Science.gov

Sample records for acinetobacter baylyi strain

  1. Extracellular Polymeric Substance Architecture Influences Natural Genetic Transformation of Acinetobacter baylyi in Biofilms

    PubMed Central

    Merod, Robin T.

    2014-01-01

    Genetic exchange by natural transformation is an important mechanism of horizontal gene transfer in biofilms. Thirty-two biofilm metrics were quantified in a heavily encapsulated Acinetobacter baylyi strain and a miniencapsulated mutant strain, accounting for cellular architecture, extracellular polymeric substances (EPS) architecture, and their combined biofilm architecture. In general, transformation location, abundance, and frequency were more closely correlated to EPS architecture than to cellular or combined architecture. Transformation frequency and transformant location had the greatest correlation with the EPS metric surface area-to-biovolume ratio. Transformation frequency peaked when EPS surface area-to-biovolume ratio was greater than 3 μm2/μm3 and less than 5 μm2/μm3. Transformant location shifted toward the biofilm-bulk fluid interface as the EPS surface area-to-biovolume ratio increased. Transformant biovolume was most closely correlated with EPS biovolume and peaked when transformation occurred in close proximity to the substratum. This study demonstrates that biofilm architecture influences A. baylyi transformation frequency and transformant location and abundance. The major role of EPS may be to facilitate the binding and stabilization of plasmid DNA for cellular uptake. PMID:25304505

  2. Lack of detectable DNA uptake by bacterial gut isolates grown in vitro and by Acinetobacter baylyi colonizing rodents in vivo.

    PubMed

    Nordgård, Lise; Nguyen, Thuy; Midtvedt, Tore; Benno, Yoshimi; Traavik, Terje; Nielsen, Kaare M

    2007-01-01

    Biological risk assessment of food containing recombinant DNA has exposed knowledge gaps related to the general fate of DNA in the gastrointestinal tract (GIT). Here, a series of experiments is presented that were designed to determine if genetic transformation of the naturally competent bacterium Acinetobacter baylyi BD413 occurs in the GIT of mice and rats, with feed-introduced bacterial DNA containing a kanamycin resistance gene (nptII). Strain BD413 was found in various gut locations in germ-free mice at 10(3)-10(5) CFU per gram GIT content 24-48 h after administration. However, subsequent DNA exposure of the colonized mice did not result in detectable bacterial transformants, with a detection limit of 1 transformant per 10(3)-10(5) bacteria. Further attempts to increase the likelihood of detection by introducing weak positive selection with kanamycin of putative transformants arising in vivo during a 4-week-long feeding experiment (where the mice received DNA and the recipient cells regularly) did not yield transformants either. Moreover, the in vitro exposure of actively growing A. baylyi cells to gut contents from the stomach, small intestine, cecum or colon contents of rats (with a normal microbiota) fed either purified DNA (50 microg) or bacterial cell lysates did not produce bacterial transformants. The presence of gut content of germfree mice was also highly inhibitory to transformation of A. baylyi, indicating that microbially-produced nucleases are not responsible for the sharp 500- to 1,000,000-fold reduction of transformation frequencies seen. Finally, a range of isolates from the genera Enterococcus, Streptococcus and Bifidobacterium spp. was examined for competence expression in vitro, without yielding any transformants. In conclusion, model choice and methodological constraints severely limit the sample size and, hence, transfer frequencies that can be measured experimentally in the GIT. Our observations suggest the contents of the GIT shield or

  3. Genome Instability Mediates the Loss of Key Traits by Acinetobacter baylyi ADP1 during Laboratory Evolution

    PubMed Central

    Renda, Brian A.; Dasgupta, Aurko; Leon, Dacia

    2014-01-01

    Acinetobacter baylyi ADP1 has the potential to be a versatile bacterial host for synthetic biology because it is naturally transformable. To examine the genetic reliability of this desirable trait and to understand the potential stability of other engineered capabilities, we propagated ADP1 for 1,000 generations of growth in rich nutrient broth and analyzed the genetic changes that evolved by whole-genome sequencing. Substantially reduced transformability and increased cellular aggregation evolved during the experiment. New insertions of IS1236 transposable elements and IS1236-mediated deletions led to these phenotypes in most cases and were common overall among the selected mutations. We also observed a 49-kb deletion of a prophage region that removed an integration site, which has been used for genome engineering, from every evolved genome. The comparatively low rates of these three classes of mutations in lineages that were propagated with reduced selection for 7,500 generations indicate that they increase ADP1 fitness under common laboratory growth conditions. Our results suggest that eliminating transposable elements and other genetic failure modes that affect key organismal traits is essential for improving the reliability of metabolic engineering and genome editing in undomesticated microbial hosts, such as Acinetobacter baylyi ADP1. PMID:25512307

  4. Isolation and characterization of a novel thermophilic-organic solvent stable lipase from Acinetobacter baylyi.

    PubMed

    Uttatree, Sasithorn; Winayanuwattikun, Pakorn; Charoenpanich, Jittima

    2010-11-01

    The benzene tolerant Acinetobacter baylyi isolated from marine sludge in Angsila, Thailand could constitutively secrete lipolytic enzymes. The enzyme was successfully purified 21.89-fold to homogeneity by ammonium sulfate precipitation and gel-permeable column chromatography with a relative molecular mass as 30 kDa. The enzyme expressed maximum activity at 60 degrees C and pH 8.0 with p-nitrophenyl palmitate as a substrate and found to be stable in pH and temperature ranging from 6.0-9.0 to 60-80 degrees C, respectively. A study on solvent stability revealed that the enzyme was highly resisted to many organic solvents especially benzene and isoamyl alcohol, but 40% inhibited by decane, hexane, acetonitrile, and short-chain alcohols. Lipase activity was completely inhibited in the presence of Fe(2+), Mn(2+), EDTA, SDS, and Triton X-100 while it was suffered detrimentally by Tween 80. The activity was enhanced by phenylmethylsulfonyl fluoride (PMSF), Na(+), and Mg(2+) and no significant effect was found in the presence of Ca(2+) and Li(+). Half of an activity was retained by Ba(2+), Ag(+), Hg(+), Ni(2+), Zn(2+), and DTT. The enzyme could hydrolyze a wide range of p-nitrophenyl esters, but preferentially medium length acyl chains (C(8)-C(12)). Among natural oils and fats, the enzyme 11-folds favorably catalyzed the hydrolysis of rice bran oil, corn oil, sesame oil, and coconut oil in comparison to palm oil. Moreover, the transesterification activity of palm oil to fatty acid methyl esters (FAMEs) revealed 31.64 +/- 1.58% after 48 h. The characteristics of novel A. baylyi lipase, as high temperature stability, organic solvent tolerance, and transesterification capacity from palm oil to FAMEs, indicate that it could be a vigorous biocatalyzer in the prospective fields as bioenergy industry or even in organic synthesis and pharmaceutical industry. PMID:20177822

  5. Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase

    PubMed Central

    2012-01-01

    Background Thioesterases remove the fatty acyl moiety from the fatty acyl-acyl carrier proteins (ACPs), releasing them as free fatty acids (FFAs), which can be further used to produce a variety of fatty acid-based biofuels, such as biodiesel, fatty alcohols and alkanes. Thioesterases play a key role in the regulation of the fatty acid synthesis in Escherichia coli. Therefore, exploring more promising thioesterases will contribute to the development of industrial microbial lipids production. Results We cloned and expressed a cytosolic Acinetobacter baylyi thioesterase (‘AcTesA) in E. coli by deleting its leader sequence. Protein sequence alignment, structure modeling and site-directed mutagenesis demonstrated that Ser10, Gly48, Asn77, Asp158 and His161 residues composed the active centre of ‘AcTesA. The engineered strain that overexpressed ‘AcTesA achieved a FFAs titer of up to 501.2 mg/L in shake flask, in contrast to only 20.5 mg/L obtained in wild-type E. coli, demonstrating that the expression of ‘AcTesA indeed boosted the synthesis of FFAs. The ‘AcTesA exhibited a substrate preference towards the C8-C16 acyl groups, with C14:0, C16:1, C12:0 and C8:0 FFAs being the top four components. Optimization of expression level of ‘AcTesA made the FFAs production increase to 551.3 mg/L. The FFAs production further increased to 716.1 mg/L by optimization of the culture medium. Fed-batch fermentation was also carried out to evaluate the FFAs production in a scaleable process. Finally, 3.6 g/L FFAs were accumulated within 48 h, and a maximal FFAs yield of 6.1% was achieved in 12–16 h post induction. Conclusions For the first time, an A. baylyi thioesterase was cloned and solubly expressed in the cytosol of E. coli. This leaderless thioesterase (‘AcTesA) was found to be capable of enhancing the FFAs production of E. coli. Without detailed optimization of the strain and fermentation, the finally achieved 3.6 g/L FFAs is encouraging. In addition,

  6. Long-Term Diversity and Genome Adaptation of Acinetobacter baylyi in a Minimal-Medium Chemostat

    PubMed Central

    Jezequel, Nadia; Lagomarsino, Marco Cosentino; Heslot, Francois; Thomen, Philippe

    2013-01-01

    Laboratory-based evolution experiments on microorganisms that do not recombine frequently show two distinct phases: an initial rapid increase in fitness followed by a slower regime. To explore the population structure and the evolutionary tree in the later stages of adaptation, we evolved a very large population (∼3 × 10) of Acinetobacter baylyi bacteria for approximately 2,800 generations from a single clone. The population was maintained in a chemostat at a high dilution rate. Nitrate in limiting amount and as the sole nitrogen source was used as a selection pressure. Analysis via resequencing of genomes extracted from populations at different generations provides evidence that long-term diversity can be established in the chemostat in a very simple medium. To find out which biological parameters were targeted by adaptation, we measured the maximum growth rate, the nitrate uptake, and the resistance to starvation. Overall, we find that maximum growth rate could be a reasonably good proxy for fitness. The late slow adaptation is compatible with selection coefficients spanning a typical range of 10–10 per generation as estimated by resequencing, pointing to a possible subpopulations structuring. PMID:23254395

  7. A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1

    PubMed Central

    de Berardinis, Véronique; Vallenet, David; Castelli, Vanina; Besnard, Marielle; Pinet, Agnès; Cruaud, Corinne; Samair, Sumitta; Lechaplais, Christophe; Gyapay, Gabor; Richez, Céline; Durot, Maxime; Kreimeyer, Annett; Le Fèvre, François; Schächter, Vincent; Pezo, Valérie; Döring, Volker; Scarpelli, Claude; Médigue, Claudine; Cohen, Georges N; Marlière, Philippe; Salanoubat, Marcel; Weissenbach, Jean

    2008-01-01

    We have constructed a collection of single-gene deletion mutants for all dispensable genes of the soil bacterium Acinetobacter baylyi ADP1. A total of 2594 deletion mutants were obtained, whereas 499 (16%) were not, and are therefore candidate essential genes for life on minimal medium. This essentiality data set is 88% consistent with the Escherichia coli data set inferred from the Keio mutant collection profiled for growth on minimal medium, while 80% of the orthologous genes described as essential in Pseudomonas aeruginosa are also essential in ADP1. Several strategies were undertaken to investigate ADP1 metabolism by (1) searching for discrepancies between our essentiality data and current metabolic knowledge, (2) comparing this essentiality data set to those from other organisms, (3) systematic phenotyping of the mutant collection on a variety of carbon sources (quinate, 2-3 butanediol, glucose, etc.). This collection provides a new resource for the study of gene function by forward and reverse genetic approaches and constitutes a robust experimental data source for systems biology approaches. PMID:18319726

  8. The beta-ketoadipate pathway of Acinetobacter baylyi undergoes carbon catabolite repression, cross-regulation and vertical regulation, and is affected by Crc.

    PubMed

    Bleichrodt, Fenja S; Fischer, Rita; Gerischer, Ulrike C

    2010-05-01

    The degradation of many structurally diverse aromatic compounds in Acinetobacter baylyi is accomplished by the beta-ketoadipate pathway. In addition to specific induction of expression by certain aromatic compounds, this pathway is regulated by complex mechanisms at multiple levels, which are the topic of this study. Multiple operons feeding into the beta-ketoadipate pathway are controlled by carbon catabolite repression (CCR) caused by succinate plus acetate. The pathways under study enable the catabolism of benzoate (ben), catechol (catA), cis,cis-muconate (catB,C,I,J,F,D), vanillate (van), hydroxycinnamates (hca), dicarboxylates (dca), salicylate (sal), anthranilate (ant) and benzyl esters (are). For analysis of CCR at the transcriptional level a luciferase reporter gene cassette was introduced into the operons. The Crc (catabolite repression control) protein is involved in repression of all operons (except for catA), as demonstrated by the analysis of respective crc strains. In addition, cross-regulation was demonstrated for the vanA,B, hca and dca operons. The presence of protocatechuate caused transcriptional repression of the vanA,B- and hca-encoded funnelling pathways (vertical regulation). Thus the results presented extend the understanding both of CCR and of the effects of Crc for all aromatic degradative pathways of A. baylyi and increase the number of operons known to be controlled by two additional mechanisms, cross-regulation and vertical regulation. PMID:20110298

  9. Prophage induction and differential RecA and UmuDAb transcriptome regulation in the DNA damage responses of Acinetobacter baumannii and Acinetobacter baylyi.

    PubMed

    Hare, Janelle M; Ferrell, Joshua C; Witkowski, Travis A; Grice, Alison N

    2014-01-01

    The SOS response to DNA damage that induces up to 10% of the prokaryotic genome requires RecA action to relieve LexA transcriptional repression. In Acinetobacter species, which lack LexA, the error-prone polymerase accessory UmuDAb is instead required for ddrR induction after DNA damage, suggesting it might be a LexA analog. RNA-Seq experiments defined the DNA damage transcriptome (mitomycin C-induced) of wild type, recA and umuDAb mutant strains of both A. baylyi ADP1 and A. baumannii ATCC 17978. Of the typical SOS response genes, few were differentially regulated in these species; many were repressed or absent. A striking 38.4% of all ADP1 genes, and 11.4% of all 17978 genes, were repressed under these conditions. In A. baylyi ADP1, 66 genes (2.0% of the genome), including a CRISPR/Cas system, were DNA damage-induced, and belonged to four regulons defined by differential use of recA and umuDAb. In A. baumannii ATCC 17978, however, induction of 99% of the 152 mitomycin C-induced genes depended on recA, and only 28 of these genes required umuDAb for their induction. 90% of the induced A. baumannii genes were clustered in three prophage regions, and bacteriophage particles were observed after mitomycin C treatment. These prophages encoded esvI, esvK1, and esvK2, ethanol-stimulated virulence genes previously identified in a Caenorhabditis elegans model, as well as error-prone polymerase alleles. The induction of all 17978 error-prone polymerase alleles, whether prophage-encoded or not, was recA dependent, but only these DNA polymerase V-related genes were de-repressed in the umuDAb mutant in the absence of DNA damage. These results suggest that both species possess a robust and complex DNA damage response involving both recA-dependent and recA-independent regulons, and further demonstrates that although umuDAb has a specialized role in repressing error-prone polymerases, additional regulators likely participate in these species' transcriptional response to DNA damage

  10. Prophage Induction and Differential RecA and UmuDAb Transcriptome Regulation in the DNA Damage Responses of Acinetobacter baumannii and Acinetobacter baylyi

    PubMed Central

    Hare, Janelle M.; Ferrell, Joshua C.; Witkowski, Travis A.; Grice, Alison N.

    2014-01-01

    The SOS response to DNA damage that induces up to 10% of the prokaryotic genome requires RecA action to relieve LexA transcriptional repression. In Acinetobacter species, which lack LexA, the error-prone polymerase accessory UmuDAb is instead required for ddrR induction after DNA damage, suggesting it might be a LexA analog. RNA-Seq experiments defined the DNA damage transcriptome (mitomycin C-induced) of wild type, recA and umuDAb mutant strains of both A. baylyi ADP1 and A. baumannii ATCC 17978. Of the typical SOS response genes, few were differentially regulated in these species; many were repressed or absent. A striking 38.4% of all ADP1 genes, and 11.4% of all 17978 genes, were repressed under these conditions. In A. baylyi ADP1, 66 genes (2.0% of the genome), including a CRISPR/Cas system, were DNA damage-induced, and belonged to four regulons defined by differential use of recA and umuDAb. In A. baumannii ATCC 17978, however, induction of 99% of the 152 mitomycin C-induced genes depended on recA, and only 28 of these genes required umuDAb for their induction. 90% of the induced A. baumannii genes were clustered in three prophage regions, and bacteriophage particles were observed after mitomycin C treatment. These prophages encoded esvI, esvK1, and esvK2, ethanol-stimulated virulence genes previously identified in a Caenorhabditis elegans model, as well as error-prone polymerase alleles. The induction of all 17978 error-prone polymerase alleles, whether prophage-encoded or not, was recA dependent, but only these DNA polymerase V-related genes were de-repressed in the umuDAb mutant in the absence of DNA damage. These results suggest that both species possess a robust and complex DNA damage response involving both recA-dependent and recA-independent regulons, and further demonstrates that although umuDAb has a specialized role in repressing error-prone polymerases, additional regulators likely participate in these species' transcriptional response to DNA damage

  11. UmuDAb: An Error-Prone Polymerase Accessory Homolog Whose N-Terminal Domain Is Required for Repression of DNA Damage Inducible Gene Expression in Acinetobacter baylyi

    PubMed Central

    Stinnett, DeAnna B.; Wells, Whitney K.; Peterson, Megan A.; Hare, Janelle M.

    2016-01-01

    In many bacteria, the DNA damage response induces genes (SOS genes) that were repressed by LexA. LexA represses transcription by binding to SOS promoters via a helix-turn-helix motif in its N-terminal domain (NTD). Upon DNA damage, LexA cleaves itself and allows induction of transcription. In Acinetobacter baumannii and Acinetobacter baylyi, multiple genes are induced by DNA damage, and although the Acinetobacter genus lacks LexA, a homolog of the error-prone polymerase subunit UmuD, called UmuDAb, regulates some DNA damage-induced genes. The mechanism of UmuDAb regulation has not been determined. We constructed UmuDAb mutant strains of A. baylyi to test whether UmuDAb mediates gene regulation through LexA-like repressor actions consisting of relief of repression through self-cleavage after DNA damage. Real-time quantitative PCR experiments in both a null umuDAb mutant and an NTD mutant showed that the DNA damage-inducible, UmuDAb-regulated gene ddrR was highly expressed even in the absence of DNA damage. Protein modeling identified a potential LexA-like helix-turn-helix structure in the UmuDAb NTD, which when disrupted, also relieved ddrR and umuDAb repression under non-inducing conditions. Mutations in a putative SOS box in the shared umuDAb-ddrR promoter region similarly relieved these genes’ repression under non-inducing conditions. Conversely, cells possessing a cleavage-deficient UmuDAb were unable to induce gene expression after MMC-mediated DNA damage. This evidence of a UmuDAb repressor mechanism was contrasted with the failure of umuDAb to complement an Escherichia coli umuD mutant for UmuD error-prone DNA replication activity. Similarly, A. baumannii null umuDAb mutant cells did not have a reduced UmuDˊ2UmuC-mediated mutation rate after DNA damage, suggesting that although this UmuDAb protein may have evolved from a umuDC operon in this genus, it now performs a LexA-like repressor function for a sub-set of DNA damage-induced genes. PMID:27010837

  12. The small RNA Aar in Acinetobacter baylyi: a putative regulator of amino acid metabolism.

    PubMed

    Schilling, Dominik; Findeiss, Sven; Richter, Andreas S; Taylor, Jennifer A; Gerischer, Ulrike

    2010-09-01

    Small non-coding RNAs (sRNAs) are key players in prokaryotic metabolic circuits, allowing the cell to adapt to changing environmental conditions. Regulatory interference by sRNAs in cellular metabolism is often facilitated by the Sm-like protein Hfq. A search for novel sRNAs in A. baylyi intergenic regions was performed by a biocomputational screening. One candidate, Aar, encoded between trpS and sucD showed Hfq dependency in Northern blot analysis. Aar was expressed strongly during stationary growth phase in minimal medium; in contrast, in complex medium, strongest expression was in the exponential growth phase. Whereas over-expression of Aar in trans did not affect bacterial growth, seven mRNA targets predicted by two in silico approaches were upregulated in stationary growth phase. All seven mRNAs are involved in A. baylyi amino acid metabolism. A putative binding site for Lrp, the global regulator of branched-chain amino acids in E. coli, was observed within the aar gene. Both facts imply an Aar participation in amino acid metabolism. PMID:20559624

  13. Iterative reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using high-throughput growth phenotype and gene essentiality data

    PubMed Central

    Durot, Maxime; Le Fèvre, François; de Berardinis, Véronique; Kreimeyer, Annett; Vallenet, David; Combe, Cyril; Smidtas, Serge; Salanoubat, Marcel; Weissenbach, Jean; Schachter, Vincent

    2008-01-01

    Background Genome-scale metabolic models are powerful tools to study global properties of metabolic networks. They provide a way to integrate various types of biological information in a single framework, providing a structured representation of available knowledge on the metabolism of the respective species. Results We reconstructed a constraint-based metabolic model of Acinetobacter baylyi ADP1, a soil bacterium of interest for environmental and biotechnological applications with large-spectrum biodegradation capabilities. Following initial reconstruction from genome annotation and the literature, we iteratively refined the model by comparing its predictions with the results of large-scale experiments: (1) high-throughput growth phenotypes of the wild-type strain on 190 distinct environments, (2) genome-wide gene essentialities from a knockout mutant library, and (3) large-scale growth phenotypes of all mutant strains on 8 minimal media. Out of 1412 predictions, 1262 were initially consistent with our experimental observations. Inconsistencies were systematically examined, leading in 65 cases to model corrections. The predictions of the final version of the model, which included three rounds of refinements, are consistent with the experimental results for (1) 91% of the wild-type growth phenotypes, (2) 94% of the gene essentiality results, and (3) 94% of the mutant growth phenotypes. To facilitate the exploitation of the metabolic model, we provide a web interface allowing online predictions and visualization of results on metabolic maps. Conclusion The iterative reconstruction procedure led to significant model improvements, showing that genome-wide mutant phenotypes on several media can significantly facilitate the transition from genome annotation to a high-quality model. PMID:18840283

  14. Inducer responses of BenM, a LysR-type transcriptional regulator from Acinetobacter baylyi ADP1

    SciTech Connect

    Craven, Sarah H.; Ezezika, Obidimma C.; Haddad, Sandra; Hall, Ruth A.; Momany, Cory; Neidle, Ellen L.; Georgia

    2009-06-25

    BenM and CatM control transcription of a complex regulon for aromatic compound degradation. These Acinetobacter baylyi paralogues belong to the largest family of prokaryotic transcriptional regulators, the LysR-type proteins. Whereas BenM activates transcription synergistically in response to two effectors, benzoate and cis,cis-muconate, CatM responds only to cis,cis-muconate. Here, site-directed mutagenesis was used to determine the physiological significance of an unexpected benzoate-binding pocket in BenM discovered during structural studies. Residues in BenM were changed to match those of CatM in this hydrophobic pocket. Two BenM residues, R160 and Y293, were found to mediate the response to benzoate. Additionally, alteration of these residues caused benzoate to inhibit activation by cis,cis-muconate, positioned in a separate primary effector-binding site of BenM. The location of the primary site, in an interdomain cleft, is conserved in diverse LysR-type regulators. To improve understanding of this important family, additional regulatory mutants were analysed. The atomic-level structures were characterized of the effector-binding domains of variants that do not require inducers for activation, CatM(R156H) and BenM(R156H,T157S). These structures clearly resemble those of the wild-type proteins in their activated muconate-bound complexes. Amino acid replacements that enable activation without effectors reside at protein interfaces that may impact transcription through effects on oligomerization.

  15. Identification of an osmo-dependent and an osmo-independent choline transporter in Acinetobacter baylyi: implications in osmostress protection and metabolic adaptation.

    PubMed

    Sand, Miriam; Stahl, Julia; Waclawska, Izabela; Ziegler, Christine; Averhoff, Beate

    2014-06-01

    Members of the genus Acinetobacter are well known for their metabolic versatility that allows them to adapt to different ecological niches. In previous studies, we have demonstrated that Acinetobacter baylyi ADP1 can cope with high salinities by uptake and accumulation of the well-known compatible solute glycine betaine. Here, we demonstrate that addition of choline restores growth at high salinities. We further show that choline was actively taken up by the cells and converted to glycine betaine. Uptake of choline was induced by high salinity and the presence of choline in the growth medium. At high salinities, glycine betaine was accumulated in the cells whereas in the absence of osmotic stress it was exported. Inspection of the genome sequence followed by mutant studies led to the identification of two genes encoding secondary transporters (BetT1 and BetT2) of the betaine-choline-carnitine transporter (BCCT) family. The BetT1 transporter lacks an extended C-terminal domain usually found in osmoregulated choline BCCTs. BetT1 was found to facilitate osmolarity-independent choline transport most likely by a uniport mechanism. We propose that BetT1 does not primarily function in osmoadaptation but might play a role in metabolic adaptation to choline-rich environments. PMID:23889709

  16. Antibacterial sensitivity of Acinetobacter strains isolated from nosocomial infections.

    PubMed

    Karsligil, T; Balci, I; Zer, Y

    2004-01-01

    Acinetobacter species can cause many types of hospital-acquired infection and play an important role in nosocomial pneumonia in intensive care units, skin and wound infections, and meningitis. They are of increasing importance because of their ability to rapidly develop resistance to the major groups of antibiotics. We aimed to determine the antibiotic sensitivity of Acinetobacter strains isolated from, and determined to be the cause of, hospital-acquired infections. A total of 156 cultures of Acinetobacter (strains of A. baumannii [136; 87.2%] and A. iwoffii [20; 12.8%]), were isolated from clinical samples taken from patients in different units of our hospital. Conventional bacterial identification methods and the Sceptor system were used. In the antibiotic sensitivity tests, A. baumannii was susceptible to imipenem (90.4%), norfloxacin (84.5%) and ciprofloxacin (65.4%), and A. iwoffii to amikacin (80.0%), ticarcillin/clavulanic acid (70.0%) and imipenem (60.0%). PMID:15303777

  17. [Identification and determination of sensitivity to antibiotics of 31 clinical strains of Acinetobacter other than A. baumannii].

    PubMed

    Freney, J; Bouvet, P J; Tixier, C

    1989-01-01

    Precise identification and determination of MICs of clinical isolates of Acinetobacter identified to other species than the hospital species A. baumannii were carried out. On 260 Acinetobacter strains isolated in an hospital over a 6 months period, 31 strains (12 p. cent) were identified to species other than A. baumannii. Among these 31 strains, A. Iwoffii sensu stricto (16 strains) and A. haemolyticus (6 strains) were mostly recovered. Eight glucose oxidizing strains were identified to A. haemolyticus (6 strains), Acinetobacter genospecies 3 (2 strains), and A. Iwoffii sensu stricto (1 strain). Antibiotic susceptibilities of these strains were greater than those commonly observed with A. baumannii strains. PMID:2930020

  18. [Susceptibility to antibiotics and biochemical activity of strains of Acinetobacter sp. isolated from various sources].

    PubMed

    Gospodarek, E

    1993-01-01

    The study was performed on 576 Acinetobacter strains isolated from clinical material, objects from hospital, environment, soil, water and from animals. Applying API 20NE system identification was following: A. baumanii (61.1%), A. junii (19.4%), A. haemolyticus (4.3%), A. lwoffii (3.3%), A. johnsonii (0.52%) and not belonging to above genus strains (11.3%). Over 47% strains of Acinetobacter were isolated from clinical material as the only bacteria (mainly from samples received from intensive care units and surgical and urological wards). Out of 23 antibiotics and antimicrobials used for investigation of 535 strains of Acinetobacter, most active were imipenem (99%) of susceptible strains, ofloxacin and ciprofloxacin (95%) and netilmicin (88%). Multiple resistant strains were isolated more frequently from hospital environment than from other sources--these were mostly A. baumanii and A. junii. PMID:8189806

  19. Staring at the Cold Sun: Blue Light Regulation Is Distributed within the Genus Acinetobacter

    PubMed Central

    Golic, Adrián; Vaneechoutte, Mario; Nemec, Alexandr; Viale, Alejandro M.; Actis, Luis A.; Mussi, María Alejandra

    2013-01-01

    We previously showed that the opportunistic nosocomial pathogen Acinetobacter baumannii is able to sense and respond to light via BlsA, a BLUF (Blue-Light-sensing Using FAD)-domain photoreceptor protein. Here, we extend our previous studies showing that light regulation is not restricted to A. baumannii, but rather widespread within the genus Acinetobacter. First, we found that blue light modulates motility and biofilm formation in many species of the genus, including members of the Acinetobacter calcoaceticus-A. baumannii complex. In many of these species blue light acts as a key factor guiding the decision between motility or sessility at 24°C, whereas in A. baumannii, light inhibits both motility and biofilm formation. We also show that light regulation of motility occurred not only at 24°C but also at 37°C in non-A. baumannii species, contrasting the situation of A. baumannii which only shows photoregulation at 24°C. Second, we show that Acinetobacter baylyi (strain ADP1) BLUF-photoreceptors can functionally replace in vivo the A. baumannii 17978 BlsA protein and that the pathways leading to biofilm formation are inversely regulated at 24°C between these two microorganisms. Finally, we found the presence of predicted genes coding BLUF-containing proteins in all Acinetobacter sequenced genomes, even though the copy number is variable among them. Phylogenetic analysis suggests a common origin for all BLUF domains present in members of this genus, and could distinguish well-differentiated clusters that group together BLUF homologs from different species, a situation particularly clear for members of the ACB complex. Despite a role played by these BLUF domain-containing proteins in the photoregulation observed in the members of the genus Acinetobacter is a likely scenario given our findings in A. baumannii and A. baylyi, further research will contribute to confirm this possibility. PMID:23358859

  20. Characterization and identification of newly isolated Acinetobacter baumannii strain serdang 1 for phenol removal

    NASA Astrophysics Data System (ADS)

    Yadzir, Z. H. M.; Shukor, M. Y.; Nazir, M. S.; Abdullah, M. A.

    2012-09-01

    A new indigenous bacterial strain from Malaysian soil contaminated with petroleum waste had been successfully isolated, characterized and identified for phenol removal. The gram negative bacteria showed 98% identity with Acinetobacter baumannii based on Biolog{trade mark, serif} Identification System and the determination of a partial 16S ribosomal RNA (rRNA) sequence. The isolate clustered with species belonging to Acinetobacter clade in a 16S rDNA-based neighbour-joining phylogenetic tree.

  1. Resistance mechanism of Acinetobacter spp. strains resistant to DW-116, a new quinolone.

    PubMed

    Choi, K H; Baek, M C; Kim, B K; Choi, E C

    1998-06-01

    DW-116 is a new fluoroquinolone antimicrobial agent with a broad spectrum. In order to elucidate the resistance mechanism to DW-116 in Acinetobacter spp. bacteria, total chromosomal DNA was isolated from 10 strains of Acinetobacter spp. resistant to DW-116. Quinolone resistance determinant region (QRDR) of DNA gyrase gene was amplified by PCR. The 345 bp nucleotide fragment yielded was inserted into pKF 3 which was used as the vector. Comparisons of the DNA sequences of 8 strains with that of the wild type strain revealed a Ser-83 to Leu mutation in mutants and all ten strains contained one silent mutation(T-->G) in QRDR. From Acinetobacter MB4-8 strain, DNA gyrase was isolated and purified, through no-vobiocin-sepharose, heparin-sepharose affinity column chromatography. The enzyme was composed of two subunits and the molecular mass of subunits A and B were 75.6 and 51.9 kDa, respectively. The supercoiling activity of the reconstituted DNA gyrase composed of subunit A from Acinetobacter MB4-8 and subunit B from E. coli was not inhibited by 128 micrograms/ml of ciprofloxacin. It might be said that one of the resistance mechanisms to DW-116 in A-cinetobacter MB4-8 was subunit A alteration of DNA gyrase. PMID:9875449

  2. Prevalence and in-vitro antimicrobial susceptibility patterns of Acinetobacter strains isolated from patients in intensive care units.

    PubMed

    Aktas, O; Ozbek, A

    2003-01-01

    Fifty-six Acinetobacter species strains (49 Acinetobacter baumanii, 5 Acinetobacter calcoaceticus, 2 Acinetobacter iwoffii) were detected using both conventional methods and gas chromatography of bacterial fatty acids with the MIDI Sherlock Microbial Identification System. The susceptibilities of these strains to 16 antimicrobial agents were investigated by the disc-diffusion method according to the National Committee for Clinical Laboratory Standards. The production of extended-spectrum beta-lactamases (ESBLs) and inducible beta-lactamases (IBLs) by the strains were investigated by the double-disc-synergy and disc-approximation methods, respectively. Imipenem was the most effective agent for Acinetobacter baumanii strains (95.9% of strains were sensitive), while meropenem and netilmicin showed moderate activity (87.7% and 79.6% of strains, respectively, responded). Acinetobacter baumanii strains were less sensitive to cefoperazone-sulbactam (53.1%), ofloxacin (51.0%), ciprofloxacin (42.8%), and amikacin (36.7%). Acinetobacter calcoaceticus and Acinetobacter iwoffii strains were sensitive to imipenem, meropenem and netilmicin. IBLs and ESBLs were produced, respectively, by 8.9% and 7.1% of all bacterial strains. The strains isolated were sufficiently sensitive to imipenem, but not to ofloxacin or ciprofloxacin, and were very resistant to amikacin. PMID:12964502

  3. Analysis of drug resistance in 1,861 strains of Acinetobacter baumannii

    PubMed Central

    JIN, HAO; QIU, FAN; JI, HONG JIAN; LU, QIANG

    2016-01-01

    Acinetobacter baumannii is an emerging human pathogen that causes hospital-acquired infections. The trend in increased antimicrobial resistance limits the choice of effective antimicrobial agents. The present study reports the resistance to Acinetobacter baumannii and analyzes the associations between antibiotic use and resistance rates at a general hospital between 2010 and 2014. A total of 1,861 isolates were obtained from clinical cultures, accounting for 10.33% of all detected bacteria (1,861/18,016). The strains were mainly from respiratory samples (1,628 isolates, 87.5%) and the intensive care unit (696 isolates, 37.4%). The resistance rates of Acinetobacter baumannii to the majority of antibiotics were >50%, particularly the resistance rate to cefoperazone/sulbactam increased from 47.37 in 2011 to 89.25% in 2014. However, the rates of imipenem and cilastatin sodium decreased from 81.03 to 69.44% due to the antibiotic policy. There were Pearson significant associations between the use of three antibiotics and resistance in Acinetobacter baumannii to this drug, piperacillin/tazobactam (r=0.976, P<0.01), gentamicin (r=0.870, P<0.01) and cefoxitin (r=0.741, P<0.05). Therefore, a combination of drugs should be adopted to treat Acinetobacter baumannii infections. Microbiology laboratory support and surveillance policies are essential to control the emergence of multidrug-resistance Acinetobacter baumannii. PMID:27073633

  4. Taxonomy of haemolytic and/or proteolytic strains of the genus Acinetobacter with the proposal of Acinetobacter courvalinii sp. nov. (genomic species 14 sensu Bouvet & Jeanjean), Acinetobacter dispersus sp. nov. (genomic species 17), Acinetobacter modestus sp. nov., Acinetobacter proteolyticus sp. nov. and Acinetobacter vivianii sp. nov.

    PubMed

    Nemec, Alexandr; Radolfova-Krizova, Lenka; Maixnerova, Martina; Vrestiakova, Eliska; Jezek, Petr; Sedo, Ondrej

    2016-04-01

    We aimed to define the taxonomic status of 40 haemolytic and/or proteolytic strains of the genus Acinetobacter which were previously classified into five putative species termed as genomic species 14BJ (n = 9), genomic species 17 (n = 9), taxon 18 (n = 7), taxon 19 (n = 6) and taxon 20 (n = 9). The strains were recovered mostly from human clinical specimens or soil and water ecosystems and were highly diverse in geographical origin and time of isolation. Comparative analysis of the rpoB and gyrB gene sequences of all strains, and the whole-genome sequences of selected strains, showed that these putative species formed five respective, well-supported clusters within a distinct clade of the genus Acinetobacter which typically, although not exclusively, encompasses strains with strong haemolytic activity. The whole-genome-based average nucleotide identity (ANIb) values supported the species status of each of these clusters. Moreover, the distinctness and coherence of the clusters were supported by whole-cell profiling based on MALDI-TOF MS. Congruent with these findings were the results of metabolic and physiological testing. We conclude that the five putative taxa represent respective novel species, for which the names Acinetobacter courvalinii sp. nov. (type strain ANC 3623T = CCUG 67960T = CIP 110480T = CCM 8635T), Acinetobacter dispersus sp. nov. (type strain ANC 4105T = CCUG 67961T = CIP 110500T = CCM 8636T), Acinetobacter modestus sp. nov. (type strain NIPH 236T = CCUG 67964T = CIP 110444T = CCM 8639T), Acinetobacter proteolyticus sp. nov. (type strain NIPH 809T = CCUG 67965T = CIP 110482T = CCM 8640T) and Acinetobacter vivianii sp. nov. (type strain NIPH 2168T = CCUG 67967T = CIP 110483T = CCM 8642T) are proposed. PMID:26822020

  5. Draft Genome Sequence of Acinetobacter sp. Strain VT-511 Isolated from the Stomach of a Patient with Gastric Cancer

    PubMed Central

    Tetz, Victor

    2015-01-01

    We report the draft genome sequence of Acinetobacter sp. strain VT-511, which was obtained from the stomach of a patient with gastric cancer. The genome of Acinetobacter sp. VT-511 is composed of approximately 3,416,321 bp and includes 3,214 predicted protein-coding genes. PMID:26472843

  6. Colistin-Resistant Acinetobacter baumannii Clinical Strains with Deficient Biofilm Formation

    PubMed Central

    Dafopoulou, Konstantina; Xavier, Basil Britto; Hotterbeekx, An; Janssens, Lore; Lammens, Christine; Dé, Emmanuelle; Goossens, Herman; Tsakris, Athanasios; Malhotra-Kumar, Surbhi

    2015-01-01

    In two pairs of clinical colistin-susceptible/colistin-resistant (Csts/Cstr) Acinetobacter baumannii strains, the Cstr strains showed significantly decreased biofilm formation in static and dynamic assays (P < 0.001) and lower relative fitness (P < 0.05) compared with those of the Csts counterparts. The whole-genome sequencing comparison of strain pairs identified a mutation converting a stop codon to lysine (*241K) in LpsB (involved in lipopolysaccharide [LPS] synthesis) in one Cstr strain and a frameshift mutation in CarO and the loss of a 47,969-bp element containing multiple genes associated with biofilm production in the other. PMID:26666921

  7. Occurrence of an Environmental Acinetobacter baumannii Strain Similar to a Clinical Isolate in Paleosol from Croatia

    PubMed Central

    Durn, Goran; Goic-Barisic, Ivana; Kovacic, Ana

    2014-01-01

    Over the past decade, bacteria of the genus Acinetobacter have emerged as a leading cause of hospital-acquired infections. Outbreaks of Acinetobacter infections are considered to be caused exclusively by contamination and transmission in hospital environments. The natural habitats of clinically important multiresistant Acinetobacter spp. remain to be defined. In this paper, we report an incidental finding of a viable multidrug-resistant strain of Acinetobacter baumannii, related to clinical isolates, in acid paleosol from Croatia. The environmental isolate of A. baumannii showed 87% similarity to a clinical isolate originating from a hospital in this geographic area and was resistant to gentamicin, trimethoprim-sulfamethoxazole, ciprofloxacin, and levofloxacin. In paleosol, the isolate was able to survive a low pH (3.37), desiccation, and a high temperature (50°C). The probable source of A. baumannii in paleosol is illegally disposed waste of external origin situated in the abandoned quarry near the sampling site. The bacteria could have been leached from waste by storm water and thus infiltrated the paleosol. PMID:24584245

  8. Investigation of Metallo Beta Lactamases and Oxacilinases in Carbapenem Resistant Acinetobacter baumannii Strains Isolated from Inpatients

    PubMed Central

    Aksoy, M. Duygu; Çavuşlu, Şaban; Tuğrul, H. Murat

    2015-01-01

    Background: Resistance to beta-lactam antibiotics is widespread among Acinetobacter strains. Plasmid-mediated metallo beta lactamases (MBL) are responsible for carbapenem resistance, as are oxacillinases (OXA). In recent years, MBL producing carbapenem-resistant strains have been reported in the world and in Turkey in increasing rates. In our country, besides the OXA 51-like enzyme which is inherent in A. baumannii strains, OXA 58-like and OXA 23-like carbapenemases producing strains have also been widely detected. In addition, Verona Imipenemase (VIM) and (IMP)-type MBL have been reported in some centers. Aims: The aim of our study was to investigate the presence of carbapenemases in Acinetobacter strains isolated from hospitalized patients in Edirne. Study Design: Cross-sectional study. Methods: A total of 52 imipenem-resistant A. baumannii strains isolated between January and March 2013 were investigated. The presence of MBL was described phenotypically by the combined disk diffusion test (CDDT), double disk synergy test (DDST), MBL E-test (only performed in 28 strains) and modified Hodge test. blaIMP, blaVIM, blaGIM, blaSIM, blaSPM genes and blaOXA-23, blaOXA-51, blaOXA-40, blaOXA-58 genes were investigated by multiplex polymerase chain reaction (PCR). The blaNDM-1 gene was determined by PCR. Results: By modified Hodge test, 50 strains (96%) were found to be MBL positive. Positivity of MBL was 21% by both CDDT (0.1 M EDTA) and DDST. Twenty-four of 28 strains (85.7%) were positive by MBL E-test. OXA 23-like and OXA 51-like carbapenemases were detected in all strains, but OXA 58-like and OXA 40-like carbapenemases-producing A. baumannii were not detected. Also, MBL genes were not detected by genotypic methods. Conclusion: Only OXA 23-like carbapenemase was responsible for carbapenem resistance in carbapenem-resistant Acinetobacter strains in Edirne. The MBL-producing Acinetobacter strain is not yet a problem in our hospital. MBL resistance was found by

  9. Draft Genome Sequences of Two Extensively Drug-Resistant Acinetobacter baumannii Strains Isolated from Pus Samples

    PubMed Central

    Mahalingam, Niranjana; Manivannan, Bhavani; Jadhao, Sudhir; Mishra, Gayathri; Nilawe, Pravin

    2016-01-01

    We report the draft genomes of two extensively drug-resistant (XDR) Acinetobacter baumannii strains isolated from pus samples of two patients with surgical site infections at Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, India. The average genomic size and G+C content are 4 Mbp and 38.96% (AB28) and 4 Mbp and 38.94% (AB30), respectively. PMID:27013044

  10. Draft Genome Sequence of Ammonia-Producing Acinetobacter sp. Strain MCC2139 from Dairy Effluent

    PubMed Central

    Chatterjee, Debasmita; Thakur, Ashoke Ranjan

    2013-01-01

    We report the draft genome sequence of an ammonia-producing, esculin-hydrolyzing, catalase-positive, gram-negative bacterium, Acinetobacter sp. strain MCC2139. This bacterium, isolated from dairy sludge and with optimum growth at 37°C, has a genome size of 2,967,280 bp with a G+C content of 42.3%. PMID:23814111

  11. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism

    SciTech Connect

    Singer, M.E.; Finnerty, W.R.

