Janoff, A.; Dumont, A. E.

    1975-01-01

    The course and nature of acinar cell death (ACD) following pancreatic ligation in the guinea pig was studied as a possible model for human disease. Ultrastructural studies after various periods of ligation suggested a biphasic pattern of ACD. Early phase ACD involved only a small portion of acinar cells and occurred within a few hours of ligation. It was preceded by swelling and vesiculation of the rough endoplasmic reticulum. Morphometric measurements disclosed celular swelling at this time, and NaCl equilibration studies demonstrated a change in cellular osmoregulation. Late phase ACD, characterized by cellular wasting and autophagic vacuole formation, became prominent several days after ligation. Marked increases in lysosomal enzyme activities were found in tissue homogenates at this time, and acid phosphatase electron histochemistry localized the majority of this increased activity to lysosomes and autophagic vacuoles within the acinar cells. The etiology and nature of both phases of ACD are discussed. Images Figure 5 Figure 6 Figure 12 Figure 7 Figure 8 Figure 1 Figure 2 Figure 9 Figure 10 Figure 11 Figure 3 Figure 4 PMID:169698

  12. Analysis of changes in the expression pattern of claudins using salivary acinar cells in primary culture.

    PubMed

    Fujita-Yoshigaki, Junko

    2011-01-01

    Primary saliva is produced from blood plasma in the acini of salivary glands and is modified by ion adsorption and secretion as the saliva passes through the ducts. In rodents, acinar cells of salivary glands express claudin-3 but not claudin-4, whereas duct cells express both claudins-3 and -4. The distinct claudin expression patterns may reflect differences in the permeability of tight junctions between acinar and duct cells. To analyze the role of claudins in salivary glands, we established a system for the primary culture of parotid acinar cells, where the expression patterns of claudins are remarkably changed. Real-time RT-PCR and immunoblot analyses reveal that the expression levels of claudins-4 and -6 increased, whereas claudins-3 and -10 decreased. We found that the signal to induce those changes is triggered during cell isolation and is mediated by Src and p38 MAP kinase. Here, we introduce the methods used to determine the signal pathway that induces the change in claudin expression.

  13. Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows.

    PubMed

    Kumar, Haribalan; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2011-04-01

    Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan-Carpenter (K(C)) number. PMID:21580803

  14. Transgenic Expression of a Single Transcription Factor Pdx1 Induces Transdifferentiation of Pancreatic Acinar Cells to Endocrine Cells in Adult Mice.

    PubMed

    Miyazaki, Satsuki; Tashiro, Fumi; Miyazaki, Jun-Ichi

    2016-01-01

    A promising approach to new diabetes therapies is to generate β cells from other differentiated pancreatic cells in vivo. Because the acinar cells represent the most abundant cell type in the pancreas, an attractive possibility is to reprogram acinar cells into β cells. The transcription factor Pdx1 (Pancreas/duodenum homeobox protein 1) is essential for pancreatic development and cell lineage determination. Our objective is to examine whether exogenous expression of Pdx1 in acinar cells of adult mice might induce reprogramming of acinar cells into β cells. We established a transgenic mouse line in which Pdx1 and EGFP (enhanced green fluorescent protein) could be inducibly expressed in the acinar cells. After induction of Pdx1, we followed the acinar cells for their expression of exocrine and endocrine markers using cell-lineage tracing with EGFP. The acinar cell-specific expression of Pdx1 in adult mice reprogrammed the acinar cells as endocrine precursor cells, which migrated into the pancreatic islets and differentiated into insulin-, somatostatin-, or PP (pancreatic polypeptide)-producing endocrine cells, but not into glucagon-producing cells. When the mice undergoing such pancreatic reprogramming were treated with streptozotocin (STZ), the newly generated insulin-producing cells were able to ameliorate STZ-induced diabetes. This paradigm of in vivo reprogramming indicates that acinar cells hold promise as a source for new islet cells in regenerative therapies for diabetes. PMID:27526291

  15. Transgenic Expression of a Single Transcription Factor Pdx1 Induces Transdifferentiation of Pancreatic Acinar Cells to Endocrine Cells in Adult Mice

    PubMed Central

    Miyazaki, Satsuki; Tashiro, Fumi; Miyazaki, Jun-ichi

    2016-01-01

    A promising approach to new diabetes therapies is to generate β cells from other differentiated pancreatic cells in vivo. Because the acinar cells represent the most abundant cell type in the pancreas, an attractive possibility is to reprogram acinar cells into β cells. The transcription factor Pdx1 (Pancreas/duodenum homeobox protein 1) is essential for pancreatic development and cell lineage determination. Our objective is to examine whether exogenous expression of Pdx1 in acinar cells of adult mice might induce reprogramming of acinar cells into β cells. We established a transgenic mouse line in which Pdx1 and EGFP (enhanced green fluorescent protein) could be inducibly expressed in the acinar cells. After induction of Pdx1, we followed the acinar cells for their expression of exocrine and endocrine markers using cell-lineage tracing with EGFP. The acinar cell-specific expression of Pdx1 in adult mice reprogrammed the acinar cells as endocrine precursor cells, which migrated into the pancreatic islets and differentiated into insulin-, somatostatin-, or PP (pancreatic polypeptide)-producing endocrine cells, but not into glucagon-producing cells. When the mice undergoing such pancreatic reprogramming were treated with streptozotocin (STZ), the newly generated insulin-producing cells were able to ameliorate STZ-induced diabetes. This paradigm of in vivo reprogramming indicates that acinar cells hold promise as a source for new islet cells in regenerative therapies for diabetes. PMID:27526291

  16. Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis.

    PubMed Central

    Gukovskaya, A S; Gukovsky, I; Zaninovic, V; Song, M; Sandoval, D; Gukovsky, S; Pandol, S J

    1997-01-01

    The aim of this study was to determine whether tumor necrosis factor-alpha (TNFalpha) and receptors for TNFalpha are expressed in the exocrine pancreas, and whether pancreatic acinar cells release and respond to TNFalpha. Reverse transcription PCR, immunoprecipitation, and Western blot analysis demonstrated the presence of TNFalpha and 55- and 75-kD TNFalpha receptors in pancreas from control rats, rats with experimental pancreatitis induced by supramaximal doses of cerulein, and in isolated pancreatic acini. Immunohistochemistry showed TNFalpha presence in pancreatic acinar cells. ELISA and bioassay measurements of TNFalpha indicated its release from pancreatic acinar cells during incubation in primary culture. Acinar cells responded to TNFalpha. TNFalpha potentiated NF-kappaB translocation into the nucleus and stimulated apoptosis in isolated acini while not affecting LDH release. In vivo studies demonstrated that neutralization of TNFalpha with an antibody produced a mild improvement in the parameters of cerulein-induced pancreatitis. However, TNFalpha neutralization greatly inhibited apoptosis in a modification of the cerulein model of pancreatitis which is associated with a high percentage of apoptotic cell death. The results indicate that pancreatic acinar cells produce, release, and respond to TNFalpha. This cytokine regulates apoptosis in both isolated pancreatic acini and experimental pancreatitis. PMID:9312187

  17. Genetic deletion of Rab27B in pancreatic acinar cells affects granules size and has inhibitory effects on amylase secretion.

    PubMed

    Hou, Yanan; Ernst, Stephen A; Lentz, Stephen I; Williams, John A

    2016-03-18

    Small G protein Rab27B is expressed in various secretory cell types and plays a role in mediating secretion. In pancreatic acinar cells, Rab27B was found to be expressed on the zymogen granule membrane and by overexpression to regulate the secretion of zymogen granules. However, the effect of Rab27B deletion on the physiology of pancreatic acinar cells is unknown. In the current study, we utilized the Rab27B KO mouse model to better understand the role of Rab27B in the secretion of pancreatic acinar cells. Our data show that Rab27B deficiency had no obvious effects on the expression of major digestive enzymes and other closely related proteins, e.g. similar small G proteins, such as Rab3D and Rab27A, and putative downstream effectors. The overall morphology of acinar cells was not changed in the knockout pancreas. However, the size of zymogen granules was decreased in KO acinar cells, suggesting a role of Rab27B in regulating the maturation of secretory granules. The secretion of digestive enzymes was moderately decreased in KO acini, compared with the WT control. These data indicate that Rab27B is involved at a different steps of zymogen granule maturation and secretion, which is distinct from that of Rab3D.

  18. Genetic deletion of Rab27B in pancreatic acinar cells affects granules size and has inhibitory effects on amylase secretion.

    PubMed

    Hou, Yanan; Ernst, Stephen A; Lentz, Stephen I; Williams, John A

    2016-03-18

    Small G protein Rab27B is expressed in various secretory cell types and plays a role in mediating secretion. In pancreatic acinar cells, Rab27B was found to be expressed on the zymogen granule membrane and by overexpression to regulate the secretion of zymogen granules. However, the effect of Rab27B deletion on the physiology of pancreatic acinar cells is unknown. In the current study, we utilized the Rab27B KO mouse model to better understand the role of Rab27B in the secretion of pancreatic acinar cells. Our data show that Rab27B deficiency had no obvious effects on the expression of major digestive enzymes and other closely related proteins, e.g. similar small G proteins, such as Rab3D and Rab27A, and putative downstream effectors. The overall morphology of acinar cells was not changed in the knockout pancreas. However, the size of zymogen granules was decreased in KO acinar cells, suggesting a role of Rab27B in regulating the maturation of secretory granules. The secretion of digestive enzymes was moderately decreased in KO acini, compared with the WT control. These data indicate that Rab27B is involved at a different steps of zymogen granule maturation and secretion, which is distinct from that of Rab3D. PMID:26845357

  19. Cannabinoid receptors in submandibular acinar cells: functional coupling between saliva fluid and electrolytes secretion and Ca2+ signalling.

    PubMed

    Kopach, Olga; Vats, Juliana; Netsyk, Olga; Voitenko, Nana; Irving, Andrew; Fedirko, Nataliya

    2012-04-15

    Cannabinoid receptors (CBRs) belong to the G protein-coupled receptor superfamily, and activation of CBRs in salivary cells inhibits agonist-stimulated salivation and modifies saliva content. However, the role of different CBR subtypes in acinar cell physiology and in intracellular signalling remains unclear. Here, we uncover functional CB(1)Rs and CB(2)Rs in acinar cells of rat submandibular gland and their essential role in saliva secretion. Pharmacological activation of CB(1)Rs and CB(2)Rs in the submandibular gland suppressed saliva outflow and modified saliva content produced by the submandibular gland in vivo. Using Na(+)-selective microelectrodes to record secretory Na(+) responses in the lumen of acini, we observed a reduction in Na(+) transport following the activation of CBRs, which was counteracted by the selective CB(1)R antagonist AM251. In addition, activation of CB(1)Rs or CB Rs caused inhibition of Na(+)-K(+) 2 -ATPase activity in microsomes derived from the gland tissue as well as in isolated acinar cells. Using a Ca(2+) imaging technique, we showed that activation of CB(1)Rs and CB(2)Rs alters [Ca(2+)](cyt) signalling in acinar cells by distinct pathways, involving Ca(2+) release from the endoplasmic reticulum (ER) and store-operated Ca(2+) entry (SOCE), respectively. Our data demonstrate the expression of CB(1)Rs and CB(2)Rs in acinar cells, and their involvement in the regulation of salivary gland functioning.

  20. Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells

    PubMed Central

    Reinhard, Tobias; Popp, Anna; Schäffer, Isabell; Raulefs, Susanne; Kong, Bo; Esposito, Irene

    2016-01-01

    Acinar-to-ductal metaplasia (ADM) occurring in cerulein-mediated pancreatitis or in oncogenic Kras-driven pancreatic cancer development is accompanied by extensive changes in the transcriptional program. In this process, acinar cells shut down the expression of acinar specific differentiation genes and re-express genes usually found in embryonic pancreatic progenitor cells. Previous studies have demonstrated that a loss of acinar-specific transcription factors sensitizes the cells towards oncogenic transformation, ultimately resulting in cancer development. However, the mechanism behind the transcriptional silencing of acinar cell fate genes in ADM and pancreatic cancer is largely unknown. Here, we analyzed whether elevated levels of the polycomb repressor complex 1 (PRC1) components Bmi1 and Ring1b and their catalyzed histone modification H2AK119ub in ADMs and tumor cells, are responsible for the mediation of acinar gene silencing. Therefore, we performed chromatin-immunoprecipitation in in vitro generated ADMs and isolated murine tumor cells against the repressive histone modifications H3K27me3 and H2AK119ub. We established that the acinar transcription factor complex Ptf1-L is epigenetically silenced in ADMs as well as in pancreatic tumor cells. For the first time, this work presents a possible mechanism of acinar gene silencing, which is an important prerequisite in the initiation and maintenance of a dedifferentiated cell state in ADMs and tumor cells. PMID:26716510

  1. KLF4 Is Essential for Induction of Cellular Identity Change and Acinar-to-Ductal Reprogramming during Early Pancreatic Carcinogenesis.

    PubMed

    Wei, Daoyan; Wang, Liang; Yan, Yongmin; Jia, Zhiliang; Gagea, Mihai; Li, Zhiwei; Zuo, Xiangsheng; Kong, Xiangyu; Huang, Suyun; Xie, Keping

    2016-03-14

    Understanding the molecular mechanisms of tumor initiation has significant impact on early cancer detection and intervention. To define the role of KLF4 in pancreatic ductal adenocarcinoma (PDA) initiation, we used molecular biological analyses and mouse models of klf4 gain- and loss-of-function and mutant Kras. KLF4 is upregulated in and required for acinar-to-ductal metaplasia. Klf4 ablation drastically attenuates the formation of pancreatic intraepithelial neoplasia induced by mutant Kras(G12D), whereas upregulation of KLF4 does the opposite. Mutant KRAS and cellular injuries induce KLF4 expression, and ectopic expression of KLF4 in acinar cells reduces acinar lineage- and induces ductal lineage-related marker expression. These results demonstrate that KLF4 induces ductal identity in PanIN initiation and may be a potential target for prevention of PDA initiation.

  2. [Vital fluorochrome staining of isolated pancreatic acinar cells for the characterization of cell-structural changes].

    PubMed

    Dietzmann, K; Letko, G; Spormann, H

    1986-01-01

    Rhodamine 6 G as a cationic fluorophore is demonstrated to be selectively accumulated by mitochondria of living pancreatic acinar cells (cell isolation see Spormann et al. [1986]. The accumulation of rhodamine was studied under using of electron transport inhibitors, ionophores and some hydrogen donors. The application of DNP as wellknown protonophore resulted in a rapid dissipation of any fluorescent signals, whereas application of sodium succinate, hyperosmolaric exhibited a remarkable increase of fluorescence intensity. Using this technique it is possible to estimate the energy state of living cells under various conditions of energy supply and demand. PMID:2426729

  3. p21(WAF1) (/Cip1) limits senescence and acinar-to-ductal metaplasia formation during pancreatitis.

    PubMed

    Grabliauskaite, Kamile; Hehl, Adrian B; Seleznik, Gitta M; Saponara, Enrica; Schlesinger, Kathryn; Zuellig, Richard A; Dittmann, Anja; Bain, Martha; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-02-01

    Trans-differentiation of pancreatic acinar cells into ductal-like lesions, a process defined as acinar-to-ductal metaplasia (ADM), is observed in the course of organ regeneration following pancreatitis. In addition, ADM is found in association with pre-malignant PanIN lesions and correlates with an increased risk of pancreatic adenocarcinoma (PDAC). Human PDAC samples show down-regulation of p21(WAF1) (/Cip1) , a key regulator of cell cycle and cell differentiation. Here we investigated whether p21 down-regulation is implicated in controlling the early events of acinar cell trans-differentiation and ADM formation. p21-mediated regulation of ADM formation and regression was analysed in vivo during the course of cerulein-induced pancreatitis, using wild-type (WT) and p21-deficient (p21(-/-) ) mice. Biochemical and immunohistochemical methods were used to evaluate disease progression over 2 weeks of the disease and during a recovery phase. We found that p21 was strongly up-regulated in WT acinar cells during pancreatitis, while it was absent in ADM areas, suggesting that p21 down-regulation is associated with ADM formation. In support of this hypothesis, p21(-/-) mice showed a significant increase in number and size of metaplasia. In addition, p21 over-expression in acinar cells reduced ADM formation in vitro, suggesting that the protein regulates the metaplastic transition in a cell-autonomous manner. p21(-/-) mice displayed increased expression and relocalization of β-catenin both during pancreatitis and in the subsequent recovery phase. Finally, loss of p21 was accompanied by increased DNA damage and development of senescence. Our findings are consistent with a gate-keeper role of p21 in acinar cells to limit senescence activation and ADM formation during pancreatic regeneration. PMID:25212177

  4. p21(WAF1) (/Cip1) limits senescence and acinar-to-ductal metaplasia formation during pancreatitis.

    PubMed

    Grabliauskaite, Kamile; Hehl, Adrian B; Seleznik, Gitta M; Saponara, Enrica; Schlesinger, Kathryn; Zuellig, Richard A; Dittmann, Anja; Bain, Martha; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-02-01

    Trans-differentiation of pancreatic acinar cells into ductal-like lesions, a process defined as acinar-to-ductal metaplasia (ADM), is observed in the course of organ regeneration following pancreatitis. In addition, ADM is found in association with pre-malignant PanIN lesions and correlates with an increased risk of pancreatic adenocarcinoma (PDAC). Human PDAC samples show down-regulation of p21(WAF1) (/Cip1) , a key regulator of cell cycle and cell differentiation. Here we investigated whether p21 down-regulation is implicated in controlling the early events of acinar cell trans-differentiation and ADM formation. p21-mediated regulation of ADM formation and regression was analysed in vivo during the course of cerulein-induced pancreatitis, using wild-type (WT) and p21-deficient (p21(-/-) ) mice. Biochemical and immunohistochemical methods were used to evaluate disease progression over 2 weeks of the disease and during a recovery phase. We found that p21 was strongly up-regulated in WT acinar cells during pancreatitis, while it was absent in ADM areas, suggesting that p21 down-regulation is associated with ADM formation. In support of this hypothesis, p21(-/-) mice showed a significant increase in number and size of metaplasia. In addition, p21 over-expression in acinar cells reduced ADM formation in vitro, suggesting that the protein regulates the metaplastic transition in a cell-autonomous manner. p21(-/-) mice displayed increased expression and relocalization of β-catenin both during pancreatitis and in the subsequent recovery phase. Finally, loss of p21 was accompanied by increased DNA damage and development of senescence. Our findings are consistent with a gate-keeper role of p21 in acinar cells to limit senescence activation and ADM formation during pancreatic regeneration.

  5. A tetanus toxin sensitive protein other than VAMP 2 is required for exocytosis in the pancreatic acinar cell.

    PubMed

    Padfield, P J

    2000-11-01

    The neurotoxin sensitivity of regulated exocytosis in the pancreatic acinar cell was investigated using streptolysin-O permeabilized pancreatic acini. Treatment of permeabilized acini with botulinum toxin B (BoNT/B) or botulinum toxin D (BoNT/D) had no detectable effect on Ca(2+)-dependent amylase secretion but did result in the complete cleavage of VAMP 2. In comparison, tetanus toxin (TeTx) treatment both significantly inhibited Ca(2+)-dependent amylase secretion and cleaved VAMP 2. These results indicate that regulated exocytosis in the pancreatic acinar cell requires a tetanus toxin sensitive protein(s) other than VAMP 2.

  6. Restricted diffusion in a model acinar labyrinth by NMR: Theoretical and numerical results

    NASA Astrophysics Data System (ADS)

    Grebenkov, D. S.; Guillot, G.; Sapoval, B.

    2007-01-01

    A branched geometrical structure of the mammal lungs is known to be crucial for rapid access of oxygen to blood. But an important pulmonary disease like emphysema results in partial destruction of the alveolar tissue and enlargement of the distal airspaces, which may reduce the total oxygen transfer. This effect has been intensively studied during the last decade by MRI of hyperpolarized gases like helium-3. The relation between geometry and signal attenuation remained obscure due to a lack of realistic geometrical model of the acinar morphology. In this paper, we use Monte Carlo simulations of restricted diffusion in a realistic model acinus to compute the signal attenuation in a diffusion-weighted NMR experiment. We demonstrate that this technique should be sensitive to destruction of the branched structure: partial removal of the interalveolar tissue creates loops in the tree-like acinar architecture that enhance diffusive motion and the consequent signal attenuation. The role of the local geometry and related practical applications are discussed.

  7. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    NASA Astrophysics Data System (ADS)

    Pradhan, Swati

    Xerostomia, a condition resulting from irradiation of the head and neck, affects over 40,000 cancer patients each year in the United States. Direct radiation damage of the acinar cells that secrete fluid and protein results in salivary gland hypofunction. Present medical management for xerostomia for patients treated for upper respiratory cancer is largely ineffective. Patients who have survived their terminal diagnosis are often left with a diminished quality of life and are unable to enjoy the simple pleasures of eating and drinking. This project aims to ultimately reduce human suffering by developing a functional implantable artificial salivary gland. The goal was to create an extracellular matrix (ECM) modified hyaluronic acid (HA) based hydrogel culture system that allows for the growth and differentiation of salivary acinar cells into functional acini-like structures capable of secreting large amounts of protein and fluid unidirectionally and to ultimately engineer a functional artificial salivary gland that can be implanted into an animal model. A tissue collection protocol was established and salivary gland tissue was obtained from patients undergoing head and neck surgery. The tissue specimen was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Hematoxylin and eosin staining confirmed normal glandular tissue structures including intercalated ducts, striated ducts and acini. alpha-Amylase and periodic acid schiff stain, used for structures with a high proportion of carbohydrate macromolecules, preferentially stained acinar cells in the tissue. Intercalated and striated duct structures were identified using cytokeratins 19 and 7 staining. Myoepithelial cells positive for cytokeratin 14 were found wrapped around the serous and mucous acini. Tight junction components including ZO-1 and E-cadherin were present between both ductal and acinar cells. Ductal and acinar

  8. THE DEGENERATIVE CHANGES IN PANCREATIC ACINAR CELLS CAUSED BY DL-ETHIONINE

    PubMed Central

    Herman, Lawrence; Fitzgerald, Patrick J.

    1962-01-01

    Degeneration of pancreatic acinar cells in rats injected with ethionine was studied by electron microscopy. The most conspicuous morphologic lesions occurred in the ergastoplasm. There was a widening of the endoplasmic reticulum, a decrease in number of membrane-associated ribosomes, and a development of fine and coarse vacuoles containing agranular disoriented membranes. Cytoplasmic ribosomes unassociated with membranes were less numerous. Nuclear changes consisted of a coarsening and clumping of the nuclear chromatin, chromatin margination, and increased osmiophilia and vacuolation of the nucleolus. Eight to ten days after the beginning of ethionine injections, changes in zymogen granules, mitochondria, and the Golgi apparatus appeared, but only after extensive damage to the acinar cell. The effects were consistent with ethionine's known interference with protein metabolism but also suggest disturbance in ribonucleic acid metabolism. The ergastoplasmic changes after ethionine were similar in some respects to the early lesions produced in liver parenchymal cells by fasting, to the changes occurring in animals on protein-free diets, or to some of the liver changes produced by azo dye carcinogens. The ribosomal and ergastoplasmic changes represent early morphologic expressions of the biochemical effect of ethionine. PMID:13906694

  9. MHC class II molecules, cathepsins, and La/SSB proteins in lacrimal acinar cell endomembranes.

    PubMed

    Yang, T; Zeng, H; Zhang, J; Okamoto, C T; Warren, D W; Wood, R L; Bachmann, M; Mircheff, A K

    1999-11-01

    Sjögren's syndrome is a chronic autoimmune disease affecting the lacrimal glands and other epithelia. It has been suggested that acinar cells of the lacrimal glands provoke local autoimmune responses, leading to Sjögren's syndrome when they begin expressing major histocompatibility complex (MHC) class II molecules. We used isopycnic centrifugation and phase partitioning to resolve compartments that participate in traffic between the basolateral membranes and the endomembrane system to test the hypothesis that MHC class II molecules enter compartments that contain potential autoantigens, i.e., La/SSB, and enzymes capable of proteolytically processing autoantigen, i.e., cathepsins B and D. A series of compartments identified as secretory vesicle membranes, prelysosomes, and microdomains of the trans-Golgi network involved in traffic to the basolateral membrane, to the secretory vesicles, and to the prelysosomes were all prominent loci of MHC class II molecules, La/SSB, and cathepsins B and D. These observations support the thesis that lacrimal gland acinar cells that have been induced to express MHC class II molecules function as autoantigen processing and presenting cells.

  10. Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar-ductal metaplasia.

    PubMed

    Liu, Xin; Pitarresi, Jason R; Cuitiño, Maria C; Kladney, Raleigh D; Woelke, Sarah A; Sizemore, Gina M; Nayak, Sunayana G; Egriboz, Onur; Schweickert, Patrick G; Yu, Lianbo; Trela, Stefan; Schilling, Daniel J; Halloran, Shannon K; Li, Maokun; Dutta, Shourik; Fernandez, Soledad A; Rosol, Thomas J; Lesinski, Gregory B; Shakya, Reena; Ludwig, Thomas; Konieczny, Stephen F; Leone, Gustavo; Wu, Jinghai; Ostrowski, Michael C

    2016-09-01

    The contribution of the microenvironment to pancreatic acinar-to-ductal metaplasia (ADM), a preneoplastic transition in oncogenic Kras-driven pancreatic cancer progression, is currently unclear. Here we show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a Kras(G12D) mouse model increased ADM. Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfa) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The mechanism involved activation of AKT and noncanonical activation of the GLI family transcription factor GLI2. GLI2 was phosphorylated at Ser230 in an AKT-dependent fashion and directly regulated Tgfa expression in fibroblasts lacking Smo Additionally, Smo-deleted fibroblasts stimulated the growth of Kras(G12D)/Tp53(R172H) pancreatic tumor cells in vivo and in vitro. These results define a non-cell-autonomous mechanism modulating Kras(G12D)-driven ADM that is balanced by cross-talk between Hedgehog/SMO and AKT/GLI2 pathways in stromal fibroblasts. PMID:27633013

  11. The role of Ca2+ influx in endocytic vacuole formation in pancreatic acinar cells.

    PubMed

    Voronina, Svetlana; Collier, David; Chvanov, Michael; Middlehurst, Ben; Beckett, Alison J; Prior, Ian A; Criddle, David N; Begg, Malcolm; Mikoshiba, Katsuhiko; Sutton, Robert; Tepikin, Alexei V

    2015-02-01

    The inducers of acute pancreatitis trigger a prolonged increase in the cytosolic Ca(2+) concentration ([Ca(2+)]c), which is responsible for the damage to and eventual death of pancreatic acinar cells. Vacuolization is an important indicator of pancreatic acinar cell damage. Furthermore, activation of trypsinogen occurs in the endocytic vacuoles; therefore the vacuoles can be considered as 'initiating' organelles in the development of the cell injury. In the present study, we investigated the relationship between the formation of endocytic vacuoles and Ca(2+) influx developed in response to the inducers of acute pancreatitis [bile acid taurolithocholic acid 3-sulfate (TLC-S) and supramaximal concentration of cholecystokinin-8 (CCK)]. We found that the inhibitor of STIM (stromal interaction molecule)/Orai channels, GSK-7975A, effectively suppressed both the Ca(2+) influx (stimulated by inducers of pancreatitis) and the formation of endocytic vacuoles. Cell death induced by TLC-S or CCK was also inhibited by GSK-7975A. We documented the formation of endocytic vacuoles in response to store-operated Ca(2+) entry (SOCE) induced by thapsigargin [TG; inhibitor of sarcoplasmic/endoplasmic reticulum (ER) Ca(2+) pumps] and observed strong inhibition of TG-induced vacuole formation by GSK-7975A. Finally, we found that structurally-unrelated inhibitors of calpain suppress formation of endocytic vacuoles, suggesting that this Ca2+-dependent protease is a mediator between Ca(2+) elevation and endocytic vacuole formation.

  12. Variations in the expression and distribution pattern of AQP5 in acinar cells of patients with sialadenosis.

    PubMed

    Teymoortash, Afshin; Wiegand, Susanne; Borkeloh, Martin; Bette, Michael; Ramaswamy, Annette; Steinbach-Hundt, Silke; Neff, Andreas; Werner, Jochen A; Mandic, Robert

    2012-01-01

    Previously, we pointed out on a possible role of aquaporin 5 (AQP5) in the development of sialadenosis. The goal of the present study was to further assess the association of AQP5 in the development of this salivary gland disease. The acinar diameter and mean surface area appeared elevated in sialadenosis tissues, which is a typical observation in this disease. AQP5 expression was evaluated by immunohistochemistry using tissue samples derived from salivary glands of patients with confirmed sialadenosis either as a primary diagnosis or as a secondary diagnosis within the framework of other salivary gland diseases. Normal salivary gland tissue served as a control. In sialadenosis tissues, the AQP5 signal at the apical plasma membrane of acinar cells frequently appeared stronger compared with that in normal salivary glands. In addition, the distribution of AQP5 at the apical region seemed to differ between normal and sialadenosis tissues, where AQP5 frequently was diffusely distributed near or at the apical plasma membrane of the acinar cells in contrast to normal controls where the AQP5 signal was strictly confined to the apical plasma membrane. These observations suggest that sialadenosis is associated with a different AQP5 expression and distribution pattern in salivary acinar cells.

  13. Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP.

    PubMed

    Hou, Yanan; Ernst, Stephen A; Heidenreich, Kaeli; Williams, John A

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone that can act through its receptor (GLP-1R) on pancreatic β-cells and increase insulin secretion and production. GLP-1R agonists are used clinically to treat type 2 diabetes. GLP-1 may also regulate the exocrine pancreas at multiple levels, including inhibition through the central nervous system, stimulation indirectly through insulin, and stimulation directly on acinar cells. However, it has been unclear whether GLP-1R is present in pancreatic acini and what physiological functions these receptors regulate. In the current study we utilized GLP-1R knockout (KO) mice to study the role of GLP-1R in acinar cells. RNA expression of GLP-1R was detected in acutely isolated pancreatic acini. Acinar cell morphology and expression of digestive enzymes were not affected by loss of GLP-1R. GLP-1 induced amylase secretion in wild-type (WT) acini. In GLP-1R KO mice, this effect was abolished, whereas vasoactive intestinal peptide-induced amylase release in KO acini showed a pattern similar to that in WT acini. GLP-1 stimulated cAMP production and increased protein kinase A-mediated protein phosphorylation in WT acini, and these effects were absent in KO acini. These data show that GLP-1R is present in pancreatic acinar cells and that GLP-1 can regulate secretion through its receptor and cAMP signaling pathway.

  14. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca(2+) oscillations in mouse pancreatic acinar cells.

    PubMed

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca(2+) signals may protect pancreatic acinar cells against Ca(2+) overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca(2+) signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca(2+) oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca(2+) oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca(2+) oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca(2+) oscillations and L-arginine-induced enhancement of Ca(2+) signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  15. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca2+ oscillations in mouse pancreatic acinar cells

    PubMed Central

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P.; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca2+ signals may protect pancreatic acinar cells against Ca2+ overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca2+ signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca2+ oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca2+ oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca2+ oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca2+ oscillations and L-arginine-induced enhancement of Ca2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  16. Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells.

    PubMed

    Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S

    2016-04-15

    The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca(2+)] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca(2+)-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca(2+) entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca(2+)-dependent up-regulation of AQP5. These important findings reveal that the Ca(2+)-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture.

  17. [Interest of ambulatory simplified acute physiology score (ASAPS) applied to patients admitted in an intensive care unit of an infectious diseases unit in Dakar].

    PubMed

    Dia, N M; Diallo, I; Manga, N M; Diop, S A; Fortes-Deguenonvo, L; Lakhe, N A; Ka, D; Seydi, M; Diop, B M; Sow, P S

    2015-08-01

    The evaluation of patients by a scale of gravity allows a better categorization of patients admitted in intensive care unit (ICU). Our study had for objective to estimate interest of Ambulatory Simplified Acute Physiologic Score (ASAPS) applied to patients admitted in ICU of infectious diseases department of FANN hospital. It was about a descriptive and analytical retrospective study, made from the data found in patients' files admitted into the USI infectious diseases department of FANN hospital in Dakar, from January 1(st), 2009 till December 31st, 2009.The data of 354 patients' files were analyzed. The sex-ratio was 1.77 with an average age of 37.6 years ± 19.4 years old [5-94 years]. The majority of the patients were unemployed paid (39.6%). The most frequent failures were the following ones: neurological (80.5%), cardio-respiratory (16.7%). The average duration of stay was 6.2 days ± 8.2 days going of less than 24 hours to more than 10 weeks. The deaths arose much more at night (53.1%) than in the daytime (46.9%) and the strongest rate of death was recorded in January (61.5%), most low in October (26.7%). The global mortality was 48.3%. The rate of lethality according to the highest main diagnosis was allocated to the AIDS (80.5%). The average ambulatory simplified acute physiology score was 5.3 ± 3.6 with extremes of 0 and 18. The deaths in our series increased with this index (p = 0.000005). The female patients had a rate of lethality higher than that of the men people, 55.5% against 44.2% (p = 0.03). In spite of a predictive score of a high survival (ASAPS < 8), certain number of patients died (n = 105) that is 61.4% of the deaths. The metabolic disturbances, hyperleukocytosis or leukopenia when realised, the presence of a chronic disease, seemed also to influence this lethality. ASAPS only, although interesting, would not good estimate the gravity of patients, where from the necessity thus of a minimum biological balance sheet. It seems better adapted

  18. A Systems Biology Approach Identifies a Regulatory Network in Parotid Acinar Cell Terminal Differentiation

    PubMed Central

    Metzler, Melissa A.; Venkatesh, Srirangapatnam G.; Lakshmanan, Jaganathan; Carenbauer, Anne L.; Perez, Sara M.; Andres, Sarah A.; Appana, Savitri; Brock, Guy N.; Wittliff, James L.; Darling, Douglas S.

    2015-01-01

    Objective The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process. Methodology A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM) was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation. Results Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a) progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1Mist1 promoter. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp) gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation. Conclusion This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a

  19. Human pulmonary acinar aplasia: reduction of transforming growth factor-beta ligands and receptors.

    PubMed

    Chen, M F; Gray, K D; Prentice, M A; Mariano, J M; Jakowlew, S B

    1999-07-01

    Pulmonary hypoplasia has been found in the human neonatal autopsy population and has been attributed to an alteration in epithelial-mesenchymal interactions during development of the lung. Pulmonary acinar aplasia is a very rare and severe form of pulmonary hypoplasia. The transforming growth factor-betas (TGF-beta) are multifunctional regulatory peptides that are secreted by a variety of normal and malignant cells and are expressed in developing organs including the lung; their tissue distribution patterns have possible significance for signaling roles in many epithelial-mesenchymal interactions. Here, we report our examination of TGF-beta in the lungs of a term female infant diagnosed with pulmonary acinar aplasia whose autopsy revealed extremely hypoplastic lungs with complete absence of alveolar ducts and alveoli. Immunohistochemical and in situ hybridization analyses were used to localize and measure the proteins and mRNA, respectively, for TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta type I and type II receptors (TGF-beta RI and RII) in formalin-fixed and paraffin-embedded sections of these hypoplastic lungs and normal lungs. Immunostaining for TGF-beta1, TGF-beta2, and TGF-beta RI and RII was significantly lower in the bronchial epithelium and muscle of the hypoplastic lungs than in normal lungs, whereas no difference was detected in staining for other proteins including Clara cell 10-kD protein, adrenomedullin, hepatocyte growth factor/scatter factor, and hepatocyte growth factor receptor/Met in the hypoplastic and normal lungs or in the liver and kidneys of this infant compared with normal liver and kidney. In addition, in situ hybridization showed that TGF-beta1 and TGF-beta RI transcripts were considerably reduced in the bronchial epithelium of the hypoplastic lung compared with normal lung. These results show that there is a selective reduction of TGF-beta in pulmonary acinar aplasia and suggest that the signaling action of TGF-beta in epithelial

  20. Activation of neurokinin-1 receptors up-regulates substance P and neurokinin-1 receptor expression in murine pancreatic acinar cells.

    PubMed

    Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav

    2012-07-01

    Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25-30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10(-6) M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R.

  1. Activation of neurokinin-1 receptors up-regulates substance P and neurokinin-1 receptor expression in murine pancreatic acinar cells

    PubMed Central

    Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav

    2012-01-01

    Abstract Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25–30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10−6M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. PMID:22040127

  2. Tmem16A encodes the Ca2+-activated Cl- channel in mouse submandibular salivary gland acinar cells.

    PubMed

    Romanenko, Victor G; Catalán, Marcelo A; Brown, David A; Putzier, Ilva; Hartzell, H Criss; Marmorstein, Alan D; Gonzalez-Begne, Mireya; Rock, Jason R; Harfe, Brian D; Melvin, James E

    2010-04-23

    Activation of an apical Ca(2+)-dependent Cl(-) channel (CaCC) is the rate-limiting step for fluid secretion in many exocrine tissues. Here, we compared the properties of native CaCC in mouse submandibular salivary gland acinar cells to the Ca(2+)-gated Cl(-) currents generated by Tmem16A and Best2, members from two distinct families of Ca(2+)-activated Cl(-) channels found in salivary glands. Heterologous expression of Tmem16A and Best2 transcripts in HEK293 cells produced Ca(2+)-activated Cl(-) currents with time and voltage dependence and inhibitor sensitivity that resembled the Ca(2+)-activated Cl(-) current found in native salivary acinar cells. Best2(-/-) and Tmem16A(-/-) mice were used to further characterize the role of these channels in the exocrine salivary gland. The amplitude and the biophysical footprint of the Ca(2+)-activated Cl(-) current in submandibular gland acinar cells from Best2-deficient mice were the same as in wild type cells. Consistent with this observation, the fluid secretion rate in Best2 null mice was comparable with that in wild type mice. In contrast, submandibular gland acinar cells from Tmem16A(-/-) mice lacked a Ca(2+)-activated Cl(-) current and a Ca(2+)-mobilizing agonist failed to stimulate Cl(-) efflux, requirements for fluid secretion. Furthermore, saliva secretion was abolished by the CaCC inhibitor niflumic acid in wild type and Best2(-/-) mice. Our results demonstrate that both Tmem16A and Best2 generate Ca(2+)-activated Cl(-) current in vitro with similar properties to those expressed in native cells, yet only Tmem16A appears to be a critical component of the acinar Ca(2+)-activated Cl(-) channel complex that is essential for saliva production by the submandibular gland.

  3. Cleavage of SNAP-25 and VAMP-2 impairs store-operated Ca2+ entry in mouse pancreatic acinar cells.

    PubMed

    Rosado, Juan A; Redondo, Pedro C; Salido, Ginés M; Sage, Stewart O; Pariente, Jose A

    2005-01-01

    We recently reported that store-operated Ca(2+) entry (SOCE) in nonexcitable cells is likely to be mediated by a reversible interaction between Ca(2+) channels in the plasma membrane and the endoplasmic reticulum, a mechanism known as "secretion-like coupling." As for secretion, in this model the actin cytoskeleton plays a key regulatory role. In the present study we have explored the involvement of the secretory proteins synaptosome-associated protein (SNAP-25) and vesicle-associated membrane protein (VAMP) in SOCE in pancreatic acinar cells. Cleavage of SNAP-25 and VAMPs by treatment with botulinum toxin A (BoNT A) and tetanus toxin (TeTx), respectively, effectively inhibited amylase secretion stimulated by the physiological agonist CCK-8. BoNT A significantly reduced Ca(2+) entry induced by store depletion using thapsigargin or CCK-8. In addition, treatment with BoNT A once SOCE had been activated reduced Ca(2+) influx, indicating that SNAP-25 is needed for both the activation and maintenance of SOCE in pancreatic acinar cells. VAMP-2 and VAMP-3 are expressed in mouse pancreatic acinar cells. Both proteins associate with the cytoskeleton upon Ca(2+) store depletion, although only VAMP-2 seems to be sensitive to TeTx. Treatment of pancreatic acinar cells with TeTx reduced the activation of SOCE without affecting its maintenance. These findings support a role for SNAP-25 and VAMP-2 in the activation of SOCE in pancreatic acinar cells and show parallels between this process and secretion in a specialized secretory cell type.

  4. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system.

    PubMed

    Lee, Jingu; Park, Sangkyu; Roh, Sangho

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage.

  5. Effects of cardiac oscillations and lung volume on acinar gas mixing during apnea

    SciTech Connect

    Mackenzie, C.F.; Skacel, M.; Barnas, G.M.; Brampton, W.J.; Alana, C.A. )

    1990-05-01

    We evaluated the importance of cardiogenic gas mixing in the acini of 13 dogs during 2 min of apnea. 133Xe (1-2 mCi in 4 ml of saline) was injected into an alveolar region through an occluded pulmonary artery branch, and washout was measured by gamma scintillation scanning during continued occlusion or with blood flow reinstated. The monoexponential rate constant for Xe washout (XeW) was -0.4 +/- 0.08 (SE) min-1 at functional residual capacity (FRC) with no blood flow in the injected region. It decreased by more than half at lung volumes 500 ml above and 392 ml below FRC. With intact pulmonary blood flow, XeW was -1.0 +/- 0.08 (SE) min-1 at FRC, and it increased with decreasing lung volume. However, if calculated Xe uptake by the blood was subtracted from the XeW measured with blood flow intact, resulting values at FRC and at FRC + 500 ml were not different from XeW with no blood flow. Reasonable calculation of Xe blood uptake at 392 ml below FRC was not possible because airway closure, increased shunt, and other factors affect XeW. After death, no significant XeW could be measured, which suggests that XeW caused by molecular diffusion was small. We conclude that (1) the effect of heart motion on the lung parenchyma increases acinar gas mixing during apnea, (2) this effect diminishes above or below FRC, and (3) there is probably no direct effect of pulmonary vascular pulsatility on acinar gas mixing.

  6. [Influence of Ca2+ on kinetic parameters of pancreatic acinar mitochondria in situ respiration].

    PubMed

    Man'ko, B O; Man'ko, V V

    2013-01-01

    The dependence of respiration rate of rat permeabilized acinar pancreacytes on oxidative substrates concentration was studied at various [Ca2+] - 10-8-10-6 M. Pancreacytes were permeabilized with 50 microg of digitonin per 1 million cells. Respiration rate was measured polarographically using the Clark electrode at oxidation of succinate or pyruvate either glutamate in the presence of malate. Parameters of Michaelis-Menten equation were calculated by the method of Cornish-Bowden or using Idi-Hofsti coordinates and parameters of Hill equation - using coordinates {v; v/[S]h}. In the studied range of [Ca2+] the kinetic dependence of respiration at pyruvate oxidation is described by the Michaelis-Menten equation, and at oxidation of succinate or glutamate - by Hill equation with h = 1.11-1.43 and 0.50-0.85, respectively. The apparent constant of respiration half-activation (K0.5) did not significantly change in the studied range of [Ca2+] while at 10-7 M Ca2+ it was 0.90 +/- 0.06 mM for succinate, 0.096 +/- 0.007 mM for pyruvate and 0.34 +/- 0.03 mM for glutamate. Maximum respiration rate Vax at pyruvate oxidation increased from 0.077 +/- 0.002 to 0.119 +/- 0.002 and 0.140 +/- 0.002 nmol O2/(s.million cells) due to the increase of [Ca2+] from 10-7 to 5x10-7 or 10-6 M, respectively. At oxidation of succinate or glutamate Ca2+ did not significantly affect Vmax Thus, the increase of [Ca2+] stimulates respiration of mitochondria in situ of acinar pancreacytes at oxidation of exogenous pyruvate (obviously due to pyruvate dehydrogenase activation), but not at succinate or glutamate oxidation.

  7. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    PubMed

    Gaiko-Shcherbak, Aljona; Fabris, Gloria; Dreissen, Georg; Merkel, Rudolf; Hoffmann, Bernd; Noetzel, Erik

    2015-01-01

    The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa) experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN) without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  8. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini

    PubMed Central

    Gaiko-Shcherbak, Aljona; Fabris, Gloria; Dreissen, Georg; Merkel, Rudolf; Hoffmann, Bernd; Noetzel, Erik

    2015-01-01

    The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa) experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN) without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function. PMID:26674091

  9. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    PubMed

    Gaiko-Shcherbak, Aljona; Fabris, Gloria; Dreissen, Georg; Merkel, Rudolf; Hoffmann, Bernd; Noetzel, Erik

    2015-01-01

    The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa) experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN) without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function. PMID:26674091

  10. Chronic alcohol exposure inhibits biotin uptake by pancreatic acinar cells: possible involvement of epigenetic mechanisms.

    PubMed

    Srinivasan, Padmanabhan; Kapadia, Rubina; Biswas, Arundhati; Said, Hamid M

    2014-11-01

    Chronic exposure to alcohol affects different physiological aspects of pancreatic acinar cells (PAC), but its effect on the uptake process of biotin is not known. We addressed this issue using mouse-derived pancreatic acinar 266-6 cells chronically exposed to alcohol and wild-type and transgenic mice (carrying the human SLC5A6 5'-promoter) fed alcohol chronically. First we established that biotin uptake by PAC is Na(+) dependent and carrier mediated and involves sodium-dependent multivitamin transporter (SMVT). Chronic exposure of 266-6 cells to alcohol led to a significant inhibition in biotin uptake, expression of SMVT protein, and mRNA as well as in the activity of the SLC5A6 promoter. Similarly, chronic alcohol feeding of wild-type and transgenic mice carrying the SLC5A6 promoter led to a significant inhibition in biotin uptake by PAC, as well as in the expression of SMVT protein and mRNA and the activity of the SLC5A6 promoters expressed in the transgenic mice. We also found that chronic alcohol feeding of mice is associated with a significant increase in the methylation status of CpG islands predicted to be in the mouse Slc5a6 promoters and a decrease in the level of expression of transcription factor KLF-4, which plays an important role in regulating SLC5A6 promoter activity. These results demonstrate, for the first time, that chronic alcohol exposure negatively impacts biotin uptake in PAC and that this effect is exerted (at least in part) at the level of transcription of the SLC5A6 gene and may involve epigenetic/molecular mechanisms.

  11. Cellular proliferation in the canine pancreas after d,l-ethionine dosage as detected by double immunohistochemical labelling.

    PubMed

    Govendir, Merran; Canfield, Paul J; Church, David B

    2003-09-01

    d,l-Ethionine produces pancreatic exocrine necrosis and islet proliferation in hamsters and dogs. As a first step in examining whether induction of islet proliferation has therapeutic applications in animals with exhausted or destroyed insulin-producing beta-cells, we studied pancreatic cellular proliferation after intravenous administration of d,l-ethionine in normal dogs. Double immunohistochemical labelling of pancreatic tissue was used to identify proliferating cells in three groups of six clinically normal crossbred dogs administered d,l-ethionine (100 mg/kg) intravenously three times a week for two weeks. Six additional dogs served as untreated controls. Group I was euthanased and necropsied on day 15 (72 hours after the final dose of ethionine). Groups II and III were euthanased on days 29 and 43 respectively. Utilising markers for proliferating nuclei, insulin and cytokeratin, proliferating cells were classified as acinar, endocrine (both intra or extra-islet), duct or 'other' (i.e. infiltrative or interstitial) and counted under the light microscope (40x magnification). Compared to controls, an increase in the number of proliferating cells was found in all categories except ducts. Acinar cells demonstrated statistically significant (p < 0.05) proliferation, greatest two weeks after ethionine cessation continuing over four weeks. The interstitial, infiltrative or 'other' group also showed proliferation, however this was a more immediate response, which substantially decreased two weeks after ethionine administration. Endocrine cells showed only minor and non-significant proliferative activity and were probably not responsible for a significant increase in apparent beta-cell mass. The number of proliferating duct cells was inconsequential and there appeared to be no specific relationship between any cell populations and duct cells.

  12. Increase in muscarinic stimulation-induced Ca(2+) response by adenovirus-mediated Stim1-mKO1 gene transfer to rat submandibular acinar cells in vivo.

    PubMed

    Morita, Takao; Nezu, Akihiro; Tojyo, Yosuke; Tanimura, Akihiko

    2013-10-01

    Adenoviruses have been used for gene transfer to salivary gland cells in vivo. Their use to study the function of salivary acinar cells was limited by a severe inflammatory response and by the destruction of fluid-secreting acinar cells. In the present study, low doses of adenovirus were administered to express Stim1-mKO1 by retrograde ductal injection to submandibular glands. The approach succeeded in increasing muscarinic stimulation-induced Ca(2+) responses in acinar cells without inflammation or decreased salivary secretions. This increased Ca(2+) response was notable upon weak muscarinic stimulation and was attributed to increased Ca(2+) release from internal stores and increased Ca(2+) entry. The basal Ca(2+) level was higher in Stim1-mKO1-expressing cells than in mKO1-expressing and non-expressing cells. Exposure of permeabilized submandibular acinar cells, where Ca(2+) concentration was fixed at 50 nM, to inositol 1,4,5-trisphosphate (IP3) produced similar effects on the release of Ca(2+) from stores in Stim1-mKO1-expressing and non-expressing cells. The low toxicity and relative specificity to acinar cells of the mild gene transfer method described herein are particularly useful for studying the molecular functions of salivary acinar cells in vivo, and may be applied to increase salivary secretions in experimental animals and human in future.

  13. Long-term dexamethasone treatment alters the histomorphology of acinar cells in rat parotid and submandibular glands.

    PubMed

    Bighetti, Bruna B; d Assis, Gerson F; Vieira, Danilo C; Violato, Natalia M; Cestari, Tania M; Taga, Rumio; Bosqueiro, José R; Rafacho, Alex

    2014-10-01

    Glucocorticoids (GCs) induce insulin resistance (IR), a condition known to alter oral homeostasis. This study investigated the effects of long-term dexamethasone administration on morphofunctional aspects of salivary glands. Male Wistar rats received daily injections of dexamethasone [0.1 mg/kg body weight (b.w.), intraperitoneally] for 10 days (DEX), whereas control rats received saline. Subsequently, glycaemia, insulinaemia, insulin secretion and salivary flow were analysed. The parotid and submandibular glands were collected for histomorphometric evaluation and Western blot experiments. The DEX rats were found to be normoglycaemic, hyperinsulinaemic, insulin resistant and glucose intolerant (P < 0.05). DEX rat islets secreted more insulin in response to glucose (P < 0.05). DEX rats had significant reductions in the masses of the parotid (29%) and submandibular (16%) glands (P < 0.05) that was associated with reduced salivary flux rate. The hypotrophy in both glands observed in the DEX group was associated with marked reduction in the volume of the acinar cells in these glands of 50% and 26% respectively (P < 0.05). The total number of acinar cells was increased in the submandibular glands of the DEX rats (P < 0.05) but not in the parotid glands. The levels of proteins related to insulin and survival signalling in both glands did not differ between the groups. In conclusion, the long-term administration of dexamethasone caused IR, which was associated with significant reductions in both mass and flux rate of the salivary glands. The parotid and submandibular glands exhibited reduced acinar cell volume; however, the submandibular glands displayed acinar hyperplasia, indicating a gland-specific response to GCs. Our data emphasize that GC-based therapies and insulin-resistant states have a negative impact on salivary gland homeostasis.

  14. TNF-α inhibits aquaporin 5 expression in human salivary gland acinar cells via suppression of histone H4 acetylation.

    PubMed

    Yamamura, Yoshiko; Motegi, Katsumi; Kani, Kouichi; Takano, Hideyuki; Momota, Yukihiro; Aota, Keiko; Yamanoi, Tomoko; Azuma, Masayuki

    2012-08-01

    Sjögren's syndrome is a systemic autoimmune disease characterized by reductions in salivary and lacrimal secretions. The mechanisms underlying these reductions remain unclear. We have previously shown that TNF-α plays an important role in the destruction of acinar structures. Here we examined TNF-α's function in the expression of aquaporin (AQP) 5 in human salivary gland acinar cells. Immortalized human salivary gland acinar (NS-SV-AC) cells were treated with TNF-α, and then the expression levels of AQP5 mRNA and protein were analysed. In addition, the mechanisms underlying the reduction of AQP5 expression by TNF-α treatment were investigated. TNF-α-treatment of NS-SV-AC cells significantly suppressed the expression levels of AQP5 mRNA and protein, and reduced the net fluid secretion rate. We examined the expression and activation levels of DNA methyltransferases (Dnmts) in NS-SV-AC cells treated with TNF-α. However, no significant changes were observed in the expression or activation levels of Dnmt1, Dnmt3a or Dnmt3b. Although we also investigated the role of NF-κB activity in the TNF-α-induced suppression of AQP5 expression in NS-SV-AC cells, we detected similar TNF-α suppression of AQP5 expression in non-transfected cells and in a super-repressor form of IκBα cDNA-transfected cell clones. However, interestingly, chromatin immunoprecipitation analysis demonstrated a remarkable decrease in levels of acetylated histone H4 associated with the AQP5 gene promoter after treatment with TNF-α in NS-SV-AC cells. Therefore, our results may indicate that TNF-α inhibition of AQP5 expression in human salivary gland acinar cells is due to the epigenetic mechanism by suppression of acetylation of histone H4.

  15. Uptake and metabolism of D-glucose in isolated acinar and ductal cells from rat submandibular glands.

    PubMed

    Cetik, Sibel; Rzajeva, Aigun; Hupkens, Emeline; Malaisse, Willy J; Sener, Abdullah

    2014-07-01

    The present study deals with the possible effects of selected environmental agents upon the uptake and metabolism of d-glucose in isolated acinar and ductal cells from the rat submandibular salivary gland. In acinar cells, the uptake of d-[U-(14) C]glucose and its non-metabolised analogue 3-O-[(14) C-methyl]-d-glucose was not affected significantly by phloridzin (0.1 mM) or substitution of extracellular NaCl (115 mM) by an equimolar amount of CsCl, whilst cytochalasin B (20 μM) decreased significantly such an uptake. In ductal cells, both phloridzin and cytochalasin B decreased the uptake of d-glucose and 3-O-methyl-d-glucose. Although the intracellular space was comparable in acinar and ductal cells, the catabolism of d-glucose (2.8 or 8.3 mM) was two to four times higher in ductal cells than in acinar cells. Phloridzin (0.1 mM), ouabain (1.0 mM) and cytochalasin B (20 μM) all impaired d-glucose catabolism in ductal cells. Such was also the case in ductal cells incubated in the absence of extracellular Ca(2+) or in media in which NaCl was substituted by CsCl. It is proposed that the ductal cells in the rat submandibular gland are equipped with several systems mediating the insulin-sensitive, cytochalasin B-sensitive and phloridzin-sensitive transport of d-glucose across the plasma membrane.