    1985-12-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: (i) a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9 fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and (ii) a constitutive, NAD-dependent, membrane-localized FALDH. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobacter sp. strain HO1-N.

  12. Comparison of the Virulence Potential of Acinetobacter Strains from Clinical and Environmental Sources

    PubMed Central

    Tayabali, Azam F.; Nguyen, Kathy C.; Shwed, Philip S.; Crosthwait, Jennifer; Coleman, Gordon; Seligy, Verner L.

    2012-01-01

    Several Acinetobacter strains have utility for biotechnology applications, yet some are opportunistic pathogens. We compared strains of seven Acinetobacter species (baumannii, Ab; calcoaceticus, Ac; guillouiae, Ag; haemolyticus, Ah; lwoffii, Al; junii, Aj; and venetianus, Av-RAG-1) for their potential virulence attributes, including proliferation in mammalian cell conditions, haemolytic/cytolytic activity, ability to elicit inflammatory signals, and antibiotic susceptibility. Only Ah grew at 102 and 104 bacteria/well in mammalian cell culture medium at 37°C. However, co-culture with colonic epithelial cells (HT29) improved growth of all bacterial strains, except Av-RAG-1. Cytotoxicity of Ab and Ah toward HT29 was at least double that of other test bacteria. These effects included bacterial adherence, loss of metabolism, substrate detachment, and cytolysis. Only Ab and Ah exhibited resistance to killing by macrophage-like J774A.1 cells. Haemolytic activity of Ah and Av-RAG-1 was strong, but undetectable for other strains. When killed with an antibiotic, Ab, Ah, Aj and Av-RAG-1 induced 3 to 9-fold elevated HT29 interleukin (IL)-8 levels. However, none of the strains altered levels of J774A.1 pro-inflammatory cytokines (IL-1β, IL-6 and tumor necrosis factor-α). Antibiotic susceptibility profiling showed that Ab, Ag and Aj were viable at low concentrations of some antibiotics. All strains were positive for virulence factor genes ompA and epsA, and negative for mutations in gyrA and parC genes that convey fluoroquinolone resistance. The data demonstrate that Av-RAG-1, Ag and Al lack some potentially harmful characteristics compared to other Acinetobacter strains tested, but the biotechnology candidate Av-RAG-1 should be scrutinized further prior to widespread use. PMID:22655033

  13. A Taxonomically Unique Acinetobacter Strain with Proteolytic and Hemolytic Activities Recovered from a Patient with a Soft Tissue Injury

    PubMed Central

    Almuzara, Marisa; Traglia, German Matías; Krizova, Lenka; Barberis, Claudia; Montaña, Sabrina; Bakai, Romina; Tuduri, Alicia; Vay, Carlos

    2014-01-01

    A taxonomically unique bacterial strain, Acinetobacter sp. A47, has been recovered from several soft tissue samples from a patient undergoing reconstructive surgery owing to a traumatic amputation. The results of 16S rRNA, rpoB, and gyrB gene comparative sequence analyses showed that A47 does not belong to any of the hitherto-known taxa and may represent an as-yet-unknown Acinetobacter species. The recognition of this novel organism contributes to our knowledge of the taxonomic complexity underlying infections caused by Acinetobacter. PMID:25392359

  14. Screening of Herbal-Based Bioactive Extract Against Carbapenem-Resistant Strain of Acinetobacter baumannii.

    PubMed

    Tiwari, Monalisa; Roy, Ranita; Tiwari, Vishvanath

    2016-07-01

    Acinetobacter baumannii is grouped in the ESKAPE pathogens by Infectious Disease Society of America, which is linked to high degree of morbidity, mortality, and increased costs. The high level of acquired and intrinsic resistance mechanisms of these bacteria makes it an urgent requirement to find a suitable alternative to carbapenem, a commonly prescribed drug for Acinetobacter infection. In this study, methanolic extracts of six medicinal plants were subjected to phytochemical screening and their antimicrobial activity was tested against two strains of A. baumannii (ATCC 19606, carbapenem-sensitive strain, and RS 307, carbapenem-resistant strain). Synergistic effect of the plant extracts and antibiotics was also tested. Bael or Aegle marmelos contains tannin, phenol, terpenoids, glycoside, alkaloids, coumarine, steroid, and quinones. Flowers of madar or Calotropis procera possess tannin, phenol, terpenoids, glycoside, quinone, anthraquinone, anthocyanin, coumarin, and steroid. An inhibitory growth curve was seen for both the bacterial strains when treated with A. marmelos, Curcuma longa, and leaves and flowers of C. procera. Antibiotics alone showed a small zone of inhibition, but when used with herbal extracts they exhibited larger zone of inhibition. Synergistic effect of A. marmelos and imipenem was the best against both the strains of A. baumannii. From this study, it can be concluded that extracts from A. marmelos and leaves and flowers of C. procera exhibited the most effective antibacterial activity. These herbal extracts may be used to screen the bioactive compound against the carbapenem-resistant strain of A. baumannii. PMID:26910023

  15. Biodegradation of Phenol by Bacteria Strain Acinetobacter Calcoaceticus PA Isolated from Phenolic Wastewater

    PubMed Central

    Liu, Zhenghui; Xie, Wenyu; Li, Dehao; Peng, Yang; Li, Zesheng; Liu, Shusi

    2016-01-01

    A phenol-degrading bacterium strain PA was successfully isolated from the effluent of petrochemical wastewater. Based on its morphological, physiological and biochemical characteristics, the strain PA was characterized as a Gram-negative, strictly aerobic, nonmotile and short rod-shaped bacterium that utilizes phenol as a sole carbon and energy source. 16S rDNA sequence analysis revealed that this strain is affiliated to Acinetobacter calcoaceticus in the group of Gammaproteobacteria. The strain was efficient in removing 91.6% of the initial 800 mg∙L−1 phenol within 48 h, and had a tolerance of phenol concentration as high as 1700 mg∙L−1. These results indicated that A. calcoaceticus possesses a promising potential in treating phenolic wastewater. PMID:27005648

  16. Distribution of AdeABC efflux system genes in genotypically diverse strains of clinical Acinetobacter baumannii.

    PubMed

    Wieczorek, Piotr; Sacha, Paweł; Czaban, Sławomir; Hauschild, Tomasz; Ojdana, Dominika; Kowalczuk, Oksana; Milewski, Robert; Poniatowski, Bogusław; Nikliński, Jacek; Tryniszewska, Elżbieta

    2013-10-01

    Acinetobacter baumannii has emerged as a highly problematic hospital-associated pathogen. Different mechanisms contribute to the formation of multidrug resistance in A. baumannii, including the AdeABC efflux system. Distribution of the structural and regulatory genes encoding the AdeABC efflux system among genetically diverse clinical A. baumannii strains was achieved by using PCR and pulsed-field gel electrophoresis techniques. The distribution of adeABRS genes is extremely high among our A. baumannii strains, except the adeC gene. We have observed a large proportion of strains presenting multidrug-resistance phenotype for several years. The efflux pump could be an important mechanism in these strains in resistance to antibiotics. PMID:23886790

  17. Modified CHROMagar Acinetobacter Medium for Direct Detection of Multidrug-Resistant Acinetobacter Strains in Nasal and Rectal Swab Samples

    PubMed Central

    Lee, Jacob; Kim, Taek-Kyung; Park, Min-Jeong; Kim, Han-Sung; Kim, Jae-Seok

    2013-01-01

    This study aimed to investigate whether CHROMagar Acinetobacter medium (CHROMagar, France) in combination with an antimicrobial supplement (modified CHROMagar Acinetobacter; CHROMagar, France) can be used for detecting and isolating multidrug-resistant Acinetobacter species (MRA) in nasal and rectal surveillance cultures. Nasal and rectal swab samples were collected from patients in an intensive care unit at a teaching hospital. The samples were used to inoculate modified CHROMagar Acinetobacter plates, which were examined after 24 and 48 hr of incubation at 37℃. Their susceptibility against the antimicrobial agents meropenem, imipenem, ciprofloxacin, and amikacin was analyzed using the Etest (bioMerieux, France). A total of 406 paired samples (406 nasal swabs and 406 rectal swabs) were obtained from 226 patients, and 120 samples (28 nasal and 28 rectal cultures, 47 nasal cultures only, and 17 rectal cultures only) yielded MRA. Seventy-five MRA isolates (18.5%) were recovered from the 406 nasal samples, and 45 MRA isolates (11.1%) were recovered from the 406 rectal samples. Of the 120 MRA isolates, 3 (2.5%) were detected only after 48 hr of incubation. The use of modified CHROMagar Acinetobacter together with nasal and rectal swabs and 1-day incubation is an effective surveillance tool for detecting MRA colonization. PMID:23667846

  18. Draft Genome Sequence of Acinetobacter calcoaceticus Strain P23, a Plant Growth-Promoting Bacterium of Duckweed

    PubMed Central

    Hosoyama, Akira; Yamazoe, Atsushi; Morikawa, Masaaki

    2015-01-01

    Acinetobacter calcoaceticus strain P23 is a plant growth-promoting bacterium, which was isolated from the surface of duckweed. We report here the draft genome sequence of strain P23. The genome data will serve as a valuable reference for understanding the molecular mechanism of plant growth promotion in aquatic plants. PMID:25720680

  19. Draft Genome Sequence of Acinetobacter calcoaceticus Strain P23, a Plant Growth-Promoting Bacterium of Duckweed.

    PubMed

    Sugawara, Masayuki; Hosoyama, Akira; Yamazoe, Atsushi; Morikawa, Masaaki

    2015-01-01

    Acinetobacter calcoaceticus strain P23 is a plant growth-promoting bacterium, which was isolated from the surface of duckweed. We report here the draft genome sequence of strain P23. The genome data will serve as a valuable reference for understanding the molecular mechanism of plant growth promotion in aquatic plants. PMID:25720680

  20. Genome sequence of Acinetobacter sp. strain HA, isolated from the gut of the polyphagous insect pest Helicoverpa armigera.

    PubMed

    Malhotra, Jaya; Dua, Ankita; Saxena, Anjali; Sangwan, Naseer; Mukherjee, Udita; Pandey, Neeti; Rajagopal, Raman; Khurana, Paramjit; Khurana, Jitendra P; Lal, Rup

    2012-09-01

    In this study, Acinetobacter sp. strain HA was isolated from the midgut of a fifth-instar larva of Helicoverpa armigera. Here, we report the draft genome sequence (3,125,085 bp) of this strain that consists of 102 contigs, 2,911 predicted coding sequences, and a G+C content of 41%. PMID:22933775

  1. Genome Sequence of Acinetobacter sp. Strain HA, Isolated from the Gut of the Polyphagous Insect Pest Helicoverpa armigera

    PubMed Central

    Malhotra, Jaya; Dua, Ankita; Saxena, Anjali; Sangwan, Naseer; Mukherjee, Udita; Pandey, Neeti; Rajagopal, Raman; Khurana, Paramjit; Khurana, Jitendra P.

    2012-01-01

    In this study, Acinetobacter sp. strain HA was isolated from the midgut of a fifth-instar larva of Helicoverpa armigera. Here, we report the draft genome sequence (3,125,085 bp) of this strain that consists of 102 contigs, 2,911 predicted coding sequences, and a G+C content of 41%. PMID:22933775

  2. Complete Genome Sequence of a Dimethyl Sulfide-Utilizing Bacterium, Acinetobacter guillouiae Strain 20B (NBRC 110550)

    PubMed Central

    Yee, LiiMien; Hosoyama, Akira; Ohji, Shoko; Tsuchikane, Keiko; Shimodaira, Jun; Yamazoe, Atsushi; Fujita, Nobuyuki; Suzuki-Minakuchi, Chiho

    2014-01-01

    Acinetobacter guillouiae strain 20B can utilize dimethyl sulfide (DMS) as the sole sulfur source and degrade chloroethylenes. We report here the complete 4,648,418-bp genome sequence for this strain, which contains 4,367 predicted coding sequences (CDSs), including a well-characterized DMS degradative operon. PMID:25323718

  3. Draft genome sequence of Acinetobacter baumannii strain NCTC 13423, a multidrug-resistant clinical isolate.

    PubMed

    Michiels, Joran E; Van den Bergh, Bram; Fauvart, Maarten; Michiels, Jan

    2016-01-01

    Acinetobacter baumannii is a pathogen that is becoming increasingly important and causes serious hospital-acquired infections. We sequenced the genome of A. baumannii NCTC 13423, a multidrug-resistant strain belonging to the international clone II group, isolated from a human infection in the United Kingdom in 2003. The 3,937,944 bp draft genome has a GC-content of 39.0 % and a total of 3672 predicted protein-coding sequences. The availability of genome sequences of multidrug-resistant A. baumannii isolates will fuel comparative genomic studies to help understand the worrying spread of multidrug resistance in this pathogen. PMID:27594976

  4. Outbreak of extensively drug-resistant Acinetobacter baumannii indigo-pigmented strains.

    PubMed

    Vilacoba, Elisabet; Almuzara, Marisa; Gulone, Lucia; Rodriguez, Rocio; Pallone, Elida; Bakai, Romina; Centrón, Daniela; Ramírez, María Soledad

    2013-11-01

    Acinetobacter baumannii pigmented strains are not common in clinical settings. Here, we report an outbreak caused by indigo-pigmented A. baumannii strains isolated in an acute care hospital in Argentina from March to September 2012. Pan-PCR assays exposed a unique pattern belonging to the recently described regional CC113(B)/CC79(P) clonal complex that confirms the relevant relationships among the indigo-pigmented A. baumannii strains. All of them were extensively drug resistant and harbored different genetic elements associated with horizontal genetic transfer, such as the transposon Tn2006, class 2 integrons, AbaR-type islands, IS125, IS26, strA, strB, florR, and the small recombinase ISCR2 associated with the sul2 gene preceded by ISAba1. PMID:23985923

  5. Growth of Acinetobacter sp. strain HO1-N on n-hexadecanol: physiological and ultrastructural characteristics

    SciTech Connect

    Singer, M.E.; Tyler, S.M.; Finnerty, W.R.

    1985-04-01

    The growth of Acinetobacter sp. strain HO1-N on hexadecanol results in the formation of intracytoplasmic membranes and intracellular rectangular inclusions containing one of the end products of hexadecanol metabolism, hexadecyl palmitate. The intracellular inclusions were purified and characterized as wax ester inclusions consisting of 85.6% hexadecyl palmitate, 4.8% hexadecanol, and 9.6% phospholipid, with a phospholipid-to-protein ratio of 0.42 ..mu..mol of lipid phosphate per mg of inclusion protein. The cellular lipids consisted of 69.8% hexadecyl palmitate, 22.8% phospholipid, 1.9% triglyceride, 4.7% mono- and diglyceride, 0.1% free fatty acid, and 0.8% hexadecanol, as compared with 98% hexadecyl palmitate and 1.9% triglyceride, which comprised the extracellular lipids. Cell-associated hexadecanol represented 0.05% of the exogenously supplied hexadecanol, with hexadecyl palmitate accounting for 14.7% of the total cellular dry weight. Acinetobacter sp. strain HO1-N possesses a mechanism for the intracellular packaging of hexadecyl palmitate in wax ester inclusions, which differ in structure and chemical composition from hydrocarbon inclusions isolated from hexadecane-grown cells.

  6. Draft Genome Sequences of Seven Multidrug-Resistant Acinetobacter baumannii Strains, Isolated from Respiratory Samples in Spain

    PubMed Central

    Labrador-Herrera, Gema; Álvarez, Rocío; López-Rojas, Rafael; Smani, Younes; Cebrero-Cangueiro, Tania; Rueda, Antonio; Pérez Florido, Javier; Pachón-Ibáñez, María Eugenia

    2016-01-01

    The draft genome sequences of seven multidrug-resistant Acinetobacter baumannii clinical strains belonging to sequence types ST-208 and ST-218 are reported in this study. They were isolated from tracheobronchial aspirate of mechanically ventilated adult patients admitted to the intensive care unit of a Spanish tertiary hospital during 2010 to 2011. PMID:27034482

  7. Draft Genome Sequence of Extensively Drug-Resistant Acinetobacter baumannii Strain CUAB1 from a Patient in Hong Kong, China

    PubMed Central

    Leung, Alden King-Yung; Lau, Hiuus Hiu-Yu; Chan, Ting-Fung; Ip, Margaret

    2015-01-01

    We report the draft genome sequence of an extensively drug-resistant strain of Acinetobacter baumannii, CUAB1, isolated from a patient in a local Hong Kong hospital. MIC testing was performed, and genes previously associated with drug resistance were located. PMID:25977429

  8. The Genetic Analysis of an Acinetobacter johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer

    PubMed Central

    Montaña, Sabrina; Schramm, Sareda T. J.; Traglia, German Matías; Chiem, Kevin; Parmeciano Di Noto, Gisela; Almuzara, Marisa; Barberis, Claudia; Vay, Carlos; Quiroga, Cecilia; Tolmasky, Marcelo E.; Iriarte, Andrés; Ramírez, María Soledad

    2016-01-01

    Acinetobacter johnsonii rarely causes human infections. While most A. johnsonii isolates are susceptible to virtually all antibiotics, strains harboring a variety of β-lactamases have recently been described. An A. johnsonii Aj2199 clinical strain recovered from a hospital in Buenos Aires produces PER-2 and OXA-58. We decided to delve into its genome by obtaining the whole genome sequence of the Aj2199 strain. Genome comparison studies on Aj2199 revealed 240 unique genes and a close relation to strain WJ10621, isolated from the urine of a patient in China. Genomic analysis showed evidence of horizontal genetic transfer (HGT) events. Forty-five insertion sequences and two intact prophages were found in addition to several resistance determinants such as blaPER-2, blaOXA-58, blaTEM-1, strA, strB, ereA, sul1, aacC2 and a new variant of blaOXA-211, called blaOXA-498. In particular, blaPER-2 and blaTEM-1 are present within the typical contexts previously described in the Enterobacteriaceae family. These results suggest that A. johnsonii actively acquires exogenous DNA from other bacterial species and concomitantly becomes a reservoir of resistance genes. PMID:27548264

  9. Synergistic Effects and Antibiofilm Properties of Chimeric Peptides against Multidrug-Resistant Acinetobacter baumannii Strains

    PubMed Central

    Gopal, Ramamourthy; Kim, Young Gwon; Lee, Jun Ho; Lee, Seog Ki; Chae, Jeong Don; Son, Byoung Kwan; Seo, Chang Ho

    2014-01-01

    The increasing prevalence of drug-resistant pathogens highlights the need to identify novel antibiotics. Here we investigated the efficacies of four new antimicrobial peptides (AMPs) for potential drug development. The antibacterial activities, synergistic effects, and antibiofilm properties of the four chimeric AMPs were tested against Acinetobacter baumannii, an emerging Gram-negative, nosocomial, drug-resistant pathogen. Nineteen A. baumannii strains resistant to ampicillin, cefotaxime, ciprofloxacin, tobramycin, and erythromycin were isolated at a hospital from patients with cholelithiasis. All four peptides exhibited significant antibacterial effects (MIC = 3.12 to 12.5 μM) against all 19 strains, whereas five commercial antibiotics showed little or no activity against the same pathogens. An exception was polymyxin, which was effective against all of the strains tested. Each of the peptides showed synergy against one or more strains when administered in combination with cefotaxime, ciprofloxacin, or erythromycin. The peptides also exhibited an ability to prevent biofilm formation, which was not seen with cefotaxime, ciprofloxacin, or erythromycin, though polymyxin also inhibited biofilm formation. Indeed, when administered in combination with ciprofloxacin, the AMP HPMA exerted a potent synergistic effect against A. baumannii biofilm formation. Collectively, our findings indicate that the AMPs tested have no cytotoxicity but possess potent antibacterial and antibiofilm activities and may act synergistically with commercial antibiotics. PMID:24366740

  10. The Genetic Analysis of an Acinetobacter johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer.

    PubMed

    Montaña, Sabrina; Schramm, Sareda T J; Traglia, German Matías; Chiem, Kevin; Parmeciano Di Noto, Gisela; Almuzara, Marisa; Barberis, Claudia; Vay, Carlos; Quiroga, Cecilia; Tolmasky, Marcelo E; Iriarte, Andrés; Ramírez, María Soledad

    2016-01-01

    Acinetobacter johnsonii rarely causes human infections. While most A. johnsonii isolates are susceptible to virtually all antibiotics, strains harboring a variety of β-lactamases have recently been described. An A. johnsonii Aj2199 clinical strain recovered from a hospital in Buenos Aires produces PER-2 and OXA-58. We decided to delve into its genome by obtaining the whole genome sequence of the Aj2199 strain. Genome comparison studies on Aj2199 revealed 240 unique genes and a close relation to strain WJ10621, isolated from the urine of a patient in China. Genomic analysis showed evidence of horizontal genetic transfer (HGT) events. Forty-five insertion sequences and two intact prophages were found in addition to several resistance determinants such as blaPER-2, blaOXA-58, blaTEM-1, strA, strB, ereA, sul1, aacC2 and a new variant of blaOXA-211, called blaOXA-498. In particular, blaPER-2 and blaTEM-1 are present within the typical contexts previously described in the Enterobacteriaceae family. These results suggest that A. johnsonii actively acquires exogenous DNA from other bacterial species and concomitantly becomes a reservoir of resistance genes. PMID:27548264

  11. Antimicrobial Activity of Gallium Protoporphyrin IX against Acinetobacter baumannii Strains Displaying Different Antibiotic Resistance Phenotypes

    PubMed Central

    Arivett, Brock A.; Fiester, Steven E.; Ohneck, Emily J.; Penwell, William F.; Kaufman, Cynthia M.; Relich, Ryan F.

    2015-01-01

    A paucity of effective, currently available antibiotics and a lull in antibiotic development pose significant challenges for treatment of patients with multidrug-resistant (MDR) Acinetobacter baumannii infections. Thus, novel therapeutic strategies must be evaluated to meet the demands of treatment of these often life-threatening infections. Accordingly, we examined the antibiotic activity of gallium protoporphyrin IX (Ga-PPIX) against a collection of A. baumannii strains, including nonmilitary and military strains and strains representing different clonal lineages and isolates classified as susceptible or MDR. Susceptibility testing demonstrated that Ga-PPIX inhibits the growth of all tested strains when cultured in cation-adjusted Mueller-Hinton broth, with a MIC of 20 μg/ml. This concentration significantly reduced bacterial viability, while 40 μg/ml killed all cells of the A. baumannii ATCC 19606T and ACICU MDR isolate after 24-h incubation. Recovery of ATCC 19606T and ACICU strains from infected A549 human alveolar epithelial monolayers was also decreased when the medium was supplemented with Ga-PPIX, particularly at a 40-μg/ml concentration. Similarly, the coinjection of bacteria with Ga-PPIX increased the survival of Galleria mellonella larvae infected with ATCC 19606T or ACICU. Ga-PPIX was cytotoxic only when monolayers or larvae were exposed to concentrations 16-fold and 1,250-fold higher than those showing antibacterial activity, respectively. These results indicate that Ga-PPIX could be a viable therapeutic option for treatment of recalcitrant A. baumannii infections regardless of the resistance phenotype, clone lineage, time and site of isolation of strains causing these infections and their iron uptake phenotypes or the iron content of the media. PMID:26416873

  12. Identification of Novel Genes Involved in Long-Chain n-Alkane Degradation by Acinetobacter sp. Strain DSM 17874▿

    PubMed Central

    Throne-Holst, Mimmi; Wentzel, Alexander; Ellingsen, Trond E.; Kotlar, Hans-Kristian; Zotchev, Sergey B.

    2007-01-01

    Acinetobacter sp. strain DSM 17874 is capable of utilizing n-alkanes with chain lengths ranging from that of decane (C10H22) to that of tetracontane (C40H82) as a sole carbon source. Two genes encoding AlkB-type alkane hydroxylase homologues, designated alkMa and alkMb, have been shown to be involved in the degradation of n-alkanes with chain lengths of from 10 to 20 C atoms in this strain. Here, we describe a novel high-throughput screening method and the screening of a transposon mutant library to identify genes involved in the degradation of n-alkanes with C chain lengths longer than 20, which are solid at 30°C, the optimal growth temperature for Acinetobacter sp. strain DSM 17874. A library consisting of approximately 6,800 Acinetobacter sp. strain DSM 17874 transposon mutants was constructed and screened for mutants unable to grow on dotriacontane (C32H66) while simultaneously showing wild-type growth characteristics on shorter-chain n-alkanes. For 23 such mutants isolated, the genes inactivated by transposon insertion were identified. Targeted inactivation and complementation studies of one of these genes, designated almA and encoding a putative flavin-binding monooxygenase, confirmed its involvement in the strain's metabolism of long-chain n-alkanes. To our knowledge, almA represents the first cloned gene shown to be involved in the bacterial degradation of long-chain n-alkanes of 32 C's and longer. Genes encoding AlmA homologues were also identified in other long-chain n-alkane-degrading Acinetobacter strains. PMID:17400787

  13. Resistance Markers and Genetic Diversity in Acinetobacter baumannii Strains Recovered from Nosocomial Bloodstream Infections

    PubMed Central

    Martins, Hanoch S. I.; Bomfim, Maria Rosa Q.; França, Rafaela O.; Farias, Luiz M.; Carvalho, Maria Auxiliadora R.; Serufo, José Carlos; Santos, Simone G.

    2014-01-01

    In this study, phenotypic and genotypic methods were used to detect metallo-β-lactamases, cephalosporinases and oxacillinases and to assess genetic diversity among 64 multiresistant Acinetobacter baumannii strains recovered from blood cultures in five different hospitals in Brazil from December 2008 to June 2009. High rates of resistance to imipenem (93.75%) and polymyxin B (39.06%) were observed using the disk diffusion (DD) method and by determining the minimum inhibitory concentration (MIC). Using the disk approximation method, thirty-nine strains (60.9%) were phenotypically positive for class D enzymes, and 51 strains (79.6%) were positive for cephalosporinase (AmpC). Using the E-test, 60 strains (93.75%) were positive for metallo-β-lactamases (MβLs). All strains were positive for at least one of the 10 studied genes; 59 (92.1%) contained blaVIM-1, 79.6% contained blaAmpC, 93.7% contained blaOXA23 and 84.3% contained blaOXA51. Enterobacteria Repetitive Intergenic Consensus (ERIC)-PCR analysis revealed a predominance of certain clones that differed from each other. However, the same band pattern was observed in samples from the different hospitals studied, demonstrating correlation between the genotypic and phenotypic results. Thus, ERIC-PCR is an appropriate method for rapidly clustering genetically related isolates. These results suggest that defined clonal clusters are circulating within the studied hospitals. These results also show that the prevalence of MDR A. baumannii may vary among clones disseminated in specific hospitals, and they emphasize the importance of adhering to appropriate infection control measures. PMID:24477210

  14. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanse and hexadecanol metabolism

    SciTech Connect

    Singer, M.E.; Finnerty, W.R.

    1985-12-01

    Multiple alcohol dehydrogenases (ADH) were demonstrated in Acinetobacter sp. strain HO1-N. ADH-A and ADH-B were distinguished on the basis of electrophoretic mobility, pyridine nucleotide cofactor requirement, and substrate specificity. ADH-A is a soluble, NAD-linked, inducible ethanol dehydrogenase (EDH). An ethanol-negative mutant (Eth1) was isolated which contained 6.5% of wild-type EDH activity and was deficient in ADH-A. Eth1 exhibited normal growth on hexadecane and hexadecanol. A second ethanol-negative mutant (Eth3) was acetaldehyde dehydrogenase (ALDH) deficient, having 12.5% of wild-type ALDH activity. Eth3 had threefold-higher EDH activity than the wild-type strain. ALDH is a soluble, NAD-linked, ethanol-inducible enzyme. Eth3 exhibited normal growth on hexadecane, hexadecanol, and fatty aldehyde. ADH-B is soluble, constitutive, NADP-linked ADH which was active with medium-chain-length alcohols. Hexadecanol dehydrogenase (HDH), a soluble and membrane-bound, NAD-linked ADH, was induced 5- to 11-fold by growth on hexadecane or hexadecanol. HDH was distinct from ADH-A and ADH-B. NAD-linked HDH appears to possess a functional role in hexadecane and hexadecanol dissimilation.

  15. Acinetobacter strains IH9 and OCI1, two rhizospheric phosphate solubilizing isolates able to promote plant growth, constitute a new genomovar of Acinetobacter calcoaceticus.

    PubMed

    Peix, Alvaro; Lang, Elke; Verbarg, Susanne; Spröer, Cathrin; Rivas, Raúl; Santa-Regina, Ignacio; Mateos, Pedro F; Martínez-Molina, Eustoquio; Rodríguez-Barrueco, Claudino; Velázquez, Encarna

    2009-08-01

    During a screening of phosphate solubilizing bacteria (PSB) in agricultural soils, two strains, IH9 and OCI1, were isolated from the rhizosphere of grasses in Spain, and they showed a high ability to solubilize phosphate in vitro. Inoculation experiments in chickpea and barley were conducted with both strains and the results demonstrated their ability to promote plant growth. The 16S rRNA gene sequences of these strains were nearly identical to each other and to those of Acinetobacter calcoaceticus DSM 30006(T), as well as the strain CIP 70.29 representing genomospecies 3. Their phenotypic characteristics also coincided with those of strains forming the A. calcoaceticus-baumannii complex. They differed from A. calcoaceticus in the utilization of l-tartrate as a carbon source and from genomospecies 3 in the use of d-asparagine as a carbon source. The 16S-23S intergenic spacer (ITS) sequences of the two isolates showed nearly 98% identities to those of A. calcoaceticus, confirming that they belong to this phylogenetic group. However, the isolates appeared as a separate branch from the A. calcoaceticus sequences, indicating their molecular separation from other A. calcoaceticus strains. The analysis of three housekeeping genes, recA, rpoD and gyrB, confirmed that IH9 and OCI1 form a distinct lineage within A. calcoaceticus. These results were congruent with those from DNA-DNA hybridization, indicating that strains IH9 and OCI1 constitute a new genomovar for which we propose the name A. calcoaceticus genomovar rhizosphaerae. PMID:19467815

  16. Antibiotic resistance and phylogenetic characterization of Acinetobacter baumannii strains isolated from commercial raw meat in Switzerland.

    PubMed

    Lupo, Agnese; Vogt, Debora; Seiffert, Salome N; Endimiani, Andrea; Perreten, Vincent

    2014-11-01

    The spread of antibiotic-resistant bacteria through food has become a major public health concern because some important human pathogens may be transferred via the food chain. Acinetobacter baumannii is one of the most life-threatening gram-negative pathogens; multidrug-resistant (MDR) clones of A. baumannii are spreading worldwide, causing outbreaks in hospitals. However, the role of raw meat as a reservoir of A. baumannii remains unexplored. In this study, we describe for the first time the antibiotic susceptibility and fingerprint (repetitive extragenic palindromic PCR [rep-PCR] profile and sequence types [STs]) of A. baumannii strains found in raw meat retailed in Switzerland. Our results indicate that A. baumannii was present in 62 (25.0%) of 248 (CI 95%: 19.7 to 30.9%) meat samples analyzed between November 2012 and May 2013, with those derived from poultry being the most contaminated (48.0% [CI 95%: 37.8 to 58.3%]). Thirty-nine strains were further tested for antibiotic susceptibility and clonality. Strains were frequently not susceptible (intermediate and/or resistant) to third- and fourth-generation cephalosporins for human use (i.e., ceftriaxone [65%], cefotaxime [32%], ceftazidime [5%], and cefepime [2.5%]). Resistance to piperacillin-tazobactam, ciprofloxacin, colistin, and tetracycline was sporadically observed (2.5, 2.5, 5, and 5%, respectively), whereas resistance to carbapenems was not found. The strains were genetically very diverse from each other and belonged to 29 different STs, forming 12 singletons and 6 clonal complexes (CCs), of which 3 were new (CC277, CC360, and CC347). RepPCR analysis further distinguished some strains of the same ST. Moreover, some A. baumannii strains from meat belonged to the clonal complexes CC32 and CC79, similar to the MDR isolates responsible for human infections. In conclusion, our findings suggest that raw meat represents a reservoir of MDR A. baumannii and may serve as a vector for the spread of these pathogens

  17. A mouse model of Acinetobacter baumannii-associated pneumonia using a clinically isolated hypervirulent strain.

    PubMed

    Harris, Greg; Kuo Lee, Rhonda; Lam, Christopher K; Kanzaki, Gregory; Patel, Girishchandra B; Xu, H Howard; Chen, Wangxue

    2013-08-01

    Acinetobacter baumannii is an important emerging pathogen in health care-acquired infections and is responsible for severe nosocomial and community-acquired pneumonia. Currently available mouse models of A. baumannii pneumonia show poor colonization with little to no extrapulmonary dissemination. Here, we describe a mouse model of A. baumannii pneumonia using a clinical isolate (LAC-4 strain) that reliably reproduces the most relevant features of human pulmonary A. baumannii infection and pathology. Using this model, we have shown that LAC-4 infection induced rapid bacterial replication in the lungs, significant extrapulmonary dissemination, and severe bacteremia by 24 h postintranasal inoculation. Infected mice showed severe bronchopneumonia and dilatation and inflammatory cell infiltration in the perivascular space. More significantly, 100% of C57BL/6 and BALB/c mice succumbed to 10(8) CFU of LAC-4 inoculation within 48 h. When this model was used to assess the efficacy of antimicrobials, all mice treated with imipenem and tigecycline survived a lethal intranasal challenge, with minimal clinical signs and body weight loss. Moreover, intranasal immunization of mice with formalin-fixed LAC-4 protected 40% of mice from a lethal (100× 100% lethal dose) intraperitoneal challenge. Thus, this model offers a reproducible acute course of A. baumannii pneumonia without requiring additional manipulation of host immune status, which will facilitate the development of therapeutic agents and vaccines against A. baumannii pneumonia in humans. PMID:23689726

  18. [Evaluation of the efficacy of colistin/sulbactam combination on carbapenem-resistant Acinetobacter baumannii strains].

    PubMed

    Çetinkol, Yeliz; Telli, Murat; Altunçekiç Yıldırım, Arzu; Çalgın, Mustafa Kerem

    2016-07-01

    Acinetobacter baumannii strains, are opportunistic pathogens that cause severe nosocomial infections that are difficult to treat due to development of resistance to multiple antibiotics. As the antibiotic choices to be used in treatment are limited, combinations of a variety of antibiotics are used. The aims of this study were to identify the minimal inhibitory concentration (MIC) values of colistin and sulbactam against A.baumannii isolates and to determine the in vitro activity of colistin-sulbactam combination. A total of 50 A.baumannii strains isolated from different clinical specimens (32 tracheal aspirates, 10 blood, 6 urine and 2 wound samples) were included in the study. The identification of bacteria was performed by traditional methods and Vitek-2 (BioMerieux, France) automated system. Antibiotic susceptibilities were detected by Mueller-Hinton agar disk diffusion method and Vitek-2 automated system and the results were interpreted according to the CLSI standards. MIC values of colistin and sulbactam against A.baumannii strains and in vitro interactions of colistin-sulbactam combinations were determined with the E-test (BioMerieux, France). Fractional inhibitory concentration (FIC) index was used for the detection of efficacy of drug combinations. The presence of oxacillinase and metallo-beta-lactamase (MBL) genes that lead carbapenem resistance was investigated by polymerase chain reaction (PCR), and pulsed-field gel electrophoresis (PFGE) was performed for the determination of clonal relationship. In our study, all strains (100%) were detected as susceptible to colistin, 48 (96%) to trimethoprim/sulphamethoxazole and 18 to (36%) tigecyclin; however all of them were resistant to the other studied antibiotics, including sulbactam and carbapenem. When the colistin-sulbactam combination was assessed according to FIC index, all strains were found to have antagonistic effect. All of the carbapenem-resistant strains were positive for OXA-51 and OXA-23, and 3

  19. Complete Genome Sequence of the Multiresistant Acinetobacter baumannii Strain AbH12O-A2, Isolated during a Large Outbreak in Spain.

    PubMed

    Merino, M; Alvarez-Fraga, L; Gómez, M J; Aransay, A M; Lavín, J L; Chaves, F; Bou, G; Poza, M

    2014-01-01

    We report the complete genome sequence of Acinetobacter baumannii strain AbH12O-A2, isolated during a large outbreak in Spain. The genome has 3,875,775 bp and 3,526 coding sequences, with 39.4% G+C content. The availability of this genome will facilitate the study of the pathogenicity of the Acinetobacter species. PMID:25395646

  20. Complete Genome Sequence of the Multiresistant Acinetobacter baumannii Strain AbH12O-A2, Isolated during a Large Outbreak in Spain

    PubMed Central

    Merino, M.; Alvarez-Fraga, L.; Gómez, M. J.; Aransay, A. M.; Lavín, J. L.; Chaves, F.

    2014-01-01

    We report the complete genome sequence of Acinetobacter baumannii strain AbH12O-A2, isolated during a large outbreak in Spain. The genome has 3,875,775 bp and 3,526 coding sequences, with 39.4% G+C content. The availability of this genome will facilitate the study of the pathogenicity of the Acinetobacter species. PMID:25395646

  1. [Distribution of blaOXA genes in Acinetobacter baumannii strains: a multicenter study].

    PubMed

    Ciftci, Ihsan Hakkı; Aşık, Gülşah; Karakeçe, Engin; Oksüz, Lütfiye; Yağcı, Server; Sesli Çetin, Emel; Ozdemir, Mehmet; Atasoy, Ali Rıza; Koçoğlu, Esra; Gül, Mustafa; Kurtoğlu, Muhammet Güzel; Köksal Çakırlar, Fatma; Seyrek, Adnan; Berktaş, Mustafa; Gültepe, Bilge; Ayyildiz, Ahmet

    2013-10-01

    Acinetobacter baumannii is the most important agent of nosocomial infections within the Acinetobacter genus. This gram-negative coccobacillus is intrinsically resistant to many antibiotics used in antimicrobial therapy, and capable of developing resistance including carbapenems. The objective of this study was to develop a multiplex real time polymerase chain reaction (qPCR) kit for OXA subgroups in A.baumannii, and to investigate the distribution of OXA subgroups in A.baumannii strains isolated from geographically different regions of Turkey. A total of 834 A.baumannii clinical isolates collected from different state and university medical centers in 13 provinces (Afyonkarahisar, Ankara, Bolu, Elazig, Erzurum, Isparta, Istanbul, Kahramanmaras, Konya, Sakarya, Van) between 2008-2011, were included in the study. The isolates were identified by conventional methods and automated systems [Vitek2 (bioMerieux, ABD) and Phoenix (BD Diagnostic, MD)]. The susceptibility profiles of the isolates were studied with automated systems and standard disc diffusion method. All samples were subjected to qPCR to detect blaOXA-51-like, blaOXA-23-like and blaOXA-58-like genes. A conventional PCR method was also used to detect blaOXA-24-like gene. The resistance rates observed during the study period were as follows: 96.8% for amoxicillin-clavulanate, 86.8% for ciprofloxacin, 74.7% for gentamicin, 71.7% for amikacin, 73.5% for cefaperozone-sulbactam, 72.1% for imipenem and 73% for meropenem. Six hundred and two (72.2 %) isolates were resistant to both imipenem and meropenem. Colistin was found to be the most effective antibiotic against A.baumannii isolates with 100% susceptibility rate. All isolates were positive for blaOXA-51-like, however blaOXA-24-like gene could not be demonstrated in any isolate. Total positivity rates of blaOXA-23-like and blaOXA-58-like genes were found as 53.7% and 12.5%, respectively, while these rates were 74.4% and 17.3% in carbapenem-resistant isolates

  2. Molecular Analysis of Acinetobacter baumannii Strains Isolated in Lebanon Using Four Different Typing Methods

    PubMed Central

    Rafei, Rayane; Dabboussi, Fouad; Hamze, Monzer; Eveillard, Matthieu; Lemarié, Carole; Gaultier, Marie-Pierre; Mallat, Hassan; Moghnieh, Rima; Husni-Samaha, Rola; Joly-Guillou, Marie-Laure; Kempf, Marie

    2014-01-01

    This study analyzed 42 Acinetobacter baumannii strains collected between 2009–2012 from different hospitals in Beyrouth and North Lebanon to better understand the epidemiology and carbapenem resistance mechanisms in our collection and to compare the robustness of pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), repetitive sequence-based PCR (rep-PCR) and blaOXA-51 sequence-based typing (SBT). Among 31 carbapenem resistant strains, we have detected three carbapenem resistance genes: 28 carried the blaOXA-23 gene, 1 the blaOXA-24 gene and 2 strains the blaOXA-58 gene. This is the first detection of blaOXA-23 and blaOXA-24 in Lebanon. PFGE identified 11 types and was the most discriminating technique followed by rep-PCR (9 types), blaOXA-51 SBT (8 types) and MLST (7 types). The PFGE type A'/ST2 was the dominant genotype in our collection present in Beyrouth and North Lebanon. The clustering agreement between all techniques was measured by adjust Wallace coefficient. An overall agreement has been demonstrated. High values of adjust Wallace coefficient were found with followed combinations: PFGE to predict MLST types  = 100%, PFGE to predict blaOXA-51 SBT = 100%, blaOXA-51 SBT to predict MLST = 100%, MLST to predict blaOXA-51 SBT = 84.7%, rep-PCR to predict MLST = 81.5%, PFGE to predict rep-PCR = 69% and rep-PCR to predict blaOXA-51 SBT = 67.2%. PFGE and MLST are gold standard methods for outbreaks investigation and population structure studies respectively. Otherwise, these two techniques are technically, time and cost demanding. We recommend the use of blaOXA-51 SBT as first typing method to screen isolates and assign them to their corresponding clonal lineages. Repetitive sequence-based PCR is a rapid tool to access outbreaks but careful interpretation of results must be always performed. PMID:25541711

  3. Clonal Diversity of Nosocomial Epidemic Acinetobacter baumannii Strains Isolated in Spain▿

    PubMed Central

    Villalón, Pilar; Valdezate, Sylvia; Medina-Pascual, Maria J.; Rubio, Virginia; Vindel, Ana; Saez-Nieto, Juan A.

    2011-01-01

    Acinetobacter baumannii is one of the major pathogens involved in nosocomial outbreaks. The clonal diversity of 729 epidemic strains isolated from 19 Spanish hospitals (mainly from intensive care units) was analyzed over an 11-year period. Pulsed-field gel electrophoresis (PFGE) identified 58 PFGE types that were subjected to susceptibility testing, rpoB gene sequencing, and multilocus sequence typing (MLST). All PFGE types were multidrug resistant; colistin was the only agent to which all pathogens were susceptible. The 58 PFGE types were grouped into 16 clones based on their genetic similarity (cutoff of 80%). These clones were distributed into one major cluster (cluster D), three medium clusters (clusters A, B, and C), and three minor clusters (clusters E, F, and G). The rpoB gene sequencing and MLST results reflected a clonal distribution, in agreement with the PFGE results. The MLST sequence types (STs) (and their percent distributions) were as follows: ST-2 (47.5%), ST-3 (5.1%), ST-15 (1.7%), ST-32 (1.7%), ST-79 (13.6%), ST-80 (20.3%), and ST-81 (10.2%). ST-79, ST-80, and ST-81 and the alleles cpn60-26 and recA29 are described for the first time. International clones I, II, and III were represented by ST-81, ST-2, and ST-3, respectively. ST-79 and ST-80 could be novel emerging clones. This work confirms PFGE and MLST to be complementary tools in clonality studies. Here PFGE was able to demonstrate the monoclonal pattern of most outbreaks, the inter- and intrahospital transmission of bacteria, and their endemic persistence in some wards. MLST allowed the temporal evolution and spatial distribution of Spanish clones to be monitored and permitted international comparisons to be made. PMID:21177889

  4. Draft Genome Sequence of the Mercury-Resistant Bacterium Acinetobacter idrijaensis Strain MII, Isolated from a Mine-Impacted Area, Idrija, Slovenia

    PubMed Central

    Caballero Pérez, Juan; Cruz Medina, Julio Alfonso; Molina Vera, Carlos; Salas Rosas, Luz María; Limpens Gutiérrez, Citlalli; García Salinas, Isaac; Hernández Ramírez, Miriam Rebeca; Soto Alonso, Gerardo; Cruz Hernández, Andrés; Saldaña Gutiérrez, Carlos; Romero Gómez, Sergio; Pastrana Martínez, Xóchitl; Álvarez Hidalgo, Erika; Gosar, Mateja; Dizdarevič, Tatjana

    2014-01-01

    We report here the first draft assembly for the genome of Acinetobacter idrijaensis strain MII, isolated from the Idrija mercury mine area (Slovenia). This strain shows a strikingly high tolerance to mercury, and the genome sequence shows genes involved in the mechanisms for heavy metal tolerance pathways and multidrug efflux pumps. PMID:25395645

  5. Draft Genome Sequence of Acinetobacter bereziniae HPC229, a Carbapenem-Resistant Clinical Strain from Argentina Harboring blaNDM-1.

    PubMed

    Brovedan, Marco; Marchiaro, Patricia M; Morán-Barrio, Jorgelina; Revale, Santiago; Cameranesi, Marcela; Brambilla, Luciano; Viale, Alejandro M; Limansky, Adriana S

    2016-01-01

    We report here the draft genome sequence of an NDM-1-producing Acinetobacter bereziniae clinical strain, HPC229. This strain harbors both plasmid and chromosomal resistance determinants toward different β-lactams and aminoglycosides as well as several types of multidrug efflux pumps, most likely representing an adaptation strategy for survival under different environments. PMID:26966220

  6. Draft Genome Sequence of Acinetobacter bereziniae HPC229, a Carbapenem-Resistant Clinical Strain from Argentina Harboring blaNDM-1

    PubMed Central

    Brovedan, Marco; Marchiaro, Patricia M.; Morán-Barrio, Jorgelina; Revale, Santiago; Cameranesi, Marcela; Brambilla, Luciano; Viale, Alejandro M.

    2016-01-01

    We report here the draft genome sequence of an NDM-1-producing Acinetobacter bereziniae clinical strain, HPC229. This strain harbors both plasmid and chromosomal resistance determinants toward different β-lactams and aminoglycosides as well as several types of multidrug efflux pumps, most likely representing an adaptation strategy for survival under different environments. PMID:26966220

  7. [Antibiotic resistance of Acinetobacter baumannii strains isolated from clinical specimens in the "Marius Nasta" Pneumology Institute, Bucharest].

    PubMed

    Moisoiu, Adriana; Ionită, Monica; Sârbu, Lăcrămioara; Stoica, Corina; Grigoriu, Liliana

    2014-01-01

    Acinetobacter baumannii (A. baumannii) is one of the leading causes of morbidity and mortality in patients who are in critical condition in hospitals and especially in intensive care units (ICU). Long time considered a bacterium with low virulence, A. baumannii has more recently become a cause for major concern in clinical practice due to its high level of antimicrobial resistance. The extend of infections with Acinetobacter baumannii in ICU is caused by multiple factors, such as mechanical ventilation, invasive procedures, the use of a large number of broad spectrum antibiotics and transmission through the hands of medical staff In this study we evaluated the resistance to antibiotics of 213 non-duplicated strains of A. baumannii isolated in the bacteriology laboratory of the "Marius Nasta" lnstitute of Pneumophtisiology (IPMN) from January 2012 to December 2013. These strains originated from patients in medical wards (56), ICU (143) and surgery (14). Strains identification was performed by classical methods on multitest media and with API kits (Bio Merieux). The antibiotic sensitivity was performed on Mueller-Hinton media in accordance with CLSI2013. Analysis of the resistance to antibiotics was the following: carbenicilin (87.3%), ceftriaxone (87.3%), cefoperazone with sulbactam (84.9%), ceftazidime (79.3%), carbapenems (imipenem and/or meropenem--75.1%), fluoroquinolones (ciprofloxacin and/orlevofloxacin--73.7%), cefepime (66.6%), piperacilin with tazobactam (62.4%), amikacin (50.2%), netilmicin (45%), gentamicin (42.7%) and tobramycin (35.6%). In our study, we only found two strains of Acinetobacter baumannii with resistance to colistin and 70 (32.8%) strains sensitive only to colistin, but resistant to all other antibiotics tested. A. baumannii is a pathogen with rapid spread and extended resistance to even newer antimicrobial agents. Due to its ability to survive in the hospital environment, A. baumannii has the immense potential to cause nosocomial

  8. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas.

    PubMed

    Gulati, Arvind; Vyas, Pratibha; Rahi, Praveen; Kasana, Ramesh Chand

    2009-04-01

    A phosphate-solubilizing bacterial strain BIHB 723 isolated from the rhizosphere of Hippophae rhamnoides was identified as Acinetobacter rhizosphaerae on the basis of phenotypic characteristics, carbon source utilization pattern, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The strain exhibited the plant growth-promoting attributes of inorganic and organic phosphate solubilization, auxin production, 1-aminocyclopropane-1-carboxylate deaminase activity, ammonia generation, and siderophore production. A significant increase in the growth of pea, chickpea, maize, and barley was recorded for inoculations under controlled conditions. Field testing with the pea also showed a significant increment in plant growth and yield. The rifampicin mutant of the bacterial strain effectively colonized the pea rhizosphere without adversely affecting the resident microbial populations. PMID:19137371

  9. Simultaneous enhancement of phenolic compound degradations by Acinetobacter strain V2 via a step-wise continuous acclimation process.

    PubMed

    Lin, Johnson; Sharma, Vikas; Milase, Ridwaan; Mbhense, Ntuthuko

    2016-06-01

    Phenol degradation enhancement of Acinetobacter strain V2 by a step-wise continuous acclimation process was investigated. At the end of 8 months, three stable adapted strains, designated as R, G, and Y, were developed with the sub-lethal concentration of phenol at 800, 1100, and 1400 mg/L, respectively, from 400 mg/L of V2 parent strain. All strains degraded phenol at their sub-lethal level within 24 h, their growth rate increased as the acclimation process continued and retained their degradation properties even after storing at -80 °C for more than 3 years. All adapted strains appeared coccoid with an ungranulated surface under electron microscope compared to typical rod-shaped parental strain V2 . The adapted Y strain also possessed superior degradation ability against aniline, benzoate, and toluene. This study demonstrated the use of long term acclimation process to develop efficient and better pollutant degrading bacterial strains with potentials in industrial and environmental bioremediation. PMID:26471472

  10. Biodegradation of type II pyrethroids and major degraded products by a newly isolated Acinetobacter sp. strain JN8.

    PubMed

    Jin, Zhaoxia; Guo, Qiong; Zhang, Zongshen; Yan, Tongshuai

    2014-08-01

    A Gram-negative aerobic bacterium, designated as JN8, was isolated from activated sludge and soil in a pesticides factory in China. It was found that JN8 had a high capacity for degrading a broad range of type II pyrethroids and utilizing these pyrethroids as the sole carbon source for cell growth. The degradation rates of a 100 mg·L(-1) concentration of β-cypermethrin, cypermethrin, fenpropathrin, fenvalerate, and deltamethrin by JN8 in mineral salt medium were 74.1%, 64.9%, 57.9%, 48.1% and 34.9%, respectively. Strain JN8 was identified as a species of Acinetobacter based on its biochemical properties and 16S rRNA sequence analysis. β-Cypermethrin was degraded by JN8 through hydrolysis of the carboxylester linkage to form 3-phenoxybenzoic acid and 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid, both of which could be further degraded by JN8. JN8 is the first strain of an Acinetobacter species in which pyrethoid-degrading activity has been detected, and such a feature makes it a potential resource for disposal of waste and effluent from pyrethroid manufacturing facilities. PMID:25083550

  11. Acinetobacter baumannii

    PubMed Central

    Howard, Aoife; O’Donoghue, Michael; Feeney, Audrey; Sleator, Roy D.

    2012-01-01

    Acinetobacter baumannii is an opportunistic bacterial pathogen primarily associated with hospital-acquired infections. The recent increase in incidence, largely associated with infected combat troops returning from conflict zones, coupled with a dramatic increase in the incidence of multidrug-resistant (MDR) strains, has significantly raised the profile of this emerging opportunistic pathogen. Herein, we provide an overview of the pathogen, discuss some of the major factors that have led to its clinical prominence and outline some of the novel therapeutic strategies currently in development. PMID:22546906

  12. Diversity and Evolution of AbaR Genomic Resistance Islands in Acinetobacter baumannii Strains of European Clone I▿†

    PubMed Central

    Krizova, Lenka; Dijkshoorn, Lenie; Nemec, Alexandr

    2011-01-01

    To assess the diversity of AbaR genomic resistance islands in Acinetobacter baumannii European clone I (MLST clonal complex 1), we investigated 26 multidrug-resistant strains of this major clone isolated from hospitals in 21 cities of 10 European countries between 1984 and 2005. Each strain harbored an AbaR structure integrated at the same position in the chromosomal ATPase gene. AbaR3, including four subtypes based on variations in class 1 integron cassettes, and AbaR10 were found in 15 and 2 strains, respectively, whereas a new, unique AbaR variant was discovered in each of the other 9 strains. These new variants, designated AbaR11 to AbaR19 (19.8 kb to 57.5 kb), seem to be truncated derivatives of AbaR3, likely resulting from the deletions of its internal parts mediated by either IS26 elements (AbaR12 to AbaR19) or homologous recombination (AbaR11). AbaR3 was detected in all 10 strains isolated in 1984 to 1991, while AbaR11 to AbaR19 were carried only by strains isolated since 1997. Our results and those from previous publications suggest that AbaR3 is the original form of AbaR in European clone I, which may have provided strains of the lineage with a selective advantage facilitating their spread in European hospitals in the 1980s or before. PMID:21537009

  13. Complete genome of the multidrug-resistant Acinetobacter baumannii strain KBN10P02143 isolated from Korea

    PubMed Central

    Lee, Yong-Woon; Choe, Hanna; Lee, Sang-Heon; Kim, Kyung Mo; Kam, Sin; Kim, Byung Kwon; Lee, Won-Kil

    2016-01-01

    Acinetobacter baumannii, a strictly aerobic, non-fermentative, Gram-negative coccobacillary rod-shaped bacterium, is an opportunistic pathogen in humans. We recently isolated a multidrug-resistant A. baumannii strain KBN10P02143 from the pus sample drawn from a surgical patient in South Korea. We report the complete genome of this strain, which consists of 4,139,396 bp (G + C content, 39.08%) with 3,868 protein-coding genes, 73 tRNAs and six rRNA operons. Identification of the genes related to multidrug resistance from this genome and the discovery of a novel conjugative plasmid will increase our understanding of the pathogenicity associated with this species. PMID:27143492

  14. Draft Genome Sequences of Two Extensively Drug-Resistant Acinetobacter baumannii Strains Isolated from Pus Samples.

    PubMed

    Mahalingam, Niranjana; Manivannan, Bhavani; Jadhao, Sudhir; Mishra, Gayathri; Nilawe, Pravin; Pradeep, Bulagonda Eswarappa

    2016-01-01

    We report the draft genomes of two extensively drug-resistant (XDR)Acinetobacter baumanniistrains isolated from pus samples of two patients with surgical site infections at Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, India. The average genomic size and G+C content are 4 Mbp and 38.96% (AB28) and 4 Mbp and 38.94% (AB30), respectively. PMID:27013044

  15. Enrichment of Acinetobacter spp. from food samples.

    PubMed

    Carvalheira, Ana; Ferreira, Vânia; Silva, Joana; Teixeira, Paula

    2016-05-01

    Relatively little is known about the role of foods in the chain of transmission of acinetobacters and the occurrence of different Acinetobacter spp. in foods. Currently, there is no standard procedure to recover acinetobacters from food in order to gain insight into the food-related ecology and epidemiology of acinetobacters. This study aimed to assess whether enrichment in Dijkshoorn enrichment medium followed by plating in CHROMagar™ Acinetobacter medium is a useful method for the isolation of Acinetobacter spp. from foods. Recovery of six Acinetobacter species from food spiked with these organisms was compared for two selective enrichment media (Baumann's enrichment and Dijkshoorn's enrichment). Significantly (p < 0.01) higher cell counts were obtained in Dijkshoorn's enrichment. Next, the Dijkshoorn's enrichment followed by direct plating on CHROMagar™ Acinetobacter was applied to detect Acinetobacter spp. in different foods. Fourteen different presumptive acinetobacters were recovered and assumed to represent nine different strains on the basis of REP-PCR typing. Eight of these strains were identified by rpoB gene analysis as belonging to the species Acinetobacter johnsonii, Acinetobacter calcoaceticus, Acinetobacter guillouiae and Acinetobacter gandensis. It was not possible to identify the species level of one strain which may suggests that it represents a distinct species. PMID:26742623

  16. Indigoids Biosynthesis from Indole by Two Phenol-Degrading Strains, Pseudomonas sp. PI1 and Acinetobacter sp. PI2.

    PubMed

    Wang, Jing; Zhang, Xuwang; Fan, Jiangli; Zhang, Zhaojing; Ma, Qiao; Peng, Xiaojun

    2015-07-01

    In this study, two phenol-degrading bacterial strains, designated as PI1 and PI2, were isolated from activated sludge for the production of indigoids from indole. According to the 16S ribosomal RNA (rRNA) gene sequence analysis, strains PI1 and PI2 were identified as Pseudomonas sp. and Acinetobacter sp., respectively. Liquid chromatography/time-of-flight/mass spectrometry (LC/TOF/MS) was applied to analyze the metabolites during the biotransformation of indole by the phenol-degrading strains. The results indicated that both strains could catalyze the formation of four indigoids with the same prominent molecular ion (M-H)(-) peak at m/z 261.067 and molecular formula of C16H10N2O2, including indigo and a purple product, 2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one. Isatin and 7-hydroxyindole were detected as the intermediates. Thus, the possible pathways for the production of indigoids from indole were proposed. Subsequently, the optimal conditions for the production of indigo from indole were determined using response surface methodology, and 11.82 ± 0.30 and 17.19 ± 0.49 mg/L indigo were produced by strains PI1 and PI2, respectively. The present study should provide potential candidates for microbial production of indigoids. PMID:25926013

  17. Genomic Analysis of the Multidrug-Resistant Acinetobacter baumannii Strain MDR-ZJ06 Widely Spread in China▿

    PubMed Central

    Zhou, Hua; Zhang, Tongwu; Yu, Dongliang; Pi, Borui; Yang, Qing; Zhou, Jianying; Hu, Songnian; Yu, Yunsong

    2011-01-01

    We previously reported that the multidrug-resistant (MDR) Acinetobacter baumannii strain MDR-ZJ06, belonging to European clone II, was widely spread in China. In this study, we report the whole-genome sequence of this clinically important strain. A 38.6-kb AbaR-type genomic resistance island (AbaR22) was identified in MDR-ZJ06. AbaR22 has a structure similar to those of the resistance islands found in A. baumannii strains AYE and AB0057, but it contained only a few antibiotic resistance genes. The region of resistant gene accumulation as previously described was not found in AbaR22. In the chromosome of the strain MDR-ZJ06, we identified the gene blaoxa-23 in a composite transposon (Tn2009). Tn2009 shared the backbone with other A. baumannii transponsons that harbor blaoxa-23, but it was bracketed by two ISAba1 elements which were transcribed in the same orientation. MDR-ZJ06 also expressed the armA gene on its plasmid pZJ06, and this gene has the same genetic environment as the armA gene of the Enterobacteriaceae. These results suggest variability of resistance acquisition even in closely related A. baumannii strains. PMID:21788470

  18. Draft Genome Sequence of Colistin-Resistant Acinetobacter baumannii Strain VB22595 Isolated from a Central Line-Associated Bloodstream Infection.

    PubMed

    Veeraraghavan, Balaji; Anandan, Shalini; Ragupathi, Naveen Kumar Devanga; Vijayakumar, Saranya; Sethuvel, Dhiviya Prabaa Muthuirulandi; Biswas, Indranil

    2016-01-01

    Acinetobacter baumannii is an important emerging pathogen that causes health care-associated infections. In this study, we determined the genome of a multidrug-resistant clinical strain, VB22595, isolated from a hospital in Southern India. The draft genome indicates that strain VB22595 encodes a genome of ~3.92 Mb in size and does not contain plasmid derived MCR-1 for colistin resistance. PMID:27516521

  19. Draft Genome Sequence of Colistin-Resistant Acinetobacter baumannii Strain VB22595 Isolated from a Central Line-Associated Bloodstream Infection

    PubMed Central

    Veeraraghavan, Balaji; Anandan, Shalini; Ragupathi, Naveen Kumar Devanga; Vijayakumar, Saranya; Sethuvel, Dhiviya Prabaa Muthuirulandi

    2016-01-01

    Acinetobacter baumannii is an important emerging pathogen that causes health care-associated infections. In this study, we determined the genome of a multidrug-resistant clinical strain, VB22595, isolated from a hospital in Southern India. The draft genome indicates that strain VB22595 encodes a genome of ~3.92 Mb in size and does not contain plasmid derived MCR-1 for colistin resistance. PMID:27516521

  20. Genome Sequence of a Clinical Strain of Acinetobacter baumannii Belonging to the ST79/PFGE-HUI-1 Clone Lacking the AdeABC (Resistance-Nodulation-Cell Division-Type) Efflux Pump.

    PubMed

    López, M; Álvarez-Fraga, L; Gato, E; Blasco, L; Poza, M; Fernández-García, L; Bou, G; Tomás, M

    2016-01-01

    Increased expression of chromosomal genes for resistance-nodulation-cell division-type efflux systems plays a major role in the multidrug resistance of Acinetobacter baumannii Little is known about the genetic characteristics of clinical strains of Acinetobacter baumannii lacking the AdeABC pump. In this study, we sequenced the genome of clinical strain Ab421 GEIH-2010 (belonging to clone ST79/PFGE-HUI-1 from the GEIH-REIPI Ab. 2010 project) which lacks this efflux pump. PMID:27609928

  1. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454.

    PubMed

    Magnet, S; Courvalin, P; Lambert, T

    2001-12-01

    Multidrug-resistant strain Acinetobacter baumannii BM4454 was isolated from a patient with a urinary tract infection. The adeB gene, which encodes a resistance-nodulation-cell division (RND) protein, was detected in this strain by PCR with two degenerate oligodeoxynucleotides. Insertional inactivation of adeB in BM4454, which generated BM4454-1, showed that the corresponding protein was responsible for aminoglycoside resistance and was involved in the level of susceptibility to other drugs including fluoroquinolones, tetracyclines, chloramphenicol, erythromycin, trimethoprim, and ethidium bromide. Study of ethidium bromide accumulation in BM4454 and BM4454-1, in the presence or in the absence of carbonyl cyanide m-chlorophenylhydrazone, demonstrated that AdeB was responsible for the decrease in intracellular ethidium bromide levels in a proton motive force-dependent manner. The adeB gene was part of a cluster that included adeA and adeC which encodes proteins homologous to membrane fusion and outer membrane proteins of RND-type three-component efflux systems, respectively. The products of two upstream open reading frames encoding a putative two-component regulatory system might be involved in the regulation of expression of the adeABC gene cluster. PMID:11709311

  2. Resistance-Nodulation-Cell Division-Type Efflux Pump Involved in Aminoglycoside Resistance in Acinetobacter baumannii Strain BM4454

    PubMed Central

    Magnet, Sophie; Courvalin, Patrice; Lambert, Thierry

    2001-01-01

    Multidrug-resistant strain Acinetobacter baumannii BM4454 was isolated from a patient with a urinary tract infection. The adeB gene, which encodes a resistance-nodulation-cell division (RND) protein, was detected in this strain by PCR with two degenerate oligodeoxynucleotides. Insertional inactivation of adeB in BM4454, which generated BM4454-1, showed that the corresponding protein was responsible for aminoglycoside resistance and was involved in the level of susceptibility to other drugs including fluoroquinolones, tetracyclines, chloramphenicol, erythromycin, trimethoprim, and ethidium bromide. Study of ethidium bromide accumulation in BM4454 and BM4454-1, in the presence or in the absence of carbonyl cyanide m-chlorophenylhydrazone, demonstrated that AdeB was responsible for the decrease in intracellular ethidium bromide levels in a proton motive force-dependent manner. The adeB gene was part of a cluster that included adeA and adeC which encodes proteins homologous to membrane fusion and outer membrane proteins of RND-type three-component efflux systems, respectively. The products of two upstream open reading frames encoding a putative two-component regulatory system might be involved in the regulation of expression of the adeABC gene cluster. PMID:11709311

  3. Characterization of a highly virulent and antimicrobial-resistant Acinetobacter baumannii strain isolated from diseased chicks in China.

    PubMed

    Liu, Dong; Liu, Zeng-Shan; Hu, Pan; Hui, Qi; Fu, Bao-Quan; Lu, Shi-Ying; Li, Yan-Song; Zou, De-Ying; Li, Zhao-Hui; Yan, Dong-Ming; Ding, Yan-Xia; Zhang, Yuan-Yuan; Zhou, Yu; Liu, Nan-Nan; Ren, Hong-Lin

    2016-08-01

    Poultry husbandry is a very important aspect of the agricultural economy in China. However, chicks are often susceptible to infectious disease microorganisms, such as bacteria, viruses and parasites, causing large economic losses in recent years. In the present study, we isolated an Acinetobacter baumannii strain, CCGGD201101, from diseased chicks in the Jilin Province of China. Regression analyses of virulence and LD50 tests conducted using healthy chicks confirmed that A. baumannii CCGGD201101, with an LD50 of 1.81 (±0.11) × 10(4) CFU, was more virulent than A. baumannii ATCC17978, with an LD50 of 1.73 (±0.13) × 10(7) CFU. Moreover, TEM examination showed that the pili of A. baumannii CCGGD201101 were different from those of ATCC17978. Antibiotic sensitivity analyses showed that A. baumannii CCGGD201101 was sensitive to rifampicin but resistant to most other antibiotics. These results imply that A. baumannii strain CCGGD201101 had both virulence enhancement and antibiotic resistance characteristics, which are beneficial for A. baumannii survival under adverse conditions and enhance fitness and invasiveness in the host. A. baumannii CCGGD20101, with its high virulence and antimicrobial resistance, may be one of the pathogens causing death of diseased chicks. PMID:27399903

  4. Spreading of AbaR-type genomic islands in multidrug resistance Acinetobacter baumannii strains belonging to different clonal complexes.

    PubMed

    Ramírez, María Soledad; Vilacoba, Elisabet; Stietz, María Silvina; Merkier, Andrea Karina; Jeric, Paola; Limansky, Adriana S; Márquez, Carolina; Bello, Helia; Catalano, Mariana; Centrón, Daniela

    2013-07-01

    In order to determine the occurrence of AbaR-type genomic island in multidrug resistant Acinetobacter baumannii (MDRAb) strains circulating in Argentina, Uruguay, and Chile, we studied 51 MDRAb isolates recovered from several hospitals over 30 years. AbaR-type genomic resistance islands were found in 36 MDRAb isolates since 1986 till now. MLST technique allowed us to identify the presence of four different Clonal Complexes (109, 104, 119, 113) among the positive AbaR-type island positive strains. This is the first description of AbaR-type islands in the CC104 and CC113 that are the most widespread Clonal Complexes in Argentina. In addition, PCR mapping exposed different arrays to those previously described, evidencing the plasticity of this island. Our results evidence a widespread distribution of the AbaR-type genomic islands along the time in the MDRAb population, including the epidemic global clone 1 (GC1) as well as different clonal complexes to those already described in the literature. PMID:23397241

  5. Complete genome sequence of Acinetobacter sp. TTH0-4, a cold-active crude oil degrading strain isolated from Qinghai-Tibet Plateau.

    PubMed

    Zhang, Gaosen; Chen, Tuo; Chang, Sijing; Zhang, Wei; Wu, Xiukun; Wu, Minghui; Wang, Yilin; Long, Haozhi; Chen, Ximing; Wang, Yun; Liu, Guangxiu

    2016-05-20

    Acinetobacter sp. strain TTH0-4 was isolated from a permafrost region in Qinghai-Tibet Plateau. With its capability to degrade crude oil at low temperature, 10°C, the strain could be an excellent candidate for the bioremediation of crude oil pollution in cold areas or at cold seasons. We sequenced and annotated the whole genome to serve as a basis for further elucidation of the genetic background of this promising strain, and provide opportunities for investigating the metabolic and regulatory mechanisms and optimizing the biodegradative activity in cold environment. PMID:26988394

  6. Rapid Determination of Colistin Resistance in Clinical Strains of Acinetobacter baumannii by Use of the Micromax Assay

    PubMed Central

    Tamayo, Maria; Santiso, Rebeca; Otero, Fátima; Bou, Germán; Lepe, José Antonio; McConnell, Michael J.; Cisneros, José Miguel; Gosálvez, Jaime

    2013-01-01

    Colistin is an old antibiotic which has been used as a therapeutic option for carbapenem- and multidrug-resistant Gram-negative bacteria, like Acinetobacter baumannii. This pathogen produces life-threatening infections, mainly in patients admitted to intensive care units. Rapid detection of resistance to colistin may improve patient outcomes and prevent the spread of resistance. For this purpose, Micromax technology was evaluated in four isogenic A. baumannii strains with known mechanisms of resistance to colistin and in 66 isolates (50 susceptible and 16 resistant). Two parameters were determined, DNA fragmentation and cell wall damage. To assess DNA fragmentation, cells trapped in a microgel were incubated with a lysing solution to remove the cell wall, and the released nucleoids were visualized under fluorescence microscopy. Fragmented DNA was observed as spots that diffuse from the nucleoid. To assess cell wall integrity, cells were incubated with a lysis solution which removes only weakened cell walls, resulting in nucleoid release exclusively in affected cells. A dose-response relationship was demonstrated between colistin concentrations and the percentages of bacteria with DNA fragmentation and cell wall damage, antibiotic effects that were delayed and less frequent in resistant strains. Receiver operating characteristic (ROC) curves demonstrated that both DNA fragmentation and cell wall damage were excellent parameters for identifying resistant strains. Obtaining ≤11% of bacteria with cell wall damage after incubation with 0.5 μg/ml colistin identified resistant strains of A. baumannii with 100% sensitivity and 96% specificity. Results were obtained in 3 h 30 min. This is a simple, rapid, and accurate assay for detecting colistin resistance in A. baumannii, with strong potential value in critical clinical situations. PMID:23985913

  7. Insertions or Deletions (Indels) in the rrn 16S-23S rRNA Gene Internal Transcribed Spacer Region (ITS) Compromise the Typing and Identification of Strains within the Acinetobacter calcoaceticus-baumannii (Acb) Complex and Closely Related Members

    PubMed Central

    Maslunka, Christopher; Gifford, Bianca; Tucci, Joseph; Gürtler, Volker; Seviour, Robert J.

    2014-01-01

    To determine whether ITS sequences in the rrn operon are suitable for identifying individual Acinetobacter Acb complex members, we analysed length and sequence differences between multiple ITS copies within the genomes of individual strains. Length differences in ITS reported previously between A. nosocomialis BCRC15417T (615 bp) and other strains (607 bp) can be explained by presence of an insertion (indel 13i/1) in the longer ITS variant. The same Indel 13i/1 was also found in ITS sequences of ten strains of A. calcoaceticus, all 639 bp long, and the 628 bp ITS of Acinetobacter strain BENAB127. Four additional indels (13i/2–13i/5) were detected in Acinetobacter strain c/t13TU 10090 ITS length variants (608, 609, 620, 621 and 630 bp). These ITS variants appear to have resulted from horizontal gene transfer involving other Acinetobacter species or in some cases unrelated bacteria. Although some ITS copies in strain c/t13TU 10090 are of the same length (620 bp) as those in Acinetobacter strains b/n1&3, A. pittii (10 strains), A. calcoaceticus and A. oleivorans (not currently acknowledged as an Acb member), their individual ITS sequences differ. Thus ITS length by itself can not by itself be used to identify Acb complex strains. A shared indel in ITS copies in two separate Acinetobacter species compromises the specificity of ITS targeted probes, as shown with the Aun-3 probe designed to target the ITS in A. pitti. The presence of indel 13i/5 in the ITS of Acinetobacter strain c/t13TU means it too responded positively to this probe. Thus, neither ITS sequencing nor the currently available ITS targeted probes can distinguish reliably between Acb member species. PMID:25141005

  8. Unravelling the genome of long chain N-acylhomoserine lactone-producing Acinetobacter sp. strain GG2 and identification of its quorum sensing synthase gene

    PubMed Central

    How, Kah Yan; Hong, Kar-Wai; Sam, Choon-Kook; Koh, Chong-Lek; Yin, Wai-Fong; Chan, Kok-Gan

    2015-01-01

    Myriad proteobacteria use N-acyl homoserine lactone (AHL) molecules as quorum sensing (QS) signals to regulate different physiological functions, including virulence, antibiotic production, and biofilm formation. Many of these proteobacteria possess LuxI/LuxR system as the QS mechanism. Recently, we reported the 3.89 Mb genome of Acinetobacter sp. strain GG2. In this work, the genome of this long chain AHL-producing bacterium was unravelled which led to the molecular characterization of luxI homologue, designated as aciI. This 552 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was ∼20.5 kDa and is highly similar to several autoinducer proteins of LuxI family among Acinetobacter species. To verify the AHL synthesis activity of this protein, high-resolution liquid chromatography–mass spectrometry analysis revealed the production of 3-oxo-dodecanoyl-homoserine lactone and 3-hydroxy-dodecanoyl-homoserine lactone from induced E. coli harboring the recombinant AciI. Our data show for the first time, the cloning and characterization of the luxI homologue from Acinetobacter sp. strain GG2, and confirmation of its AHLs production. These data are of great significance as the annotated genome of strain GG2 has provided a valuable insight in the study of autoinducer molecules and its roles in QS mechanism of the bacterium. PMID:25926817

  9. Extremophilic Acinetobacter Strains from High-Altitude Lakes in Argentinean Puna: Remarkable UV-B Resistance and Efficient DNA Damage Repair

    NASA Astrophysics Data System (ADS)

    Albarracín, Virginia Helena; Pathak, Gopal P.; Douki, Thierry; Cadet, Jean; Borsarelli, Claudio Darío; Gärtner, Wolfgang; Farias, María Eugenia

    2012-06-01

    High-Altitude Andean Lakes (HAAL) of the South American Andes are almost unexplored ecosystems of shallow lakes. The HAAL are recognized by a remarkably high UV exposure, strong changes in temperature and salinity, and a high content of toxic elements, especially arsenic. Being exposed to remarkably extreme conditions, they have been classified as model systems for the study of life on other planets. Particularly, Acinetobacter strains isolated from the HAAL were studied for their survival competence under strong UV-B irradiation. Clinical isolates, Acinetobacter baumannii and Acinetobacter johnsonii, served as reference material. Whereas the reference strains rapidly lost viability under UV-B irradiation, most HAAL-derived strains readily survived this exposure and showed less change in cell number after the treatment. Controls for DNA repair activity, comparing dark repair (DR) or photo repair (PR), gave evidence for the involvement of photolyases in the DNA repair. Comparative measurements by HPLC-mass spectrometry detected the number of photoproducts: bipyrimidine dimers under both PR and DR treatments were more efficiently repaired in the HAAL strains (up to 85 % PR and 38 % DR) than in the controls (31 % PR and zero DR ability). Analysis of cosmid-cloned total genomic DNA from the most effective DNA-photorepair strain (Ver3) yielded a gene (HQ443199) encoding a protein with clear photolyase signatures belonging to class I CPD-photolyases. Despite the relatively low sequence similarity of 41 % between the enzymes from Ver3 and from E. coli (PDB 1DNPA), a model-building approach revealed a high structural homology to the CPD-photolyase of E. coli.

  10. Extremophilic Acinetobacter strains from high-altitude lakes in Argentinean Puna: remarkable UV-B resistance and efficient DNA damage repair.

    PubMed

    Albarracín, Virginia Helena; Pathak, Gopal P; Douki, Thierry; Cadet, Jean; Borsarelli, Claudio Darío; Gärtner, Wolfgang; Farias, María Eugenia

    2012-06-01

    High-Altitude Andean Lakes (HAAL) of the South American Andes are almost unexplored ecosystems of shallow lakes. The HAAL are recognized by a remarkably high UV exposure, strong changes in temperature and salinity, and a high content of toxic elements, especially arsenic. Being exposed to remarkably extreme conditions, they have been classified as model systems for the study of life on other planets. Particularly, Acinetobacter strains isolated from the HAAL were studied for their survival competence under strong UV-B irradiation. Clinical isolates, Acinetobacter baumannii and Acinetobacter johnsonii, served as reference material. Whereas the reference strains rapidly lost viability under UV-B irradiation, most HAAL-derived strains readily survived this exposure and showed less change in cell number after the treatment. Controls for DNA repair activity, comparing dark repair (DR) or photo repair (PR), gave evidence for the involvement of photolyases in the DNA repair. Comparative measurements by HPLC-mass spectrometry detected the number of photoproducts: bipyrimidine dimers under both PR and DR treatments were more efficiently repaired in the HAAL strains (up to 85 % PR and 38 % DR) than in the controls (31 % PR and zero DR ability). Analysis of cosmid-cloned total genomic DNA from the most effective DNA-photorepair strain (Ver3) yielded a gene (HQ443199) encoding a protein with clear photolyase signatures belonging to class I CPD-photolyases. Despite the relatively low sequence similarity of 41 % between the enzymes from Ver3 and from E. coli (PDB 1DNPA), a model-building approach revealed a high structural homology to the CPD-photolyase of E. coli. PMID:22644565

  11. Novel Pathway for the Degradation of 2-Chloro-4-Nitrobenzoic Acid by Acinetobacter sp. Strain RKJ12▿†

    PubMed Central

    Prakash, Dhan; Kumar, Ravi; Jain, R. K.; Tiwary, B. N.