  16. A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland.

    PubMed

    Catalán, Marcelo A; Kondo, Yusuke; Peña-Munzenmayer, Gaspar; Jaramillo, Yasna; Liu, Frances; Choi, Sooji; Crandall, Edward; Borok, Zea; Flodby, Per; Shull, Gary E; Melvin, James E

    2015-02-17

    Activation of an apical Ca(2+)-activated Cl(-) channel (CaCC) triggers the secretion of saliva. It was previously demonstrated that CaCC-mediated Cl(-) current and Cl(-) efflux are absent in the acinar cells of systemic Tmem16A (Tmem16A Cl(-) channel) null mice, but salivation was not assessed in fully developed glands because Tmem16A null mice die within a few days after birth. To test the role of Tmem16A in adult salivary glands, we generated conditional knockout mice lacking Tmem16A in acinar cells (Tmem16A(-/-)). Ca(2+)-dependent salivation was abolished in Tmem16A(-/-) mice, demonstrating that Tmem16A is obligatory for Ca(2+)-mediated fluid secretion. However, the amount of saliva secreted by Tmem16A(-/-) mice in response to the β-adrenergic receptor agonist isoproterenol (IPR) was comparable to that seen in controls, indicating that Tmem16A does not significantly contribute to cAMP-induced secretion. Furthermore, IPR-stimulated secretion was unaffected in mice lacking Cftr (Cftr(∆F508/∆F508)) or ClC-2 (Clcn2(-/-)) Cl(-) channels. The time course for activation of IPR-stimulated fluid secretion closely correlated with that of the IPR-induced cell volume increase, suggesting that acinar swelling may activate a volume-sensitive Cl(-) channel. Indeed, Cl(-) channel blockers abolished fluid secretion, indicating that Cl(-) channel activity is critical for IPR-stimulated secretion. These data suggest that β-adrenergic-induced, cAMP-dependent fluid secretion involves a volume-regulated anion channel. In summary, our results using acinar-specific Tmem16A(-/-) mice identify Tmem16A as the Cl(-) channel essential for muscarinic, Ca(2+)-dependent fluid secretion in adult mouse salivary glands.

  17. Long-term dexamethasone treatment alters the histomorphology of acinar cells in rat parotid and submandibular glands

    PubMed Central

    Bighetti, Bruna B; Assis, Gerson F d; Vieira, Danilo C; Violato, Natalia M; Cestari, Tania M; Taga, Rumio; Bosqueiro, José R; Rafacho, Alex

    2014-01-01

    Glucocorticoids (GCs) induce insulin resistance (IR), a condition known to alter oral homeostasis. This study investigated the effects of long-term dexamethasone administration on morphofunctional aspects of salivary glands. Male Wistar rats received daily injections of dexamethasone [0.1 mg/kg body weight (b.w.), intraperitoneally] for 10 days (DEX), whereas control rats received saline. Subsequently, glycaemia, insulinaemia, insulin secretion and salivary flow were analysed. The parotid and submandibular glands were collected for histomorphometric evaluation and Western blot experiments. The DEX rats were found to be normoglycaemic, hyperinsulinaemic, insulin resistant and glucose intolerant (P < 0.05). DEX rat islets secreted more insulin in response to glucose (P < 0.05). DEX rats had significant reductions in the masses of the parotid (29%) and submandibular (16%) glands (P < 0.05) that was associated with reduced salivary flux rate. The hypotrophy in both glands observed in the DEX group was associated with marked reduction in the volume of the acinar cells in these glands of 50% and 26% respectively (P < 0.05). The total number of acinar cells was increased in the submandibular glands of the DEX rats (P < 0.05) but not in the parotid glands. The levels of proteins related to insulin and survival signalling in both glands did not differ between the groups. In conclusion, the long-term administration of dexamethasone caused IR, which was associated with significant reductions in both mass and flux rate of the salivary glands. The parotid and submandibular glands exhibited reduced acinar cell volume; however, the submandibular glands displayed acinar hyperplasia, indicating a gland-specific response to GCs. Our data emphasize that GC-based therapies and insulin-resistant states have a negative impact on salivary gland homeostasis. PMID:25186305

  18. Whole exome sequencing reveals recurrent mutations in BRCA2 and FAT genes in acinar cell carcinomas of the pancreas

    PubMed Central

    Furukawa, Toru; Sakamoto, Hitomi; Takeuchi, Shoko; Ameri, Mitra; Kuboki, Yuko; Yamamoto, Toshiyuki; Hatori, Takashi; Yamamoto, Masakazu; Sugiyama, Masanori; Ohike, Nobuyuki; Yamaguchi, Hiroshi; Shimizu, Michio; Shibata, Noriyuki; Shimizu, Kyoko; Shiratori, Keiko

    2015-01-01

    Acinar cell carcinoma of the pancreas is a rare tumor with a poor prognosis. Compared to pancreatic ductal adenocarcinoma, its molecular features are poorly known. We studied a total of 11 acinar cell carcinomas, including 3 by exome and 4 by target sequencing. Exome sequencing revealed 65 nonsynonymous mutations and 22 indels with a mutation rate of 3.4 mutations/Mb per tumor, on average. By accounting for not only somatic but also germline mutations with loss of the wild-type allele, we identified recurrent mutations of BRCA2 and FAT genes. BRCA2 showed somatic or germline premature termination mutations, with loss of the wild-type allele in 3 of 7 tumors. FAT1, FAT3, and FAT4 showed somatic or germline missense mutations in 4 of 7 tumors. The germline FAT mutations were with loss of the wild-type allele. Loss of BRCA2 expression was observed in 5 of 11 tumors. One patient with a BRCA2-mutated tumor experienced complete remission of liver metastasis following cisplatinum chemotherapy. In conclusion, acinar cell carcinomas show a distinct mutation pattern and often harbor somatic or germline mutations of BRCA2 and FAT genes. This result may warrant assessment of BRCA2 abrogation in patients with the carcinoma to determine their sensitivity to chemotherapy. PMID:25743105

  19. Ascl3 expression marks a progenitor population of both acinar and ductal cells in mouse salivary glands.

    PubMed

    Bullard, Tara; Koek, Laurie; Roztocil, Elisa; Kingsley, Paul D; Mirels, Lily; Ovitt, Catherine E

    2008-08-01

    Ascl3, also know as Sgn1, is a member of the mammalian achaete scute (Mash) gene family of transcription factors, which have been implicated in cell fate specification and differentiation. In the mouse salivary gland, expression of Ascl3 is restricted to a subset of duct cells. Salivary gland function depends on the secretory acinar cells, which are responsible for saliva formation, and duct cells, which modify the saliva and conduct it to the oral cavity. The salivary gland ducts are also the putative site of progenitor cells in the adult gland. Using a Cre recombinase-mediated reporter system, we followed the fate of Ascl3-expressing cells after the introduction of an EGFP-Cre expression cassette into the Ascl3 locus by homologous recombination. Lineage tracing shows that these cells are progenitors of both acinar and ductal cell types in all three major salivary glands. In the differentiated progeny, expression of Ascl3 is down-regulated. These data directly demonstrate a progenitor-progeny relationship between duct cells and the acinar cell compartment, and identify a population of multipotent progenitor cells, marked by expression of Ascl3, which is capable of generating both gland cell types. We conclude that Ascl3-expressing cells contribute to the maintenance of the adult salivary glands.

  20. [Thapsigargin-sensitive and insensitive intracellular calcium stores in acinar cells of the submandibular salivary gland in rats].

    PubMed

    Kopach, O V; Kruhlykov, I A; Voĭtenko, N V; Fedirko, N V

    2005-01-01

    Acinar cells of rat submandibular salivary gland are characterized by heterogeneity of intracellular Ca2+ stores. In the present work we have studied this heterogeneity using Arsenazo III dye to measure a cellular total calcium content and Fura-2/AM, to determine free cytosolic calcium concentration ([Ca2+]i). We have found that the amount of Ca2+ released by inhibition of Ca2+ ATPase of the ER with thapsigargin comprises approximately 30% of total ER calcium. This result was obtained in experiments on both intact and permeabilized acinar cells. We have also shown that both Ca2+ ATPase inhibition with thapsigargin and emptying the stores with acetylcholine (ACh) led to activation of store-operated Ca2+ influx (an increase in total calcium content of approximately 14%). In permeabilized cells application of ACh after preincubation with thapsigargin led to a further decrease in total cellular calcium content (approximately 38%). At the same time in intact cells it resulted in generation of [Ca2+]i transients with gradually decreasing amplitudes. Thus, ACh is capable of producing an additional release of Ca2+ from thapsigargin-insensitive stores. This additional release is IP3-dependent since it was completely blocked by heparin. We conclude that in acinar cells of rat submandibular gland thapsigargin-sensitive and thapsigargin-insensitive Ca2+ stores could exist.

  1. Phorbol esters and A23187 regulate Na/sup +/=K/sup +/-pump activity in pancreatic acinar cells

    SciTech Connect

    Hootman, S.R.; Brown, M.E.; Williams, J.A.

    1987-04-01

    To clarify the subcellular mechanisms that mediate stimulation of Na/sup +/-K/sup +/-pump activity in pancreatic acinar cells by cholinergic agonists, the authors examined the effects of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) and the Ca/sup 2 +/ ionophore A23187 on (/sup 3/H)ouabain binding to dispersed guinea pig pancreatic acinar cells under conditions in which binding reflects the average rate of pump cycling. The phorbol ester more than doubled Na/sup +/-K/sup +/-pump activity as did the diacylglycerol analogue, 1-oleoyl-2-acetolyl-sn-3-glycerol. A23187 increased pump activity by a maximum of 31% at 0.3 ..mu..M but was progressively inhibitory at higher concentrations. The stimulatory effects of TPA and A23187 were additive, although either secretagogue elicited a less than additive response when added together with a maximally effective concentration of the cholinergic agonist, carbachol. Removal of extracellular Ca/sup 2 +/ had little effect on the pump response to TPA and did not reduce the maximal effect of A23187 but abolished the inhibitory effect seen at high ionophore concentrations in Ca/sup 2 +/-containing medium. These results indicate that both Ca/sup 2 +/ and protein kinase c are involved in regulating Na/sup +/-K/sup +/-pump activity in the pancreatic acinar cell.

  2. Metabotropic glutamate receptor 1 disrupts mammary acinar architecture and initiates malignant transformation of mammary epithelial cells.

    PubMed

    Teh, Jessica L F; Shah, Raj; La Cava, Stephanie; Dolfi, Sonia C; Mehta, Madhura S; Kongara, Sameera; Price, Sandy; Ganesan, Shridar; Reuhl, Kenneth R; Hirshfield, Kim M; Karantza, Vassiliki; Chen, Suzie

    2015-05-01

    Metabotropic glutamate receptor 1 (mGluR1/Grm1) is a member of the G-protein-coupled receptor superfamily, which was once thought to only participate in synaptic transmission and neuronal excitability, but has more recently been implicated in non-neuronal tissue functions. We previously described the oncogenic properties of Grm1 in cultured melanocytes in vitro and in spontaneous melanoma development with 100 % penetrance in vivo. Aberrant mGluR1 expression was detected in 60-80 % of human melanoma cell lines and biopsy samples. As most human cancers are of epithelial origin, we utilized immortalized mouse mammary epithelial cells (iMMECs) as a model system to study the transformative properties of Grm1. We introduced Grm1 into iMMECs and isolated several stable mGluR1-expressing clones. Phenotypic alterations in mammary acinar architecture were assessed using three-dimensional morphogenesis assays. We found that mGluR1-expressing iMMECs exhibited delayed lumen formation in association with decreased central acinar cell death, disrupted cell polarity, and a dramatic increase in the activation of the mitogen-activated protein kinase pathway. Orthotopic implantation of mGluR1-expressing iMMEC clones into mammary fat pads of immunodeficient nude mice resulted in mammary tumor formation in vivo. Persistent mGluR1 expression was required for the maintenance of the tumorigenic phenotypes in vitro and in vivo, as demonstrated by an inducible Grm1-silencing RNA system. Furthermore, mGluR1 was found be expressed in human breast cancer cell lines and breast tumor biopsies. Elevated levels of extracellular glutamate were observed in mGluR1-expressing breast cancer cell lines and concurrent treatment of MCF7 xenografts with glutamate release inhibitor, riluzole, and an AKT inhibitor led to suppression of tumor progression. Our results are likely relevant to human breast cancer, highlighting a putative role of mGluR1 in the pathophysiology of breast cancer and the potential

  3. Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.

    PubMed

    Ma, Baoshun; Darquenne, Chantal

    2012-08-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery.

  4. A model system for the study of stimulus - enzyme secretion coupling in rat pancreatic acinar cells.

    PubMed

    Guderley, H; Heisler, S

    1980-08-01

    A superfusion technique was developed as a model system for the study of stimulus-secretion coupling in collagenase-dispersed rat pancreatic acinar cells. Cells (10(7)) were combined with a slurry of Biogel P-4 beads and the mixture was decanted into a plastic column (1.5 cm X 8.5 cm) and perfused with Krebs-Ringer. Amylase activity was determined in sequentially collected effusate fractions and used to estimate the secretory rate. Carbachol, carbachol plus dibutyryl cyclic AMP, cholecystokinin-pancreozymin, and the ionophore A-23187 all stimulated a rapid increase in the rate of secretion. Cell integrity was unaffected by these stimulants as evidenced microscopically and by the lack of lactate dehydrogenase activity in the effusates. Enzymes secreted in response to secretagogues were collected, concentrated, and isoelectrofocused on polyacrylamide gels. A film detection technique was developed to localize amylase activity. The model system has the following advantages: (1) secreted proteolytic products are removed from the vicinity of cells, thereby preventing direct cellular damage and hydrolysis of peptide agonist; (2) the need to add trypsin inhibitors is eliminated and only a minimal addition of albumin (0.001%) is required, thus allowing the separation and distortion-free analysis of secreted proteins; (3) the perfusion conditions can be changed rapidly without disturbing the cells. The model described is therefore well suited to the study of both molecular and kinetic events involved in the enzyme secretory phenomenon in exocrine pancreas. PMID:6164455

  5. Antigen-presenting cells in parotid glands contain cystatin D originating from acinar cells.

    PubMed

    Nashida, Tomoko; Sato, Ritsuko; Haga-Tsujimura, Maiko; Yoshie, Sumio; Yoshimura, Ken; Imai, Akane; Shimomura, Hiromi

    2013-02-01

    Cystatin D encoded by Cst5 is a salivary classified type II cystatin. We investigated the dynamism of cystatin D by examining the distribution of cystatin D protein and mRNA in rats, to identify novel functions. The simultaneous expression of Cst5 and cystatin D was observed in parotid glands, however in situ hybridization showed that only acinar cells produced cystatin D. Synthesized cystatin D was localized in small vesicles and secreted from the apical side to the saliva, and from the basolateral side to the extracellular region, a second secretory pathway for cystatin D. We also identified antigen-presenting cells in the parotid glands that contained cystatin D without the expression of Cst5, indicating the uptake of cystatin D from the extracellular region. Cystatin D was detected in blood serum and renal tubular cells with megalin, indicating the circulation of cystatin D through the body and uptake by renal tubular cells. Thus, the novel dynamism of cystatin D was shown and a function for cystatin D in the regulation of antigen-presenting cell activity was proposed.

  6. Multiple cores of high grade prostatic intraepithelial neoplasia and any core of atypia on first biopsy are significant predictor for cancer detection at a repeat biopsy

    PubMed Central

    Kim, Tae Sun; Ko, Kwang Jin; Shin, Seung Jea; Ryoo, Hyun Soo; Song, Wan; Sung, Hyun Hwan; Han, Deok Hyun; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Kyu Sung; Lee, Sung Won; Lee, Hyun Moo; Choi, Han Yong

    2015-01-01

    Purpose To investigate the differences in the cancer detection rate and pathological findings on a second prostate biopsy according to benign diagnosis, high-grade prostatic intraepithelial neoplasia (HGPIN), and atypical small acinar proliferation (ASAP) on first biopsy. Materials and Methods We retrospectively reviewed the records of 1,323 patients who underwent a second prostate biopsy between March 1995 and November 2012. We divided the patients into three groups according to the pathologic findings on the first biopsy (benign diagnosis, HGPIN, and ASAP). We compared the cancer detection rate and Gleason scores on second biopsy and the unfavorable disease rate after radical prostatectomy among the three groups. Results A total of 214 patients (16.2%) were diagnosed with prostate cancer on a second biopsy. The rate of cancer detection was 14.6% in the benign diagnosis group, 22.1% in the HGPIN group, and 32.1% in the ASAP group, respectively (p<0.001). When patients were divided into subgroups according to the number of positive cores, the rate of cancer detection was 16.7%, 30.5%, 31.0%, and 36.4% in patients with a single core of HGPIN, more than one core of HGPIN, a single core of ASAP, and more than one core of ASAP, respectively. There were no significant differences in Gleason scores on second biopsy (p=0.324) or in the unfavorable disease rate after radical prostatectomy among the three groups (benign diagnosis vs. HGPIN, p=0.857, and benign diagnosis vs. ASAP, p=0.957, respectively). Conclusions Patients with multiple cores of HGPIN or any core number of ASAP on a first biopsy had a significantly higher cancer detection rate on a second biopsy. Repeat biopsy should be considered and not be delayed in those patients. PMID:26682019

  7. Secondary analysis of outcomes after 11,085 hip fracture operations from the prospective UK Anaesthesia Sprint Audit of Practice (ASAP-2).

    PubMed

    White, S M; Moppett, I K; Griffiths, R; Johansen, A; Wakeman, R; Boulton, C; Plant, F; Williams, A; Pappenheim, K; Majeed, A; Currie, C T; Grocott, M P W

    2016-05-01

    We re-analysed prospective data collected by anaesthetists in the Anaesthesia Sprint Audit of Practice (ASAP-1) to describe associations with linked outcome data. Mortality was 165/11,085 (1.5%) 5 days and 563/11,085 (5.1%) 30 days after surgery and was not associated with anaesthetic technique (general vs. spinal, with or without peripheral nerve blockade). The risk of death increased as blood pressure fell: the odds ratio (95% CI) for mortality within five days after surgery was 0.983 (0.973-0.994) for each 5 mmHg intra-operative increment in systolic blood pressure, p = 0.0016, and 0.980 (0.967-0.993) for each mmHg increment in mean pressure, p = 0.0039. The equivalent odds ratios (95% CI) for 30-day mortality were 0.968 (0.951-0.985), p = 0.0003 and 0.976 (0.964-0.988), p = 0.0001, respectively. The lowest systolic blood pressure after intrathecal local anaesthetic relative to before induction was weakly correlated with a higher volume of subarachnoid bupivacaine: r(2) -0.10 and -0.16 for hyperbaric and isobaric bupivacaine, respectively. A mean 20% relative fall in systolic blood pressure correlated with an administered volume of 1.44 ml hyperbaric bupivacaine. Future research should focus on refining standardised anaesthesia towards administering lower doses of spinal (and general) anaesthesia and maintaining normotension. PMID:26940645

  8. The Amsterdam Studies of Acute Psychiatry - II (ASAP-II): a comparative study of psychiatric intensive care units in the Netherlands

    PubMed Central

    Koppelmans, Vincent; Schoevers, Robert; van Wijk, Cecile Gijsbers; Mulder, Wijnand; Hornbach, Annett; Barkhof, Emile; Klaassen, André; van Egmond, Marieke; van Venrooij, Janine; Bijpost, Yan; Nusselder, Hans; van Herrewaarden, Marjan; Maksimovic, Igor; Achilles, Alexander; Dekker, Jack

    2009-01-01

    Background The number of patients in whom mental illness progresses to stages in which acute, and often forced treatment is warranted, is on the increase across Europe. As a consequence, more patients are involuntarily admitted to Psychiatric Intensive Care Units (PICU). From several studies and reports it has become evident that important dissimilarities exist between PICU's. The current study seeks to describe organisational as well as clinical and patient related factors across ten PICU's in and outside the Amsterdam region, adjusted for or stratified by level of urbanization. Method/Design This paper describes the design of the Amsterdam Studies of Acute Psychiatry II (ASAP-II). This study is a prospective observational cohort study comparing PICU's in and outside the Amsterdam region on various patient characteristics, treatment aspects and recovery related variables. Dissimilarities were measured by means of collecting standardized forms which were filled out in the framework of care as usual, by means of questionnaires filled out by mental health care professionals and by means of extracting data from patient files for every consecutive patient admitted at participating PICU's during a specific time period. Urbanization levels for every PICU were calculated conform procedures as proposed by the Dutch Central Bureau for Statistics (CBS). Discussion The current study may provide a deeper understanding of the differences between psychiatric intensive care units that can be used to promote best practice and benchmarking procedures, and thus improve the standard of care. PMID:19725981

  9. Secondary analysis of outcomes after 11,085 hip fracture operations from the prospective UK Anaesthesia Sprint Audit of Practice (ASAP-2).

    PubMed

    White, S M; Moppett, I K; Griffiths, R; Johansen, A; Wakeman, R; Boulton, C; Plant, F; Williams, A; Pappenheim, K; Majeed, A; Currie, C T; Grocott, M P W

    2016-05-01

    We re-analysed prospective data collected by anaesthetists in the Anaesthesia Sprint Audit of Practice (ASAP-1) to describe associations with linked outcome data. Mortality was 165/11,085 (1.5%) 5 days and 563/11,085 (5.1%) 30 days after surgery and was not associated with anaesthetic technique (general vs. spinal, with or without peripheral nerve blockade). The risk of death increased as blood pressure fell: the odds ratio (95% CI) for mortality within five days after surgery was 0.983 (0.973-0.994) for each 5 mmHg intra-operative increment in systolic blood pressure, p = 0.0016, and 0.980 (0.967-0.993) for each mmHg increment in mean pressure, p = 0.0039. The equivalent odds ratios (95% CI) for 30-day mortality were 0.968 (0.951-0.985), p = 0.0003 and 0.976 (0.964-0.988), p = 0.0001, respectively. The lowest systolic blood pressure after intrathecal local anaesthetic relative to before induction was weakly correlated with a higher volume of subarachnoid bupivacaine: r(2) -0.10 and -0.16 for hyperbaric and isobaric bupivacaine, respectively. A mean 20% relative fall in systolic blood pressure correlated with an administered volume of 1.44 ml hyperbaric bupivacaine. Future research should focus on refining standardised anaesthesia towards administering lower doses of spinal (and general) anaesthesia and maintaining normotension.

  10. G protein in stimulation of PI hydrolysis by CCK (cholecystokinin) in isolated rat pancreatic acinar cells

    SciTech Connect

    Matozaki, Takashi; Sakamoto, Choitsu; Nagao, Munehiko; Nishizaki, Hogara; Baba, Shigeaki )

    1988-11-01

    To clarify the possible role of a guanine nucleotide-binding protein (G protein) in the signal transducing system activated by cholecystokinin (CCK), actions of CCK on rat pancreatic acini were compared with those of fluoride, a well-known activator of stimulatory (G{sub s}) or inhibitory (G{sub i}) G protein. When acini were incubated with increasing concentrations of either CCK-octapeptide (CCK8) or NaF, a maximal stimulation of amylase release from acini occurred at 100 pM CCK8 or 10 mM NaF, respectively; this secretory rate decreased as CCK8 or NaF concentration was increased. NaF caused an increase in cytoplasmic Ca{sup 2+} concentration from the internal Ca{sup 2+} store and stimulated accumulation of inositol phosphates in acini, as observed with CCK. Guanylimidodiphosphate activated the generation of inositol phosphates in the ({sup 3}H)inositol-labeled pancreatic acinar cell membrane preparation, with half-maximal and maximal stimulation at 1 and 10 {mu}M, respectively. Furthermore, the effects of submaximal CCK concentrations on inositol phosphate accumulation in membranes were markedly potentiated in the presence of 100 {mu}M GTP, which alone was ineffective. Combined findings of the present study strongly suggest that pancreatic CCK receptors are probably coupled to the activation of polyphosphoinositide (PI) breakdown by a G protein, which appears to be fluoride sensitive but is other than G{sub s}- or G{sub i}-like protein.

  11. Apical Ca2+-activated potassium channels in mouse parotid acinar cells.

    PubMed

    Almassy, Janos; Won, Jong Hak; Begenisich, Ted B; Yule, David I

    2012-02-01

    Ca(2+) activation of Cl and K channels is a key event underlying stimulated fluid secretion from parotid salivary glands. Cl channels are exclusively present on the apical plasma membrane (PM), whereas the localization of K channels has not been established. Mathematical models have suggested that localization of some K channels to the apical PM is optimum for fluid secretion. A combination of whole cell electrophysiology and temporally resolved digital imaging with local manipulation of intracellular [Ca(2+)] was used to investigate if Ca(2+)-activated K channels are present in the apical PM of parotid acinar cells. Initial experiments established Ca(2+)-buffering conditions that produced brief, localized increases in [Ca(2+)] after focal laser photolysis of caged Ca(2+). Conditions were used to isolate K(+) and Cl(-) conductances. Photolysis at the apical PM resulted in a robust increase in K(+) and Cl(-) currents. A localized reduction in [Ca(2+)] at the apical PM after photolysis of Diazo-2, a caged Ca(2+) chelator, resulted in a decrease in both K(+) and Cl(-) currents. The K(+) currents evoked by apical photolysis were partially blocked by both paxilline and TRAM-34, specific blockers of large-conductance "maxi-K" (BK) and intermediate K (IK), respectively, and almost abolished by incubation with both antagonists. Apical TRAM-34-sensitive K(+) currents were also observed in BK-null parotid acini. In contrast, when the [Ca(2+)] was increased at the basal or lateral PM, no increase in either K(+) or Cl(-) currents was evoked. These data provide strong evidence that K and Cl channels are similarly distributed in the apical PM. Furthermore, both IK and BK channels are present in this domain, and the density of these channels appears higher in the apical versus basolateral PM. Collectively, this study provides support for a model in which fluid secretion is optimized after expression of K channels specifically in the apical PM.

  12. Mechanisms involved in the inhibitory effect of chronic alcohol exposure on pancreatic acinar thiamin uptake.

    PubMed

    Srinivasan, Padmanabhan; Subramanian, Veedamali S; Said, Hamid M

    2014-04-01

    Pancreatic acinar cells (PAC) obtain thiamin from the circulation via a carrier-mediated process that involves thiamin transporters 1 and 2 (THTR-1 and THTR-2; products of SLC19A2 and SLC19A3, respectively). Chronic alcohol exposure of PAC inhibits thiamin uptake, and, on the basis of in vitro studies, this inhibition appears to be transcriptionally mediated. The aim of this study was to confirm the involvement of a transcriptional mechanism in mediating the chronic alcohol effect in in vivo settings and to delineate the molecular mechanisms involved. Using transgenic mice carrying full-length SLC19A2 and SLC19A3 promoters, we found that chronic alcohol feeding led to a significant reduction in the activity of SLC19A2 and SLC19A3 promoters (as well as in thiamin uptake and expression of THTR-1 and -2). Similar findings were seen in 266-6 cells chronically exposed to alcohol in vitro. In the latter studies, the alcohol inhibitory effect was found to be mediated via the minimal SLC19A2 and SLC19A3 promoters and involved the cis-regulatory elements stimulating protein 1 (SP1)/gut-enriched Kruppel-like factor and SP1-GG-box and SP1/GC, respectively. Chronic alcohol exposure of PAC also led to a significant reduction in the expression of the SP1 transcription factor, which upon correction (via expression) led to the prevention of alcohol inhibitory effects on not only the activity of SLC19A2 and SLC19A3 promoters but also on the expression of THTR-1 and -2 mRNA and thiamin uptake. These results demonstrate that the inhibitory effect of chronic alcohol exposure on physiological/molecular parameters of thiamin uptake by PAC is mediated via specific cis-regulatory elements in SLC19A2 and SLC19A3 minimal promoters.

  13. Acinar cell carcinomas of the pancreas: a molecular analysis in a series of 57 cases.

    PubMed

    Bergmann, Frank; Aulmann, Sebastian; Sipos, Bence; Kloor, Matthias; von Heydebreck, Anja; Schweipert, Johannes; Harjung, Andreas; Mayer, Philipp; Hartwig, Werner; Moldenhauer, Gerhard; Capper, David; Dyckhoff, Gerhard; Freier, Kolja; Herpel, Esther; Schleider, Anja; Schirmacher, Peter; Mechtersheimer, Gunhild; Klöppel, Günter; Bläker, Hendrik

    2014-12-01

    Pancreatic acinar cell carcinomas (PACs) are rare but are distinct aggressive neoplasms that phenotypically differ from pancreatic ductal adenocarcinomas (PDACs) and pancreatic neuroendocrine neoplasms (PNENs). Despite recent work on the genetic changes of PACs, their molecular pathogenesis is still poorly understood. In this study, we focus on a comparative genomic hybridization analysis. Based on frequent chromosomal imbalances, the involvement of DCC and c-MYC in the pathogenesis of PACs is further investigated. Moreover, we examine markers harboring potential therapeutic relevance (K-RAS, BRAF, EGFR, MGMT, HSP90, L1CAM, Her2). PACs revealed a microsatellite stable, chromosomal unstable genotype, defined by recurrent chromosomal losses of 1p, 3p, 4q, 5q, 6q, 8p, 9p, 11q, 13q, 16q, and 18, as well as gains of 1q, 7, 8q, 12, 17q, and 20q. Subsets of PAC displayed reduction/loss of DCC (79 %) and c-MYC-amplification (17 %). Significant EGFR expression occurred in 42 %, HSP90 expression in 98 %, L1CAM expression in 72 %, and loss of MGMT in 26 %. Two cases carried a K-RAS mutation. Mutations of EGFR or BRAF were not detected. All cases were Her2/neu-negative. PACs display characteristic chromosomal imbalances which are distinctly different from those in pancreatic ductal adenocarcinomas and pancreatic neuroendocrine neoplasms. Our findings suggest that DCC and c-MYC alterations may play an important role in the pathogenesis of PACs. Furthermore, EGFR, MGMT, HSP90, and L1CAM may be useful as therapeutic markers and predictors of response to therapy in a subset of PACs. PMID:25298229

  14. DOG1: a novel marker of salivary acinar and intercalated duct differentiation.

    PubMed

    Chênevert, Jacinthe; Duvvuri, Umamaheswar; Chiosea, Simion; Dacic, Sanja; Cieply, Kathleen; Kim, Jean; Shiwarski, Daniel; Seethala, Raja R

    2012-07-01

    Anoctamin-1 (ANO1) (DOG1, TMEM16a) is a calcium-activated chloride channel initially described in gastrointestinal stromal tumors, but now known to be expressed in a variety of normal and tumor tissues including salivary tissue in murine models. We herein perform a comprehensive survey of DOG1 expression in 156 cases containing non-neoplastic human salivary tissues and tumors. ANO1 mRNA levels were significantly higher (8-fold increase, P<0.0001) in normal parotid tissue (n=6) as compared with squamous mucosa (n=15). By immunohistochemistry, DOG1 showed a diffuse moderate (2+) apical membranous staining pattern in normal serous acini, 1+ apical membranous pattern in mucous acini, and variable 1-2+ apical staining of distal intercalated ducts. Myoepithelial cells, striated and excretory ducts were invariably negative. All acinic cell carcinomas (n=28) were DOG1 positive demonstrating a complex mixture of intense (3+) apical membranous, cytoplasmic and complete membranous staining. Most ductal tumor types were negative or only showed a subset of positive cases. Within the biphasic tumor category, adenoid cystic carcinomas (18/24 cases) and epithelial-myoepithelial carcinomas (8/15 cases) were frequently positive, often showing a distinctive combined apical ductal and membranous/cytoplasmic myoepithelial staining profile. Thus, DOG1 staining is a marker of salivary acinar and to a lesser extent intercalated duct differentiation. Strong staining can be used to support the diagnosis of acinic cell carcinoma. DOG1 may also be a marker of a 'transformed' myoepithelial phenotype in a subset of biphasic salivary gland malignancies.

  15. Ca²⁺ signaling and regulation of fluid secretion in salivary gland acinar cells.

    PubMed

    Ambudkar, Indu S

    2014-06-01

    Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca(2+) signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca(2+) is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca(2+)] ([Ca(2+)]i) triggered by IP3-induced release of Ca(2+) from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca(2+)]i signal in the cell. However, Ca(2+) entry into the cell is required to sustain the elevation of [Ca(2+)]i and fluid secretion. This Ca(2+) influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca(2+) entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca(2+) signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca(2+) signal can be ascribed to the polarized arrangement of the Ca(2+) channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca(2+) signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca(2+) signals in the regulation of fluid secretion.

  16. Acinar origin of CFTR-dependent airway submucosal gland fluid secretion.

    PubMed

    Wu, Jin V; Krouse, Mauri E; Wine, Jeffrey J

    2007-01-01

    Cystic fibrosis (CF) airway disease arises from defective innate defenses, especially defective mucus clearance of microorganisms. Airway submucosal glands secrete most airway mucus, and CF airway glands do not secrete in response to VIP or forskolin. CFTR, the protein that is defective in CF, is expressed in glands, but immunocytochemistry finds the highest expression of CFTR in either the ciliated ducts or in the acini, depending on the antibodies used. CFTR is absolutely required for forskolin-mediated gland secretion; we used this finding to localize the origin of forskolin-stimulated, CFTR-dependent gland fluid secretion. We tested the hypothesis that secretion to forskolin might originate from the gland duct rather than or in addition to the acini. We ligated gland ducts at various points, stimulated the glands with forskolin, and monitored the regions of the glands that swelled. The results supported an acinar rather than ductal origin of secretion. We tracked particles in the mucus using Nomarski time-lapse imaging; particles originated in the acini and traveled toward the duct orifice. Estimated bulk flow accelerated in the acini and mucus tubules, consistent with fluid secretion in those regions, but was constant in the unbranched duct, consistent with a lack of fluid secretion or absorption by the ductal epithelium. We conclude that CFTR-dependent gland fluid secretion originates in the serous acini. The failure to observe either secretion or absorption from the CFTR and epithelial Na(+) channel (ENaC)-rich ciliated ducts is unexplained, but may indicate that this epithelium alters the composition rather than the volume of gland mucus. PMID:16997881

  17. Expression, localization, and functional role for synaptotagmins in pancreatic acinar cells

    PubMed Central

    Falkowski, Michelle A.; Thomas, Diana D. H.; Messenger, Scott W.; Martin, Thomas F.

    2011-01-01

    Secretagogue-induced changes in intracellular Ca2+ play a pivotal role in secretion in pancreatic acini yet the molecules that respond to Ca2+ are uncertain. Zymogen granule (ZG) exocytosis is regulated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes. In nerve and endocrine cells, Ca2+-stimulated exocytosis is regulated by the SNARE-associated family of proteins termed synaptotagmins. This study examined a potential role for synaptotagmins in acinar secretion. RT-PCR revealed that synaptotagmin isoforms 1, 3, 6, and 7 are present in isolated acini. Immunoblotting and immunofluorescence using three different antibodies demonstrated synaptotagmin 1 immunoreactivity in apical cytoplasm and ZG fractions of acini, where it colocalized with vesicle-associated membrane protein 2. Synaptotagmin 3 immunoreactivity was detected in membrane fractions and colocalized with an endolysosomal marker. A potential functional role for synaptotagmin 1 in secretion was indicated by results that introduction of synaptotagmin 1 C2AB domain into permeabilized acini inhibited Ca2+-dependent exocytosis by 35%. In contrast, constructs of synaptotagmin 3 had no effect. Confirmation of these findings was achieved by incubating intact acini with an antibody specific to the intraluminal domain of synaptotagmin 1, which is externalized following exocytosis. Externalized synaptotagmin 1 was detected exclusively along the apical membrane. Treatment with CCK-8 (100 pM, 5 min) enhanced immunoreactivity by fourfold, demonstrating that synaptotagmin is inserted into the apical membrane during ZG fusion. Collectively, these data indicate that acini express synaptotagmin 1 and support that it plays a functional role in secretion whereas synaptotagmin 3 has an alternative role in endolysosomal membrane trafficking. PMID:21636530

  18. Bone morphogenetic protein-6 is a marker of serous acinar cell differentiation in normal and neoplastic human salivary gland.

    PubMed

    Heikinheimo, K A; Laine, M A; Ritvos, O V; Voutilainen, R J; Hogan, B L; Leivo, I V; Heikinheimo, A K

    1999-11-15

    Bone morphogenetic protein (BMP-6, also known as vegetal-pale-gene-related and decaplentaplegic-vegetal-related) is a member of the transforming growth factor-beta superfamily of multifunctional signaling molecules. BMP-6 appears to play various biological roles in developing tissues, including regulation of epithelial differentiation. To study the possible involvement of BMP-6 in normal and neoplastic human salivary glands, we compared its mRNA and protein expression in 4 fetal and 15 adult salivary glands and in 22 benign and 32 malignant salivary gland tumors. In situ hybridization and Northern blot analysis indicated that BMP-6 transcripts are expressed at low levels in acinar cells of adult submandibular glands but not in ductal or stromal cells. BMP-6 was immunolocated specifically in serous acini of parotid and submandibular glands. None was found in primitive fetal acini or any other types of cell in adult salivary glands, including mucous acini and epithelial cells of intercalated, striated, and excretory ducts. All 16 cases of acinic cell carcinoma consistently exhibited cytoplasmic BMP-6 staining in the acinar tumor cells. Other cell types in these tumors, including intercalated duct-like cells, clear, vacuolated cells, and nonspecific glandular cells, exhibited no cytoplasmic BMP-6 staining. Other benign and malignant salivary gland tumors lacked BMP-6 immunoreactivity, except in areas of squamous differentiation. The results indicate that in salivary glands, BMP-6 expression is uniquely associated with acinar cell differentiation and suggest that BMP-6 may play a role in salivary gland function. More importantly, our experience of differential diagnostic problems related to salivary gland tumors suggests that the demonstration of consistent and specific BMP-6 immunoreactivity in acinic cell carcinoma is likely to be of clinical value.

  19. Nuclear Proliferation Challenges

    SciTech Connect

    Professor William Potter

    2005-11-28

    William C. Potter, Director of the Center for Non Proliferation Studies and the Center for Russian and Eurasian Studies at the Monterey Institute of International Studies, will present nuclear proliferation challenges following the 2005 Nuclear Non-Proliferation Treaty (NPT) Review Conference. In addition to elucidating reasons for, and implications of, the conference’s failure, Dr. Potter will discuss common ground between nuclear proliferation and terrorism issues and whether corrective action can be taken.

  20. Quantitative description of the spatial arrangement of organelles in a polarised secretory epithelial cell: the salivary gland acinar cell

    PubMed Central

    MAYHEW, TERRY M.

    1999-01-01

    Previous quantitative descriptions of cellular ultrastructure have focused on spatial content (volume, surface area and number of organelles and membrane domains). It is possible to complement such descriptions by also quantifying spatial arrangements. Hitherto, applications of stereological methods for achieving this (notably, estimation of covariance and pair correlation functions) have been confined to organ and tissue levels. This study explores 3-dimensional subcellular arrangements of key organelles within acinar cells of rabbit parotid salivary glands, highly polarised epithelial cells specialised for exocrine secretion of α-amylase. It focuses on spatial arrangements of secretion product stores (zymogen granules), rough endoplasmic reticulum (RER) and mitochondria. Systematic random samples of electron microscopical fields of view from 3 rabbits were analysed using test grids bearing linear dipole probes of different sizes. Unbiased estimates of organelle volume densities were obtained by point counting and estimates of covariance and pair correlation functions by dipole counting. Plots of pair correlation functions against dipole length identified spatial arrangement differences between organelle types. Volumes within RER and mitochondrial compartments were positively correlated with themselves at distances below 4 μm and 2 μm respectively but were essentially randomly arranged at longer distances. In sharp contrast, zymogen granules were not randomly arranged. They were clustered at distances below 6–7 μm and more widely scattered at greater distances. These findings provide quantitative confirmation of the polarised arrangement of zymogen granules within acinar cells and further support for the relative invariance of biological organisation between subjects. PMID:10337960

  1. The perinuclear space of pancreatic acinar cells and the synthetic pathway of zymogen in Scorpaena scrofa L.: ultrastructural aspects.

    PubMed

    Gilloteaux, Jacques; Kashouty, Rabih; Yono, Noor

    2008-02-01

    Electron microscopic examination of exocrine pancreatic tissues from the fish Scorpaena scrofa L., probably captured while replenishing the acinar cells, shows two main functional cell morphologies of the same cell type. One cell functional aspect contains numerous well-contrasted small vesicles, the zymogenic vesicles. The other functional morphology is mainly represented by a few cells containing large apical zymogen vesicles with many empty RER cisterns. In our observations, the zymogenic vesicles are always studded with ribosomes. The main cytological finding is to report that zymogenic vesicles can be extruded from the perinuclear space and it confirms the suspected, synthetic activity of this cell compartment. The pool of zymogenic vesicles, maintaining their coat of ribosomes, then fuses and transfers their content into the cis Golgi complex network. Finally, the zymogen vesicles are produced following the classical secretory pathway from the trans Golgi saccular network into the supranuclear, apical region of the acinar cells where the largest vesicles concentrate their content until secretion. PMID:17961618

  2. CCN6 knockdown disrupts acinar organization of breast cells in three-dimensional cultures through up-regulation of type III TGF-β receptor.

    PubMed

    Pal, Anupama; Huang, Wei; Toy, Kathy A; Kleer, Celina G

    2012-11-01

    While normal cells in the human breast are organized into acinar structures, disruption of the acinar architecture is a hallmark of cancer. In a three-dimensional model of morphogenesis, we show that down-regulation of the matrix-associated tumor suppressor protein CCN6 (WNT1-inducible-signaling pathway protein 3) disrupts breast epithelial cell polarity and organization into acini through up-regulation of the type III transforming growth factor-β receptor (TβRIII or betaglycan). Down-regulation of CCN6 in benign breast cells led to loss of tissue polarity and resulted in cellular disorganization with loss of α6 integrin-rich basement membrane and the basolateral polarity protein E-cadherin. Silencing of TβRIII with shRNA and siRNA rescued the ability of breast epithelial cells to form polarized acinar structures with reduced matrix invasion and restored the correct expression of α6 integrin and E-cadherin. Conversely, CCN6 overexpression in aggressive breast cancer cells reduced TβRIII in vitro and in a xenograft model of CCN6 overexpression. The relevance of our studies to human breast cancer is highlighted by the finding that CCN6 protein levels are inversely associated with TβRIII protein in 64%of invasive breast carcinomas. These results reveal a novel function of the matricellular protein CCN6 and establish a mechanistic link between CCN6 and TβRIII in maintaining acinar organization in the breast.

  3. Roles of AQP5/AQP5-G103D in carbamylcholine-induced volume decrease and in reduction of the activation energy for water transport by rat parotid acinar cells.

    PubMed

    Satoh, Keitaro; Seo, Yoshiteru; Matsuo, Shinsuke; Karabasil, Mileva Ratko; Matsuki-Fukushima, Miwako; Nakahari, Takashi; Hosoi, Kazuo

    2012-10-01

    In order to assess the contribution of the water channel aquaporin-5 (AQP5) to water transport by salivary gland acinar cells, we measured the cell volume and activation energy (E (a)) of diffusive water permeability in isolated parotid acinar cells obtained from AQP5-G103D mutant and their wild-type rats. Immunohistochemistry showed that there was no change induced by carbamylcholine (CCh; 1 μM) in the AQP5 detected in the acinar cells in the wild-type rat. Acinar cells from mutant rats, producing low levels of AQP5 in the apical membrane, showed a minimal increase in the AQP5 due to the CCh. In the wild-type rat, CCh caused a transient swelling of the acinus, followed by a rapid agonist-induced cell shrinkage, reaching a plateau at 30 s. In the mutant rat, the acinus did not swell by CCh challenge, and the agonist-induced cell shrinkage was delayed by 8 s, reaching a transient minimum at around 1 min, and recovered spontaneously even though CCh was persistently present. In the unstimulated wild-type acinar cells, E (a) was 3.4 ± 0.6 kcal mol(-1) and showed no detectable change after CCh stimulation. In the unstimulated mutant acinar cells, high E (a) value (5.9 ± 0.1 kcal mol(-1)) was detected and showed a minimal decrease after CCh stimulation (5.0 ± 0.3 kcal mol(-1)). These results suggested that AQP5 was the main pathway for water transport in the acinar cells and that it was responsible for the rapid agonist-induced acinar cell shrinkage and also necessary to keep the acinar cell volume reduced during the steady secretion in the wild-type rat.

  4. Distinct contributions by ionotropic purinoceptor subtypes to ATP-evoked calcium signals in mouse parotid acinar cells

    PubMed Central

    Bhattacharya, Sumit; Verrill, Douglas S; Carbone, Kristopher M; Brown, Stefanie; Yule, David I; Giovannucci, David R

    2012-01-01

    There is emerging consensus that P2X4 and P2X7 ionotropic purinoceptors (P2X4R and P2X7R) are critical players in regulating [Ca2+]i dynamics and fluid secretion in the salivary gland. In contrast, details regarding their compartmentalization and selective activation, contributions to the spatiotemporal properties of intracellular signals and roles in regulating protein exocytosis and ion channel activity have remained largely undefined. To address these concerns, we profiled mouse parotid acinar cells using live-cell imaging to follow the spatial and temporal features of ATP-evoked Ca2+ dynamics and exocytotic activity. Selective activation of P2X7Rs revealed an apical-to-basal [Ca2+]i signal that initiated at the sub-luminal border and propagated with a wave speed estimated at 17.3 ± 4.3 μm s−1 (n = 6). The evoked Ca2+ spike consisted of Ca2+ influx and Ca2+-induced Ca2+ release from intracellular Ca2+ channels. In contrast, selective activation of P2X4Rs induced a Ca2+ signal that initiated basally and propagated toward the lumen with a wave speed of 4.3 ± 0.2 μm s−1 (n = 8) that was largely independent of intracellular Ca2+ channel blockade. Consistent with these observations, P2X7R expression was enriched in the sub-luminal regions of acinar cells while P2X4R appeared localized to basal areas. In addition, we showed that P2X4R and P2X7R activation evokes exocytosis in parotid acinar cells. Our studies also demonstrate that the P2X4R-mediated [Ca2+]i rise and subsequent protein exocytosis was enhanced by ivermectin (IVR). Thus, in addition to furthering our understanding of salivary gland physiology, this study identifies P2X4R as a potential target for treatment of salivary hypofunction diseases. PMID:22451435

  5. Insulation of a G protein-coupled receptor on the plasmalemmal surface of the pancreatic acinar cell

    PubMed Central

    1995-01-01

    Receptor desensitization is a key process for the protection of the cell from continuous or repeated exposure to high concentrations of an agonist. Well-established mechanisms for desensitization of guanine nucleotide-binding protein (G protein)-coupled receptors include phosphorylation, sequestration/internalization, and down-regulation. In this work, we have examined some mechanisms for desensitization of the cholecystokinin (CCK) receptor which is native to the pancreatic acinar cell, and have found the predominant mechanism to be distinct from these recognized processes. Upon fluorescent agonist occupancy of the native receptor, it becomes "insulated" from the effects of acid washing and becomes immobilized on the surface of the plasma membrane in a time- and temperature-dependent manner. This localization was assessed by ultrastructural studies using a colloidal gold conjugate of CCK, and lateral mobility of the receptor was assessed using fluorescence recovery after photobleaching. Of note, recent application of the same morphologic techniques to a CCK receptor-bearing Chinese hamster ovary cell line demonstrated prominent internalization via the clathrin-dependent endocytic pathway, as well as entry into caveolae (Roettger, B.F., R.U. Rentsch, D. Pinon, E. Holicky, E. Hadac, J.M. Larkin, and L.J. Miller, 1995, J. Cell Biol. 128: 1029-1041). These organelles are not observed to represent prominent compartments for the same receptor to traverse in the acinar cell, although fluorescent insulin is clearly internalized in these cells via receptor-mediated endocytosis. In this work, the rate of lateral mobility of the CCK receptor is observed to be similar in both cell types (1-3 x 10(-10) cm2/s), while the fate of the agonist-occupied receptor is quite distinct in each cell. This supports the unique nature of desensitization processes which occur in a cell-specific manner. A plasmalemmal site of insulation of this important receptor on the pancreatic acinar cell

  6. Ae4 (Slc4a9) Anion Exchanger Drives Cl- Uptake-dependent Fluid Secretion by Mouse Submandibular Gland Acinar Cells.

    PubMed

    Peña-Münzenmayer, Gaspar; Catalán, Marcelo A; Kondo, Yusuke; Jaramillo, Yasna; Liu, Frances; Shull, Gary E; Melvin, James E

    2015-04-24

    Transcellular Cl(-) movement across acinar cells is the rate-limiting step for salivary gland fluid secretion. Basolateral Nkcc1 Na(+)-K(+)-2Cl(-) cotransporters play a critical role in fluid secretion by promoting the intracellular accumulation of Cl(-) above its equilibrium potential. However, salivation is only partially abolished in the absence of Nkcc1 cotransporter activity, suggesting that another Cl(-) uptake pathway concentrates Cl(-) ions in acinar cells. To identify alternative molecular mechanisms, we studied mice lacking Ae2 and Ae4 Cl(-)/HCO3 (-) exchangers. We found that salivation stimulated by muscarinic and β-adrenergic receptor agonists was normal in the submandibular glands of Ae2(-/-) mice. In contrast, saliva secretion was reduced by 35% in Ae4(-/-) mice. The decrease in salivation was not related to loss of Na(+)-K(+)-2Cl(-) cotransporter or Na(+)/H(+) exchanger activity in Ae4(-/-) mice but correlated with reduced Cl(-) uptake during β-adrenergic receptor activation of cAMP signaling. Direct measurements of Cl(-)/HCO3 (-) exchanger activity revealed that HCO3 (-)-dependent Cl(-) uptake was reduced in the acinar cells of Ae2(-/-) and Ae4(-/-) mice. Moreover, Cl(-)/HCO3 (-) exchanger activity was nearly abolished in double Ae4/Ae2 knock-out mice, suggesting that most of the Cl(-)/HCO3 (-) exchanger activity in submandibular acinar cells depends on Ae2 and Ae4 expression. In conclusion, both Ae2 and Ae4 anion exchangers are functionally expressed in submandibular acinar cells; however, only Ae4 expression appears to be important for cAMP-dependent regulation of fluid secretion.

  7. Postnatal Pancreas of Mice Contains Tripotent Progenitors Capable of Giving Rise to Duct, Acinar, and Endocrine Cells In Vitro

    PubMed Central

    Ghazalli, Nadiah; Mahdavi, Alborz; Feng, Tao; Jin, Liang; Kozlowski, Mark T.; Hsu, Jasper; Riggs, Arthur D.; Tirrell, David A.

    2015-01-01

    Postnatal pancreas is a potential source for progenitor cells to generate endocrine β-cells for treating type 1 diabetes. However, it remains unclear whether young (1-week-old) pancreas harbors multipotent progenitors capable of differentiating into duct, acinar, and endocrine cells. Laminin is an extracellular matrix (ECM) protein important for β-cells' survival and function. We established an artificial extracellular matrix (aECM) protein that contains the functional IKVAV (Ile-Lys-Val-Ala-Val) sequence derived from laminin (designated aECM-lam). Whether IKVAV is necessary for endocrine differentiation in vitro is unknown. To answer these questions, we cultured single cells from 1-week-old pancreas in semi-solid media supplemented with aECM-lam, aECM-scr (which contains a scrambled sequence instead of IKVAV), or Matrigel. We found that colonies were generated in all materials. Individual colonies were examined by microfluidic reverse transcription-polymerase chain reaction, immunostaining, and electron microscopy analyses. The majority of the colonies expressed markers for endocrine, acinar, and ductal lineages, demonstrating tri-lineage potential of individual colony-forming progenitors. Colonies grown in aECM-lam expressed higher levels of endocrine markers Insulin1, Insulin2, and Glucagon compared with those grown in aECM-scr and Matrigel, indicating that the IKVAV sequence enhances endocrine differentiation. In contrast, Matrigel was inhibitory for endocrine gene expression. Colonies grown in aECM-lam displayed the hallmarks of functional β-cells: mature insulin granules and glucose-stimulated insulin secretion. Colony-forming progenitors were enriched in the CD133high fraction and among 230 micro-manipulated single CD133high cells, four gave rise to colonies that expressed tri-lineage markers. We conclude that young postnatal pancreas contains multipotent progenitor cells and that aECM-lam promotes differentiation of β-like cells in vitro. PMID:25941840

  8. Postnatal Pancreas of Mice Contains Tripotent Progenitors Capable of Giving Rise to Duct, Acinar, and Endocrine Cells In Vitro.

    PubMed

    Ghazalli, Nadiah; Mahdavi, Alborz; Feng, Tao; Jin, Liang; Kozlowski, Mark T; Hsu, Jasper; Riggs, Arthur D; Tirrell, David A; Ku, H Teresa

    2015-09-01

    Postnatal pancreas is a potential source for progenitor cells to generate endocrine β-cells for treating type 1 diabetes. However, it remains unclear whether young (1-week-old) pancreas harbors multipotent progenitors capable of differentiating into duct, acinar, and endocrine cells. Laminin is an extracellular matrix (ECM) protein important for β-cells' survival and function. We established an artificial extracellular matrix (aECM) protein that contains the functional IKVAV (Ile-Lys-Val-Ala-Val) sequence derived from laminin (designated aECM-lam). Whether IKVAV is necessary for endocrine differentiation in vitro is unknown. To answer these questions, we cultured single cells from 1-week-old pancreas in semi-solid media supplemented with aECM-lam, aECM-scr (which contains a scrambled sequence instead of IKVAV), or Matrigel. We found that colonies were generated in all materials. Individual colonies were examined by microfluidic reverse transcription-polymerase chain reaction, immunostaining, and electron microscopy analyses. The majority of the colonies expressed markers for endocrine, acinar, and ductal lineages, demonstrating tri-lineage potential of individual colony-forming progenitors. Colonies grown in aECM-lam expressed higher levels of endocrine markers Insulin1, Insulin2, and Glucagon compared with those grown in aECM-scr and Matrigel, indicating that the IKVAV sequence enhances endocrine differentiation. In contrast, Matrigel was inhibitory for endocrine gene expression. Colonies grown in aECM-lam displayed the hallmarks of functional β-cells: mature insulin granules and glucose-stimulated insulin secretion. Colony-forming progenitors were enriched in the CD133(high) fraction and among 230 micro-manipulated single CD133(high) cells, four gave rise to colonies that expressed tri-lineage markers. We conclude that young postnatal pancreas contains multipotent progenitor cells and that aECM-lam promotes differentiation of β-like cells in vitro.