    2011-01-01

    The organism Acinetobacter sp. RKJ12 is capable of utilizing 2-chloro-4-nitrobenzoic acid (2C4NBA) as a sole source of carbon, nitrogen, and energy. In the degradation of 2C4NBA by strain RKJ12, various metabolites were isolated and identified by a combination of chromatographic, spectroscopic, and enzymatic activities, revealing a novel assimilation pathway involving both oxidative and reductive catabolic mechanisms. The metabolism of 2C4NBA was initiated by oxidative ortho dehalogenation, leading to the formation of 2-hydroxy-4-nitrobenzoic acid (2H4NBA), which subsequently was metabolized into 2,4-dihydroxybenzoic acid (2,4-DHBA) by a mono-oxygenase with the concomitant release of chloride and nitrite ions. Stoichiometric analysis indicated the consumption of 1 mol O2 per conversion of 2C4NBA to 2,4-DHBA, ruling out the possibility of two oxidative reactions. Experiments with labeled H218O and 18O2 indicated the involvement of mono-oxygenase-catalyzed initial hydrolytic dechlorination and oxidative denitration mechanisms. The further degradation of 2,4-DHBA then proceeds via reductive dehydroxylation involving the formation of salicylic acid. In the lower pathway, the organism transformed salicylic acid into catechol, which was mineralized by the ortho ring cleavage catechol-1,2-dioxygenase to cis, cis-muconic acid, ultimately forming tricarboxylic acid cycle intermediates. Furthermore, the studies carried out on a 2C4NBA− derivative and a 2C4NBA+ transconjugant demonstrated that the catabolic genes for the 2C4NBA degradation pathway possibly reside on the ∼55-kb transmissible plasmid present in RKJ12. PMID:21803909

  12. A comprehensive study on the behavior of a novel bacterial strain Acinetobacter guillouiae for bioremediation of divalent copper.

    PubMed

    Majumder, Subhajit; Gangadhar, Gayathri; Raghuvanshi, Smita; Gupta, Suresh

    2015-09-01

    Biological methods have been successfully used to mitigate heavy metal pollution problem in wastewater. The present study was aimed towards isolation of a novel indigenous bacterial strain, Acinetobacter guillouiae from activated sludge and its subsequent application in remediation of copper (Cu(2+)) from aqueous solution. Kinetic study of bioremediation was performed for initial Cu(2+) concentrations ranging from 40 to 150 mg L(-1). Optimum values of nutrient dosage, pH, macronutrients [Nitrogen (N)-Phosphorus (P)-Potassium (K)] dosage, aerobic and facultative anaerobic conditions, temperature, and inoculum volume were determined by conducting separate batch bioremediation studies at 80 mg L(-1) initial concentration of Cu(2+). Kinetic study showed that A. guillouiae removed 98.7 % Cu(2+) for 80 mg L(-1) initial concentration of Cu(2+) after 16 h at an optimum solution pH of 7.0. Results also revealed that A. guillouiae showed maximum growth at double the standard composition of N, P and standard composition of K in nutrient dosage. Experimental data obtained in present study were utilized to validate different growth kinetic models such as Monod, Powell, Haldane, Luong, and Edwards. Growth kinetics of A. guillouiae was better understood by Luong model (R (2) = 0.97). Higher values of coefficient of determination (R (2) = 0.97-0.99) confirmed the suitability of the three-half-order kinetic model for representing the Cu(2+) bioremediation. A. guillouiae showed a robust removal mechanism for the bioremediation of Cu(2+). PMID:26017755

  13. Isolation and genetic characterization of metallo-β-lactamase and carbapenamase producing strains of Acinetobacter baumannii from patients at Tehran hospitals

    PubMed Central

    Shahcheraghi, F; Abbasalipour, M; Feizabadi, MM; Ebrahimipour, GH; Akbari, N

    2011-01-01

    Background and Objective Carbapenems are therapeutic choice against infections caused by gram-negative bacilli including strains of Acinetobacter baumannii. Resistance to these antibiotics is mediated by efflux pumps, porins, PBPs and ß-lactamases. The aim of this study was to determine the possibility of existence of MBLs, OXAs and GES-1 betalactamase genes among clinical isolates of Acinetobacter collected from Tehran hospitals. Material and Methods Two hundred and three Acinetobacter isolates were collected from patient at Tehran hospitals. The isolates were identified using biochemical tests. The susceptibility to different antibiotics was evaluated by disk diffusion method and MICs of imipenem were determined using Micro broth dilution method (CLSI). PCR was performed for detection of bla VIM-2, bla SPM-1, bla IMP-2, bla GES-1, bla OXA-51, bla OXA-23 betalactamase genes. Clonal relatedness was estimated by PFGE with the restriction enzyme SmaI. Results and Conclusion Of 100 isolates of imipenem resistant Acinetobacter spp. collected from Tehran hospitals in 2009 and 2010, 6 isolates produced metallo-beta-lactamases and 94 isolates produced OXA-type carbapenemase. The bla SPM-1, bla GES-1, bla OXA-51, bla OXA-23 genes were detected by PCR among 6, 2, 94 and 84 isolates of A. baumannii, respectively. The MICs of isolates to imipenem were 8–128 µg/mL. PFGE analysis of 29 bla OXA-51 and bla OXA-23-positive A. baumannii isolates gave 6 different patterns. This is the first report of SPM-1 and GES-1 beta-lactamase producing A. baumannii. Production of the OXA-23, OXA-51, GES-1 and SPM-1 enzyme presents an emerging threat of carbapenem resistance among A. baumannii in Iran. PMID:22347585

  14. Draft Genome Sequence of Acinetobacter oleivorans PF1, a Diesel-Degrading and Plant-Growth-Promoting Endophytic Strain Isolated from Poplar Trees Growing on a Diesel-Contaminated Plume

    PubMed Central

    Gkorezis, Panagiotis; Rineau, Francois; Van Hamme, Jonathan; Daghio, Matteo; Thijs, Sofie; Weyens, Nele

    2015-01-01

    We report the 3.7-Mb draft genome of Acinetobacter oleivorans strain PF1, a hydrocarbonoclastic Gram-negative bacterium in the class Gammaproteobacteria, isolated from poplar trees growing on a diesel-contaminated plume at the Ford Motor Company site in Genk, Belgium. Strain PF1 is a potent plant-growth promoter, useful for diesel fuel phytoremediation applications. PMID:25657268

  15. Draft Genome Sequences of Acinetobacter baumannii Strains Harboring the blaNDM-1 Gene Isolated in Lebanon from Civilians Wounded during the Syrian Civil War

    PubMed Central

    Eisen, Jonathan A.; Jospin, Guillaume; Hamze, Monzer; Rafei, Rayane; Salloum, Tamara; Ibrahim, Joe; Coil, David A.

    2016-01-01

    We present here the draft genome sequences of multidrug-resistant blaNDM-1-positive Acinetobacter baumannii strains ACMH-6200 and ACMH-6201, isolated in north Lebanon from civilians wounded during the Syrian civil war. The draft genomes were contained in 217 contigs for ACMH-6200 and 83 contigs for ACMH-6201, including a combined 3,997,237 bases for ACMH-6200 and 3,983,110 bases for ACMH-6201, with 39% and 38.9% G+C content, respectively. PMID:26823599

  16. Draft Genome Sequences of Acinetobacter baumannii Strains Harboring the blaNDM-1 Gene Isolated in Lebanon from Civilians Wounded during the Syrian Civil War.

    PubMed

    Tokajian, Sima; Eisen, Jonathan A; Jospin, Guillaume; Hamze, Monzer; Rafei, Rayane; Salloum, Tamara; Ibrahim, Joe; Coil, David A

    2016-01-01

    We present here the draft genome sequences of multidrug-resistant blaNDM-1-positive Acinetobacter baumannii strains ACMH-6200 and ACMH-6201, isolated in north Lebanon from civilians wounded during the Syrian civil war. The draft genomes were contained in 217 contigs for ACMH-6200 and 83 contigs for ACMH-6201, including a combined 3,997,237 bases for ACMH-6200 and 3,983,110 bases for ACMH-6201, with 39% and 38.9% G+C content, respectively. PMID:26823599

  17. Thio Wax Ester Biosynthesis Utilizing the Unspecific Bifunctional Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase of Acinetobacter sp. Strain ADP1

    PubMed Central

    Uthoff, Stefan; Stöveken, Tim; Weber, Nikolaus; Vosmann, Klaus; Klein, Erika; Kalscheuer, Rainer; Steinbüchel, Alexander

    2005-01-01

    The bifunctional wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) from Acinetobacter sp. strain ADP1 (formerly Acinetobacter calcoaceticus ADP1) mediating the biosyntheses of wax esters and triacylglycerols was used for the in vivo and in vitro biosynthesis of thio wax esters and dithio wax esters. For in vitro biosynthesis, 5′His6WS/DGAT comprising an N-terminal His6 tag was purified from the soluble protein fraction of Escherichia coli Rosetta(DE3)pLysS (pET23a::5′His6atf). By employing SP-Sepharose high-pressure and Ni-nitrilotriacetic acid fast-protein liquid chromatographies, a 19-fold enrichment with a final specific activity of 165.2 nmol mg of protein−1 min−1 was achieved by using 1-hexadecanol and palmitoyl-CoA as substrates. Incubation of purified 5′His6WS/DGAT with 1-hexadecanethiol and palmitoyl-CoA as substrates resulted in the formation of palmitic acid hexadecyl thio ester (10.4% relative specific activity of a 1-hexadecanol control). Utilization of 1,8-octanedithiol and palmitoyl-CoA as substrates led to the formation of 1-S-monopalmitoyloctanedithiol and minor amounts of 1,8-S-dipalmitoyloctanedithiol (59.3% relative specific activity of a 1-hexadecanol control). The latter dithio wax ester was efficiently produced when 1-S-monopalmitoyloctanedithiol and palmitoyl-CoA were used as substrates (13.4% specific activity relative to that of a 1-hexadecanol control). For the in vivo biosynthesis of thio wax esters, the knockout mutant Acinetobacter sp. strain ADP1acr1ΩKm, which is unable to produce fatty alcohols, was used. Cultivation of Acinetobacter sp. strain ADP1acr1ΩKm in the presence of gluconate, 1-hexadecanethiol, and oleic acid in nitrogen-limited mineral salts medium resulted in the accumulation of unusual thio wax esters that accounted for around 1.19% (wt/wt) of the cellular dry weight and consisted mainly of oleic acid hexadecyl thioester as revealed by gas chromatography-mass spectrometry

  18. Acinetobacter and similar organisms in ear infections.

    PubMed

    Dadswell, J V

    1976-08-01

    Fifty-seven strains of acinetobacter-like organisms were isolated over a period of 26 months from the ears of 55 patients with acute or chronic otitis media, or otitis externa, and one strain was isolated in a survey of 50 normal ears. After comparison with eight reference strains, 32 of the isolates were identified as Acinetobacter anitratus, 22 as Acinetobacter Iwoffii, three as Moraxella spp. and one as Achromobacter sp. Analysis of the clinical findings suggests that although most of these organisms played little part in the disease process, a few strains were probably pathogenic in this situation. PMID:957420

  19. [Characterization and determination of antibiotic resistance profiles of a single clone Acinetobacter baumannii strains isolated from blood cultures].

    PubMed

    Karagöz, Alper; Baran, Irmak; Aksu, Neriman; Acar, Sümeyra; Durmaz, Rıza

    2014-10-01

    Acinetobacter baumannii which is a significant cause of nosocomial infections, increases the rate of morbidity and mortality in health care settings especially in intensive care units (ICUs). The aim of this study was to determine the antibiotic resistance profiles of A.baumannii strains isolated from blood cultures of inpatients from different ICUs, wards and hospital environment and evaluate their clonal relationships and epidemiologic features. A total of 54 A.baumannii strains (47 from the blood cultures and 7 from the hospital environment), identified between 01 January 2012-28 December 2012 at the Clinical Microbiology Laboratory of Ankara Numune Training and Research Hospital, Turkey, were included in the study. Identification of A.baumannii isolates and their antimicrobial [sulbactam-ampicillin (SAM), piperacillin (PIP), piperacillin-tazobactam (TZP), ceftazidime (CFZ), cefoperazone-sulbactam (SCF), cefepime (CEF), imipenem (IMP), meropenem (MER), amikacin (AMK), gentamicin (GEN), netilmicin (NT), ciprofloxacin (CIP), levofloxacin (LVF), tetracycline (TET), tigecycline (TG), colistin (COL), trimethoprim-sulfamethoxazole (SXT)] susceptibility testing were performed by Vitek 2 (bioMérieux, France) system. The clonal relationship between the A.baumannii isolates was analysed by pulsed-field gel electrophoresis (PFGE). In our study colistin, tigecycline and netilmicin were found to be the most effective agents against A.baumannii isolates. All of the clinical isolates (n= 47) were found susceptible to COL, however all were resistant to SAM, PIP, TZP, CEF, IPM, CFZ, MER and CIP. While 1.85%, 14.8%, 14.8%, 16.6%, 59.2% and 22.2% of the isolates were susceptible to SCF, AMK, NT, GEN, TG and SXT, respectively; 1.85%, 1.85%, 9.2%, 16.6%, 38.8% and 27.7% of the isolates were intermediate to SCF, TET, AMK, NT, LVF and TG, respectively. Similarly, all of the environmental A.baumannii isolates (n= 7) were resistant to SAM, PIP, TZP, CFZ, CEF, IPM, MER and CIP, and all

  20. [Extended spectrum beta lactamases (ESBL) production in Acinetobacter baumannii strains isolated from Chilean hospitals belonging to VIII Region].

    PubMed

    Pino I, Carolina; Domínguez Y, Mariana; González R, Gerardo; Bello T, Helia; Sepúlveda A, Marcela; Mella M, Sergio; Zemelman M, Claudia; Zemelman Z, Raúl

    2007-04-01

    The resistance of Acinetobacter baumannii to ss-lactam antibiotics is mainly due to the synthesis of ss-lactamases. From a clinical point of view, this bacteria and others, grouped under the acronym SPACE (S: Serratia, P: Pseudomonas, A: Acinetobacter, C: Citrobacter, E: Enterobacter) are essentially Amp-C ss-lactamases producers. There is no local information about ESBL presence in Acinetobacter. We studied ESBL production using the Ho and col. technique modified by adding cloxacillin as chromosomal ss-lactamases inhibitor. From 69 isolates, with resistance to at least one third generation cephalosporin, only 7 showed positive synergy test. Four of these amplified for TEM family gene, and one of these amplified also for the OXA family. Our study found a low ESBL production percentage, which agrees with the premise of Amp-C as the main mechanism of resistance to ss-lactam antibiotics in A. baumannii. However, the ESBL description in these bacteria emphasizes the capacity of expressing multiple resistance mechanisms. PMID:17453072

  1. Radiation resistance of acinetobacter spp.

    NASA Astrophysics Data System (ADS)

    Whitby, James L.

    1995-02-01

    The radiation resistance of 78 different strains of Acinetobacter sp. 42 from clinical isolates and 36 from other sources were compared with 15 clinical isolates and 12 other strains from Denmark. None of the Canadian strains was as resistant as resistant-enhanced Danish strains. Four strains had D 10 values of 3.1-3.6 kGy. Irradiated and unirradiated cells from all strains grew well, when cultured in Trypticase-Soy Broth at 30°C. Most cultures grew after overnight incubation. It was concluded that there would be no difficulty in detecting these strains, using ISO methodology for establishing the radiation sterilization dose for devices.

  2. Draft Genome Sequence of Acinetobacter sp. Strain BMW17, a Cellulolytic and Plant Growth-Promoting Bacterium Isolated from the Rhizospheric Region of Phragmites karka of Chilika Lake, India

    PubMed Central

    Mishra, Samir R.; Ray, Lopamudra; Panda, Ananta Narayan; Sahu, Neha; Xess, Sonal S.; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar

    2016-01-01

    We report the 3.16 Mb draft genome of Acinetobacter sp. strain BMW17, a Gram-negative bacterium in the class of Gammaproteobacteria, isolated from the rhizospheric region of Phragmites karka, an invasive weed in Chilika Lake, Odisha, India. The strain BMW17T is capable of degrading cellulose and is also an efficient plant growth promoter that can be useful for various phytoremedial and commercial applications. PMID:27365343

  3. Draft Genome Sequence of Acinetobacter sp. Strain BMW17, a Cellulolytic and Plant Growth-Promoting Bacterium Isolated from the Rhizospheric Region of Phragmites karka of Chilika Lake, India.

    PubMed

    Mishra, Samir R; Ray, Lopamudra; Panda, Ananta Narayan; Sahu, Neha; Xess, Sonal S; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar; Raina, Vishakha

    2016-01-01

    We report the 3.16 Mb draft genome of Acinetobacter sp. strain BMW17, a Gram-negative bacterium in the class of Gammaproteobacteria, isolated from the rhizospheric region of Phragmites karka, an invasive weed in Chilika Lake, Odisha, India. The strain BMW17(T) is capable of degrading cellulose and is also an efficient plant growth promoter that can be useful for various phytoremedial and commercial applications. PMID:27365343

  4. The Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase from Acinetobacter sp. Strain ADP1: Characterization of a Novel Type of Acyltransferase

    PubMed Central

    Stöveken, Tim; Kalscheuer, Rainer; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2005-01-01

    The wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) catalyzes the final steps in triacylglycerol (TAG) and wax ester (WE) biosynthesis in the gram-negative bacterium Acinetobacter sp. strain ADP1. It constitutes a novel class of acyltransferases which is fundamentally different from acyltransferases involved in TAG and WE synthesis in eukaryotes. The enzyme was purified by a three-step purification protocol to apparent homogeneity from the soluble fraction of recombinant Escherichia coli Rosetta (DE3)pLysS (pET23a::atfA). Purified WS/DGAT revealed a remarkably low substrate specificity, accepting a broad range of various substances as alternative acceptor molecules. Besides having DGAT and WS activity, the enzyme possesses acyl-CoA:monoacylglycerol acyltransferase (MGAT) activity. The sn-1 and sn-3 positions of acylglycerols are accepted with higher specificity than the sn-2 position. Linear alcohols ranging from ethanol to triacontanol are efficiently acylated by the enzyme, which exhibits highest specificities towards medium-chain-length alcohols. The acylation of cyclic and aromatic alcohols, such as cyclohexanol or phenylethanol, further underlines the unspecific character of this enzyme. The broad range of possible substrates may lead to biotechnological production of interesting wax ester derivatives. Determination of the native molecular weight revealed organization as a homodimer. The large number of WS/DGAT-homologous genes identified in pathogenic mycobacteria and their possible importance for the pathogenesis and latency of these bacteria makes the purified WS/DGAT from Acinetobacter sp. strain ADP1 a valuable model for studying this group of proteins in pathogenic mycobacteria. PMID:15687201

  5. Similarities between the antABC-Encoded Anthranilate Dioxygenase and the benABC-Encoded Benzoate Dioxygenase of Acinetobacter sp. Strain ADP1

    PubMed Central

    Bundy, Becky M.; Campbell, Alan L.; Neidle, Ellen L.

    1998-01-01

    Acinetobacter sp. strain ADP1 can use benzoate or anthranilate as a sole carbon source. These structurally similar compounds are independently converted to catechol, allowing further degradation to proceed via the β-ketoadipate pathway. In this study, the first step in anthranilate catabolism was characterized. A mutant unable to grow on anthranilate, ACN26, was selected. The sequence of a wild-type DNA fragment that restored growth revealed the antABC genes, encoding 54-, 19-, and 39-kDa proteins, respectively. The deduced AntABC sequences were homologous to those of class IB multicomponent aromatic ring-dihydroxylating enzymes, including the dioxygenase that initiates benzoate catabolism. Expression of antABC in Escherichia coli, a bacterium that normally does not degrade anthranilate, enabled the conversion of anthranilate to catechol. Unlike benzoate dioxygenase (BenABC), anthranilate dioxygenase (AntABC) catalyzed catechol formation without requiring a dehydrogenase. In Acinetobacter mutants, benC substituted for antC during growth on anthranilate, suggesting relatively broad substrate specificity of the BenC reductase, which transfers electrons from NADH to the terminal oxygenase. In contrast, the benAB genes did not substitute for antAB. An antA point mutation in ACN26 prevented anthranilate degradation, and this mutation was independent of a mucK mutation in the same strain that prevented exogenous muconate degradation. Anthranilate induced expression of antA, although no associated transcriptional regulators were identified. Disruption of three open reading frames in the immediate vicinity of antABC did not prevent the use of anthranilate as a sole carbon source. The antABC genes were mapped on the ADP1 chromosome and were not linked to the two known supraoperonic gene clusters involved in aromatic compound degradation. PMID:9721284

  6. Community-acquired Acinetobacter meningitis in adults.

    PubMed

    Chang, W N; Lu, C H; Huang, C R; Chuang, Y C

    2000-01-01

    Community-acquired Acinetobacter meningitis in adults is an extremely rare infection of the central nervous system (CNS). Here we report one adult case of this rare CNS infection and review the clinical data of another seven cases reported in the English language literature. In total, eight patients (six men and two women) aged between 19 and 63 years were studied. The causative pathogen in our patient was Acinetobacter baumannii; in the other reported cases they were most likely Acinetobacter Iwoffii, Acinetobacter johnsonii, Acinetobacter junii, a genomic species 3 or 6. No underlying disease was found in seven of the eight cases and six of the eight patients acquired the infections before the age of 30 years. Fever and consciousness disturbance were the most common clinical manifestations. Waterhouse-Friderichsen syndrome (WFS) was found in two cases. Unlike the Acinetobacter strains found in nosocomial infections, the strain of Acinetobacter meningitis in the community-acquired case did not show multiple antibiotic resistance. Most adult patients with community-acquired Acinetobacter meningitis can be saved by timely therapy with appropriate antibiotics before deterioration of the systemic condition and impairment of consciousness. PMID:11139162

  7. Biodegradation of fenoxaprop-P-ethyl (FE) by Acinetobacter sp. strain DL-2 and cloning of FE hydrolase gene afeH.

    PubMed

    Dong, Weiliang; Jiang, Sheng; Shi, Kaiwen; Wang, Fei; Li, Shuhuan; Zhou, Jie; Huang, Fei; Wang, Yicheng; Zheng, Yuxiao; Hou, Ying; Huang, Yan; Cui, Zhongli

    2015-06-01

    Fenoxaprop-P-ethyl (FE) is widely used as a post-emergence aryloxyphenoxy propionate (AOPP) herbicide in agriculture. An efficient FE-degrading strain DL-2 was isolated from the enrichment culture and identified as Acinetobacter sp. and the metabolite fenoxaprop acid (FA) was identified by HPLC/MS analysis. The strain DL-2 could also degrade a wide range of other AOPP herbicides. A novel FE hydrolase esterase gene afeH was cloned from strain DL-2 and functionally expressed in Escherichia coli BL21(DE3). The specific activities of recombinant AfeH was 216.39 U mg(-1) for FE with Km and Vmax values of 0.82 μM and 7.94 μmol min(-1) mg(-1). AfeH could also hydrolyze various AOPP herbicides, p-nitrophenyl esters and triglycerides. The optimal pH and temperature for recombinant AfeH were 9.0 and 50°C, respectively; the enzyme was activated by Co(2+) and inhibited by Ca(2+), Zn(2+), Ba(2+). AfeH was inhibited strongly by phenylmethylsulfonyl and SDS and weakly by dimethyl sulfoxide. PMID:25812814

  8. An Amphipathic Undecapeptide with All d-Amino Acids Shows Promising Activity against Colistin-Resistant Strains of Acinetobacter baumannii and a Dual Mode of Action.

    PubMed

    Oddo, Alberto; Thomsen, Thomas T; Kjelstrup, Susanne; Gorey, Ciara; Franzyk, Henrik; Frimodt-Møller, Niels; Løbner-Olesen, Anders; Hansen, Paul R

    2016-01-01

    Multiple strains of Acinetobacter baumannii have developed multidrug resistance (MDR), leaving colistin as the only effective treatment. The cecropin-α-melittin hybrid BP100 (KKLFKKILKYL-NH2) and its analogs have previously shown activity against a wide array of plant and human pathogens. In this study, we investigated the in vitro antibacterial activities of 18 BP100 analogs (four known and 14 new) against the MDR A. baumannii strain ATCC BAA-1605, as well as against a number of other clinically relevant human pathogens. Selected peptides were further evaluated against strains of A. baumannii that acquired resistance to colistin due to mutations of the lpxC, lpxD, pmrA, and pmrB genes. The novel analogue BP214 showed antimicrobial activity at 1 to 2 μM and a hemolytic 50% effective concentration (EC50) of >150 μM. The lower activity of its enantiomer suggests a dual, specific and nonspecific mode of action. Interestingly, colistin behaved antagonistically to BP214 when pmrAB and lpxC mutants were challenged. PMID:26574005

  9. Purification and Characterization of Catechol 1,2-Dioxygenase from Acinetobacter sp. Y64 Strain and Escherichia coli Transformants.

    PubMed

    Lin, J; Milase, R N

    2015-12-01

    This study intends to purify and characterize catechol 1,2-dioxygenase (C1,2O) of phenol-degrading Acinetobacter sp. Y64 and of E. coli transformant. Acinetobacter sp. Y64 was capable of degrading 1000 mg/L of phenol within 14 ± 2 h at 30 °C, 160 rpm and pH of 7. One C1,2O of 36 kDa was purified using ammonium sulphate precipitation and Hitrap QFF column chromatograph with 49% recovery and a 10.6-fold increase in purity. Purified Y64 C1,2O had temperature and pH optimum at 37 °C and pH 7.7 respectively with the Michaelis constant of 17.53 µM and the maximal velocity of 1.95 U/mg, respectively. The presence of Fe(3+) or Fe(2+) enhanced the activity of Y64 C1,2O while other compounds such as Ca(2+), and EDTA had an inhibitory effect. 80% of C1,2O activity remained using 4-nitrocatechol as substrate while 2% remained using 3-methylcatechol compared with that using catechol. Y64 catA gene encoding C1,2O was amplified using PCR cloned into pET22b vector and expressed in Escherichia coli BL21 DE3 (pLysS) after transformation. Purified and cloned Y64 C1,2O show no significant differences in the biochemical properties. The phylogenetic tree based on the protein sequences indicates that these C1,2Os possess a common ancestry. PMID:26563518

  10. Structure of a short-chain dehydrogenase/reductase (SDR) within a genomic island from a clinical strain of Acinetobacter baumannii

    SciTech Connect

    Shah, Bhumika S. Tetu, Sasha G.; Harrop, Stephen J.; Paulsen, Ian T.; Mabbutt, Bridget C.

    2014-09-25

    The structure of a short-chain dehydrogenase encoded within genomic islands of A. baumannii strains has been solved to 2.4 Å resolution. This classical SDR incorporates a flexible helical subdomain. The NADP-binding site and catalytic side chains are identified. Over 15% of the genome of an Australian clinical isolate of Acinetobacter baumannii occurs within genomic islands. An uncharacterized protein encoded within one island feature common to this and other International Clone II strains has been studied by X-ray crystallography. The 2.4 Å resolution structure of SDR-WM99c reveals it to be a new member of the classical short-chain dehydrogenase/reductase (SDR) superfamily. The enzyme contains a nucleotide-binding domain and, like many other SDRs, is tetrameric in form. The active site contains a catalytic tetrad (Asn117, Ser146, Tyr159 and Lys163) and water molecules occupying the presumed NADP cofactor-binding pocket. An adjacent cleft is capped by a relatively mobile helical subdomain, which is well positioned to control substrate access.

  11. Isolation, identification and diesel-oil biodegradation capacities of indigenous hydrocarbon-degrading strains of Cellulosimicrobium cellulans and Acinetobacter baumannii from tarball at Terengganu beach, Malaysia.

    PubMed

    Nkem, Bruno Martins; Halimoon, Normala; Yusoff, Fatimah Md; Johari, Wan Lufti Wan; Zakaria, Mohamad Pauzi; Medipally, Srikanth Reddy; Kannan, Narayanan

    2016-06-15

    In this study, we isolated two indigenous hydrocarbon-degrading bacteria from tarball found in Rhu Sepuluh beach, Terengganu, Malaysia. These bacteria were identified based on their physiological characteristic and 16S rRNA gene sequence analysis, and they showed 99% similarity with Cellulosimicrobium cellulans DSM 43879 and Acinetobacter baumannii ATCC 19606 respectively. Their hydrocarbon-degrading capabilities were tested using diesel-oil as sole carbon source. Results analysed using GC-MS, showed diesel-oil alkanes were degraded an average 64.4% by C. cellulans and 58.1% by A. baumannii with medium optical density reaching 0.967 (C. cellulans) and 1.515 (A. baumannii) in minimal salt media at 32°C for 10days. Individual diesel-oil alkanes were degraded between 10%-95.4% by C. cellulans and 0.2%-95.9% by A. baumannii. Both strains utilized diesel-oil for growth. The study suggests both strains are part of indigenous hydrocarbon-degrading bacteria in tarball with potential for bioremediation of oil-polluted marine environment. PMID:27085593

  12. The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner

    PubMed Central

    Richmond, Grace E.; Evans, Laura P.; Anderson, Michele J.; Wand, Matthew E.; Bonney, Laura C.; Ivens, Alasdair; Chua, Kim Lee; Webber, Mark A.; Sutton, J. Mark; Peterson, Marnie L.

    2016-01-01

    ABSTRACT The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery. PMID:27094331

  13. Potent Synergy and Sustained Bactericidal Activity of a Vancomycin-Colistin Combination versus Multidrug-Resistant Strains of Acinetobacter baumannii ▿ †

    PubMed Central

    Gordon, N. C.; Png, K.; Wareham, D. W.

    2010-01-01

    Multidrug-resistant Acinetobacter baumannii (MDRAB) presents an increasing challenge to health care. Although colistin has been used as a treatment of last resort, there is concern regarding its potential for toxicity and the emergence of resistance. The mechanism of action of colistin, however, raises the possibility of synergy with compounds that are normally inactive against Gram-negative organisms by virtue of the impermeability of the bacterial outer membrane. This study evaluated the effect of colistin combined with vancomycin on 5 previously characterized epidemic strains and 34 MDRAB clinical isolates by using time-kill assay, microdilution, and Etest methods. For all the isolates, significant synergy was demonstrated by at least one method, with reductions in the MIC of vancomycin from >256 μg/ml to ≤48 μg/ml for all strains after exposure to 0.5 μg/ml colistin. This raises the possibility of the clinical use of this combination for infections due to MDRAB, with the potential for doses lower than those currently used. PMID:20876375

  14. Role of Acinetobactin-Mediated Iron Acquisition Functions in the Interaction of Acinetobacter baumannii Strain ATCC 19606T with Human Lung Epithelial Cells, Galleria mellonella Caterpillars, and Mice

    PubMed Central

    Gaddy, Jennifer A.; Arivett, Brock A.; McConnell, Michael J.; López-Rojas, Rafael; Pachón, Jerónimo

    2012-01-01

    Acinetobacter baumannii, which causes serious infections in immunocompromised patients, expresses high-affinity iron acquisition functions needed for growth under iron-limiting laboratory conditions. In this study, we determined that the initial interaction of the ATCC 19606T type strain with A549 human alveolar epithelial cells is independent of the production of BasD and BauA, proteins needed for acinetobactin biosynthesis and transport, respectively. In contrast, these proteins are required for this strain to persist within epithelial cells and cause their apoptotic death. Infection assays using Galleria mellonella larvae showed that impairment of acinetobactin biosynthesis and transport functions significantly reduces the ability of ATCC 19606T cells to persist and kill this host, a defect that was corrected by adding inorganic iron to the inocula. The results obtained with these ex vivo and in vivo approaches were validated using a mouse sepsis model, which showed that expression of the acinetobactin-mediated iron acquisition system is critical for ATCC 19606T to establish an infection and kill this vertebrate host. These observations demonstrate that the virulence of the ATCC 19606T strain depends on the expression of a fully active acinetobactin-mediated system. Interestingly, the three models also showed that impairment of BasD production results in an intermediate virulence phenotype compared to those of the parental strain and the BauA mutant. This observation suggests that acinetobactin intermediates or precursors play a virulence role, although their contribution to iron acquisition is less relevant than that of mature acinetobactin. PMID:22232188

  15. Molecular Epidemiology and Drug Resistance of Acinetobacter baumannii Isolated from Hospitals in Southern Poland: ICU as a Risk Factor for XDR Strains.

    PubMed

    Chmielarczyk, Agnieszka; Pilarczyk-Żurek, Magdalena; Kamińska, Wanda; Pobiega, Monika; Romaniszyn, Dorota; Ziółkowski, Grzegorz; Wójkowska-Mach, Jadwiga; Bulanda, Małgorzata

    2016-06-01

    The objectives of the present study were to investigate the carbapenemase and metallo-beta-lactamase genes of Acinetobacter baumannii clinical isolates by polymerase chain reaction (PCR) and real time PCR and to determine the molecular epidemiology of the strains using the DiversiLab tool. From these data, correlations between drug resistance, resistance genes, and epidemiological clones may be revealed. The study was conducted on 125 A. baumannii collected over the 2013 year. The majority of the isolates from both intensive care unit (ICU) and non-ICU cases originated from pneumonia infections (79.2%), isolates from blood infections accounted for 17.6% and 3.2% were from meningitis infections. In the ICU cases compared with the non-ICU cases, bloodstream infections were more frequently diagnosed (19.2% vs. 11.5%). Sixty percent of A. baumannii strains were resistant to all the antimicrobials tested with the exception of colistin. All strains were susceptible to colistin and polymyxin B. Extensively drug-resistant (XDR) strains accounted for 80.8% of the isolates tested and these XDR strains were more frequently isolated from ICU cases than from non-ICU cases (93.9% vs. 30.8%). Among the 101 isolates of A. baumannii exhibiting the XDR pattern of resistance, 80 possessed the blaOXA-24 gene and 29 had the blaOXA-23 gene. Only two isolates possessed the blaVIM gene. The presence of the ISAba1element was confirmed among 10 strains from patients hospitalized in the ICU. Using repetitive extragenic palindromic sequence PCR (DiversiLab typing), six clones and 12 unique strains were identified, of which two clones dominated. Most isolates belonging to clone 1 (66.7%) and clone 2 (85.5%) were susceptible only to colistin. In summary, it is clear from our findings and those of other studies that carbapenem resistance among A. baumannii strains presents a serious clinical problem worldwide. Furthermore, the presence of XDR international clone II in ICUs poses a potential risk

  16. Analysis of the role of the LH92_11085 gene of a biofilm hyper-producing Acinetobacter baumannii strain on biofilm formation and attachment to eukaryotic cells

    PubMed Central

    Álvarez-Fraga, Laura; Pérez, Astrid; Rumbo-Feal, Soraya; Merino, María; Vallejo, Juan Andrés; Ohneck, Emily J.; Edelmann, Richard E.; Beceiro, Alejandro; Vázquez-Ucha, Juan C.; Valle, Jaione; Actis, Luis A.; Bou, Germán; Poza, Margarita

    2016-01-01

    ABSTRACT Acinetobacter baumannii is a nosocomial pathogen that has a considerable ability to survive in the hospital environment partly due to its capacity to form biofilms. The first step in the process of establishing an infection is adherence of the bacteria to target cells. Chaperone-usher pili assembly systems are involved in pilus biogenesis pathways that play an important role in adhesion to host cells and tissues as well as medically relevant surfaces. After screening a collection of strains, a biofilm hyper-producing A. baumannii strain (MAR002) was selected to describe potential targets involved in pathogenicity. MAR002 showed a remarkable ability to form biofilm and attach to A549 human alveolar epithelial cells. Analysis of MAR002 using transmission electron microscopy (TEM) showed a significant presence of pili on the bacterial surface. Putative protein-coding genes involved in pili formation were identified based on the newly sequenced genome of MAR002 strain (JRHB01000001/2 or NZ_JRHB01000001/2). As assessed by qRT-PCR, the gene LH92_11085, belonging to the operon LH92_11070-11085, is overexpressed (ca. 25-fold more) in biofilm-associated cells compared to exponential planktonic cells. In the present work we investigate the role of this gene on the MAR002 biofilm phenotype. Scanning electron microscopy (SEM) and biofilm assays showed that inactivation of LH92_11085 gene significantly reduced bacterial attachment to A549 cells and biofilm formation on plastic, respectively. TEM analysis of the LH92_11085 mutant showed the absence of long pili formations normally present in the wild-type. These observations indicate the potential role this LH92_11085 gene could play in the pathobiology of A baumannii. PMID:26854744

  17. Analysis of the role of the LH92_11085 gene of a biofilm hyper-producing Acinetobacter baumannii strain on biofilm formation and attachment to eukaryotic cells.

    PubMed

    Álvarez-Fraga, Laura; Pérez, Astrid; Rumbo-Feal, Soraya; Merino, María; Vallejo, Juan Andrés; Ohneck, Emily J; Edelmann, Richard E; Beceiro, Alejandro; Vázquez-Ucha, Juan C; Valle, Jaione; Actis, Luis A; Bou, Germán; Poza, Margarita

    2016-05-18

    Acinetobacter baumannii is a nosocomial pathogen that has a considerable ability to survive in the hospital environment partly due to its capacity to form biofilms. The first step in the process of establishing an infection is adherence of the bacteria to target cells. Chaperone-usher pili assembly systems are involved in pilus biogenesis pathways that play an important role in adhesion to host cells and tissues as well as medically relevant surfaces. After screening a collection of strains, a biofilm hyper-producing A. baumannii strain (MAR002) was selected to describe potential targets involved in pathogenicity. MAR002 showed a remarkable ability to form biofilm and attach to A549 human alveolar epithelial cells. Analysis of MAR002 using transmission electron microscopy (TEM) showed a significant presence of pili on the bacterial surface. Putative protein-coding genes involved in pili formation were identified based on the newly sequenced genome of MAR002 strain (JRHB01000001/2 or NZ_JRHB01000001/2). As assessed by qRT-PCR, the gene LH92_11085, belonging to the operon LH92_11070-11085, is overexpressed (ca. 25-fold more) in biofilm-associated cells compared to exponential planktonic cells. In the present work we investigate the role of this gene on the MAR002 biofilm phenotype. Scanning electron microscopy (SEM) and biofilm assays showed that inactivation of LH92_11085 gene significantly reduced bacterial attachment to A549 cells and biofilm formation on plastic, respectively. TEM analysis of the LH92_11085 mutant showed the absence of long pili formations normally present in the wild-type. These observations indicate the potential role this LH92_11085 gene could play in the pathobiology of A baumannii. PMID:26854744

  18. Antibiotic susceptibility and molecular epidemiology of Acinetobacter calcoaceticus–baumannii complex strains isolated from a referral hospital in northern Vietnam

    PubMed Central

    Van, Trang Dinh; Dinh, Quynh-Dao; Vu, Phu Dinh; Nguyen, Trung Vu; Pham, Ca Van; Dao, Trinh Tuyet; Phung, Cam Dac; Hoang, Ha Thu Thi; Tang, Nga Thi; Do, Nga Thuy; Nguyen, Kinh Van; Wertheim, Heiman

    2014-01-01

    Acinetobacter calcoaceticus–baumannii complex is a common cause of hospital-acquired infections (HAIs) globally, remarkable for its high rate of antibiotic resistance, including to carbapenems. There are few data on the resistance of A. baumannii in Vietnam, which are essential for developing evidence-based treatment guidelines for HAIs. Antibiotic susceptibility testing was conducted by VITEK®2, and pulsed-field gel electrophoresis (PFGE) was performed on 66 clinical A. baumannii complex isolates recovered during 2009 at the National Hospital of Tropical Diseases (NHTD), a referral hospital in Hanoi, Vietnam. Basic demographic and clinical data were collected and analysed using descriptive statistics. Most isolates came from lower respiratory tract specimens (59; 89.4%) from intensive care unit (ICU) patients [64/65 (98.5%) with available data] who had been admitted to NHTD for ≥2 days [42/46 (91.3%) with available data]. More than 90% of the isolates were resistant to the tested β-lactamase/β-lactamase inhibitors, cephalosporins, carbapenems, fluoroquinolones and trimethoprim/sulfamethoxazole. Moreover, 25.4% (16/63) were resistant to all tested β-lactams, quinolones and aminoglycosides. All isolates remained sensitive to colistin and 58.7% were susceptible to tigecycline. Of the 66 isolates, 49 could be classified into eight PFGE types (A–H). Every PFGE type, except D, had cluster(s) of three or more isolates with a temporal relationship. In conclusion, these data suggest a significant rise in A. baumannii antibiotic resistance in Vietnam. Clustering within PFGE types supports cross-transmission of A. baumannii within the ICU at NHTD. Increased research and resources in optimising treatment, infection control and antibiotic stewardship are needed. PMID:25540720

  19. Role of OXA-23 and AdeABC efflux pump for acquiring carbapenem resistance in an Acinetobacter baumannii strain carrying the blaOXA-66 gene.

    PubMed

    Lee, Yangsoon; Yum, Jong Hwa; Kim, Chang-Ki; Yong, Dongeun; Jeon, Eun Hee; Jeong, Seok Hoon; Ahn, Jee Young; Lee, Kyungwon

    2010-01-01

    This study was performed to determine the mechanisms for acquiring carbapenem resistance in six clinical isolates of Acinetobacter baumannii. All isolates showed similar SmaI-macrorestriction patterns with less than 3 band differences by PFGE. The isolates showed a high level resistance (>32 mg/L) to both imipenem and meropenem by Etest. Phe-Arg-beta-naphthylamide lowered the MICs of carbapenems. Real-time PCR experiments showed that expression levels of the adeB gene in the six A. baumannii isolates were 10- to 40-times higher than those of imipenem-susceptible strains. Direct sequencing of PCR products showed that all isolates carried the bla(OXA-23) gene, which was preceded by ISAba1. The bla(OXA-23) probe hybridized with approximately 500-kb I-CeuI chromosomal fragments, but not with a plasmid. These findings suggest that overexpression of the AdeABC efflux pump as well as chromosome-borne OXA-23 may play a role in acquiring carbapenem resistance in our A. baumannii isolates. PMID:20124329

  20. Complete genome sequence of hypervirulent and outbreak-associated Acinetobacter baumannii strain LAC-4: epidemiology, resistance genetic determinants and potential virulence factors

    PubMed Central

    Ou, Hong-Yu; Kuang, Shan N.; He, Xinyi; Molgora, Brenda M.; Ewing, Peter J.; Deng, Zixin; Osby, Melanie; Chen, Wangxue; Xu, H. Howard

    2015-01-01

    Acinetobacter baumannii is an important human pathogen due to its multi-drug resistance. In this study, the genome of an ST10 outbreak A. baumannii isolate LAC-4 was completely sequenced to better understand its epidemiology, antibiotic resistance genetic determinants and potential virulence factors. Compared with 20 other complete genomes of A. baumannii, LAC-4 genome harbors at least 12 copies of five distinct insertion sequences. It contains 12 and 14 copies of two novel IS elements, ISAba25 and ISAba26, respectively. Additionally, three novel composite transposons were identified: Tn6250, Tn6251 and Tn6252, two of which contain resistance genes. The antibiotic resistance genetic determinants on the LAC-4 genome correlate well with observed antimicrobial susceptibility patterns. Moreover, twelve genomic islands (GI) were identified in LAC-4 genome. Among them, the 33.4-kb GI12 contains a large number of genes which constitute the K (capsule) locus. LAC-4 harbors several unique putative virulence factor loci. Furthermore, LAC-4 and all 19 other outbreak isolates were found to harbor a heme oxygenase gene (hemO)-containing gene cluster. The sequencing of the first complete genome of an ST10 A. baumannii clinical strain should accelerate our understanding of the epidemiology, mechanisms of resistance and virulence of A. baumannii. PMID:25728466

  1. Acinetobacter seifertii Isolated from China

    PubMed Central

    Yang, Yunxing; Wang, Jianfeng; Fu, Ying; Ruan, Zhi; Yu, Yunsong

    2016-01-01

    Abstract Clinical infections caused by Acinetobacter spp. have increasing public health concerns because of their global occurrence and ability to acquire multidrug resistance. Acinetobacter calcoaceticus–Acinetobacter baumannii (ACB) complex encompasses A. calcoaceticus, A. baumannii, A. pittii (formerly genomic species 3), and A nosocomial (formerly genomic species 13TU), which are predominantly responsible for clinical pathogenesis in the Acinetobacter genus. In our previous study, a putative novel species isolated from 385 non-A. baumannii spp. strains based on the rpoB gene phylogenetic tree was reported. Here, the putative novel species was identified as A. seifertii based on the whole-genome phylogenetic tree. A. seifertii was recognized as a novel member of the ACB complex and close to A. baumannii and A. nosocomials. Furthermore, we studied the characteristics of 10 A. seifertii isolates, which were distributed widely in 6 provinces in China and mainly caused infections in the elderly or children. To define the taxonomic status and characteristics, the biochemical reactions, antimicrobial susceptibility testing, pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and whole-genome sequence analysis were performed. The phenotypic characteristics failed to distinguish A. serfertii from other species in the ACB complex. Most of the A. seifertii isolates were susceptible to antibiotics commonly used for nosocomial Acinetobacter spp. infections, but one isolate (strain A362) was resistant to ampicillin/sulbactam, ceftazidime and amikacin. The different patterns of MLST and PFGE suggested that the 10 isolates were not identical and lacked clonal relatedness. Our study reported for the first time the molecular epidemiological and genomic features of widely disseminated A. seifertii in China. These observations could enrich the knowledge of infections caused by non-A. baumannii and may provide a scientific basis for future clinical

  2. Acinetobacter kookii sp. nov., isolated from soil.

    PubMed

    Choi, Ji Young; Ko, Gwangpyo; Jheong, Weonghwa; Huys, Geert; Seifert, Harald; Dijkshoorn, Lenie; Ko, Kwan Soo

    2013-12-01

    Two Gram-stain-negative, non-fermentative bacterial strains, designated 11-0202(T) and 11-0607, were isolated from soil in South Korea, and four others, LUH 13522, LUH 8638, LUH 10268 and LUH 10288, were isolated from a beet field in Germany, soil in the Netherlands, and sediment of integrated fish farms in Malaysia and Thailand, respectively. Based on 16S rRNA, rpoB and gyrB gene sequences, they are considered to represent a novel species of the genus Acinetobacter. Their 16S rRNA gene sequences showed greatest pairwise similarity to Acinetobacter beijerinckii NIPH 838(T) (97.9-98.4 %). They shared highest rpoB and gyrB gene sequence similarity with Acinetobacter johnsonii DSM 6963(T) and Acinetobacter bouvetii 4B02(T) (85.4-87.6 and 78.1-82.7 %, respectively). Strain 11-0202(T) displayed low DNA-DNA reassociation values (<40 %) with the most closely related species of the genus Acinetobacter. The six strains utilized azelate, 2,3-butanediol, ethanol and dl-lactate as sole carbon sources. Cellular fatty acid analyses showed similarities to profiles of related species of the genus Acinetobacter: summed feature 3 (C16 : 1ω7c, C16 : 1ω6c; 24.3-27.2 %), C18 : 1ω9c (19.9-22.1 %), C16 : 0 (15.2-22.0 %) and C12 : 0 (9.2-14.2 %). On the basis of the current findings, it is concluded that the six strains represent a novel species, for which the name Acinetobacter kookii sp. nov. is proposed. The type strain is 11-0202(T) ( = KCTC 32033(T) = JCM 18512(T)). PMID:23950148

  3. Validation of use of whole-cell repetitive extragenic palindromic sequence-based PCR (REP-PCR) for typing strains belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii complex and application of the method to the investigation of a hospital outbreak.

    PubMed Central

    Snelling, A M; Gerner-Smidt, P; Hawkey, P M; Heritage, J; Parnell, P; Porter, C; Bodenham, A R; Inglis, T

    1996-01-01

    Acinetobacter spp. are being reported with increasing frequency as causes of nosocomial infection. In order to identify reservoirs of infection as quickly as possible, a rapid typing method that can differentiate epidemic strains from environmental and nonepidemic strains is needed. In 1993, a cluster of Acinetobacter baumannii isolates from five patients in the adult intensive therapy unit of our tertiary-care teaching hospital led us to develop and optimize a rapid repetitive extragenic palindromic sequence-based PCR (REP-PCR) typing protocol for members of the Acinetobacter calcoaceticus-A. baumannii complex that uses boiled colonies and consensus primers aimed at repetitive extragenic palindromic sequences. Four of the five patient isolates gave the same REP-PCR typing pattern as isolates of A. baumannii obtained from the temperature probe of a Bennett humidifier; the fifth isolate had a unique profile. Disinfection of the probe with 70% ethanol, as recommended by the manufacturer, proved ineffective, as A. baumannii with the same REP-PCR pattern was isolated from it 10 days after cleaning, necessitating a change in our decontamination procedure. Results obtained with REP-PCR were subsequently confirmed by ribotyping. To evaluate the discriminatory power (D) of REP-PCR for typing members of the A. calcoaceticus-A. baumannii complex, compared with that of ribotyping, we have applied both methods to a collection of 85 strains that included representatives of six DNA groups within the complex. Ribotyping using EcoRI digests yielded 53 patterns (D = 0.98), whereas 68 different REP-PCR patterns were observed (D = 0.99). By computer-assisted analysis of gel images, 74 patterns were observed with REP-PCR (D = 1.0). Overall, REP-PCR typing proved to be slightly more discriminatory than ribotyping. Our results indicate that REP-PCR typing used boiled colonies is a simple, rapid, and effective means of typing members of the A. calcoaceticus-A. baumannii complex. PMID

  4. Characterization of an Acinetobacter baumannii lptD Deletion Strain: Permeability Defects and Response to Inhibition of Lipopolysaccharide and Fatty Acid Biosynthesis

    PubMed Central

    Bojkovic, Jade; Richie, Daryl L.; Six, David A.; Rath, Christopher M.; Sawyer, William S.; Hu, Qijun

    2015-01-01

    ABSTRACT Lipid A on the Gram-negative outer membrane (OM) is synthesized in the cytoplasm by the Lpx pathway and translocated to the OM by the Lpt pathway. Some Acinetobacter baumannii strains can tolerate the complete loss of lipopolysaccharide (LPS) resulting from the inactivation of early LPS pathway genes such as lpxC. Here, we characterized a mutant deleted for lptD, which encodes an OM protein that mediates the final translocation of fully synthesized LPS to the OM. Cells lacking lptD had a growth defect comparable to that of an lpxC deletion mutant under the growth conditions tested but were more sensitive to hydrophobic antibiotics, revealing a more significant impact on cell permeability from impaired LPS translocation than from the loss of LPS synthesis. Consistent with this, ATP leakage and N-phenyl-1-naphthylamine (NPN) fluorescence assays indicated a more severe impact of lptD deletion than of lpxC deletion on inner and outer membrane permeability, respectively. Targeted liquid chromatography-mass spectrometry (LCMS) analysis of LPS intermediates from UDP-3-O-R-3-hydroxylauroyl-N-acetyl-α-d-glucosamine through lipid IVA showed that the loss of LptD caused an accumulation of lipid IVA. This suggested that pathway intermediate accumulation or mislocalization caused by the blockage of later LPS pathway steps impacts envelope integrity. Supporting this notion, chemical inhibition of lipid A precursor enzymes, including LpxC and FabB/F, in the lptD deletion strain partially rescued growth and permeability defects. IMPORTANCE New antibiotics to treat Gram-negative bacterial infections are urgently needed. Inhibition of LPS biosynthesis is attractive because this would impact viability and cell permeability. Therefore, a better understanding of this pathway is important, especially in strains such as A. baumannii ATCC 19606, where LPS biosynthesis is not essential in vitro. We show that ATCC 19606 also survives the loss of the final translocation of LPS into

  5. Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex isolated from human clinical specimens.

    PubMed

    Nemec, Alexandr; Krizova, Lenka; Maixnerova, Martina; Sedo, Ondrej; Brisse, Sylvain; Higgins, Paul G

    2015-03-01

    This study aimed to define the taxonomic status of a phenetically distinct group of 16 strains that corresponds to Acinetobacter genomic species 'close to 13TU', a provisional genomic species of the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex recognized by Gerner-Smidt and Tjernberg in 1993. These strains have been isolated in different countries since the early 1990s and were mostly recovered from human clinical specimens. They were compared with 45 reference strains representing the known taxa of the ACB complex using taxonomic methods relevant to the genus Acinetobacter. Based on sequence analysis of the concatenated partial sequences (2976 bp) of seven housekeeping genes, the 16 strains formed a tight and well-supported cluster (intracluster sequence identity of ≥98.4 %) that was clearly separated from the other members of the ACB complex (≤94.7 %). The species status of the group was supported by average nucleotide identity values of ≤91.7 % between the whole genome sequence of representative strain NIPH 973(T) (NCBI accession no. APOO00000000) and those of the other species. In addition, whole-cell matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) MS analyses indicated the distinctness of the group at the protein level. Metabolic and physiological tests revealed several typical features of the group, although they did not allow its reliable differentiation from the other members of the ACB complex. We conclude that the 16 strains represent a distinct novel species, for which we propose the name Acinetobacter seifertii sp. nov. The type strain is NIPH 973(T) ( = CIP 110471(T) = CCUG 34785(T) = CCM 8535(T)). PMID:25563912

  6. Prevalence of ESBL and MBL encoding genes in Acinetobacter baumannii strains isolated from patients of intensive care units (ICU).

    PubMed

    Safari, Marzieh; Mozaffari Nejad, Amir Sasan; Bahador, Abas; Jafari, Rasool; Alikhani, Mohammad Yousef

    2015-07-01

    The aim of this study was to investigate the prevalence of ESBL and MBL encoding genes among A. baumannii isolates. In this cross sectional study, 100 A. baumannii strains were isolated from ICU wards of 3 educational hospitals of Hamadan City, Iran in 2011. Phenotypic identification of the production of ESBLs and MBLs has been carried out by using E-test and DDST methods, respectively. PCR technique was used for amplification of the ESBL and MBL encoding genes, namely: CTX-M, SHV, TEM, OXA-51, VIM-Family, IMP-Family, SPM-1, SIM-1, and GIM-1. Eighty seven (87%), 95 (95%), 98 (98%) and 95 (95%) out of 100 A. baumannii isolates were resistant to imipenem, meropenem, ceftazidime and cefotaxime, respectively. Also, 99% and 7% of the isolates were MBLs and ESBLs produced phenotypically. Thirty (30%), 20 (20%) and 58 (58%) out of 100 A. baumannii isolates have been confirmed to harbor the bla VIM-family, TEM and SHV genes, respectively. Our results show no significant relationship between the detected gens with production of MBLs and ESBLs in spite of high prevalence of MBL encoding and drug resistant A. baumannii. Probably some other genes rather than what we studied are involved in phenotypic production of MBLs and ESBLs and subsequent drug resistance in Hamadan area, Iran. PMID:26150748

  7. Identification of 50 Class D β-Lactamases and 65 Acinetobacter-Derived Cephalosporinases in Acinetobacter spp.

    PubMed Central

    Périchon, Bruno; Goussard, Sylvie; Walewski, Violaine; Krizova, Lenka; Cerqueira, Gustavo; Murphy, Cheryl; Feldgarden, Michael; Wortman, Jennifer; Clermont, Dominique

    2014-01-01

    Whole-genome sequencing of a collection of 103 Acinetobacter strains belonging to 22 validly named species and another 16 putative species allowed detection of genes for 50 new class D β-lactamases and 65 new Acinetobacter-derived cephalosporinases (ADC). All oxacillinases (OXA) contained the three typical motifs of class D β-lactamases, STFK, (F/Y)GN, and K(S/T)G. The phylogenetic tree drawn from the OXA sequences led to an increase in the number of OXA groups from 7 to 18. The topologies of the OXA and RpoB phylogenetic trees were similar, supporting the ancient acquisition of blaOXA genes by Acinetobacter species. The class D β-lactamase genes appeared to be intrinsic to several species, such as Acinetobacter baumannii, Acinetobacter pittii, Acinetobacter calcoaceticus, and Acinetobacter lwoffii. Neither blaOXA-40/143- nor blaOXA-58-like genes were detected, and their origin remains therefore unknown. The phylogenetic tree analysis based on the alignment of the sequences deduced from blaADC revealed five main clusters, one containing ADC belonging to species closely related to A. baumannii and the others composed of cephalosporinases from the remaining species. No indication of blaOXA or blaADC transfer was observed between distantly related species, except for blaOXA-279, possibly transferred from Acinetobacter genomic species 6 to Acinetobacter parvus. Analysis of β-lactam susceptibility of seven strains harboring new oxacillinases and cloning of the corresponding genes in Escherichia coli and in a susceptible A. baumannii strain indicated very weak hydrolysis of carbapenems. Overall, this study reveals a large pool of β-lactamases in different Acinetobacter spp., potentially transferable to pathogenic strains of the genus. PMID:24277043

  8. Genotypic and Phenotypic Correlations of Multidrug-Resistant Acinetobacter baumannii-A. calcoaceticus Complex Strains Isolated from Patients at the National Naval Medical Center

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acinetobacter baumannii-calcoaceticus complex (ABC) infections have complicated the care of U.S. combat casualties. In this study, 102 ABC isolates from wounded soldiers treated at National Naval Medical Center (NNMC) were characterized by phenotype and genotype to identify clones in this population...

  9. Acinetobacter Pneumonia: A Review

    PubMed Central

    Hartzell, Joshua D.; Kim, Andrew S.; Kortepeter, Mark G.; Moran, Kimberly A.

    2007-01-01

    Acinetobacter species are becoming a major cause of nosocomial infections, including hospital-acquired and ventilator-associated pneumonia. Acinetobacter species have become increasingly resistant to antibiotics over the past several years and currently present a significant challenge in treating these infections. Physicians now rely on older agents, such as polymyxins (colistin), for treatment. This paper reviews the epidemiology, treatment, and prevention of this emerging pathogen. PMID:18092011

  10. Multidrug Resistant Acinetobacter

    PubMed Central

    Manchanda, Vikas; Sanchaita, Sinha; Singh, NP

    2010-01-01

    Emergence and spread of Acinetobacter species, resistant to most of the available antimicrobial agents, is an area of great concern. It is now being frequently associated with healthcare associated infections. Literature was searched at PUBMED, Google Scholar, and Cochrane Library, using the terms ‘Acinetobacter Resistance, multidrug resistant (MDR), Antimicrobial Therapy, Outbreak, Colistin, Tigecycline, AmpC enzymes, and carbapenemases in various combinations. The terms such as MDR, Extensively Drug Resistant (XDR), and Pan Drug Resistant (PDR) have been used in published literature with varied definitions, leading to confusion in the correlation of data from various studies. In this review various mechanisms of resistance in the Acinetobacter species have been discussed. The review also probes upon the current therapeutic options, including combination therapies available to treat infections due to resistant Acinetobacter species in adults as well as children. There is an urgent need to enforce infection control measures and antimicrobial stewardship programs to prevent the further spread of these resistant Acinetobacter species and to delay the emergence of increased resistance in the bacteria. PMID:20927292

  11. Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas.

    PubMed

    Gulati, Arvind; Sharma, Natasha; Vyas, Pratibha; Sood, Swati; Rahi, Praveen; Pathania, Vijaylata; Prasad, Ramdeen

    2010-11-01

    An efficient phosphate-solubilizing plant growth-promoting Acinetobacter rhizosphaerae strain BIHB 723 exhibited significantly higher solubilization of tricalcium phosphate (TCP) than Udaipur rock phosphate (URP), Mussoorie rock phosphate (MRP) and North Carolina rock phosphate (NCRP). Qualitative and quantitative differences were discerned in the gluconic, oxalic, 2-keto gluconic, lactic, malic and formic acids during the solubilization of various inorganic phosphates by the strain. Gluconic acid was the main organic acid produced during phosphate solubilization. Formic acid production was restricted to TCP solubilization and oxalic acid production to the solubilization of MRP, URP and NCRP. A significant increase in plant height, shoot fresh weight, shoot dry weight, root length, root dry weight, and root, shoot and soil phosphorus (P) contents was recorded with the inoculated treatments over the uninoculated NP(0)K or NP(TCP)K treatments. Plant growth promotion as a function of phosphate solubilization suggested that the use of bacterial strain would be a beneficial addition to the agriculture practices in TCP-rich soils in reducing the application of phosphatic fertilizers. PMID:20821196

  12. Acinetobacter junii as an aetiological agent of corneal ulcer.

    PubMed

    Broniek, G; Langwińska-Wośko, E; Szaflik, J; Wróblewska, M

    2014-12-01

    Rods of the Acinetobacter genus are present mainly in the external environment (e.g. water, soil) and in animals, while in humans they may comprise physiological flora. The main pathogenic species is Acinetobacter baumannii complex, which constitutes a common cause of nosocomial infections, particularly in patients with underlying diseases and risk factors (e.g. prior broad-spectrum antibiotic therapy, malignancy, central venous catheter, mechanical ventilation); however, infections of the eye caused by strains of Acinetobacter spp. are very rare. We report a unique case of community-acquired corneal ulcer caused by Acinetobacter non-baumannii (possibly A. junii), in a patient with no risk factors identified. The case highlights the need for obtaining a sample from the cornea for bacteriological culture in the case of suspected ophthalmic infection as identification of the pathogen, and assessment of its susceptibility profile enables proper antibiotic therapy, improves the outcome and may constitute an eyesight-saving management. PMID:25056128

  13. Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa

    PubMed Central

    Korneev, Kirill V.; Arbatsky, Nikolay P.; Molinaro, Antonio; Palmigiano, Angelo; Shaikhutdinova, Rima Z.; Shneider, Mikhail M.; Pier, Gerald B.; Kondakova, Anna N.; Sviriaeva, Ekaterina N.; Sturiale, Luisa; Garozzo, Domenico; Kruglov, Andrey A.; Nedospasov, Sergei A.; Drutskaya, Marina S.; Knirel, Yuriy A.; Kuprash, Dmitry V.

    2015-01-01

    Toll-like receptor 4 (TLR4) is required for activation of innate immunity upon recognition of lipopolysaccharide (LPS) of Gram-negative bacteria. The ability of TLR4 to respond to a particular LPS species is important since insufficient activation may not prevent bacterial growth while excessive immune reaction may lead to immunopathology associated with sepsis. Here, we investigated the biological activity of LPS from Burkholderia mallei that causes glanders, and from the two well-known opportunistic pathogens Acinetobacter baumannii and Pseudomonas aeruginosa (causative agents of nosocomial infections). For each bacterial strain, R-form LPS preparations were purified by hydrophobic chromatography and the chemical structure of lipid A, an LPS structural component, was elucidated by HR-MALDI-TOF mass spectrometry. The biological activity of LPS samples was evaluated by their ability to induce production of proinflammatory cytokines, such as IL-6 and TNF, by bone marrow-derived macrophages. Our results demonstrate direct correlation between the biological activity of LPS from these pathogenic bacteria and the extent of their lipid A acylation. PMID:26635809

  14. [Problem of treatment for pyo-inflammatory complications caused by Acinetobacter].

    PubMed

    Bogomolova, N S; Bol'shakov, L V; Kuznetsova, S M

    2014-01-01

    The article deals with analysis of a detection frequency and antibacterial treatment resistance of Acinetobacter spp.of different species affiliation. Strains of bacteria detected in patients with pyo-inflammatory complications after surgeries (period from 2010 to 2012) were involved in the study 137 strains of Acinetobacter spp. were detected and studied Fraction of Acinetobacter spp. in 2010, 2011 and 2012 was 2.3, 3 and 3.4% respectively. Fraction of P. aeruginosain all non-fermentative Gram-negative bacteria (NFGNB) decreased by 120% and fraction of Acinetobacter spp. increased by 200-250%. Acinetobacter spp. detection frequency was not significantly changed in the period from 2006 to 2012. However the fraction of Acinetobacter spp. in NFGNB increased by 150% and was 29% in 2012. Detection frequency of A. baumanii sharply increased in 2012. A study of antibacterial treatment resistance of Acinetobacter spp. (10 antibacterial medicines) showed that Polymyxin B and E (Colistin) was the most effective medicine for A. baumanii and A. calcoaceticus infection. 85-95% of Acinetobacter spp.strains kept sensitivity to this antibacterial medicine. 66-88.9% of A. baumanii strains, 66.7-81.8% of A. alcoaceticus and 66.6% of other Acinetobacter spp. were sensitive to Tigecycline. Dioxidine effectiveness was close to Tigecycline in 66.7-80% of A. baumanii strains. 85-100% of A. calcoaceticus strains were sensitive to Dioxidine. There is a trend of decreasing of A. baumanii sensitivity to Carbapenems by 200%. Fraction of strains sensitive to Meropenem and Imipenem in 2012 was 21.4% and 16.7% respectively. All studied strains of A. lwoffi and A. haemolyticus kept sensitivity to Carbapenems. In 2012 23.8% of A. baumanii and 50% of A. calcoaceticus strains were sensitivity to Amikacin, meanwhile A. lwoffi and A. haemolyticus were not sensitive to this medicine. 31.3% of A. baumanii and 50% of A. calcoaceticus strains were sensitive to Ceftazidime/Sulbactam. 5.3% of A. baumanii

  15. Occurrence of High Catalase-containing Acinetobacter in Spacecraft Assembly Facilities

    NASA Astrophysics Data System (ADS)

    McCoy, K. B.; Derecho, I.; La Duc, M. T.; Vaishampayan, P.; Venkateswaran, K. J.; Mogul, R.

    2010-04-01

    In summary, the measurement of high catalase specific activity values for spacecraft-associated Acinetobacter strains is potentially the result of adaptation towards the harsh conditions of the clean rooms and assembly process.

  16. Efflux Pump Inhibitor Phenylalanine-Arginine Β-Naphthylamide Effect on the Minimum Inhibitory Concentration of Imipenem in Acinetobacter baumannii Strains Isolated From Hospitalized Patients in Shahid Motahari Burn Hospital, Tehran, Iran

    PubMed Central

    Gholami, Mehrdad; Hashemi, Ali; Hakemi-Vala, Mojdeh; Goudarzi, Hossein; Hallajzadeh, Masoumeh

    2015-01-01

    Background: Acinetobacter baumannii has emerged as a highly troublesome pathogen and a leading cause of mortality and morbidity among hospitalized burn patients. Objectives: The aims of this study were to determine the frequency of the AdeABC genes and the role of the efflux pump (s) in the imipenem resistance of A. baumannii strains isolated from burn patients. Materials and Methods: This study was conducted on 60 A. baumannii isolates collected from 240 wound samples of burn patients admitted to the Burn Unit of Shahid Motahari Burn hospital, Tehran, Iran. Antibiotic susceptibility tests were performed using the Kirby-Bauer disc diffusion and broth microdilution according to the clinical and laboratory standards institute (CLSI) guidelines. The activity of the efflux pump was evaluated using the efflux pump inhibitor, the phenylalanine-arginine Β-naphthylamide (PAΒN). The AdeABC genes were detected by polymerase chain reaction (PCR) and sequencing. Results: In this study, 100% of the isolates were resistant to cefotaxime, ceftazidime, ceftriaxone, ciprofloxacin, cefepime, piperacillin, meropenem, co-trimoxazole, and piperacillin/tazobactam; 56 (94%) to gentamicin; 50 (81%) to amikacin; 58 (97%) to imipenem; and 45 (76%) to tetracycline. Additionally,all the isolates were susceptible to colistin. The susceptibility of the strains to imipenem was highly increased in the presence of the efflux pump inhibitor such that for 58 (96.6%) of the isolates, the PAΒN reduced the minimum inhibitory concentrations (MIC) by 4- to 64-fold. The adeA and adeB genes were detected in 60 (100%) of the isolates, and the adeC gene was present in 51 (85%). Conclusions: The efflux pump may play a role in antibiotic resistance in A. baumannii isolates. The ability of A. baumannii isolates to acquire drug resistance by the efflux pump mechanism is a concern. Thus, new strategies are required in order to eliminate the efflux transport activity from resistant A. baumannii isolates causing

  17. Multidrug-Resistant Acinetobacter baumannii in Veterinary Clinics, Germany

    PubMed Central

    Prenger-Berninghoff, Ellen; Weiss, Reinhard; van der Reijden, Tanny; van den Broek, Peterhans; Baljer, Georg; Dijkshoorn, Lenie

    2011-01-01

    An increase in prevalence of multidrug-resistant Acinetobacter spp. in hospitalized animals was observed at the Justus-Liebig-University (Germany). Genotypic analysis of 56 isolates during 2000–2008 showed 3 clusters that corresponded to European clones I–III. Results indicate spread of genotypically related strains within and among veterinary clinics in Germany. PMID:21888812

  18. Acinetobacter plantarum sp. nov. isolated from wheat seedlings plant.

    PubMed

    Du, Juan; Singh, Hina; Yu, Hongshan; Jin, Feng-Xie; Yi, Tae-Hoo

    2016-07-01

    Strain THG-SQM11(T), a Gram-negative, aerobic, non-motile, coccus-shaped bacterium, was isolated from wheat seedlings plant in P. R. China. Strain THG-SQM11(T) was closely related to members of the genus Acinetobacter and showed the highest 16S rRNA sequence similarities with Acinetobacter junii (97.9 %) and Acinetobacter kookii (96.1 %). DNA-DNA hybridization showed 41.3 ± 2.4 % DNA reassociation with A. junii KCTC 12416(T). Chemotaxonomic data revealed that strain THG-SQM11(T) possesses ubiquinone-9 as the predominant respiratory quinone, C18:1 ω9c, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), and C16:0 as the major fatty acids. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylcholine. The DNA G+C content was 41.7 mol %. These data, together with phenotypic characterization, suggest that the isolate represents a novel species, for which the name Acinetobacter plantarum sp. nov. is proposed, with THG-SQM11(T) as the type strain (=CCTCC AB 2015123(T) =KCTC 42611(T)). PMID:26869166

  19. First report of OXA-72 producing Acinetobacter baumannii in Romania.

    PubMed

    Georgescu, M; Gheorghe, I; Dudu, A; Czobor, I; Costache, M; Cristea, V-C; Lazăr, V; Chifiriuc, M C

    2016-09-01

    This is the first report of an OXA-72-producing Acinetobacter baumannii strain in Romania, isolated from chronic leg ulcer samples. Identification of the strain was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Presence of carbapenem resistance genes was investigated by PCR and sequencing. Our data support the spread of the bla OXA-72 gene in Eastern Europe. PMID:27547405

  20. The first cases of human bacteremia caused by Acinetobacter seifertii in Japan.

    PubMed

    Kishii, Kozue; Kikuchi, Ken; Tomida, Junko; Kawamura, Yoshiaki; Yoshida, Atsushi; Okuzumi, Katsuko; Moriya, Kyoji

    2016-05-01

    Acinetobacter seifertii, a novel species of Acinetobacter, was first reported in 2015. A. seifertii strains were isolated from human clinical specimens (blood, respiratory tract, and ulcer) and hospital environments. Here, we report the first cases of bacteremia caused by A. seifertii in patients with catheter-related bloodstream infection in Japan. The patients favorably recovered, without any complications, after removal of the peripheral intravenous catheters and administration of antibiotics. The pathogens were initially identified as Acinetobacter baumannii, using phenotypic methods and the MicroScan Walkaway System; however, rpoB gene sequence analysis indicated 99.54% similarity to A. seifertii. Moreover, antimicrobial susceptibility testing revealed that one of the strains was not susceptible to gentamicin and ceftazidime. Our report shows that Acinetobacter species other than A. baumannii can also cause nosocomial infections and that accurate methods for the identification of causative agents should be developed. PMID:26778251

  1. Detection of aac(6')-I genes in amikacin-resistant Acinetobacter spp. by PCR.

    PubMed Central

    Ploy, M C; Giamarellou, H; Bourlioux, P; Courvalin, P; Lambert, T

    1994-01-01

    The distribution of aac(6')-I genes in 62 strains of Acinetobacter spp. resistant to amikacin, netilmicin, and tobramycin and susceptible to gentamicin, a phenotype compatible with synthesis of an AAC(6')-I enzyme, was studied by PCR and by DNA hybridization. Both methods gave similar results. Among the 51 Acinetobacter baumannii strains, aac(6')-Ib was found in 19 isolates and aac(6')-Ih was found in the remaining strains. The aac(6')-Ig gene was present in all 10 A. haemolyticus strains studied and was detected only in this species. A pair of degenerate oligonucleotides complementary to conserved regions of aac(6')-Ic, -Id, -If, -Ig, and -Ih enabled detection of these genes and also of aac(6')-Ij, recently recognized in Acinetobacter sp. strain 13. Images PMID:7695286

  2. Draft Genome Sequences of Acinetobacter baumannii Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-01-01

    Acinetobacter baumannii is a Gram-negative bacterium capable of causing hospital-acquired infections that has been grouped with Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species as ESKAPE pathogens because of their extensive drug resistance phenotypes and increasing risk to human health. Twenty-four multidrug-resistant A. baumannii strains isolated from wounded military personnel were sequenced and annotated. PMID:27563036

  3. Draft Genome Sequences of Acinetobacter baumannii Isolates from Wounded Military Personnel

    PubMed Central

    Arivett, Brock A.; Ream, Dave C.; Fiester, Steven E.; Kidane, Destaalem

    2016-01-01

    Acinetobacter baumannii is a Gram-negative bacterium capable of causing hospital-acquired infections that has been grouped with Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species as ESKAPE pathogens because of their extensive drug resistance phenotypes and increasing risk to human health. Twenty-four multidrug-resistant A. baumannii strains isolated from wounded military personnel were sequenced and annotated. PMID:27563036

  4. Comparative genomic analysis of novel Acinetobacter symbionts: A combined systems biology and genomics approach.

    PubMed

    Gupta, Vipin; Haider, Shazia; Sood, Utkarsh; Gilbert, Jack A; Ramjee, Meenakshi; Forbes, Ken; Singh, Yogendra; Lopes, Bruno S; Lal, Rup

    2016-01-01

    The increasing trend of antibiotic resistance in Acinetobacter drastically limits the range of therapeutic agents required to treat multidrug resistant (MDR) infections. This study focused on analysis of novel Acinetobacter strains using a genomics and systems biology approach. Here we used a network theory method for pathogenic and non-pathogenic Acinetobacter spp. to identify the key regulatory proteins (hubs) in each strain. We identified nine key regulatory proteins, guaA, guaB, rpsB, rpsI, rpsL, rpsE, rpsC, rplM and trmD, which have functional roles as hubs in a hierarchical scale-free fractal protein-protein interaction network. Two key hubs (guaA and guaB) were important for insect-associated strains, and comparative analysis identified guaA as more important than guaB due to its role in effective module regulation. rpsI played a significant role in all the novel strains, while rplM was unique to sheep-associated strains. rpsM, rpsB and rpsI were involved in the regulation of overall network topology across all Acinetobacter strains analyzed in this study. Future analysis will investigate whether these hubs are useful as drug targets for treating Acinetobacter infections. PMID:27378055

  5. Comparative genomic analysis of novel Acinetobacter symbionts: A combined systems biology and genomics approach

    PubMed Central

    Gupta, Vipin; Haider, Shazia; Sood, Utkarsh; Gilbert, Jack A.; Ramjee, Meenakshi; Forbes, Ken; Singh, Yogendra; Lopes, Bruno S.; Lal, Rup

    2016-01-01

    The increasing trend of antibiotic resistance in Acinetobacter drastically limits the range of therapeutic agents required to treat multidrug resistant (MDR) infections. This study focused on analysis of novel Acinetobacter strains using a genomics and systems biology approach. Here we used a network theory method for pathogenic and non-pathogenic Acinetobacter spp. to identify the key regulatory proteins (hubs) in each strain. We identified nine key regulatory proteins, guaA, guaB, rpsB, rpsI, rpsL, rpsE, rpsC, rplM and trmD, which have functional roles as hubs in a hierarchical scale-free fractal protein-protein interaction network. Two key hubs (guaA and guaB) were important for insect-associated strains, and comparative analysis identified guaA as more important than guaB due to its role in effective module regulation. rpsI played a significant role in all the novel strains, while rplM was unique to sheep-associated strains. rpsM, rpsB and rpsI were involved in the regulation of overall network topology across all Acinetobacter strains analyzed in this study. Future analysis will investigate whether these hubs are useful as drug targets for treating Acinetobacter infections. PMID:27378055

  6. High levels of multiple metal resistance and its correlation to antibiotic resistance in environmental isolates of Acinetobacter.

    PubMed

    Dhakephalkar, P K; Chopade, B A

    1994-01-01

    Forty strains of Acinetobacter were isolated from different environmental sources. All the strains were classified into four genospecies, i.e., A. baumannii (33 isolates), A. calcoaceticus (three isolates), A. junii (three isolates) and A. genospecies3 (one isolate). Susceptibility of these 40 strains to salts of 20 heavy metals and 18 antibiotics was tested by the agar dilution method. All environmental isolates of Acinetobacter were resistant to multiple metal ions (minimum 13 metal ions) while all but one of the strains were resistant to multiple antibiotics (minimum four antibiotics). The maximum number of strains were found to be sensitive to mercury (60% strains) while all strains were resistant to copper, lead, boron and tungsten even at 10 mM concentration. Salts of these four metal ions may be added to the growth medium to facilitate selective isolation of Acinetobacter. Rifampicin and nalidixic acid were the most toxic antibiotics, inhibiting 94.5 and 89.5% of the acinetobacters, respectively. A. genospecies3 was found to be the most resistant species, tolerating high concentrations of all the 20 metal ions and also to a greater number of antibiotics than any other species of Acinetobacter tested. An inhibitory concentration (10 mM) of Ni(2+) and Zn(2+) was observed to inhibit the growth of all of the clinical isolates but allowed the growth of the environmental isolates, facilitating the differentiation between pathogenic and non-pathogenic acinetobacters. PMID:8118175

  7. Successful Eradication of Multidrug Resistant Acinetobacter in the Helsinki Burn Centre.

    PubMed

    Lindford, Andrew; Kiuru, Valtteri; Anttila, Veli-Jukka; Vuola, Jyrki

    2015-01-01

    Multidrug-resistant (MDR) Acinetobacter is an important pathogen implicated in nosocomial infections in healthcare environments. Virulence factors, resistance mechanisms, and limited therapeutic options make this pathogen a major problem currently facing burn intensive care units (ICUs) worldwide. The purpose of this study was to assess the effect of infection control measures taken in Helsinki Burn Centre in 2001 on MDR Acinetobacter prevalence in ICU burn patients. Data were retrospectively collected from patient files from 1998 to 2012. ICU burn patients were defined as those with either over 30% of total body surface area burnt or requiring mechanical ventilation. Inclusion criteria consisted of patients who tested positive for Acinetobacter sp. in routine bacterial cultures or cultures taken because of a clinically suspected infection. Infection control interventions performed in 2001 consisted of various shower room renovations and changes in hospital hygiene and burn treatment regimes. Between 1998 and 2012, 75 patients were diagnosed with Acinetobacter sp. colonization. Following the infection control interventions the incidence of Acinetobacter sp. radically declined. Between 1998 and 2001, there were 31 cases of MDR Acinetobacter colonizations diagnosed, but from 2002 to 2012 no MDR strains were found. Changes to hospital hygiene and wound treatment protocols as well as structural changes to the hospital environment can have a major impact on preventing and treating Acinetobacter outbreaks in burn centers. PMID:25501783

  8. Antibiotic susceptibility of Acinetobacter species in intensive care unit in Montenegro.

    PubMed

    Mijovic, Gordana; Pejakov, Ljubica; Vujosevic, Danijela

    2016-08-01

    The global increase in multidrug resistance of Acinetobacter has created widespread problems in the treatment of patients in intensive care units (ICUs). The aim of this study was to assess the current level of antimicrobial susceptibility of Acinetobacter species in ICU of Clinical Centre of Montenegro and determine their epidemiology. Antibiotic susceptibility was tested in 70 isolates of Acinetobacter collected from non-repeating samples taken from 40 patients. The first nine isolates were genotyped by repetitive sequence-based PCR (rep-PCR). Tigecycline was found to be the most active antimicrobial agent with 80.6% of susceptibility. All the isolates were multidrug resistant with fully resistance to cefalosporinas, piperacillin and piperacillin/tazobactam. More than half of them (58.5%) were probably extensively resistant. Seven out of nine examined strains were clonally related by rep-PCR. Our results showed extremely high rate of multidrug resistance (MDR) of Acinetobacter isolates and high percentage of its clonally spreading. PMID:25979577

  9. Clinical impact and pathogenicity of Acinetobacter.

    PubMed

    Joly-Guillou, M-L

    2005-11-01

    Members of the genus Acinetobacter have been implicated in a wide spectrum of infectious diseases. Although this organism is associated primarily with nosocomial infections, it has also been involved in cases of community-acquired infection. Before the 1970s, Acinetobacter infections were mostly post-surgical urinary tract infections in patients hospitalised in surgical units. The significant improvement in resuscitation techniques during the last 30 years has changed the types of infection caused by Acinetobacter. Since the 1980s, Acinetobacter has spread rapidly among patients in intensive care units. Today, Acinetobacter accounts for c. 9% of nosocomial infections, with most Acinetobacter infections involving the respiratory tract. Transmission via the hands of hospital staff has become the most important contributory factor in patient colonisation. Acinetobacter baumannii is the species that is involved most frequently in infections of humans, but a natural reservoir for A. baumannii outside the hospital environment has not yet been identified. Community-acquired infection and infections acquired following war or natural disasters (e.g., earthquakes) have been described. Acinetobacter causes mild-to-severe illness, but can be fatal. The severity of Acinetobacter infection depends upon the site of infection and the patient's susceptibility to infection as a result of underlying disease. The circumstances that allow Acinetobacter to assume a pathogenic role are not really well-understood. As this organism is a low-grade pathogen, the pathogenesis of Acinetobacter infections probably involves numerous factors, including virulence determinants, which have yet to be investigated. PMID:16216100

  10. Proliferation of spacecraft-associated Acinetobacter on alcohol solvents

    NASA Astrophysics Data System (ADS)

    Mogul, Rakesh; Cepeda, Ivonne; Brasali, Hania; Gornick, Trevor; Jain, Chirag; Kim, Eun Jin; Nguyen, Vinh Bao; Oei, Alex; Rodriguez, Joseph; Walker, Jillian; Savla, Gautam

    The Acinetobacter are the most abundant Gram-negative and non-spore forming bacteria found in the cleanroom facilities for Mars spacecraft. The spacecraft-associated Acinetobacter are extremotolerant towards hydrogen peroxide and have been shown to increase in abundance as a result of the spacecraft assembly process. To better understand the oligotrophic growth in the cleanroom environments, we have measured the growth of several Acinetobacter strains against ethanol and isopropanol, which are cleaning solvents used in the spacecraft assembly process. Our studies show that A. radioresistens 50v1, which was isolated from Mars Odyssey orbiter, optimally proliferates on 300 mM ethanol under minimal conditions at a growth rate that is 2-fold higher than that of the A. radioresistens type strain (strain 43998 (T) ). The impact of transition metals on the growth rates followed the trend of Fe (2+) > Mn (2+) > Zn (2+) , where Zn (2+) was inhibitory. In contrast, no growth on ethanol was observed for the novel species A. phoenicis 2P01AA, which was isolated from the facilities for the Mars Phoenix lander. Alcohol dehydrogenase activities measured in rich and minimal media paralleled these observations with the 50v1 strain possessing higher specific activities than the type strain, and the 2P01AA strain displaying no measurable activity in rich media. Preliminary studies indicate that isopropanol is insufficient as an energy source when in culture. The significance of these results as well as the observed differences between the Odyssey and Phoenix-associated strains will be discussed.