  9. Morphometric studies of secretory granule formation in mouse pancreatic acinar cells. Dissecting the early structural changes following pilocarpine injection

    PubMed Central

    HAMMEL, ILAN; SHOR-HAZAN, OSNAT; ELDAR, TORA; AMIHAI, DINA; LEW, SYLVIA

    1999-01-01

    Secretory granule formation in pancreatic acinar cells is known to involve massive membrane flow. In previous studies we have undertaken morphometry of the regranulation mechanism in these cells and in mast cells as a model for cellular membrane movement. In our current work, electron micrographs of pancreatic acinar cells from ICR mice were taken at several time points after extensive degranulation induced by pilocarpine injection in order to investigate the volume changes of rough endoplasmic reticulum (RER), nucleus, mitochondria and autophagosomes. At 2–4 h after stimulation, when the pancreatic cells demonstrated a complete loss of granules, this was accompanied by an increased proportion of autophagosomal activity. This change primarily reflected a greatly increased proportion of profiles retaining autophagic vacuoles containing recognisable cytoplasmic structures such as mitochondria, granule profiles and fragments of RER. The mitochondrial structures reached a significant maximal size 4 h following injection (before degranulation 0.178±0.028 μm3; at 4 h peak value, 0.535±0.109 μm3). Nucleus size showed an early volume increase approaching a maximum value 2 h following degranulation. The regranulation span was thus divided into 3 stages. The first was the membrane remodelling stage (0–2 h). During this period the volume of the RER and secretory granules was greatly decreased. At the intermediate stage (2–4 h) a significant increase of the synthesis zone was observed within the nucleus. The volume of the mitochondria was increasing. At the last step, the major finding was a significant granule accumulation in parallel with an active Golgi zone. PMID:10227666

  10. Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models

    PubMed Central

    Wen, Li; Voronina, Svetlana; Javed, Muhammad A.; Awais, Muhammad; Szatmary, Peter; Latawiec, Diane; Chvanov, Michael; Collier, David; Huang, Wei; Barrett, John; Begg, Malcolm; Stauderman, Ken; Roos, Jack; Grigoryev, Sergey; Ramos, Stephanie; Rogers, Evan; Whitten, Jeff; Velicelebi, Gonul; Dunn, Michael; Tepikin, Alexei V.; Criddle, David N.; Sutton, Robert

    2015-01-01

    Background & Aims Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release–activated calcium modulator ORAI1 is the most abundant Ca2+ entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. Methods Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. Results GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca2+ currents after Ca2+ release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. Conclusions Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed

  11. Effect of the cigarette smoke component, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), on physiological and molecular parameters of thiamin uptake by pancreatic acinar cells.

    PubMed

    Srinivasan, Padmanabhan; Subramanian, Veedamali S; Said, Hamid M

    2013-01-01

    Thiamin is indispensable for the normal function of pancreatic acinar cells. These cells take up thiamin via specific carrier-mediated process that involves thiamin transporter-1 and -2 (THTR-1 and THTR-2; products of SLC19A2 and SLC19A3 genes, respectively). In this study we examined the effect of chronic exposure of pancreatic acinar cells in vitro (pancreatic acinar 266-6 cells) and in vivo (wild-type and transgenic mice carrying the SLC19A2 and SLC19A3 promoters) to the cigarette smoke component 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) on physiological and molecular parameters of the thiamin uptake process. The results show that chronic exposure of 266-6 cells to NNK (3 µM, 24 h) leads to a significant inhibition in thiamin uptake. The inhibition was associated with a significant decrease in the level of expression of THTR-1 and -2 at the protein and mRNA levels as well as in the activity of SLC19A2 and SLC19A3 promoters. Similarly chronic exposure of mice to NNK (IP 10 mg/100 g body weight, three times/week for 2 weeks) leads to a significant inhibition in thiamin uptake by freshly isolated pancreatic acinar cells, as well as in the level of expression of THTR-1 and -2 protein and mRNA. Furthermore, activity of the SLC19A2 and SLC19A3 promoters expressed in transgenic mice were significantly suppressed by chronic exposure to NNK. The effect of NNK on the activity of the SLC19A2 and SLC19A3 promoters was not mediated via changes in their methylation profile, rather it appears to be exerted via an SP1/GG and SP1/GC cis-regulatory elements in these promoters, respectively. These results demonstrate, for the first time, that chronic exposure of pancreatic acinar cells to NNK negatively impacts the physiological and molecular parameters of thiamin uptake by pancreatic acinar cells and that this effect is exerted, at least in part, at the level of transcription of the SLC19A2 and SLC19A3 genes.

  12. Adenovirus-mediated hAQP1 expression in irradiated mouse salivary glands causes recovery of saliva secretion by enhancing acinar cell volume decrease.

    PubMed

    Teos, L Y; Zheng, C-Y; Liu, X; Swaim, W D; Goldsmith, C M; Cotrim, A P; Baum, B J; Ambudkar, I S

    2016-07-01

    Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands

  13. Adenovirus-mediated hAQP1 expression in irradiated mouse salivary glands causes recovery of saliva secretion by enhancing acinar cell volume decrease.

    PubMed

    Teos, L Y; Zheng, C-Y; Liu, X; Swaim, W D; Goldsmith, C M; Cotrim, A P; Baum, B J; Ambudkar, I S

    2016-07-01

    Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands

  14. Changes in the acinar activity patterns of phosphoenolpyruvate carboxykinase in livers of male and female rats upon feeding a high protein and a high fat diet.

    PubMed

    Wimmer, M; Luttringer, C; Colombi, M

    1990-01-01

    Phosphoenolpyruvate carboxykinase (PEPCK) activity was investigated in relation to its localization within the liver acinus of male and female rats after feeding either a high protein diet (77%) or a high fat diet (52%). Both diets led to sex-dependent changes in activity and acinar distribution patterns. In male rats high protein diet provoked a shift in the acinar activity pattern towards the perivenous parts of the acinus without increase in average activity. Yet in the livers of females the activity was increased in all parts of the acinus, but to a greater extent in the perivenous parts of the acinus. Feeding a high fat diet increased PEPCK activity in males and to an even greater extent in females. In both sexes the increase was greater in the perivenous zone when compared to the changes within the periportal zone. The results are discussed in relation to changes in the concentrations of glucoregulatory hormones.

  15. Artificial Satellite Analysis Program (ASAP)

    NASA Technical Reports Server (NTRS)

    Kwok, Johnny H.

    1990-01-01

    Program suited for studying planetary orbit missions including mapping and flyby components. Sample data included for geosynchronous station drift cycle study. Venus radar mapping strategy, frozen orbit about Mars, and repeat ground trace orbit. Written in FORTRAN.

  16. CIR ASAP Act of 2009

    THOMAS, 111th Congress

    Rep. Ortiz, Solomon P. [D-TX-27

    2009-12-15

    03/01/2010 Referred to the Subcommittee on Immigration, Citizenship, Refugees, Border Security, and International Law. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. Successful Salvage Chemotherapy with FOLFIRINOX for Recurrent Mixed Acinar Cell Carcinoma and Ductal Adenocarcinoma of the Pancreas in an Adolescent Patient

    PubMed Central

    Pfrommer, Sarah; Weber, Achim; Dutkowski, Philipp; Schäfer, Niklaus G.; Müllhaupt, Beat; Bourquin, Jean-Pierre; Breitenstein, Stefan; Pestalozzi, Bernhard C.; Stenner, Frank; Renner, Christoph; D'Addario, Giannicola; Graf, Hans-Jörg; Knuth, Alexander; Clavien, Pierre-Alain; Samaras, Panagiotis

    2013-01-01

    Pancreatic tumors are rare in children and adolescents. Here, we report the case of a 15-year-old boy who presented with a mixed acinar cell carcinoma/ductal adenocarcinoma with blastomatous components. He received multimodal treatment including various chemotherapy regimens and multistep surgery including liver transplantation. Introduction of FOLFIRINOX after relapse repeatedly achieved a durable metabolic and clinical response with good quality of life. PMID:24163668

  18. Successful Salvage Chemotherapy with FOLFIRINOX for Recurrent Mixed Acinar Cell Carcinoma and Ductal Adenocarcinoma of the Pancreas in an Adolescent Patient.

    PubMed

    Pfrommer, Sarah; Weber, Achim; Dutkowski, Philipp; Schäfer, Niklaus G; Müllhaupt, Beat; Bourquin, Jean-Pierre; Breitenstein, Stefan; Pestalozzi, Bernhard C; Stenner, Frank; Renner, Christoph; D'Addario, Giannicola; Graf, Hans-Jörg; Knuth, Alexander; Clavien, Pierre-Alain; Samaras, Panagiotis

    2013-01-01

    Pancreatic tumors are rare in children and adolescents. Here, we report the case of a 15-year-old boy who presented with a mixed acinar cell carcinoma/ductal adenocarcinoma with blastomatous components. He received multimodal treatment including various chemotherapy regimens and multistep surgery including liver transplantation. Introduction of FOLFIRINOX after relapse repeatedly achieved a durable metabolic and clinical response with good quality of life. PMID:24163668

  19. Differences in claudin synthesis in primary cultures of acinar cells from rat salivary gland are correlated with the specific three-dimensional organization of the cells.

    PubMed

    Qi, Bing; Fujita-Yoshigaki, Junko; Michikawa, Hiromi; Satoh, Keitaro; Katsumata, Osamu; Sugiya, Hiroshi

    2007-07-01

    Tight junctions are essential for the maintenance of epithelial cell polarity. We have previously established a system for the primary culture of salivary parotid acinar cells that retain their ability to generate new secretory granules and to secrete proteins in a signal-dependent manner. Because cell polarity and cell-cell adhesion are prerequisites for the formation of epithelial tissues, we have investigated the structure of the tight junctions in these cultures. We have found two types of cellular organization in the culture: monolayers and semi-spherical clusters. Electron microscopy has revealed tight junctions near the apical region of the lateral membranes between cells in the monolayers and cells at the surface of the clusters. The cells in the interior of the clusters also have tight junctions and are organized around a central lumen. These interior cells retain more secretory granules than the surface or monolayer cells, suggesting that they maintain their original character as acinar cells. The synthesis of claudin-4 increases during culture, although it is not detectable in the cells immediately after isolation from the glands. Immunofluorescence microscopy has shown that claudin-4 is synthesized in the monolayers and at the surface of the clusters, but not inside the clusters. Only claudin-3, which is present in the original acinar cells following isolation and in the intact gland, has been detected inside the clusters. These results suggest that differences in claudin expression are related to the three-dimensional structures of the cell cultures and reflect their ability to function as acinar cells.

  20. Leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of prostaglandin and constitutive nitric oxide synthase pathways.

    PubMed

    Slomiany, B L; Slomiany, A

    2008-04-01

    Leptin, a pleiotropic cytokine secreted by adipocytes but also identified in salivary glands and saliva, is recognized as an important element of oral mucosal defense. Here, we report that in sublingual salivary glands leptin protects the acinar cells of against ethanol cytotoxicity. We show that ethanol- induced cytotoxicity, characterized by a marked drop in the acinar cell capacity for NO production, arachidonic acid release and prostaglandin generation, was subject to suppression by leptin. The loss in countering capacity of leptin on the ethanol-induced cytotoxicity was attained with cyclooxygenase inhibitor, indomethacin and nitric oxide synthase (cNOS) inhibitor, L-NAME, as well as PP2, an inhibitor of Src kinase. Indomethacin, while not affecting leptin-induced arachidonic acid release, caused the inhibition in PGE2 generation, pretreatment with L-NAME led to the inhibition in NO production, whereas PP2 exerted the inhibitory effect on leptin-induced changes in NO, arachidonic acid, and PGE2. The leptin-induced changes in arachidonic acid release and PGE2 generation were blocked by ERK inhibitor, PD98059, but not by PI3K inhibitor, wortmannin. Further, leptin suppression of ethanol cytotoxicity was reflected in the increased Akt and cNOS phosphorylation that was sensitive to PP2. Moreover, the stimulatory effect of leptin on the acinar cell cNOS activity was inhibited not only by PP2, but also by Akt inhibitor, SH-5, while wortmannin had no effect. Our findings demonstrate that leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of MAPK/ERK and Akt that result in up-regulation of the respective prostaglandin and nitric oxide synthase pathways.

  1. Protein kinase C expression in salivary gland acinar epithelial cells in non-obese diabetic mice, an experimental model for Sjögren's syndrome.

    PubMed

    Tensing, E-K; Ma, J; Hukkanen, M; Fox, H S; Li, T-F; Törnwall, J; Konttinen, Y T

    2005-01-01

    We planned to investigate the expression of protein kinase C (PKC) isoforms in acinar epithelial cells of salivary glands in the non-obese diabetic (NOD) mouse to find out if they develop changes of the PKC system like those seen in the human counterpart, i.e. in Sjögren's syndrome. Parotid, submandibular, and sublingual glands from NOD and control BALB/c mice were stained with a panel of monoclonal antibodies directed against conventional (alpha, beta, and gamma), novel (delta, epsilon, and theta), and atypical (lambda and iota) PKC isoforms using the streptavidin/HRP method. Similarly to human labial salivary glands, acinar epithelial cells of the healthy control BALB/c mice contained two of the conventional PKC isoforms, alpha and beta. Acinar and ductal epithelial cells also contained the atypical PKC isoforms lambda and iota. PKC isoforms gamma, delta, epsilon, and theta were not found. NOD mice which displayed focal sialadenitis contained the same conventional and atypical PKC isoforms. The acinar cells in NOD mice, in contrast to the Sjögren's syndrome patients, did not lack PKC alpha or beta. On the contrary, PKC alpha and beta staining was stronger than in the control BALB/c mice. The present results demonstrate that both conventional and atypical PKC isoforms participate in the salivary epithelial cell biology and that there are mouse strain-associated and/or disease state-associated changes in their expression. The lack of PKC alpha and beta isoforms found in Sjögren's syndrome was not reproduced in NOD mice, which discloses one more difference between the human disease and its NOD mouse model.

  2. Somatostatin receptors on rat pancreatic acinar cells. Pharmacological and structural characterization and demonstration of down-regulation in streptozotocin diabetes.

    PubMed

    Srikant, C B; Patel, Y C

    1986-06-15

    The binding of somatostatin-14 (S-14) to rat pancreatic acinar cell membranes was characterized using [125I-Tyr11]S-14 as the radioligand. Maximum binding was observed at pH 7.4 and was Ca2+-dependent. Such Ca2+ dependence of S-14 receptor binding was not observed in other tissues. Scatchard analysis of the competitive inhibition by S-14 of [125I-Tyr11]S-14 binding revealed a single class of high affinity sites (Kd = 0.5 +/- 0.07 nM) with a binding capacity (Bmax) of 266 +/- 22 fmol/mg of protein. [D-Trp8]S-14 and structural analogs with halogenated Trp moiety exhibited 2-32-fold greater binding affinity than S-14, [D-F5-Trp8]S-14 being the most potent. [Tyr11]S-14 was equipotent with S-14. The affinity of somatostatin-28 for binding to these receptors was 50% of that of S-14. Cholecystokinin octapeptide (CCK-8) inhibited the binding of [125I-Tyr11]S-14, but its inhibition curve was not parallel to that of S-14. In the presence of 1 nM CCK-8, the Bmax of S-14 receptors was reduced to 150 +/- 17 fmol/mg of protein. Dibutyryl cyclic GMP, a CCK receptor antagonist, partially reversed the inhibitory action of CCK-8, suggesting that CCK receptors mediate the inhibition of S-14 receptor binding. GDP, GTP, and guanyl-5'-yl imidodiphosphate inhibit S-14 receptor binding in this tissue. The inhibition was shown to be due to decrease in binding capacity and not due to change in affinity. Specifically bound [125I-Tyr11]S-14 cross-linked to the S-14 receptors was found associated with three proteins of approximate Mr = 200,000, 80,000, and 70,000 which could be detected under both reducing and nonreducing conditions. Finally, pancreatic acinar cell S-14 receptors were shown to be down-regulated by persistent hypersomatostatinemia 1 week after streptozotocin-induced diabetes characterized by decreased Bmax (105 +/- 13 fmol/mg of protein) without any change in affinity. We conclude that pancreatic acinar cell membrane S-14 receptors require Ca2+ for maximal binding and thus

  3. Pancreatic Fat Accumulation, Fibrosis, and Acinar Cell Injury in the Zucker Diabetic Fatty Rat Fed a Chronic High-Fat Diet

    PubMed Central

    Matsuda, Akiko; Makino, Naohiko; Tozawa, Tomohiro; Shirahata, Nakao; Honda, Teiichiro; Ikeda, Yushi; Sato, Hideyuki; Ito, Miho; Kakizaki, Yasuharu; Akamatsu, Manabu; Ueno, Yoshiyuki; Kawata, Sumio

    2014-01-01

    Objective The histological alteration of the exocrine pancreas in obesity has not been clarified. In the present study, we investigated biochemical and histological changes in the exocrine pancreas of obese model rats. Methods Zucker lean rats were fed a standard diet, and Zucker diabetic fatty (ZDF) rats were divided into 2 groups fed a standard diet and a high-fat diet, respectively. These experimental groups were fed each of the diets from 6 weeks until 12, 18, 24 weeks of age. We performed blood biochemical assays and histological analysis of the pancreas. Results In the ZDF rats fed a high-fat diet, the ratio of accumulated pancreatic fat area relative to exocrine gland area was increased significantly at 18 weeks of age in comparison with the other 2 groups (P < 0.05), and lipid droplets were observed in acinar cells. Subsequently, at 24 weeks of age in this group, pancreatic fibrosis and the serum exocrine pancreatic enzyme levels were increased significantly relative to the other 2 groups (P < 0.01). Conclusions In ZDF rats fed a chronic high-fat diet, fat accumulates in pancreatic acinar cells, and this fatty change seems to be related to subsequent pancreatic fibrosis and acinar cell injury. PMID:24717823

  4. SGLT1 protein expression in plasma membrane of acinar cells correlates with the sympathetic outflow to salivary glands in diabetic and hypertensive rats.

    PubMed

    Sabino-Silva, Robinson; Alves-Wagner, Ana B T; Burgi, Katia; Okamoto, Maristela M; Alves, Adilson S; Lima, Guilherme A; Freitas, Helayne S; Antunes, Vagner R; Machado, Ubiratan F

    2010-12-01

    Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P < 0.001 vs. WKY), and diabetes decreased this activity (∼50%, P < 0.05) in both WKY and SHR. The catalytic subunit of PKA and the plasma membrane SGLT1 content in acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (∼30%, P < 0.05) PKA and SGLT1 expression. Immunohistochemical analysis confirmed the observed regulations of SGLT1, revealing its location in basolateral membrane of acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.

  5. A comparison study of pancreatic acinar cell carcinoma with ductal adenocarcinoma using computed tomography in Chinese patients

    PubMed Central

    Wang, Qingbing; Wang, Xiaolin; Guo, Rongfang; Li, Guoping

    2016-01-01

    Pancreatic acinar cell carcinoma (ACC) is a rare tumor that is difficult to diagnose preoperatively. The aim of this study was to evaluate and describe the computed tomography (CT) features of ACC and compare the results with pancreatic ductal adenocarcinoma (DAC) for improving preoperative diagnosis. The control group consisted of 34 patients with DAC collected from the pathology electronic database. The CT imaging from nine patients with pathologically confirmed ACC was retrospectively reviewed. Two radiologists independently assessed the tumor location, size, texture, and enhancement patterns. We found that 64.3% (9/14) of ACC tumors were homogeneous and 35.7% (5/14) had necrosis. The percentage of common bile duct and pancreatic ductal dilation was 14.3% (2/14) and 7.1% (1/14), respectively. The mean size of ACC was 50.1±24.2 mm. The mean attenuation of ACC was 35.4±3.9 Hounsfield unit (HU) before enhancement, 73.1±42.9 HU in arterial phase, and 71.8±15.6 HU in port venous phase. It is difficult to distinguish ACC from DAC preoperatively only based on CT findings. However, compared with DAC, we found that ACC tumors are likely to be larger and contain more heterogeneous intratumoral necrotic hypovascular regions, and less pancreatic ductal and common biliary dilation. PMID:27660464

  6. A comparison study of pancreatic acinar cell carcinoma with ductal adenocarcinoma using computed tomography in Chinese patients

    PubMed Central

    Wang, Qingbing; Wang, Xiaolin; Guo, Rongfang; Li, Guoping

    2016-01-01

    Pancreatic acinar cell carcinoma (ACC) is a rare tumor that is difficult to diagnose preoperatively. The aim of this study was to evaluate and describe the computed tomography (CT) features of ACC and compare the results with pancreatic ductal adenocarcinoma (DAC) for improving preoperative diagnosis. The control group consisted of 34 patients with DAC collected from the pathology electronic database. The CT imaging from nine patients with pathologically confirmed ACC was retrospectively reviewed. Two radiologists independently assessed the tumor location, size, texture, and enhancement patterns. We found that 64.3% (9/14) of ACC tumors were homogeneous and 35.7% (5/14) had necrosis. The percentage of common bile duct and pancreatic ductal dilation was 14.3% (2/14) and 7.1% (1/14), respectively. The mean size of ACC was 50.1±24.2 mm. The mean attenuation of ACC was 35.4±3.9 Hounsfield unit (HU) before enhancement, 73.1±42.9 HU in arterial phase, and 71.8±15.6 HU in port venous phase. It is difficult to distinguish ACC from DAC preoperatively only based on CT findings. However, compared with DAC, we found that ACC tumors are likely to be larger and contain more heterogeneous intratumoral necrotic hypovascular regions, and less pancreatic ductal and common biliary dilation.

  7. Platelet-activating factor promotes motility in breast cancer cells and disrupts non-transformed breast acinar structures.

    PubMed

    Anandi, V Libi; Ashiq, K A; Nitheesh, K; Lahiri, M

    2016-01-01

    A plethora of studies have demonstrated that chronic inflammatory microenvironment influences the genesis and progression of tumors. Such microenvironments are enriched with various lipid mediators. Platelet activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is one such lipid mediator that is secreted by different immune cell types during inflammation and by breast cancer cells upon stimulation with growth factors. Overexpression of PAF-receptor has also been observed in many other cancers. Here we report the possible roles of PAF in tumor initiation and progression. MCF10A, a non-transformed and non-malignant mammary epithelial cell line, when grown as 3D 'on-top' cultures form spheroids that have a distinct hollow lumen surrounded by a monolayer of epithelial cells. Exposure of these spheroids to PAF resulted in the formation of large deformed acinar structures with disrupted lumen, implying transformation. We then examined the response of transformed cells such as MDA-MB 231 to stimulation with PAF. We observed collective cell migration as well as motility at the single cell level on PAF induction, suggesting its role during metastasis. This increase in collective cell migration is mediated via PI3-kinase and/or JNK pathway and is independent of the MAP-kinase pathway. Taken together this study signifies a novel role of PAF in inducing transformation of non-tumorigenic cells and the vital role in promotion of breast cancer cell migration. PMID:26531049

  8. Formation of post-confluence structure in human parotid gland acinar cells on PLGA through regulation of E-cadherin.

    PubMed

    Chan, Yen-Hui; Huang, Tsung-Wei; Chou, Ya-Shuan; Hsu, Sheng-Hao; Su, Wei-Fang; Lou, Pei-Jen; Young, Tai-Horng

    2012-01-01

    As a potential solution for patients to retrieve their lost salivary gland functions, tissue engineering of an auto-secretory device is profoundly needed. Under serum-free environment, primary human parotid gland acinar (PGAC) cells can be obtained. After reaching confluence, PGAC cells spontaneously form three-dimension (3D) cell aggregations, termed post-confluence structure (PCS), and change their behaviors. Poly (lactic-co-glycolic acid) (PLGA) has been widely used in the field of biomedical applications because of its biodegradable properties for desired functions. Nonetheless, the role of PLGA in facilitating PGAC cells to form PCS has seldom been explored to recover epithelial characteristics. In this study, PGAC cells were found to have a greater tendency to form PCS on PLGA than on tissue culture polystyrene (TCPS). By tracing cell migration paths and modulating E-cadherin activity with specific inhibitor or antibody, we demonstrated that the static force of homophilic interaction on surfaces of individual cells, but not the dynamics of cell migration, played a more important role in PCS formation. Thus, PLGA was successfully confirmed to support PGAC cells to form more PCS through the effects on enhancing E-cadherin expression, which is associated with FAK/ILK/Snail expression in PGAC cells. This result indicates that selective appropriate biomaterials may be potentially useful in generating 3D PCS on two-dimension (2D) substrate without fabricating a complex 3D scaffold.

  9. A comparison study of pancreatic acinar cell carcinoma with ductal adenocarcinoma using computed tomography in Chinese patients.

    PubMed

    Wang, Qingbing; Wang, Xiaolin; Guo, Rongfang; Li, Guoping

    2016-01-01

    Pancreatic acinar cell carcinoma (ACC) is a rare tumor that is difficult to diagnose preoperatively. The aim of this study was to evaluate and describe the computed tomography (CT) features of ACC and compare the results with pancreatic ductal adenocarcinoma (DAC) for improving preoperative diagnosis. The control group consisted of 34 patients with DAC collected from the pathology electronic database. The CT imaging from nine patients with pathologically confirmed ACC was retrospectively reviewed. Two radiologists independently assessed the tumor location, size, texture, and enhancement patterns. We found that 64.3% (9/14) of ACC tumors were homogeneous and 35.7% (5/14) had necrosis. The percentage of common bile duct and pancreatic ductal dilation was 14.3% (2/14) and 7.1% (1/14), respectively. The mean size of ACC was 50.1±24.2 mm. The mean attenuation of ACC was 35.4±3.9 Hounsfield unit (HU) before enhancement, 73.1±42.9 HU in arterial phase, and 71.8±15.6 HU in port venous phase. It is difficult to distinguish ACC from DAC preoperatively only based on CT findings. However, compared with DAC, we found that ACC tumors are likely to be larger and contain more heterogeneous intratumoral necrotic hypovascular regions, and less pancreatic ductal and common biliary dilation. PMID:27660464

  10. Cell proliferation in carcinogenesis

    SciTech Connect

    Cohen, S.M.; Ellwein, L.B. )

    1990-08-31

    Chemicals that induce cancer at high doses in animal bioassays often fail to fit the traditional characterization of genotoxins. Many of these nongenotoxic compounds (such as sodium saccharin) have in common the property that they increase cell proliferation in the target organ. A biologically based, computerized description of carcinogenesis was used to show that the increase in cell proliferation can account for the carcinogenicity of nongenotoxic compounds. The carcinogenic dose-response relationship for genotoxic chemicals (such as 2-acetylaminofluorene) was also due in part to increased cell proliferation. Mechanistic information is required for determination of the existence of a threshold for the proliferative (and carcinogenic) response of nongenotoxic chemicals and the estimation of risk for human exposure.

  11. Cell Proliferation in Neuroblastoma

    PubMed Central

    Stafman, Laura L.; Beierle, Elizabeth A.

    2016-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed. PMID:26771642

  12. Proliferation: Threat and response

    SciTech Connect

    1996-04-01

    ;Table of Contents: Section I: The Regional Proliferation Challenge; Northeast Asia; The Middle East and North Africa; The Former Soviet Union: Russia, Ukrane, Kazakstan, And Belarus; South Asia; The International Threat: Dangers from Terrorism, Insurgencies, Civil Wars, And Organized Crime; Section II: Department of Defense Response; Technical Annex: Accessible Technologies; Glossary.

  13. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation

    SciTech Connect

    Tateishi, Yoshihisa Sasabe, Eri; Ueta, Eisaku; Yamamoto, Tetsuya

    2008-02-08

    Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by {gamma}-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10 Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment.

  14. Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin) Uptake by Pancreatic Acinar Cells.

    PubMed

    Srinivasan, Padmanabhan; Thrower, Edwin C; Loganathan, Gopalakrishnan; Balamurugan, A N; Subramanian, Veedamali S; Gorelick, Fred S; Said, Hamid M

    2015-01-01

    Thiamin (vitamin B1), a member of the water-soluble family of vitamins, is essential for normal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunction. Pancreatic acinar cells (PAC) obtain thiamin from the circulation using a specific carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and THTR-2; encoded by the SLC19A2 and SLC19A3 genes, respectively). The aim of the current study was to examine the effect of chronic exposure of mouse PAC in vivo and human PAC in vitro to nicotine (a major component of cigarette smoke that has been implicated in pancreatic diseases) on thiamin uptake and to delineate the mechanism involved. The results showed that chronic exposure of mice to nicotine significantly inhibits thiamin uptake in murine PAC, and that this inhibition is associated with a marked decrease in expression of THTR-1 and THTR-2 at the protein, mRNA and hnRNAs level. Furthermore, expression of the important thiamin-metabolizing enzyme, thiamin pyrophosphokinase (TPKase), was significantly reduced in PAC of mice exposed to nicotine. Similarly, chronic exposure of cultured human PAC to nicotine (0.5 μM, 48 h) significantly inhibited thiamin uptake, which was also associated with a decrease in expression of THTR-1 and THTR-2 proteins and mRNAs. This study demonstrates that chronic exposure of PAC to nicotine impairs the physiology and the molecular biology of the thiamin uptake process. Furthermore, the study suggests that the effect is, in part, mediated through transcriptional mechanism(s) affecting the SLC19A2 and SLC19A3 genes.

  15. Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin) Uptake by Pancreatic Acinar Cells

    PubMed Central

    Srinivasan, Padmanabhan; Thrower, Edwin C.; Loganathan, Gopalakrishnan; Balamurugan, A. N.; Subramanian, Veedamali S.; Gorelick, Fred S.; Said, Hamid M.

    2015-01-01

    Thiamin (vitamin B1), a member of the water-soluble family of vitamins, is essential for normal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunction. Pancreatic acinar cells (PAC) obtain thiamin from the circulation using a specific carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and THTR-2; encoded by the SLC19A2 and SLC19A3 genes, respectively). The aim of the current study was to examine the effect of chronic exposure of mouse PAC in vivo and human PAC in vitro to nicotine (a major component of cigarette smoke that has been implicated in pancreatic diseases) on thiamin uptake and to delineate the mechanism involved. The results showed that chronic exposure of mice to nicotine significantly inhibits thiamin uptake in murine PAC, and that this inhibition is associated with a marked decrease in expression of THTR-1 and THTR-2 at the protein, mRNA and hnRNAs level. Furthermore, expression of the important thiamin-metabolizing enzyme, thiamin pyrophosphokinase (TPKase), was significantly reduced in PAC of mice exposed to nicotine. Similarly, chronic exposure of cultured human PAC to nicotine (0.5 μM, 48 h) significantly inhibited thiamin uptake, which was also associated with a decrease in expression of THTR-1 and THTR-2 proteins and mRNAs. This study demonstrates that chronic exposure of PAC to nicotine impairs the physiology and the molecular biology of the thiamin uptake process. Furthermore, the study suggests that the effect is, in part, mediated through transcriptional mechanism(s) affecting the SLC19A2 and SLC19A3 genes. PMID:26633299

  16. Effects of MeCh, thapsigargin, and La3+ on plasmalemmal and intracellular Ca2+ transport in lacrimal acinar cells.

    PubMed

    Kwan, C Y; Takemura, H; Obie, J F; Thastrup, O; Putney, J W

    1990-06-01

    The Ca2(+)-mobilizing actions of the muscarinic receptor agonist, methacholine (MeCh), and the microsomal Ca2+ pump inhibitor, thapsigargin, were investigated in lacrimal acinar cells. As previously shown for parotid cells (J. Biol. Chem. 264: 12266-12271, 1989), thapsigargin activates both internal Ca2+ release and Ca2+ entry from the extracellular space without increasing cellular inositol phosphates. The inorganic Ca2+ antagonist La3+ inhibited MeCh- or thapsigargin-activated Ca2+ entry. However, when added before MeCh or thapsigargin, La3+ inhibited the extrusion of Ca2+ at the plasma membrane. This phenomenon was exploited in protocols designed to investigate the pathways for filling agonist-sensitive Ca2+ stores in lacrimal cells. The results show that, in contrast to previous suggestions that external Ca2+ is required to replenish agonist-regulated Ca2+ stores, the inhibition of Ca2+ extrusion permits recycling of Ca2+ released by MeCh back into an MeCh- and thapsigargin-sensitive pool. Thus, although extracellular Ca2+ is the major source for refilling the intracellular Ca2+ stores under physiological conditions, the pathway by which this Ca2+ enters the pool need not be a direct one. These results are consistent with the recently revised capacitative model for the refilling of intracellular Ca2+ stores through Ca2+ influx subsequent to Ca2+ depletion, according to which refilling of intracellular Ca2+ stores occurs via a cytoplasmic route rather than a direct channel between intracellular Ca2+ stores and the extracellular space.

  17. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation.

    PubMed

    Tateishi, Yoshihisa; Sasabe, Eri; Ueta, Eisaku; Yamamoto, Tetsuya

    2008-02-01

    Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by gamma-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment.

  18. Damage to pancreatic acinar cells and preservation of islets of Langerhans in a rat model of acute pancreatitis induced by Karwinskia humboldtiana (buckthorn).

    PubMed

    Carcano-Diaz, Katya; Garcia-Garcia, Aracely; Segoviano-Ramirez, Juan Carlos; Rodriguez-Rocha, Humberto; Loera-Arias, Maria de Jesus; Garcia-Juarez, Jaime

    2016-09-01

    Karwinskia humboldtiana (Kh) is a poisonous plant that grows in some regions of the American continent. Consuming large amounts of Kh fruit results in acute intoxication leading to respiratory failure, culminating in death within days. There is evidence of histological damage to the lungs, liver, and kidneys following accidental and experimental Kh intoxication. To date, the microscopic effect of Kh consumption on the pancreas has not been described. We examined the early effects of Kh fruit on pancreatic tissue at different stages of acute intoxication in the Wistar rat. We found progressive damage confined to the exocrine pancreas, starting with a reduction in the number of zymogen granules, loss of acinar architecture, the presence of autophagy-like vesicles, apoptosis and inflammatory infiltrate. The pancreatic pathology culminated in damaged acini characterized by necrosis and edema, with a complete loss of lobular architecture. Interestingly, the morphology of the islets of Langerhans was conserved throughout our evaluations. Taken together, our results indicate the damage induced by a high dose of Kh fruit in the Wistar rat is consistent with an early acute necrotizing pancreatitis that exclusively affects the exocrine pancreas. Therefore, this system might be useful as an animal model to study the treatment of pancreatic diseases. More importantly, as the islets of Langerhans were preserved, the active compounds of Kh fruit could be utilized for the treatment of acinar pancreatic cancer. Further studies might provide insight into the severity of acute Kh intoxication in humans and influence the design of treatments for pancreatic diseases and acinar pancreatic cancer. PMID:26877198

  19. Regulation of Ca²⁺ release through inositol 1,4,5-trisphosphate receptors by adenine nucleotides in parotid acinar cells.

    PubMed

    Park, Hyung Seo; Betzenhauser, Matthew J; Zhang, Yu; Yule, David I

    2012-01-01

    Secretagogue-stimulated intracellular Ca(2+) signals are fundamentally important for initiating the secretion of the fluid and ion component of saliva from parotid acinar cells. The Ca(2+) signals have characteristic spatial and temporal characteristics, which are defined by the specific properties of Ca(2+) release mediated by inositol 1,4,5-trisphosphate receptors (InsP(3)R). In this study we have investigated the role of adenine nucleotides in modulating Ca(2+) release in mouse parotid acinar cells. In permeabilized cells, the Ca(2+) release rate induced by submaximal [InsP(3)] was increased by 5 mM ATP. Enhanced Ca(2+) release was not observed at saturating [InsP(3)]. The EC(50) for the augmented Ca(2+) release was ∼8 μM ATP. The effect was mimicked by nonhydrolysable ATP analogs. ADP and AMP also potentiated Ca(2+) release but were less potent than ATP. In acini isolated from InsP(3)R-2-null transgenic animals, the rate of Ca(2+) release was decreased under all conditions but now enhanced by ATP at all [InsP(3)]. In addition the EC(50) for ATP potentiation increased to ∼500 μM. These characteristics are consistent with the properties of the InsP(3)R-2 dominating the overall features of InsP(3)R-induced Ca(2+) release despite the expression of all isoforms. Finally, Ca(2+) signals were measured in intact parotid lobules by multiphoton microscopy. Consistent with the release data, carbachol-stimulated Ca(2+) signals were reduced in lobules exposed to experimental hypoxia compared with control lobules only at submaximal concentrations. Adenine nucleotide modulation of InsP(3)R in parotid acinar cells likely contributes to the properties of Ca(2+) signals in physiological and pathological conditions.

  20. JPRS report proliferation issues

    SciTech Connect

    1991-12-02

    This report contains foreign media information on issues related to worldwide proliferation and transfer activities in nuclear, chemical, and biological weapons, including delivery systems and the transfer of weapons relevant technologies. The following locations are included: (1) South Africa; (2) China; (3) North and South Korea, Taiwan; (4) Hungary, Yugoslavia; (5) Brazil, Argentina; (6) Afghanistan, India, Iran, Iraq, Israel, Pakistan; (7) Soviet Union; and (8) France, Germany, Italy, Switzerland.

  1. Proliferating pilomatricoma - Case report*

    PubMed Central

    Kondo, Rogerio Nabor; Pontello Junior, Rubens; Belinetti, Francine Milenkovich; Cilião, Caroline; Vasconcellos, Vanessa Regina Bulla; Grimaldi, Dora Maria

    2015-01-01

    Proliferating pilomatricoma is proliferative, rare tumor variant of pilomatricoma. It is a benign neoplasm of hair matrix that can have potentially involve local recurrence. We report the case of a 60-year-old man who presented an asymptomatic nodule on the scalp. Histological exam demonstrated a basaloid epithelium at the periphery, filled with eosinophilic cornified material containing shadow cells. The tumor was excised and there was no evidence of recurrence one year later. PMID:26312685

  2. Evidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5-trisphosphate receptors in pancreatic acinar cells.

    PubMed

    Yule, D I; Ernst, S A; Ohnishi, H; Wojcikiewicz, R J

    1997-04-01

    A key event leading to exocytosis of pancreatic acinar cell zymogen granules is the inositol 1,4,5-trisphosphate (InsP3)-mediated release of Ca2+ from intracellular stores. Studies using digital imaging microscopy and laser-scanning confocal microscopy have indicated that the initial release of Ca2+ is localized to the apical region of the acinar cell, an area of the cell dominated by secretory granules. Moreover, a recent study has shown that InsP3 is capable of releasing Ca2+ from a preparation enriched in secretory granules (Gerasimenko, O., Gerasimenko, J., Belan, P., and Petersen, O. H., (1996) Cell 84, 473-480). In the present study, we have investigated the possibility that zymogen granules express InsP3 receptors and are thus Ca2+ release sites. Immunofluorescence staining, obtained with antisera specific to types I, II, or III InsP3 receptors and analyzed by confocal fluorescence microscopy revealed that all InsP3 receptor types were present in acinar cells. The type II receptor localized exclusively to an area close to or at the luminal plasma membrane. While types I and III InsP3 receptors displayed a similar luminal distribution, these receptors were also present at low levels in nuclei. The localization of InsP3 receptor was in marked contrast to the distribution of amylase, a zymogen granule content protein. In a zymogen granule fraction prepared in an identical manner to the aforementioned report demonstrating InsP3-induced Ca2+ release, immunoblotting demonstrated the presence of types I, II, and III InsP3 receptors. Ca2+ release from this preparation in response to InsP3, but not thapsigargin, could also be demonstrated. In contrast, when the zymogen granules were further purified on a Percoll gradient, InsP3 receptors were undetectable, and InsP3 failed to release Ca2+. Transmission electron microscopy performed on both preparations showed that the Percoll-purified granule preparation consisted of essentially pure zymogen granules, whereas the

  3. Vasoactive intestinal peptide/vasoactive intestinal peptide receptor relative expression in salivary glands as one endogenous modulator of acinar cell apoptosis in a murine model of Sjögren's syndrome.

    PubMed

    Hauk, V; Calafat, M; Larocca, L; Fraccaroli, L; Grasso, E; Ramhorst, R; Leirós, C Pérez

    2011-12-01

    Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by a progressive oral and ocular dryness that correlates poorly with the autoimmune damage of the glands. It has been proposed that a loss of homeostatic equilibrium in the glands is partly responsible for salivary dysfunction with acinar cells involved actively in the pathogenesis of SS. The non-obese diabetic (NOD) mouse model of Sjögren's syndrome develops secretory dysfunction and early loss of glandular homeostatic mechanisms, with mild infiltration of the glands. Based on the vasodilator, prosecretory and trophic effects of the vasoactive intestinal peptide (VIP) on acini as well as its anti-inflammatory properties we hypothesized that the local expression of VIP/vasoactive intestinal peptide receptor (VPAC) system in salivary glands could have a role in acinar cell apoptosis and macrophage function thus influencing gland homeostasis. Here we show a progressive decline of VIP expression in submandibular glands of NOD mice with no changes in VPAC receptor expression compared with normal mice. The deep loss of endogenous VIP was associated with a loss of acinar cells through apoptotic mechanisms that could be induced further by tumour necrosis factor (TNF)-α and reversed by VIP through a cyclic adenosine-5'-monophosphate (cAMP)/protein kinase A (PKA)-mediated pathway. The clearance of apoptotic acinar cells by macrophages was impaired for NOD macrophages but a shift from inflammatory to regulatory phenotype was induced in macrophages during phagocytosis of apoptotic acinar cells. These results support that the decline in endogenous VIP/VPAC local levels might influence the survival/apoptosis intracellular set point in NOD acinar cells and their clearance, thus contributing to gland homeostasis loss.

  4. Immunoreactivity of proliferating cell nuclear antigen in salivary gland tumours: an assessment of growth potential.

    PubMed

    Yang, L; Hashimura, K; Qin, C; Shrestha, P; Sumitomo, S; Mori, M

    1993-01-01

    Immunoreactivity of proliferating cell nuclear antigen (PCNA) was assessed to evaluate growth potential in surgically resected tissue specimens from 70 cases of benign and malignant salivary gland tumours. Three stage streptavidin-biotin immunoperoxidase immunostaining using monoclonal antibody to PCNA showed a heterogeneity of PCNA index and distribution. In normal salivary gland specimens, PCNA was demonstrated in the nuclei of few ductal and acinar cells. In pleomorphic adenoma a multiple nodular growth pattern was observed with positive immunoreactivity restricted to the nuclei of tubulo-ductal structures. Warthin's tumour had positive nuclei in the outer cuboidal cells of epithelial component and germinal centres of lymphoid tissue. Myoepithelioma and acinic cell carcinoma showed slightly differing values and a statistically significant difference in the value of the index was observed in tumour cell aggregates of the cribiform type of adenoid cystic carcinoma and the solid undifferentiated type and between low/intermediate and high-grade mucoepidermoid tumours. PCNA is a useful marker of tumour cell proliferation; the index correlates with the grade of malignancy in salivary gland tumours.

  5. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    SciTech Connect

    Loo Jr., Billy W.

    2000-06-09

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  6. Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells.

    PubMed

    Slomiany, Bronislaw L; Slomiany, Amalia

    2010-01-01

    Oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis, and its key virulence factor, LPS, are characterized by a massive rise in epithelial cell apoptosis and the disturbances in NO signaling pathways. Here, we report that the LPS-induced enhancement in rat sublingual salivary gland acinar cell apoptosis and NO generation was associated with the suppression in constitutive nitric oxide synthase (cNOS) activity and a marked increase in the activity of inducible nitric oxide synthase (iNOS). We demonstrate that the detrimental effect of the LPS on cNOS was manifested by the enzyme protein S-nitrosylation, that was susceptible to inhibition by iNOS inhibitor, 1400 W. Further, we show that a peptide hormone, ghrelin, countered the LPS-induced changes in apoptosis and cNOS activity. This effect of ghrelin was reflected in the decrease in cNOS S-nitrosylation and the increase in phosphorylation. Our findings imply that P. gingivalis-induced disturbances in the acinar cell NO signaling pathways result from upregulation in iNOS-derived NO that causes cNOS S-nitrosylation that interferes with its activation through phosphorylation. We also show that ghrelin protection against P. gingivalis-induced disturbances involves cNOS activation associated with a decrease in its S-nitrosylation and the increase in phosphorylation.

  7. RAS inhibitors decrease apoptosis of acinar cells and increase elimination of pancreatic stellate cells after in the course of experimental chronic pancreatitis induced by dibutyltin dichloride.

    PubMed

    Madro, A; Korolczuk, A; Czechowska, G; Celiński, K; Słomka, M; Prozorow-Król, B; Korobowicz, E

    2008-08-01

    Chronic pancreatitis (CP) is a progressive disease, in which the exocrine function of the gland is gradually lost and fibrosis develops due to repeated episodes of acute pancreatitis. The aim of the study was to investigate the effects of RAS inhibitors on the apoptosis of acinar cells and pancreatic stellate cells (PSCs) elimination in experimental CP induced by dibutyltin dichloride (DBTC). CP was induced by administration of DBTC to the femoral vein. Simultaneously captopril, losartan, enalapril and lisinopril were administered intraperitoneally. The rats were decapitated after 60 days and tissue of pancreas was collected. In rats treated by DBTC the features of inflammatory infiltration, ductal lumen dilatation, fibrosis were found. Strong reactivity with caspase2(L) and clusterin-beta antibodies was observed in areas of fibrosis. In animals treated with RAS inhibitors inflammatory changes and fibrosis were less severe. In groups of rats treated with DBTC and RAS inhibitors immunoreactivity of caspase(2L) and clusterin-beta was weak. Positive immunostaining against smooth muscle actine and desmin was observed in the elongated cells (PSC-s). This reaction was weak in groups of rat treated with DBTC and RAS inhibitors. Treatment of CP rats with RAS inhibitors alleviate apoptosis of pancreatic acinar cells and induces PSCs elimination. PMID:18812642

  8. Source of /sup 3/H-labeled inositol bis- and monophosphates in agonist-activated rat parotid acinar cells

    SciTech Connect

    Hughes, A.R.; Putney, J.W. Jr.

    1989-06-05

    The kinetics of (3H)inositol phosphate metabolism in agonist-activated rat parotid acinar cells were characterized in order to determine the sources of (3H)inositol monophosphates and (3H)inositol bisphosphates. The turnover rates of D-myo-inositol 1,4,5-trisphosphate and its metabolites, D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate, were examined following the addition of the muscarinic receptor antagonist, atropine, to cholinergically stimulated parotid cells. D-myo-Inositol 1,4,5-trisphosphate declined with a t1/2 of 7.6 +/- 0.7 s, D-myo-inositol 1,3,4-trisphosphate declined with a t1/2 of 8.6 +/- 1.2 min, and D-myo-inositol 1,4-bisphosphate was metabolized with a t1/2 of 6.0 +/- 0.7 min. The sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate (2.54% phosphatidylinositol/min) did not exceed the calculated rate of breakdown of D-myo-inositol 1,4,5-trisphosphate (2.76% phosphatidylinositol/min). Thus, there is no evidence for the direct hydrolysis of phosphatidylinositol 4-phosphate in intact cells since D-myo-inositol 1,4-bisphosphate formation can be attributed to the dephosphorylation of D-myo-inositol 1,4,5-trisphosphate. The source of the (3H)inositol monophosphates also was examined in cholinergically stimulated parotid cells. When parotid cells were stimulated with methacholine, D-myo-inositol 1,4,5-trisphosphate, D-myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 4-monophosphate levels increased within 2 s, whereas D-myo-inositol 1-monophosphate accumulation was delayed by several seconds. Rates of (3H)inositol monophosphate accumulation also were examined by the addition of LiCl to cells stimulated to steady state levels of (3H)inositol phosphates.

  9. Initiatives for proliferation prevention

    SciTech Connect

    1997-04-01

    Preventing the proliferation of weapons of mass destruction is a central part of US national security policy. A principal instrument of the Department of Energy`s (DOE`s) program for securing weapons of mass destruction technology and expertise and removing incentives for scientists, engineers and technicians in the newly independent states (NIS) of the former Soviet Union to go to rogue countries or assist terrorist groups is the Initiatives for Proliferation Prevention (IPP). IPP was initiated pursuant to the 1994 Foreign Operations Appropriations Act. IPP is a nonproliferation program with a commercialization strategy. IPP seeks to enhance US national security and to achieve nonproliferation objectives by engaging scientists, engineers and technicians from former NIS weapons institutes; redirecting their activities in cooperatively-developed, commercially viable non-weapons related projects. These projects lead to commercial and economic benefits for both the NIS and the US IPP projects are funded in Russian, Ukraine, Kazakhstan and Belarus. This booklet offers an overview of the IPP program as well as a sampling of some of the projects which are currently underway.

  10. Peroxisome proliferator-activated receptor {alpha}-independent peroxisome proliferation

    SciTech Connect

    Zhang Xiuguo; Tanaka, Naoki . E-mail: naopi@hsp.md.shinshu-u.ac.jp; Nakajima, Takero; Kamijo, Yuji; Gonzalez, Frank J.; Aoyama, Toshifumi

    2006-08-11

    Hepatic peroxisome proliferation, increases in the numerical and volume density of peroxisomes, is believed to be closely related to peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) activation; however, it remains unknown whether peroxisome proliferation depends absolutely on this activation. To verify occurrence of PPAR{alpha}-independent peroxisome proliferation, fenofibrate treatment was used, which was expected to significantly enhance PPAR{alpha} dependence in the assay system. Surprisingly, a novel type of PPAR{alpha}-independent peroxisome proliferation and enlargement was uncovered in PPAR{alpha}-null mice. The increased expression of dynamin-like protein 1, but not peroxisome biogenesis factor 11{alpha}, might be associated with the PPAR{alpha}-independent peroxisome proliferation at least in part.

  11. The changing proliferation threat

    SciTech Connect

    Sopko, J.F.

    1996-12-31

    Technological advances and new adversaries with new motives have reduced the relevancy and effectiveness of the American nonproliferation strategy that was developed during the Cold War. The Cold War`s end and the breakup of the Soviet Union have created new proliferation dangers even as they have reduced others. The familiar balance of nuclear terror that linked the superpowers and their client states for nearly 50 years in a choreographed series of confrontations has given way to a much less predictable situation, where weapons of unthinkable power appear within the grasp of those more willing to use them. Rogue nations and {open_quotes}clientless{close_quotes} states, terrorist groups, religious cults, ethnic minorities, disaffected political groups, and even individuals appear to have jointed a new arms race toward mass destruction. The author describes recent events that suggest the new trends and a serious challenge to US national security.

  12. Acinar adenocarcinoma —

    Cancer.gov

    Composed of predominately glandular structures, lined by cuboidal to tall cells, sometimes with mucous production. Cases with the presence of at least 10% of squamous or neuroendocrine component should be allocated to adenosquamous or neuroendocrine carcinoma, respectively.

  13. Retinal pigment epithelial cell proliferation

    PubMed Central

    Temple, Sally

    2015-01-01

    The human retinal pigment epithelium forms early in development and subsequently remains dormant, undergoing minimal proliferation throughout normal life. Retinal pigment epithelium proliferation, however, can be activated in disease states or by removing retinal pigment epithelial cells into culture. We review the conditions that control retinal pigment epithelial proliferation in culture, in animal models and in human disease and interpret retinal pigment epithelium proliferation in context of the recently discovered retinal pigment epithelium stem cell that is responsible for most in vitro retinal pigment epithelial proliferation. Retinal pigment epithelial proliferation-mediated wound repair that occurs in selected macular diseases is contrasted with retinal pigment epithelial proliferation-mediated fibroblastic scar formation that underlies proliferative vitreoretinopathy. We discuss the role of retinal pigment epithelial proliferation in age-related macular degeneration which is reparative in some cases and destructive in others. Macular retinal pigment epithelium wound repair and regression of choroidal neovascularization are more pronounced in younger than older patients. We discuss the possibility that the limited retinal pigment epithelial proliferation and latent wound repair in older age-related macular degeneration patients can be stimulated to promote disease regression in age-related macular degeneration. PMID:26041390

  14. Global proliferation of cephalopods.

    PubMed

    Doubleday, Zoë A; Prowse, Thomas A A; Arkhipkin, Alexander; Pierce, Graham J; Semmens, Jayson; Steer, Michael; Leporati, Stephen C; Lourenço, Sílvia; Quetglas, Antoni; Sauer, Warwick; Gillanders, Bronwyn M

    2016-05-23

    Human activities have substantially changed the world's oceans in recent decades, altering marine food webs, habitats and biogeochemical processes [1]. Cephalopods (squid, cuttlefish and octopuses) have a unique set of biological traits, including rapid growth, short lifespans and strong life-history plasticity, allowing them to adapt quickly to changing environmental conditions [2-4]. There has been growing speculation that cephalopod populations are proliferating in response to a changing environment, a perception fuelled by increasing trends in cephalopod fisheries catch [4,5]. To investigate long-term trends in cephalopod abundance, we assembled global time-series of cephalopod catch rates (catch per unit of fishing or sampling effort). We show that cephalopod populations have increased over the last six decades, a result that was remarkably consistent across a highly diverse set of cephalopod taxa. Positive trends were also evident for both fisheries-dependent and fisheries-independent time-series, suggesting that trends are not solely due to factors associated with developing fisheries. Our results suggest that large-scale, directional processes, common to a range of coastal and oceanic environments, are responsible. This study presents the first evidence that cephalopod populations have increased globally, indicating that these ecologically and commercially important invertebrates may have benefited from a changing ocean environment. PMID:27218844

  15. Vertical nuclear proliferation.

    PubMed

    Sidel, Victor W

    2007-01-01

    All the nuclear-weapon states are working to develop new nuclear-weapon systems and upgrade their existing ones. Although the US Congress has recently blocked further development of small nuclear weapons and earth-penetrating nuclear weapons, the United States is planning a range of new warheads under the Reliable Replacement Warhead programme, and renewing its nuclear weapons infrastructure. The United Kingdom is spending 1 billion pounds sterling on updating the Atomic Weapons Establishment at Aldermaston, and about 20 billion pounds sterling on replacing its Vanguard submarines and maintaining its Trident warhead stockpile. The US has withdrawn from the Anti-Ballistic Missile Treaty and plans to install missile defence systems in Poland and the Czech Republic; Russia threatens to upgrade its nuclear countermeasures. The nuclear-weapon states should comply with their obligations under Article VI of the Non-Proliferation Treaty, as summarised in the 13-point plan agreed at the 2000 NPT Review Conference, and they should negotiate a Nuclear Weapons Convention.