  11. Laboratory Maintenance of Acinetobacter baumannii.

    PubMed

    Jacobs, Anna C; Zurawski, Daniel V

    2014-01-01

    Acinetobacter baumannii has recently drawn great interest in the microbiology research community due to the increase in clinical antibiotic resistance of this organism, and persistence of this bacterial species in the hospital environment. This unit outlines protocols for the growth and maintenance of A. baumannii in the laboratory. PMID:25367273

  12. Coculture degradation of selected PCB congeners by two Acinetobacter sp

    SciTech Connect

    Adriaens, P.

    1989-01-01

    Polychlorinated biphenyls (PCBs) have been introduced in the environment for nearly six decades and are considered to be refractile to microbial attack, since PCBs have to be degraded via cometabolic processes, which occur in the obligate presence of an alternative growth substrate. However, cometabolism of PCBs has been demonstrated to accumulate chlorobenzoates as the main intermediates. Therefore, the complete mineralization of PCBs can only be obtained by coculturing at least a PCB cometabolizing and a chlorobenzoate utilizing microorganism, or by constructing a recombinant strain harboring the complementary pathways of both strains. Therefore, coculture mineralization of PCBs in suspended culture was obtained by providing biphenyl or 4-chlorobiphenyl as the growth substrate for Acinetobacter sp. strain P6, a PCB cometabolizer, while the chlorobenzoates were used as growth substrates by Acinetobacter sp. strain 4-CB1, which was isolated on 4-chlorobenzoate. 4-Chlorobenzoate (4-CB) was metabolized after hydrolytic dehalogenation to 4-hydroxybenzoate (4-HB) via the protocatechuate pathway. Acinetobacter sp. strain 4-CB1 has the metabolic ability to carry out the degradation of 3,4-DCB. Although this strain does not grow on this compound, it cometabolizes 3,4-DCB to 3-chloro-4-hydroxybenzoate (3-C-4-OHB), which is used as a growth substrate and further metabolized via 4-carboxy-1,2-benzoquinone. This degradation process was termed cryptic cometabolism. 3,4-DCB has shown to be a substrate inhibitor (Ki = 1,840 {mu}M) and an uncompetitive inhibitor for 4-CB metabolism. Additionally, 3-C-4-OHB was a competitive inhibitor (Ki = 12 {mu}M) for the 4-HB monooxygenase, while the quinone uncompetitively inhibited 4-CB metabolism (Ki = 50 {mu}M).

  13. Extremotolerant survival and proteomics of Acinetobacter isolated from spacecraft assembly facilities

    NASA Astrophysics Data System (ADS)

    Mogul, Rakesh; Vaishampayan, Parag; Venkateswaran, Kasthuri; McCoy, Kelly; Derecho, Ivy; Dallal, Freida

    2012-07-01

    Herein, we report on the extreme hydrogen peroxide resistance of Acinetobacter isolated from the assembly facilities for the Mars Odyssey orbiter and Phoenix lander. Specific activity experiments on 10 different spacecraft-associated Acinetobacter strains show that the catalase contents are 15-250-fold greater than that of E. coli. Among this group, the highest and lowest catalase-containing strains, which were Acinetobacter nov. sp. 2P01AA and Acinetobacter radioresistens 50v1, demonstrated no significant and 2-log reductions in survivability upon exposure to 100 mM hydrogen peroxide (1 hr), respectively. These survivals are among the highest reported for non-spore forming Gram-negative bacteria. Comparative proteomics on these strains reveals that alkyl hydroperoxide reductase, ATP synthase, dihydrolipoamide dehydrogenase, and peptidyl-tRNA hydrolase also contribute to the hydrogen peroxide extremotolerance. Together, the survival and metabolic features of the spacecraft-associated Acinetobacter indicate that survival in the dry and low-nutrient environments of clean rooms is supported by factors such as oxidant degradation, energy management, and protein biosynthesis.

  14. Impact of empirical antimicrobial therapy on the outcome of critically ill patients with Acinetobacter bacteremia

    PubMed Central

    Al-Dorzi, Hasan M.; Asiri, Abdulaziz M.; Shimemri, Abdullah; Tamim, Hani M.; Al Johani, Sameera M.; Al Dabbagh, Tarek; Arabi, Yaseen M.

    2015-01-01

    RATIONALE: Empirical antimicrobial therapy (EAT) for Acinetobacter infections may not be appropriate as it tends to be multidrug-resistant. This study evaluated the relationship between appropriate EAT and the outcomes of Intensive Care Unit (ICU) patients with Acinetobacter bacteremia. METHODS: This is a retrospective study of patients admitted to a medical-surgical ICU (2005-2010) and developed Acinetobacter bacteremia during the stay. Patients were categorized according to EAT appropriateness, defined as administration of at least one antimicrobial agent to which the Acinetobacter was susceptible before susceptibility results were known. The relation between EAT appropriateness and outcomes was evaluated. RESULTS: Sixty patients developed Acinetobacter bacteremia in the 6-year period (age = 50 ± 19 years; 62% males; Acute Physiology and Chronic Health Evaluation II score = 28 ± 9; 98.3% with central lines; 67% in shock and 59% mechanically ventilated) on average on day 23 of ICU and day 38 of hospital stay. All isolates were resistant to at least three of the tested antimicrobials. Appropriate EAT was administered to 60% of patients, mostly as intravenous colistin. Appropriate EAT was associated with lower ICU mortality risk (odds ratio: 0.15; 95% confidence interval: 0.03-0.96) on multivariate analysis. CONCLUSIONS: In this 6-year cohort, Acinetobacter bacteremia was related to multidrug-resistant strains. Appropriate EAT was associated with decreased ICU mortality risk. PMID:26664563

  15. Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential.

    PubMed

    Snellman, Erick A; Colwell, Rita R

    2004-10-01

    Lipases (EC 3.1.1.3) have received increased attention recently, evidenced by the increasing amount of information about lipases in the current literature. The renewed interest in this enzyme class is due primarily to investigations of their role in pathogenesis and their increasing use in biotechnological applications. Also, many microbial lipases are available as commercial products, the majority of which are used in detergents, cosmetic production, food flavoring, and organic synthesis. Lipases are valued biocatalysts because they act under mild conditions, are highly stable in organic solvents, show broad substrate specificity, and usually show high regio- and/or stereo-selectivity in catalysis. A number of lipolytic strains of Acinetobacter have been isolated from a variety of sources and their lipases possess many biochemical properties similar to those that have been developed for biotechnological applications. This review discusses the biology of lipase expression in Acinetobacter, with emphasis on those aspects relevant to potential biotechnology applications. PMID:15378387

  16. Antimicrobial susceptibilities of clinical isolates of Acinetobacter baumannii from Singapore.

    PubMed

    Kuah, B G; Kumarasinghe, G; Doran, J; Chang, H R

    1994-10-01

    The in vitro activities of 17 antimicrobial agents alone or in combination against 70 clinical isolates of Acinetobacter baumannii from Singapore were determined by broth microdilution. The MICs of amoxicillin, ampicillin, ceftazidime, ceftriaxone, gentamicin, and piperacillin for 90% of the strains were > or = 128 micrograms/ml. Addition of sulbactam to ampicillin produced improved activity, whereas adding tazobactam to piperacillin did not. The MICs of amikacin, ciprofloxacin, and imipenem for 90% of the strains were 32, 32, and 16 micrograms/ml, respectively. PMID:7840598

  17. Isolation and Characterization of Fipronil Degrading Acinetobacter calcoaceticus and Acinetobacter oleivorans from Rhizospheric Zone of Zea mays.

    PubMed

    Uniyal, Shivani; Paliwal, Rashmi; Verma, Megha; Sharma, R K; Rai, J P N

    2016-06-01

    An enrichment culture technique was used for the isolation of bacteria capable of utilizing fipronil as a sole source of carbon and energy. Based on morphological, biochemical characteristics and phylogenetic analysis of 16S rRNA sequence, the bacterial strains were identified as Acinetobacter calcoaceticus and Acinetobacter oleivorans. Biodegradation experiments were conducted in loamy sand soil samples fortified with fipronil (50 µg kg(-1)) and inoculated with Acinetobacter sp. cells (45 × 10(7) CFU mL(-1)) for 90 days. Soil samples were periodically analyzed by gas liquid chromatography equipped with electron capture detector. Biodegradation of fipronil fitted well with the pseudo first-order kinetics, with rate constant value between 0.041 and 0.051 days(-1). In pot experiments, fipronil and its metabolites fipronil sulfide, fipronil sulfone and fipronil amide were found below quantifiable limit in soil and root, shoot and leaves of Zea mays. These results demonstrated that A. calcoaceticus and A. oleivorans may serve as promising strains in the bioremediation of fipronil-contaminated soils. PMID:27084098

  18. The Success of Acinetobacter Species; Genetic, Metabolic and Virulence Attributes

    PubMed Central

    Peleg, Anton Y.; de Breij, Anna; Adams, Mark D.; Cerqueira, Gustavo M.; Mocali, Stefano; Galardini, Marco; Nibbering, Peter H.; Earl, Ashlee M.; Ward, Doyle V.; Paterson, David L.; Seifert, Harald; Dijkshoorn, Lenie

    2012-01-01

    An understanding of why certain Acinetobacter species are more successful in causing nosocomial infections, transmission and epidemic spread in healthcare institutions compared with other species is lacking. We used genomic, phenotypic and virulence studies to identify differences between Acinetobacter species. Fourteen strains representing nine species were examined. Genomic analysis of six strains showed that the A. baumannii core genome contains many genes important for diverse metabolism and survival in the host. Most of the A. baumannii core genes were also present in one or more of the less clinically successful species. In contrast, when the accessory genome of an individual A. baumannii strain was compared to a strain of a less successful species (A. calcoaceticus RUH2202), many operons with putative virulence function were found to be present only in the A. baumannii strain, including the csu operon, the acinetobactin chromosomal cluster, and bacterial defence mechanisms. Phenotype microarray analysis showed that compared to A. calcoaceticus (RUH2202), A. baumannii ATCC 19606T was able to utilise nitrogen sources more effectively and was more tolerant to pH, osmotic and antimicrobial stress. Virulence differences were also observed, with A. baumannii ATCC 19606T, A. pittii SH024, and A. nosocomialis RUH2624 persisting and forming larger biofilms on human skin than A. calcoaceticus. A. baumannii ATCC 19606T and A. pittii SH024 were also able to survive in a murine thigh infection model, whereas the other two species were eradicated. The current study provides important insights into the elucidation of differences in clinical relevance among Acinetobacter species. PMID:23144699

  19. Acinetobacter variabilis sp. nov. (formerly DNA group 15 sensu Tjernberg & Ursing), isolated from humans and animals.

    PubMed

    Krizova, Lenka; McGinnis, Jana; Maixnerova, Martina; Nemec, Matej; Poirel, Laurent; Mingle, Lisa; Sedo, Ondrej; Wolfgang, William; Nemec, Alexandr

    2015-03-01

    We aimed to define the taxonomic status of 16 strains which were phenetically congruent with Acinetobacter DNA group 15 described by Tjernberg & Ursing in 1989. The strains were isolated from a variety of human and animal specimens in geographically distant places over the last three decades. Taxonomic analysis was based on an Acinetobacter-targeted, genus-wide approach that included the comparative sequence analysis of housekeeping, protein-coding genes, whole-cell profiling based on matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), an array of in-house physiological and metabolic tests, and whole-genome comparative analysis. Based on analyses of the rpoB and gyrB genes, the 16 strains formed respective, strongly supported clusters clearly separated from the other species of the genus Acinetobacter. The distinctness of the group at the species level was indicated by average nucleotide identity values of ≤82 % between the whole genome sequences of two of the 16 strains (NIPH 2171(T) and NIPH 899) and those of the known species. In addition, the coherence of the group was also supported by MALDI-TOF MS. All 16 strains were non-haemolytic and non-gelatinase-producing, grown at 41 °C and utilized a rather limited number of carbon sources. Virtually every strain displayed a unique combination of metabolic and physiological features. We conclude that the 16 strains represent a distinct species of the genus Acinetobacter, for which the name Acinetobacter variabilis sp. nov. is proposed to reflect its marked phenotypic heterogeneity. The type strain is NIPH 2171(T) ( = CIP 110486(T) = CCUG 26390(T) = CCM 8555(T)). PMID:25510976

  20. Acinetobacter variabilis sp. nov. (formerly DNA group 15 sensu Tjernberg & Ursing), isolated from humans and animals

    PubMed Central

    Krizova, Lenka; McGinnis, Jana; Maixnerova, Martina; Nemec, Matej; Poirel, Laurent; Mingle, Lisa; Sedo, Ondrej; Wolfgang, William

    2015-01-01

    We aimed to define the taxonomic status of 16 strains which were phenetically congruent with Acinetobacter DNA group 15 described by Tjernberg & Ursing in 1989. The strains were isolated from a variety of human and animal specimens in geographically distant places over the last three decades. Taxonomic analysis was based on an Acinetobacter-targeted, genus-wide approach that included the comparative sequence analysis of housekeeping, protein-coding genes, whole-cell profiling based on matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), an array of in-house physiological and metabolic tests, and whole-genome comparative analysis. Based on analyses of the rpoB and gyrB genes, the 16 strains formed respective, strongly supported clusters clearly separated from the other species of the genus Acinetobacter. The distinctness of the group at the species level was indicated by average nucleotide identity values of ≤82 % between the whole genome sequences of two of the 16 strains (NIPH 2171T and NIPH 899) and those of the known species. In addition, the coherence of the group was also supported by MALDI-TOF MS. All 16 strains were non-haemolytic and non-gelatinase-producing, grown at 41 °C and utilized a rather limited number of carbon sources. Virtually every strain displayed a unique combination of metabolic and physiological features. We conclude that the 16 strains represent a distinct species of the genus Acinetobacter, for which the name Acinetobacter variabilis sp. nov. is proposed to reflect its marked phenotypic heterogeneity. The type strain is NIPH 2171T ( = CIP 110486T = CCUG 26390T = CCM 8555T). PMID:25510976

  1. Reservoirs of Non-baumannii Acinetobacter Species.

    PubMed

    Al Atrouni, Ahmad; Joly-Guillou, Marie-Laure; Hamze, Monzer; Kempf, Marie

    2016-01-01

    Acinetobacter spp. are ubiquitous gram negative and non-fermenting coccobacilli that have the ability to occupy several ecological niches including environment, animals and human. Among the different species, Acinetobacter baumannii has evolved as global pathogen causing wide range of infection. Since the implementation of molecular techniques, the habitat and the role of non-baumannii Acinetobacter in human infection have been elucidated. In addition, several new species have been described. In the present review, we summarize the recent data about the natural reservoir of non-baumannii Acinetobacter including the novel species that have been described for the first time from environmental sources and reported during the last years. PMID:26870013

  2. Reservoirs of Non-baumannii Acinetobacter Species

    PubMed Central

    Al Atrouni, Ahmad; Joly-Guillou, Marie-Laure; Hamze, Monzer; Kempf, Marie

    2016-01-01

    Acinetobacter spp. are ubiquitous gram negative and non-fermenting coccobacilli that have the ability to occupy several ecological niches including environment, animals and human. Among the different species, Acinetobacter baumannii has evolved as global pathogen causing wide range of infection. Since the implementation of molecular techniques, the habitat and the role of non-baumannii Acinetobacter in human infection have been elucidated. In addition, several new species have been described. In the present review, we summarize the recent data about the natural reservoir of non-baumannii Acinetobacter including the novel species that have been described for the first time from environmental sources and reported during the last years. PMID:26870013

  3. Numerical classification and identification of Acinetobacter genomic species.

    PubMed

    Kämpfer, P; Tjernberg, I; Ursing, J

    1993-09-01

    A total of 211 Acinetobacter strains (representing all currently recognized genomic species) were tested for 329 biochemical characters. Overall similarities of all strains were determined for 145 characters by numerical taxonomic techniques, the UPGMA algorithm and the S(SM)) and the S(J) coefficients as measures of similarity. Seven clusters (two or more strains) and three unclustered strains were recovered at a similarity level of 80.0% (S(SM). At this level a complete correspondence between phenotypic cluster and genomic species was found only for genomic species 12 (Ac. radioresistens). At higher similarity levels (84.0% to 84.6% (S(SM)), however, several subclusters were found, each representing a single genomic species. An exception were the strains belonging to the genetically closely related species of the Acinetobacter calcoaceticus-baumannii complex. These were recovered scattered in several subclusters. The degree of genomic relatedness between some DNA groups correlated with phenotypic similarities, especially for DNA group 8 (Ac. Iwoffii) and 15 of Tjernberg and Ursing, and for DNA group 4 (Ac. haemolyticus) and 6. For the majority of genomic species, two identification matrices were constructed consisting of 22 and 10 diagnostic characters, respectively. The correct identification rates for the matrices were 98.0% (22 tests) and 90.8% (10 tests) taking a Willcox probability > 0.9. For unambiguous identification of some genomic species, however, additional methods (preferably DNA-DNA hybridization or ribotyping) should be used. PMID:8244904

  4. Reliability of phenotypic tests for identification of Acinetobacter species.

    PubMed Central

    Gerner-Smidt, P; Tjernberg, I; Ursing, J

    1991-01-01

    A numerical approach was used for identification of 198 Acinetobacter strains assigned to DNA groups according to the classification of Tjernberg and Ursing (I. Tjernberg and J. Ursing, APMIS 97:595-605, 1989). The matrix used was constructed from data published by Bouvet and Grimont (P.J.M. Bouvet and P.A.D. Grimont, Int. J. Syst. Bacteriol. 36:228-240, 1986) and Bouvet and Jeanjean (P.J.M. Bouvet and S. Jeanjean, Res. Microbiol. 140:291-299, 1989). The tests chosen were those of the simplified identification scheme for Acinetobacter species devised by Bouvet and Grimont (P.J.M. Bouvet and P.A.D. Grimont, Ann. Inst. Pasteur/Microbiol. 138:569-578, 1987), namely, growth at 37, 41, and 44 degrees C, oxidation of glucose, gelatin hydrolysis, and assimilation of 14 carbon sources. Of the strains tested, 181 represented 12 DNA groups in the matrix; at a probability level of greater than or equal to 0.95, 78% of them were correctly identified, 2.2% were misidentified, and 19.8% were not identified. Seventeen strains represented two DNA groups not included in the matrix; nine of them were incorrectly assigned to a DNA group by these phenotypic tests. Because of problems of separating strains belonging to DNA groups 1, 2, 3, and 13 by using the phenotypic tests proposed by Bouvet and Grimont (Ann. Inst. Pasteur/Microbiol.), we suggest that these groups should be referred to as the Acinetobacter calcoaceticus-A. baumannii complex. PMID:2007635

  5. Rapid identification of Acinetobacter spp. by fluorescence in situ hybridization (FISH) from colony and blood culture material

    PubMed Central

    Essig, A.; Hagen, R. M.; Riecker, M.; Jerke, K.; Ellison, D.; Poppert, S.

    2011-01-01

    Multi-drug-resistant strains of the Acinetobacter baumannii complex cause nosocomial infections. Rapid identification of Acinetobacter spp. is desirable in order to facilitate therapeutic or hygiene decisions. We evaluated a newly designed DNA probe that can be used under standard conditions in both a microwave oven and a slide chamber for the rapid identification of Acinetobacter spp. by fluorescence in situ hybridization (FISH). Using FISH, the new probe correctly identified 81/81 Acinetobacter spp. isolates and excluded 109/109 tested non-target organisms from agar culture. Furthermore, the new probe correctly identified 7/7 Acinetobacter spp. in 214 blood cultures determined to contain Gram-negative bacteria by Gram staining. Using either the microwave oven or slide chamber technique, the new probe was able to identify Acinetobacter spp. in 100% of the samples tested. FISH used in conjunction with our newly designed probe provides an easy, cheap, precise, and rapid method for the preliminary identification of Acinetobacter spp., especially in laboratories where more sophisticated methods like matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) are not available. PMID:24516735

  6. Tigecycline Efflux as a Mechanism for Nonsusceptibility in Acinetobacter baumannii.

    PubMed

    Peleg, Anton Y; Adams, Jennifer; Paterson, David L

    2007-06-01

    Tigecycline has an extended spectrum of in vitro antimicrobial activities, including that against multidrug-resistant Acinetobacter. After identifying bloodstream isolates of Acinetobacter with reduced susceptibilities to tigecycline, we performed a study to assess tigecycline efflux mediated by the resistance-nodulation-division-type transporter AdeABC. After exposure of two tigecycline-nonsusceptible isolates to the efflux pump inhibitor phenyl-arginine-beta-naphthylamide (PABN), a fourfold reduction in the tigecycline MIC was observed. Both tigecycline-susceptible and -nonsusceptible isolates were found to carry the gene coding for the transmembrane component of the AdeABC pump, adeB, and the two-component regulatory system comprising adeS and adeR. Previously unreported point mutations were identified in the regulatory system in tigecycline-nonsusceptible isolates. Real-time PCR identified 40-fold and 54-fold increases in adeB expression in the two tigecycline-nonsusceptible isolates compared to that in a tigecycline-susceptible isolate. In vitro exposure of a tigecycline-susceptible clinical strain to tigecycline caused a rapid rise in the MIC of tigecycline from 2 microg/ml to 24 microg/ml, which was reversible with PABN. A 25-fold increase in adeB expression was observed in a comparison between this tigecycline-susceptible isolate and its isogenic tigecycline-nonsusceptible mutant. These results indicate that an efflux-based mechanism plays a role in reduced tigecycline susceptibility in Acinetobacter. PMID:17420217

  7. Tigecycline Efflux as a Mechanism for Nonsusceptibility in Acinetobacter baumannii▿

    PubMed Central

    Peleg, Anton Y.; Adams, Jennifer; Paterson, David L.

    2007-01-01

    Tigecycline has an extended spectrum of in vitro antimicrobial activities, including that against multidrug-resistant Acinetobacter. After identifying bloodstream isolates of Acinetobacter with reduced susceptibilities to tigecycline, we performed a study to assess tigecycline efflux mediated by the resistance-nodulation-division-type transporter AdeABC. After exposure of two tigecycline-nonsusceptible isolates to the efflux pump inhibitor phenyl-arginine-β-naphthylamide (PABN), a fourfold reduction in the tigecycline MIC was observed. Both tigecycline-susceptible and -nonsusceptible isolates were found to carry the gene coding for the transmembrane component of the AdeABC pump, adeB, and the two-component regulatory system comprising adeS and adeR. Previously unreported point mutations were identified in the regulatory system in tigecycline-nonsusceptible isolates. Real-time PCR identified 40-fold and 54-fold increases in adeB expression in the two tigecycline-nonsusceptible isolates compared to that in a tigecycline-susceptible isolate. In vitro exposure of a tigecycline-susceptible clinical strain to tigecycline caused a rapid rise in the MIC of tigecycline from 2 μg/ml to 24 μg/ml, which was reversible with PABN. A 25-fold increase in adeB expression was observed in a comparison between this tigecycline-susceptible isolate and its isogenic tigecycline-nonsusceptible mutant. These results indicate that an efflux-based mechanism plays a role in reduced tigecycline susceptibility in Acinetobacter. PMID:17420217

  8. Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site.

    PubMed

    Sharma, Ashwani; Thakur, Indu Shekhar; Dureja, Prem

    2009-09-01

    Three pentachlorophenol (PCP) degrading bacterial strains were isolated from sediment core of pulp and paper mill effluent discharge site. The strains were continuously enriched in mineral salts medium supplemented with PCP as sole source of carbon and energy. One of the acclimated strains with relatively high PCP degradation capability was selected and characterized in this study. Based on morphology, biochemical tests, 16S rDNA sequence analysis and phylogenetic characteristics, the strains showed greatest similarity with Acinetobacter spp. The strain was identified as Acinetobacter sp. ISTPCP-3. The physiological characteristics and optimum growth conditions of the bacterial strain were investigated. The results of optimum growth temperature revealed that it was a mesophile. The optimum growth temperature for the strain was 30 degrees C. The preferential initial pH for the strain was ranging at 6.5-7.5, the optimum pH was 7. The bacterium was able to tolerate and degrade PCP up to a concentration of 200 mg/l. Increase in PCP concentration had a negative effect on biodegradation rate and PCP concentration above 250 mg/l was inhibitory to its growth. Acinetobacter sp. ISTPCP-3 was able to utilize PCP through an oxidative route with ortho ring-cleavage with the formation of 2,3,5,6-tetrachlorohydroquinone and 2-chloro-1,4-benzenediol, identified using gas chromatograph-mass spectrometric (GC-MS) analysis. The degradation pathway followed by isolated bacterium is different from previously characterized pathway. PMID:19214760

  9. Comparison of rpoB gene sequencing, 16S rRNA gene sequencing, gyrB multiplex PCR, and the VITEK2 system for identification of Acinetobacter clinical isolates.

    PubMed

    Lee, Min Jung; Jang, Sook Jin; Li, Xue Min; Park, Geon; Kook, Joong-Ki; Kim, Min Jung; Chang, Young-Hyo; Shin, Jong Hee; Kim, Soo Hyun; Kim, Dong-Min; Kang, Seong-Ho; Moon, Dae-Soo

    2014-01-01

    Since accurate identification of species is necessary for proper treatment of Acinetobacter infections, we compared the performances of 4 bacterial identification methods using 167 Acinetobacter clinical isolates to identify the best identification method. To secure more non-baumannii Acinetobacter (NBA) strains as target strains, we first identified Acinetobacter baumannii in a total of 495 Acinetobacter clinical isolates identified using the VITEK 2 system. Because 371 of 495 strains were identified as A. baumannii using gyrB multiplex 1 PCR and blaOXA51-like PCR, we performed rpoB gene sequencing and 16S rRNA gene sequencing on remaining 124 strains belonging to NBA and 52 strains of A. baumannii. For identification of Acinetobacter at the species level, the accuracy rates of rpoB gene sequencing, 16S rRNA gene sequencing, gyrB multiplex PCR, and the VITEK 2 were 98.2%, 93.4%, 77.2%, and 35.9%, respectively. The gyrB multiplex PCR seems to be very useful for the detection of ACB complex because its concordance rates to the final identification of strains of ACB complex were 100%. Both the rpoB gene sequencing and the 16S rRNA gene sequencing may be useful in identifying Acinetobacter. PMID:24157058

  10. Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph, Acinetobacter oryzae sp. nov.

    PubMed

    Chaudhary, Hassan Javed; Peng, Guixiang; Hu, Mei; He, Yumei; Yang, Lijuan; Luo, Yan; Tan, Zhiyuan

    2012-05-01

    Thirty-three endophytic diazotrophs were isolated from surface-sterilized leaves, stem, and roots of wild rice Oryza alta. The SDS-PAGE profile of total protein and insertion sequence-based polymerase chain reaction (IS-PCR) fingerprinting grouped the isolates into four clusters (I-IV). The 16S rRNA gene sequence homology of the representative strains B21, B31, B1, and B23 of clusters I, II, III, and IV were assigned to Pseudomonas oleovorans (99.2% similarity), Burkholderia fungorum (99.4% similarity), Enterobacter cloacae (98.9% similarity), and Acinetobacter johnsonii (98.4% similarity), respectively. The results showed wide genetic diversity of the putative diazotrophic strains of the wild rice, O. alta, and the strains of cluster IV are the first report of nitrogen-fixing Acinetobacter species. The cell size, phenotypic characters, total protein profile, genomic DNA fingerprinting, DNA-DNA hybridization, and antibiotic resistance differentiated strain B23(T) from its closest relatives A. johnsonii LMG999(T) and Acinetobacter haemolyticus LMG996(T). The DNA-DNA hybridization also distinguished the strain B23(T) from the closely related Acinetobacter species. Based on these data, a novel species, Acinetobacter oryzae sp. nov., and strain B23(T) (=LMG25575(T) = CGMCC1.10689(T)) as the type strain were proposed. PMID:22105517

  11. Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap.

    PubMed

    Narciso-da-Rocha, Carlos; Vaz-Moreira, Ivone; Svensson-Stadler, Liselott; Moore, Edward R B; Manaia, Célia M

    2013-01-01

    Acinetobacter spp. are ubiquitous bacteria in the environment. Acinetobacter spp. isolated from a municipal drinking water treatment plant and from connected tap water were identified to the species level on the basis of rpoB gene partial sequence analysis. Intraspecies variation was assessed based on the analysis of partial sequences of housekeeping genes (rpoB, gyrB, and recA). Antibiotic resistance was characterized using the disk diffusion method and isolates were classified as wild or non-wild type (non-WT), according to the observed phenotype. The strains of Acinetobacter spp. were related to 11 different validly published species, although three groups of isolates, presenting low rpoB sequence similarities with previously described species, may represent new species. Most of the isolates were related to the species A. johnsonii and A. lwoffii. These two groups, as well as others related to the species A. parvus and A. tjernbergiae, were detected in the water treatment plant and in tap water. Other strains, related to the species A. pittii and A. beijerinckii, were isolated only from tap water. Most of the isolates (80 %) demonstrated wild type (WT) to all of the 12 antibiotics tested. Non-WT for tetracycline, meropenem, and ceftazidime, among others, were observed in water treatment plant or in tap water samples. Although, in general, this study suggests a low prevalence of acquired antibiotic resistance in water Acinetobacter spp., the potential of some species to acquire and disseminate resistance via drinking water is suggested. PMID:22669636

  12. Acinetobacter guangdongensis sp. nov., isolated from abandoned lead-zinc ore.

    PubMed

    Feng, Guang-Da; Yang, Song-Zhen; Wang, Yong-Hong; Deng, Ming-Rong; Zhu, Hong-Hui

    2014-10-01

    A Gram-stain-negative, non-motile bacterial strain designated 1NM-4(T) was isolated from an abandoned lead-zinc ore mine site in Mei County, Meizhou, Guangdong Province, southern China. The isolate was light yellow, strictly aerobic, oxidase-negative and catalase-positive. Phylogenetic analyses based on 16S rRNA, rpoB and gyrB gene sequences, together with DNA-DNA hybridization values less than 70%, revealed that strain 1NM-4(T) belongs to the genus Acinetobacter and may represent a novel species. The major respiratory quinone was ubiquinone 9 (Q-9) and the major cellular fatty acids consisted of C18:1ω9c, summed feature 3 (C16:1ω7c and/or C16:1ω6c), C16:0 and C12:0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid and two unidentified phospholipids. The genomic DNA G+C content of strain 1NM-4(T) was 47.17 ± 0.02 mol%. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, strain 1NM-4(T) should be assigned to a novel species of the genus Acinetobacter, for which the name Acinetobacter guangdongensis sp. nov. is proposed. The type strain is 1NM-4(T) ( = GIMCC 1.656(T) = CCTCC AB 2014199(T) = KCTC 42012(T)). PMID:25015678

  13. Comparative studies of the Acinetobacter genus and the species identification method based on the recA sequences.

    PubMed

    Krawczyk, B; Lewandowski, K; Kur, J

    2002-02-01

    The recA gene is indispensable for a maintaining and diversification of the bacterial genetic material. Given its important role in ensuring cell viability, it is not surprising that the RecA protein is both ubiquitous and well conserved among a range of prokaryotes. Previously, we reported Acinetobacter genomic species identification method based on PCR amplification of an internal fragment of the recA gene with subsequent restriction analysis (RFLP) with HinfI and MboI enzymes. In present study, the PCR products containing the internal fragment of the recA gene, for 25 Acinetobacter strains belonging to all genomic species, were sequenced. Based on the nucleotide sequences the restriction maps and phylogenetic tree were prepared. The restriction maps revealed that Tsp509I restriction enzyme is the most discriminating for RFLP. To verify the computer analysis, the amplified DNAs from all reference genomic species available (43 strains) and 34 clinical strains were digested with each of the three restriction endonucleases mentioned. The results of digestion confirmed the computer analysis. The reconstructed phylogenetic tree showed linkages between genomic species 1 (Acinetobacter calcoaceticus), 2 (Acinetobacter baumannii), 3, 'between 1 and 3', TU13 and 'close to TU13'; genomic species 4, 6, BJ13, BJ14, BJ15, BJ16 and BJ17; genomic species 7 (Acinetobacter johnsonii) and TU14; genomic species 10 and 11; genomic species 8 (Acinetobacter Iwoffii), 9, 12 (Acinetobacter radioresistens) and TU15; and genomic species 5 (Acinetobacter junii). It is interesting that one branch in the phylogenetic tree contains haemolytic species-genomic species 4 (A. haemolyticus), BJ13, BJ14, BJ15, BJ16 and BJ17. The proposed genotypic method clearly revealed that the RFLP profiles obtained with Tsp509I enzyme might be useful for species identification of Acinetobacter strains. In this context, recA/RFLP genotypic method should be seen as an ideal preliminary screening method for large

  14. Modifying enzymes related aminoglycoside: analyses of resistant Acinetobacter isolates

    PubMed Central

    Atasoy, Ali Riza; Ciftci, Ihsan Hakki; Petek, Mustafa

    2015-01-01

    Enzymatic modification of aminoglycosides by nucleotidyltransferases, acetyltransferases and/or phosphotransferases accounts for the majority of aminoglycoside-resistant Acinetobacter isolates. In this study, we investigated the relationship between aminoglycoside resistance and the presence of aminoglycoside-modifying enzymes in Acinetobacter baumannii clinical isolate groups with different resistance profiles. Thirty-two clinical A. baumannii isolates were included in this study. Acinetobacter isolates were divided into 4 groups according to results of susceptibility testing. The presence of genes encoding the following aminoglycoside-modifying enzymes; aph (3’)-V1, aph (3’)-Ia, aac (3)-Ia, aac (3) IIa, aac (6’)-Ih, aac (6’)-Ib and ant (2’)-Ia responsible for resistance was investigated by PCR in all strains. The acetyltransferase (aac (6’)-Ib, aac (3)-Ia) and phosphotransferase (aph (3’)-Ia) gene regions were identified in the first group, which comprised nine imipenem, meropenem, and gentamicin-resistant isolates. The acetyltransferase (aac (6’)-Ib, aac (3)-Ia), phosphotransferase (aph (3’)-VI) and nucleotidyltransferase (ant2-Ia) gene regions were identified in the second group, which was composed of nine imipenem-resistant, meropenem-resistant and gentamicin-sensitive isolates. The acetyltransferase (aac (3)-Ia) and phosphotransferase (aph (3’)-Ia) regions were identified in the fourth group, which comprised eight imipenem-sensitive, meropenem-sensitive and gentamicin-resistant isolates. Modifying enzyme gene regions were not detected in the third group, which was composed of six imipenem, meropenem and gentamicin-sensitive isolates. Our data are consistent with previous reports, with the exception of four isolates. Both acetyltransferases and phosphotransferases were widespread in A. baumannii clinical isolates in our study. However, the presence of the enzyme alone is insufficient to explain the resistance rates. Therefore, the

  15. Prevalence of Aminoglycoside Resistance Genes in Acinetobacter baumannii Isolates

    PubMed Central

    Aliakbarzade, Katayun; Farajnia, Safar; Karimi Nik, Ashraf; Zarei, Farzaneh; Tanomand, Asghar

    2014-01-01

    Background: Acinetobacter baumannii is one of the major causes of nosocomial infections and is resistant to most available antibiotics. Aminoglycosides remain as drugs of choice for treatment of Acinetobacter infections yet resistance to aminoglycosides has increased in the recent years. Objectives: The present study investigated the prevalence of genes encoding aminoglycoside-modifying enzymes in A. baumannii strains isolated from patients of Tabriz city, northwest of Iran. Materials and Methods: A total of 103 Acinetobacter isolates were collected from Imam Reza Hospital of Tabriz University of medical sciences. Antimicrobial susceptibility patterns of the isolates to different antimicrobial agents including cephalosporins, gentamicin, amikacin, tobramycin, colistin and polymyxin, were evaluated by the disc diffusion method. The frequency of aminoglycoside modifying enzymes encoding genes aacC1, aphA6, aadA1 and aadB was analyzed by the PCR method. Results: Antimicrobial susceptibility analysis showed that the highest resistance was towards beta−lactam antibiotics including cephalosporins whereas the highest sensitivity was observed towards colistin (77%) and polymyxin (84%). The resistance rate to aminoglycosides was 81%, 86% and 63% for amikacin, gentamicin and tobramycin, respectively. The PCR results showed that among the 103 A. baumannii isolates, 56 (65.11 %) were positive for aacC1, 52 (60.46 %) for aphA6, 24 (27.9 %) for aadA1 and 16 (18.6 %) for aadB resistant genes. Conclusions: The results of this study indicated that the genes encoding aminoglycoside-modifying enzymes are prevalent in A. baumannii isolates in the study region, which highlighted the necessity of considering preventive measures to control dissemination of these resistance genes. PMID:25632323

  16. Sensitive, resistant and multi-drug resistant Acinetobacter baumanii at Saudi Arabia hospital eastern region.

    PubMed

    Ahmed, Mughis Uddin; Farooq, Reshma; Al-Hawashim, Nadia; Ahmed, Motasim; Yiannakou, Nearchos; Sayeed, Fatima; Sayed, Ali Rifat; Lutfullah, Sualiha

    2015-05-01

    Since the Physicians start use of antibiotics long ago with un-notice drug resistance. However actual problem was recognized about 85 years ago. Antibiotic resistant and Multi-drug resistant bacterial strains are at rise throughout the world. It is physicians and researchers to take scientific research based appropriate action to overcome this ever-spreading problem. This study is designed to find out sensitive (S), resistant (R) and multi-drug resistant (MDR) Acinetobacter baumanii strain along with other isolates in the resident patients of Eastern Region of Saudi Arabia. Pseudomonas aeruginosa is excluded from other gram-negative organisms isolated from different sites as it will be dealt separately. This study is based in was retrospective observations designed to collect data of different stains of Acinetobacter baumanii with reference to their Sensitivity (S), Resistance (R), Multi-Drug Resistance (MDR) along with other Gram negative isolated from different sites (from 1st January 2004 to 31st December 2011) at King Abdulaziz Hospital located Eastern Region of Kingdom of Saudi Arabia (KSA). All necessary techniques were used to culture and perform sensitivity of these isolates. There were 4532 isolates out of which 3018 (67%) were from patients. Out of Acinetobacter baumanii infected were 906 (20%) while other 3626 (80%) isolates were miscellaneous. Numbers of patients or cases were 480 (53%) out of 906 isolates and numbers of patients or cases in other organisms were 2538 (70%) out of 3626 isolates. Acinetobacter baumanii infected patients 221 (46%) were male and 259 (54%) were female and the male and female ratio of 1:1.2. In other organisms this male female ratio was almost same. There was steady rise in number of patients and the hence the isolates from 2004 to 2011. Majority of the bacterial strains were isolated as single organism but some were isolated as double or triple or quadruple or more organisms from different sites. Sensitive, Resistant and

  17. Pyogenic Liver Abscess Caused by Acinetobacter lwoffii: A Case Report.

    PubMed

    Singh, N Pal; Sagar, Tanu; Nirmal, Kirti; Kaur, I Rajender

    2016-06-01

    Acinetobacter lwoffii is a gram negative aerobic non-fermenter bacilli. It is considered as an important emerging pathogen after Acinetobacter baumannii in patients with impaired immune system and in nosocomial infections. Here, we present a case of community acquired pyogenic liver Abscess caused by Acinetobacter lwoffii in a diabetic patient. PMID:27504286

  18. Pyogenic Liver Abscess Caused by Acinetobacter lwoffii: A Case Report

    PubMed Central

    Singh, N. Pal; Nirmal, Kirti; Kaur, I. Rajender

    2016-01-01

    Acinetobacter lwoffii is a gram negative aerobic non-fermenter bacilli. It is considered as an important emerging pathogen after Acinetobacter baumannii in patients with impaired immune system and in nosocomial infections. Here, we present a case of community acquired pyogenic liver Abscess caused by Acinetobacter lwoffii in a diabetic patient. PMID:27504286

  19. Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens.

    PubMed

    Tiwari, Vishvanath; Roy, Ranita; Tiwari, Monalisa

    2015-01-01

    Bacterial pathogens cause a number of lethal diseases. Opportunistic bacterial pathogens grouped into ESKAPE pathogens that are linked to the high degree of morbidity, mortality and increased costs as described by Infectious Disease Society of America. Acinetobacter baumannii is one of the ESKAPE pathogens which cause respiratory infection, pneumonia and urinary tract infections. The prevalence of this pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source and resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. The high level of acquired and intrinsic carbapenem resistance mechanisms acquired by these bacteria makes their eradication difficult. The pharmaceutical industry has no solution to this problem. Hence, it is an urgent requirement to find a suitable alternative to carbapenem, a commonly prescribed drug for Acinetobacter infection. In order to do this, here we have made an effort to review the active compounds of plants that have potent antibacterial activity against many bacteria including carbapenem resistant strain of A. baumannii. We have also briefly highlighted the separation and identification methods used for these active compounds. This review will help researchers involved in the screening of herbal active compounds that might act as a replacement for carbapenem. PMID:26150810

  20. Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens

    PubMed Central

    Tiwari, Vishvanath; Roy, Ranita; Tiwari, Monalisa

    2015-01-01

    Bacterial pathogens cause a number of lethal diseases. Opportunistic bacterial pathogens grouped into ESKAPE pathogens that are linked to the high degree of morbidity, mortality and increased costs as described by Infectious Disease Society of America. Acinetobacter baumannii is one of the ESKAPE pathogens which cause respiratory infection, pneumonia and urinary tract infections. The prevalence of this pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source and resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. The high level of acquired and intrinsic carbapenem resistance mechanisms acquired by these bacteria makes their eradication difficult. The pharmaceutical industry has no solution to this problem. Hence, it is an urgent requirement to find a suitable alternative to carbapenem, a commonly prescribed drug for Acinetobacter infection. In order to do this, here we have made an effort to review the active compounds of plants that have potent antibacterial activity against many bacteria including carbapenem resistant strain of A. baumannii. We have also briefly highlighted the separation and identification methods used for these active compounds. This review will help researchers involved in the screening of herbal active compounds that might act as a replacement for carbapenem. PMID:26150810

  1. Molecular epidemiology of Acinetobacter baumannii in central intensive care unit in Kosova Teaching Hospital.

    PubMed

    Raka, Lul; Kalenć, Smilja; Bosnjak, Zrinka; Budimir, Ana; Katić, Stjepan; Sijak, Dubravko; Mulliqi-Osmani, Gjyle; Zoutman, Dick; Jaka, Arbëresha

    2009-12-01

    Infections caused by bacteria of genus Acinetobacter pose a significant health care challenge worldwide. Information on molecular epidemiological investigation of outbreaks caused by Acinetobacter species in Kosova is lacking. The present investigation was carried out to enlight molecular epidemiology of Acinetobacter baumannii in the Central Intensive Care Unit (CICU) of a University hospital in Kosova using pulse field gel electrophoresis (PFGE). During March - July 2006, A. baumannii was isolated from 30 patients, of whom 22 were infected and 8 were colonised. Twenty patients had ventilator-associated pneumonia, one patient had meningitis, and two had coinfection with bloodstream infection and surgical site infection. The most common diagnoses upon admission to the ICU were politrauma and cerebral hemorrhage. Bacterial isolates were most frequently recovered from endotracheal aspirate (86.7%). First isolation occurred, on average, on day 8 following admission (range 1-26 days). Genotype analysis of A. baumannii isolates identified nine distinct PFGE patterns, with predominance of PFGE clone E represented by isolates from 9 patients. Eight strains were resistant to carbapenems. The genetic relatedness of Acinetobacter baumannii was high, indicating cross-transmission within the ICU setting. These results emphasize the need for measures to prevent nosocomial transmission of A. baumannii in ICU. PMID:20464330

  2. Utility of Whole-Genome Sequencing in Characterizing Acinetobacter Epidemiology and Analyzing Hospital Outbreaks

    PubMed Central

    Fitzpatrick, Margaret A.; Hauser, Alan R.

    2015-01-01

    Acinetobacter baumannii frequently causes nosocomial infections and outbreaks. Whole-genome sequencing (WGS) is a promising technique for strain typing and outbreak investigations. We compared the performance of conventional methods with WGS for strain typing clinical Acinetobacter isolates and analyzing a carbapenem-resistant A. baumannii (CRAB) outbreak. We performed two band-based typing techniques (pulsed-field gel electrophoresis and repetitive extragenic palindromic-PCR), multilocus sequence type (MLST) analysis, and WGS on 148 Acinetobacter calcoaceticus-A. baumannii complex bloodstream isolates collected from a single hospital from 2005 to 2012. Phylogenetic trees inferred from core-genome single nucleotide polymorphisms (SNPs) confirmed three Acinetobacter species within this collection. Four major A. baumannii clonal lineages (as defined by MLST) circulated during the study, three of which are globally distributed and one of which is novel. WGS indicated that a threshold of 2,500 core SNPs accurately distinguished A. baumannii isolates from different clonal lineages. The band-based techniques performed poorly in assigning isolates to clonal lineages and exhibited little agreement with sequence-based techniques. After applying WGS to a CRAB outbreak that occurred during the study, we identified a threshold of 2.5 core SNPs that distinguished nonoutbreak from outbreak strains. WGS was more discriminatory than the band-based techniques and was used to construct a more accurate transmission map that resolved many of the plausible transmission routes suggested by epidemiologic links. Our study demonstrates that WGS is superior to conventional techniques for A. baumannii strain typing and outbreak analysis. These findings support the incorporation of WGS into health care infection prevention efforts. PMID:26699703

  3. Role of OmpA in the Multidrug Resistance Phenotype of Acinetobacter baumannii

    PubMed Central

    Fàbrega, Anna; Roca, Ignasi; Sánchez-Encinales, Viviana; Vila, Jordi; Pachón, Jerónimo

    2014-01-01

    Acinetobacter baumannii has emerged as a nosocomial pathogen with an increased prevalence of multidrug-resistant strains. The role of the outer membrane protein A (OmpA) in antimicrobial resistance remains poorly understood. In this report, disruption of the ompA gene led to decreased MICs of chloramphenicol, aztreonam, and nalidixic acid. We have characterized, for the first time, the contribution of OmpA in the antimicrobial resistance phenotype of A. baumannii. PMID:24379205

  4. Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium

    PubMed Central

    Barbe, Valérie; Vallenet, David; Fonknechten, Nuria; Kreimeyer, Annett; Oztas, Sophie; Labarre, Laurent; Cruveiller, Stéphane; Robert, Catherine; Duprat, Simone; Wincker, Patrick; Ornston, L. Nicholas; Weissenbach, Jean; Marlière, Philippe; Cohen, Georges N.; Médigue, Claudine

    2004-01-01

    Acinetobacter sp. strain ADP1 is a nutritionally versatile soil bacterium closely related to representatives of the well-characterized Pseudomonas aeruginosa and Pseudomonas putida. Unlike these bacteria, the Acinetobacter ADP1 is highly competent for natural transformation which affords extraordinary convenience for genetic manipulation. The circular chromosome of the Acinetobacter ADP1, presented here, encodes 3325 predicted coding sequences, of which 60% have been classified based on sequence similarity to other documented proteins. The close evolutionary proximity of Acinetobacter and Pseudomonas species, as judged by the sequences of their 16S RNA genes and by the highest level of bidirectional best hits, contrasts with the extensive divergence in the GC content of their DNA (40 versus 62%). The chromosomes also differ significantly in size, with the Acinetobacter ADP1 chromosome <60% of the length of the Pseudomonas counterparts. Genome analysis of the Acinetobacter ADP1 revealed genes for metabolic pathways involved in utilization of a large variety of compounds. Almost all of these genes, with orthologs that are scattered in other species, are located in five major ‘islands of catabolic diversity’, now an apparent ‘archipelago of catabolic diversity’, within one-quarter of the overall genome. Acinetobacter ADP1 displays many features of other aerobic soil bacteria with metabolism oriented toward the degradation of organic compounds found in their natural habitat. A distinguishing feature of this genome is the absence of a gene corresponding to pyruvate kinase, the enzyme that generally catalyzes the terminal step in conversion of carbohydrates to pyruvate for respiration by the citric acid cycle. This finding supports the view that the cycle itself is centrally geared to the catabolic capabilities of this exceptionally versatile organism. PMID:15514110

  5. Detection of New Delhi metallo-β-lactamase (encoded by blaNDM-1) in Acinetobacter schindleri during routine surveillance.

    PubMed

    McGann, Patrick; Milillo, Michael; Clifford, Robert J; Snesrud, Erik; Stevenson, Lindsay; Backlund, Michael G; Viscount, Helen B; Quintero, Reyes; Kwak, Yoon I; Zapor, Michael J; Waterman, Paige E; Lesho, Emil P

    2013-06-01

    A carbapenem-resistant Alcaligenes faecalis strain was isolated from a surveillance swab of a service member injured in Afghanistan. The isolate was positive for bla(NDM) by real-time PCR. Species identification was reevaluated on three identification systems but was inconclusive. Genome sequencing indicated that the closest relative was Acinetobacter schindleri and that bla(NDM-1) was carried on a plasmid that shared >99% identity with one identified in an Acinetobacter lwoffii isolate. The isolate also carried a novel chromosomally encoded class D oxacillinase. PMID:23554204

  6. The Population Structure of Acinetobacter baumannii: Expanding Multiresistant Clones from an Ancestral Susceptible Genetic Pool

    PubMed Central

    Diancourt, Laure; Passet, Virginie; Nemec, Alexandr; Dijkshoorn, Lenie; Brisse, Sylvain

    2010-01-01

    Outbreaks of hospital infections caused by multidrug resistant Acinetobacter baumannii strains are of increasing concern worldwide. Although it has been reported that particular outbreak strains are geographically widespread, little is known about the diversity and phylogenetic relatedness of A. baumannii clonal groups. Sequencing of internal portions of seven housekeeping genes (total 2,976 nt) was performed in 154 A. baumannii strains covering the breadth of known diversity and including representatives of previously recognized international clones, and in 19 representatives of other Acinetobacter species. Restricted amounts of diversity and a star-like phylogeny reveal that A. baumannii is a genetically compact species that suffered a severe bottleneck in the recent past, possibly linked to a restricted ecological niche. A. baumannii is neatly demarcated from its closest relative (genomic species 13TU) and other Acinetobacter species. Multilocus sequence typing analysis demonstrated that the previously recognized international clones I to III correspond to three clonal complexes, each made of a central, predominant genotype and few single locus variants, a hallmark of recent clonal expansion. Whereas antimicrobial resistance was almost universal among isolates of these and a novel international clone (ST15), isolates of the other genotypes were mostly susceptible. This dichotomy indicates that antimicrobial resistance is a major selective advantage that drives the ongoing rapid clonal expansion of these highly problematic agents of nosocomial infections. PMID:20383326

  7. Investigation and management of multidrug-resistant Acinetobacter baumannii spread in a French medical intensive care unit: one outbreak may hide another.

    PubMed

    Bourigault, Céline; Corvec, Stéphane; Bretonnière, Cédric; Guillouzouic, Aurélie; Crémet, Lise; Marraillac, Julie; Juvin, Marie-Emmanuelle; Bemer, Pascale; Le Gallou, Florence; Reynaud, Alain; Boutoille, David; Villers, Daniel; Lepelletier, Didier

    2013-07-01

    An outbreak in a medical intensive care unit was due to an OXA-23-producing Acinetobacter baumannii strain imported from a repatriate hospitalized in Singapore. This outbreak revealed another multidrug resistant epidemic strain that had been present in the hospital for 2 years. Both outbreaks were controlled after 9 months of an extensive infection control program. PMID:23266385

  8. Study of the resistance of Acinetobacter sp. to mercuric chloride

    SciTech Connect

    Lomovskaya, O.L.; Mindlin, S.Z.; Khesin, R.B.

    1986-06-01

    In addition to large plasmids (approx 60 kb) a small plasmid (almost 7.5 kb), plasmid PKL1, has been found in HgCl/sub 2/-resistant strains of Acinetobacter sp. isolated from soil in the vicinity of the Khaidarkan mercury deposit. With the aid of conjugation and transformation studies it was established that plasmid pKL1 is a mobilized plasmid with a broad host range and that this plasmid carries the Hg/sup r/-determinant. A restriction map of plasmid pKL1 was constructed, and the site of the Hg/sup r/-determinant and the regions essential for replication were localized. By comparing the results of the present study and previously-obtained data it was proposed that in a given microbiocoenosis the Hg/sup r/-determinants may occur in plasmids which differ markedly in structure and properties.

  9. A cluster of Acinetobacter Pneumonia in foundry workers

    SciTech Connect

    Cordes, L.G.; Brink, E.W.; Checko, P.J.; Lentnek, A.; Lyons, R.W.; Hayes, P.S.; Wu, T.C.; Tharr, D.G.; Fraser, D.W.

    1981-12-01

    In a 3-month period, three men who had worked for 5 to 19 years as welders or grinders of steel castings in a foundry acquired pneumonia caused by Acinetobacter calcoaceticus variety anitratus serotype 7J. Two of the men died, and postmortem examination showed mixed-dust pneumoconiosis with iron particles in the lungs. A calcoaceticus variety anitratus serotype 7J was isolated from the air in the foundry but the source was not found. The prevalence of antibody titers of 64 or greater to the 7J strain was significantly higher among foundry workers (15%) than among community controls (2%) (p less than 0.01). Sampling showed that the concentrations of total and metallic particles (especially iron) and of free silica in air inhaled by welders and grinders at the foundry frequently exceeded acceptable levels. These findings suggest that chronic exposure to such particles may increase susceptibility to infection by this organism, which rarely affects healthy people.

  10. Acinetobacter cyclohexanone monooxygenase: gene cloning and sequence determination.

    PubMed Central

    Chen, Y C; Peoples, O P; Walsh, C T

    1988-01-01

    The gene coding for cyclohexanone monooxygenase from Acinetobacter sp. strain NCIB 9871 was isolated by immunological screening methods. We located and determined the nucleotide sequence of the gene. The structural gene is 1,626 nucleotides long and codes for a polypeptide of 542 amino acids; 389 nucleotides 5' and 108 nucleotides 3' of the coding region are also reported. The complete amino acid sequence of the enzyme was derived by translation of the nucleotide sequence. From a comparison of the amino acid sequence with consensus sequences of nucleotide-binding folds, we identified a potential flavin-binding site at the NH2 terminus of the enzyme (residues 6 to 18) and a potential nicotinamide-binding site extending from residue 176 to residue 208 of the protein. An overproduction system for the gene to facilitate genetic manipulations was also constructed by using the tac promoter vector pKK223-3 in Escherichia coli. Images PMID:3338974

  11. Herellea (Acinetobacter) and Pseudomonas ovalis (P. putida) from Frozen Foods

    PubMed Central

    Eller, Charles

    1969-01-01

    Seventeen strains of Herellea vaginicola (Acinetobacter antitratus) and 8 of Pseudomonas ovalis (P. putida), isolated from 23 (6.3%) of 364 samples of frozen, foil-pack foods, were identified and characterized morphologically and biochemically. Herellea was isolated from 17 foods (4.7%), P. ovalis from 6 (1.6%). No Mima were found. The food samples included precooked frozen meats, precooked and uncooked frozen vegetables, and uncooked frozen desserts. The bacteria were detected in the food with a procedure used generally for the detection of salmonellae. The pseudomonad simulated the characteristics of Herellea on Sellers differential agar, except for the fact that it fluoresced. From consideration of the habitat and pathogenicity of Herellea and Mima, it is concluded that, although the presence of these bacteria may not be desirable, their significance in food remains unanswered. PMID:4886860

  12. Heterotrophic nitrogen removal by Acinetobacter sp. Y1 isolated from coke plant wastewater.

    PubMed

    Liu, YuXiang; Hu, Tingting; Song, Yujie; Chen, Hongping; Lv, YongKang

    2015-11-01

    A strain of Acinetobacter sp. Y1, which exhibited an amazing ability to remove ammonium, nitrite and nitrate, was isolated from the activated sludge of a coking wastewater treatment plant. The aim of this work was to study the ability, influence factors and possible pathway of nitrogen removal by Acinetobacter sp. Y1. Results showed that maximum removal rate of NH4(+)-N by the strain was 10.28 mg-N/L/h. Carbon source had significant influence on the growth and ammonium removal efficiencies of strain Y1. Pyruvate, citrate and acetate were favourable carbon sources for the strain. Temperature, pH value and shaking speed could affect the growth and nitrogen removal ability. Nitrate or nitrite could be used as a sole nitrogen source for the growth and removed efficiently by the strain. N2 levels increased to 53.74%, 50.21% and 55.13% within 36 h when 100 mg/L NH4(+)-N, NO2(-)-N or NO3(-) -N was used as sole nitrogen source in the gas detection experiment. The activities of hydroxylamine oxidoreductase (HAO), nitrate reductase (NR) and nitrite reductase (NiR), which are key enzymes in heterotrophic nitrification and aerobic denitrification, were all detectable in the strain. Consequently, a possible pathway for ammonium removal by the strain was also suggested. PMID:25910961

  13. Continuous coculture degradation of selected polychlorinated biphenyl congeners by Acinetobacter spp. in an aerobic reactor system

    SciTech Connect

    Adriaens, P.; Focht, D.D. )

    1990-07-01

    A coculture of two Acinetobacter spp. was applied to degrade polychlorinated biphenyls during a 42-day incubation study in a continuous aerobic fixed-bed reactor system, filled with polyurethane foam boards as support for bacterial biofilm development. The reactor was supplied with mineral medium containing 500 ppm sodium benzoate as a growth (primary) substrate, while the incoming airstream was saturated with biphenyl vapors to induce for PCB cometabolism in Acinetobacter sp. strain P6. The chlorobenzoates thus generated from 4,4{prime}-dichlorobiphenyl (4,4{prime}-DCBP), 3,4-dichlorobiphenyl (3,4-DCBP), and 3,3{prime},4,4{prime}-tetrachlorobiphenyl were further metabolized by Acinetobacter sp. strain 4-CB1. The chlorobenzoate metabolites, as well as ring-fission product ({lambda}{sub max} = 442 nm) from the PCB congeners, accounted for the degradation of 63% (2.8 mM) of the 4,4{prime}-DCBP, 100% (0.5 mM) of the 3,4-DCBP, and 32% (0.12 mM) of the 3,3{prime},4,4{prime}-TCBP, the biofilm responded with a concurrent higher release of chlorobenzoates and chloride through cosubstrate utilization.

  14. Culturable populations of Acinetobacter can promptly respond to contamination by alkanes in mangrove sediments.

    PubMed

    Rocha, Lidianne L; Colares, Geórgia B; Angelim, Alysson L; Grangeiro, Thalles B; Melo, Vânia M M

    2013-11-15

    This study evaluated the potential of bacterial isolates from mangrove sediments to degrade hexadecane, an paraffin hydrocarbon that is a large constituent of diesel and automobile lubricants. From a total of 18 oil-degrading isolates obtained by an enrichment technique, four isolates showed a great potential to degrade hexadecane. The strain MSIC01, which was identified by 16S rRNA gene sequencing as Acinetobacter sp., showed the best performance in degrading this hydrocarbon, being capable of completely degrading 1% (v/v) hexadecane within 48 h without releasing biosurfactants. Its hydrophobic surface probably justifies its potential to degrade high concentrations of hexadecane. Thus, the sediments from the studied mangrove harbour bacterial communities that are able to use oil as a carbon source, which is a particularly interesting feature due to the risk of oil spills in coastal areas. Moreover, Acinetobacter sp. MSIC01 emerged as a promising candidate for applications in bioremediation of contaminated mangrove sediments. PMID:24050127

  15. Detection of Multi-drug Resistant Acinetobacter Lwoffii Isolated from Soil of Mink Farm.

    PubMed

    Sun, Na; Wen, Yong Jun; Zhang, Shu Qin; Zhu, Hong Wei; Guo, Li; Wang, Feng Xue; Chen, Qiang; Ma, Hong Xia; Cheng, Shi Peng

    2016-07-01

    There were 4 Acinetobacter lwoffii obtained from soil samples. The antimicrobial susceptibility of the strains to 16 antimicrobial agents was investigated using K-B method. Three isolates showed the multi-drug resistance. The presence of resistance genes and integrons was determined using PCR. The aadA1, aac(3')-IIc, aph(3')-VII, aac(6')-Ib, sul2, cat2, floR, and tet(K) genes were detected, respectively. Three class 1 integrons were obtained. The arr-3-aacA4 and blaPSE-1 gene cassette, which cause resistance to aminoglycoside and beta-lactamase antibiotics. Our results reported the detection of multi-drug resistant and carried resistant genes Acinetobacter lwoffii from soil. The findings suggested that we should pay close attention to the prevalence of multi-drug resistant bacterial species of environment. PMID:27554122

  16. Comparative Genomics of Multidrug Resistance in Acinetobacter baumannii

    PubMed Central

    2006-01-01

    Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island—the largest identified to date—in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance. PMID:16415984

  17. Comparison between phenotypic and PCR for detection of OXA-23 type and metallo-beta-lactamases producer Acinetobacter spp.

    PubMed Central

    Azimi, Leila; Lari, Abdolaziz Rastegar; Talebi, Malihe; Namvar, Amirmorteza Ebrahimzadeh; Jabbari, Mosadegh

    2013-01-01

    Background: Resistance to carbapenems is developing around the world and can cause many problems for treatment of patients. Production of metallo-beta-lactamase (MBL) is one of the main mechanism for this type of resistance. So, detection of MBL-producer microorganisms can prevent the spread of this type of resistance. Materials and methods: In this study 94 Acinetobacter spp. were investigated. Resistance to imipenem was conducted after purification and identification. Combination disc (CD) and Double Disc Synergy Test (DDST) were performed for phenotypic detection of MBL and the molecular PCR method was done for vim-1, vim-2, imp-1 and OXA-23 genes. Results: According to TSI, SIM and oxidation-fermentation (OF) test and PCR assay 93 Acinetobacter baumannii and one strain Acinetobacter lwoffii were identified. 85% of them were resistant to imipenem. 34% of them have a positive combination disc test (CD) while Double Disc Synergy Test (DDST) was negative for all of them. The vim-1, vim-2 and imp-1 genes were not detected in PCR molecular method, however in 74% of strains with positive results in combination disc, were positive for the OXA-23 gene after PCR test. This study shows that the blaOXA-23 resistance determinant may become an emerging therapeutic problem. Discussion: According to the results, it seems that combination disc does not have enough specificity for detection of MBL-producer Acinetobacter and using Double Disc Synergy Test (DDST) can be more convenient. PMID:24327942

  18. AdeIJK, a Resistance-Nodulation-Cell Division Pump Effluxing Multiple Antibiotics in Acinetobacter baumannii▿

    PubMed Central

    Damier-Piolle, Laurence; Magnet, Sophie; Brémont, Sylvie; Lambert, Thierry; Courvalin, Patrice

    2008-01-01

    We have identified a second resistance-nodulation-cell division (RND)-type efflux pump, AdeIJK, in clinical isolate Acinetobacter baumannii BM4454. The adeI, adeJ, and adeK genes encode, respectively, the membrane fusion, RND, and outer membrane components of the pump. AdeJ belongs to the AcrB protein family (57% identity with AcrB from Escherichia coli). mRNA analysis by Northern blotting and reverse transcription-PCR indicated that the genes were cotranscribed. Overexpression of the cloned adeIJK operon was toxic in both E. coli and Acinetobacter. The adeIJK genes were detected in all of the 60 strains of A. baumannii tested. The two latter observations suggest that the AdeIJK complex might contribute to intrinsic but not to acquired antibiotic resistance in Acinetobacter. To characterize the substrate specificity of the pump, we have constructed derivatives of BM4454 in which adeIJK (strain BM4579), adeABC (strain BM4561), or both groups of genes (strain BM4652) were inactivated by deletion-insertion. Determination of the antibiotic susceptibility of these strains and of BM4652 and BM4579, in which the adeIJK operon was provided in trans, indicated that the AdeIJK pump contributes to resistance to β-lactams, chloramphenicol, tetracycline, erythromycin, lincosamides, fluoroquinolones, fusidic acid, novobiocin, rifampin, trimethoprim, acridine, safranin, pyronine, and sodium dodecyl sulfate. The chemical structure of these molecules suggests that amphiphilic compounds are the preferred substrates. The AdeABC and AdeIJK efflux systems contributed in a more than additive fashion to tigecycline resistance. PMID:18086852

  19. Phosphate uptake kinetics by Acinetobacter isolates.

    PubMed

    Pauli, A S; Kaitala, S

    1997-02-01

    Acinetobacter isolates from activated sludge treatment plants of forest industry were used as model organisms for polyphosphate accumulating bacteria to study excess phosphate uptake by the overplus phenomenon as well as luxury uptake of phosphate during growth. The initial, rapid phosphate uptake by the phosphorus-starved Acinetobacter isolates (the overplus phenomenon) followed the Michaelis-Menten model (maximum initial phosphate uptake rate 29 mg P g(-1) dry mass (DM) h(-1), half-saturation constant for excess phosphate uptake 17 mg P L(-1)). During the rapid uptake no growth was observed, but most cells contained polyphosphate granules. Also growth and luxury uptake of phosphate could be modeled with the Michaelis-Menten equation (maximum phosphate uptake rate 3.7-12 mg P g(-1) DM h(-1), half-saturation constant for growth 0.47-6.0 mg P L(-1), maximum specific growth rate 0.15-0.55 h(-1)). PMID:18633985

  20. Identification of NDM-1 in a Putatively Novel Acinetobacter Species (“NB14”) Closely Related to Acinetobacter pittii

    PubMed Central

    Espinal, Paula; Mosqueda, Noraida; Telli, Murat; van der Reijden, Tanny; Rolo, Dora; Fernández-Orth, Dietmar; Dijkshoorn, Lenie; Vila, Jordi

    2015-01-01

    In this study, we describe the molecular characterization of a plasmid-located blaNDM-1 harbored by an Acinetobacter clinical isolate recovered from a patient in Turkey that putatively constitutes a novel Acinetobacter species, as shown by its distinct ARDRA (amplified 16S ribosomal DNA restriction analysis) profile and molecular sequencing techniques. blaNDM-1 was carried by a conjugative plasmid widespread among non-baumannii Acinetobacter isolates, suggesting its potential for dissemination before reaching more clinically relevant Acinetobacter species. PMID:26259796

  1. Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. [Pseudomonas; Acinetobacter

    SciTech Connect

    Adams, R.H.; Huang, C.M.; Higson, F.K.; Brenner, V.; Focht, D.D. )

    1992-02-01

    Recombinant Pseudomonas sp. strain CB15, which grows on 3-chlorobiphenyl (3CB), was constructed from Pseudomonas sp. strain HF1, which grows on 3-chlorobenzoate, and from Acinetobacter sp. strain P6, which grows on biphenyl, by using a continuous amalgamated culture apparatus. DNA from strains CB15 and HF1 hybridized very strongly to each other, while hybridization between both parental strains, HF1 and P6, was negligible. However, DNA from the recombinant CB15 hybridized moderately to strongly with three specific fragments of parental strain P6. Strains HF1 and P6 did not grow on 3CB, but recombinant strain CB15 mineralized this compound and released inorganic chloride. When growing on 3CB, strain CB15 accumulated brown products, one of which was identified as 3-chloro-5-(2{prime}-hydroxy-3{prime}-chlorophenyl)-1,2-benzoquinone by mass spectrometry. At least three methods of inhibition from catecholic intermediates may account for slow growth on 3CB. In resting-cell assays, recombinant strain CB15 and strain P6 both metabolized 3CB faster than 3,3{prime}-dichlorobiphenyl. However, 3,3{prime}-dichlorobiphenyl could not be utilized as a growth substrate by strain CB15, nor did its presence have any effect on the rate of 3CB mineralization.

  2. Blood stream infections caused by Acinetobacter ursingii in an obstetrics ward.

    PubMed

    Horii, Toshinobu; Tamai, Kiyoko; Mitsui, Mayumi; Notake, Shigeyuki; Yanagisawa, Hideji

    2011-01-01

    The genus Acinetobacter is an important causative pathogen of nosocomial infections in the healthcare setting. The objectives of this study were to determine the species of causative pathogens and the sources of Acinetobacter blood stream infections that occurred in 2 immunocompetent pregnant women admitted to an obstetrics ward within a 2-month period. Phenotypic identification of the two isolates from blood stream infections was inconsistent among the ID test, the MicroScan WalkAway and the Vitek2 systems. In addition to the growth profile and detailed biochemical analysis, genotypic identification and phylogenetic tree analysis based on the almost complete 16S rRNA sequence and the partial rpoB gene sequence confirmed the identification of these isolates as A. ursingii. Environmental investigation of the obstetrics ward revealed A. ursingii and different strains of Acinetobacter junii in specimens obtained from the ward shower bath, although the source and route of transmission for the A. ursingii infections were not clarified. Our findings show that A. ursingii can inhabit the hospital environment. PMID:20969979

  3. The structure of alanine racemase from Acinetobacter baumannii

    PubMed Central

    Davis, Emily; Scaletti-Hutchinson, Emma; Opel-Reading, Helen; Nakatani, Yoshio; Krause, Kurt L.

    2014-01-01

    Acinetobacter baumannii is an opportunistic Gram-negative bacterium which is a common cause of hospital-acquired infections. Numerous antibiotic-resistant strains exist, emphasizing the need for the development of new antimicrobials. Alanine racemase (Alr) is a pyridoxal 5′-phosphate dependent enzyme that is responsible for racemization between enantiomers of alanine. As d-alanine is an essential component of the bacterial cell wall, its inhibition is lethal to prokaryotes, making it an excellent antibiotic drug target. The crystal structure of A. baumannii alanine racemase (AlrAba) from the highly antibiotic-resistant NCTC13302 strain has been solved to 1.9 Å resolution. Comparison of AlrAba with alanine racemases from closely related bacteria demonstrates a conserved overall fold. The substrate entryway and active site of the enzymes were shown to be highly conserved. The structure of AlrAba will provide the template required for future structure-based drug-design studies. PMID:25195891

  4. Radiation resistance of clinical Acinetobacter spp. : A need for concern

    SciTech Connect

    Christensen, E.A.; Gerner-Smidt, P.; Kristensen, H. )

    1991-06-01

    As part of an epidemiological investigation of hospital infections caused by Acinetobacter spp. the radiation resistance of 15 clinical isolates and four reference strains was assessed. The radiation resistance (in D-6 values, viz. the dose necessary for reducing the initial number of colony forming units by a factor of 10(6)) was, in general, higher in the isolates of A. radioresistens than in the isolates of the A. calcoaceticus-A. baumannii complex and of A. lwoffi. However, the least resistant isolates of A. radioresistens had a D-6 value equal to or lower than the most resistant isolates of the other groups. The lowest D-6 values found were for two of the reference strains. The highest D-6 value was 35 kGy. Three isolates of A. johnsonii could not survive long enough in a dried preparation to make an assessment of the D-6 values possible. The radiation resistance of the 15 clinical isolates in the present study was higher than the resistance found in a study of similar isolates in 1970.

  5. Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options.

    PubMed

    Doi, Yohei; Murray, Gerald L; Peleg, Anton Y

    2015-02-01

    The first decade of the 20th century witnessed a surge in the incidence of infections due to several highly antimicrobial-resistant bacteria in hospitals worldwide. Acinetobacter baumannii is one such organism that turned from an occasional respiratory pathogen into a major nosocomial pathogen. An increasing number of A. baumannii genome sequences have broadened our understanding of the genetic makeup of these bacteria and highlighted the extent of horizontal transfer of DNA. Animal models of disease combined with bacterial mutagenesis have provided some valuable insights into mechanisms of A. baumannii pathogenesis. Bacterial factors known to be important for disease include outer membrane porins, surface structures including capsule and lipopolysaccharide, enzymes such as phospholipase D, iron acquisition systems, and regulatory proteins. A. baumannii has a propensity to accumulate resistance to various groups of antimicrobial agents. In particular, carbapenem resistance has become commonplace, accounting for the majority of A. baumannii strains in many hospitals today. Carbapenem-resistant strains are often resistant to all other routinely tested agents. Treatment of carbapenem-resistant A. baumannii infection therefore involves the use of combinations of last resort agents such as colistin and tigecycline, but the efficacy and safety of these approaches are yet to be defined. Antimicrobial-resistant A. baumannii has high potential to spread among ill patients in intensive care units. Early recognition and timely implementation of appropriate infection control measures is crucial in preventing outbreaks. PMID:25643273

  6. Genomic and phenotypic characterization of the species Acinetobacter venetianus.

    PubMed

    Fondi, Marco; Maida, Isabel; Perrin, Elena; Orlandini, Valerio; La Torre, Laura; Bosi, Emanuele; Negroni, Andrea; Zanaroli, Giulio; Fava, Fabio; Decorosi, Francesca; Giovannetti, Luciana; Viti, Carlo; Vaneechoutte, Mario; Dijkshoorn, Lenie; Fani, Renato

    2016-01-01

    Crude oil is a complex mixture of hydrocarbons and other organic compounds that can produce serious environmental problems and whose removal is highly demanding in terms of human and technological resources. The potential use of microbes as bioremediation agents is one of the most promising fields in this area. Members of the species Acinetobacter venetianus have been previously characterized for their capability to degrade n-alkanes and thus may represent interesting model systems to implement this process. Although a preliminary experimental characterization of the overall hydrocarbon degradation capability has been performed for five of them, to date, the genetic/genomic features underlying such molecular processes have not been identified. Here we have integrated genomic and phenotypic information for six A. venetianus strains, i.e. VE-C3, RAG-1(T), LUH 13518, LUH 7437, LUH 5627 and LUH 8758. Besides providing a thorough description of the A. venetianus species, these data were exploited to infer the genetic features (presence/absence patterns of genes) and the short-term evolutionary events possibly responsible for the variability in n-alkane degradation efficiency of these strains, including the mechanisms of interaction with the fuel droplet and the subsequent catabolism of this pollutant. PMID:26902269

  7. Genomic and phenotypic characterization of the species Acinetobacter venetianus

    PubMed Central

    Fondi, Marco; Maida, Isabel; Perrin, Elena; Orlandini, Valerio; La Torre, Laura; Bosi, Emanuele; Negroni, Andrea; Zanaroli, Giulio; Fava, Fabio; Decorosi, Francesca; Giovannetti, Luciana; Viti, Carlo; Vaneechoutte, Mario; Dijkshoorn, Lenie; Fani, Renato

    2016-01-01

    Crude oil is a complex mixture of hydrocarbons and other organic compounds that can produce serious environmental problems and whose removal is highly demanding in terms of human and technological resources. The potential use of microbes as bioremediation agents is one of the most promising fields in this area. Members of the species Acinetobacter venetianus have been previously characterized for their capability to degrade n-alkanes and thus may represent interesting model systems to implement this process. Although a preliminary experimental characterization of the overall hydrocarbon degradation capability has been performed for five of them, to date, the genetic/genomic features underlying such molecular processes have not been identified. Here we have integrated genomic and phenotypic information for six A. venetianus strains, i.e. VE-C3, RAG-1T, LUH 13518, LUH 7437, LUH 5627 and LUH 8758. Besides providing a thorough description of the A. venetianus species, these data were exploited to infer the genetic features (presence/absence patterns of genes) and the short-term evolutionary events possibly responsible for the variability in n-alkane degradation efficiency of these strains, including the mechanisms of interaction with the fuel droplet and the subsequent catabolism of this pollutant. PMID:26902269

  8. Acinetobacter baumannii: Evolution of Antimicrobial Resistance—Treatment Options

    PubMed Central

    Doi, Yohei; Murray, Gerald L.; Peleg, Anton Y.

    2015-01-01

    The first decade of the 20th century witnessed a surge in the incidence of infections due to several highly antimicrobial-resistant bacteria in hospitals worldwide. Acinetobacter baumannii is one such organism that turned from an occasional respiratory pathogen into a major nosocomial pathogen. An increasing number of A. baumannii genome sequences have broadened our understanding of the genetic makeup of these bacteria and highlighted the extent of horizontal transfer of DNA. Animal models of disease combined with bacterial mutagenesis have provided some valuable insights into mechanisms of A. baumannii pathogenesis. Bacterial factors known to be important for disease include outer membrane porins, surface structures including capsule and lipopolysaccharide, enzymes such as phospholipase D, iron acquisition systems, and regulatory proteins. A. baumannii has a propensity to accumulate resistance to various groups of antimicrobial agents. In particular, carbapenem resistance has become commonplace, accounting for the majority of A. baumannii strains in many hospitals today. Carbapenem-resistant strains are often resistant to all other routinely tested agents. Treatment of carbapenem-resistant A. baumannii infection therefore involves the use of combinations of last resort agents such as colistin and tigecycline, but the efficacy and safety of these approaches are yet to be defined. Antimicrobial-resistant A. baumannii has high potential to spread among ill patients in intensive care units. Early recognition and timely implementation of appropriate infection control measures is crucial in preventing outbreaks. PMID:25643273

  9. First report of Oxa-72-producing Acinetobacter calcoaceticus in Lebanon

    PubMed Central

    Al Atrouni, A.; Kempf, M.; Eveillard, M.; Rafei, R.; Hamze, M.; Joly-Guillou, M.-L.