  16. Flaxseed suppressed prostatic epithelial proliferation in a rat model of benign prostatic hyperplasia.

    PubMed

    Said, Mahmoud M; Hassan, Nahla S; Schlicht, Michael J; Bosland, Maarten C

    2015-01-01

    Benign prostatic hyperplasia (BPH), a disease occurring frequently among elderly males, is a slow progressive enlargement of the fibromuscular and epithelial structures of the prostate gland. Dietary factors may influence the prostate and exert an influence on prostatic growth and disease. The current study was undertaken to investigate the protective effect of dietary flaxseed supplementation against testosterone-induced prostatic hyperplasia in male rats. Forty male Wistar rats were divided into 5 groups: (1) untreated control; (2) treatment with testosterone propionate (TP) to induce prostate enlargement; (3) TP-treated group fed a diet containing 5% milled flaxseed; (4) TP-treated group fed a diet containing 10% milled flaxseed; and (5) TP-treated group fed a diet containing 20 ppm finasteride. Treatment with TP significantly increased the absolute and relative weights of different prostatic lobes, serum testosterone (T), and testosterone/estradiol ratio, as well as prostatic vascular endothelial growth factor (VEGF) expression, RNA synthesis per cell, and epithelial cell proliferation, detected as Ki67 labeling. Histopathological examination did not reveal marked differences in acinar morphology in ventral prostate, whereas morphometric analysis showed significantly increased epithelial cell height. Co-administration of flaxseed or finasteride with TP significantly reduced prostatic VEFG, epithelial cell proliferation, and RNA/DNA ratio, along with a significant increase in serum T and testosterone/estradiol ratio compared with TP-only-treated rats. Our results indicate that flaxseed, similar to the 5α-reductase inhibitor finasteride, blocked TP-induced prostate enlargement in a rat model of BPH, likely through suppression of prostatic VEFG and cellular proliferation.

  17. Chronic alcohol exposure affects pancreatic acinar mitochondrial thiamin pyrophosphate uptake: studies with mouse 266-6 cell line and primary cells.

    PubMed

    Srinivasan, Padmanabhan; Nabokina, Svetlana; Said, Hamid M

    2015-11-01

    Thiamin is essential for normal metabolic activity of all mammalian cells, including those of the pancreas. Cells obtain thiamin from their surroundings and enzymatically convert it into thiamin pyrophosphate (TPP) in the cytoplasm; TPP is then taken up by mitochondria via a specific carrier the mitochondrial TPP transporter (MTPPT; product of the SLC25A19 gene). Chronic alcohol exposure negatively impacts the health of pancreatic acinar cells (PAC), but its effect on physiological/molecular parameters of MTPPT is not known. We addressed this issue using mouse pancreatic acinar tumor cell line 266-6 and primary PAC of wild-type and transgenic mice carrying the SLC25A19 promoter that were fed alcohol chronically. Chronic alcohol exposure of 266-6 cells (but not to its nonoxidative metabolites ethyl palmitate and ethyl oleate) led to a significant inhibition in mitochondrial TPP uptake, which was associated with a decreased expression of MTPPT protein, mRNA, and activity of the SLC25A19 promoter. Similarly, chronic alcohol feeding of mice led to a significant inhibition in expression of MTPPT protein, mRNA, heterogeneous nuclear RNA, as well as in activity of SLC25A19 promoter in PAC. While chronic alcohol exposure did not affect DNA methylation of the Slc25a19 promoter, a significant decrease in histone H3 euchromatin markers and an increase in H3 heterochromatin marker were observed. These findings show, for the first time, that chronic alcohol exposure negatively impacts pancreatic MTPPT, and that this effect is exerted, at least in part, at the level of Slc25a19 transcription and appears to involve epigenetic mechanism(s).

  18. A betacellulin mutant promotes differentiation of pancreatic acinar AR42J cells into insulin-producing cells with low affinity of binding to ErbB1.

    PubMed

    Nagaoka, Tadahiro; Fukuda, Takayuki; Hashizume, Toshihiro; Nishiyama, Tomoko; Tada, Hiroko; Yamada, Hidenori; Salomon, David S; Yamada, Satoko; Kojima, Itaru; Seno, Masaharu

    2008-06-27

    Betacellulin (BTC) is one of the members of the epidermal growth factor (EGF) ligand family of ErbB receptor tyrosine kinases. It is a differentiation factor as well as a potent mitogen. BTC promotes the differentiation of pancreatic acinar-derived AR42J cells into insulin-producing cells. It independently and preferentially binds to two type I tyrosine kinase receptors, the EGF receptor (ErbB1) and ErbB4. However, the physiochemical characteristics of BTC that are responsible for its preferential binding to these two receptors have not been fully defined. In this study, to investigate the essential amino acid residues of BTC for binding to the two receptors, we introduced point mutations into the EGF domain of BTC employing error-prone PCR. The receptor binding abilities of 190 mutants expressed in Escherichia coli were assessed by enzyme immunoassay. Replacement of the glutamic acid residue at position 88 with a lysine residue in BTC was found to produce a significant loss of affinity for binding to ErbB1, while the affinity of binding to ErbB4 was unchanged. In addition, the mutant of BTC-E/88/K showed less growth-promoting activity on BALB/c 3T3 cells compared with that of the wild-type BTC protein. Interestingly, the BTC mutant protein promoted differentiation of pancreatic acinar AR42J cells at a high frequency into insulin-producing cells compared with AR42J cells that were treated with wild-type BTC protein. These results indicate the possibility of designing BTC mutants, which have an activity of inducing differentiation only, without facilitating growth promotion. PMID:18508082

  19. Constitutive nitric oxide synthase-mediated caspase-3 S-nitrosylation in ghrelin protection against Porphyromonas gingivalis-induced salivary gland acinar cell apoptosis.

    PubMed

    Slomiany, B L; Slomiany, A

    2010-06-01

    Recent advances in identifying the salivary constituents capable of influencing the oral mucosal inflammatory responses have brought to focus the importance of a peptide hormone, ghrelin. Here, we report on the involvement of ghrelin in controlling the apoptotic processes induced in sublingual salivary gland acinar cells by the lipopolysaccharide (LPS) of a periodontopathic bacterium, Porphyromonas gingivalis. We show that the countering effect of ghrelin on the LPS-induced acinar cell apoptosis was associated with the increase in constitutive nitric oxide synthase (cNOS) activity, and the reduction in caspase-3 and inducible nitric oxide synthase (iNOS). The loss in countering effect of ghrelin on the LPS-induced changes in apoptosis and caspase-3 activity was attained with Src kinase inhibitor, PP2, as well as Akt inhibitor, SH-5, and cNOS inhibitor, L-NAME, but not the iNOS inhibitor, 1400W. The effect of ghrelin on the LPS-induced changes in cNOS activity, moreover, was reflected in the increased cNOS phosphorylation that was sensitive to PP2 as well as SH-5. Furthermore, the ghrelin-induced up-regulation in cNOS activity was associated with the increase in caspase-3 S-nitrosylation that was susceptible to the blockage by SH-5 and L-NAME. The findings point to the involvement of ghrelin in Src/Akt kinase-mediated cNOS activation and the apoptogenic signal inhibition through the NO-induced caspase-3 S-nitrosylation.

  20. Role of epidermal growth factor receptor transactivation in the activation of cytosolic phospholipase A(2) in leptin protection of salivary gland acinar cells against ethanol cytotoxicity.

    PubMed

    Slomiany, B L; Slomiany, A

    2009-06-01

    A pleiotropic hormone, leptin, secreted into saliva by the acinar cells of salivary glands is an important mediator of the processes of oral mucosal defense. Here, we report on the role of epidermal growth factor receptor (EGFR) transactivation in the signaling events that mediate leptin protection of sublingual salivary gland acinar cells against ethanol cytotoxicity. We show that the protective effect of leptin against ethanol cytotoxicity was associated with the increased EGFR protein tyrosine kinase and cytosolic phospholipase A(2) (cPLA(2)) activity, and characterized by a marked increase in matrix metalloproteinase MMP-9 and arachidonic acid (AA) release, and PGE(2) generation. The loss in countering capacity of leptin against ethanol cytotoxicity was attained with JAK inhibitor AG490, Src inhibitor PP2, and EGFR inhibitor AG1478, as well as ERK inhibitor PD98059. Moreover, the agents evoked also the inhibition in leptin-induced up-regulation in cPLA(2) activity, AA release, and PGE(2) generation. The changes caused by leptin in EGFR phosphorylation, MMP-9, and cPLA(2) activation were susceptible to suppression by metalloprotease inhibitor GM6001, but the production of MMP-9 was not affected by EGFR inhibitor AG1478 or PKC inhibitor Ro318220. These findings point to the involvement of MMP-9 in the event of leptin-induced EGFR transactivation that results in the signaling cascade leading to cPLA(2) activation and up-regulation in PGE(2) generation, thus providing new insights into the mechanism of oral mucosal protection against ethanol toxicity.

  1. Ventromedial hypothalamic lesions change the expression of cell proliferation-related genes and morphology-related genes in rat pancreatic islets

    PubMed Central

    Kiba, Takayoshi; Ishigaki, Yasuhito

    2014-01-01

    Studies in normal rats and ob/ob mice indicated that islet neogenesis does not occur in the intact rodent pancreas. We previously reported that ventromedial hypothalamic (VMH) lesions stimulated cell proliferation of rat pancreatic islet B and acinar cells primarily through a cholinergic receptor mechanism and examined how gene families involved in cell proliferation in total pancreatic tissue are regulated after VMH lesions formation. This study examined how gene families involved in cell proliferation in pancreatic islets alone are regulated after VMH lesions formation. Pancreatic islet RNA was extracted, and differences in gene expression profiles between rats at day 3 after VMH lesioning and sham-VMH-lesioned rats were investigated using DNA microarray and real-time polymerase chain reaction. VMH lesions regulated genes that were involved in functions related to cell cycle and differentiation, growth, binding, apoptosis and morphology in pancreas islets. Real-time polymerase chain reaction also confirmed that gene expression of polo-like kinase 1 (Plk1) and topoisomerase (DNA) II α 170 kDa (Top2a), and stanniocalcin 1 (Stc1) were upregulated at day 3 after the VMH lesions. Ventromedial hypothalamic lesions may change the expression of cell proliferation-related genes and morphology-related genes in rat pancreatic islets. PMID:25658146

  2. Nuclear Proliferation and Grand Challenges

    ScienceCinema

    McCarthy, Kathy

    2016-07-12

    Nuclear engineer Dr. Kathy McCarthy leads systems analysis. She talks about proliferation and the grand challenges of nuclear R&D. For more information about INL energy research, visit http://www.facebook.com/idahonationallaboratory.

  3. Nuclear Proliferation and Grand Challenges

    SciTech Connect

    McCarthy, Kathy

    2009-01-01

    Nuclear engineer Dr. Kathy McCarthy leads systems analysis. She talks about proliferation and the grand challenges of nuclear R&D. For more information about INL energy research, visit http://www.facebook.com/idahonationallaboratory.

  4. Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells.

    PubMed

    Santofimia-Castaño, Patricia; Clea Ruy, Deborah; Garcia-Sanchez, Lourdes; Jimenez-Blasco, Daniel; Fernandez-Bermejo, Miguel; Bolaños, Juan P; Salido, Gines M; Gonzalez, Antonio

    2015-10-01

    The goal of this study was to evaluate the potential activation of the nuclear factor erythroid 2-related factor and the antioxidant-responsive element (Nrf2-ARE) signaling pathway in response to melatonin in isolated mouse pancreatic acinar cells. Changes in intracellular free Ca(2+) concentration were followed by fluorimetric analysis of fura-2-loaded cells. The activations of PKC and JNK were measured by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Immunocytochemistry was employed to determine nuclear location of phosphorylated Nrf2, and the cellular redox state was monitored following MitoSOX Red-derived fluorescence. Our results show that stimulation of fura-2-loaded cells with melatonin (1 µM to 1 mM), in the presence of Ca(2+) in the extracellular medium, induced a slow and progressive increase of [Ca(2+)](c) toward a stable level. Melatonin did not inhibit the typical Ca(2+) response induced by CCK-8 (1 nM). When the cells were challenged with indoleamine in the absence of Ca(2+) in the extracellular solution (medium containing 0.5 mM EGTA) or in the presence of 1 mM LaCl(3), to inhibit Ca(2+) entry, we could not detect any change in [Ca(2+)](c). Nevertheless, CCK-8 (1 nM) was able to induce the typical mobilization of Ca(2+). When the cells were incubated with the PKC activator PMA (1 µM) in the presence of Ca(2+) in the extracellular medium, we observed a response similar to that noted when the cells were challenged with melatonin 100 µM. However, in the presence of Ro31-8220 (3 µM), a PKC inhibitor, stimulation of cells with melatonin failed to evoke changes in [Ca(2+)]c. Immunoblots, using an antibody specific for phospho-PKC, revealed that melatonin induces PKCα activation, either in the presence or in the absence of external Ca(2+). Melatonin induced the phosphorylation and nuclear translocation of the transcription factor Nrf2, and

  5. Cholangiocyte proliferation and liver fibrosis

    PubMed Central

    Glaser, Shannon S.; Gaudio, Eugenio; Miller, Tim; Alvaro, Domenico; Alpini, Gianfranco

    2009-01-01

    Cholangiocyte proliferation is triggered during extrahepatic bile duct obstruction induced by bile duct ligation, which is a common in vivo model used for the study of cholangiocyte proliferation and liver fibrosis. The proliferative response of cholangiocytes during cholestasis is regulated by the complex interaction of several factors, including gastrointestinal hormones, neuroendocrine hormones and autocrine or paracrine signalling mechanisms. Activation of biliary proliferation (ductular reaction) is thought to have a key role in the initiation and progression of liver fibrosis. The first part of this review provides an overview of the primary functions of cholangiocytes in terms of secretin-stimulated bicarbonate secretion – a functional index of cholangiocyte growth. In the second section, we explore the important regulators, both inhibitory and stimulatory, that regulate the cholangiocyte proliferative response during cholestasis. We discuss the role of proliferating cholangiocytes in the induction of fibrosis either directly via epithelial mesenchymal transition or indirectly via the activation of other liver cell types. The possibility of targeting cholangiocyte proliferation as potential therapy for reducing and/or preventing liver fibrosis, and future avenues for research into how cholangiocytes participate in the process of liver fibrogenesis are described. PMID:19239726

  6. Calcium signaling and cell proliferation.

    PubMed

    Pinto, Mauro Cunha Xavier; Kihara, Alexandre Hiroaki; Goulart, Vânia A M; Tonelli, Fernanda M P; Gomes, Katia N; Ulrich, Henning; Resende, Rodrigo R

    2015-11-01

    Cell proliferation is orchestrated through diverse proteins related to calcium (Ca(2+)) signaling inside the cell. Cellular Ca(2+) influx that occurs first by various mechanisms at the plasma membrane, is then followed by absorption of Ca(2+) ions by mitochondria and endoplasmic reticulum, and, finally, there is a connection of calcium stores to the nucleus. Experimental evidence indicates that the fluctuation of Ca(2+) from the endoplasmic reticulum provides a pivotal and physiological role for cell proliferation. Ca(2+) depletion in the endoplasmatic reticulum triggers Ca(2+) influx across the plasma membrane in an phenomenon called store-operated calcium entries (SOCEs). SOCE is activated through a complex interplay between a Ca(2+) sensor, denominated STIM, localized in the endoplasmic reticulum and a Ca(2+) channel at the cell membrane, denominated Orai. The interplay between STIM and Orai proteins with cell membrane receptors and their role in cell proliferation is discussed in this review.

  7. Surgical Injury to the Mouse Pancreas through Ligation of the Pancreatic Duct as a Model for Endocrine and Exocrine Reprogramming and Proliferation.

    PubMed

    De Groef, Sofie; Leuckx, Gunter; Van Gassen, Naomi; Staels, Willem; Cai, Ying; Yuchi, Yixing; Coppens, Violette; De Leu, Nico; Heremans, Yves; Baeyens, Luc; Van de Casteele, Mark; Heimberg, Harry

    2015-08-07

    Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories.

  8. Knockdown of GRP78 promotes apoptosis in pancreatic acinar cells and attenuates the severity of cerulein and LPS induced pancreatic inflammation.

    PubMed

    Liu, Yong; Yang, Lie; Chen, Ke-Ling; Zhou, Bin; Yan, Hui; Zhou, Zong-Guang; Li, Yuan

    2014-01-01

    Acute pancreatitis (AP) is a potentially lethal disease characterized by inflammation and parenchymal cell death; also, the severity of AP correlates directly with necrosis and inversely with apoptosis. However, mechanisms of regulating cell death in AP remain unclear. The endoplasmic reticulum (ER) chaperone protein GRP78 has anti-apoptotic properties, in addition to modulating ER stress responses. This study used RNA interference (RNAi) approach to investigate the potential role of GRP78 in regulating apoptosis during AP. In vitro models of AP were successfully developed by treating AR42J cells with cerulein or cerulein plus lipoplysaccharide (LPS). There was more pancreatic inflammation and less apoptosis with the cerulein plus LPS treatment. Furthermore, knockdown of GRP78 expression markedly promoted apoptosis and reduced necrosis in pancreatic acinar cells. This was accomplished by enhancing the activation of caspases and inhibiting the activity of X-linked inhibitor of apoptosis protein (XIAP), as well as a receptor interacting protein kinase-1(RIPK1), which is a key mediator of necrosis. This attenuated the severity of pancreatic inflammation, especially after cerulein plus LPS treatment. In conclusion, these findings indicate that GRP78 plays an anti-apoptotic role in regulating the cell death response during AP. Therefore, GRP78 is a potential therapeutic target for AP. PMID:24643222

  9. Interobserver reproducibility study of the histological patterns of primary lung adenocarcinoma with emphasis on a more complex glandular pattern distinct from the typical acinar pattern.

    PubMed

    Wang, Congli; Durra, Heba Y; Huang, Yajue; Manucha, Varsha

    2014-04-01

    The newly proposed International Association for the Study of Lung Cancer, American Thoracic Society, and European Respiratory Society (IASLC/ATS/ERS) classification of lung adenocarcinoma has emphasized the prognostic significance of histological subtyping. In this study, 2 surgical pathologists reevaluated 49 consecutive cases of invasive primary pulmonary adenocarcinomas; histological subtyping was performed according to the IASLC/ATS/ERS classification. The 2 reviewers agreed on the predominant pattern in 23 out of 32 independently reviewed cases (71.9%, k = 0.628, 95% confidence interval = 0.442-0.815). Postconsensus, a complex glandular pattern consisting of fused, closely packed glands and cribriform architecture was identified in 9 of 49 (18%) cases. This pattern has a strong association with lymphovascular invasion (78%; P = .0091), high mitotic activity (89%), and higher tumor stage (78%). Frequent association of complex glandular pattern with poor prognostic factors and its overlap with acinar pattern warrant a more detailed description of this pattern in the classification system and a large-scale study to evaluate its prognostic significance. PMID:24477939

  10. Effects of starvation and refeeding a high carbohydrate diet on the intra-acinar distribution pattern of phosphoenolpyruvate carboxykinase activity in the liver of male and female rats.

    PubMed

    Wimmer, M

    1989-01-01

    Phosphoenolpyruvate carboxykinase activity in rat liver was shown to be heterotopically distributed within the acinus under varying feeding conditions. Highest values of PEPCK activity were found in the periportal zone of the acinus from where it decreased continuously towards the perivenous zone. 84 h of starvation resulted in an increase of activity, which was most prominent in the perivenous zone, but nevertheless resulted in a steeper gradient. Refeeding of starved rats with a high carbohydrate diet for 6 nights led to a decrease in PEPCK activity which was most prominent in the periportal zone, but almost negligible in the perivenous zone, resulting in a further change in the activity gradient. Sex-dependent differences for total PEPCK activity were found i) in controls, where the activity was lower in females, ii) after starvation, where the induction was much higher in females, and iii) after refeeding of starved rats, where the activity in females remained higher compared to that of the controls. Differences in the intra-acinar localization of the activity in dependence of the sex were registrated in the control group and in starved rats. Livers from female rats contained a higher periportal/perivenous ratio compared to males. In starved and starved and refed animals the periportal/perivenous ratios were almost the same in both sexes.

  11. Pancreatic Acinar Cells Employ miRNAs as Mediators of Intercellular Communication to Participate in the Regulation of Pancreatitis-Associated Macrophage Activation

    PubMed Central

    Zhao, Yong; Wang, Hao; Qiao, Xin; Sun, Bei

    2016-01-01

    Macrophage activation plays an important role in the inflammatory response in acute pancreatitis. In the present study, the activation of AR42J pancreatic acinar cells was induced by taurolithocholate treatment. The results showed that the culture medium from the activated AR42J cells significantly enhanced NFκB activation in the macrophages compared to that without taurolithocholate treatment. Additionally, the precipitates obtained from ultracentrifugation of the culture media that were rich in exosomes were markedly more potent in activating macrophages compared with the supernatant fraction lacking exosomes. The results indicated that the mediators carried by the exosomes played important roles in macrophage activation. Exosomal miRNAs were extracted and examined using microarrays. A total of 115 differentially expressed miRNAs were identified, and 30 showed upregulated expression, while 85 displayed downregulated expression. Target genes of the differentially expressed miRNAs were predicted using TargetScan, MiRanda, and PicTar software programs. The putative target genes were subjected to KEGG functional analysis. The functions of the target genes were primarily enriched in MAPK pathways. Specifically, the target genes regulated macrophage activation through the TRAF6-TAB2-TAK1-NIK/IKK-NFκB pathway. As the mediators of signal transduction, miRNAs and their predicted target mRNAs regulate every step in the MAPK pathway. PMID:27546996

  12. Dickkopf-3 regulates prostate epithelial cell acinar morphogenesis and prostate cancer cell invasion by limiting TGF-β-dependent activation of matrix metalloproteases.

    PubMed

    Romero, Diana; Al-Shareef, Zainab; Gorroño-Etxebarria, Irantzu; Atkins, Stephanie; Turrell, Frances; Chhetri, Jyoti; Bengoa-Vergniory, Nora; Zenzmaier, Christoph; Berger, Peter; Waxman, Jonathan; Kypta, Robert

    2016-01-01

    Dickkopf-3 (Dkk-3) is a secreted protein whose expression is downregulated in many types of cancer. Endogenous Dkk-3 is required for formation of acini in 3D cultures of prostate epithelial cells, where it inhibits transforming growth factor (TGF)-β/Smad signaling. Here, we examined the effects of Dkk-3 on the expression and activity of matrix metalloproteases (MMPs), which mediate the effects of TGF-β on extracellular matrix disassembly during tissue morphogenesis and promote invasion of tumor cells. Silencing of Dkk-3 in prostate epithelial cells resulted in increased expression and enzyme activity of MMP-2 and MMP-9. Inhibition of MMP-9 partially restored normal acinar morphogenesis in Dkk-3-silenced RWPE-1 prostate epithelial cells. In PC3 prostate cancer cells, Dkk-3 inhibited TGF-β-dependent migration and invasion. Inhibition was mediated by the Dkk-3 C-terminal cysteine-rich domain (Cys2), which also inhibited TGF-β-induced expression of MMP9 and MMP13. In contrast, Dkk-3, but not Cys2, increased formation of normal acini in Dkk-3-silenced prostate epithelial cells. These observations highlight a role for Dkk-3 in modulating TGF-β/MMP signals in the prostate, and suggest that the Dkk-3 Cys2 domain can be used as a basis for therapies that target the tumor promoting effects of TGF-β signaling in advanced prostate cancer.

  13. HCO3- Transport through Anoctamin/Transmembrane Protein ANO1/TMEM16A in Pancreatic Acinar Cells Regulates Luminal pH.

    PubMed

    Han, Yanfeng; Shewan, Annette M; Thorn, Peter

    2016-09-23

    The identification of ANO1/TMEM16A as the likely calcium-dependent chloride channel of exocrine glands has led to a more detailed understanding of its biophysical properties. This includes a calcium-dependent change in channel selectivity and evidence that HCO3 (-) permeability can be significant. Here we use freshly isolated pancreatic acini that preserve the luminal structure to measure intraluminal pH and test the idea that ANO1/TMEM16A contributes to luminal pH balance. Our data show that, under physiologically relevant stimulation with 10 pm cholesystokinin, the luminal acid load that results from the exocytic fusion of zymogen granules is significantly blunted by HCO3 (-) buffer in comparison with HEPES, and that this is blocked by the specific TMEM16A inhibitor T16inh-A01. Furthermore, in a model of acute pancreatitis, we observed substantive luminal acidification and provide evidence that ANO1/TMEM16A acts to attenuate this pH shift. We conclude that ANO1/TMEM16A is a significant pathway in pancreatic acinar cells for HCO3 (-) secretion into the lumen.

  14. Pancreatic Acinar Cells Employ miRNAs as Mediators of Intercellular Communication to Participate in the Regulation of Pancreatitis-Associated Macrophage Activation.

    PubMed

    Zhao, Yong; Wang, Hao; Lu, Ming; Qiao, Xin; Sun, Bei; Zhang, Weihui; Xue, Dongbo

    2016-01-01

    Macrophage activation plays an important role in the inflammatory response in acute pancreatitis. In the present study, the activation of AR42J pancreatic acinar cells was induced by taurolithocholate treatment. The results showed that the culture medium from the activated AR42J cells significantly enhanced NFκB activation in the macrophages compared to that without taurolithocholate treatment. Additionally, the precipitates obtained from ultracentrifugation of the culture media that were rich in exosomes were markedly more potent in activating macrophages compared with the supernatant fraction lacking exosomes. The results indicated that the mediators carried by the exosomes played important roles in macrophage activation. Exosomal miRNAs were extracted and examined using microarrays. A total of 115 differentially expressed miRNAs were identified, and 30 showed upregulated expression, while 85 displayed downregulated expression. Target genes of the differentially expressed miRNAs were predicted using TargetScan, MiRanda, and PicTar software programs. The putative target genes were subjected to KEGG functional analysis. The functions of the target genes were primarily enriched in MAPK pathways. Specifically, the target genes regulated macrophage activation through the TRAF6-TAB2-TAK1-NIK/IKK-NFκB pathway. As the mediators of signal transduction, miRNAs and their predicted target mRNAs regulate every step in the MAPK pathway. PMID:27546996

  15. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  16. Selective estrogen receptor modulators regulate stromal proliferation in human benign prostatic hyperplasia by multiple beneficial mechanisms--action of two new agents.

    PubMed

    Kumar, Rajeev; Verma, Vikas; Sarswat, Amit; Maikhuri, J P; Jain, Ashish; Jain, Rajeev K; Sharma, V L; Dalela, Diwakar; Gupta, Gopal

    2012-04-01

    The existing drugs for benign prostatic hyperplasia (BPH) are partially effective with undesirable side-effects; hence new agents acting by different mechanism(s) are required as supplements. Modulation of estrogen receptor signaling using selective estrogen receptor modulators (SERMs) offers an alternative approach for BPH management. Using human BPH-derived stromal cells and tissue explants in culture we evaluated two SERMs, DL-2-[4-(2-piperidinoethoxy)phenyl]-3-phenyl-2 H-1-benzopyran (BP) and Ormeloxifene (Orm) in comparison to Tamoxifen (Tam) and 4-hydroxytamoxifen (OHT). BP, OHT and Tam were more effective than Orm in reducing stromal cell proliferation of human BPH. BP was either equipotent or more effective than OHT and Tam in increasing estrogen receptor(ER)-ß, TGFß1, Fas and FasL, and in decreasing ER-α, AR, EGF-R and IGF-I expressions in BPH stromal cells. BP, Tam and Orm (1.0 mg/Kg) reduced rat prostate weights by almost same extent as Finasteride (Fin, 5.0 mg/Kg); however combination treatment (SERM+Fin) was more effective. BP was exceptionally efficient in reducing IGF-1 and cleaving PARP while combination treatments more effectively increased bax:bcl-2 ratio. Fin reduced acinar diameter and prostatic DHT level but increased testosterone, estradiol (E(2)) and E(2)/T+DHT ratio. SERMs, especially BP, reduced epithelial cell height drastically without significantly altering steroid hormone levels and E(2)/T+DHT ratio. Combination treatment reduced both acinar diameter and epithelial cell height with modest increase in E(2), T and E(2)/T+DHT. The study reveals the potential of SERMs per se for BPH management, and more effectively in combination with a 5α-reductase inhibitor. BP appears promising for further evaluation as a drug candidate for BPH and prostate cancer.

  17. Proliferation Vulnerability Red Team report

    SciTech Connect

    Hinton, J.P.; Barnard, R.W.; Bennett, D.E.

    1996-10-01

    This report is the product of a four-month independent technical assessment of potential proliferation vulnerabilities associated with the plutonium disposition alternatives currently under review by DOE/MD. The scope of this MD-chartered/Sandia-led study was limited to technical considerations that could reduce proliferation resistance during various stages of the disposition processes below the Stored Weapon/Spent Fuel standards. Both overt and covert threats from host nation and unauthorized parties were considered. The results of this study will be integrated with complementary work by others into an overall Nonproliferation and Arms Control Assessment in support of a Secretarial Record of Decision later this year for disposition of surplus U.S. weapons plutonium.

  18. A novel role for carbon monoxide as a potent regulator of intracellular Ca2+ and nitric oxide in rat pancreatic acinar cells.

    PubMed

    Moustafa, Amira; Habara, Yoshiaki

    2014-12-01

    Carbon monoxide (CO) is known as an essential gaseous messenger that regulates a wide array of physiological and pathological processes, similar to nitric oxide (NO) and hydrogen sulfide. The aim of the present study was to elucidate the potential role of CO in Ca(2+) homeostasis and to explore the underlying mechanisms in pancreatic acinar cells. The exogenous application of a CO-releasing molecule dose-dependently increased intracellular Ca(2+) concentration ([Ca(2+)]i). A heme oxygenase (HO) inducer increased [Ca(2+)]i in a concentration-dependent manner, and the increase was diminished by an HO inhibitor. The CO-induced [Ca(2+)]i increase persisted in the absence of extracellular Ca(2+), indicating that Ca(2+) release is the initial source for the increase. The inhibition of G protein, phospholipase C (PLC), and inositol 1,4,5-trisphosphate (IP3) receptor diminished the CO-induced [Ca(2+)]i increase. CO upregulated endothelial nitric oxide synthase (eNOS) expression and stimulated NO production, and NOS inhibitor, calmodulin inhibitor, or the absence of extracellular Ca(2+) eliminated the latter response. Blocking the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway abolished CO-induced NO production. Pretreatment with an NOS inhibitor, NO scavenger, or soluble guanylate cyclase inhibitor, did not affect the CO-induced [Ca(2+)]i increase, indicating that NO, soluble guanylate cyclase, and cyclic guanosine 5'-monophosphate are not involved in the CO-induced [Ca(2+)]i increase. CO inhibited the secretory responses to CCK-octapeptide or carbachol. We conclude that CO acts as a regulator not only for [Ca(2+)]i homeostasis via a PLC-IP3-IP3 receptor cascade but also for NO production via the calmodulin and PI3K-Akt/PKB pathway, and both CO and NO interact. Moreover, CO may provide potential therapy to ameliorate acute pancreatitis by inhibiting amylase secretion.

  19. Novel Lipophilic Probe for Detecting Near-Membrane Reactive Oxygen Species Responses and Its Application for Studies of Pancreatic Acinar Cells: Effects of Pyocyanin and L-Ornithine

    PubMed Central

    Chvanov, Michael; Huang, Wei; Jin, Tao; Wen, Li; Armstrong, Jane; Elliot, Vicky; Alston, Ben; Burdyga, Alex; Criddle, David N.; Sutton, Robert

    2015-01-01

    Abstract Aims: The aim of this study was to develop a fluorescent reactive oxygen species (ROS) probe, which is preferentially localized in cellular membranes and displays a strong change in fluorescence upon oxidation. We also aimed to test the performance of this probe for detecting pathophysiologically relevant ROS responses in isolated cells. Results: We introduced a novel lipophilic ROS probe dihydrorhodamine B octadecyl ester (H2RB-C18). We then applied the new probe to characterize the ROS changes triggered by inducers of acute pancreatitis in pancreatic acinar cells. We resolved ROS changes produced by L-ornithine, L-arginine, cholecystokinin-8, acetylcholine, taurolithocholic acid 3-sulfate, palmitoleic acid ethyl ester, and the bacterial toxin pyocyanin. Particularly prominent ROS responses were induced by pyocyanin and L-ornithine. These ROS responses were accompanied by changes in cytosolic Ca2+concentration ([Ca2+]i), mitochondrial membrane potential (ΔΨ), and NAD(P)H concentration. Innovation: The study describes a novel sensitive lipophilic ROS probe. The probe is particularly suitable for detecting ROS in near-membrane regions and therefore for reporting the ROS environment of plasma membrane channels and pumps. Conclusions: In our experimental conditions, the novel probe was more sensitive than 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein (CM-H2DCF) and dihydrorhodamine123 (H2R123) and allowed us to resolve ROS responses to secretagogues, pyocyanin, and L-ornithine. Changes in the fluorescence of the new probe were particularly prominent in the peripheral plasma membrane-associated regions. Our findings suggest that the new probe will be a useful tool in studies of the contribution of ROS to the pathophysiology of exocrine pancreas and other organs/tissues. Antioxid. Redox Signal. 22, 451–464. PMID:24635199

  20. Persistence of gamma-H2AX and 53BP1 foci in proliferating and nonproliferating human mammary epithelial cells after exposure to gamma-rays or iron ions

    SciTech Connect

    Groesser, Torsten; Chang, Hang; Fontenay, Gerald; Chen, James; Costes, Sylvain V.; Barcellos-Hoff, Mary Helen; Parvin, Bahram; Rydberg, Bjorn

    2010-12-22

    To investigate {gamma}-H2AX (phosphorylated histone H2AX) and 53BP1 (tumour protein 53 binding protein No. 1) foci formation and removal in proliferating and non-proliferating human mammary epithelial cells (HMEC) after exposure to sparsely and densely ionizing radiation under different cell culture conditions. HMEC cells were grown either as monolayers (2D) or in extracellular matrix to allow the formation of acinar structures in vitro (3D). Foci numbers were quantified by image analysis at various time points after exposure. Our results reveal that in non-proliferating cells under 2D and 3D cell culture conditions, iron-ion induced {gamma}-H2AX foci were still present at 72 h after exposure, although 53BP1 foci returned to control levels at 48 h. In contrast in proliferating HMEC, both {gamma}-H2AX and 53BP1 foci decreased to control levels during the 24-48 h time interval after irradiation under 2D conditions. Foci numbers decreased faster after {gamma}-ray irradiation and returned to control levels by 12 h regardless of marker, cell proliferation status, and cell culture condition. Conclusions: The disappearance of radiation induced {gamma}-H2AX and 53BP1 foci in HMEC have different dynamics that depend on radiation quality and proliferation status. Notably, the general patterns do not depend on the cell culture condition (2D versus 3D). We speculate that the persistent {gamma}-H2AX foci in iron-ion irradiated non-proliferating cells could be due to limited availability of double strand break (DSB) repair pathways in G0/G1-phase, or that repair of complex DSB requires replication or chromatin remodeling.

  1. Nonenzymatic cryogenic isolation of therapeutic cells: novel approach for enzyme-free isolation of pancreatic islets using in situ cryopreservation of islets and concurrent selective freeze destruction of acinar tissue.

    PubMed

    Taylor, Michael J; Baicu, Simona C

    2014-01-01

    Cell-based therapies, which all involve processes for procurement and reimplantation of living cells, currently rely upon expensive, inconsistent, and even toxic enzyme digestion processes. A prime example is the preparation of isolated pancreatic islets for the treatment of type 1 diabetes by transplantation. To avoid the inherent pitfalls of these enzymatic methods, we have conceptualized an alternative approach based on the hypothesis that cryobiological techniques can be used for differential freeze destruction of the pancreas (Px) to release islets that are selectively cryopreserved in situ. Pancreata were procured from juvenile pigs using approved procedures. The concept of cryoisolation is based on differential processing of the pancreas in five stages: 1) infiltrating islets in situ preferentially with a cryoprotectant (CPA) cocktail via antegrade perfusion of the major arteries; 2) retrograde ductal infusion of water to distend the acinar; 3) freezing the entire Px solid to < -160°C for storage in liquid nitrogen; 4) mechanically crushing and pulverizing the frozen Px into small fragments; 5) thawing the frozen fragments, filtering, and washing to remove the CPA. Finally, the filtered effluent (cryoisolate) was stained with dithizone for identification of intact islets and with Syto 13/PI for fluorescence viability testing and glucose-stimulated insulin release assessment. As predicted, the cryoisolate contained small fragments of residual tissue comprising an amorphous mass of acinar tissue with largely intact and viable (>90%) embedded islets. Islets were typically larger (range 50-500 µm diameter) than their counterparts isolated from juvenile pigs using conventional enzyme digestion techniques. Functionally, the islets from replicate cryoisolates responded to a glucose challenge with a mean stimulation index = 3.3 ± 0.7. An enzyme-free method of islet isolation relying on in situ cryopreservation of islets with simultaneous freeze

  2. Nonenzymatic cryogenic isolation of therapeutic cells: novel approach for enzyme-free isolation of pancreatic islets using in situ cryopreservation of islets and concurrent selective freeze destruction of acinar tissue.

    PubMed

    Taylor, Michael J; Baicu, Simona C

    2014-01-01

    Cell-based therapies, which all involve processes for procurement and reimplantation of living cells, currently rely upon expensive, inconsistent, and even toxic enzyme digestion processes. A prime example is the preparation of isolated pancreatic islets for the treatment of type 1 diabetes by transplantation. To avoid the inherent pitfalls of these enzymatic methods, we have conceptualized an alternative approach based on the hypothesis that cryobiological techniques can be used for differential freeze destruction of the pancreas (Px) to release islets that are selectively cryopreserved in situ. Pancreata were procured from juvenile pigs using approved procedures. The concept of cryoisolation is based on differential processing of the pancreas in five stages: 1) infiltrating islets in situ preferentially with a cryoprotectant (CPA) cocktail via antegrade perfusion of the major arteries; 2) retrograde ductal infusion of water to distend the acinar; 3) freezing the entire Px solid to < -160°C for storage in liquid nitrogen; 4) mechanically crushing and pulverizing the frozen Px into small fragments; 5) thawing the frozen fragments, filtering, and washing to remove the CPA. Finally, the filtered effluent (cryoisolate) was stained with dithizone for identification of intact islets and with Syto 13/PI for fluorescence viability testing and glucose-stimulated insulin release assessment. As predicted, the cryoisolate contained small fragments of residual tissue comprising an amorphous mass of acinar tissue with largely intact and viable (>90%) embedded islets. Islets were typically larger (range 50-500 µm diameter) than their counterparts isolated from juvenile pigs using conventional enzyme digestion techniques. Functionally, the islets from replicate cryoisolates responded to a glucose challenge with a mean stimulation index = 3.3 ± 0.7. An enzyme-free method of islet isolation relying on in situ cryopreservation of islets with simultaneous freeze

  3. The Src kinase Yes is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters, but not pancreatic growth factors, which stimulate its association with numerous other signaling molecules.

    PubMed

    Sancho, Veronica; Nuche-Berenguer, Bernardo; Jensen, R T

    2012-08-01

    For growth factors, cytokines, G-protein-coupled receptors and numerous other stimuli, the Src Family of kinases (SFK) play a central signaling role. SFKs also play an important role in pancreatic acinar cell function including metabolism, secretion, endocytosis, growth and cytoskeletal integrity, although the specific SFKs involved are not fully known. In the present study we used specific antibodies for the SFK, Yes, to determine its presence, activation by pancreatic secretagogues or growth factors, and interaction with cellular signaling cascades mediated by CCK in which Yes participates in to cause acinar cell responses. Yes was identified in acini and secretagogues known to activate phospholipase C (PLC) [CCK, carbachol, bombesin] as well as post-receptor stimulants activating PKC [TPA] or mobilizing cellular calcium [thapsigargin/calcium ionophore (A23187)] each activated Yes. Secretin, which activates adenylate cyclase did not stimulate Yes, nor did pancreatic growth factors. CCK activation of Yes required both high- and low-affinity CCK(1)-receptor states. TPA-/CCK-stimulated Yes activation was completely inhibited by thapsigargin and the PKC inhibitor, GF109203X. CCK/TPA stimulated the association of Yes with focal adhesion kinases (Pyk2, FAK) and its autophosphorylated forms (pY397FAK, pY402Pyk2). Moreover, CCK/TPA stimulated Yes interacted with a number of other signaling proteins, including Shc, PKD, p130(Cas), PI3K and PTEN. This study demonstrates that in rat pancreatic acini, the SFK member Yes is expressed and activated by CCK and other gastrointestinal hormones/neurotransmitters. Because its activation results in the direct activation of many cellular signaling cascades that have been shown to mediate CCK's effect in acinar cell function our results suggest that it is one of the important pancreatic SFKs mediating these effects.

  4. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini

    SciTech Connect

    Muthuswamy, Senthil K; Li, Dongmei; Lelievre, Sophie; Bissell, Mina J; Brugge, Joan S

    2001-08-08

    Both ErbB1 and ErbB2 are overexpressed or amplified in breast tumors. To examine the effects of activating ErbB receptors in a context that mimics polarized epithelial cells in vivo, we activated ErbB1 and ErbB2 homodimers in preformed, growth-arrested mammary acini cultured in three-dimensional basement membrane gels. Activation of ErbB2, but not that of ErbB1, led to a reinitiation of cell proliferation and altered the properties of mammary acinar structures. These altered structures share several properties with early-stage tumors, including a loss of proliferative suppression, an absence of lumen, retention of the basement membrane and a lack of invasive properties. ErbB2 activation also disrupted tight junctions and the cell polarity of polarized epithelia, whereas ErbB1 activation did not have any effect. Our results indicate that ErbB receptors differ in their ability to induce early stages of mammary carcinogenesis in vitro and this three-dimensional model system can reveal biological activities of oncogenes that cannot be examined in vitro in standard transformation assays.

  5. The international nuclear non-proliferation system

    SciTech Connect

    Simpson, J.; McGrew, T.

    1985-01-01

    This volume focuses upon the issues raised at this Conference, and attempts to address the international diplomatic, political and trading, rather than technical, questions which surround nuclear non-proliferation policies. It does so by bringing together chapters contributed by participants in non-proliferation diplomacy, those with experience in shaping International Atomic Energy Agency and national policies and academic observers of non-proliferation activities and the international nuclear industry. An analysis is provided of past non-proliferation policies and activities and current issues, and an attempt is made to offer ideas for new initiatives which may sustain the non-proliferation system in the future.

  6. Proliferation Resistance and the Nuclear Renaissance

    SciTech Connect

    Shea, Thomas E.; Zentner, Michael D.

    2008-05-01

    This article explores how emphasizing proliferation resistance will accomplish that goal. What does it mean for a nuclear fuel cycle to be resistant to proliferation? How can the risk of proliferation from a fuel cycle be evaluated? How has proliferation been considered in the past and how is it being considered in nuclear energy development programs today? How should proliferation concerns interact with facility safety and operations? How do proliferation concerns affect the prospects for nuclear energy in the 21st century? And finally, what is the thinking today in relation to deployment arrangements, technical measures, and R&D programs that are in place or proposed that could both decrease the risk of proliferation and ensure the successful renaissance of nuclear power.

  7. Negative regulators of cell proliferation

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Cell proliferation is governed by the influence of both mitogens and inhibitors. Although cell contact has long been thought to play a fundamental role in cell cycling regulation, and negative regulators have long been suspected to exist, their isolation and purification has been complicated by a variety of technical difficulties. Nevertheless, over recent years an ever-expanding list of putative negative regulators have emerged. In many cases, their biological inhibitory activities are consistent with density-dependent growth inhibition. Most likely their interactions with mitogenic agents, at an intracellular level, are responsible for either mitotic arrest or continued cell cycling. A review of naturally occurring cell growth inhibitors is presented with an emphasis on those factors shown to be residents of the cell surface membrane. Particular attention is focused on a cell surface sialoglycopeptide, isolated from intact bovine cerebral cortex cells, which has been shown to inhibit the proliferation of an unusually wide range of target cells. The glycopeptide arrest cells obtained from diverse species, both fibroblasts and epithelial cells, and a broad variety of transformed cells. Signal transduction events and a limited spectrum of cells that are refractory to the sialoglycopeptide have provided insight into the molecular events mediated by this cell surface inhibitor.

  8. Gas Centrifuges and Nuclear Proliferation

    SciTech Connect

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  9. Menin represses tumorigenesis via repressing cell proliferation

    PubMed Central

    Wu, Ting; Hua, Xianxin

    2011-01-01

    Multiple endocrine neoplasia type 1 (MEN1) results from mutations in the tumor suppressor gene, MEN1, which encodes nuclear protein menin. Menin is important for suppressing tumorigenesis in various endocrine and certain non-endocrine tissues. Although menin suppresses MEN1 through a variety of mechanisms including regulating apoptosis and DNA repair, the role of menin in regulating cell proliferation is one of the best-studied functions. Here, we focus on reviewing various mechanisms underlying menin-mediated inhibition of cell proliferation. Menin inhibits cell proliferation to repress MEN1 through multiple mechanisms. 1) Menin interacts with various histonemodifying enzymes, such as MLL, EZH2 and HDACs, to affect gene transcription, leading to repression of cell proliferation. 2) Menin also interacts with various transcription factors, such as JunD, NF-κB, PPARγ and VDR, to induce or suppress gene transcription. As these various transcription factors are known to regulate cell proliferation, their interaction with menin may be relevant to menin's role in inhibiting cell proliferation. 3) Menin inhibits cell proliferation via TGF-β signaling and Wnt/β-catenin signaling pathways. 4) Menin represses certain pro-proliferative factors involved in endocrine tumors such as IGFBP-2, IGF2 and PTHrP to repress cell proliferation. 5) Menin affects cell cycle progression to inhibit cell proliferation. This review is helpful in our understanding of the comprehensive mechanisms whereby menin represses MEN1 through inhibiting cell proliferation. PMID:22016823

  10. The p21-activated kinase, PAK2, is important in the activation of numerous pancreatic acinar cell signaling cascades and in the onset of early pancreatitis events.

    PubMed

    Nuche-Berenguer, Bernardo; Ramos-Álvarez, Irene; Jensen, R T

    2016-06-01

    In a recent study we explored Group-1-p21-activated kinases (GP.1-PAKs) in rat pancreatic acini. Only PAK2 was present; it was activated by gastrointestinal-hormones/neurotransmitters and growth factors in a PKC-, Src- and small-GTPase-mediated manner. PAK2 was required for enzyme-secretion and ERK/1-2-activation. In the present study we examined PAK2's role in CCK and TPA-activation of important distal signaling cascades mediating their physiological/pathophysiological effects and analyzed its role in pathophysiological processes important in early pancreatitis. In rat pancreatic acini, PAK2-inhibition by the specific, GP.1.PAK-inhibitor, IPA-3-suppressed cholecystokinin (CCK)/TPA-stimulated activation of focal-adhesion kinases and mitogen-activated protein-kinases. PAK2-inhibition reversed the dual stimulatory/inhibitory effect of CCK/TPA on the PI3K/Akt/GSK-3β pathway. However, its inhibition did not affect PKC activation. PAK2-inhibition protected acini from CCK-induced ROS-generation; caspase/trypsin-activation, important in early pancreatitis; as well as from cell-necrosis. Furthermore, PAK2-inhibition reduced proteolytic-activation of PAK-2p34, which is involved in programmed-cell-death. To ensure that the study did not only rely in the specificity of IPA-3 as a PAK inhibitor, we used two other approaches for PAK inhibition, FRAX597 a ATP-competitive-GP.1-PAKs-inhibitor and infection with a PAK2-dominant negative(DN)-Advirus. Those two approaches confirmed the results obtained with IPA-3. This study demonstrates that PAK2 is important in mediating CCK's effect on the activation of signaling-pathways known to mediate its physiological/pathophysiological responses including several cellular processes linked to the onset of pancreatitis. Our results suggest that PAK2 could be a new, important therapeutic target to consider for the treatment of diseases involving deregulation of pancreatic acinar cells. PMID:26912410

  11. Cell proliferation in normal epidermis

    SciTech Connect

    Weinstein, G.D.; McCullough, J.L.; Ross, P.

    1984-06-01

    A detailed examination of cell proliferation kinetics in normal human epidermis is presented. Using tritiated thymidine with autoradiographic techniques, proliferative and differentiated cell kinetics are defined and interrelated. The proliferative compartment of normal epidermis has a cell cycle duration (Tc) of 311 h derived from 3 components: the germinative labeling index (LI), the duration of DNA synthesis (ts), and the growth fraction (GF). The germinative LI is 2.7% +/- 1.2 and ts is 14 h, the latter obtained from a composite fraction of labeled mitoses curve obtained from 11 normal subjects. The GF obtained from the literature and from human skin xenografts to nude mice is estimated to be 60%. Normal-appearing epidermis from patients with psoriasis appears to have a higher proliferation rate. The mean LI is 4.2% +/- 0.9, approximately 50% greater than in normal epidermis. Absolute cell kinetic values for this tissue, however, cannot yet be calculated for lack of other information on ts and GF. A kinetic model for epidermal cell renewal in normal epidermis is described that interrelates the rate of birth/entry, transit, and/or loss of keratinocytes in the 3 epidermal compartments: proliferative, viable differentiated (stratum malpighii), and stratum corneum. Expected kinetic homeostasis in the epidermis is confirmed by the very similar ''turnover'' rates in each of the compartments that are, respectively, 1246, 1417, and 1490 cells/day/mm2 surface area. The mean epidermal turnover time of the entire tissue is 39 days. The Tc of 311 h in normal cells in 8-fold longer than the psoriatic Tc of 36 h and is necessary for understanding the hyperproliferative pathophysiologic process in psoriasis.

  12. Proliferation resistance: issues, initiatives and evaluation

    SciTech Connect

    Pilat, Joseph F

    2009-01-01

    The vision of a nuclear renaissance has highlighted the issue of proliferation resistance. The prospects for a dramatic growth in nuclear power may depend on the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen proliferation resistance. The GenIV International Forum (GIF) and others have devoted attention and resources to proliferation resistance. However, the hope of finding a way to make the peaceful uses of nuclear energy resistant to proliferation has reappeared again and again in the history of nuclear power with little practical consequence. The concept of proliferation resistance has usually focused on intrinsic (technological) as opposed to extrinsic (institutional) factors. However, if there are benefits that may yet be realized from reactors and other facilities designed to minimize proliferation risks, it is their coupling with effective safeguards and other nonproliferation measures that likely will be critical. Proliferation resistance has also traditionally been applied only to state threats. Although there are no technologies that can wholly eliminate the risk of proliferation by a determined state, technology can play a limited role in reducing state threats and perhaps in eliminating many non-state threats. These and other issues are not academic. They affect efforts to evaluate proliferation resistance, including the methodology developed by GIF's Proliferation Resistance and Physical Protection (PR&PP) Working Group as well as the proliferation resistance initiatives that are being pursued or may be developed in the future. This paper will offer a new framework for thinking about proliferation resistance issues, including the ways the output of the methodology could be developed to inform the decisions that states, the International Atomic Energy (IAEA) and others will have to make in order to fully realize the promise of a nuclear renaissance.

  13. Identification of transcriptional networks involved in peroxisome proliferator chemical-induced hepatocyte proliferation

    EPA Science Inventory

    Peroxisome proliferator chemical (PPC) exposure leads to increases in rodent liver tumors through a non-genotoxic mode of action (MOA). The PPC MOA includes increased oxidative stress, hepatocyte proliferation and decreased apoptosis. We investigated the putative genetic regulato...

  14. Proliferation resistance of small modular reactors fuels

    SciTech Connect

    Polidoro, F.; Parozzi, F.; Fassnacht, F.; Kuett, M.; Englert, M.

    2013-07-01

    In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

  15. Teaching Activities on Horizontal Nuclear Proliferation.

    ERIC Educational Resources Information Center

    Zola, John

    1990-01-01

    Provides learning activities concerning the horizontal proliferation of nuclear weapons. Includes step-by-step directions for four activities: (1) the life cycle of nuclear weapons; (2) nuclear nonproliferation: pros and cons; (3) the nuclear power/nuclear weapons connection; and (4) managing nuclear proliferation. (NL)

  16. Nuclear Proliferation as a Global Values Issue.

    ERIC Educational Resources Information Center

    Nelson, Jack L.

    1990-01-01

    Presents a classroom activity designed to involve students in critical thinking and values inquiry concerning the horizontal nuclear proliferation. Provides a set of global values, explaining the conflict between them and nuclear proliferation. Uses indicators, hypothesis development, and testing. Provides sources for material evidence to use in…

  17. Director`s series on proliferation

    SciTech Connect

    Bailey, K.C.; Price, M.E.

    1995-11-17

    This is an occasional publication of essays on the topics of nuclear, chemical, biological, and missile proliferation. The views represented are those of the author`s. Essay topics include: Nuclear Proliferation: Myth and Reality; Problems of Enforcing Compliance with Arms Control Agreements; The Unreliability of the Russian Officer Corps: Reluctant Domestic Warriors; and Russia`s Nuclear Legacy.

  18. The endocannabinoid system drives neural progenitor proliferation.

    PubMed

    Aguado, Tania; Monory, Krisztina; Palazuelos, Javier; Stella, Nephi; Cravatt, Benjamin; Lutz, Beat; Marsicano, Giovanni; Kokaia, Zaal; Guzmán, Manuel; Galve-Roperh, Ismael

    2005-10-01

    The discovery of multipotent neural progenitor (NP) cells has provided strong support for the existence of neurogenesis in the adult brain. However, the signals controlling NP proliferation remain elusive. Endocannabinoids, the endogenous counterparts of marijuana-derived cannabinoids, act as neuromodulators via presynaptic CB1 receptors and also control neural cell death and survival. Here we show that progenitor cells express a functional endocannabinoid system that actively regulates cell proliferation both in vitro and in vivo. Specifically, NPs produce endocannabinoids and express the CB1 receptor and the endocannabinoid-inactivating enzyme fatty acid amide hydrolase (FAAH). CB1 receptor activation promotes cell proliferation and neurosphere generation, an action that is abrogated in CB1-deficient NPs. Accordingly, proliferation of hippocampal NPs is increased in FAAH-deficient mice. Our results demonstrate that endocannabinoids constitute a new group of signaling cues that regulate NP proliferation and thus open novel therapeutic avenues for manipulation of NP cell fate in the adult brain.

  19. NATO and nuclear proliferation. Research paper

    SciTech Connect

    Necas, P.; Oliveira, L.; Alligood, M.J.; Frake, S.; Viloria-Villega, J.L.

    1996-04-01

    This research project explores the topic of nuclear proliferation in the current, post-Cold War environment. The intention is to provide the military planner with a basic primer on what has been and will continue to be a highly dynamic problem. The methodology for this research is primarily a literature review to illuminate the nuclear proliferation issue. These topics are critically assessed as they relate to NATO. This process will highlight tasks which NATO should consider accomplishing to confront the challenge of nuclear proliferation. Included in Chapter 1 is an examination of the nuclear environment - which states presently possess or are in pursuit of acquiring nuclear weapons, and what are the motives and disincentives of this pursuit. Methods of proliferation will be explored followed by an analysis of the factors which complicate decision-making on nuclear issues. Chapter 2 discusses the effectiveness of current treaties and international organizations in countering proliferation. Chapter 3 investigates current issues confronting NATO. An overview of the alliance`s new proliferation policy is included in Chapter 4. The paper`s fundamental theme is to provide the reader an understanding of the proliferation issue as well as an appreciation for today`s opportunities to confront the problem.

  20. Effects of weightlessness on tissue proliferation

    NASA Technical Reports Server (NTRS)

    Crosby, W. H.; Tavassoli, M.

    1975-01-01

    The repair of bone marrow stroma following mechanical injury was studied to obtain baseline data for a proposed space experiment regarding the effect of weightlessness on marrow stroma and other proliferating cell systems.

  1. Fighting proliferation new concerns for the nineties

    SciTech Connect

    Sokolski, H.

    1996-09-01

    Iraq`s threatened chemical missile strikes against US forces, combined with its efforts to build nuclear weapons, have quite literally put issues about the proliferation of strategic weapons on the map. Indeed, after Operation Desert Shield, both the Bush and Clinton administrations focused considerable attention on the need to dismantle Iraq`s strategic weapons capabilities and to assure that the strategic weapons complex in the former Soviet Union doesn`t end up helping future Iraqs. Since Operation Desert Storm, though, additional proliferation concern devising an effective strategy against proliferation, coping with the spread of space technology, and curbing Iran`s and North Korea`s strategic programs have emerged. Fighting Proliferation examines these challenges and their implications for US policy. The first of these concern how best to reform existing non- proliferation efforts-is examined in part 1. With the Nuclear Nonproliferation Treaty (NPT) indefinitely extended, just exactly how the treaty will be implemented remains unclear. The Clinton administration is on record arguing that the NPT is a model for how the US will curb the proliferation of not only nuclear but all other kinds of strategic weapons. But what does the NPT and its obligations actually mean. Its key proscriptions in Articles 1, 2, and 3 are ambiguous. The treaty also lacks any clear enforcement measures and is nearly impossible to amend.

  2. Managing Proliferation Issues with Iran

    SciTech Connect

    Nelson, C. Richard; Saltiel, David H.

    2002-02-15

    particular, will continue to play a vital role in determining the extent to which Iran is able to pursue WMD options. Without a fundamental change in the regional security environment, however, there is little reason to expect changes in Iranian WMD and missile policies, and the United States, acting alone and short of war, cannot prevent Iran from ultimately developing WMD and delivery systems. Furthermore, U.S. policies that take a tougher line with Russia, China and North Korea are not likely to lead to more restraint among these potential sources of WMD and missile technology. In the absence of engagement with Iran, unilateral U.S. economic sanctions will remain the principal, if flawed, U.S. policy tool for seeking to prevent Iran from acquiring WMD. The rationale is that by discouraging trade and investment, particularly in Iran's energy sector, the government of Iran will have less revenue to pursue proliferation. Without broad international support for economic isolation, however, such an effort may hinder Iran's WMD programs, though it cannot block them. Finally, options are needed to deal with major failures in nonproliferation efforts. These options include measures to deter Iranian use of WMD, to defend against their use if deterrence fails, and to destroy Iranian WMD capabilities should the need arise.

  3. Myocyte proliferation in the developing heart

    PubMed Central

    Sedmera, David; Thompson, Robert P.

    2012-01-01

    Regulation of organ growth is critical during embryogenesis. At the cellular level, mechanisms controlling the size of individual embryonic organs include cell proliferation, differentiation, migration, and attrition through cell death. All these mechanisms play a role in cardiac morphogenesis, but experimental studies have shown that the major determinant of cardiac size during prenatal development is myocyte proliferation. As this proliferative capacity becomes severely restricted after birth, the number of cell divisions that occur during embryogenesis limits the growth potential of the postnatal heart. We summarize here current knowledge concerning regional control of myocyte proliferation as related to cardiac morphogenesis and dysmorphogenesis. There are significant spatial and temporal differences in rates of cell division, peaking during the pre-septation period and then gradually decreasing towards birth. Analysis of regional rates of proliferation helps to explain the mechanics of ventricular septation, chamber morphogenesis, and the development of the cardiac conduction system. Proliferation rates are influenced by hemodynamic loading, and transduced by autocrine and paracrine signaling via growth factors. Understanding the biological response of the developing heart to such factors and physical forces will further our progress in engineering artificial myocardial tissues for heart repair and designing optimal treatment strategies for congenital heart disease. PMID:21538685

  4. Ano1 as a regulator of proliferation.

    PubMed

    Stanich, Jennifer E; Gibbons, Simon J; Eisenman, Seth T; Bardsley, Michael R; Rock, Jason R; Harfe, Brian D; Ordog, Tamas; Farrugia, Gianrico

    2011-12-01

    Ano1 is a recently discovered Ca(2+)-activated Cl(-) channel expressed on interstitial cells of Cajal (ICC) that has been implicated in slow-wave activity in the gut. However, Ano1 is expressed on all classes of ICC, even those that do not contribute to generation of the slow wave, suggesting that Ano1 may have an alternate function in these cells. Ano1 is also highly expressed in gastrointestinal stromal tumors. Mice lacking Ano1 had fewer proliferating ICC in whole mount preparations and in culture, raising the possibility that Ano1 is involved in proliferation. Cl(-) channel blockers decreased proliferation in cells expressing Ano1, including primary cultures of ICC and in the pancreatic cancer-derived cell line, CFPAC-1. Cl(-) channel blockers had a reduced effect on Ano1(-/-) cultures, confirming that the blockers are acting on Ano1. Ki67 immunoreactivity, 5-ethynyl-2'-deoxyuridine incorporation, and cell-cycle analysis of cells grown in low-Cl(-) media showed fewer proliferating cells than in cultures grown in regular medium. We confirmed that mice lacking Ano1 had less phosphorylated retinoblastoma protein compared with controls. These data led us to conclude that Ano1 regulates proliferation at the G(1)/S transition of the cell cycle and may play a role in tumorigenesis.

  5. Cell proliferation in salivary gland tumors.

    PubMed

    Skálová, A; Leivo, I

    1996-06-01

    Salivary gland tumors often pose considerable difficulty in differential diagnostic and prognostic assessment based on histomorphologic grounds alone. Histomorphology may poorly correlate with clinical outcome and the tumors within the same type in classification schedule exhibit different clinical courses. Prognostic relevance of various cell proliferation markers has been investigated in many types of human cancer, recently including salivary gland tumors. Evaluation of DNA content by flow cytometry and by cytophotometry, AgNOR technique, and immunohistochemical detection of antigens in cycling cells such as the Ki67 antigen and proliferating cell nuclear antigen (PCNA) have been applied to a variety of benign and malignant salivary gland tumors in only few studies so far. Cell proliferation, assessed with the MIB1 antibody, that recognizes the Ki67 antigen in proliferating cells, represents a significant prognostic factor for acinic cell carcinomas and mucoepidermoid carcinomas of salivary gland origin. Moreover, much lower proliferative activity as assessed with the MIB1 antibody helps to distinguish difficult cases of polymorphous low grade adenocarcinomas from adenoid cystic carcinomas and may contribute to differentiation of solid myoepithelial cell-rich pleomorphic adenomas from various malignant tumors. Thus, assessment of cell proliferation in salivary gland tumors using the MIB1 antibody and PCNA in paraffin-embedded tissue should be incorporated into routine immunohistologic evaluation of histologically difficult cases of salivary gland tumors.

  6. [Cell proliferation in salivary gland tumors].

    PubMed

    Frade González, C; García-Caballero, T; Lozano Ramírez, A; Labella Caballero, T

    2001-01-01

    Previous studies on cell proliferation in salivary gland tumors have shown the utility of immunostain with MIB1 in the differential diagnosis and prognosis of these neoplasms. We have carried out a study of 39 salivary gland tumors (17 benign), from different histological lineages. The immunocytochemical method used was the streptavidin--biotin--peroxidase complex which used the MIB1 monoclonal antibody. Benign tumors showed a low cell proliferation rates, below 5% with an overall average of 1.9%. The malignant tumors presented higher rates, with a middle value of 17.85%. Epidermoid carcinomas had the higher cell proliferation rates, with an average of 43%. In adenoid cystic carcinomas, we have observed that proliferation was greater at the peripheral level of tumor nests and cell surrounding the cystic structures. Neoplasms of low grade of malignancy presented lower cell proliferation rates. The MIB1 immunostain allowed to reach a differential diagnosis between pleomorphic adenoma and adenoid cystic carcinoma, specially in those cases in which there could be any doubt.

  7. Cell proliferation and differentiation in chemical leukemogenesis

    NASA Technical Reports Server (NTRS)

    Irons, R. D.; Stillman, W. S.; Clarkson, T. W. (Principal Investigator)

    1993-01-01

    In tissues such as bone marrow with normally high rates of cell division, proliferation is tightly coordinated with cell differentiation. Survival, proliferation and differentiation of early hematopoietic progenitor cells depend on the growth factors, interleukin 3 (IL-3) and/or granulocyte-macrophage colony stimulating factor (GM-CSF) and their synergism with other cytokines. We provide evidence that a characteristic shared by a diverse group of compounds with demonstrated leukemogenic potential is the ability to act synergistically with GM-CSF. This results in an increase in recruitment of a resting population of hematopoietic progenitor cells normally unresponsive to the cytokine and a twofold increase in the size of the proliferating cell population normally regarded to be at risk of transformation in leukemogenesis. These findings support the possibility that transient alterations in hematopoietic progenitor cell differentiation may be an important factor in the early stages of development of leukemia secondary to chemical or drug exposure.

  8. Director`s series on proliferation

    SciTech Connect

    Bailey, K.C.

    1993-09-07

    Two essays are included in this booklet. Their titles are ``The Dynamics of the NPT Extension Decision`` and ``North Korea`s Nuclear Gambit.`` The first paper discusses the conference to be held in 1995 to review the Nuclear Non-Proliferation Treaty (NPT) which will decide whether the treaty shall continue in force indefinitely, or shall be extended for an additional fixed period or periods. Topics relevant to this discussion are: Arms control issues, the nuclear test ban, the limited test ban treaty, the French nuclear testing moratorium, former Soviet nuclear weapons, Iraq, North Korea, nuclear-weapon-free zones, security, controls on nuclear weapon materials, peaceful uses of nuclear energy, safeguards, politics, and organizational and procedural issues. The second paper examines short, medium, and long term issues entailed in Korea`s nuclear proliferation. Topics considered include: Korean unification, North Korean politics, the nuclear issue as leverage, and the Nuclear Non- Proliferation Treaty.

  9. Strategic exposure. Proliferation around the Mediterranean

    SciTech Connect

    Lesser, I.O.; Tellis, A.J.

    1996-12-31

    A leading post-Cold War security interest of U.S. policymakers and strategists is the proliferation of nuclear, chemical, and biological weapons of mass destruction (WMDs) and the means for their delivery at ever longer ranges. For the military services, including the U.S. Army, proliferation trends and their regional effects are matters of great operational and strategic significance, with serious implications for U.S. freedom of action in future crises. Nowhere is the prospect of the spread of WMDs likely to have a more pronounced effect on strategic perceptions than around the Mediterranean. We analyzed proliferation trends and regional security consequences in the Mediterranean region and reached the following conclusions.

  10. Proliferation resistance criteria for fissile material disposition

    SciTech Connect

    Close, D.A.; Fearey, B.L.; Markin, J.T.; Rutherford, D.A.; Duggan, R.A.; Jaeger, C.D.; Mangan, D.L.; Moya, R.W.; Moore, L.R.; Strait, R.S.

    1995-04-01

    The 1994 National Academy of Sciences study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This report proposes criteria for assessing the proliferation resistance of these options. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials.

  11. Proliferating trichilemmal tumor of the nose*

    PubMed Central

    Rosmaninho, Aristóteles; Caetano, Mónica; Oliveira, Ana; de Almeida, Teresa Pinto; Selores, Manuela; Alves, Rosário

    2012-01-01

    Proliferating trichilemmal tumor is a rare tumor originating in the external root sheath, that is usually found in the scalp of middle-aged or elderly females. Its histologic appearance may not correlate with its clinical behavior. In addition, there are no guidelines available for the treatment of these tumors, making its management a challenge for physicians. We report the case of a 53 year-old woman with a proliferating trichilemmal tumor on her nose, which is a very uncommon location for these lesions. PMID:23197215

  12. US, Russian intelligence agencies offer proliferation assessments

    SciTech Connect

    Wolfsthal, J.B.

    1993-03-01

    The CIA outlined for the Senate Governmental Affairs Committee (February 24, 1993) the prospects for the spread of nuclear, chemical, and biological weapons and ballistic missiles in the aftermath of the Cold War. The testimony came less than one month after the Russian Foreign Intelligence Service released an 118-page report that also stressed the importance of preventing proliferation of weapons of mass destruction. CIA testimony and the FIS report both provided details on several states of proliferation concern, including North Korea, Iran, India, and Pakistan.

  13. Director`s series on proliferation

    SciTech Connect

    Bailey, K.C.; Price, M.E.

    1994-12-27

    The Director`s Series on Proliferation is an occasional publication of essays on the topics of nuclear, chemical, biological, and missile proliferation. The seven papers presented in this issue cover the following topics: Should the Treaty on the Nonproliferation of Nuclear Weapons (NPT) be amended?; NPT extension - Legal and procedural issues; An Indonesian view of NPT review conference issues; The treaty of Tlatelolco and the NPT - Tools for peace and development; Perspectives on cut-off, weapons dismantlement, and security assurances; Belarus and NPT challenges; A perspective on the chemical weapons convention - Lessons learned from the preparatory commission.

  14. E2f1-deficient NOD/SCID mice have dry mouth due to a change of acinar/duct structure and the down-regulation of AQP5 in the salivary gland.

    PubMed

    Satoh, Keitaro; Narita, Takanori; Matsuki-Fukushima, Miwako; Okabayashi, Ken; Ito, Tatsuro; Senpuku, Hidenobu; Sugiya, Hiroshi

    2013-02-01

    Non-obese diabetic (NOD) mice have been used as a model for dry mouth. NOD mice lacking the gene encoding E2f1, a transcription factor, develop hyposalivation more rapidly progressively than control NOD mice. However, the model mice are associated with an underlying disease such as diabetes. We have now established E2f1-deficient NOD/severe combined immunodeficiency disease (NOD/SCID.E2f1(-/-)) mice to avoid the development of diabetes (Matsui-Inohara et al., Exp Biol Med (Maywood) 234(12):1525-1536, 2009). In this study, we investigated the pathophysiological features of dry mouth using NOD/SCID.E2f1(-/-) mice. In NOD/SCID.E2f1(-/-) mice, the volume of secreted saliva stimulated with pilocarpine is about one third that of control NOD/SCID mice. In behavioral analysis, NOD/SCID.E2f1(-/-) mice drank plenty of water when they ate dry food, and the frequency and time of water intake were almost double compared with control NOD/SCID mice. Histological analysis of submandibular glands with hematoxylin-eosin stain revealed that NOD/SCID.E2f1(-/-) mice have more ducts than NOD/SCID mice. In western blot analysis, the expression of aquaporin 5 (AQP5), a marker of acinar cells, in parotid and in submandibular glands of NOD/SCID.E2f1(-/-) mice was lower than in NOD/SCID mice. Immunohistochemical analysis of parotid and submandibular acini revealed that the localization of AQP5 in NOD/SCID.E2f1(-/-) mice differs from that in NOD/SCID mice; AQP5 was leaky and diffusively localized from the apical membrane to the cytosol in NOD/SCID.E2f1(-/-) mice. The ubiquitination of AQP5 was detected in submandibular glands of NOD/SCID.E2f1(-/-) mice. These findings suggest that the change of acinar/duct structure and the down-regulation of AQP5 in the salivary gland cause the pathogenesis of hyposalivation in NOD/SCID.E2f1(-/-) mice.

  15. Nuclear war, nuclear proliferation, and their consequences

    SciTech Connect

    Sanruddin, A.K.

    1986-01-01

    The proceedings of a colloquium convened by the Groupe de Bellerive offers the contributions of Carl Sagan, Gabriel Garcia Marquez, Kenneth Galbraith, Pierre Trudeau, Edward Kennedy, and other eminent scientists, politicians, and strategists on the subject of the proliferation of nuclear weaponry and its potential ramifications.

  16. Limiting Future Proliferation and Security Risks

    SciTech Connect

    Bari, R.

    2011-03-13

    A major new technical tool for evaluation of proliferation and security risks has emerged over the past decade as part the activities of the Generation IV International Forum. The tool has been developed by a consensus group from participating countries and organizations and is termed the Proliferation Resistance and Physical Protection (PR&PP) Evaluation Methodology. The methodology defines a set of challenges, analyzes system response to these challenges, and assesses outcomes. The challenges are the threats posed by potential actors (proliferant states or sub-national adversaries). It is of paramount importance in an evaluation to establish the objectives, capabilities, resources, and strategies of the adversary as well as the design and protection contexts. Technical and institutional characteristics are both used to evaluate the response of the system and to determine its resistance against proliferation threats and robustness against sabotage and terrorism threats. The outcomes of the system response are expressed in terms of a set of measures, which thereby define the PR&PP characteristics of the system. This paper summarizes results of applications of the methodology to nuclear energy systems including reprocessing facilities and large and small modular reactors. The use of the methodology in the design phase a facility will be discussed as it applies to future safeguards concepts.

  17. Nuclear proliferation status report. Status report

    SciTech Connect

    1992-07-01

    This report contains information concerning the nuclear proliferation status of the following countries: (1) Russia, (2) Ukraine, (3) Belarus, (4) Kazakhstan, (5) Israel, (6) India, (7) Pakistan, (8) South Africa, (9) North Korea, (10) Iraq, (11) Iran, (12) Lybia, (13) Algeria, (14) Syria, (15) Brazil, (16) Argentina, and (17) Taiwan.

  18. Epiprofin orchestrates epidermal keratinocyte proliferation and differentiation

    PubMed Central

    Nakamura, Takashi; Yoshitomi, Yasuo; Sakai, Kiyoshi; Patel, Vyomesh; Fukumoto, Satoshi; Yamada, Yoshihiko

    2014-01-01

    ABSTRACT The basal layer of the epidermis contains stem cells and transit amplifying cells that rapidly proliferate and differentiate further into the upper layers of the epidermis. A number of molecules have been identified as regulators of this process, including p63 (also known as tumor protein 63) and Notch1. However, little is known about the mechanisms that regulate the transitions from stem cell to proliferating or differentiating transit amplifying cell. Here, we demonstrate that epiprofin (Epfn, also known as Sp6) plays crucial distinct roles in these transition stages as a cell cycle regulator and a transcription factor. Epfn knockout mice have a thickened epidermis, in which p63-expressing basal cells form multiple layers owing to the accumulation of premature transit amplifying cells with reduced proliferation and a reduction in the number of differentiating keratinocytes expressing Notch1. We found that low levels of Epfn expression increased the proliferation of human immortalized keratinocyte (HaCaT) cells by increasing EGF responsiveness and superphosphorylation of Rb. By contrast, high levels of Epfn expression promoted cell cycle exit and differentiation, by reducing E2F transactivation and inducing Notch1 expression. Our findings identify multiple novel functions of Epfn in epidermal development. PMID:25344255

  19. Epiprofin orchestrates epidermal keratinocyte proliferation and differentiation.

    PubMed

    Nakamura, Takashi; Yoshitomi, Yasuo; Sakai, Kiyoshi; Patel, Vyomesh; Fukumoto, Satoshi; Yamada, Yoshihiko

    2014-12-15

    The basal layer of the epidermis contains stem cells and transit amplifying cells that rapidly proliferate and differentiate further into the upper layers of the epidermis. A number of molecules have been identified as regulators of this process, including p63 (also known as tumor protein 63) and Notch1. However, little is known about the mechanisms that regulate the transitions from stem cell to proliferating or differentiating transit amplifying cell. Here, we demonstrate that epiprofin (Epfn, also known as Sp6) plays crucial distinct roles in these transition stages as a cell cycle regulator and a transcription factor. Epfn knockout mice have a thickened epidermis, in which p63-expressing basal cells form multiple layers owing to the accumulation of premature transit amplifying cells with reduced proliferation and a reduction in the number of differentiating keratinocytes expressing Notch1. We found that low levels of Epfn expression increased the proliferation of human immortalized keratinocyte (HaCaT) cells by increasing EGF responsiveness and superphosphorylation of Rb. By contrast, high levels of Epfn expression promoted cell cycle exit and differentiation, by reducing E2F transactivation and inducing Notch1 expression. Our findings identify multiple novel functions of Epfn in epidermal development. PMID:25344255

  20. Germ Cells Need Folate to Proliferate.

    PubMed

    Walker, Amy K

    2016-07-11

    In this issue of Developmental Cell, Chaudhari and colleagues (2016) use a novel method to create an in vitro proliferative cell line from tumorous C. elegans germ cells, and in the process discover that bacterial folates act as signals for proliferation, independent of their roles as vitamins. PMID:27404353

  1. Strengthening the foundations of proliferation assessment tools.

    SciTech Connect

    Rexroth, Paul E.; Saltiel, David H.; Rochau, Gary Eugene; Cleary, Virginia D.; Ng, Selena; Greneche, Dominique; Giannangeli, Don; Charlton, William S.; Ford, David

    2007-09-01

    Robust and reliable quantitative proliferation assessment tools have the potential to contribute significantly to a strengthened nonproliferation regime and to the future deployment of nuclear fuel cycle technologies. Efforts to quantify proliferation resistance have thus far met with limited success due to the inherent subjectivity of the problem and interdependencies between attributes that lead to proliferation resistance. We suggest that these limitations flow substantially from weaknesses in the foundations of existing methodologies--the initial data inputs. In most existing methodologies, little consideration has been given to the utilization of varying types of inputs--particularly the mixing of subjective and objective data--or to identifying, understanding, and untangling relationships and dependencies between inputs. To address these concerns, a model set of inputs is suggested that could potentially be employed in multiple approaches. We present an input classification scheme and the initial results of testing for relationships between these inputs. We will discuss how classifying and testing the relationship between these inputs can help strengthen tools to assess the proliferation risk of nuclear fuel cycle processes, systems, and facilities.

  2. Blue light inhibits proliferation of melanoma cells

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  3. Wp specific methylation of highly proliferated LCLs.

    PubMed

    Park, Jung-Hoon; Jeon, Jae-Pil; Shim, Sung-Mi; Nam, Hye-Young; Kim, Joon-Woo; Han, Bok-Ghee; Lee, Suman

    2007-06-29

    The epigenetic regulation of viral genes may be important for the life cycle of EBV. We determined the methylation status of three viral promoters (Wp, Cp, Qp) from EBV B-lymphoblastoid cell lines (LCLs) by pyrosequencing. Our pyrosequencing data showed that the CpG region of Wp was methylated, but the others were not. Interestingly, Wp methylation was increased with proliferation of LCLs. Wp methylation was as high as 74.9% in late-passage LCLs, but 25.6% in early-passage LCLs. From two Burkitt's lymphoma cell lines, Wp specific hypermethylation was also found (>80%). Interestingly, the expression of EBNA2 gene which located directly next to Wp was associated with its methylation. Our data suggested that Wp specific methylation may be important for the indicator of the proliferation status of LCLs, and the epigenetic viral gene regulation of EBNA2 gene by Wp should be further defined possibly with other biological processes.

  4. Epithelial Proliferation on Curved Toroidal Surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Cruz, Ricardo; Fragkopoulos, Alexandros; Marquez, Samantha; Garcia, Andres; Fernandez-Nieves, Alberto

    Cellular environment influences a multitude of cellular functions by providing chemical and physical signals that modulate cell behavior, dynamics, development, and eventually survival. In strongly interacting epithelial cells, cells coordinate their behavior to respond to mechanical constraints in 2D. Local differences in tissue tension has also been shown to impact cell reproduction within an epithelial-cell sheet. Much less is known about how cells respond to out-of-plane curvatures. Here, we describe the proliferation of MDCK on toroidal hydrogel substrates, which unlike spheres or planes, have regions of both positive and negative Gaussian curvature. Additionally, the range of curvatures can be controlled by varying the size and aspect ratio of the torus, allowing us to quantify the relation between substrate curvature and cell proliferation.

  5. Nuclear proliferation after the cold war

    SciTech Connect

    Not Available

    1991-09-01

    This paper reports that the events of recent years have made it harder to stem proliferation through limiting access to critical material and technology. The number of potential suppliers of nuclear weapons is growing rapidly, and pressures to sell nuclear technology have increased in Western nations as defense firms struggle to survive. All this implies that many more states could soon gain access to first-generation nuclear weapons and the means to deliver them. Coupled with the inexorable spread of technology, these factors make us extremely skeptical about the prospects of preventing or significantly slowing the proliferation of nuclear weapons and of missiles and chemical weapons through policies of technological denial alone. Particularly for the long term, more attention should be focused on what can be done to reduce motivations to acquire such weapons.

  6. Regulation of cell proliferation by G proteins.

    PubMed

    Dhanasekaran, N; Tsim, S T; Dermott, J M; Onesime, D

    1998-09-17

    G Proteins provide signal transduction mechanisms to seven transmembrane receptors. Recent studies have indicated that the alpha-subunits as well as the betagamma-subunits of these proteins regulate several critical signaling pathways involved in cell proliferation, differentiation and apoptosis. Of the 17 alpha-subunits that have been cloned, at least ten of them have been shown to couple mitogenic signaling in fibroblast cells. Activating mutations in G alpha(s), G alpha(i)2, and G alpha12 have been correlated with different types of tumors. In addition, the ability of the betagamma-subunits to activate mitogenic pathways in different cell-types has been defined. The present review briefly summarizes the diverse and novel signaling pathways regulated by the alpha- as well as the betagamma-subunits of G proteins in regulating cell proliferation. PMID:9779986

  7. Flaws in the Non-Proliferation Treaty

    SciTech Connect

    Leventhal, P.

    1985-09-01

    The current review conference must come to grips with serious weaknesses in the Non-Proliferation Treaty (NPT), especially regarding the spread of weapons-grade material and the continuing superpower arms race. One-third of the world's nations, including two of the original nuclear-weapons states (France and China), have not signed the NPT, and some countries are trying to buy nuclear weaponry without developing a domestic capability. The greatest danger is latent proliferation through the acquisition of materials and capabilities for peaceful power and research programs. The author recommends modifying the NPT to restrict nuclear trade, improve International Atomic Energy Agency inspections and audits, expand safeguards coverage to nonparties of the Treaty, and set minimum standards for guarding international shipments.

  8. Wp specific methylation of highly proliferated LCLs

    SciTech Connect

    Park, Jung-Hoon; Jeon, Jae-Pil; Shim, Sung-Mi; Nam, Hye-Young; Kim, Joon-Woo; Han, Bok-Ghee; Lee, Suman . E-mail: suman@cha.ac.kr

    2007-06-29

    The epigenetic regulation of viral genes may be important for the life cycle of EBV. We determined the methylation status of three viral promoters (Wp, Cp, Qp) from EBV B-lymphoblastoid cell lines (LCLs) by pyrosequencing. Our pyrosequencing data showed that the CpG region of Wp was methylated, but the others were not. Interestingly, Wp methylation was increased with proliferation of LCLs. Wp methylation was as high as 74.9% in late-passage LCLs, but 25.6% in early-passage LCLs. From two Burkitt's lymphoma cell lines, Wp specific hypermethylation was also found (>80%). Interestingly, the expression of EBNA2 gene which located directly next to Wp was associated with its methylation. Our data suggested that Wp specific methylation may be important for the indicator of the proliferation status of LCLs, and the epigenetic viral gene regulation of EBNA2 gene by Wp should be further defined possibly with other biological processes.

  9. Bone cell proliferation on carbon nanotubes.

    PubMed

    Zanello, Laura P; Zhao, Bin; Hu, Hui; Haddon, Robert C

    2006-03-01

    We explored the use of carbon nanotubes (CNTs) as suitable scaffold materials for osteoblast proliferation and bone formation. With the aim of controlling cell growth, osteosarcoma ROS 17/2.8 cells were cultured on chemically modified single-walled (SW) and multiwalled (MW) CNTs. CNTs carrying neutral electric charge sustained the highest cell growth and production of plate-shaped crystals. There was a dramatic change in cell morphology in osteoblasts cultured on MWNTs, which correlated with changes in plasma membrane functions.

  10. Director`s series on proliferation

    SciTech Connect

    Bailey, K.C.; Price, M.E.

    1994-10-17

    This series is an occasional publication of essays on the topics of nuclear, chemical, biological, and missile proliferation. Essays contained in this document include: Key issues on NPT renewal and extension, Africa and nuclear nonproliferation, Kenya`s views on the NPT, Prospects for establishing a zone free of weapons of mass destruction in the middle east, effects of a special nuclear weapon materials cut-off convention, and The UK view of NPT renewal.

  11. Proliferation Persuasion. Coercive Bargaining with Nuclear Technology

    SciTech Connect

    Volpe, Tristan A.

    2015-08-31

    Why do states wait for prolonged periods of time with the technical capacity to produce nuclear weapons? Only a handful of countries have ever acquired the sensitive nuclear fuel cycle technology needed to produce fissile material for nuclear weapons. Yet the enduring trend over the last five decades is for these states to delay or forgo exercising the nuclear weapons option provided by uranium enrichment or plutonium reprocessing capabilities. I show that states pause at this threshold stage because they use nuclear technology to bargain for concessions from both allies and adversaries. But when does nuclear latency offer bargaining benefits? My central argument is that challengers must surmount a dilemma to make coercive diplomacy work: the more they threaten to proliferate, the harder it becomes to reassure others that compliance will be rewarded with nuclear restraint. I identify a range of mechanisms able to solve this credibility problem, from arms control over breakout capacity to third party mediation and confidence building measures. Since each step towards the bomb raises the costs of implementing these policies, a state hits a sweet spot when it first acquires enrichment and/or reprocessing (ENR) technology. Subsequent increases in proliferation capability generate diminishing returns at the bargaining table for two reasons: the state must go to greater lengths to make a credible nonproliferation promise, and nuclear programs exhibit considerable path dependency as they mature over time. Contrary to the conventional wisdom about power in world politics, less nuclear latency thereby yields more coercive threat advantages. I marshal new primary source evidence from archives and interviews to identify episodes in the historical record when states made clear decisions to use ENR technology as a bargaining chip, and employ this theory of proliferation persuasion to explain how Japan, North Korea, and Iran succeeded and failed to barter concessions from the

  12. BCOR regulates myeloid cell proliferation and differentiation.

    PubMed

    Cao, Q; Gearhart, M D; Gery, S; Shojaee, S; Yang, H; Sun, H; Lin, D-C; Bai, J-W; Mead, M; Zhao, Z; Chen, Q; Chien, W-W; Alkan, S; Alpermann, T; Haferlach, T; Müschen, M; Bardwell, V J; Koeffler, H P

    2016-05-01

    BCOR is a component of a variant Polycomb group repressive complex 1 (PRC1). Recently, we and others reported recurrent somatic BCOR loss-of-function mutations in myelodysplastic syndrome and acute myelogenous leukemia (AML). However, the role of BCOR in normal hematopoiesis is largely unknown. Here, we explored the function of BCOR in myeloid cells using myeloid murine models with Bcor conditional loss-of-function or overexpression alleles. Bcor mutant bone marrow cells showed significantly higher proliferation and differentiation rates with upregulated expression of Hox genes. Mutation of Bcor reduced protein levels of RING1B, an H2A ubiquitin ligase subunit of PRC1 family complexes and reduced H2AK119ub upstream of upregulated HoxA genes. Global RNA expression profiling in murine cells and AML patient samples with BCOR loss-of-function mutation suggested that loss of BCOR expression is associated with enhanced cell proliferation and myeloid differentiation. Our results strongly suggest that BCOR plays an indispensable role in hematopoiesis by inhibiting myeloid cell proliferation and differentiation and offer a mechanistic explanation for how BCOR regulates gene expression such as Hox genes. PMID:26847029

  13. Lensless imaging system to quantify cell proliferation

    NASA Astrophysics Data System (ADS)

    Vinjimore Kesavan, S.; Allier, C. P.; Navarro, F.; Mittler, F.; Chalmond, B.; Dinten, J.-M.

    2013-02-01

    Owing to its simplicity, lensless imaging system is adept at continuous monitoring of adherent cells inside the incubator. The setup consists of a CMOS sensor with pixel pitch of 2.2 μm and field of view of 24 mm2, LED with a dominating wavelength of 525 nm, along with a pinhole of 150 μm as the source of illumination. The in-line hologram obtained from cells depends on the degree of cell-substrate adhesion. Drastic difference is observed between the holographic patterns of floating and adherent cells. In addition, the well-established fact of reduction of cell-substrate contact during cell division is observed with our system based on corresponding spontaneous transition in the holographic pattern. Here, we demonstrate that by recognizing this specific holographic pattern, number of cells undergoing mitosis in a cell culture with a population of approximately 5000 cells, can be estimated in real-time. The method is assessed on comparison with Edu-based proliferation assay. The approach is straightforward and it eliminates the use of markers to estimate the proliferation rate of a given cell culture. Unlike most proliferation assays, the cells are not harvested enabling continuous monitoring of cell culture.

  14. Lymphoid proliferations of the salivary glands.

    PubMed

    Harris, N L

    1999-01-01

    Lymphoid proliferations of the salivary glands can be either reactive or neoplastic. Reactive lesions include cystic lymphoid hyperplasia--a multicystic ductal proliferation with reactive germinal centers, seen most often in intravenous drug users infected with HIV--and the lymphoepithelial sialadenitis of Sjögren's syndrome (so-called benign lymphoepithelial lesion [BLEL] or myoepithelial sialadenitis [MESA]). This lymphoid proliferation involves infiltration of ductal epithelium by lymphocytes of marginal zone or monocytoid B-cell type, forming lymphoepithelial lesions (epimyoepithelial islands). Patients with lymphoepithelial sialadenitis have a 44-fold increased risk of developing salivary gland or extrasalivary lymphoma, of which 80% are marginal zone/MALT type. Broad strands of marginal zone or monocytoid B cells around lymphoepithelial lesions and monotypic immunoglobulin detection by immunohistochemistry are considered diagnostic of MALT lymphoma. B-cell clones are detected in over 50% of cases of MESA by molecular genetic methods, but this does not correlate with overlymphoma. "Nodal" type B-cell lymphomas of the salivary glands are either follicular lymphoma (35%), which may arise in intrasalivary gland lymph nodes and behave similarly to follicular lymphoma in other sites, or diffuse large B-cell lymphoma (30%), which may arise de novo or secondary to either MALT or follicular lymphomas.

  15. Increased secretion of insulin and proliferation of islet {beta}-cells in rats with mesenteric lymph duct ligation

    SciTech Connect

    Nagino, Ko; Yokozawa, Junji; Sasaki, Yu; Matsuda, Akiko; Takeda, Hiroaki; Kawata, Sumio

    2012-08-24

    min (more than 1.4-fold; p < 0.05). Immunohistochemistry showed that the ratios of {beta}-cell area/acinar cell area and {beta}-cell area/islet area, and also {beta}-cell proliferation, were significantly higher in the ligation group than in the sham group (p < 0.05, p < 0.01 and p < 0.01, respectively). The insulin content per unit wet weight of pancreas was also significantly increased in the ligation group (p < 0.05). Conclusions: In rats with ligation of the mesenteric lymph duct, insulin secretion during the OGTT or IVGTT was higher, and the insulin content and {beta}-cell proliferation in the pancreas were also increased. Our data show that mesenteric lymph duct flow has a role in glucose metabolism.

  16. Nuclear Energy, Nuclear Weapons Proliferation, and the Arms Race.

    ERIC Educational Resources Information Center

    Hollander, Jack, Ed.

    A symposium was organized to reexamine the realities of vertical proliferation between the United States and the Soviet Union and to place into perspective the horizontal proliferation of nuclear weapons throughout the world, including the possible role of commercial nuclear power in facilitating proliferation. The four invited symposium…

  17. Combating the Proliferation of Weapons of Mass Destruction.

    ERIC Educational Resources Information Center

    Jenkins, Bonnie

    1997-01-01

    Reveals the growing threat posed to all countries by the proliferation of weapons of mass destruction. Discusses the international effort combating this proliferation including the Nuclear Non-Proliferation Treaty, Strategic Arms Reduction Treaties, Biological Weapons Convention, and Chemical Weapons Convention. Also considers regional arms…

  18. Managing Proliferation in the 1990s, "Something Borrowed, Something New..."

    ERIC Educational Resources Information Center

    Donnelly, Warren H.

    1990-01-01

    Assesses the progress and the challenges that education must meet in identifying world policy for proliferation management. Gives a historical perspective on attempts to control proliferation. Includes maps, charts, a historical chronology of these efforts, and a list of proliferation management issues. (NL)

  19. What Is the Ideal Core Number for Ultrasound-Guided Prostate Biopsy?

    PubMed Central

    Tsuji, Fábio Hissachi; de Oliveira Lima, Flávio; Yamamoto, Hamilto Akihissa; de Jesus, Carlos Márcio Nóbrega

    2014-01-01

    Purpose We evaluated the utility of 10-, 12-, and 16-core prostate biopsies for detecting prostate cancer (PCa) and correlated the results with prostate-specific antigen (PSA) levels, prostate volumes, Gleason scores, and detection rates of high-grade prostatic intraepithelial neoplasia (HGPIN) and atypical small acinar proliferation (ASAP). Materials and Methods A prospective controlled study was conducted in 354 consecutive patients with various indications for prostate biopsy. Sixteen-core biopsy specimens were obtained from 351 patients. The first 10-core biopsy specimens were obtained bilaterally from the base, middle third, apex, medial, and latero-lateral regions. Afterward, six additional punctures were performed bilaterally in the areas more lateral to the base, middle third, and apex regions, yielding a total of 16-core biopsy specimens. The detection rate of carcinoma in the initial 10-core specimens was compared with that in the 12- and 16-core specimens. Results No significant differences in the cancer detection rate were found between the three biopsy protocols. PCa was found in 102 patients (29.06%) using the 10-core protocol, in 99 patients (28.21%) using the 12-core protocol, and in 107 patients (30.48%) using the 16-core protocol (p=0.798). The 10-, 12-, and 16-core protocols were compared with stratified PSA levels, stratified prostate volumes, Gleason scores, and detection rates of HGPIN and ASAP; no significant differences were found. Conclusions Cancer positivity with the 10-core protocol was not significantly different from that with the 12- and 16-core protocols, which indicates that the 10-core protocol is acceptable for performing a first biopsy. PMID:25405014

  20. CCR7 signaling inhibits T cell proliferation.

    PubMed

    Ziegler, Ekkehard; Oberbarnscheidt, Martin; Bulfone-Paus, Silvia; Förster, Reinhold; Kunzendorf, Ulrich; Krautwald, Stefan

    2007-11-15

    CCR7 and its ligands, CCL19 and CCL21, are responsible for directing the migration of T cells and dendritic cells into lymph nodes, where these cells play an important role in the initiation of the immune response. Recently, we have shown that systemic application of CCL19-IgG is able to inhibit the colocalization of T cells and dendritic cells within secondary lymphoid organs, resulting in pronounced immunosuppression with reduced allograft rejection after organ transplantation. In this study, we demonstrate that the application of sustained high concentrations of either soluble or immobilized CCL19 and CCL21 elicits an inhibitory program in T cells. We show that these ligands specifically interfere with cell proliferation and IL-2 secretion of CCR7(+) cells. This could be demonstrated for human and murine T cells and was valid for both CD4(+) and CD8(+) T cells. In contrast, CCL19 had no inhibitory effect on T cells from CCR7 knockout mice, but CCR7(-/-) T cells showed a proliferative response upon TCR-stimulation similar to that of CCL19-treated wild-type cells. Furthermore, the inhibition of proliferation is associated with delayed degradation of the cyclin-dependent kinase (CDK) inhibitor p27(Kip1) and the down-regulation of CDK1. This shows that CCR7 signaling is linked to cell cycle control and that sustained engagement of CCR7, either by high concentrations of soluble ligands or by high density of immobilized ligands, is capable of inducing cell cycle arrest in TCR-stimulated cells. Thus, CCR7, a chemokine receptor that has been demonstrated to play an essential role during activation of the immune response, is also competent to directly inhibit T cell proliferation. PMID:17982037

  1. Sensor Fusion for Nuclear Proliferation Activity Monitoring

    SciTech Connect

    Adel Ghanem, Ph D

    2007-03-30

    The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

  2. Director`s series on proliferation

    SciTech Connect

    Bailey, K.C.; Price, M.E.

    1994-08-12

    This fifth edition contains some of the papers that were presented in July 1994 at the Lawrence Livermore National conference entitled ``NPT: Review and Extension.`` Topics covered include: strategic warning and new nuclear states, the future for nuclear weapons, possibly stopping North Korean nukes without a war, Article VI of the nuclear non-proliferation treaty from the Chinese perspective, Article VI issues, Article VI and other NPT issues form the perspective of Russia, NPT review and extension, and finally problems facing total nuclear disarmament.

  3. Good news, bad news on proliferation

    SciTech Connect

    Spector, L.S.

    1985-09-01

    While Argentina and Brazil now seem less likely to acquire nuclear weapons, Indian and Pakistani intentions remain uncertain. The Israeli nuclear program and recent allegations of black-marketing are even more disturbing. The author notes the positive developments in Latin America and some hopeful signs in South Asia, despite uncertainties over their final outcome. He finds Israel's program the most disturbing because of the deployment of Jericho II missiles and indications that Israel possesses a fully militarized nuclear force which was developed by illegal means. These activities could politicize the Non-Proliferation Treaty review conference. 14 references.

  4. Utility of Social Modeling for Proliferation Assessment - Preliminary Findings

    SciTech Connect

    Coles, Garill A.; Gastelum, Zoe N.; Brothers, Alan J.; Thompson, Sandra E.

    2009-07-16

    Often the methodologies for assessing proliferation risk are focused around the inherent vulnerability of nuclear energy systems and associated safeguards. For example an accepted approach involves ways to measure the intrinsic and extrinsic barriers to potential proliferation. This paper describes preliminary investigation into non-traditional use of social and cultural information to improve proliferation assessment and advance the approach to assessing nuclear material diversion. Proliferation resistance assessment, safeguard assessments and related studies typically create technical information about the vulnerability of a nuclear energy system to diversion of nuclear material. The purpose of this research project is to find ways to integrate social information with technical information by explicitly considering the role of culture, groups and/or individuals to factors that impact the possibility of proliferation. When final, this work is expected to describe and demonstrate the utility of social science modeling in proliferation and proliferation risk assessments.

  5. beta. -Adrenergic stimulation of brown adipocyte proliferation

    SciTech Connect

    Geloeen, A.; Collet, A.J.; Guay, G.; Bukowiecki, L.J. Laboratoire de Thermoregulation et Metabolisme Energetique, Lyon )

    1988-01-01

    The mechanisms of brown adipose tissue (BAT) growth were studied by quantitative photonic radioautography using tritiated thymidine to follow mitotic activity. To identify the nature of the adrenergic pathways mediating brown adipocyte proliferation and differentiation, the effects of cold exposure (4 days at 4{degree}C) on BAT growth were compared with those induced by treating rats at 25{degree}C with norepinephrine (a mixed agonist), isoproterenol (a {beta}-agonist), and phenylephrine (an {alpha}-agonist). Norepinephrine mimicked the effects of cold exposure, not only on the mitotic activity, but also on the distribution of the labeling among the various cellular types. Isoproterenol entirely reproduced the effects of norepinephrine both on the labeling index and on the cellular type labeling frequency. These results demonstrate that norepinephrine triggers a coordinated proliferation of brown adipocytes and endothelial cells in warm-exposed rats that is similar to that observed after cold exposure. They also suggest that cold exposure stimulates BAT growth by increasing the release of norepinephrine from sympathetic nerves and that the neurohormone activates mitoses in BAT precursor cells via {beta}-adrenergic pathways.

  6. Inhibition of fibroblast proliferation by Actinobacillus actinomycetemcomitans.

    PubMed Central

    Shenker, B J; Kushner, M E; Tsai, C C

    1982-01-01

    We have examined soluble sonic extracts of Actinobacillus actinomycetemcomitans for their ability to alter human and murine fibroblast proliferation. We found that extracts of all A. actinomycetemcomitans strains examined (both leukotoxic and nonleukotoxic) caused a dose-dependent inhibition of both murine and human fibroblast proliferation as assessed by DNA synthesis ([3H]thymidine incorporation). Addition of sonic extract simultaneously with [3H]thymidine had no effect on incorporation, indicating that suppression was not due to the presence of excessive amounts of cold thymidine. Inhibition of DNA synthesis was also paralleled by decreased RNA synthesis ([3H]uridine incorporation) and by a decrease in cell growth as assessed by direct cell counts; there was no effect on cell viability. The suppressive factor(s) is heat labile; preliminary purification and characterization studies indicate that it is a distinct and separate moiety from other A. actinomycetemcomitans mediators previously reported, including leukotoxin, immune suppressive factor, and endotoxin. Although it is not clear how A. actinomycetemcomitans acts to cause disease, we propose that one aspect of the pathogenicity of this organism rests in its ability to inhibit fibroblast growth, which in turn could contribute to the collagen loss associated with certain forms of periodontal disease, in particular juvenile periodontitis. PMID:7152684

  7. Microfluidic devices for cell cultivation and proliferation

    PubMed Central

    Tehranirokh, Masoomeh; Kouzani, Abbas Z.; Francis, Paul S.; Kanwar, Jagat R.

    2013-01-01

    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined. PMID:24273628

  8. Proliferation and fission of peroxisomes - An update.

    PubMed

    Schrader, Michael; Costello, Joseph L; Godinho, Luis F; Azadi, Afsoon S; Islinger, Markus

    2016-05-01

    In mammals, peroxisomes perform crucial functions in cellular metabolism, signalling and viral defense which are essential to the health and viability of the organism. In order to achieve this functional versatility peroxisomes dynamically respond to molecular cues triggered by changes in the cellular environment. Such changes elicit a corresponding response in peroxisomes, which manifests itself as a change in peroxisome number, altered enzyme levels and adaptations to the peroxisomal structure. In mammals the generation of new peroxisomes is a complex process which has clear analogies to mitochondria, with both sharing the same division machinery and undergoing a similar division process. How the regulation of this division process is integrated into the cell's response to different stimuli, the signalling pathways and factors involved, remains somewhat unclear. Here, we discuss the mechanism of peroxisomal fission, the contributions of the various division factors and examine the potential impact of post-translational modifications, such as phosphorylation, on the proliferation process. We also summarize the signalling process and highlight the most recent data linking signalling pathways with peroxisome proliferation.

  9. Metabolic pathway alterations that support cell proliferation.

    PubMed

    Vander Heiden, M G; Lunt, S Y; Dayton, T L; Fiske, B P; Israelsen, W J; Mattaini, K R; Vokes, N I; Stephanopoulos, G; Cantley, L C; Metallo, C M; Locasale, J W

    2011-01-01

    Proliferating cells adapt metabolism to support the conversion of available nutrients into biomass. How cell metabolism is regulated to balance the production of ATP, metabolite building blocks, and reducing equivalents remains uncertain. Proliferative metabolism often involves an increased rate of glycolysis. A key regulated step in glycolysis is catalyzed by pyruvate kinase to convert phosphoenolpyruvate (PEP) to pyruvate. Surprisingly, there is strong selection for expression of the less active M2 isoform of pyruvate kinase (PKM2) in tumors and other proliferative tissues. Cell growth signals further decrease PKM2 activity, and cells with less active PKM2 use another pathway with separate regulatory properties to convert PEP to pyruvate. One consequence of using this alternative pathway is an accumulation of 3-phosphoglycerate (3PG) that leads to the diversion of 3PG into the serine biosynthesis pathway. In fact, in some cancers a substantial portion of the total glucose flux is directed toward serine synthesis, and genetic evidence suggests that glucose flux into this pathway can promote cell transformation. Environmental conditions can also influence the pathways that cells use to generate biomass with the source of carbon for lipid synthesis changing based on oxygen availability. Together, these findings argue that distinct metabolic phenotypes exist among proliferating cells, and both genetic and environmental factors influence how metabolism is regulated to support cell growth.

  10. Mitochondrial Regulation of Cell Cycle and Proliferation

    PubMed Central

    Antico Arciuch, Valeria Gabriela; Elguero, María Eugenia; Poderoso, Juan José

    2012-01-01

    Abstract Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O2, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O2 utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis. Antioxid. Redox Signal. 16, 1150–1180. PMID:21967640

  11. Peroxisome proliferator-activated receptors and angiogenesis.

    PubMed

    Biscetti, F; Straface, G; Pitocco, D; Zaccardi, F; Ghirlanda, G; Flex, A

    2009-12-01

    The peroxisome proliferator-activated receptors (PPARs) are a group of three nuclear receptor isoforms, PPARalpha, PPARgamma and PPARdelta, encoded by different genes, and they form a subfamily of the nuclear receptor superfamily. The clinical interest in PPARs originates with fibrates and thiazolidinediones, which, respectively, act on PPARalpha and PPARgamma and are used to ameliorate hyperlipidaemia and hyperglycaemia in subjects with type 2 diabetes mellitus (T2DM). PPARs play a central role in these patients due to their ability to regulate the expression of numerous genes involved in glycaemic control, lipid metabolism, vascular tone and inflammation. Abnormal angiogenesis is implicated in several of the long-term complications of diabetes mellitus, characterized by vasculopathy associated with aberrant growth of new blood vessels. This pathological process plays a crucial role in diabetic retinopathy, nephropathy and neuropathy, impaired wound healing and impaired coronary collateral vessel development. In recent years, there has been increasing appreciation of the fact that PPARs might be involved in the molecular mechanisms that regulate angiogenesis through the action of growth factors and cytokines that stimulate migration, proliferation and survival of endothelial cells. During the last few years direct comparative analyses have been performed, using selective PPARs agonists, to clarify the angiogenic properties of the different members of the PPAR family. Lately, the findings provide new information to order to understand the biological, clinical and therapeutic effects of PPARs, and the role of these nuclear receptors in angiogenesis, with potentially important implications for the management of subjects affected by T2DM. PMID:19628379

  12. Peroxiredoxins, oxidative stress, and cell proliferation.

    PubMed

    Immenschuh, Stephan; Baumgart-Vogt, Eveline

    2005-01-01

    Peroxiredoxins (Prxs) are a family of multifunctional antioxidant thioredoxin-dependent peroxidases that have been identified in a large variety of organisms. The major functions of Prxs comprise cellular protection against oxidative stress, modulation of intracellular signaling cascades that apply hydrogen peroxide as a second messenger molecule, and regulation of cell proliferation. In the present review, we discuss pertinent findings on the protein structure, the cell- and tissue-specific distribution, as well as the subcellular localization of Prxs. A particular emphasis is put on Prx I, which is the most abundant and ubiquitously distributed member of the mammalian Prxs. Major transcriptional and posttranslational regulatory mechanisms and signaling pathways that control Prx gene expression and activity are summarized. The interaction of Prx I with the oncogene products c-Abl and c-Myc and the regulatory role of Prx I for cell proliferation and apoptosis are highlighted. Recent findings on phenotypical alterations of mouse models with targeted disruptions of Prx genes are discussed, confirming the physiological functions of Prxs for antioxidant cell and tissue protection along with an important role as tumor suppressors.

  13. Distinct Effects of Different Phosphatidylglycerol Species on Mouse Keratinocyte Proliferation

    PubMed Central

    Xie, Ding; Seremwe, Mutsa; Edwards, John G.; Podolsky, Robert; Bollag, Wendy B.

    2014-01-01

    We have previously shown that liposomes composed of egg-derived phosphatidylglycerol (PG), with a mixed fatty acid composition (comprising mainly palmitate and oleate), inhibit the proliferation and promote the differentiation of rapidly dividing keratinocytes, and stimulate the growth of slowly proliferating epidermal cells. To determine the species of PG most effective at modulating keratinocyte proliferation, primary mouse keratinocytes were treated with different PG species, and proliferation was measured. PG species containing polyunsaturated fatty acids were effective at inhibiting rapidly proliferating keratinocytes, whereas PG species with monounsaturated fatty acids were effective at promoting proliferation in slowly dividing cells. Thus, palmitoyl-arachidonyl-PG (16∶0/20∶4), palmitoyl-linoleoyl-PG (16∶0/18∶2), dilinoleoyl-PG (18∶2/18∶2) and soy PG (a PG mixture with a large percentage of polyunsaturated fatty acids) were particularly effective at inhibiting proliferation in rapidly dividing keratinocytes. Conversely, palmitoyl-oleoyl-PG (16∶0/18∶1) and dioleoyl-PG (18∶1/18∶1) were especially effective proproliferative PG species. This result represents the first demonstration of opposite effects of different species of a single class of phospholipid and suggests that these different PG species may signal to diverse effector enzymes to differentially affect keratinocyte proliferation and normalize keratinocyte proliferation. Thus, different PG species may be useful for treating skin diseases characterized by excessive or insufficient proliferation. PMID:25233484

  14. [124I]-iododeoxyuridine imaging tumor proliferation

    SciTech Connect

    Blasberg, R.; Roelcke, U.; Weinreich, R.

    1996-05-01

    Quantitative imaging of tissue proliferation could identify the regions of tumor that are most rapidly dividing, provide spatial information for radiation treatment planning and stereotactic biopsies, and provide an earlier measure of treatment response than CT or MR, or FDG PET. Carrier-free [124I]-labeled sodium iodide was produced at Essen Univ., and [124I]-IUdR was synthesized at PSI by a reaction with 2-deoxyuridine in an iodogen coated reaction vial; radiochemical yield varied from 51-71%. [124I]-IUdR was injected i.v. in 10 patients with primary brain tumors and sequential scans were obtained 0-60 min and at 24 hrs (1 hr scan) with a Siemens ECAT 933/04-16 tomograph. The PET and MR images were registered to each other using the Pellizzari algorithm. The IUdR-DNA incorporation constant (Ki) was calculated from ROI time-activity data and the metabolite corrected blood curve. Tumor proliferation was independently assessed by BUdR immunohistochemistry (labeling index) on tissue samples obtained at surgery. Mean tumor activity 24 hrs after [124I]-IUdR administration ranged from 1.9 - 22.1 nCi/cc and Ki ranged from 3.4 - 28.6 {mu}l/min/g. Normal brain activity ranged from 0.74 - 2.2 nCi/cc and Ki was 2.0 {plus_minus} 1.0 {mu}l/min/g, respectively. The expected relationship between Ki and tumor grade was observed, and a good correlation was observed between Ki and tumor grade was observed, and a good correlation was observed between Ki and labeling index of random surgical tumor specimens in 7 evaluable patients (r=0.86). In higher grade tumors there was marked variation in IUdR activity and Ki, suggesting a wide range of proliferative activity within the tumor. Ki in low grade tumors was low and more uniform. The potential for [124I]-IUdR PET imaging of tumor proliferation was shown to be feasible, despite low injection doses (0.75-1.6 mCi), rapid clearance of [124I]-IUdR from blood, and a low fraction of detectable emission (only 23% of decay is {beta}{sup +}).

  15. Automatic Scheduling and Planning (ASAP) in future ground control systems

    NASA Technical Reports Server (NTRS)

    Matlin, Sam

    1988-01-01

    This report describes two complementary approaches to the problem of space mission planning and scheduling. The first is an Expert System or Knowledge-Based System for automatically resolving most of the activity conflicts in a candidate plan. The second is an Interactive Graphics Decision Aid to assist the operator in manually resolving the residual conflicts which are beyond the scope of the Expert System. The two system designs are consistent with future ground control station activity requirements, support activity timing constraints, resource limits and activity priority guidelines.

  16. Please respond ASAP: workplace telepressure and employee recovery.

    PubMed

    Barber, Larissa K; Santuzzi, Alecia M

    2015-04-01

    Organizations rely heavily on asynchronous message-based technologies (e.g., e-mail) for the purposes of work-related communications. These technologies are primary means of knowledge transfer and building social networks. As a by-product, workers might feel varying levels of preoccupations with and urges for responding quickly to messages from clients, coworkers, or supervisors--an experience we label as workplace telepressure. This experience can lead to fast response times and thus faster decisions and other outcomes initially. However, research from the stress and recovery literature suggests that the defining features of workplace telepressure interfere with needed work recovery time and stress-related outcomes. The present set of studies defined and validated a new scale to measure telepressure. Study 1 tested an initial pool of items and found some support for a single-factor structure after problematic items were removed. As expected, public self-consciousness, techno-overload, and response expectations were moderately associated with telepressure in Study 1. Study 2 demonstrated that workplace telepressure was distinct from other personal (job involvement, affective commitment) and work environment (general and ICT work demands) factors and also predicted burnout (physical and cognitive), absenteeism, sleep quality, and e-mail responding beyond those factors. Implications for future research and workplace practices are discussed.

  17. Profitable solutions to climate, oil, and proliferation.

    PubMed

    Lovins, Amory B

    2010-05-01

    Protecting the climate is not costly but profitable (even if avoided climate change is worth zero), mainly because saving fuel costs less than buying fuel. The two biggest opportunities, both sufficiently fast, are oil and electricity. The US, for example, can eliminate its oil use by the 2040s at an average cost of $15 per barrel ($2000), half by redoubled efficiency and half by alternative supplies, and can save three-fourths of its electricity more cheaply than operating a thermal power station. Integrative design permits this by making big energy savings cheaper than small ones, turning traditionally assumed diminishing returns into empirically observed expanding returns. Such efficiency choices accelerate climate-safe, inexhaustible, and resilient energy supply-notably the "micropower" now delivering about a sixth of the world's electricity and 90% of its new electricity. These cheap, fast, market-financeable, globally applicable options offer the most effective, yet most underestimated and overlooked, solutions for climate, proliferation, and poverty.

  18. Cell proliferation inhibition in reduced gravity

    NASA Technical Reports Server (NTRS)

    Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Extended durations of spaceflight have been shown to be deleterious on an organismic level; however, mechanisms underlying cellular sensitivity to the gravitational environment remain to be elucidated. The majority of the gravitational studies to date indicates that cell regulatory pathways may be influenced by their gravitational environment. Still, few cell biology experiments have been performed in space flight and even fewer experiments have been repeated on subsequent flights. With flight opportunities on STS-50, 54, and 57, Sf9 cells were flown in the BioServe Fluids Processing Apparatus and cell proliferation was measured with and without exposure to a cell regulatory sialoglycopeptide (CeReS) inhibitor. Results from these flights indicate that the Sf9 cells grew comparable to ground controls, that the CeReS inhibitor bound to its specific receptor, and that its signal transduction cascade was not gravity sensitive.

  19. Fermi's Conundrum: Proliferation and Closed Societies

    NASA Astrophysics Data System (ADS)

    Teller, Wendy; Westfall, Catherine

    2007-04-01

    On January 1, 1946 Emily Taft Douglas, a freshman Representative at Large for Illinois, sent a letter to Enrico Fermi. She wanted to know whether, if atomic energy was used for peaceful purposes, it might be possible to clandestinely divert some material for bombs. Douglas first learned about the bomb not quite five months before when Hiroshima was bombed. Even though she was not a scientist she identified a key problem of the nuclear age. Fermi responded with requirements to allow peaceful uses of atomic energy and still outlaw nuclear weapons. First, free interchange of information between people was required, and second, people who reported possible violations had to be protected. Fermi had lived in Mussolini's Italy and worked under the war time secrecy restrictions of the Manhattan Project. He was not optimistic that these conditions could be met. This paper discusses how Douglas came to recognize the proliferation issue and what led Fermi to his solution and his pessimism about its practicality.

  20. Ballistic missile proliferation: An emerging threat 1992

    SciTech Connect

    Nagler, R.G.

    1992-10-01

    This report, based solely on information available from unclassified sources, provides a coherent picture of the scope and trends of ballistic missile proliferation. The focus is on countries developing, producing, or owning ballistic missiles capable of threatening the military forces, assets, or populations of neighboring or geographically remote countries. The report also identifies other countries expected to obtain operational ballistic missile capabilities, discusses expected growth in performance, and examines the projected availability of warheads of mass destruction. The emphasis is on ballistic missiles of ranges greater than approximately 300 km, though shorter range battlefield weapons are discussed as forerunners. The assessment excludes principal U.S. allies and countries formerly in the Warsaw Pact, except where these countries have sold missiles, technology; or personnel services to developing nations in support of their missile programs.

  1. Internationalization: an alternative to nuclear proliferation

    SciTech Connect

    Meller, E.

    1980-01-01

    Leading personalities in the field of nuclear energy worldwide assess possible improvements to the present nonproliferation regime and explore the possibilities for the internationalization of sensitive parts of the nuclear fuel cycle. Their studies address past and current nonproliferation policies, the current controversy between the United States and its European allies on the development of fast breeder reactors and plutonium recycling, implications of the recent US Non-Proliferation Act of 1978 upon US/Euratom relations, industrial government relationships, safety concerns, and the special needs of developing countries. Their conclusions stress the recognition of complex factors such as military security, technical competition, the spread of nuclear technology, and politics that will limit any mechanism to govern nonproliferation. They urge greater effort in educating the public to the political and economic complexities of nuclear power and recommend strengthening international agreements and other arrangements, including controls and safeguards, and the general rules for the international trade of nuclear fuel. 11 figures, 7 tables.

  2. Autism overflows: increasing prevalence and proliferating theories.

    PubMed

    Waterhouse, Lynn

    2008-12-01

    This selective review examines the lack of an explanation for the sharply increasing prevalence of autism, and the lack of any synthesis of the proliferating theories of autism. The most controversial and most widely disseminated notion for increasing prevalence is the measles-mumps-rubella/thimerosal vaccine theory. Less controversial causes that have been proposed include changes in autism diagnostic criteria, increasing services for autism, and growing awareness of the disorder. Regardless of its causes, the increasing prevalence of autism has put pressure on the field of autism research to generate productive and predictive theories of autism. However, the heterogeneity of brain deficits, impaired behaviors, and genetic variants in autism have challenged researchers and theorists, and despite 45 years of research, no standard causal synthesis has emerged. Research going forward should assume that autism is an aggregation of myriad independent disorders of impaired sociality, social cognition, communication, and motor and cognitive skills.

  3. Involvement of cholangiocyte proliferation in biliary fibrosis

    PubMed Central

    Priester, Sally; Wise, Candace; Glaser, Shannon S

    2010-01-01

    Cholangiocytes are the epithelial cells that line the biliary tree. In the adult liver, they are a mitotically dormant cell population, unless ductular reaction is triggered by injury. The ability of cholangiocytes to proliferate is important in many different human pathological liver conditions that target this cell type, which are termed cholangiopathies (i.e. primary biliary cirrhosis, primary sclerosing cholangitis and biliary atresia). In our article, we provide background information on the morphological and functional heterogeneity of cholangiocytes, summarize what is currently known about their proliferative processes, and briefly describe the diseases that target these cells. In addition, we address recent findings that suggest cholangiocyte involvement in epithelial-to-mesenchymal transformation and liver fibrosis, and propose directions for future studies. PMID:21607140

  4. Mzf1 controls cell proliferation and tumorigenesis

    PubMed Central

    Gaboli, Mirella; Kotsi, Paraskevi A.; Gurrieri, Carmela; Cattoretti, Giorgio; Ronchetti, Simona; Cordon-Cardo, Carlos; Broxmeyer, Hal E.; Hromas, Robert; Pandolfi, Pier Paolo

    2001-01-01

    MZF1 is a transcription factor belonging to the Krüppel family of zinc finger proteins, expressed in totipotent hemopoietic cells as well as in myeloid progenitors. Here we have inactivated Mzfi1 by gene targeting. Mzf1−/− mice develop lethal neoplasias characterized by the infiltration and complete disruption of the liver architecture by a monomorphic population of cells of myeloid origin reminiscent of human chloromas. Mzf1 inactivation results in a striking increase of the autonomous cell proliferation and of the ability of Mzf1−/− hemopoietic progenitors to sustain long-term hemopoiesis. These findings demonstrate that Mzf1 can act as a tumor/growth suppressor in the hemopoietic compartment. PMID:11445537

  5. Numb-deficient satellite cells have regeneration and proliferation defects.

    PubMed

    George, Rajani M; Biressi, Stefano; Beres, Brian J; Rogers, Erik; Mulia, Amanda K; Allen, Ronald E; Rawls, Alan; Rando, Thomas A; Wilson-Rawls, Jeanne

    2013-11-12

    The adaptor protein Numb has been implicated in the switch between cell proliferation and differentiation made by satellite cells during muscle repair. Using two genetic approaches to ablate Numb, we determined that, in its absence, muscle regeneration in response to injury was impaired. Single myofiber cultures demonstrated a lack of satellite cell proliferation in the absence of Numb, and the proliferation defect was confirmed in satellite cell cultures. Quantitative RT-PCR from Numb-deficient satellite cells demonstrated highly up-regulated expression of p21 and Myostatin, both inhibitors of myoblast proliferation. Transfection with Myostatin-specific siRNA rescued the proliferation defect of Numb-deficient satellite cells. Furthermore, overexpression of Numb in satellite cells inhibited Myostatin expression. These data indicate a unique function for Numb during the initial activation and proliferation of satellite cells in response to muscle injury. PMID:24170859

  6. Insect endosymbiont proliferation is limited by lipid availability

    PubMed Central

    Herren, Jeremy K; Paredes, Juan C; Schüpfer, Fanny; Arafah, Karim; Bulet, Philippe; Lemaitre, Bruno

    2014-01-01

    Spiroplasma poulsonii is a maternally transmitted bacterial endosymbiont that is naturally associated with Drosophila melanogaster. S. poulsonii resides extracellularly in the hemolymph, where it must acquire metabolites to sustain proliferation. In this study, we find that Spiroplasma proliferation specifically depletes host hemolymph diacylglyceride, the major lipid class transported by the lipoprotein, Lpp. RNAi-mediated knockdown of Lpp expression, which reduces the amount of circulating lipids, inhibits Spiroplasma proliferation demonstrating that bacterial proliferation requires hemolymph-lipids. Altogether, our study shows that an insect endosymbiont acquires specific lipidic metabolites from the transport lipoproteins in the hemolymph of its host. In addition, we show that the proliferation of this endosymbiont is limited by the availability of hemolymph lipids. This feature could limit endosymbiont over-proliferation under conditions of host nutrient limitation as lipid availability is strongly influenced by the nutritional state. DOI: http://dx.doi.org/10.7554/eLife.02964.001 PMID:25027439

  7. Insect endosymbiont proliferation is limited by lipid availability.

    PubMed

    Herren, Jeremy K; Paredes, Juan C; Schüpfer, Fanny; Arafah, Karim; Bulet, Philippe; Lemaitre, Bruno

    2014-01-01

    Spiroplasma poulsonii is a maternally transmitted bacterial endosymbiont that is naturally associated with Drosophila melanogaster. S. poulsonii resides extracellularly in the hemolymph, where it must acquire metabolites to sustain proliferation. In this study, we find that Spiroplasma proliferation specifically depletes host hemolymph diacylglyceride, the major lipid class transported by the lipoprotein, Lpp. RNAi-mediated knockdown of Lpp expression, which reduces the amount of circulating lipids, inhibits Spiroplasma proliferation demonstrating that bacterial proliferation requires hemolymph-lipids. Altogether, our study shows that an insect endosymbiont acquires specific lipidic metabolites from the transport lipoproteins in the hemolymph of its host. In addition, we show that the proliferation of this endosymbiont is limited by the availability of hemolymph lipids. This feature could limit endosymbiont over-proliferation under conditions of host nutrient limitation as lipid availability is strongly influenced by the nutritional state. PMID:25027439

  8. Oral atenolol therapy for proliferating infantile hemangioma

    PubMed Central

    Ji, Yi; Wang, Qi; Chen, Siyuan; Xiang, Bo; Xu, Zhicheng; Li, Yuan; Zhong, Lin; Jiang, Xiaoping; Yang, Xiaodong

    2016-01-01

    Abstract Propranolol, a lipophilic nonselective β-blocker, has recently been reported to be the treatment of choice for select types of infantile hemangiomas (IHs). Atenolol is a hydrophilic, selective β1-blocker and therefore may be not associated with side effects attributable to β2-adrenergic receptor blockade and lipophilicity. However, the efficacy and safety of atenolol in the treatment of IH are poorly understood. The aim of this study was to evaluate the efficacy and safety of atenolol in the treatment of proliferating IHs. A study of 76 infants between the ages of 5 to 20 weeks with superficial or mixed IH was conducted between August 2013 and March 2015. Oral atenolol was administered in a progressive schedule to 1 mg/kg per day in a single dose. Efficacy was assessed using the Hemangioma Activity Score (HAS) at weeks 0, 1, 4, 12, and 24. Safety was evaluated at weeks 0, 1, 4, 8, 12, 16, 20, and 24. In total, 70 patients completed 24 weeks of treatment. IH growth abruptly stopped for 93.4% of patients within the fourth week of treatment with atenolol. In ulcerated IHs, complete healing of the ulcerations occurred in an average treatment time of 5.5 weeks. Atenolol treatment promoted dramatic decreases in HAS scores after week 1. An “excellent” treatment response (compete or nearly complete resolution of the IH) was observed in 56.5% of patients at week 24. No significant hypoglycemia, bronchospasm, bradycardia, or hypotension occurred. The most common adverse event was diarrhea, followed by agitation and sleep disturbance. This study demonstrated that atenolol was effective and safe at a dose of 1 mg/kg per day for 24 weeks in the treatment of proliferating IHs. PMID:27310994

  9. Skin cell proliferation stimulated by microneedles.

    PubMed

    Liebl, Horst; Kloth, Luther C

    2012-03-01

    A classical wound may be defined as a disruption of tissue integrity. Wounds, caused by trauma from accidents or surgery, that close via secondary intention rely on the biological phases of healing, i.e., hemostasis, inflammation, proliferation, and remodeling (HIPR). Depending on the wound type and severity, the inflammation phase begins immediately after injury and may last for an average of 7-14 days. Concurrent with the inflammation phase or slightly delayed, cell proliferation is stimulated followed by the activation of the remodeling (maturation) phase. The latter phase can last as long as 1 year or more, and the final healed state is represented by a scar tissue, a cross-linked collagen formation that usually aligns collagen fibers in a single direction. One may assume that skin microneedling that involves the use of dozens or as many as 200 needles that limit penetration to 1.5 mm over 1 cm(2) of skin would cause trauma and bleeding followed by the classical HIPR. However, this is not the case or at least the HIPR phases are significantly curtailed and healing never ends in a scar formation. Conversely dermabrasion used in aesthetic medicine for improving skin quality is based on "ablation" (destruction or wounding of superficial skin layers), which requires several weeks for healing that involves formation of new skin layers. Such procedures provoke an acute inflammatory response. We believe that a less intense inflammatory response occurs following microneedle perforation of the skin. However, the mechanism of action of microneedling appears to be different. Here we review the potential mechanisms by which microneedling of the skin facilitates skin repair without scarring after the treatment of superficial burns, acne, hyperpigmentation, and the non-advancing periwound skin surrounding the chronic ulcerations of the integument. PMID:24527373

  10. Suppression of fibroblast proliferation by oral spirochetes.

    PubMed Central

    Boehringer, H; Taichman, N S; Shenker, B J

    1984-01-01

    Soluble sonic extracts of several strains of Treponema denticola and Treponema vincentii were examined for their abilities to alter proliferation of both murine and human fibroblasts. We found that sonic extracts of all tested strains of T. denticola caused a dose-dependent inhibition of murine and human fibroblast proliferation when assessed by both DNA synthesis ([3H]thymidine incorporation) and direct cell counts. T. vincentii had only a minimal inhibitory effect at comparable doses. No inhibition was observed when sonic extracts were added simultaneously with [3H]thymidine, indicating that suppression was not due to the presence of excessive amounts of cold thymidine in the extract, nonspecific effects on thymidine utilization by the cells (transport and incorporation), or degradation of label. RNA ([3H]uridine incorporation) and protein ([3H]leucine incorporation) synthesis were similarly altered after exposure to the T. denticola sonic extracts. There was no effect on cell viability as measured by trypan blue exclusion. Inhibition could be reversed by extensive washing of the cells within the first few hours of exposure to sonic extracts. Preliminary characterization and purification indicated that the inhibitory factor(s) is not endotoxin since it is heat labile, and elutes in a single, well-defined peak on a Sephadex G-150 chromatography column corresponding to a molecular weight of approximately 50,000. Since oral spirochetes have been implicated in the pathogenesis of periodontal disorders, it is possible that they contribute to the disease process by inhibition of fibroblast growth and therefore may, at least in part, account for the loss of collagen seen in diseased tissue. PMID:6735466

  11. Skin Cell Proliferation Stimulated by Microneedles

    PubMed Central

    Liebl, Horst; Kloth, Luther C.

    2012-01-01

    A classical wound may be defined as a disruption of tissue integrity. Wounds, caused by trauma from accidents or surgery, that close via secondary intention rely on the biological phases of healing, i.e., hemostasis, inflammation, proliferation, and remodeling (HIPR). Depending on the wound type and severity, the inflammation phase begins immediately after injury and may last for an average of 7–14 days. Concurrent with the inflammation phase or slightly delayed, cell proliferation is stimulated followed by the activation of the remodeling (maturation) phase. The latter phase can last as long as 1 year or more, and the final healed state is represented by a scar tissue, a cross-linked collagen formation that usually aligns collagen fibers in a single direction. One may assume that skin microneedling that involves the use of dozens or as many as 200 needles that limit penetration to 1.5 mm over 1 cm2 of skin would cause trauma and bleeding followed by the classical HIPR. However, this is not the case or at least the HIPR phases are significantly curtailed and healing never ends in a scar formation. Conversely dermabrasion used in aesthetic medicine for improving skin quality is based on “ablation” (destruction or wounding of superficial skin layers), which requires several weeks for healing that involves formation of new skin layers. Such procedures provoke an acute inflammatory response. We believe that a less intense inflammatory response occurs following microneedle perforation of the skin. However, the mechanism of action of microneedling appears to be different. Here we review the potential mechanisms by which microneedling of the skin facilitates skin repair without scarring after the treatment of superficial burns, acne, hyperpigmentation, and the non-advancing periwound skin surrounding the chronic ulcerations of the integument. PMID:24527373

  12. Peroxisome proliferator-activated receptors modulate proliferation and angiogenesis in human endometrial carcinoma.

    PubMed

    Nickkho-Amiry, Mahshid; McVey, Rhona; Holland, Cathrine

    2012-03-01

    Peroxisome proliferator-activated receptors (PPAR) and retinoid X receptors (RXR) are implicated in the development of several obesity-related cancers. Little is known of either the expression or function of PPARs and RXRs in endometrial cancer although this increasingly common disease is highly associated with both obesity and insulin resistance. We investigated the expression of PPAR and RXR subtypes in human endometrial cancers and normal endometrium with immunoblotting and immunohistochemistry and subsequently showed PPAR/RXR binding preferences by coimmunoprecipitation. To determine the functions of PPARs within the endometrium, we investigated proliferation, apoptosis, PTEN expression, and secretion of vascular endothelial growth factor (VEGF) in endometrial cell lines after reducing the expression of PPARα and PPARγ with antisense RNA. The functional effects of PPAR ligands were also investigated in vitro. We identified differential expression of PPAR and RXR subtypes in endometrial cancers and discovered that PPARγ expression correlated with expression of PTEN. PPARα activation influences endometrial cell growth and VEGF secretion. PPARγ activation reduces proliferation of endometrial cells via regulation of PTEN and appears to reduce VEGF secretion. We conclude that the PPAR/RXR pathway contribute to endometrial carcinogenesis by control of PTEN expression and modulation of VEGF secretion. We propose that PPAR ligands should be considered for clinical investigation in early phase studies of women with endometrial cancer.

  13. Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells

    SciTech Connect

    Tsukahara, Tamotsu; Haniu, Hisao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer We examined the correlation between PPAR{gamma} expression and cell proliferation. Black-Right-Pointing-Pointer PPAR{gamma} overexpression reduces cell viability. Black-Right-Pointing-Pointer We show the synergistic effect of cell growth inhibition by a PPAR{gamma} agonist. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPAR{gamma} is expressed at considerable levels in human colon cancer cells. This suggests that PPAR{gamma} expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPAR{gamma} expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPAR{gamma} mRNA and protein in these cells were in the order HT-29 > LOVO > Caco-2 > DLD-1. We also found that PPAR{gamma} overexpression promoted cell growth inhibition in PPAR{gamma} lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPAR{gamma} expression and the cells' sensitivity for proliferation.

  14. Extended Deterrence, Nuclear Proliferation, and START III

    SciTech Connect

    Speed, R.D.

    2000-06-20

    Early in the Cold War, the United States adopted a policy of ''extended nuclear deterrence'' to protect its allies by threatening a nuclear strike against any state that attacks these allies. This threat can (in principle) be used to try to deter an enemy attack using conventional weapons or one using nuclear, chemical, or biological weapons. The credibility of a nuclear threat has long been subject to debate and is dependent on many complex geopolitical factors, not the least of which is the military capabilities of the opposing sides. The ending of the Cold War has led to a significant decrease in the number of strategic nuclear weapons deployed by the United States and Russia. START II, which was recently ratified by the Russian Duma, will (if implemented) reduce the number deployed strategic nuclear weapons on each side to 3500, compared to a level of over 11,000 at the end of the Cold War in 1991. The tentative limit established by Presidents Clinton and Yeltsin for START III would reduce the strategic force level to 2000-2500. However, the Russians (along with a number of arms control advocates) now argue that the level should be reduced even further--to 1500 warheads or less. The conventional view is that ''deep cuts'' in nuclear weapons are necessary to discourage nuclear proliferation. Thus, as part of the bargain to get the non-nuclear states to agree to the renewal of the Nuclear Non-Proliferation Treaty, the United States pledged to work towards greater reductions in strategic forces. Without movement in the direction of deep cuts, it is thought by many analysts that some countries may decide to build their own nuclear weapons. Indeed, this was part of the rationale India used to justify its own nuclear weapons program. However, there is also some concern that deep cuts (to 1500 or lower) in the U.S. strategic nuclear arsenal could have the opposite effect. The fear is that such cuts might undermine extended deterrence and cause a crisis in confidence

  15. The possibility of life proliferation from Enceladus

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2016-07-01

    Enceladus is a medium sized icy satellite (MIS) of Saturn. MIS are built of mixtures of rocks and ices. According to [1]: "For life to have emerged […] on the early Earth, a sustained source of chemically transducible energy was essential. The serpentinization process is emerging as an increasingly likely source of that energy" (see also [2]). We consider here conditions for origin of life in the early Enceladus and later proliferation of the life. Mass of serpentinite: The serpentinization on the Earth is often considered with hydrothermal activity in neovolcanic zones along mid-oceanic spreading centers. However, only in small part the hydrothermal activity really occurs. A simple calculations (e.g. [3]) indicate that mass fraction of silicates in Enceladus is ~0.646, hence the total mass of its silicate is ~6.97 10^1^9 kg. [4] considered the process of differentiation and core forming in Enceladus. He found that the result of differentiation is a relatively cold core of loosely packed grains with water between them. The entire core of Enceladus was probably permeable. This could lead to formation of extensive hydrothermal convective systems. It indicates that total mass of serpententinized silicate in Enceladus could be larger than on the Earth. The evolution of temperature in the Enceladus interior for the first a few hundreds Myr is given in [4]. He found that the temperature allows for existing the life even in the center of the satellite. It is possible that for hundreds of Myr the conditions in Enceladus were more favorable for origin of life than on the Earth. Proliferation of life: The low gravity of the Enceladus and its volcanic activity make transport possible. Note that the low temperature of plumes from active region of Enceladus does not kill the organisms. The primitive bacteria could leave the Enceladus with volcanic jets in the same way as particles of the E ring. Other mechanisms could transport particles to terrestrial planets. Therefore it

  16. Complexities in gauging time-dependency of proliferation resistance

    SciTech Connect

    Avens, L. R.; Eller, P. G.; Stanbro, W. D.

    2004-01-01

    To a considerable extent, policy decisions on nuclear fuel cycle issues depend upon how decision makers recognize and weigh 'long-term' and 'short-term' nuclear proliferation risk factors. Priorities and structures of advanced fuel cycle and safeguards research and development programs are affected similarly. Unfortunately, there is a diversity of understanding of the precise meanings of these proliferation risk terms, leading to lack of precision in their usage. In addition, proliferation risk evaluation fundamentally involves value judgments on the relative importance of time-dependent risks. Poor communication and diverse conclusions often result. This paper explores some complexities in gauging 'long-term' and 'short-term' proliferation risk in the context of advanced nuclear fuel cycles. A convenient vehicle for this purpose is a commonly used notional plot of some proliferation resistance attribute of spent fuel or separated plutonium versus years from reactor discharge, often overlain with similar notional curves denoting multiple fuel irradiation and recycle. A common basis for misuse of such plots is failure to clearly define the range of proliferation threats being evaluated, as illustrated by several common examples of such omissions. Partial arguments of this type can be misleading and provide a disservice to policy makers who must have a clear picture of the tradeoffs being made. This paper concludes with a call for much greater care to avoid overly simplistic interpretations of notional proliferation-related concepts and greater precision in general in use of proliferation-related terminology.

  17. Local proliferation initiates macrophage accumulation in adipose tissue during obesity.

    PubMed

    Zheng, C; Yang, Q; Cao, J; Xie, N; Liu, K; Shou, P; Qian, F; Wang, Y; Shi, Y

    2016-01-01

    Obesity-associated chronic inflammation is characterized by an accumulation of adipose tissue macrophages (ATMs). It is generally believed that those macrophages are derived from peripheral blood monocytes. However, recent studies suggest that local proliferation of macrophages is responsible for ATM accumulation. In the present study, we revealed that both migration and proliferation contribute to ATM accumulation during obesity development. We show that there is a significant increase in ATMs at the early stage of obesity, which is largely due to an enhanced in situ macrophage proliferation. This result was obtained by employing fat-shielded irradiation and bone marrow reconstitution. Additionally, the production of CCL2, a pivotal chemoattractant of monocytes, was not found to be increased at this stage, corroborating with a critical role of proliferation. Nonetheless, as obesity proceeds, the role of monocyte migration into adipose tissue becomes more significant and those new immigrants further proliferate locally. These proliferating ATMs mainly reside in crown-like structures formed by macrophages surrounding dead adipocytes. We further showed that IL-4/STAT6 is a driving force for ATM proliferation. Therefore, we demonstrated that local proliferation of resident macrophages contributes to ATM accumulation during obesity development and has a key role in obesity-associated inflammation. PMID:27031964

  18. SIRT1 inhibits the mouse intestinal motility and epithelial proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SIRT1 inhibits the mouse intestinal motility and epithelial proliferation. Sirtuin 1 (SIRT1), a NAD+-dependent histone deacetylase, is involved in a wide array of cellular processes, including glucose homeostasis, energy metabolism, proliferation and apoptosis, and immune response. However, it is un...

  19. Chronic ethanol consumption transiently reduces adult neural progenitor cell proliferation.

    PubMed

    Rice, Ann C; Bullock, M Ross; Shelton, Keith L

    2004-06-11

    Adult neural stem/progenitor cells proliferate throughout the life of the animal in the subependymal zone and the subgranular zone of the dentate gyrus (DG). Treatments such as enriched environment, dietary restriction, running and anti-depressants increase proliferation, however, stress and opiates have been shown to decrease proliferation. While models of binge ethanol drinking decreases proliferation, few studies have characterized the effect chronic ethanol usage has on progenitor cell proliferation. In this study, we have examined changes in the progenitor cell proliferation rate following chronic ethanol consumption. Animals were given a nutritionally balanced liquid diet containing 6.5% v/v ethanol or an isocalorically balanced liquid diet. Bromodeoxyuridine (BrdU) was administered (150 mg/kg x 3) and the animals sacrificed 2 h after the last injection on days 3, 10 or 30 of the ethanol diet. Coronal brain blocks were paraffin embedded and 6 microm sections sliced and immunohistochemically stained for BrdU. Quantitation of the number of BrdU-labeled cells in the subgranular zone of the DG revealed a significant decrease only at the 3-day time-point, with recovery by the 10- and 30-day time-points. Thus, the progenitor cell proliferation rate is transiently decreased by chronic ethanol usage. This data suggests that chronic alcohol use results in a compensatory response that restores the progenitor cell proliferation rate.

  20. Denuclearization for a Just World: The Failure of Non Proliferation.

    ERIC Educational Resources Information Center

    Institute for World Order, New York, NY.

    The document discusses the non proliferation policies of nuclear power nations. It specifically focuses on the credibility gap which exists between the actual statements of peaceful intentions made by these nations which express the need for non proliferation of nuclear weapons and their actual conduct with regards to nuclear-related issues in…

  1. Profitable solutions to climate, oil, and proliferation.

    PubMed

    Lovins, Amory B

    2010-05-01

    Protecting the climate is not costly but profitable (even if avoided climate change is worth zero), mainly because saving fuel costs less than buying fuel. The two biggest opportunities, both sufficiently fast, are oil and electricity. The US, for example, can eliminate its oil use by the 2040s at an average cost of $15 per barrel ($2000), half by redoubled efficiency and half by alternative supplies, and can save three-fourths of its electricity more cheaply than operating a thermal power station. Integrative design permits this by making big energy savings cheaper than small ones, turning traditionally assumed diminishing returns into empirically observed expanding returns. Such efficiency choices accelerate climate-safe, inexhaustible, and resilient energy supply-notably the "micropower" now delivering about a sixth of the world's electricity and 90% of its new electricity. These cheap, fast, market-financeable, globally applicable options offer the most effective, yet most underestimated and overlooked, solutions for climate, proliferation, and poverty. PMID:20701180

  2. Bacteriovorax stolpii proliferation and predation without sphingophosphonolipids

    SciTech Connect

    Kaneshiro, Edna S. Hunt, Shannon M.; Watanabe, Yoko

    2008-02-29

    Bacteriovorax stolpii strain UKi2, a facultative predator-parasite of larger Gram-negative bacteria, synthesizes distinct sphingophosphonolipids. These lipids are characterized by a direct P-C bond, the novel head group 1-hydroxy-2-aminoethylphosphonate, iso-branched long chain bases and fatty acids, and fatty acids dominated by those with {alpha}-hydroxy groups. Myriocin, an inhibitor of serine:fatty acyl CoA transferase, reversibly blocked sphingophosphonolipid synthesis in B. stolpii UKi2. However, the inhibitor did not block cell proliferation indicating that these lipids are not vital for B. stolpii UKi2 viability and growth. When mixed with Escherichia coli prey cells, control predator-parasite bacteria were effective in forming large E. coli bdelloplasts and cleared the suspension of the prey cells. Although myriocin-treated cells could attack prey cells and form bdelloplasts, their locomotory behavior was altered and fewer and smaller bdelloplasts were produced. These observations open up the possibility for a role of sphingophosphonolipids in B. stolpii UKi2 complex behavior.

  3. Satellite cell proliferation in adult skeletal muscle

    NASA Technical Reports Server (NTRS)

    Booth, Frank W. (Inventor); Thomason, Donald B. (Inventor); Morrison, Paul R. (Inventor); Stancel, George M. (Inventor)

    1995-01-01

    Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.

  4. Nuclear Naval Propulsion: A Feasible Proliferation Pathway?

    SciTech Connect

    Swift, Alicia L.

    2014-01-31

    There is no better time than now to close the loophole in Article IV of the Nuclear Non-proliferation Treaty (NPT) that excludes military uses of fissile material from nuclear safeguards. Several countries have declared their intention to pursue and develop naval reactor technology, including Argentina, Brazil, Iran, and Pakistan, while other countries such as China, India, Russia, and the United States are expanding their capabilities. With only a minority of countries using low enriched uranium (LEU) fuel in their naval reactors, it is possible that a state could produce highly enriched uranium (HEU) under the guise of a nuclear navy while actually stockpiling the material for a nuclear weapon program. This paper examines the likelihood that non-nuclear weapon states exploit the loophole to break out from the NPT and also the regional ramifications of deterrence and regional stability of expanding naval forces. Possible solutions to close the loophole are discussed, including expanding the scope of the Fissile Material Cut-off Treaty, employing LEU fuel instead of HEU fuel in naval reactors, amending the NPT, creating an export control regime for naval nuclear reactors, and forming individual naval reactor safeguards agreements.

  5. Intelligent hand-portable proliferation sensing system

    SciTech Connect

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Ahuja, S.; Raptis, A.C.

    1997-08-01

    Argonne National Laboratory, with support from DOE`s Office of Nonproliferation and National Security, is currently developing an intelligent hand-portable sensor system. This system is designed specifically to support the intelligence community with the task of in-field sensing of nuclear proliferation and related activities. Based upon pulsed laser photo-ionization time-of-flight mass spectrometry technology, this novel sensing system is capable of quickly providing a molecular or atomic analysis of specimens. The system is capable of analyzing virtually any gas phase molecule, or molecule that can be induced into the gas phase by (for example) sample heating. This system has the unique advantages of providing unprecedented portability, excellent sensitivity, tremendous fieldability, and a high performance/cost ratio. The system will be capable of operating in a highly automated manner for on-site inspections, and easily modified for other applications such as perimeter monitoring aboard a plane or drone. The paper describes the sensing system.

  6. Proliferation of mutators in A cell population.

    PubMed Central

    Mao, E F; Lane, L; Lee, J; Miller, J H

    1997-01-01

    A Lac- strain of Escherichia coli that reverts by the addition of a G to a G-G-G-G-G-G sequence was used to study the proliferation of mutators in a bacterial culture. Selection for the Lac+ phenotype, which is greatly stimulated in mismatch repair-deficient strains, results in an increase in the percentage of mutators in the selected population from less than 1 per 100,000 cells to 1 per 200 cells. All the mutators detected were deficient in the mismatch repair system. Mutagenesis results in a similar increase in the percentage of mutators. Mutagenesis combined with a single selection can result in a population of more than 50% mutators when a sample of several thousand cells is grown out and selected. Mutagenesis combined with two or more successive selections can generate a population that is 100% mutator. These experiments are discussed in relation to ideas that an early step in carcinogenesis is the creation of a mutator phenotype. PMID:8990293

  7. Quantitative analysis of in vivo cell proliferation.

    PubMed

    Cameron, Heather A

    2006-11-01

    Injection and immunohistochemical detection of 5-bromo-2'-deoxyuridine (BrdU) has become the standard method for studying the birth and survival of neurons, glia, and other cell types in the nervous system. BrdU, a thymidine analog, becomes stably incorporated into DNA during the S-phase of mitosis. Because DNA containing BrdU can be specifically recognized by antibodies, this method allows dividing cells to be marked at any given time and then identified at time points from a few minutes to several years later. BrdU immunohistochemistry is suitable for cell counting to examine the regulation of cell proliferation and cell fate. It can be combined with labeling by other antibodies, allowing confocal analysis of cell phenotype or expression of other proteins. The potential for nonspecific labeling and toxicity are discussed. Although BrdU immunohistochemistry has almost completely replaced tritiated thymidine autoradiography for labeling dividing cells, this method and situations in which it is still useful are also described. PMID:18428635

  8. Proliferating cell nuclear antigen in neutrophil fate.

    PubMed

    Witko-Sarsat, Véronique; Ohayon, Delphine

    2016-09-01

    The life span of a neutrophil is a tightly regulated process as extended survival is beneficial for pathogen elimination and cell death necessary to prevent cytotoxic content release from activated neutrophils at the inflammatory site. Therefore, the control between survival and death must be a dynamic process. We have previously described that proliferating cell nuclear antigen (PCNA) which is known as a nuclear protein pivotal in DNA synthesis, is a key element in controlling neutrophil survival through its association with procaspases. Contrary to the dogma which asserted that PCNA has a strictly nuclear function, in mature neutrophils, PCNA is present exclusively within the cytosol due to its nuclear export at the end of the granulocytic differentiation. More recent studies are consistent with the notion that the cytosolic scaffold of PCNA is aimed at modulating neutrophil fate rather than simply preventing death. Ultimately, targeting neutrophil survival might have important applications not just in the field of immunology and inflammation, but also in hematology and transfusion. The neutrophil emerges as a unique and powerful cellular model to unravel the basic mechanisms governing the cell cycle-independent functions of PCNA and should be considered as a leader of the pack. PMID:27558345

  9. Nerve fibre proliferation in interstitial cystitis.

    PubMed

    Christmas, T J; Rode, J; Chapple, C R; Milroy, E J; Turner-Warwick, R T

    1990-01-01

    The aetiology of pain in interstitial cystitis is not understood, although it has been reported to be due to release of mediators from mast cell granules. Cystolysis and intravesical instillation of dimethyl sulphoxide have been shown to relieve pain in this condition. We have studied the nerve population within the bladder wall using immunohistochemical stains for protein gene product 9.5. A group of 18 cases of chronic interstitial cystitis and 12 controls; neuropathic bladder (n = 1), chronic bacterial cystitis (n = 3), systemic lupus erythematosus cystitis (n = 2) and normals (n = 6), were investigated. There were significantly more nerve fibres within the sub-urothelial and detrusor muscle layers in chronic interstitial cystitis than there were in normals. Patients with chronic cystitis of other aetiology did not have a significant increase in nerve fibre density within the bladder wall suggesting a specific association between nerve fibre proliferation and interstitial cystitis. Cystolysis is shown to deplete selectively the submucosal nerve plexuses without altering the nerve density within detrusor muscle. This finding explains the desensitisation of the bladder without impairment of detrusor function after this procedure.

  10. Influence of demographic parameters on rectal epithelial proliferation.

    PubMed

    Fireman, Z; Rozen, P; Fine, N; Chetrit, A

    1989-09-15

    Measurement of rectal epithelial proliferation is now being used as a biomarker for assessing risk for colorectal cancer and response within dietary intervention studies. We examined the possible confounding effects of demographic parameters on the proliferation of 52 healthy middle-aged volunteers without known risk factors for colorectal cancer. No significant effects on proliferation of age, sex or ethnic grouping were found other than marked urban-rural differences amongst men. We hypothesise that these could be explained by differences in dietary habits and their deleterious effects in the older male population. Careful matching of controls are probably needed in order to demonstrate the minor changes in mucosal proliferation that could reflect risk for neoplasia. Further human studies are needed to examine the effects of diet and extremes of age on proliferation.

  11. Proliferation of nuclear weapons: opportunities for control and abolition.

    PubMed

    Sidel, Victor W; Levy, Barry S

    2007-09-01

    Nuclear weapons pose a particularly destructive threat. Prevention of the proliferation and use of nuclear weapons is urgently important to public health. "Horizontal" proliferation refers to nation-states or nonstate entities that do not have, but are acquiring, nuclear weapons or developing the capability and materials for producing them. "Vertical" proliferation refers to nation-states that do possess nuclear weapons and are increasing their stockpiles of these weapons, improving the technical sophistication or reliability of their weapons, or developing new weapons. Because nation-states or other entities that wish to use or threaten to use nuclear weapons need methods for delivering those weapons, proliferation of delivery mechanisms must also be prevented. Controlling proliferation--and ultimately abolishing nuclear weapons--involves national governments, intergovernmental organizations, nongovernmental and professional organizations, and society at large.

  12. The potential for oligodendrocyte proliferation during demyelinating disease.

    PubMed

    Prayoonwiwat, N; Rodriguez, M

    1993-01-01

    The potential for oligodendrocytes to proliferate in response to central nervous system injury was examined. We used intracerebral infection of Theiler's murine encephalomyelitis virus, a model for multiple sclerosis, which results in chronic demyelinating disease of SJL/J mice. Proliferating cells in spinal cord sections of adult mice were identified using simultaneous immunohistochemistry and in situ autoradiography ([3H]-thymidine incorporation). Seven different cell-specific markers were used to characterize proliferating cells as oligodendrocytes (myelin basic protein, proteolipid protein, galactocerebroside, CNPase), astrocytes (glial fibrillary acidic protein), microglia/macrophages (Griffonia simplicifolia isolectin B4) or T-lymphocytes (CD3). The average number of proliferating cells per area of spinal cord white matter was 11/mm2 in normal young adult mice compared to 61/mm2 in chronically infected mice. Most proliferating cells in normal spinal cord were not identified with these markers and were presumed to be progenitor glial cells. However, in spinal cord white matter of mice infected with Theiler's virus for approximately 4 months, 88% of proliferating cells were identified. Approximately one-third of all proliferating cells were in the oligodendrocyte lineage and expressed markers observed late in myelin differentiation. In demyelinated areas as compared to normal white matter, there was an 80- to 211-fold increase in the number of proliferating oligodendrocytes expressing myelin basic protein or proteolipid protein, respectively. The remainder of the proliferating cells in areas of demyelination were astrocytes, microglial cells and T-cells. These experiments support the hypothesis that factors within a demyelinating lesion promote the proliferation and differentiation of cells within the oligodendroglial lineage.

  13. Role of mitofusin 2 (Mfn2) in controlling cellular proliferation

    PubMed Central

    Chen, Kuang-Hueih; Dasgupta, Asish; Ding, Jinhui; Indig, Fred E.; Ghosh, Paritosh; Longo, Dan L.

    2014-01-01

    It has been reported that Mitofusin2 (Mfn2) inhibits cell proliferation when overexpressed. We wanted to study the role of endogenous Mfn2 in cell proliferation, along with the structural features of Mfn2 that influence its mitochondrial localization and control of cell proliferation. Mfn2-knockdown clones of a B-cell lymphoma cell line BJAB exhibited an increased rate of cell proliferation. A 2-fold increase in cell proliferation was also observed in Mfn2-knockout mouse embryonic fibroblast (MEF) cells as compared with the control wild-type cells, and the proliferative advantage of the knockout MEF cells was blocked on reintroduction of the Mfn2 gene. Mfn2 exerts its antiproliferative effect by acting as an effector molecule of Ras, resulting in the inhibition of the Ras-Raf-ERK signaling pathway. Furthermore, both the N-terminal (aa 1–264) and the C-terminal (aa 265–757) fragments of Mfn2 blocked cell proliferation through distinct mechanisms: the N-terminal-mediated inhibition was due to its interaction with Raf-1, whereas the C-terminal fragment of Mfn2 inhibited cell proliferation by interacting with Ras. The inhibition of proliferation by the N-terminal fragment was independent of its mitochondrial localization. Collectively, our data provide new insights regarding the role of Mfn2 in controlling cellular proliferation.—Chen, K.-H., Dasgupta, A., Ding, J., Indig, F. E., Ghosh, P., Longo, D. L. Role of Mitofusin 2 (Mfn2) in controlling cellular proliferation. PMID:24081906

  14. [Acinar cell carcinoma of submaxillary gland].

    PubMed

    Comeche, C; Calabuig, C; Barona, R

    1997-01-01

    Although acine cell neoplasms have for a long time been regarded as benign tumors, they are presently considered to represent the carcinomas. These rare tumors mainly affect the parotid glands, and only exceptionally involve other salivary glands. Clinically, acic cell carcinoma present as isolated tumors simulating a pleomorphic adenoma. The diagnosis is histopathological, and complete surgical removal of the tumor is the treatment of choice, with cervical lymphatic voiding and/or postoperative radiotherapy in selected cases. A prolonged patient follow-up is required, for the tumor may recur many years after surgery. We report a case of acinic cell carcinoma in submaxillary gland.

  15. Increased nuclear ploidy, not cell proliferation, is sustained in the peroxisome proliferator-treated rat liver.

    PubMed

    Lalwani, N D; Dethloff, L A; Haskins, J R; Robertson, D G; de la Iglesia, F A

    1997-01-01

    Peroxisome proliferators are believed to induce liver tumors in rodents due to sustained increase in cell proliferation and oxidative stress resulting from the induction of peroxisomal enzymes. The objective of this study was to conduct a sequential analysis of the early changes in cell-cycle kinetics and the dynamics of rat liver DNA synthesis after treatment with a peroxisome proliferator. Immunofluorescent detection of proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) incorporation into DNA during S phase we used to assess rat hepatocyte proliferation in vivo during dietary administration of Wy-14,643, a known peroxisome proliferator and hepatocarcinogen in rodents. Rats were placed on diet containing 0.1% WY-14,643 and implanted subcutaneously with 5-bromo-2'deoxyuridine containing osmotic pumps 4 days prior to being sacrificed on days 4, 11, and 25 of treatment. Isolated liver nuclei labeled with fluorscein isothiocyanate (FITC)-anti-BrdU/PI and FITC-anti-PCNA/PI were analyzed for S-phase kinetics using flow cytometry. Morphometric analysis was performed to evaluate nuclear and cell size and enumeration of BrdU labeled cells, binucleated hepatocytes, and mitotic index. The BrdU labeling index increased 2-fold in livers of Wy-14,643-treated rats at day 4, but distribution of cells in G1, S phase, and G2-M did not differ significantly from controls. PCNA-positive cells decreased from 36% on day 4 to 17% on day 25, whereas the percentage of PCNA-positive cells in controls increased 2-fold from day 4 to day 11 and remained unchanged up to day 25. The differences in the number of PCNA-positive nuclei between control and Wy-14,643-treated groups were statistically significant only on day 4. Binucleated hepatocytes, determined by morphometric analysis, increased slightly on day 25 in treated rats parallel to an increase in the percentage of cells in G2-M phase. Significant shifts were noted in nuclear diameter and nuclear area after 11 and 25

  16. Precursors of prostate cancer.

    PubMed

    Bostwick, David G; Cheng, Liang

    2012-01-01

    High-grade prostatic intraepithelial neoplasia (PIN) is the only accepted precursor of prostatic adenocarcinoma, according to numerous studies of animal models and man; other proposed precursors include atrophy and malignancy-associated changes (with no morphologic changes). PIN is characterized by progressive abnormalities of phenotype and genotype that are intermediate between benign prostatic epithelium and cancer, indicating impairment of cell differentiation and regulatory control with advancing stages of prostatic carcinogenesis. The only method of detection of PIN is biopsy because it does not significantly elevate serum prostate-specific antigen concentration and cannot be detected by ultrasonography. The mean incidence of PIN in biopsies is 9% (range, 4%-16%), representing about 115,000 new cases of isolated PIN diagnosed each year in the United States. The clinical importance of PIN is its high predictive value as a marker for adenocarcinoma, and its identification warrants repeat biopsy for concurrent or subsequent carcinoma, especially when multifocal or observed in association with atypical small acinar proliferation (ASAP). Carcinoma develops in most patients with PIN within 10 years. Androgen deprivation therapy and radiation therapy decrease the prevalence and extent of PIN, suggesting that these forms of treatment may play a role in prevention of subsequent cancer. Multiple clinical trials to date of men with PIN have had modest success in delaying or preventing subsequent cancer. PMID:22212075

  17. To treat or not to treat with testosterone replacement therapy: a contemporary review of management of late-onset hypogonadism and critical issues related to prostate cancer.

    PubMed

    Kava, Bruce R

    2014-07-01

    Over the last 10 years there has been a dramatic increase in the number of patients identified and treated with testosterone replacement therapy (TRT) for late-onset hypogonadism (LOH). By virtue of age, race, and family history, many of these patients are concurrently at risk for harboring indolent prostate cancer. Other men are at increased risk for prostate cancer as a result of an elevated serum PSA level or having had a prior prostate biopsy showing prostatic intraepithelial neoplasia (PIN) or atypical small acinar proliferation (ASAP). The clinician is often challenged with the decision whether to initiate TRT in these patients. This review presents a contemporary overview of the rationale for TRT, as well as the relationship between testosterone (endogenous and exogenous) and premalignant and malignant lesions of the prostate. We will discuss preliminary data from several recent series demonstrating that TRT may be safely administered in select patients with certain premalignant and bona fide malignant tumors of the prostate. In the absence of a large randomized clinical trial with long-term outcome data evaluating TRT, we hope that this overview will provide clinicians with an evidence-based approach to managing these anxiety-provoking - and often frustrating - clinical scenarios.

  18. [Enhanced control of proliferation in telomerized cells].

    PubMed

    Egorov, E E; Moldaver, M V; Vishniakova, Kh S; Terekhov, S M; Dashinimaev, E B; Cheglakov, I B; Toropygin, I Iu; Iarygin, K N; Chumakov, P M; Korochkin, L I; Antonova, G A; Rybalkina, E Iu; Saburina, I N; Burnaevskiĭ, N S; Zelenin, A V

    2007-01-01

    Clones of telomerized fibroblasts of adult human skin have earlier been obtained. It was shown that despite their fast growth in mass cultures, these cells poorly form colonies. Conditioned medium, antioxidants, and reduced partial oxygen pressure enhanced their colony formation, but not to the level characteristic of the initial cells. The conditioned medium of telomerized cells enhanced colony formation to a much greater extent than that of the initial cells. A study of proteome of the telomerized fibroblasts has revealed changes in the activities of tens of genes. A general trend consists in weakening and increased lability of the cytoskeleton and in activation of the mechanisms controlling protein degradation. However, these changes are not very pronounced. During the formation of immortal telomerized cells, selection takes place, which appears to determine changes in the expression of some genes. It was proposed that a decrease in the capacity of telomerized cells for colony formation is due to increased requirements of these cells to cell-cell contacts. The rate of cell growth reached that characteristic of mass cultures only in the largest colonies. In this respect, the telomerized fibroblasts resembled stem cells: they are capable of self-maintenance, but "escape" to differentiation in the absence of the corresponding microenvironment (niche), which is represented by other fibroblasts. Non-dividing cells in the test of colony formation should be regarded as differentiated cells, since they have no features of degradation, preserve their viability, actively move, grow, phagocytized debris, etc. It was also shown that telomerization did not prevent differentiation of myoblasts and human neural stem cells. Thus, the results obtained suggest the existence of normal mechanisms underlying the regulation of proliferation in the telomerized cells, which opens possibilities of their use in cell therapy, especially in the case of autotransplantation to senior people

  19. Regulation of global gene expression and cell proliferation by APP

    PubMed Central

    Wu, Yili; Zhang, Si; Xu, Qin; Zou, Haiyan; Zhou, Weihui; Cai, Fang; Li, Tingyu; Song, Weihong

    2016-01-01

    Down syndrome (DS), caused by trisomy of chromosome 21, is one of the most common genetic disorders. Patients with DS display growth retardation and inevitably develop characteristic Alzheimer’s disease (AD) neuropathology, including neurofibrillary tangles and neuritic plaques. The expression of amyloid precursor protein (APP) is increased in both DS and AD patients. To reveal the function of APP and elucidate the pathogenic role of increased APP expression in DS and AD, we performed gene expression profiling using microarray method in human cells overexpressing APP. A set of genes are significantly altered, which are involved in cell cycle, cell proliferation and p53 signaling. We found that overexpression of APP inhibits cell proliferation. Furthermore, we confirmed that the downregulation of two validated genes, PSMA5 and PSMB7, inhibits cell proliferation, suggesting that the downregulation of PSMA5 and PSMB7 is involved in APP-induced cell proliferation impairment. Taken together, this study suggests that APP regulates global gene expression and increased APP expression inhibits cell proliferation. Our study provides a novel insight that APP overexpression may contribute to the growth impairment in DS patients and promote AD pathogenesis by inhibiting cell proliferation including neural stem cell proliferation and neurogenesis. PMID:26936520

  20. Utility of Social Modeling for Proliferation Assessment - Preliminary Assessment

    SciTech Connect

    Coles, Garill A.; Gastelum, Zoe N.; Brothers, Alan J.; Thompson, Sandra E.

    2009-06-01

    This Preliminary Assessment draft report will present the results of a literature search and preliminary assessment of the body of research, analysis methods, models and data deemed to be relevant to the Utility of Social Modeling for Proliferation Assessment research. This report will provide: 1) a description of the problem space and the kinds of information pertinent to the problem space, 2) a discussion of key relevant or representative literature, 3) a discussion of models and modeling approaches judged to be potentially useful to the research, and 4) the next steps of this research that will be pursued based on this preliminary assessment. This draft report represents a technical deliverable for the NA-22 Simulations, Algorithms, and Modeling (SAM) program. Specifically this draft report is the Task 1 deliverable for project PL09-UtilSocial-PD06, Utility of Social Modeling for Proliferation Assessment. This project investigates non-traditional use of social and cultural information to improve nuclear proliferation assessment, including nonproliferation assessment, proliferation resistance assessments, safeguards assessments and other related studies. These assessments often use and create technical information about the State’s posture towards proliferation, the vulnerability of a nuclear energy system to an undesired event, and the effectiveness of safeguards. This project will find and fuse social and technical information by explicitly considering the role of cultural, social and behavioral factors relevant to proliferation. The aim of this research is to describe and demonstrate if and how social science modeling has utility in proliferation assessment.

  1. Cell proliferation of Paramecium tetraurelia under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Sawai, S.; Mogami, Y.; Baba, S. A.

    Paramecium is known to proliferate faster under microgravity in space and slower under hypergravity Experiments using axenic culture medium have demonstrated that the hypergravity affected directly on the proliferation of Paramecium itself Kato et al 2003 In order to assess the mechanisms underlying the physiological effects of gravity on cell proliferation Paramecium tetraurelia was grown under simulated microgravity performed by clinorotation and the time course of the proliferation was investigated in detail on the basis of the logistic analysis P tetraurelia was cultivated in a closed chamber in which cells were confined without air babbles reducing the shear stresses and turbulence under the rotation The chamber is made of quartz and silicone rubber film the former is for the optically-flat walls for the measurement of cell density by means of a non-invasive laser optical-slice method and the latter for gas exchange Because the closed chamber has an inner dimension of 3 times 3 times 60 mm Paramecium does not accumulate at the top of the chamber despite its negative gravitactic behavior We measured the cell density at regular time intervals without breaking the configuration of the chamber and analyzed the proliferation parameters by fitting the data to a logistic equation Clinorotation had the effects of reducing the proliferation of P tetraurelia It reduced both the saturation cell density and the maximum proliferation rate although it had little effect on the

  2. Cell proliferation of Paramecium tetraurelia on a slow rotating clinostat

    NASA Astrophysics Data System (ADS)

    Sawai, Satoe; Mogami, Yoshihiro; Baba, Shoji A.

    Paramecium is known to proliferate faster under microgravity conditions, and slower under hypergravity. Experiments using axenic culture medium have demonstrated that hypergravity affected directly on the proliferation of Paramecium itself. In order to assess the mechanisms underlying the physiological effects of gravity on cell proliferation, Paramecium tetraurelia was grown under clinorotation (2.5 rpm) and the time course of the proliferation was investigated in detail on the basis of the logistic analysis. On the basis of the mechanical properties of Paramecium, this slow rate of the rotation appears to be enough to simulate microgravity in terms of the randomization of the cell orientation with respect to gravity. P. tetraurelia was cultivated in a closed chamber in which cells were confined without air bubbles, reducing the shear forces and turbulences under clinorotation. The chamber is made of quartz and silicone rubber film; the former is for the optically-flat walls for the measurement of cell density by means of a non-invasive laser optical-slice method, and the latter for gas exchange. Because of the small dimension for culture space, Paramecium does not accumulate at the top of the chamber in spite of its known negative gravitactic behavior. We measured the cell density at regular time intervals without breaking the configuration of the chamber, and analyzed the proliferation parameters by fitting the data to a logistic equation. As a result, P. tetraurelia showed reduced proliferation under slow clinorotation. The saturation of the cell density as well as the maximum proliferation rate decreased, although we found no significant changes on the half maximal time for proliferation. We also found that the mean swimming velocity decreased under slow clinorotation. These results were not consistent with those under microgravity and fast rotating clinostat. This may suggest that randomization of the cell orientation performed by slow rotating clinostat has

  3. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    SciTech Connect

    Pawelec, K. M. E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E.; Wardale, R. J. E-mail: jw626@cam.ac.uk

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  4. The possibility of life proliferation from Enceladus

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2016-04-01

    Introduction: Enceladus is a medium-sized icy satellite (MIS) of Saturn. MIS are built of mixtures of rocks and ices. Enceladus with its radius of 250 km is one of the smallest of MIS, however, it is geologically active. According to [1]: "For life to have emerged […] on the early Earth, a sustained source of chemically transducible energy was essential. The serpentinization process is emerging as an increasingly likely source of that energy. Serpentinization of ultramafic crust would have continuously supplied hydrogen, methane, […] to off-ridge alkaline hydrothermal springs that interfaced with the metal-rich carbonic Hadean Ocean" (see also [2]). We consider here conditions for origin of life in early Enceladus and possible proliferation of the life from this satellite to the rest of Solar System. Mass of serpentinite: The serpentinization on the Earth is found in neovolcanic zones along mid-oceanic spreading centers. However, only in small part of them the hydrothermal activity really occurs. After [3] we consider the following reaction: Mg2SiO4 + MgSiO3 + 2H2O -> Mg3Si2O5(OH)4 . This reaction releases 241 000 J per kg of serpentine produced. Simple calculations (e.g. [4]) indicate that mass fraction of silicatesfmas in Enceladus is ˜0.646, hence the total mass of its silicate is ˜6.97 1019 kg. [4] found that the early core in Enceladus was a relatively cold structure built from loosely packed grains with water between them. At that time, there was not mechanism of removing the water. Since rocks are permeable up to the pressure of ˜300 MPa then the entire core of Enceladus was probably permeable for liquids. This could lead to formation of extensive hydrothermal convective systems. T-p conditions in Enceladus: The pressure in the center of Enceladus is ˜2.3 107 Pa that corresponds to pressure on the depth 2300 m in a terrestrial ocean. The evolution of temperature in the Enceladus interior for the first a few hundreds Myr is considered by [4]. If

  5. The possibility of life proliferation from Enceladus

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2016-04-01

    Introduction: Enceladus is a medium-sized icy satellite (MIS) of Saturn. MIS are built of mixtures of rocks and ices. Enceladus with its radius of 250 km is one of the smallest of MIS, however, it is geologically active. According to [1]: "For life to have emerged […] on the early Earth, a sustained source of chemically transducible energy was essential. The serpentinization process is emerging as an increasingly likely source of that energy. Serpentinization of ultramafic crust would have continuously supplied hydrogen, methane, […] to off-ridge alkaline hydrothermal springs that interfaced with the metal-rich carbonic Hadean Ocean" (see also [2]). We consider here conditions for origin of life in early Enceladus and possible proliferation of the life from this satellite to the rest of Solar System. Mass of serpentinite: The serpentinization on the Earth is found in neovolcanic zones along mid-oceanic spreading centers. However, only in small part of them the hydrothermal activity really occurs. After [3] we consider the following reaction: Mg2SiO4 + MgSiO3 + 2H2O -> Mg3Si2O5(OH)4 . This reaction releases 241 000 J per kg of serpentine produced. Simple calculations (e.g. [4]) indicate that mass fraction of silicatesfmas in Enceladus is ˜0.646, hence the total mass of its silicate is ˜6.97 1019 kg. [4] found that the early core in Enceladus was a relatively cold structure built from loosely packed grains with water between them. At that time, there was not mechanism of removing the water. Since rocks are permeable up to the pressure of ˜300 MPa then the entire core of Enceladus was probably permeable for liquids. This could lead to formation of extensive hydrothermal convective systems. T-p conditions in Enceladus: The pressure in the center of Enceladus is ˜2.3 107 Pa that corresponds to pressure on the depth 2300 m in a terrestrial ocean. The evolution of temperature in the Enceladus interior for the first a few hundreds Myr is considered by [4]. If

  6. Proliferation as a framework for adaptive planning. Final report

    SciTech Connect

    Adkins, M.A.

    1993-02-22

    Throughout the forty years of the cold war, the military proficiently demonstrated planning, exercising, and employing against weapons of mass destruction -- specifically nuclear weapons. However, this planning has never targeted the spread of those weapons. The four stages of proliferation (supply, demand, indigenous, threatening) provide a framework for using the adaptive planning concept and identifying proactive military objectives. The existence of nuclear technology, command and control of the weapons of mass destruction, associated moral issues, or the value of assured deterrence between two nuclear weapon states are not addressed. Weapons of mass destruction are the example used to examine the stages of proliferation. Once planning for proliferation of weapons of 'mass destruction has been proven effective, this framework can be applied to other types of proliferants such as narcotic trafficking and transfer of conventional/high technology arms.

  7. Proliferation of Nuclear Weapons: Opportunities for Control and Abolition

    PubMed Central

    Sidel, Victor W.; Levy, Barry S.

    2007-01-01

    Nuclear weapons pose a particularly destructive threat. Prevention of the proliferation and use of nuclear weapons is urgently important to public health. “Horizontal” proliferation refers to nation-states or nonstate entities that do not have, but are acquiring, nuclear weapons or developing the capability and materials for producing them. “Vertical” proliferation refers to nation-states that do possess nuclear weapons and are increasing their stockpiles of these weapons, improving the technical sophistication or reliability of their weapons, or developing new weapons. Because nation-states or other entities that wish to use or threaten to use nuclear weapons need methods for delivering those weapons, proliferation of delivery mechanisms must also be prevented. Controlling proliferation—and ultimately abolishing nuclear weapons—involves national governments, intergovernmental organizations, nongovernmental and professional organizations, and society at large. PMID:17666690

  8. Evaluation of Whether Gemfibrozil is a Peroxisome Proliferator in Fish

    EPA Science Inventory

    Gemfibrozil is a pharmaceutical that indirectly modulates cholesterol biosynthesis through effects on peroxisome proliferator-activated receptors (PPAR), which are transcriptional cofactors that regulate expression of genes related to lipid metabolism. An enzyme found in the pero...

  9. Problems in Achieving a Quantitative Approach to Technologic Proliferation Resistance

    SciTech Connect

    Wiborg, James C.; Omberg, Ronald P.; Zentner, Michael D.

    2001-07-06

    In spite of setbacks, substantial success has been achieved by the various nonproliferation efforts over the past 50 years. Because the pace of technology evolution remains high and the cost of entry to nuclear weapons technology is decreasing, improved approaches are critical if similar success is to be achieved over the next 20 years. Recent analyses have been published that provide a semi-quantitative assessment of proliferation risk, which can serve as the foundation for a meaningful quantitative approach to assessing proliferation risk. These methods represent an important step, but represent only one step in the work that must be achieved in the next few years. This paper presents perspectives on evaluating the merits of institutional arrangements and the role of design versus institutional features in proliferation prevention. It concludes by proposing methodology and quantitative approaches to be considered for evaluating proliferation-resistant measures in innovative reactor and fuel cycle technologies.

  10. The proliferation of human rights in global health governance.

    PubMed

    Gable, Lance

    2007-01-01

    Human rights play an integral role in the global governance of health. Recently, both structural and normative aspects of human rights have proliferated across multiple levels and within multiple contexts around the world. Human rights proliferation is likely to have a positive impact on the governance of health because it can expand the avenues through which a human rights framework or human rights norms may be used to address and improve health. PMID:18076506

  11. Quinotrierixin inhibits proliferation of human retinal pigment epithelial cells

    PubMed Central

    Chen, Chen; Wang, Joshua J.; Li, Jingming; Yu, Qiang

    2013-01-01

    Purpose To investigate the effect of quinotrierixin, a previously reported inhibitor of X-box binding protein 1 (XBP1), on cell proliferation and viability in human retinal pigment epithelium (RPE) cells. Methods Subconfluent human RPE cells (ARPE-19) were exposed to quinotrierixin for 16–24 h. Cell proliferation was determined with 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, hemocytometer counts, and CyQUANT NF Cell Proliferation Assay. Apoptosis was detected with terminal deoxynucleotidyl transferase-mediated uridine 5′-triphosphate-biotin nick end labeling assay. XBP1 mRNA splicing and expression of endoplasmic reticulum stress response genes were determined in cells exposed to thapsigargin in the presence or absence of quinotrierixin. Overexpression of spliced XBP1 was achieved with adenovirus. Results Quinotrierixin reduced RPE cell proliferation in a dose-dependent manner without inducing apoptosis. In cells exposed to thapsigargin, quinotrierixin inhibited XBP1 mRNA splicing and PKR-like endoplasmic reticulum kinase activation, and reduced cellular and nuclear levels of spliced XBP1 and C/EBP homologous protein. Paradoxically, quinotrierixin exacerbated endoplasmic reticulum stress-induced phosphorylation of eIF2α, which in turn led to decreased protein translation. Overexpressing spliced XBP1 partially reversed the inhibition of cell proliferation by quinotrierixin. These results suggest that inhibiting XBP1 splicing contributes to quinotrierixin’s negative effect on RPE cell proliferation, but other mechanisms such as reduction of protein translation are also involved. Conclusions Quinotrierixin inhibits RPE cell proliferation and may be used as a novel antiproliferative drug for treating proliferative vitreoretinopathy. Future studies are needed to investigate the in vivo effect of quinotrierixin on RPE proliferation in animal models of proliferative vitreoretinopathy. PMID:23335849

  12. Platelet membranes induce airway smooth muscle cell proliferation.

    PubMed

    Svensson Holm, Ann-Charlotte B; Bengtsson, Torbjörn; Grenegård, Magnus; Lindström, Eva G

    2011-01-01

    The role of platelets in airway disease is poorly understood although they have been suggested to influence on proliferation of airway smooth muscle cells (ASMC). Platelets have been found localized in the airways in autopsy material from asthmatic patients and have been implicated in airway remodeling. The aim of the present study was to investigate the effects of various platelet fractions on proliferation of ASMC obtained from guinea pigs (GP-ASMC) and humans (H-ASMC). Proliferation of ASMC was measured by the MTS assay and the results confirmed by measurements of the DNA content. A key observation was that the platelet membrane preparations induced a significant increase in the proliferation of both GP-ASMC (129.9 ± 3.0 %) and H-ASMC (144.8 ± 12.2). However, neither supernatants from lysed or filtrated thrombin stimulated platelets induced ASMC proliferation to the same extent as the membrane preparation. We have previously shown that platelet-induced proliferation is dependent on 5-lipoxygenase (5-LOX) and reactive oxygen species (ROS) pathways. In the present work we established that platelet membrane-induced ASMC proliferation was reduced in the presence of the NADPH oxidase inhibitor DPI and the 5-LOX inhibitor AA-861. In conclusion, our results showed that platelet membranes significantly induced ASMC proliferation, demonstrating that the mitogenic effect of platelets and platelet membranes on ASMC is mainly due to membrane-associated factors. The effects of platelet membranes were evident on both GP-ASMC and H-ASMC and involved 5-LOX and ROS. These new findings are of importance in understanding the mechanisms contributing to airway remodeling and may contribute to the development of new pharmacological tools in the treatment of inflammatory airway diseases.

  13. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    PubMed

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+)). Here, we investigated if the FN EDA(+) isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-)), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705

  14. EDA-Containing Fibronectin Increases Proliferation of Embryonic Stem Cells

    PubMed Central

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F.; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA+). Here, we investigated if the FN EDA+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA-), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC’s proliferation rate. Here we showed for the first time that this FN isoform enhances ESC’s proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705

  15. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    PubMed

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+)). Here, we investigated if the FN EDA(+) isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-)), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.

  16. Effects of thyroid hormones on human breast cancer cell proliferation.

    PubMed

    Hall, Linda C; Salazar, Eddie P; Kane, Staci R; Liu, Nan

    2008-03-01

    The involvement of estrogens in breast cancer development and growth has been well established. However, the effects of thyroid hormones and their combined effects with estrogens are not well studied. We investigated the response of human breast cancer cells to thyroid hormone, particularly the role of T3 in mediating cell proliferation and gene expression. We demonstrated that 17beta-estradiol (E2) or triiodothyronine (T3) promoted cell proliferation in a dose-dependent manner in both MCF-7 and T47-D cell lines. The E2- or T3-dependent cell proliferation was suppressed by co-administration of the ER antagonist ICI. We also demonstrated that T3 could enhance the effect of E2 on cell proliferation in T47-D cells. Using an estrogen response element (ERE)-mediated luciferase assay, we determined that T3 was able to induce the activation of ERE-mediated gene expression in MCF-7 cells, although the effects were much weaker than that induced by E2. These results suggest that T3 can promote breast cancer cell proliferation and increase the effect of E2 on cell proliferation in some breast cancer cell lines and thus that T3 may play a role in breast cancer development and progression. PMID:18328691

  17. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    SciTech Connect

    Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

    2011-05-01

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance

  18. Dietary bovine lactoferrin increases intestinal cell proliferation in neonatal piglets.

    PubMed

    Reznikov, Elizabeth A; Comstock, Sarah S; Yi, Cuiyi; Contractor, Nikhat; Donovan, Sharon M

    2014-09-01

    Lactoferrin is a bioactive milk protein that stimulates cell proliferation in vitro; however, limited in vivo evidence exists to allow lactoferrin to be incorporated into infant formula. Herein, the effect of dietary bovine lactoferrin (bLF) on neonatal intestinal growth and maturation was investigated guided by the hypothesis that bLF would increase cellular proliferation leading to functional differences in neonatal piglets. Colostrum-deprived piglets were fed formula containing 0.4 [control (Ctrl)], 1.0 (LF1), or 3.6 (LF3) g bLF/L for the first 7 or 14 d of life. To provide passive immunity, sow serum was provided orally during the first 36 h of life. Intestinal cell proliferation, histomorphology, mucosal DNA concentration, enzyme activity, gene expression, and fecal bLF content were measured. Intestinal enzyme activity, DNA concentration, and villus length were unaffected by bLF. However, crypt proliferation was 60% greater in LF1- and LF3-fed piglets than in Ctrl piglets, and crypt depth and area were 20% greater in LF3-fed piglets than in Ctrl piglets. Crypt cells from LF3-fed piglets had 3-fold higher β-catenin mRNA expression than did crypt cells from Ctrl piglets. Last, feces of piglets fed bLF contained intact bLF, suggesting that some bLF was resistant to digestion and could potentially affect intestinal proliferation through direct interaction with intestinal epithelial cells. This study is the first to our knowledge to show that dietary bLF stimulates crypt cell proliferation in vivo. The increased β-catenin expression indicates that Wnt signaling may in part mediate the stimulatory effect of bLF on intestinal cell proliferation. PMID:25056692

  19. Matrix Stiffness Regulates Endothelial Cell Proliferation through Septin 9

    PubMed Central

    Yeh, Yi-Ting; Hur, Sung Sik; Chang, Joann; Wang, Kuei-Chun; Chiu, Jeng-Jiann; Li, Yi-Shuan; Chien, Shu

    2012-01-01

    Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs) was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa) in comparison to those with low stiffness (LSG, 1.72 kPa). ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9), the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin αvβ3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation. PMID:23118862

  20. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    SciTech Connect

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang Zhang, Yi

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  1. MECHANISMS INVOLVED IN THE ENHANCED SUSCEPTIBILITY OF SENESCENT RATS TO THE HEPATOCARCINOGENIC EFFECT OF PEROXISOME PROLIFERATORS: ROLE OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA (PPARA), CELL PROLIFERATION AND OXIDATIVE STRESS

    EPA Science Inventory

    Mechanisms involved in the ENHANCED SUSCEPTIBILITY of SENESCENT Rats TO THE HEPATOCARCINOGENIC EFFECT OF PEROXISOME PROLIFERATORS: Role of peroxisome proliferator-activated receptor alpha (PPARa), cell proliferation and oxidative stress

    Jihan A. Youssef1, Pierre Ammann2, B...

  2. Sustainable proliferation of liposomes compatible with inner RNA replication.

    PubMed

    Tsuji, Gakushi; Fujii, Satoshi; Sunami, Takeshi; Yomo, Tetsuya

    2016-01-19

    Although challenging, the construction of a life-like compartment via a bottom-up approach can increase our understanding of life and protocells. The sustainable replication of genome information and the proliferation of phospholipid vesicles are requisites for reconstituting cell growth. However, although the replication of DNA or RNA has been developed in phospholipid vesicles, the sustainable proliferation of phospholipid vesicles has remained difficult to achieve. Here, we demonstrate the sustainable proliferation of liposomes that replicate RNA within them. Nutrients for RNA replication and membranes for liposome proliferation were combined by using a modified freeze-thaw technique. These liposomes showed fusion and fission compatible with RNA replication and distribution to daughter liposomes. The RNAs in daughter liposomes were repeatedly used as templates in the next RNA replication and were distributed to granddaughter liposomes. Liposome proliferation was achieved by 10 cycles of iterative culture operation. Therefore, we propose the use of culturable liposomes as an advanced protocell model with the implication that the concurrent supplement of both the membrane material and the nutrients of inner reactions might have enabled protocells to grow sustainably. PMID:26711996

  3. Cell proliferation in cubozoan jellyfish Tripedalia cystophora and Alatina moseri.

    PubMed

    Gurska, Daniela; Garm, Anders

    2014-01-01

    Cubozoans (box jellyfish) undergo remarkable body reorganization throughout their life cycle when, first, they metamorphose from swimming larvae to sessile polyps, and second, through the metamorphosis from sessile polyps to free swimming medusae. In the latter they develop complex structures like the central nervous system (CNS) and visual organs. In the present study several aspects of cell proliferation at different stages of the life cycle of the box jellyfish Tripedalia cystophora and Alatina moseri have been examined through in vivo labeling of cells in the synthetic phase (S phase) of the cell cycle. Proliferation zones were found in metamorphosing polyps, as well as in juvenile medusae, where both the rhopalia and pedalia have enhanced rates of proliferation. The results also indicate a rather fast cell turnover in the rhopalia including the rhopalial nervous system (RNS). Moreover, T. cystophora showed diurnal pattern of cell proliferation in certain body parts of the medusa, with higher proliferation rates at nighttime. This is true for two areas in close connection with the CNS: the stalk base and the rhopalia. PMID:25047715

  4. Pheromone-induced cell proliferation in the murine subventricular zone.

    PubMed

    Koyama, Sachiko; Soini, Helena A; Foley, John; Novotny, Milos V; Lai, Cary

    2014-08-01

    Enhancement of adult neurogenesis in female mice was previously demonstrated through exposure to soiled bedding from males, although the identity of relevant chemosignals has remained unknown. The farnesenes and SBT (2-sec-butyl-4,5-dihydrothiazole) are male murine pheromones that dominant males secrete at higher levels. Previous studies have shown that they induce oestrus in female mice. We have recently shown that these pheromones strongly increase cell proliferation in the SVZ (subventricular zone) of adult female mice. In addition, we found that a female murine pheromone, 2,5-dimethylpyrazine, facilitates similar changes in males. 2,5-dimethylpyrazine is a female pheromone that is secreted when females are housed in large groups and it was originally found to suppress oestrus in females. We found that it does not have suppressive effect on the cell proliferation in the SVZ of females. Similarly, male murine pheromones, SBT and the farnesenes, do not show a suppressive effect on the cell proliferation in the SVZ of males. Our results demonstrated that pheromonal communication between males and females has strong stimulatory effect on both the reproductive physiology and brain cell proliferation, but intrasex pheromonal exchanges do not reduce progenitor proliferation in these brain regions.

  5. TRIB2 regulates normal and stress-induced thymocyte proliferation

    PubMed Central

    Liang, Kai Ling; O’Connor, Caitriona; Veiga, J Pedro; McCarthy, Tommie V; Keeshan, Karen

    2016-01-01

    TRIB2, a serine/threonine pseudokinase identified as an oncogene, is expressed at high levels in the T-cell compartment of hematopoiesis. The proliferation of developing thymocytes is tightly controlled to prevent leukemic transformation of T cells. Here we examine Trib2 loss in murine hematopoiesis under steady state and proliferative stress conditions, including genotoxic and oncogenic stress. Trib2−/− developing thymocytes show increased proliferation, and Trib2−/− mice have significantly higher thymic cellularity at steady state. During stress hematopoiesis, Trib2−/− developing thymocytes undergo accelerated proliferation and demonstrate hypersensitivity to 5-fluorouracil (5-FU)-induced cell death. Despite the increased cell death post 5-FU-induced proliferative stress, Trib2−/− mice exhibit accelerated thymopoietic recovery post treatment due to increased cell division kinetics of developing thymocytes. The increased proliferation in Trib2−/− thymocytes was exacerbated under oncogenic stress. In an experimental murine T-cell acute lymphoblastic leukemia (T-ALL) model, Trib2−/− mice had reduced latency in vivo, which associated with impaired MAP kinase (MAPK) activation. High and low expression levels of Trib2 correlate with immature and mature subtypes of human T-ALL, respectively, and associate with MAPK. Thus, TRIB2 emerges as a novel regulator of thymocyte cellular proliferation, important for the thymopoietic response to genotoxic and oncogenic stress, and possessing tumor suppressor function. PMID:27462446

  6. Fractal Dimensions of In Vitro Tumor Cell Proliferation

    PubMed Central

    Lambrou, George I.

    2015-01-01

    Biological systems are characterized by their potential for dynamic adaptation. One of the challenges for systems biology approaches is their contribution towards the understanding of the dynamics of a growing cell population. Conceptualizing these dynamics in tumor models could help us understand the steps leading to the initiation of the disease and its progression. In vitro models are useful in answering this question by providing information over the spatiotemporal nature of such dynamics. In the present work, we used physical quantities such as growth rate, velocity, and acceleration for the cellular proliferation and identified the fractal structures in tumor cell proliferation dynamics. We provide evidence that the rate of cellular proliferation is of nonlinear nature and exhibits oscillatory behavior. We also calculated the fractal dimensions of our cellular system. Our results show that the temporal transitions from one state to the other also follow nonlinear dynamics. Furthermore, we calculated self-similarity in cellular proliferation, providing the basis for further investigation in this topic. Such systems biology approaches are very useful in understanding the nature of cellular proliferation and growth. From a clinical point of view, our results may be applicable not only to primary tumors but also to tumor metastases. PMID:25883653

  7. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  8. Sustainable proliferation of liposomes compatible with inner RNA replication

    PubMed Central

    Tsuji, Gakushi; Fujii, Satoshi; Sunami, Takeshi; Yomo, Tetsuya

    2016-01-01

    Although challenging, the construction of a life-like compartment via a bottom–up approach can increase our understanding of life and protocells. The sustainable replication of genome information and the proliferation of phospholipid vesicles are requisites for reconstituting cell growth. However, although the replication of DNA or RNA has been developed in phospholipid vesicles, the sustainable proliferation of phospholipid vesicles has remained difficult to achieve. Here, we demonstrate the sustainable proliferation of liposomes that replicate RNA within them. Nutrients for RNA replication and membranes for liposome proliferation were combined by using a modified freeze–thaw technique. These liposomes showed fusion and fission compatible with RNA replication and distribution to daughter liposomes. The RNAs in daughter liposomes were repeatedly used as templates in the next RNA replication and were distributed to granddaughter liposomes. Liposome proliferation was achieved by 10 cycles of iterative culture operation. Therefore, we propose the use of culturable liposomes as an advanced protocell model with the implication that the concurrent supplement of both the membrane material and the nutrients of inner reactions might have enabled protocells to grow sustainably. PMID:26711996

  9. TOSO promotes β-cell proliferation and protects from apoptosis.

    PubMed

    Dharmadhikari, G; Mühle, M; Schulthess, F T; Laue, S; Oberholzer, J; Pattou, F; Kerr-Conte, J; Maedler, K

    2012-01-01

    Decreased β-cell mass reflects a shift from quiescence/proliferation into apoptosis, it plays a crucial role in the pathophysiology of diabetes. A major attempt to restore β-cell mass and normoglycemia is to improve β-cell survival. Here we show that switching off the Fas pathway using Fas apoptotic inhibitory protein (Faim/TOSO), which regulates apoptosis upstream of caspase 8, blocked β-cell apoptosis and increased proliferation in human islets. TOSO was clearly expressed in pancreatic β-cells and down-regulated in T2DM. TOSO expression correlated with β-cell turnover; at conditions of improved survival, TOSO was induced. In contrast, TOSO downregulation induced β-cell apoptosis. Although TOSO overexpression resulted in a 3-fold induction of proliferation, proliferating β-cells showed a very limited capacity to undergo multiple rounds of replication. Our data suggest that TOSO is an important regulator of β-cell turnover and switches β-cell apoptosis into proliferation.

  10. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.

    PubMed

    Street, Ian H; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N; Kieber, Joseph J; Schaller, G Eric

    2015-09-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem.

  11. Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells.

    PubMed

    Meng, Meng; Chen, Shuyang; Lao, Taotao; Liang, Dongming; Sang, Nianli

    2010-10-01

    Glutaminolysis and Warburg effect are the two most noticeable metabolic features of tumor cells whereas their biological significance in cell proliferation remains elusive. A widely accepted current hypothesis is that tumor cells use glutamine as a preferred carbon source for energy and reducing power, which has been used to explain both glutaminolysis and the Warburg effect. Here we provide evidence to show that supplying nitrogen, not the carbon skeleton, underlies the major biological importance of glutaminolysis for proliferating cells. We show alternative nitrogen supplying mechanisms rescue cell proliferation in glutamine-free media. Particularly, we show that ammonia is sufficient to maintain a long-term survival and proliferation of Hep3B in glutamine-free media. We also observed that nitrogen source restriction repressed carbon metabolic pathways including glucose utilization. Based on these new observations and metabolic pathways well established in published literature, we propose an alternative model that cellular demand for glutamate as a key molecule in nitrogen anabolism is the driving force of glutaminolysis in proliferating cells. Our model suggests that the Warburg effect may be a metabolic consequence secondary to the nitrogen anabolism.

  12. Sustainable proliferation of liposomes compatible with inner RNA replication.

    PubMed

    Tsuji, Gakushi; Fujii, Satoshi; Sunami, Takeshi; Yomo, Tetsuya

    2016-01-19

    Although challenging, the construction of a life-like compartment via a bottom-up approach can increase our understanding of life and protocells. The sustainable replication of genome information and the proliferation of phospholipid vesicles are requisites for reconstituting cell growth. However, although the replication of DNA or RNA has been developed in phospholipid vesicles, the sustainable proliferation of phospholipid vesicles has remained difficult to achieve. Here, we demonstrate the sustainable proliferation of liposomes that replicate RNA within them. Nutrients for RNA replication and membranes for liposome proliferation were combined by using a modified freeze-thaw technique. These liposomes showed fusion and fission compatible with RNA replication and distribution to daughter liposomes. The RNAs in daughter liposomes were repeatedly used as templates in the next RNA replication and were distributed to granddaughter liposomes. Liposome proliferation was achieved by 10 cycles of iterative culture operation. Therefore, we propose the use of culturable liposomes as an advanced protocell model with the implication that the concurrent supplement of both the membrane material and the nutrients of inner reactions might have enabled protocells to grow sustainably.

  13. Explaining weapons proliferation: Going beyond the security dilemma

    SciTech Connect

    Rattray, G.J.

    1994-07-01

    Most analyses addressing the subject of why states choose to proliferate focus on external motivations, particularly the security dilemma, facing a country`s leaders. This paper concludes that, other factors, such as prestige, regime type and stability, and economic status, can have impact in determining proliferation outcomes. In the case of Newly Independent States of the former Soviet Union (NIS), the domestic problems generated by internal conflicts, arms remaining from the Cold War, excess defense industrial capacity, economic difficulties and the breakdown of central authority resulting in a loss of border control and corruption have all made the NIS an extremely fertile ground for weapons proliferation. A more positive `rollback` situation has emerged in Latin America where both Argentina and Brazil have seemingly decided to forgo the acquisition of nuclear weapons and ballistic missiles. The US must understand the `strategic personality` of each potential proliferation. Not all state behavior can be explained in terms of the security dilemma. One must also keep in mind the complexity of possible motivations. Economic and technological assistance and cooperative efforts at institution-building hold great potential to combating proliferation.

  14. Proliferation resistance assessments during the design phase of a recycling facility as a means of reducing proliferation risks

    SciTech Connect

    Lindell, M.A.; Grape, S.; Haekansson, A.; Jacobsson Svaerd, S.

    2013-07-01

    The sustainability criterion for Gen IV nuclear energy systems inherently presumes the availability of efficient fuel recycling capabilities. One area for research on advanced fuel recycling concerns safeguards aspects of this type of facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design. Presented in this paper is a mode of procedure, where assessments of the proliferation resistance (PR) of a recycling facility for fast reactor fuel have been performed so as to identify the weakest barriers to proliferation of nuclear material. Two supplementing established methodologies have been applied; TOPS (Technological Opportunities to increase Proliferation resistance of nuclear power Systems) and PR-PP (Proliferation Resistance and Physical Protection evaluation methodology). The chosen fuel recycling facility belongs to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of the recycling facility, where actinides are separated using solvent extraction, has been examined. The PR assessment methodologies make it possible to pinpoint areas in which the facility can be improved in order to reduce the risk of diversion. The initial facility design may then be slightly modified and/or safeguards measures may be introduced to reduce the total identified proliferation risk. After each modification of design and/or safeguards implementation, a new PR assessment of the revised system can then be carried out. This way, each modification can be evaluated and new ways to further enhance the proliferation resistance can be identified. This type of iterative procedure may support Safeguards By Design in the planning of new recycling plants and other nuclear facilities. (authors)

  15. Folate deficiency inhibits proliferation of adult hippocampal progenitors.

    PubMed

    Kruman, Inna I; Mouton, Peter R; Emokpae, Roland; Cutler, Roy G; Mattson, Mark P

    2005-07-13

    Neurogenesis in the adult hippocampus may play important roles in learning and memory, and in recovery from injury. As recent findings suggest, the perturbance of homocysteine/folate or one-carbon metabolism can adversely affect both the developing and the adult brain, and increase the risk of neural tube defects and Alzheimer's disease. We report that dietary folic acid deficiency dramatically increased blood homocysteine levels and significantly reduced the number of proliferating cells in the dentate gyrus of the hippocampus in adult mice. In vitro, the perturbance of one-carbon metabolism repressed proliferation of cultured embryonic multipotent neuroepithelial progenitor cells and affected cell cycle distribution. Our results suggest that dietary folate deficiency inhibits proliferation of neuronal progenitor cells in the adult brain and thereby affects neurogenesis. PMID:15973147

  16. Building and re-building the heart by cardiomyocyte proliferation.

    PubMed

    Foglia, Matthew J; Poss, Kenneth D

    2016-03-01

    The adult human heart does not regenerate significant amounts of lost tissue after injury. Rather than making new, functional muscle, human hearts are prone to scarring and hypertrophy, which can often lead to fatal arrhythmias and heart failure. The most-cited basis of this ineffective cardiac regeneration in mammals is the low proliferative capacity of adult cardiomyocytes. However, mammalian cardiomyocytes can avidly proliferate during fetal and neonatal development, and both adult zebrafish and neonatal mice can regenerate cardiac muscle after injury, suggesting that latent regenerative potential exists. Dissecting the cellular and molecular mechanisms that promote cardiomyocyte proliferation throughout life, deciphering why proliferative capacity normally dissipates in adult mammals, and deriving means to boost this capacity are primary goals in cardiovascular research. Here, we review our current understanding of how cardiomyocyte proliferation is regulated during heart development and regeneration.

  17. Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells.

    PubMed

    Bitencourt, Shanna; Mesquita, Fernanda; Basso, Bruno; Schmid, Júlia; Ferreira, Gabriela; Rizzo, Lucas; Bauer, Moises; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis; Mannaerts, Inge; van Grunsven, Leo Adrianus; Oliveira, Jarbas

    2014-03-01

    Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro. PMID:23955514

  18. Human keratinocytes have two interconvertible modes of proliferation.

    PubMed

    Roshan, Amit; Murai, Kasumi; Fowler, Joanna; Simons, Benjamin D; Nikolaidou-Neokosmidou, Varvara; Jones, Philip H

    2016-02-01

    Single stem cells, including those in human epidermis, have a remarkable ability to reconstitute tissues in vitro, but the cellular mechanisms that enable this are ill-defined. Here we used live imaging to track the outcome of thousands of divisions in clonal cultures of primary human epidermal keratinocytes. Two modes of proliferation were seen. In 'balanced' mode, similar proportions of proliferating and differentiating cells were generated, achieving the 'population asymmetry' that sustains epidermal homeostasis in vivo. In 'expanding' mode, an excess of cycling cells was produced, generating large expanding colonies. Cells in expanding mode switched their behaviour to balanced mode once local confluence was attained. However, when a confluent area was wounded in a scratch assay, cells near the scratch switched back to expanding mode until the defect was closed. We conclude that the ability of a single epidermal stem cell to reconstitute an epithelium is explained by two interconvertible modes of proliferation regulated by confluence. PMID:26641719

  19. Human keratinocytes have two interconvertible modes of proliferation.

    PubMed

    Roshan, Amit; Murai, Kasumi; Fowler, Joanna; Simons, Benjamin D; Nikolaidou-Neokosmidou, Varvara; Jones, Philip H

    2016-02-01

    Single stem cells, including those in human epidermis, have a remarkable ability to reconstitute tissues in vitro, but the cellular mechanisms that enable this are ill-defined. Here we used live imaging to track the outcome of thousands of divisions in clonal cultures of primary human epidermal keratinocytes. Two modes of proliferation were seen. In 'balanced' mode, similar proportions of proliferating and differentiating cells were generated, achieving the 'population asymmetry' that sustains epidermal homeostasis in vivo. In 'expanding' mode, an excess of cycling cells was produced, generating large expanding colonies. Cells in expanding mode switched their behaviour to balanced mode once local confluence was attained. However, when a confluent area was wounded in a scratch assay, cells near the scratch switched back to expanding mode until the defect was closed. We conclude that the ability of a single epidermal stem cell to reconstitute an epithelium is explained by two interconvertible modes of proliferation regulated by confluence.

  20. Suppression of splenic lymphocyte proliferation by Eucommia ulmoides and genipin.

    PubMed

    Yang, Gabsik; Kyoung Seo, Eun; Lee, Je-Hyun; Young Lee, Joo

    2015-04-01

    We investigated the modulation of innate and adaptive immune cell activation by Eucommia ulmoides Oliver extract (EUE) and its ingredient genipin. As an innate immunity indicator, the phagocytic activity of macrophages was determined by measuring engulfed, fluorescently labeled Escherichia coli. As a surrogate marker for the respective activation of cellular and humoral adaptive immunity, concanavalin A (Con A) and lipopolysaccharide (LPS) induction of primary splenocyte proliferation was assayed in in vitro and ex vivo systems. EUE and genipin suppressed the proliferation of primary splenic lymphocytes induced by Con A or LPS, but not macrophage phagocytosis. Oral administration of EUE and genipin to mice decreased splenic lymphocyte proliferation induced by Con A or LPS. These results revealed that E. ulmoides and genipin suppressed cellular and humoral adaptive immunity, and they suggest that E. ulmoides and genipin are promising candidates for immunosuppressive drugs that target diseases that involve excessive activation of adaptive immunity. PMID:25879499

  1. Phenotype of proliferating cells stimulated during compensatory adrenal growth.

    PubMed

    Holzwarth, M A; Gomez-Sanchez, C E; Engeland, W C

    1996-11-01

    The phenotype of the proliferating cells during adrenocortical growth has remained controversial although glomerulosa, fasciculata and intermediate zone cells have all been considered possible candidates. This was due in part to the inability to identify specific adrenocortical cell types in comparing different types of growth. In the present studies, using immunocytochemical localization of cytochrome P450 aldosterone synthase (P450aldo) and cytochrome P450 11 beta-hydroxylase (P45011 beta) to identify adrenocortical cell phenotypes as well as Ki-67 to label proliferating cells, we have investigated the phenotype of the proliferating cells in the compensatory adrenal growth response to unilateral adrenalectomy. Between 24 and 96 hrs after unilateral adrenalectomy, most Ki-67(+) nuclei were found in the outermost region of the fasciculata, as defined by P45011 beta immunoreactive cells. Few Ki-67(+) nuclei were found in the glomerulosa, defined by P450aldo cells or in the z intermedia, identified by the absence of both P450aldo and P45011 beta. To test which cell type is activated by unilateral adrenalectomy, we altered the phenotypic configuration of the adrenal cortex; rats were placed on a low Na+ diet for three weeks, resulting in a marked expansion of the number of P450aldo(+) cells. An abundance of proliferating cells was identified primarily in the expanded glomerulosa, but not in the intermedia or fasciculata. In contrast, the proliferation associated with compensatory growth in these low Na+ rats, was localized primarily in the outer P45011 beta(+) zone. These findings suggest that the phenotype of the proliferating cell is specific to the growth promoting stimulus.

  2. Hypergravity Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    Extensive characterizations of the physiologic consequences of microgravity and gravity indicate that lack of weight-bearing may cause tissue atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) in mechanosensitive tissues. Recent work from our laboratory and from others shows that an increase of gravity increases bone cell growth and survival. We found that 50-g hypergravity stimulation increased osteoblast proliferation for cells grown on Collagen Type I and Fibronectin, but not on Laminin or uncoated plastic. This may be a tissue-specific response, because 50-g hypergravity stimulation caused no increase in proliferation for primary rat fibroblasts. These results combined with RT-PCR for all possible integrins indicate that beta1 integrin subunit may be involved. The osteoblast proliferation response on Collagen Type I was greater at 25-g than at 10-g or 50-g; 24-h duration of hypergravity was necessary to see an increase in proliferation. Survival was enhanced during hypergravity stimulation by the presence of matrix. Flow cytometry analysis indicated that cell cycle may be altered; BrdU incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. To further investigate the molecular components involved, we applied fluorescence labeling of cytoskeletal and signaling molecules to cells after 2 to 30 minutes of hypergravity stimulation. While structural components did not appear to be altered, phosphorylation increased, indicating that signaling pathways may be activated. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signaling pathways which are sensitive to duration and g-level.

  3. Iran and Iraq - the proliferation challenge. Strategic research report

    SciTech Connect

    Jordan, F.R.

    1996-04-15

    Worldwide proliferation of weapons of mass destruction and ballistic missiles has been on the rise since the end of the Cold War. This escalation has brought a new set of challenges to post-Cold War strategists and policymakers. This study focus on the impact of nuclear proliferation in the Middle East. It assesses the possibility of Iran`s and Iraq`s ability to develop a nuclear capability within the next twenty to thirty years. United States` strategy and policy to counter this potential is also considered.

  4. Proliferation resistance criteria for fissile material disposition issues

    SciTech Connect

    Rutherford, D.A.; Fearey, B.L.; Markin, J.T.; Close, D.A.; Tolk, K.M.; Mangan, D.L.; Moore, L.

    1995-09-01

    The 1994 National Acdaemy of Sciences study ``Management and Disposition of Excess Weapons Plutonium`` defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This paper proposes criteria for assessing the proliferation resistance of these options as well defining the ``Standards`` from the report. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials.

  5. Inhibition of brain tumor cell proliferation by alternating electric fields

    SciTech Connect

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi E-mail: radioyoon@korea.ac.kr; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun E-mail: radioyoon@korea.ac.kr; Koh, Eui Kwan

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  6. Biotinylation of histones in human cells. Effects of cell proliferation.

    PubMed

    Stanley, J S; Griffin, J B; Zempleni, J

    2001-10-01

    An enzymatic mechanism has been proposed by which biotinidase may catalyze biotinylation of histones. Here, human cells were found to covalently bind biotin to histones H1, H2A, H2B, H3, and H4. Cells respond to proliferation with increased biotinylation of histones; biotinylation increases early in the cell cycle and remains increased during the cycle. Notwithstanding the catalytic role of biotinidase in biotinylation of histones, mRNA encoding biotinidase and biotinidase activity did not parallel the increased biotinylation of histones in proliferating cells. Biotinylation of histones might be regulated by enzymes other than biotinidase or by the rate of histone debiotinylation.

  7. Hepatocellular hypertrophy and cell proliferation in Sprague-Dawley rats following dietary exposure to ammonium perfluorooctanoate occurs through increased activation of the xenosensor nuclear receptors PPARα and CAR/PXR.

    PubMed

    Elcombe, Clifford R; Elcombe, Barbara M; Foster, John R; Farrar, David G; Jung, Reinhard; Chang, Shu-Ching; Kennedy, Gerald L; Butenhoff, John L

    2010-10-01

    Ammonium perfluorooctanoate (APFO), a processing aid used in the production of fluoropolymers, produces hepatomegaly and hepatocellular hypertrophy in rodents. In mice, APFO-induced hepatomegaly is associated with increased activation of the xenosensor nuclear receptors, PPARα and CAR/PXR. Although non-genotoxic, chronic dietary treatment of Sprague-Dawley (S-D) rats with APFO produced an increase in benign tumours of the liver, acinar pancreas, and testicular Leydig cells. Most of the criteria for establishing a PPARα-mediated mode of action for the observed hepatocellular tumours have been previously established with the exception of the demonstration of increased hepatocellular proliferation. The present study evaluates the potential roles for APFO-induced activation of PPARα and CAR/PXR with respect to liver tumour production in the S-D rat and when compared to the specific PPARα agonist, 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid (Wy 14,643). Male S-D rats were fed APFO (300 ppm in diet) or Wy 14,643 (50 ppm in diet) for either 1, 7, or 28 days. Effects of treatment with APFO included: decreased body weight; hepatomegaly, hepatocellular hypertrophy, hepatocellular hyperplasia (microscopically and by BrdU labelling index), and hepatocellular glycogen loss; increased activation of PPARα (peroxisomal β-oxidation and microsomal CYP4A1 protein); decreased plasma triglycerides, cholesterol, and glucose; increased activation of CAR (CYP2B1/2 protein) and CAR/PXR (CYP3A1 protein). Responses to treatment with Wy 14,643 were consistent with increased activation of PPARα, specifically: increased CYP4A1 and peroxisomal β-oxidation; increased hepatocellular hypertrophy and cell proliferation; decreased apoptosis; and hypolipidaemia. With the exception of decreased apoptosis, the effects observed with Wy 14,643 were noted with APFO, and APFO was less potent. These data clearly demonstrate an early hepatocellular proliferative response to APFO

  8. Fangchinoline inhibits breast adenocarcinoma proliferation by inducing apoptosis.

    PubMed

    Xing, Zhi-Bo; Yao, Lei; Zhang, Guo-Qiang; Zhang, Xian-Yu; Zhang, You-Xue; Pang, Da

    2011-01-01

    Radix Stephaniae tetrandrae, which contains tetrandrine (Tet) and fangchinoline, is traditionally used as an analgesic, antirheumatic, and antihypertensive drug in China. In this study, we investigated its effect on breast cancer cell proliferation and its potential mechanism of action in vitro. Treatment of cells with fangchinoline significantly inhibited MDA-MB-231 cell proliferation in a concentration- and time-dependent manner. To define the mechanism underlying the antiproliferative effects of fangchinoline, we studied its effects on critical molecular events known to regulate the apoptotic machinery. Specifically, we addressed the potential of fangchinoline to induce apoptosis of breast cancer cells. Fangchinoline induced internucleosomal DNA fragmentation, chromatin condensation, activation of caspases-3, -8, and -9, and cleavage of poly(ADP ribose) polymerase, as well as enhanced mitochondrial cytochrome c release. Furthermore, fangchinoline increased the expression of the proapoptotic protein B cell lymphoma-2 associated X (Bax) and decreased the expression of the antiapoptotic protein B cell lymphoma-2 (Bcl-2). In addition, the proliferation-inhibitory effect of fangchinoline was associated with decreased levels of phosphorylated Akt. Our results indicate that fangchinoline can inhibit breast cancer cell proliferation by inducing apoptosis via the mitochondrial apoptotic pathway and decreasing phosphorylated Akt. Thus fangchinoline may be a novel agent that can potentially be developed clinically to target human malignancies. PMID:22130369

  9. Cell proliferation and neurogenesis in adult mouse brain.

    PubMed

    Bordiuk, Olivia L; Smith, Karen; Morin, Peter J; Semënov, Mikhail V

    2014-01-01

    Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU) to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ), and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS) occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain.

  10. Electrospun fiber membranes enable proliferation of genetically modified cells

    PubMed Central

    Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B

    2013-01-01

    Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983

  11. Automating proliferation rate estimation from Ki-67 histology images

    NASA Astrophysics Data System (ADS)

    Al-Lahham, Heba Z.; Alomari, Raja S.; Hiary, Hazem; Chaudhary, Vipin

    2012-03-01

    Breast cancer is the second cause of women death and the most diagnosed female cancer in the US. Proliferation rate estimation (PRE) is one of the prognostic indicators that guide the treatment protocols and it is clinically performed from Ki-67 histopathology images. Automating PRE substantially increases the efficiency of the pathologists. Moreover, presenting a deterministic and reproducible proliferation rate value is crucial to reduce inter-observer variability. To that end, we propose a fully automated CAD system for PRE from the Ki-67 histopathology images. This CAD system is based on a model of three steps: image pre-processing, image clustering, and nuclei segmentation and counting that are finally followed by PRE. The first step is based on customized color modification and color-space transformation. Then, image pixels are clustered by K-Means depending on the features extracted from the images derived from the first step. Finally, nuclei are segmented and counted using global thresholding, mathematical morphology and connected component analysis. Our experimental results on fifty Ki-67-stained histopathology images show a significant agreement between our CAD's automated PRE and the gold standard's one, where the latter is an average between two observers' estimates. The Paired T-Test, for the automated and manual estimates, shows ρ = 0.86, 0.45, 0.8 for the brown nuclei count, blue nuclei count, and proliferation rate, respectively. Thus, our proposed CAD system is as reliable as the pathologist estimating the proliferation rate. Yet, its estimate is reproducible.

  12. MEHODOLOGY FOR PROLIFERATION RESISTANCE FOR ADVANCE NUCLEAR ENERGY SYSTEMS.

    SciTech Connect

    YUE, M.; CHANG, L.Y.; BARI, R.

    2006-01-30

    The Technology Goals for Generation IV nuclear energy systems highlight Proliferation Resistance and Physical Protection (PR&PP) as one of the four goal areas for Generation 1V nuclear technology. Accordingly, an evaluation methodology is being developed by a PR&PP Experts Group. This paper presents a possible approach, which is based on Markov modeling, to the evaluation methodology for Generation IV nuclear energy systems being developed for PR&PP. Using the Markov model, a variety of proliferation scenarios can be constructed and the proliferation resistance measures can be quantified, particularly the probability of detection. To model the system with increased fidelity, the Markov model is further developed to incorporate multiple safeguards approaches in this paper. The approach to the determination of the associated parameters is presented. Evaluations of diversion scenarios for an example sodium fast reactor (ESFR) energy system are used to illustrate the methodology. The Markov model is particularly useful because it can provide the probability density function of the time it takes for the effort to be detected at a specific stage of the proliferation effort.

  13. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  14. Serotonin regulates osteoblast proliferation and function in vitro.

    PubMed

    Dai, S Q; Yu, L P; Shi, X; Wu, H; Shao, P; Yin, G Y; Wei, Y Z

    2014-09-01

    The monoamine serotonin (5-hydroxytryptamine, 5-HT), a well-known neurotransmitter, also has important functions outside the central nervous system. The objective of this study was to investigate the role of 5-HT in the proliferation, differentiation, and function of osteoblasts in vitro. We treated rat primary calvarial osteoblasts with various concentrations of 5-HT (1 nM to 10 µM) and assessed the rate of osteoblast proliferation, expression levels of osteoblast-specific proteins and genes, and the ability to form mineralized nodules. Next, we detected which 5-HT receptor subtypes were expressed in rat osteoblasts at different stages of osteoblast differentiation. We found that 5-HT could inhibit osteoblast proliferation, differentiation, and mineralization at low concentrations, but this inhibitory effect was mitigated at relatively high concentrations. Six of the 5-HT receptor subtypes (5-HT1A, 5-HT1B, 5-HT1D, 5-HT2A, 5-HT2B, and 5-HT2C) were found to exist in rat osteoblasts. Of these, 5-HT2A and 5-HT1B receptors had the highest expression levels, at both early and late stages of differentiation. Our results indicated that 5-HT can regulate osteoblast proliferation and function in vitro.

  15. Testing and assessment of inputs for proliferation assessment tools

    SciTech Connect

    Saltiel, David H.; Cleary, Virginia D.; Rexroth, Paul E.; Rochau, Gary E.; Greneche, Dominique; Ng, Selena; Charlton, William S.; Ford, David 'Grant'

    2007-07-01

    Robust and reliable quantitative proliferation assessment tools are critical to a strengthened nonproliferation regime and to the future deployment of nuclear fuel cycle technologies. Efforts to quantify proliferation resistance have thus far met with limited success due to the inherent subjectivity of the problem and inter-dependencies between attributes that lead to proliferation resistance. We suggest that these limitations flow substantially from weaknesses in the foundations of existing methodologies - the initial data inputs. In most existing methodologies, little consideration has been given to the utilization of varying types of inputs - particularly the mixing of subjective and objective data - or to identifying, understanding, and untangling relationships and dependencies between inputs. To address these concerns, a model set of inputs is suggested that could potentially be employed in multiple approaches. We present an input classification scheme and the initial results of testing for relationships between these inputs. We will discuss how classifying and testing the relationship between these inputs can help strengthen tools to assess the proliferation risk of nuclear fuel cycle processes, systems, and facilities. (authors)

  16. Estimation of Cell Proliferation Dynamics Using CFSE Data

    PubMed Central

    Banks, H.T.; Sutton, Karyn L.; Thompson, W. Clayton; Bocharov, Gennady; Roose, Dirk; Schenkel, Tim; Meyerhans, Andreas

    2010-01-01

    Advances in fluorescent labeling of cells as measured by flow cytometry have allowed for quantitative studies of proliferating populations of cells. The investigations (Luzyanina et al. in J. Math. Biol. 54:57–89, 2007; J. Math. Biol., 2009; Theor. Biol. Med. Model. 4:1–26, 2007) contain a mathematical model with fluorescence intensity as a structure variable to describe the evolution in time of proliferating cells labeled by carboxyfluorescein succinimidyl ester (CFSE). Here, this model and several extensions/modifications are discussed. Suggestions for improvements are presented and analyzed with respect to statistical significance for better agreement between model solutions and experimental data. These investigations suggest that the new decay/label loss and time dependent effective proliferation and death rates do indeed provide improved fits of the model to data. Statistical models for the observed variability/noise in the data are discussed with implications for uncertainty quantification. The resulting new cell dynamics model should prove useful in proliferation assay tracking and modeling, with numerous applications in the biomedical sciences. PMID:20195910

  17. Morphologies of Inquiry: The Uses and Spaces of Paradigm Proliferation

    ERIC Educational Resources Information Center

    Nespor, Jan

    2006-01-01

    This paper examines paradigm proliferation in the context of ongoing efforts by the federal government in the US to regulate academic research. It argues that these efforts amount to an attempt to reposition and de-center universities as sites of knowledge production, not just about education but across domains. The paper examines this politics as…

  18. The cell proliferation antigen Ki-67 organises heterochromatin

    PubMed Central

    Sobecki, Michal; Mrouj, Karim; Camasses, Alain; Parisis, Nikolaos; Nicolas, Emilien; Llères, David; Gerbe, François; Prieto, Susana; Krasinska, Liliana; David, Alexandre; Eguren, Manuel; Birling, Marie-Christine; Urbach, Serge; Hem, Sonia; Déjardin, Jérôme; Malumbres, Marcos; Jay, Philippe; Dulic, Vjekoslav; Lafontaine, Denis LJ; Feil, Robert; Fisher, Daniel

    2016-01-01

    Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression. DOI: http://dx.doi.org/10.7554/eLife.13722.001 PMID:26949251

  19. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  20. Cell proliferation and neurogenesis in adult mouse brain.

    PubMed

    Bordiuk, Olivia L; Smith, Karen; Morin, Peter J; Semënov, Mikhail V

    2014-01-01

    Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU) to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ), and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS) occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain. PMID:25375658

  1. Piperine Congeners as Inhibitors of Vascular Smooth Muscle Cell Proliferation.

    PubMed

    Mair, Christina E; Liu, Rongxia; Atanasov, Atanas G; Wimmer, Laurin; Nemetz-Fiedler, Daniel; Sider, Nadine; Heiss, Elke H; Mihovilovic, Marko D; Dirsch, Verena M; Rollinger, Judith M

    2015-08-01

    Successful vascular healing after percutaneous coronary interventions is related to the inhibition of abnormal vascular smooth muscle cell proliferation and efficient re-endothelialization. In the search for vascular smooth muscle cell anti-proliferative agents from natural sources we identified piperine (1), the main pungent constituent of the fruits from Piper nigrum (black pepper). Piperine inhibited vascular smooth muscle cell proliferation with an IC50 of 21.6 µM, as quantified by a resazurin conversion assay. Investigations of ten piperamides isolated from black pepper fruits and 15 synthesized piperine derivatives resulted in the identification of three potent vascular smooth muscle cell proliferation inhibitors: the natural alkaloid pipertipine (4), and the two synthetic derivatives (2E,4E)-N,N-dibutyl-5-(3,5-dimethoxyphenyl)penta-2,4-dienamide (14) and (E)-N,N-dibutyl-3-(naphtho[2,3-d][1,3]dioxol-5-yl)acrylamide (20). They showed IC50 values of 3.38, 6.00, and 7.85 µM, respectively. Furthermore, the synthetic compound (2E,4E)-5-(4-fluorophenyl)-1-(piperidin-1-yl)penta-2,4-dien-1-one (12) was found to be cell type selective, by inhibiting vascular smooth muscle cell proliferation with an IC50 of 11.8 µM without influencing the growth of human endothelial cells. PMID:26132851

  2. Iron delivery during proliferation and differentiation of kidney tubules.

    PubMed

    Landschulz, W; Ekblom, P

    1985-12-15

    Proliferation during kidney development can be stimulated with an iron chelator, ferric pyridoxal isonicotinoyl hydrazone (FePIH). Neither the starting products nor the intermediary in FePIH synthesis stimulated proliferation. Thus, the growth-promoting effects of FePIH are due to the iron ion. Some other low molecular weight, saturated iron chelators such as glycyl-histidyl-lysine acetate, nitrilotriacetic acid, ascorbate, citrate, and unchelated ferrous sulfate could not support as high a degree of proliferation as FePIH or transferrin. FePIH delivered just slightly less radioactive iron into the trichloroacetic acid-precipitable fraction than transferrin. The octanol/saline partition coefficients of radioactive iron in solution with transferrin, nitrilotriacetic acid, or chloride were all less than 0.06. Thus, these compounds cannot efficiently traverse the lipid membrane. On the other hand, Fe3+ carried by PIH had a partition coefficient of 0.96. Hence, FePIH can stimulate proliferation because it can carry iron through the lipid membrane. Transferrin is not lipophilic but it delivers iron by receptor-mediated endocytosis. PMID:4066687

  3. Differential migration and proliferation of geometrical ensembles of cell clusters

    SciTech Connect

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi

    2011-06-10

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  4. Does livestock grazing influence spatial patterns of woody plant proliferation?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of woody plant proliferation in grasslands and savannas influence rates of erosion, spread of disturbance, and nutrient pools.  Spatial pattern is the outcome of plant dispersal, recruitment, competition/facilitation, and disturbance. We quantified effects of livestock grazing, a widely cit...

  5. Nerve growth factor enhances Clara cell proliferation after lung injury.

    PubMed

    Sonar, S S; Schwinge, D; Kilic, A; Yildirim, A O; Conrad, M L; Seidler, K; Müller, B; Renz, H; Nockher, W A

    2010-07-01

    The lung epithelia facilitate wound closure by secretion of various cytokines and growth factors. Nerve growth factor (NGF) has been well described in airway inflammation; however, its likely role in lung repair has not been examined thus far. To investigate the repair function of NGF, experiments were performed in vitro using cultured alveolar epithelial cells and in vivo using a naphthalene-induced model of Clara epithelial cell injury. Both in vitro and in vivo experiments revealed airway epithelial cell proliferation following injury to be dependent on NGF and the expression of its receptor, tropomyosin-receptor-kinase A. Additionally, NGF also augmented in vitro migration of alveolar type II cells. In vivo, transgenic mice over-expressing NGF in Clara cells (NGFtg) did not reveal any proliferation or alteration in Clara cell phenotype. However, following Clara cell specific injury, proliferation was increased in NGFtg and impaired upon inhibition of NGF. Furthermore, NGF also promoted the expression of collagen I and fibronectin in vitro and in vivo during repair, where significantly higher levels were measured in re-epithelialising NGFtg mice. Our study demonstrates that NGF promotes the proliferation of lung epithelium in vitro and the renewal of Clara cells following lung injury in vivo.

  6. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. PMID:22269613

  7. Nuclear proliferation: Lessons learned from the Iraqi case. Master's thesis

    SciTech Connect

    Dixon, T.A.

    1992-12-01

    The nuclear weapons inspection regime implemented in Iraq following the United Nations coalition victory in Desert Storm is the most intrusive in history. Important conclusions about the current non-proliferation regime can therefore be determined from a study of Iraq's progress. This thesis examines Iraq's efforts to acquire nuclear weapons. The supply side of the equation is also studied, with a concentration upon the contributions of NATO nations. The strategic culture of Iraq is discussed, in an effort to discover why Iraq sought nuclear weapons. Finally, policy prescriptions are advanced. The current non-proliferation regime needs to be improved if the spread of nuclear weapons is to be halted, or even slowed. The most promising way to improve this regime is to involve the U.N. Special Commission and the U.N. Security Council in the management of the problem of nuclear proliferation.... Iraq, Strategic culture, Non-Proliferation treaty, International atomic energy agency, Nuclear weapons, Middle east security, Nuclear suppliers group, United Nations.

  8. Addressing Information Proliferation: Applications of Information Extraction and Text Mining

    ERIC Educational Resources Information Center

    Li, Jingjing

    2013-01-01

    The advent of the Internet and the ever-increasing capacity of storage media have made it easy to store, deliver, and share enormous volumes of data, leading to a proliferation of information on the Web, in online libraries, on news wires, and almost everywhere in our daily lives. Since our ability to process and absorb this information remains…

  9. Nuclear Proliferation Using Laser Isotope Separation -- Verification Options

    SciTech Connect

    Erickson, S A

    2001-10-15

    Two levels of nonproliferation verification exist. Signatories of the basic agreements under the Nuclear Non-proliferation Treaty (NPT) agree to open their nuclear sites to inspection by the IAEA. A more detailed and intrusive level was developed following the determination that Iraq had begun a nuclear weapons development program that was not detected by the original level of verification methods. This level, referred to as 93+2 and detailed in model protocol INFCIRC/540, allows the IAEA to do environmental monitoring of non-declared facilities that are suspected of containing proliferation activity, and possibly further inspections, as well as allowing more detailed inspections of declared sites. 56 countries have signed a Strengthened Safeguards Systems Additional Protocol as of 16 July 2001. These additional inspections can be done on the instigation of the IAEA itself, or after requests by other parties to the NPT, based on information that they have collected. Since information able to cause suspicion of proliferation could arrive at any country, it is important that countries have procedures in place that will assist them in making decisions related to these inspections. Furthermore, IAEA inspection resources are limited, and therefore care needs to be taken to make best use of these resources. Most of the nonproliferation verification inspections may be concentrated on establishing that diversion of nuclear materials is not occurring, but some fraction will be related to determining if undeclared sites have nuclear materials production taking place within them. Of these, most suspicions will likely be related to the major existing technologies for uranium enrichment and reprocessing for plutonium extraction, as it would seem most likely that nations attempting proliferation would use tested means of producing nuclear materials. However, as technology continues to advance and new methods of enrichment and reprocessing are developed, inspection

  10. PROLIFERATION RESISTANCE OF ADVANCED SPENT FUEL CONDITIONING PROCESS

    SciTech Connect

    MARLOW, JOHNNA B.; LEE, SANG Y.; THOMAS, KENNETH E.; MILLER, MICHAEL C.; KIM, H.D.

    2007-02-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a pyro-metallurgical spent fuel conditioning technology that is under development by the Korea Atomic Energy Research Institute (KAERI). KAERl has been developing this technology to resolve the high-level waste (HLW) disposition problem since 1997 and is planning to perform a lab-scale demonstration in 2008. The proposed concept is an electrometallurgical treatment technique that converts spent nuclear fuels into a single set of disposal metal forms to reduce the volume and simplify the qualification process. The goal of the project is to recover more than 99% of the actinides in metallic form from oxide spent fuel in a proliferation-resistant manner. With this technology, a significant reduction of the volume and heat load of spent fuel is expected, decreasing the burden of the final disposal in terms of size, safety, and cost. The success of the ACP will depend on a number of factors. One key factor is 'proliferation resistance,' and it should be judged by the manner in which it addresses issues of proliferation concern. In this paper, the proliferation resistance of the ACP technology has been analyzed. The intrinsic and extrinsic proliferation resistance features of the ACP technology were examined for the pilot-scale ACP facility based on the Nuclear Energy Research Advisory Committee's TOPS (Task Force on Technology Opportunities for Increasing the Proliferation Resistance of Global Civilian Nuclear Power System) metrics. It was found that the ACP system was more proliferation-resistant than aqueous technologies. The ACP as envisioned in current process flow is not capable of separating plutonium, and significant additional steps would be required to create a pathway to produce plutonium. However, like other processes, it could be modified to directly obtain weapon-usable materials. In this paper, several options are suggested for modification of the process or facility design in order to reduce the

  11. ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES

    SciTech Connect

    Gray S. Chang

    2010-05-01

    The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance.

  12. Deterring Nuclear Proliferation: The Importance of IAEA Safeguards: A TEXTBOOK

    SciTech Connect

    Rosenthal, M.D.; Fishbone, L.G.; Gallini, L.; Krass, A.; Kratzer, M.; Sanborn, J.; Ward, B.; Wulf, N. A.

    2012-03-13

    Nuclear terrorism and nuclear proliferation are among the most pressing challenges to international peace and security that we face today. Iran and Syria remain in non-compliance with the safeguards requirements of the NPT, and the nuclear ambitions of North Korea remain unchecked. Despite these challenges, the NPT remains a cornerstone of the nuclear non-proliferation regime, and the safeguards implemented by the International Atomic Energy Agency (IAEA) under the NPT play a critical role in deterring nuclear proliferation.How do they work? Where did they come from? And what is their future? This book answers these questions. Anyone studying the field of nuclear non-proliferation will benefit from reading this book, and for anyone entering the field, the book will enable them to get a running start. Part I describes the foundations of the international safeguards system: its origins in the 1930s - when new discoveries in physics made it clear immediately that nuclear energy held both peril and promise - through the entry into force in 1970 of the NPT, which codified the role of IAEA safeguards as a means to verify states NPT commitments not to acquire nuclear weapons. Part II describes the NPT safeguards system, which is based on a model safeguards agreement developed specifically for the NPT, The Structure and Content of Agreements between the Agency and States required in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, which has been published by the IAEA as INFCIRC/153. Part III describes events, especially in South Africa, the DPRK, and Iraq in the early 1990s, that triggered a transformation in the way in which safeguards were conceptualized and implemented.

  13. Leptin promotes cell proliferation and survival of trophoblastic cells.

    PubMed

    Magariños, María Paula; Sánchez-Margalet, Víctor; Kotler, Mónica; Calvo, Juan Carlos; Varone, Cecilia L

    2007-02-01

    Leptin, the 16-kDa protein product of the obese gene, was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, leptin has been suggested to be involved in other functions during pregnancy, particularly in placenta. In the present work, we studied a possible effect of leptin on trophoblastic cell proliferation, survival, and apoptosis. Recombinant human leptin added to JEG-3 and BeWo choriocarcinoma cell lines showed a stimulatory effect on cell proliferation up to 3 and 2.4 times, respectively, measured by (3)H-thymidine incorporation and cell counting. These effects were time and dose dependent. Maximal effect was achieved at 250 ng leptin/ml for JEG-3 cells and 50 ng leptin/ml for BeWo cells. Moreover, by inhibiting endogenous leptin expression with 2 microM of an antisense oligonucleotide (AS), cell proliferation was diminished. We analyzed cell population distribution during the different stages of cell cycle by fluorescence-activated cell sorting, and we found that leptin treatment displaced the cells towards a G2/M phase. We also found that leptin upregulated cyclin D1 expression, one of the key cell cycle-signaling proteins. Since proliferation and death processes are intimately related, the effect of leptin on cell apoptosis was investigated. Treatment with 2 microM leptin AS increased the number of apoptotic cells 60 times, as assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and the caspase-3 activity was increased more than 2 fold. This effect was prevented by the addition of 100 ng leptin/ml. In conclusion, we provide evidence that suggests that leptin is a trophic and mitogenic factor for trophoblastic cells by virtue of its inhibiting apoptosis and promoting proliferation. PMID:17021346

  14. Simvastatin Modulates Mesenchymal Stromal Cell Proliferation and Gene Expression

    PubMed Central

    Zanette, Dalila Lucíola; Lorenzi, Julio Cesar Cetrulo; Panepucci, Rodrigo Alexandre; Palma, Patricia Vianna Bonini; dos Santos, Daiane Fernanda; Prata, Karen Lima; Silva, Wilson Araújo

    2015-01-01

    Statins are widely used hypocholesterolemic drugs that block the mevalonate pathway, responsible for the biosysnthesis of cholesterol. However, statins also have pleiotropic effects that interfere with several signaling pathways. Mesenchymal stromal cells (MSC) are a heterogeneous mixture of cells that can be isolated from a variety of tissues and are identified by the expression of a panel of surface markers and by their ability to differentiate in vitro into osteocytes, adipocytes and chondrocytes. MSC were isolated from amniotic membranes and bone marrows and characterized based on ISCT (International Society for Cell Therapy) minimal criteria. Simvastatin-treated cells and controls were directly assayed by CFSE (Carboxyfluorescein diacetate succinimidyl ester) staining to assess their cell proliferation and their RNA was used for microarray analyses and quantitative PCR (qPCR). These MSC were also evaluated for their ability to inhibit PBMC (peripheral blood mononuclear cells) proliferation. We show here that simvastatin negatively modulates MSC proliferation in a dose-dependent way and regulates the expression of proliferation-related genes. Importantly, we observed that simvastatin increased the percentage of a subset of smaller MSC, which also were actively proliferating. The association of MSC decreased size with increased pluripotency and the accumulating evidence that statins may prevent cellular senescence led us to hypothesize that simvastatin induces a smaller subpopulation that may have increased ability to maintain the entire pool of MSC and also to protect them from cellular senescence induced by long-term cultures/passages in vitro. These results may be important to better understand the pleiotropic effects of statins and its effects on the biology of cells with regenerative potential. PMID:25874574

  15. Diphenylhydantoin promotes proliferation in the subventricular zone and dentate gyrus

    PubMed Central

    Galvez-Contreras, Alma Y.; Gonzalez-Castaneda, Rocio E; Luquin, Sonia; Guzman-Muniz, Jorge; Moy-Lopez, Norma A.; Ramos-Zuniga, Rodrigo; Gonzalez-Perez, Oscar

    2012-01-01

    Problem statement Diphenylhydantoin (phenytoin) is an antiepileptic drug that generates hyperplasia in some tissue by stimulating Epidermal Growth Factor (EGFR) and Platelet-Derived Growth Factor beta (PDGFR-β) receptors and by increasing serum levels of basic fibroblast growth factor (bFGF, FGF2 or FGF-β). Neural stem cells in the adult brain have been isolated from three regions: the Subventricular Zone (SVZ) lining the lateral wall of the lateral ventricles, the Subgranular Zone (SGZ) in the dentate gyrus at the hippocampus and the Subgranular Zone (SZC) lining between the hippocampus and the corpus callosum. Neural stem cells actively respond to bFGF, PDGFR-β or EGF by increasing their proliferation, survival and differentiation. The aim of this study was to evaluate the effect of phenytoin on proliferation and apoptosis in the three neurogenic niches in the adult brain. Approach We orally administrated phenytoin with an oropharyngeal cannula for 30 days: 0 mg kg−1 (controls), 1, 5, 10, 50 and 100 mg kg−1. To label proliferative cells, three injections of 100 mg kg−1 of BrdU was administrated every 12 h. Immunohistochemistry against BrdU or Caspase-3 active were performed to determine the number of proliferative or apoptotic cells. Results Our results showed that phenytoin induces proliferation in the SVZ and the SGZ in a dose-dependent manner. No statistically significant effects on cell proliferation in the SCZ neither in the apoptosis rate at the SVZ, SGZ and SCZ were found. Conclusion These data indicate that phenytoin promotes a dose-dependent proliferation in the SVZ and SGZ of the adult brain. The clinical relevance of these findings remain to be elucidated. PMID:24478822

  16. Isorhynchophylline protects against pulmonary arterial hypertension and suppresses PASMCs proliferation

    SciTech Connect

    Guo, Haipeng; Zhang, Xin; Cui, Yuqian; Deng, Wei; Xu, Dachun; Han, Hui; Wang, Hao; Chen, Yuguo; Li, Yu; Wu, Dawei

    2014-07-18

    Highlights: • We focus on PASMCs proliferation in the pathogenesis of PAH. • Isorhynchophylline inhibited PASMCs proliferation and alleviated PAH. • IRN blocked PDGF-Rβ phosphorylation and its downstream signal transduction. • IRN regulated cyclins and CDKs to arrest cell cycle in the G0/G1 phase. • We reported IRN has the potential to be a candidate for PAH treatment. - Abstract: Increased pulmonary arterial smooth muscle cells (PASMCs) proliferation is a key pathophysiological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). Isorhynchophylline (IRN) is a tetracyclic oxindole alkaloid isolated from the Chinese herbal medicine Uncaria rhynchophylla. It has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether IRN can influence the development of PAH. Here we examined the effect of IRN on monocrotaline (MCT) induced PAH in rats. Our data demonstrated that IRN prevented MCT induced PAH in rats, as assessed by right ventricular (RV) pressure, the weight ratio of RV to (left ventricular + septum) and RV hypertrophy. IRN significantly attenuated the percentage of fully muscularized small arterioles, the medial wall thickness, and the expression of smooth muscle α-actin (α-SMA) and proliferating cell nuclear antigen (PCNA). In vitro studies, IRN concentration-dependently inhibited the platelet-derived growth factor (PDGF)-BB-induced proliferation of PASMCs. Fluorescence-activated cell-sorting analysis showed that IRN caused G0/G1 phase cell cycle arrest. IRN-induced growth inhibition was associated with downregulation of Cyclin D1 and CDK6 as well as an increase in p27Kip1 levels in PDGF-BB-stimulated PASMCs. Moreover, IRN negatively modulated PDGF-BB-induced phosphorylation of PDGF-Rβ, ERK1/2, Akt/GSK3β, and signal transducers and activators of transcription 3 (STAT3). These results demonstrate that IRN could inhibit PASMCs proliferation and

  17. Curcumin inhibits the proliferation and mineralization of cultured osteoblasts.

    PubMed

    Notoya, Michitaka; Nishimura, Hiroyuki; Woo, Je-Tae; Nagai, Kazuo; Ishihara, Yoko; Hagiwara, Hiromi

    2006-03-18

    The effects of curcumin, which is an important constituent of rhizomes of the plant Curcuma longa Linn, on the metabolism of osteoblasts were examined in cultures of rat calvarial osteoblastic cells (ROB cells). The proliferation of cells was markedly inhibited upon exposure of cells to curcumin at 5x10(-6) to 1x10(-5) M. Curcumin at 1x10(-5) M did not induce apoptosis in ROB cells but arrested cells at the G1 phase of the cell cycle. In addition, curcumin stimulated the expression of mRNA for p21(WAF1/CIP1), which inhibits the activity of cyclin-dependent kinases, and inhibited the phosphorylation of histone H1. Furthermore, curcumin reduced the rate of deposition of calcium and the formation of mineralized nodules. Our results indicate that curcumin might inhibit the proliferation and mineralization of osteoblastic cells through the expression of p21(WAF1/CIP1). PMID:16476424

  18. NFATc1 balances quiescence and proliferation of skin stem cells

    PubMed Central

    Horsley, Valerie; Aliprantis, Antonios O.; Polak, Lisa; Glimcher, Laurie H.; Fuchs, Elaine

    2008-01-01

    Quiescent adult stem cells reside in specialized niches where they become activated to proliferate and differentiate during tissue homeostasis and injury. How stem cell quiescence is governed is poorly understood. We report here that NFATc1 is preferentially expressed by hair follicle stem cells in their niche, where it's expression is activated by BMP signaling upstream and it acts downstream to transcriptionally repress CDK4 and maintain stem cell quiescence. As stem cells become activated during hair growth, NFATc1 is downregulated, relieving CDK4 repression and activating proliferation. When calcineurin/NFATc1 signaling is suppressed, pharmacologically or via complete or conditional NFATc1 gene ablation, stem cells are activated prematurely, resulting in precocious follicular growth. Our findings may explain why patients receiving cyclosporine A for immunosuppressive therapy display excessive hair growth, and unveil a functional role for calcium-NFATc1-CDK4 circuitry in governing stem cell quiescence. PMID:18243104

  19. Latin America`s emerging non-proliferation consensus

    SciTech Connect

    Redick, J.R.

    1994-03-01

    Latin America`s incorporation into the international nuclear non-proliferation regime is well advanced. The 1967 Tlatelolco Treaty, which established a regional nuclear-weapon-free zone (NWFZ), is nearing completion. A signal event occurred January 18, when Argentina and Chile deposited instruments of ratification to the treaty, leaving Brazil and Cuba the only major countries in Latin America that are not yet contracting parties. And after more than two decades of concern about the nuclear programs and policies in Argentina and Brazil, there is room for great optimism that Brazil may now be moving quickly on important non-proliferation issues. Even Cuba, the {open_quotes}bad boy of the neighborhood{close_quotes} in the eyes of many, which held aloof from the Tlatelolco process for three decades, has stated its willingness to join the zone in the future.

  20. Effect of spaceflight on lymphocyte proliferation and interleukin-2 production

    NASA Technical Reports Server (NTRS)

    Nash, Patricia V.; Konstantinova, Irina V.; Fuchs, Boris B.; Rakhmilevich, Alexandr L.; Lesniak, A. T.; Mastro, Andrea M.

    1992-01-01

    In this study, inguinal lymp node lymphocytes from rats flown on the Cosmos 2044 mission were tested for proliferation and interleukin-2 (IL-2) production. Cells cultured with mitogenic lectins, phorbol ester, and calcium ionophore, or T-cell mitogen and lymphokine, were assayed for DNA synthesis by (H-3) thymidine incorporation. Lymphocytes incubated with a T-cell mitogen alone also were tested for IL-2 production. Proliferation of lymphocytes from flight rats was not significantly different from controls for any of the mitogens tested. Furthermore, lymph node lymphocytes from control and flown rats produced similar amounts of IL-23. Thus microgravity may act on lymphocytes in a tissue-specific manner, a new finding that could impact on the evaluation of spaceflight effects on immunocompetence.

  1. Proliferating tricholemmal tumour: clinicopathological aspects of a case.

    PubMed

    Khoja, A A; Yan, B; Lee, S J; Cheong, E C; Tan, K B

    2011-12-01

    We report the case of a 49-year-old man who presented with an enlarging mass over his occipital scalp. The clinical impression was either a squamous cell carcinoma or an unusual adnexal tumour. A wide excision was performed with skin grafting. Gross examination revealed a large exophytic tumour mass measuring 10 cm. Histopathological examination showed a circumscribed, well-differentiated squamoproliferative lesion with a lobulated architecture. Clear cell features, pilar-type keratinisation, microcalcifications and the presence of mucinous degeneration were noted. A diagnosis of proliferating tricholemmal tumour was made. This entity incorporates a spectrum of lesions, ranging from the mostly benign proliferating tricholemmal cyst to tumours having more atypical cellular and invasive features, the latter features correlating with an increased capacity for aggressive behaviour. Management-wise, such tumours require complete excision with follow-up. As the tumours are often large in size at presentation, reconstruction is required. PMID:22159947

  2. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells.

    PubMed

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-12-14

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and prevent certain cancers. Here, we show that simvastatin decreases the SASP of senescent human fibroblasts by inhibiting protein prenylation, without affecting the senescent growth arrest. The Rho family GTPases Rac1 and Cdc42 were activated in senescent cells, and simvastatin reduced both activities. Further, geranylgeranyl transferase, Rac1 or Cdc42 depletion reduced IL-6 secretion by senescent cells. We also show that simvastatin mitigates the effects of senescent conditioned media on breast cancer cell proliferation and endocrine resistance. Our findings identify a novel activity of simvastatin and mechanism of SASP regulation. They also suggest that senescent cells, which accumulate after radio/chemo therapy, promote endocrine resistance in breast cancer and that simvastatin might suppress this resistance.

  3. Reducing Proliferation Rick Through Multinational Fuel Cycle Facilities

    SciTech Connect

    Amanda Rynes

    2010-11-01

    With the prospect of rapid expansion of the nuclear energy industry and the ongoing concern over weapons proliferation, there is a growing need for a viable alternative to traditional nation-based fuel production facilities. While some in the international community remain apprehensive, the advantages of multinational fuel cycle facilities are becoming increasingly apparent, with states on both sides of the supply chain able to garner the security and financial benefits of such facilities. Proliferation risk is minimized by eliminating the need of states to establish indigenous fuel production capabilities and the concept's structure provides an additional internationally monitored barrier against the misuse or diversion of nuclear materials. This article gives a brief description of the arguments for and against the implementation of a complete multinational fuel cycle.

  4. [Identification of proliferating cells in Taenia solium cysts].

    PubMed

    Orrego-Solano, Miguel Ángel; Cangalaya, Carla; Nash, Theodore E; Guerra-Giraldez, Cristina

    2014-01-01

    Neoblasts are totipotent cells, solely responsible for the proliferation and maturation of tissues in free-living flatworms. Similar cells have been isolated from parasitic flatworms such as Echinococcus. Taenia solium causes human taeniasis (intestinal) and cysticercosis in humans and pigs. Brain infection with larvae (cysts) of T. solium results in neurocysticercosis which is hyperendemic in Peru, and its treatment is associated with serious neurological symptoms. The proliferative capacity and development stages of T. solium have not been described and the neoblasts of this parasite have not been characterized We looked for cell proliferation in T. solium cysts collected from an infected pig, which were identified when replicating and incorporating bromodeoxyuridine nucleotide detected with a monoclonal antibody. A stable cell line of neoblasts would be useful for systematic in vitro studies on drug efficacy and the biology of T. solium.

  5. Hypervulnerability to Sound Exposure through Impaired Adaptive Proliferation of Peroxisomes.

    PubMed

    Delmaghani, Sedigheh; Defourny, Jean; Aghaie, Asadollah; Beurg, Maryline; Dulon, Didier; Thelen, Nicolas; Perfettini, Isabelle; Zelles, Tibor; Aller, Mate; Meyer, Anaïs; Emptoz, Alice; Giraudet, Fabrice; Leibovici, Michel; Dartevelle, Sylvie; Soubigou, Guillaume; Thiry, Marc; Vizi, E Sylvester; Safieddine, Saaid; Hardelin, Jean-Pierre; Avan, Paul; Petit, Christine

    2015-11-01

    A deficiency in pejvakin, a protein of unknown function, causes a strikingly heterogeneous form of human deafness. Pejvakin-deficient (Pjvk(-/-)) mice also exhibit variable auditory phenotypes. Correlation between their hearing thresholds and the number of pups per cage suggest a possible harmful effect of pup vocalizations. Direct sound or electrical stimulation show that the cochlear sensory hair cells and auditory pathway neurons of Pjvk(-/-) mice and patients are exceptionally vulnerable to sound. Subcellular analysis revealed that pejvakin is associated with peroxisomes and required for their oxidative-stress-induced proliferation. Pjvk(-/-) cochleas display features of marked oxidative stress and impaired antioxidant defenses, and peroxisomes in Pjvk(-/-) hair cells show structural abnormalities after the onset of hearing. Noise exposure rapidly upregulates Pjvk cochlear transcription in wild-type mice and triggers peroxisome proliferation in hair cells and primary auditory neurons. Our results reveal that the antioxidant activity of peroxisomes protects the auditory system against noise-induced damage.

  6. mRNA stability and control of cell proliferation.

    PubMed

    Mazzoni, Cristina; Falcone, Claudio

    2011-10-01

    Most of the studies on cell proliferation examine the control of gene expression by specific transcription factors that act on transcriptional initiation. In the last few years, it became evident that mRNA stability/turnover provides an important mechanism for post-transcriptional control of gene expression. In eukaryotes, mRNAs are mainly degraded after deadenylation by decapping and exosome pathways. Mechanisms of mRNA surveillance comprise deadenylation-independent pathways such as NMD (nonsense-mediated decay), when mRNAs harbour a PTC (premature termination codon), NSD (non-stop decay, when mRNAs lack a termination codon, and NGD (no-go decay), when mRNA translation elongation stalls. Many proteins involved in these processes are conserved from bacteria to yeast and humans. Recent papers showed the involvement of proteins deputed to decapping in controlling cell proliferation, virus replication and cell death. In this paper, we will review the newest findings in this field.

  7. Potassium channels in cell cycle and cell proliferation

    PubMed Central

    Urrego, Diana; Tomczak, Adam P.; Zahed, Farrah; Stühmer, Walter; Pardo, Luis A.

    2014-01-01

    Normal cell-cycle progression is a crucial task for every multicellular organism, as it determines body size and shape, tissue renewal and senescence, and is also crucial for reproduction. On the other hand, dysregulation of the cell-cycle progression leading to uncontrolled cell proliferation is the hallmark of cancer. Therefore, it is not surprising that it is a tightly regulated process, with multifaceted and very complex control mechanisms. It is now well established that one of those mechanisms relies on ion channels, and in many cases specifically on potassium channels. Here, we summarize the possible mechanisms underlying the importance of potassium channels in cell-cycle control and briefly review some of the identified channels that illustrate the multiple ways in which this group of proteins can influence cell proliferation and modulate cell-cycle progression. PMID:24493742

  8. Scatter hoarding and hippocampal cell proliferation in Siberian chipmunks.

    PubMed

    Pan, Y; Li, M; Yi, X; Zhao, Q; Lieberwirth, C; Wang, Z; Zhang, Z

    2013-01-01

    Food hoarding, especially scatter hoarding and retrieving food caches, requires spatial learning and memory and is an adaptive behavior important for an animal's survival and reproductive success. In the present study, we examined the effects of hoarding behavior on cell proliferation and survival in the hippocampus of male and female Siberian chipmunks (Tamias sibiricus). We found that chipmunks in a semi-natural enclosure displayed hoarding behavior with large individual variations. Males ate more scatter-hoarded seeds than females. In addition, the display of hoarding behavior was associated with increased cell proliferation in the hippocampus and this increase occurred in a brain region-specific manner. These data provide further evidence to support the notion that new cells in the adult hippocampus are affected by learning and memory tasks and may play an important role in adaptive behavior.

  9. Petasites japonicus Stimulates the Proliferation of Mouse Spermatogonial Stem Cells

    PubMed Central

    Kim, Yong-Hee; Lee, Dong Gu; Kim, Bang-Jin; Kim, Ki-Jung; Kim, Byung-Gak; Oh, Myeong-Geun; Han, Chan Kyu; Lee, Sanghyun; Ryu, Buom-Yong

    2015-01-01

    Oriental natural plants have been used as medical herbs for the treatment of various diseases for over 2,000 years. In this study, we evaluated the effect of several natural plants on the preservation of male fertility by assessing the ability of plant extracts to stimulate spermatogonial stem cell (SSC) proliferation by using a serum-free culture method. In vitro assays showed that Petasites japonicus extracts, especially the butanol fraction, have a significant effect on germ cells proliferation including SSCs. The activity of SSCs cultured in the presence of the Petasites japonicus butanol fraction was confirmed by normal colony formation and spermatogenesis following germ cell transplantation of the treated SSCs. Our findings could lead to the discovery of novel factors that activate SSCs and could be useful for the development of technologies for the prevention of male infertility. PMID:26207817

  10. Unicystic ameloblastoma with diverse mural proliferation - a hybrid lesion.

    PubMed

    Mahadesh, Jyothi; Rayapati, Dilip Kumar; Maligi, Prathima M; Ramachandra, Prashanth

    2011-03-01

    A 46-year-old man was referred to our hospital for treatment, complaining of swelling on the right mandibular molar region. Radiographic examination revealed a well defined multilocular radiolucent lesion with root resorption of right lower anteriors and molars. Following biopsy, a diagnosis of unicystic ameloblastoma of mural type was made and hemimandibulectomy was performed under general anesthesia. Histopathological examination of the surgical specimen exhibited a unicystic ameloblastoma of luminal, intraluminal, and mural type. Intraluminal proliferation was of plexiform pattern and mural proliferation showed unusual histopathological findings, which revealed follicular, acanthomatous areas coexisted with desmoplastic areas. This mural picture was similar to the so-called 'hybrid lesion of ameloblastoma', whose biological profile is not elicited due to the lack of adequate published reports. Two years follow up till date has not revealed any signs of recurrence.

  11. Phase portraits of the proliferation-quiescence decision.

    PubMed

    Zhang, Tongli

    2013-12-10

    Mammalian cells make the proliferation or quiescence decision at a specific point in the cell cycle called the restriction point, after which they become committed to proliferation and independent of growth factors for completion of mitosis. In the textbook view, this crucial transition occurs several hours after mitotic division (in the middle of G1 phase). In a Cell paper, Spencer et al. show that the restriction point should be defined not as a particular time point in G1 phase but in terms of the ON-OFF status of a bistable switch that emerges from the positive feedback in the CDK2-RB-E2F (cyclin-dependent kinase 2-retinoblastoma-E2F) interaction network. PMID:24327759

  12. Simulated Hypergravity Alters Vascular Smooth Muscle Cell Proliferation and Motility

    NASA Technical Reports Server (NTRS)

    Hunt, Shameka; Bettis, Barika; Harris-Hooker, Sandra; Sanford, Gary L.

    1997-01-01

    The cellular effects of gravity are poorly understood due to its constancy and nonavailability of altered gravitational models. Such an understanding is crucial for prolonged space flights. In these studies, we assessed the influence of centrifugation at 6G (HGrav) on vascular smooth muscle (SMC) mobility and proliferation. Cells were: (a) plated at low density and subjected to HGrav for 24-72 hr for proliferation studies, or (b) grown to confluency, subjected to HGrav, mechanically denuded and monitored for cell movement into the denuded area. Controls were maintained under normogravity. SMC showed a 50% inhibition of growth under HGrav and 10% serum; HGrav and low serum resulted in greater growth inhibition. The rate of movement of SMC into the denuded area was 2-3-fold higher under HGrav in low serum compared to controls, but similar in 10% serum. These studies show that HGrav has significant effects on SMC growth and mobility, which are dependent on serum levels.

  13. Gestational protein restriction alters cell proliferation in rat placenta.

    PubMed

    Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; de Sousa Righi, Eloá Fernanda; Catisti, Rosana

    2016-04-01

    We recently showed that gestational protein restriction (GPR) alters the structure of the rat placenta on day 19 of gestation (dG). The aim of the study was to investigate the spatial and temporal immunolocalization of proliferating cell antigen Ki67 in normal and GPR placental development. Pregnant Wistar rats were divided into two groups: normal (NP, 17 % casein) or low-protein diet (LP, 6 % casein). Placentas and fetus were collected and weighed at 15, 17, 19 and 21 dG. Morphological, morphometric and ultrastructural analyses were performed. Immunoperoxidase was used to identify nuclear antigen Ki67 in placental sections. We observed a significant reduction in the number of trophoblast giant cells and glycogen cells in the LP group. Placental weight was significantly reduced only at 17 dG in the LP group, in parallel to a decrease in glycogen cells. From 15 to 21 dG, the thickness of the junctional zone (JZ) decreased in NP and LP animals, while that of the labyrinth zone (LZ) increased in parallel to a reduction in the number of proliferating cells in this LZ zone. GPR significantly inhibits cell proliferation in the JZ, especially at 15 and 17 dG. The ultrastructural appearance of the cytoplasm of giant and cytotrophoblastic cells indicates degeneration from 15 to 21 dG and this effect is enhanced in LP animals suggesting early aging. Offspring of NP dams were significantly heavier than offspring of LP dams at 21 dG. GPR causes modifications in specific regions of the placenta, cell proliferation inhibition and fetal growth restriction. PMID:26779652

  14. Givinostat inhibition of hepatic stellate cell proliferation and protein acetylation

    PubMed Central

    Wang, Yu-Gang; Xu, Ling; Wang, Ting; Wei, Jue; Meng, Wen-Ying; Wang, Na; Shi, Min

    2015-01-01

    AIM: To explore the effect of the histone deacetylase inhibitor givinostat on proteins related to regulation of hepatic stellate cell proliferation. METHODS: The cell counting kit-8 assay and flow cytometry were used to observe changes in proliferation, apoptosis, and cell cycle in hepatic stellate cells treated with givinostat. Western blot was used to observe expression changes in p21, p57, CDK4, CDK6, cyclinD1, caspase-3, and caspase-9 in hepatic stellate cells exposed to givinostat. The scratch assay was used to analyze the effect of givinostat on cell migration. Effects of givinostat on the reactive oxygen species profile, mitochondrial membrane potential, and mitochondrial permeability transition pore opening in JS-1 cells were observed by laser confocal microscopy. RESULTS: Givinostat significantly inhibited JS-1 cell proliferation and promoted cell apoptosis, leading to cell cycle arrest in G0/G1 phases. Treatment with givinostat downregulated protein expression of CDK4, CDK6, and cyclin D1, whereas expression of p21 and p57 was significantly increased. The givinostat-induced apoptosis of hepatic stellate cells was mainly mediated through p38 and extracellular signal-regulated kinase 1/2. Givinostat treatment increased intracellular reactive oxygen species production, decreased mitochondrial membrane potential, and promoted mitochondrial permeability transition pore opening. Acetylation of superoxide dismutase (acetyl K68) and nuclear factor-κB p65 (acetyl K310) was upregulated, while there was no change in protein expression. Moreover, the notable beneficial effect of givinostat on liver fibrosis was also confirmed in the mouse models. CONCLUSION: Givinostat has antifibrotic activities via regulating the acetylation of nuclear factor-κB and superoxide dismutase 2, thus inhibiting hepatic stellate cell proliferation and inducing apoptosis. PMID:26217084

  15. Detection of a fibroblast proliferation inhibitory factor from Capnocytophaga sputigena.

    PubMed Central

    Stevens, R H; Sela, M N; Shapira, J; Hammond, B F

    1980-01-01

    The addition of a sonic extract of Capnocytophaga sputigena to the culture fluid to human fibroblasts resulted in an inhibition of cell proliferation. The inhibition was dose-related (200 micrograms/ml caused a 90% inhibition, and 1,000 micrograms/ml caused a complete cessation of growth). The growth inhibition was not due to alterations in culture medium, pH or ionic strength, or to the effects of the C. sputigena lipopolysaccharide. PMID:7358430

  16. Genetic abolishment of hepatocyte proliferation activates hepatic stem cells.

    PubMed

    Endo, Yoko; Zhang, Mingjun; Yamaji, Sachie; Cang, Yong

    2012-01-01

    Quiescent hepatic stem cells (HSCs) can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1), an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs) by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer. PMID:22384083

  17. Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR

    SciTech Connect

    G. S. Chang; Hongbin Zhang

    2009-09-01

    One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

  18. Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments

    PubMed Central

    Drylewicz, Julia; Elemans, Marjet; Zhang, Yan; Kelly, Elizabeth; Reljic, Rajko; Tesselaar, Kiki; de Boer, Rob J.; Macallan, Derek C.; Borghans, José A. M.; Asquith, Becca

    2015-01-01

    Stable isotope labeling is the state of the art technique for in vivo quantification of lymphocyte kinetics in humans. It has been central to a number of seminal studies, particularly in the context of HIV-1 and leukemia. However, there is a significant discrepancy between lymphocyte proliferation rates estimated in different studies. Notably, deuterated 2H2-glucose (D2-glucose) labeling studies consistently yield higher estimates of proliferation than deuterated water (D2O) labeling studies. This hampers our understanding of immune function and undermines our confidence in this important technique. Whether these differences are caused by fundamental biochemical differences between the two compounds and/or by methodological differences in the studies is unknown. D2-glucose and D2O labeling experiments have never been performed by the same group under the same experimental conditions; consequently a direct comparison of these two techniques has not been possible. We sought to address this problem. We performed both in vitro and murine in vivo labeling experiments using identical protocols with both D2-glucose and D2O. This showed that intrinsic differences between the two compounds do not cause differences in the proliferation rate estimates, but that estimates made using D2-glucose in vivo were susceptible to difficulties in normalization due to highly variable blood glucose enrichment. Analysis of three published human studies made using D2-glucose and D2O confirmed this problem, particularly in the case of short term D2-glucose labeling. Correcting for these inaccuracies in normalization decreased proliferation rate estimates made using D2-glucose and slightly increased estimates made using D2O; thus bringing the estimates from the two methods significantly closer and highlighting the importance of reliable normalization when using this technique. PMID:26437372

  19. A role for antizyme inhibitor in cell proliferation.

    PubMed

    Silva, Tania M; Cirenajwis, Helena; Wallace, Heather M; Oredsson, Stina; Persson, Lo

    2015-07-01

    The polyamines are important for a variety of cellular functions, including cell growth. Their intracellular concentrations are controlled by a complex network of regulatory mechanisms, in which antizyme (Az) has a key role. Az reduces the cellular polyamine content by down-regulating both the enzyme catalysing polyamine biosynthesis, ornithine decarboxylase (ODC), and the uptake of polyamines. The activity of Az is repressed by the binding of a protein, named Az inhibitor (AzI), which is an enzymatically inactive homologue of ODC. Two forms of AzI have been described: AzI1, which is ubiquitous, and AzI2 which is expressed in brain and testis. In the present study, we have investigated the role of AzI1 in polyamine homeostasis and cell proliferation in breast cancer cells. The results obtained showed that the cellular content of AzI increased transiently after induction of cell proliferation by diluting cells in fresh medium. Inhibition of polyamine biosynthesis induced an even larger increase in the cellular AzI content, which remained significantly elevated during the 7-day experimental period. However, this increase was not a consequence of changes in cell cycle progression, as demonstrated by flow cytometry. Instead, the increase appeared to correlate with the cellular depletion of polyamines. Moreover, induced overexpression of AzI resulted in an increased cell proliferation with a concomitant increase in ODC activity and putrescine content. During mitosis, AzI1 was localised in a pattern that resembled that of the two centrosomes, confirming earlier observations. Taken together, the results indicate that AzI fulfils an essential regulatory function in polyamine homeostasis and cell proliferation. PMID:25813938

  20. RelA-Induced Interferon Response Negatively Regulates Proliferation

    PubMed Central

    Kochupurakkal, Bose S.; Wang, Zhigang C.; Hua, Tony; Culhane, Aedin C.; Rodig, Scott J.; Rajkovic-Molek, Koraljka; Lazaro, Jean-Bernard; Richardson, Andrea L.; Biswas, Debajit K.; Iglehart, J. Dirk

    2015-01-01

    Both oncogenic and tumor-suppressor activities are attributed to the Nuclear Factor kappa B (NF-kB) pathway. Moreover, NF-kB may positively or negatively regulate proliferation. The molecular determinants of these opposing roles of NF-kB are unclear. Using primary human mammary epithelial cells (HMEC) as a model, we show that increased RelA levels and consequent increase in basal transcriptional activity of RelA induces IRF1, a target gene. Induced IRF1 upregulates STAT1 and IRF7, and in consort, these factors induce the expression of interferon response genes. Activation of the interferon pathway down-regulates CDK4 and up-regulates p27 resulting in Rb hypo-phosphorylation and cell cycle arrest. Stimulation of HMEC with IFN-γ elicits similar phenotypic and molecular changes suggesting that basal activity of RelA and IFN-γ converge on IRF1 to regulate proliferation. The anti-proliferative RelA-IRF1-CDK4 signaling axis is retained in ER+/HER2- breast tumors analyzed by The Cancer Genome Atlas (TCGA). Using immuno-histochemical analysis of breast tumors, we confirm the negative correlation between RelA levels and proliferation rate in ER+/HER2- breast tumors. These findings attribute an anti-proliferative tumor-suppressor role to basal RelA activity. Inactivation of Rb, down-regulation of RelA or IRF1, or upregulation of CDK4 or IRF2 rescues the RelA-IRF1-CDK4 induced proliferation arrest in HMEC and are points of disruption in aggressive tumors. Activity of the RelA-IRF1-CDK4 axis may explain favorable response to CDK4/6 inhibition observed in patients with ER+ Rb competent tumors. PMID:26460486

  1. Modulation of insulin degrading enzyme activity and liver cell proliferation.

    PubMed

    Pivovarova, Olga; von Loeffelholz, Christian; Ilkavets, Iryna; Sticht, Carsten; Zhuk, Sergei; Murahovschi, Veronica; Lukowski, Sonja; Döcke, Stephanie; Kriebel, Jennifer; de las Heras Gala, Tonia; Malashicheva, Anna; Kostareva, Anna; Lock, Johan F; Stockmann, Martin; Grallert, Harald; Gretz, Norbert; Dooley, Steven; Pfeiffer, Andreas F H; Rudovich, Natalia

    2015-01-01

    Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expression of IDE in subjects with T2DM. HepG2 cells were treated with 10 nM insulin for 24 h with or without inhibition of IDE activity using IDE RNAi, and cell transcriptome and proliferation rate were analyzed. Human liver samples (n = 22) were used for the gene expression profiling by microarrays. In HepG2 cells, IDE knockdown changed expression of genes involved in cell cycle and apoptosis pathways. Proliferation rate was lower in IDE knockdown cells than in controls. Microarray analysis revealed the decrease of hepatic IDE expression in subjects with T2DM accompanied by the downregulation of the p53-dependent genes FAS and CCNG2, but not by the upregulation of proliferation markers MKI67, MCM2 and PCNA. Similar results were found in the liver microarray dataset from GEO Profiles database. In conclusion, IDE expression is decreased in liver of subjects with T2DM which is accompanied by the dysregulation of p53 pathway. Prolonged use of IDE inhibitors for T2DM treatment should be carefully tested in animal studies regarding its potential effect on hepatic tumorigenesis.

  2. Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments.

    PubMed

    Ahmed, Raya; Westera, Liset; Drylewicz, Julia; Elemans, Marjet; Zhang, Yan; Kelly, Elizabeth; Reljic, Rajko; Tesselaar, Kiki; de Boer, Rob J; Macallan, Derek C; Borghans, José A M; Asquith, Becca

    2015-10-01

    Stable isotope labeling is the state of the art technique for in vivo quantification of lymphocyte kinetics in humans. It has been central to a number of seminal studies, particularly in the context of HIV-1 and leukemia. However, there is a significant discrepancy between lymphocyte proliferation rates estimated in different studies. Notably, deuterated (2)H2-glucose (D2-glucose) labeling studies consistently yield higher estimates of proliferation than deuterated water (D2O) labeling studies. This hampers our understanding of immune function and undermines our confidence in this important technique. Whether these differences are caused by fundamental biochemical differences between the two compounds and/or by methodological differences in the studies is unknown. D2-glucose and D2O labeling experiments have never been performed by the same group under the same experimental conditions; consequently a direct comparison of these two techniques has not been possible. We sought to address this problem. We performed both in vitro and murine in vivo labeling experiments using identical protocols with both D2-glucose and D2O. This showed that intrinsic differences between the two compounds do not cause differences in the proliferation rate estimates, but that estimates made using D2-glucose in vivo were susceptible to difficulties in normalization due to highly variable blood glucose enrichment. Analysis of three published human studies made using D2-glucose and D2O confirmed this problem, particularly in the case of short term D2-glucose labeling. Correcting for these inaccuracies in normalization decreased proliferation rate estimates made using D2-glucose and slightly increased estimates made using D2O; thus bringing the estimates from the two methods significantly closer and highlighting the importance of reliable normalization when using this technique. PMID:26437372

  3. Liver cyst cytokines promote endothelial cell proliferation and development.

    PubMed

    Brodsky, Kelley S; McWilliams, Ryan R; Amura, Claudia R; Barry, Nicholas P; Doctor, R Brian

    2009-10-01

    Autosomal dominant polycystic kidney (ADPKD) is highly prevalent genetic disease. Liver cyst disease is the most common extrarenal manifestation in ADPKD and accounts for up to 10% of ADPKD morbidity and mortality. The clinical features of ADPKD liver disease arise from dramatic increases in liver cyst volumes. To identify mechanisms that promote liver cyst growth, the present study characterized the degree of vascularization of liver cyst walls and determined that cyst-specific cytokines and growth factors can drive endothelial cell proliferation and development. Microscopic techniques demonstrated liver cyst walls are well vascularized. A comparative analysis found the vascular density in free liver cyst walls was greater in mice than in humans. Treatment of human micro-vascular endothelial cells (HMEC-1) with human liver cyst fluid (huLCF) induced a rapid increase in vascular endothelium growth factor receptor 2 (VEGFR2) phosphorylation that persisted for 45-60 min and was blocked by 20 microM SU5416, a VEGFR tyrosine kinase inhibitor. Similarly, huLCF treatment of HMEC-1 cells induced an increase in the cell proliferation rate (131 +/- 6% of control levels; P > 0.05) and the degree of vascular development ('tube' diameter assay: 92 +/- 14 microm for huLCF vs. 12 +/- 7 microm for vehicle); P > 0.05). Both cell proliferation and vascular development were sensitive to SU5416. These studies indicate that factors secreted by liver cyst epithelia can activate VEGF signaling pathways and induce endothelial cell proliferation and differentiation. The present studies suggest that targeting VEGFR2-dependent angiogenesis may be an effective therapeutic strategy in blocking ADPKD liver cyst vascularization and growth. PMID:19596832

  4. Gestational protein restriction alters cell proliferation in rat placenta.

    PubMed

    Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; de Sousa Righi, Eloá Fernanda; Catisti, Rosana

    2016-04-01

    We recently showed that gestational protein restriction (GPR) alters the structure of the rat placenta on day 19 of gestation (dG). The aim of the study was to investigate the spatial and temporal immunolocalization of proliferating cell antigen Ki67 in normal and GPR placental development. Pregnant Wistar rats were divided into two groups: normal (NP, 17 % casein) or low-protein diet (LP, 6 % casein). Placentas and fetus were collected and weighed at 15, 17, 19 and 21 dG. Morphological, morphometric and ultrastructural analyses were performed. Immunoperoxidase was used to identify nuclear antigen Ki67 in placental sections. We observed a significant reduction in the number of trophoblast giant cells and glycogen cells in the LP group. Placental weight was significantly reduced only at 17 dG in the LP group, in parallel to a decrease in glycogen cells. From 15 to 21 dG, the thickness of the junctional zone (JZ) decreased in NP and LP animals, while that of the labyrinth zone (LZ) increased in parallel to a reduction in the number of proliferating cells in this LZ zone. GPR significantly inhibits cell proliferation in the JZ, especially at 15 and 17 dG. The ultrastructural appearance of the cytoplasm of giant and cytotrophoblastic cells indicates degeneration from 15 to 21 dG and this effect is enhanced in LP animals suggesting early aging. Offspring of NP dams were significantly heavier than offspring of LP dams at 21 dG. GPR causes modifications in specific regions of the placenta, cell proliferation inhibition and fetal growth restriction.

  5. Nuclear lamins and oxidative stress in cell proliferation and longevity.

    PubMed

    Shimi, Takeshi; Goldman, Robert D

    2014-01-01

    In mammalian cells, the nuclear lamina is composed of a complex fibrillar network associated with the inner membrane of the nuclear envelope. The lamina provides mechanical support for the nucleus and functions as the major determinant of its size and shape. At its innermost aspect it associates with peripheral components of chromatin and thereby contributes to the organization of interphase chromosomes. The A- and B-type lamins are the major structural components of the lamina, and numerous mutations in the A-type lamin gene have been shown to cause many types of human diseases collectively known as the laminopathies. These mutations have also been shown to cause a disruption in the normal interactions between the A and B lamin networks. The impact of these mutations on nuclear functions is related to the roles of lamins in regulating various essential processes including DNA synthesis and damage repair, transcription and the regulation of genes involved in the response to oxidative stress. The major cause of oxidative stress is the production of reactive oxygen species (ROS), which is critically important for cell proliferation and longevity. Moderate increases in ROS act to initiate signaling pathways involved in cell proliferation and differentiation, whereas excessive increases in ROS cause oxidative stress, which in turn induces cell death and/or senescence. In this review, we cover current findings about the role of lamins in regulating cell proliferation and longevity through oxidative stress responses and ROS signaling pathways. We also speculate on the involvement of lamins in tumor cell proliferation through the control of ROS metabolism.

  6. The Retinoblastoma pathway regulates stem cell proliferation in freshwater planarians.

    PubMed

    Zhu, Shu Jun; Pearson, Bret J

    2013-01-15

    Freshwater planarians are flatworms of the Lophotrochozoan superphylum and are well known for their regenerative abilities, which rely on a large population of pluripotent adult stem cells. However, the mechanisms by which planarians maintain a precise population of adult stem cells while balancing proliferation and cell death, remain to be elucidated. Here we have identified, characterized, and functionally tested the core Retinoblastoma (Rb) pathway components in planarian adult stem cell biology. The Rb pathway is an ancient and conserved mechanism of proliferation control from plants to animals and is composed of three core components: an Rb protein, and a transcription factor heterodimer of E2F and DP proteins. Although the planarian genome contains all components of the Rb pathway, we found that they have undergone gene loss from the ancestral state, similar to other species in their phylum. The single Rb homolog (Smed-Rb) was highly expressed in planarian stem cells and was required for stem cell maintenance, similar to the Rb-homologs p107 and p130 in vertebrates. We show that planarians and their phylum have undergone the most severe reduction in E2F genes observed thus far, and the single remaining E2F was predicted to be a repressive-type E2F (Smed-E2F4-1). Knockdown of either Smed-E2F4-1 or its dimerization partner Dp (Smed-Dp) by RNAi resulted in temporary hyper-proliferation. Finally, we showed that known Rb-interacting genes in other systems, histone deacetylase 1 and cyclinD (Smed-HDAC1; Smed-cycD), were similar to Rb in expression and phenotypes when knocked down by RNAi, suggesting that these established interactions with Rb may also be conserved in planarians. Together, these results showed that planarians use the conserved components of the Rb tumor suppressor pathway to control proliferation and cell survival.

  7. Megakaryocytes are mechanically responsive and influence osteoblast proliferation and differentiation.

    PubMed

    Soves, Constance P; Miller, Joshua D; Begun, Dana L; Taichman, Russell S; Hankenson, Kurt D; Goldstein, Steven A

    2014-09-01

    Maintenance of bone mass and geometry is influenced by mechanical stimuli. Paradigms suggest that osteocytes embedded within the mineralized matrix and osteoblasts on the bone surfaces are the primary responders to physical forces. However, other cells within the bone marrow cavity, such as megakaryocytes (MKs), are also subject to mechanical forces. Recent studies have highlighted the potent effects of MKs on osteoblast proliferation as well as bone formation in vivo. We hypothesize that MKs are capable of responding to physical forces and that the interactions between these cells and osteoblasts can be influenced by mechanical stimulation. In this study, we demonstrate that two MK cell lines respond to fluid shear stress in culture. Furthermore, using laser capture microdissection, we isolated MKs from histologic sections of murine tibiae that were exposed to compressive loads in vivo. C-fos, a transcription factor shown to be upregulated in response to load in various tissue types, was increased in MKs from loaded relative to non-loaded limbs at a level comparable to that of osteocytes from the same limbs. We also developed a co-culture system to address whether mechanical stimulation of MKs in culture would impact osteoblast proliferation and differentiatio