    2015-01-01

    Emergence of carbapenem-resistant Acinetobacter spp. has been increasingly reported worldwide. We report here the first detection of an Acinetobacter calcoaceticus isolate from vegetables in Lebanon carrying the blaOxa-72 gene. These findings show that the Lebanese environment may constitute a potential reservoir for this antibiotic resistance gene. PMID:26858838

  10. Metabolism of spacecraft cleaning reagents by Mars Odyssey and Phoenix-associated Acinetobacter

    NASA Astrophysics Data System (ADS)

    Mogul, Rakesh; Barding, Gregory; Baki, Ryan; Perkins, Nicole; Lee, Sooji; Lalla, Sid; Campos, Alexa; Sripong, Kimberly; Madrid, Steve

    2016-07-01

    The metabolomic and proteomic properties that promote microbial survival in spacecraft assembly facilities are important aspects to planetary protection and astrobiology. In this presentation, we will provide molecular and biological evidence that the spacecraft-associated Acinetobacter metabolize/degrade spacecraft cleaning reagents such as ethanol, 2-propanol, and Kleenol-30. Gas chromatography-mass spectrometry (GC-MS) studies on A. radioresistens 50v1 (Mars Odyssey) show that the metabolome is dependent upon growth conditions and that ^{13}C-labeled ethanol is incorporated into metabolites such as TCA/glyoxylate cycle intermediates, amino acids, monosaccharides, and disaccharides (e.g., trehalose). In fact, plate count assays show that ethanol is a sole carbon source under minimal conditions for several Mars Phoenix and Odyssey-associated Acinetobacter strains, which may explain why the Acinetobacter are among the most abundant genera found in spacecraft assembly facilities. Biochemical analyses support the enzymatic oxidation of ethanol and 2-propanol by a membrane-bound and NAD+/PQQ-dependent alcohol dehydrogenase, with current kinetic data providing similar apparent K _{M} and maximum growth rate values of ˜5 and 8 mM ethanol, respectively. Preliminary GC-MS analysis also suggests that Kleenol-30 is degraded by A. radioresistens 50v1 when grown in ethanol mixtures. Under minimal conditions, A. radioresistens 50v1 (˜10 ^{8} cfu/mL) also displays a remarkable oxidative extremotolerance (˜2-log reduction in 10 mM hydrogen peroxide), which suggests crucial roles for metabolites associated with oxidative stress (e.g., trehalose) and the observed appreciable catalase specific activities. In conclusion, these results provide key insights into the survival strategies of spacecraft-associated Acinetobacter and emphasize the importance of characterizing the carbon metabolism of forward contaminants.

  11. The Genomic Diversification of the Whole Acinetobacter Genus: Origins, Mechanisms, and Consequences

    PubMed Central

    Touchon, Marie; Cury, Jean; Yoon, Eun-Jeong; Krizova, Lenka; Cerqueira, Gustavo C.; Murphy, Cheryl; Feldgarden, Michael; Wortman, Jennifer; Clermont, Dominique; Lambert, Thierry; Grillot-Courvalin, Catherine; Nemec, Alexandr; Courvalin, Patrice; Rocha, Eduardo P.C.

    2014-01-01

    Bacterial genomics has greatly expanded our understanding of microdiversification patterns within a species, but analyses at higher taxonomical levels are necessary to understand and predict the independent rise of pathogens in a genus. We have sampled, sequenced, and assessed the diversity of genomes of validly named and tentative species of the Acinetobacter genus, a clade including major nosocomial pathogens and biotechnologically important species. We inferred a robust global phylogeny and delimited several new putative species. The genus is very ancient and extremely diverse: Genomes of highly divergent species share more orthologs than certain strains within a species. We systematically characterized elements and mechanisms driving genome diversification, such as conjugative elements, insertion sequences, and natural transformation. We found many error-prone polymerases that may play a role in resistance to toxins, antibiotics, and in the generation of genetic variation. Surprisingly, temperate phages, poorly studied in Acinetobacter, were found to account for a significant fraction of most genomes. Accordingly, many genomes encode clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems with some of the largest CRISPR-arrays found so far in bacteria. Integrons are strongly overrepresented in Acinetobacter baumannii, which correlates with its frequent resistance to antibiotics. Our data suggest that A. baumannii arose from an ancient population bottleneck followed by population expansion under strong purifying selection. The outstanding diversification of the species occurred largely by horizontal transfer, including some allelic recombination, at specific hotspots preferentially located close to the replication terminus. Our work sets a quantitative basis to understand the diversification of Acinetobacter into emerging resistant and versatile pathogens. PMID:25313016

  12. Kinetic analysis of simultaneous denitrification and biomineralization of novel Acinetobacter sp. CN86.

    PubMed

    Su, Jun-Feng; Shi, Jing-Xin; Huang, Ting-Lin; Ma, Fang

    2016-08-15

    A novel aerobic denitrification and biomineralization strain CN86 was isolated from the Qu Jiang artificial lake. Based on phylogenetic characteristics, the isolated strain was identified as Acinetobacter species. Strain CN86 was confirmed to have the ability to perform simultaneous denitrification and biomineralization. Exponential decay equation was used for the matching of kinetic processes on denitrification and biomineralization. A highest nitrate removal rate was achieved at the pH7.0, organic concentration of 1.5g/L and temperature of 30°C. An optimal hardness removal rate was obtained at the pH9.0, organic concentration of 2.0g/L and temperature of 30°C. Strain CN86 is a suitable candidate for the simultaneous removal of nitrate and hardness in groundwater treatment. PMID:27287863

  13. Draft Genome Sequence of a Multidrug-Resistant Klebsiella pneumoniae Carbapenemase-Producing Acinetobacter baumannii Sequence Type 2 Isolate from Puerto Rico.

    PubMed

    Martínez, Teresa; Ropelewski, Alexander J; González-Mendez, Ricardo; Vázquez, Guillermo J; Robledo, Iraida E

    2016-01-01

    We report here the draft genome sequence of Acinetobacter baumannii strain M3AC14-8, sequence type 2 (ST2), carrying a chromosomally carried blaKPC-2 gene. The draft genome consists of a total length of 4.11 Mbp and a G+C content of 39.25%. PMID:27540056

  14. Draft Genome Sequence of a Multidrug-Resistant Klebsiella pneumoniae Carbapenemase-Producing Acinetobacter baumannii Sequence Type 2 Isolate from Puerto Rico

    PubMed Central

    Martínez, Teresa; Ropelewski, Alexander J.; González-Mendez, Ricardo; Vázquez, Guillermo J.

    2016-01-01

    We report here the draft genome sequence of Acinetobacter baumannii strain M3AC14-8, sequence type 2 (ST2), carrying a chromosomally carried blaKPC-2 gene. The draft genome consists of a total length of 4.11 Mbp and a G+C content of 39.25%. PMID:27540056

  15. Characterization of hydrogen peroxide-resistant Acinetobacter species isolated during the Mars Phoenix spacecraft assembly.

    PubMed

    Derecho, I; McCoy, K B; Vaishampayan, P; Venkateswaran, K; Mogul, R

    2014-10-01

    The microbiological inventory of spacecraft and the associated assembly facility surfaces represent the primary pool of forward contaminants that may impact the integrity of life-detection missions. Herein, we report on the characterization of several strains of hydrogen peroxide-resistant Acinetobacter, which were isolated during the Mars Phoenix lander assembly. All Phoenix-associated Acinetobacter strains possessed very high catalase specific activities, and the specific strain, A. gyllenbergii 2P01AA, displayed a survival against hydrogen peroxide (no loss in 100 mM H2O2 for 1 h) that is perhaps the highest known among Gram-negative and non-spore-forming bacteria. Proteomic characterizations reveal a survival mechanism inclusive of proteins coupled to peroxide degradation (catalase and alkyl hydroperoxide reductase), energy/redox management (dihydrolipoamide dehydrogenase), protein synthesis/folding (EF-G, EF-Ts, peptidyl-tRNA hydrolase, DnaK), membrane functions (OmpA-like protein and ABC transporter-related protein), and nucleotide metabolism (HIT family hydrolase). Together, these survivability and biochemical parameters support the hypothesis that oxidative tolerance and the related biochemical features are the measurable phenotypes or outcomes for microbial survival in the spacecraft assembly facilities, where the low-humidity (desiccation) and clean (low-nutrient) conditions may serve as selective pressures. Hence, the spacecraft-associated Acinetobacter, due to the conferred oxidative tolerances, may ultimately hinder efforts to reduce spacecraft bioburden when using chemical sterilants, thus suggesting that non-spore-forming bacteria may need to be included in the bioburden accounting for future life-detection missions. PMID:25243569

  16. Medically Relevant Acinetobacter Species Require a Type II Secretion System and Specific Membrane-Associated Chaperones for the Export of Multiple Substrates and Full Virulence

    PubMed Central

    Harding, Christian M.; Kinsella, Rachel L.; Palmer, Lauren D.; Skaar, Eric P.; Feldman, Mario F.

    2016-01-01

    Acinetobacter baumannii, A. nosocomialis, and A. pittii have recently emerged as opportunistic human pathogens capable of causing severe human disease; however, the molecular mechanisms employed by Acinetobacter to cause disease remain poorly understood. Many pathogenic members of the genus Acinetobacter contain genes predicted to encode proteins required for the biogenesis of a type II secretion system (T2SS), which have been shown to mediate virulence in many Gram-negative organisms. Here we demonstrate that Acinetobacter nosocomialis strain M2 produces a functional T2SS, which is required for full virulence in both the Galleria mellonella and murine pulmonary infection models. Importantly, this is the first bona fide secretion system shown to be required for virulence in Acinetobacter. Using bioinformatics, proteomics, and mutational analyses, we show that Acinetobacter employs its T2SS to export multiple substrates, including the lipases LipA and LipH as well as the protease CpaA. Furthermore, the Acinetobacter T2SS, which is found scattered amongst five distinct loci, does not contain a dedicated pseudopilin peptidase, but instead relies on the type IV prepilin peptidase, reinforcing the common ancestry of these two systems. Lastly, two of the three secreted proteins characterized in this study require specific chaperones for secretion. These chaperones contain an N-terminal transmembrane domain, are encoded adjacently to their cognate effector, and their disruption abolishes type II secretion of their cognate effector. Bioinformatic analysis identified putative chaperones located adjacent to multiple previously known type II effectors from several Gram-negative bacteria, which suggests that T2SS chaperones constitute a separate class of membrane-associated chaperones mediating type II secretion. PMID:26764912

  17. Emerging therapies for multidrug resistant Acinetobacter baumannii.

    PubMed

    García-Quintanilla, Meritxell; Pulido, Marina R; López-Rojas, Rafael; Pachón, Jerónimo; McConnell, Michael J

    2013-03-01

    The global emergence of multidrug resistant Acinetobacter baumannii has reduced the number of clinically available antibiotics that retain activity against this pathogen. For this reason, the development of novel prevention and treatment strategies for infections caused by A. baumannii is necessary. Several studies have begun to characterize nonantibiotic approaches that utilize novel mechanisms of action to achieve antibacterial activity. Recent advances in phage therapy, iron chelation therapy, antimicrobial peptides, prophylactic vaccination, photodynamic therapy, and nitric oxide (NO)-based therapies have all been shown to have activity against A. baumannii. However, before these approaches can be used clinically there are still limitations and remaining questions that must be addressed. PMID:23317680

  18. Role for emulsan in growth of Acinetobacter calcoaceticus RAG-1 on crude oil

    SciTech Connect

    Pines, O.; Gutnick, D.

    1986-03-01

    When Acinetobacter calcoaceticus RAG-1 was grown together with an emulsan-deficient mutant on crude oil, only the emulsan-producing RAG-1 was found to grow, regardless of whether the medium was supplemented with emulsan. The results suggested that the cell-associated form of the bioemulsifier is the biologically active species required for growth on crude oil. A revertant of an emulsan-deficient strain was isolated which simultaneously regained the ability to produce both cell-associated and cell-free emulsan as well as the ability to grow on crude oil.

  19. Transferable amikacin resistance in Acinetobacter spp. due to a new type of 3'-aminoglycoside phosphotransferase.

    PubMed Central

    Lambert, T; Gerbaud, G; Courvalin, P

    1988-01-01

    Acinetobacter baumannii BM2580 resistant to kanamycin and structurally related antibiotics, including amikacin, was isolated from a clinical specimen. A phosphocellulose paper-binding assay and DNA annealing studies indicated that resistance to aminoglycosides in BM2580 was due to synthesis of a new type of 3'-aminoglycoside phosphotransferase. The gene conferring resistance to kanamycin-amikacin in this strain was carried by a 63-kilobase plasmid, pIP1841, self-transferable to A. baumannii, A. haemolyticus, and A. lwoffii but not to Escherichia coli. The aminoglycoside resistance gene of pIP1841 was cloned in E. coli, where it was expressed. Images PMID:2831812

  20. Resources for Genetic and Genomic Analysis of Emerging Pathogen Acinetobacter baumannii

    PubMed Central

    Ramage, Elizabeth; Weiss, Eli J.; Radey, Matthew; Hayden, Hillary S.; Held, Kiara G.; Huse, Holly K.; Zurawski, Daniel V.; Brittnacher, Mitchell J.; Manoil, Colin

    2015-01-01

    ABSTRACT Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat. IMPORTANCE Acinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains. PMID:25845845

  1. Inverse PCR for subtyping of Acinetobacter baumannii carrying ISAba1.

    PubMed

    Kim, Shukho; Park, Yun-Ju; Kim, Jungmin

    2016-05-01

    Acinetobacter baumannii has been prevalent in nosocomial infections, often causing outbreaks in intensive care units. ISAba1 is an insertion sequence that has been identified only in A. baumannii and its copy number varies among strains. It has been reported that ISAba1 provides a promoter for bla OXA-51-like, bla OXA-23-like, and bla ampC, which are associated with the resistance of A. baumannii to carbapenems and cephalosporins. The main purpose of this study was to develop a novel inverse PCR method capable of typing A. baumannii strains. The method involves three major steps: cutting of genomic DNA with a restriction enzyme, ligation, and PCR. In the first step, bacterial genomic DNA was digested with DpnI. In the second step, the digested genomic DNAs were ligated to form intramolecular circular DNAs. In the last step, the ligated circular DNAs were amplified by PCR with primers specific for ISAba1 and the amplified PCR products were electrophoresed. Twenty-two clinical isolates of A. baumannii were used for the evaluation of the inverse PCR (iPCR) typing method. Dendrogram analysis revealed two major clusters, similar to pulsed-field gel electrophoresis (PFGE) results. Three ISAba1-associated genes - bla ampC, bla OXA-66-like, and csuD - were amplified and detected in the clinical isolates. This novel iPCR typing method is comparable to PFGE in its ability to discriminate A. baumannii strains, and is a promising molecular epidemiological tool for investigating A. baumannii carrying ISAba1. PMID:27095456

  2. Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii

    PubMed Central

    2014-01-01

    Background Acinetobacter baumannii has emerged as an opportunistic nosocomial pathogen causing infections worldwide. One reason for this emergence is due to its natural ability to survive in the hospital environment, which may be explained by its capacity to form biofilms. Cell surface appendages are important determinants of the A. baumannii biofilm formation and as such constitute interesting targets to prevent the development of biofilm-related infections. A chemical agent called virstatin was recently described to impair the virulence of Vibrio cholerae by preventing the expression of its virulence factor, the toxin coregulated pilus (type IV pilus). The objective of this work was to investigate the potential effect of virstatin on A. baumannii biofilms. Results After a dose–response experiment, we determined that 100 μM virstatin led to an important decrease (38%) of biofilms formed by A. baumannii ATCC17978 grown under static mode. We demonstrated that the production of biofilms grown under dynamic mode was also delayed and reduced. The biofilm susceptibility to virstatin was then tested for 40 clinical and reference A. baumannii strains. 70% of the strains were susceptible to virstatin (with a decrease of 10 to 65%) when biofilms grew in static mode, whereas 60% of strains respond to the treatment when their biofilms grew in dynamic mode. As expected, motility and atomic force microscopy experiments showed that virstatin acts on the A. baumannii pili biogenesis. Conclusions By its action on pili biogenesis, virstatin demonstrated a very promising antibiofilm activity affecting more than 70% of the A. baumannii clinical isolates. PMID:24621315

  3. Assessment of Minocycline and Polymyxin B Combination against Acinetobacter baumannii

    PubMed Central

    Bowers, Dana R.; Cao, Henry; Zhou, Jian; Ledesma, Kimberly R.; Sun, Dongxu; Lomovskaya, Olga

    2015-01-01

    Antimicrobial resistance among Acinetobacter baumannii is increasing worldwide, often necessitating combination therapy. The clinical utility of using minocycline with polymyxin B is not well established. In this study, we investigated the activity of minocycline and polymyxin B against 1 laboratory isolate and 3 clinical isolates of A. baumannii. Minocycline susceptibility testing was performed with and without an efflux pump inhibitor, phenylalanine-arginine β-naphthylamide (PAβN). The intracellular minocycline concentration was determined with and without polymyxin B (0.5 μg/ml). Time-kill studies were performed over 24 h using approximately 106 CFU/ml of each strain with clinically relevant minocycline concentrations (2 μg/ml and 8 μg/ml), with and without polymyxin B (0.5 μg/ml). The in vivo efficacy of the combination was assessed in a neutropenic murine pneumonia model. Infected animals were administered minocycline (50 mg/kg), polymyxin B (10 mg/kg), or both to achieve clinically equivalent exposures in humans. A reduction in the minocycline MIC (≥4×) was observed in the presence of PAβN. The intracellular concentration and in vitro bactericidal effect of minocycline were both enhanced by polymyxin B. With 2 minocycline-susceptible strains, the bacterial burden in lung tissue at 24 h was considerably reduced by the combination compared to monotherapy with minocycline or polymyxin B. In addition, the combination prolonged survival of animals infected with a minocycline-susceptible strain. Polymyxin B increased the intracellular concentration of minocycline in bacterial cells and enhanced the bactericidal activity of minocycline, presumably due to efflux pump disruption. The clinical utility of this combination should be further investigated. PMID:25712362

  4. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge.

    PubMed Central

    Wagner, M; Erhart, R; Manz, W; Amann, R; Lemmer, H; Wedi, D; Schleifer, K H

    1994-01-01

    Enhanced biological phosphate removal in an anaerobic-aerobic activated sludge system has generally been ascribed to members of the genus Acinetobacter. A genus-specific 16S rRNA-targeted oligonucleotide probe was developed to investigate the role of Acinetobacter spp. in situ. Nonisotopic dot blot hybridization to 66 reference strains, including the seven described Acinetobacter spp., demonstrated the expected probe specificity. Fluorescent derivatives were used for in situ monitoring of Acinetobacter spp. in the anaerobic and aerobic compartments of a sewage treatment plant with enhanced biological phosphate removal. Microbial community structures were further analyzed with oligonucleotide probes specific for the alpha, beta, or gamma subclasses of the class Proteobacteria, for the Cytophaga-Flavobacterium cluster, for gram-positive bacteria with a high G + C DNA content, and for all bacteria. Total cell counts were determined by 4',6-diamidino-2-phenylindole staining. In both the anaerobic and the aerobic basins, the activated sludge samples were dominated by members of the class Proteobacteria belonging to the beta subclass and by gram-positive bacteria with a high G + C DNA content. Acinetobacter spp. constituted less than 10% of all bacteria. For both basins, the microbial community structures determined with molecular techniques were compared with the compositions of the heterotrophic saprophytic microbiota determined with agar plating techniques. Isolates on nutrient-rich medium were classified by whole-cell hybridization with rRNA-targeted probes and fatty acid analysis.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:7512807

  5. Management of meningitis due to antibiotic-resistant Acinetobacter species

    PubMed Central

    Kim, Baek-Nam; Peleg, Anton Y; Lodise, Thomas P; Lipman, Jeffrey; Li, Jian; Nation, Roger; Paterson, David L

    2009-01-01

    Acinetobacter meningitis is becoming an increasingly common clinical entity, especially in the postneurosurgical setting, with mortality from this infection exceeding 15%. Infectious Diseases Society of America guidelines for therapy of postneurosurgical meningitis recommend either ceftazidime or cefepime as empirical coverage against Gram-negative pathogens. However, assessment of the pharmacodynamics of these cephalosporins in cerebrospinal fluid suggests that recommended doses will achieve pharmacodynamic targets against fewer than 10% of contemporary acinetobacter isolates. Thus, these antibiotics are poor options for suspected acinetobacter meningitis. From in vitro and pharmacodynamic perspectives, intravenous meropenem plus intraventricular administration of an aminoglycoside may represent a superior, albeit imperfect, regimen for suspected acinetobacter meningitis. For cases of meningitis due to carbapenem-resistant acinetobacter, use of tigecycline is not recommended on pharmacodynamic grounds. The greatest clinical experience rests with use of polymyxins, although an intravenous polymyxin alone is inadvisable. Combination with an intraventricularly administered antibiotic plus removal of infected neurosurgical hardware appears the therapeutic strategy most likely to succeed in this situation. Unfortunately, limited development of new antibiotics plus the growing threat of multidrug-resistant acinetobacter is likely to increase the problems posed by acinetobacter meningitis in the future. PMID:19324297

  6. Screening of antibiotics resistance to Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii by an advanced expert system.

    PubMed

    Nakamura, Tatsuya; Takahashi, Hakuo

    2005-12-01

    The VITEK2 advanced expert system (AES) gives information about the antibiotics-resistance mechanisms based on the biological validation derived from the VITEK2 susceptibility result. In this study, we investigated whether or not this system correctly categorized the beta-lactamase resistance mechanism data derived from the VITEK2 susceptibility result using the testing card, AST-N025, with Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii. We used 131 strains, and their phenotypes were determined according to the biological and genetic screening. The AES analysis result matched the phenotype testing in 120 (91.6%) of the 131 strains. Incorrect findings were found in six strains, including three strains of Serratia marcescens. The resistance mechanism could not be determined in five strains, including three strains of Providencia rettgeri. The analysis of those phenotypes agreed in 34 (97.1%) among 35 strains with extended spectrum beta-lactamase (ESBL), and in 27 (96.4%) among 28 strains with high-level cephalosporinase. The agreement ratio in the phenotype was very high as we expected. The incorrect and nondeterminable samples were strains with relatively high cephalosporinase that has variation of outer membrane protein. The AES was able to detect the phenotype for carbapenemase. The AES is a clinically useful system that allows taking prompt measures to treat patients because it can provide information about the resistance mechanism in less than half a day after starting the analysis. PMID:16369735

  7. Draft Genome Sequences of Acinetobacter parvus CM11, Acinetobacter radioresistens CM38, and Stenotrophomonas maltophilia BR12, Isolated from Murine Proximal Colonic Tissue

    PubMed Central

    Saffarian, Azadeh; Mulet, Céline; Naito, Tomoaki; Bouchier, Christiane; Tichit, Magali; Ma, Laurence; Grompone, Gianfranco

    2015-01-01

    Here, we report three genome sequences of bacteria isolated from murine proximal colonic tissue and identified as Acinetobacter parvus CM11, Acinetobacter radioresistens CM38, and Stenotrophomonas maltophilia BR12. PMID:26472823

  8. Draft Genome Sequences of Acinetobacter parvus CM11, Acinetobacter radioresistens CM38, and Stenotrophomonas maltophilia BR12, Isolated from Murine Proximal Colonic Tissue.

    PubMed

    Saffarian, Azadeh; Mulet, Céline; Naito, Tomoaki; Bouchier, Christiane; Tichit, Magali; Ma, Laurence; Grompone, Gianfranco; Sansonetti, Philippe J; Pédron, Thierry

    2015-01-01

    Here, we report three genome sequences of bacteria isolated from murine proximal colonic tissue and identified as Acinetobacter parvus CM11, Acinetobacter radioresistens CM38, and Stenotrophomonas maltophilia BR12. PMID:26472823

  9. Investigation of the Distributions and Types of Multidrug-Resistant Acinetobacter baumannii in Different Departments in a General Hospital

    PubMed Central

    Qian, Yaner; Dong, Xuejun; Wang, Zongxin; Yang, Guocan; Liu, Qi

    2015-01-01

    Background: Acinetobacter baumannii is the most prevalent strain in hospitals and different clinical departments. Objectives: The current study aimed to investigate the genetic characteristics and resistance mechanisms of A. baumannii isolated from clinical samples in Shaoxing people’s hospital affiliated to Zhejiang University, Shaoxing, China. Patients and Methods: Acinetobacter baumannii strains were isolated from blood, phlegm and skin of the patients hospitalized in different departments as respiratory medicine, plastic surgery and intensive care unit (ICU). Multilocus sequence typing (MLST) was used to characterize the isolates. Kirby-Bauer test was used to evaluate antibiotic resistance of the bacteria. The expression of resistance inducing genes was detected by reverse transcription polymerase chain reaction (RT-PCR). The results were analyzed and compared. Results: Two bacterial types, ST208, and ST218, were identified in all 140 samples. The ST208 mainly came from ICU and department of respiratory medicine, while ST218 from department of plastic surgery; 70.21% of ST208 and 84.78% of ST218 were carbapenem-resistant Acinetobacter baumannii (CRAB) and carbapenem-susceptible Acinetobacter baumannii (CSAB), respectively. Multidrug-resistance genes in CRAB isolated from the hospital mainly included, oxa-23, oxa-5, intl 1 and qaceΔ1-sul 1. Besides, the highest and lowest antibiotic resistance was observed in the strains isolated from blood samples and wounds, respectively. Conclusions: The distribution of AB varies in different clinical departments and samples. In the hospital under study, the main types of AB were ST208 and ST218. The genes which affect the ability of antibiotic-resistance were oxa-23, oxa-51, intl 1 and qaceΔ1-sul 1. PMID:26487921

  10. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages.

    PubMed

    Zarrilli, Raffaele; Pournaras, Spyros; Giannouli, Maria; Tsakris, Athanassios

    2013-01-01

    The rapid expansion of Acinetobacter baumannii clinical isolates exhibiting resistance to carbapenems and most or all available antibiotics during the last decade is a worrying evolution. The apparent predominance of a few successful multidrug-resistant lineages worldwide underlines the importance of elucidating the mode of spread and the epidemiology of A. baumannii isolates in single hospitals, at a country-wide level and on a global scale. The evolutionary advantage of the dominant clonal lineages relies on the capability of the A. baumannii pangenome to incorporate resistance determinants. In particular, the simultaneous presence of divergent strains of the international clone II and their increasing prevalence in international hospitals further support the ongoing adaptation of this lineage to the hospital environment. Indeed, genomic and genetic studies have elucidated the role of mobile genetic elements in the transfer of antibiotic resistance genes and substantiate the rate of genetic alterations associated with acquisition in A. baumannii of various resistance genes, including OXA- and metallo-β-lactamase-type carbapenemase genes. The significance of single nucleotide polymorphisms and transposon mutagenesis in the evolution of A. baumannii has been also documented. Establishment of a network of reference laboratories in different countries would generate a more complete picture and a fuller understanding of the importance of high-risk A. baumannii clones in the international dissemination of antibiotic resistance. PMID:23127486

  11. [Emerging Acinetobacter baumannii infections and factors favouring their occurrence].

    PubMed

    Eveillard, M; Joly-Guillou, M-L

    2012-10-01

    During the last decade, Acinetobacter baumannii (AB) has been increasingly responsible for infections occurring in three particular contexts (in terms of patients and environment). Community AB pneumonia is severe infections, mainly described around the Indian Ocean, and which mainly concern patients with major co-morbidities. AB is also responsible for infections occurring among soldiers wounded in action during operations conducted in Iraq or Afghanistan. Lastly, this bacterium is responsible for infections occurring among casualties from natural disasters like earthquakes and tsunamis. Those infections are often due to multidrug-resistant strains, which can be implicated in nosocomial outbreaks when patients are hospitalized in a local casualty department or during their repatriation thereafter. The source of the contaminations which lead to AB infections following injuries (warfare or natural disasters) is still poorly known. Three hypotheses are usually considered: a contamination of wounds with environmental bacteria, a wound contamination from a previous cutaneous or oropharyngeal endogenous reservoir, or hospital acquisition. The implication of telluric or agricultural primary reservoirs in human AB infections is a common hypothesis which remains to be demonstrated by further specifically designed studies. PMID:21963271

  12. Host resistance to intranasal Acinetobacter baumannii reinfection in mice.

    PubMed

    Qiu, Hongyu; Li, Zack; KuoLee, Rhonda; Harris, Greg; Gao, Xiaoling; Yan, Hongbin; Xu, H Howard; Chen, Wangxue

    2016-07-01

    Acinetobacter baumannii is a major causative agent of healthcare-associated infection and develops multidrug resistance rapidly. However, little is known in the host defense mechanisms against this infection. In this study, we examined if mice recovered from a previous intranasal A. baumannii infection (recovered mice) are fully protected against a subsequent reinfection. We found that, despite the presence of specific serum IgG and mucosal IgA responses prior to the reinfection, the recovered mice were only marginally better protected against intranasal challenge with low doses of homologous or heterologous A. baumannii strains than the naïve mice. Post-challenge immune and inflammatory (cells and cytokines) responses were generally comparable between recovered and naïve mice although the recovered mice produced significantly higher amounts of IFN-γ and IL-17 and had higher percentages and numbers of resident lung CD44(hi)CD62L(-)CD4(+) and CD19(+) B lymphocytes. Taken together, our results suggest that mice recovered from a previous A. baumannii infection remain susceptible to reinfection, indicating the complexity of immune protection mechanism for this Gram-negative, multidrug-resistant emerging pathogen. PMID:27194730

  13. Evaluation of Parameters for High Efficiency Transformation of Acinetobacter baumannii

    PubMed Central

    Yildirim, Suleyman; Thompson, Mitchell G.; Jacobs, Anna C.; Zurawski, Daniel V.; Kirkup, Benjamin C.

    2016-01-01

    Acinetobacter baumannii is an emerging, nosocomial pathogen that is poorly characterized due to a paucity of genetic tools and methods. While whole genome sequence data from several epidemic and environmental strains have recently become available, the functional characterization of genes is significantly lagging. Efficient transformation is one of the first steps to develop molecular tools that can be used to address these shortcomings. Here we report parameters allowing high efficiency transformation of A. baumannii. Using a multi-factorial experimental design we found that growth phase, voltage, and resistance all significantly contribute to transformation efficiency. The highest efficiency (4.3 × 108 Transformants/μg DNA) was obtained at the stationary growth phase of the bacterium (OD 6.0) using 25 ng of plasmid DNA under 100 Ohms resistance and 1.7 kV/cm voltage. The optimized electroporation parameters reported here provide a useful tool for genetic manipulation of A. baumannii. PMID:26911658

  14. Types and Prevalence of Carbapenem-Resistant Acinetobacter calcoaceticus-Acinetobacter baumannii Complex in Northern Taiwan

    PubMed Central

    Hsieh, Wen-Shyang; Wang, Nai-Yu; Feng, Jou-An; Weng, Li-Chuan

    2014-01-01

    The frequency of the carbapenem-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii (CRACB) complex increases annually in our hospitals. However, the types and prevalence of carbapenemases among isolates still remain unclear. In this study, we identified and collected 672 carbapenem-resistant isolates from a medical center in Northern Taiwan between April and December of 2010. There were 577 genospecies 2 (Acinetobacter baumannii), 79 genospecies 13TU, and 16 genospecies 3 isolates. The isolates had an acquired blaOXA-24-like gene, which was confirmed by sequencing for the encoded OXA-72 carbapenemase, and were often associated with high-level carbapenem resistance. These CRACB complex isolates remained susceptible to colistin (100%). The genotyping of isolates was conducted using pulsed-field gel electrophoresis with ApaI digestion. In most clonally related groups, patients were from both branch hospitals. The results indicate that interhospital dissemination of clones occurred. This study provides updated data on the types and prevalence of the CRACB complex. In addition, it presents a warning on the emergence and spread of CRACB complex harboring blaOXA-24-like genes in northern Taiwan. PMID:24145535

  15. Prevalence of hypermutators among clinical Acinetobacter baumannii isolates

    PubMed Central

    Komp Lindgren, Patricia; Higgins, Paul G.; Seifert, Harald; Cars, Otto

    2016-01-01

    Objectives The objectives of this study were to study the presence of mutators in a set of Acinetobacter baumannii isolates and to explore whether there is a correlation between mutation rates and antibiotic resistance. Methods The variation in mutation rate was evaluated for 237 clinical A. baumannii isolates by determining the frequency of their mutation to rifampicin resistance. For each isolate, the antibiotic resistance profile was determined by disc diffusion and/or Etest. Isolates were divided into susceptible, resistant and MDR groups according to their resistance to five groups of different antibiotics. A comparison between differences in mutation frequency (f) and strain-specific factors was performed. Results Of the 237 isolates 32%, 18% and 50% were classified as susceptible, resistant and MDR, respectively. The f of rifampicin resistance varied between 2.2 × 10−10 and 1.2 × 10−6. Of the strains under investigation, 16% had an ≥2.5- to 166-fold higher f. The presence of mutators (definition ≥2.5-fold increase in f compared with ATCC 19606) in the MDR group (22%) was significantly higher (P < 0.05) than that in the susceptible and resistant groups (11% and 7%, respectively). Furthermore, f was significantly higher in the MDR group compared with that in the susceptible and resistant groups. Conclusions The facts that 26 of 37 mutator isolates (70%) in the population were MDR and that there was a significantly higher general f in isolates exhibiting an MDR profile suggest that hypermutability can be of advantage for the organism in a selective environment with extensive exposure to antimicrobials. PMID:26660878

  16. Characterization and application of a novel bioemulsifier in crude oil degradation by Acinetobacter beijerinckii ZRS.

    PubMed

    Zhao, Yi-He; Chen, Li-Yuan; Tian, Zi-Jing; Sun, Yue; Liu, Jin-Biao; Huang, Lei

    2016-02-01

    Bioemulsifiers can be applicated in a variety of areas such as bioremediation and microbial-enhanced oil recovery. The present study was aimed at bioemulsifier production, optimization, stability studies, and applications of the bioemulsifier produced by one of these strains, Acinetobacter beijerinckii ZRS. When Acinetobacter beijerinckii ZRS is cultured with hexadecane as a carbon source, it produces a novel extracellular emulsifying agent that does not cause remarkable reductions in surface tension. In order to enhance bioemulsifier production, response surface methodology was applied to optimize the culture medium. The bioemulsifier was subjected to thin-layer chromatography, Fourier transform infrared spectroscopy (FTIR), gel filtration chromatography, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF), and nuclear magnetic resonance (NMR), which allowed for the identification of a novel polymeric bioemulsifier. The bioemulsifier retained its properties at a wide range of pH values, high temperatures and high salinities (up to 5% [w⁄v] Na(+) and 24% Ca(2+)). To deduce the role of this bioemulsifier in a coastal zone oil spill, the propagation of oil-degrading bacteria on oil-coated grains of gravel immersed in seawater was investigated in beach-simulating tanks. The bioemulsifier played a positive role in the degradation of these hydrocarbons and increasing the light crude oil degradation rate of the bacterial strain from 37.5 to 58.3% within 56 days. Therefore, this bioemulsifier shows strong potential to be used for bioremediation of oil pollution in marine environments. PMID:26576943

  17. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen

    PubMed Central

    Gonzalez-Villoria, Ana Maria; Valverde-Garduno, Veronica

    2016-01-01

    Antibiotic-resistant infectious bacteria currently imply a high risk and therefore constitute a strong challenge when treating patients in hospital settings. Characterization of these species and of particular strains is a priority for the establishment of diagnostic tests and preventive procedures. The relevance of Acinetobacter baumannii as a problematic microorganism in inpatient facilities, particularly intensive care units, has increased over time. This review aims to draw attention to (i) the historical emergence of carbapenem-resistant Acinetobacter baumannii, (ii) the current status of surveillance needs in Latin America, and (iii) recent data suggesting that A. baumannii continues to spread and evolve in hospital settings. First, we present synopsis of the series of events leading to the discovery and precise identification of this microorganism in hospital settings. Then key events in the acquisition of antibiotic-resistant genes by this microorganism are summarized, highlighting the race between new antibiotic generation and emergence of A. baumannii resistant strains. Here we review the historical development of this species as an infectious threat, the current state of its distribution, and antibiotic resistance characteristics, and we discuss future prospects for its control. PMID:26966582

  18. Characterisation of Pellicles Formed by Acinetobacter baumannii at the Air-Liquid Interface

    PubMed Central

    Nait Chabane, Yassine; Marti, Sara; Rihouey, Christophe; Alexandre, Stéphane; Hardouin, Julie; Lesouhaitier, Olivier; Vila, Jordi; Kaplan, Jeffrey B.; Jouenne, Thierry; Dé, Emmanuelle

    2014-01-01

    The clinical importance of Acinetobacter baumannii is partly due to its natural ability to survive in the hospital environment. This persistence may be explained by its capacity to form biofilms and, interestingly, A. baumannii can form pellicles at the air-liquid interface more readily than other less pathogenic Acinetobacter species. Pellicles from twenty-six strains were morphologically classified into three groups: I) egg-shaped (27%); II) ball-shaped (50%); and III) irregular pellicles (23%). One strain representative of each group was further analysed by Brewster’s Angle Microscopy to follow pellicle development, demonstrating that their formation did not require anchoring to a solid surface. Total carbohydrate analysis of the matrix showed three main components: Glucose, GlcNAc and Kdo. Dispersin B, an enzyme that hydrolyzes poly-N-acetylglucosamine (PNAG) polysaccharide, inhibited A. baumannii pellicle formation, suggesting that this exopolysaccharide contributes to pellicle formation. Also associated with the pellicle matrix were three subunits of pili assembled by chaperon-usher systems: the major CsuA/B, A1S_1510 (presented 45% of identity with the main pilin F17-A from enterotoxigenic Escherichia coli pili) and A1S_2091. The presence of both PNAG polysaccharide and pili systems in matrix of pellicles might contribute to the virulence of this emerging pathogen. PMID:25360550

  19. Characterisation of pellicles formed by Acinetobacter baumannii at the air-liquid interface.

    PubMed

    Nait Chabane, Yassine; Marti, Sara; Rihouey, Christophe; Alexandre, Stéphane; Hardouin, Julie; Lesouhaitier, Olivier; Vila, Jordi; Kaplan, Jeffrey B; Jouenne, Thierry; Dé, Emmanuelle

    2014-01-01

    The clinical importance of Acinetobacter baumannii is partly due to its natural ability to survive in the hospital environment. This persistence may be explained by its capacity to form biofilms and, interestingly, A. baumannii can form pellicles at the air-liquid interface more readily than other less pathogenic Acinetobacter species. Pellicles from twenty-six strains were morphologically classified into three groups: I) egg-shaped (27%); II) ball-shaped (50%); and III) irregular pellicles (23%). One strain representative of each group was further analysed by Brewster's Angle Microscopy to follow pellicle development, demonstrating that their formation did not require anchoring to a solid surface. Total carbohydrate analysis of the matrix showed three main components: Glucose, GlcNAc and Kdo. Dispersin B, an enzyme that hydrolyzes poly-N-acetylglucosamine (PNAG) polysaccharide, inhibited A. baumannii pellicle formation, suggesting that this exopolysaccharide contributes to pellicle formation. Also associated with the pellicle matrix were three subunits of pili assembled by chaperon-usher systems: the major CsuA/B, A1S_1510 (presented 45% of identity with the main pilin F17-A from enterotoxigenic Escherichia coli pili) and A1S_2091. The presence of both PNAG polysaccharide and pili systems in matrix of pellicles might contribute to the virulence of this emerging pathogen. PMID:25360550

  20. Acinetobacter baumannii: Emergence of a Successful Pathogen

    PubMed Central

    Peleg, Anton Y.; Seifert, Harald; Paterson, David L.

    2008-01-01

    Acinetobacter baumannii has emerged as a highly troublesome pathogen for many institutions globally. As a consequence of its immense ability to acquire or upregulate antibiotic drug resistance determinants, it has justifiably been propelled to the forefront of scientific attention. Apart from its predilection for the seriously ill within intensive care units, A. baumannii has more recently caused a range of infectious syndromes in military personnel injured in the Iraq and Afghanistan conflicts. This review details the significant advances that have been made in our understanding of this remarkable organism over the last 10 years, including current taxonomy and species identification, issues with susceptibility testing, mechanisms of antibiotic resistance, global epidemiology, clinical impact of infection, host-pathogen interactions, and infection control and therapeutic considerations. PMID:18625687

  1. Multidrug-Resistant Acinetobacter spp.: Increasingly Problematic Nosocomial Pathogens

    PubMed Central

    Lee, Kyungwon; Yong, Dongeun; Jeong, Seok Hoon

    2011-01-01

    Pathogenic bacteria have increasingly been resisting to antimicrobial therapy. Recently, resistance problem has been relatively much worsened in Gram-negative bacilli. Acinetobacter spp. are typical nosocomial pathogens causing infections and high mortality, almost exclusively in compromised hospital patients. Acinetobacter spp. are intrinsically less susceptible to antibiotics than Enterobacteriaceae, and have propensity to acquire resistance. A surveillance study in Korea in 2009 showed that resistance rates of Acinetobacter spp. were very high: to fluoroquinolone 67%, to amikacin 48%, to ceftazidime 66% and to imipenem 51%. Carbapenem resistance was mostly due to OXA type carbapenemase production in A. baumannii isolates, whereas it was due to metallo-β-lactamase production in non-baumannii Acinetobacter isolates. Colistin-resistant isolates were rare but started to be isolated in Korea. Currently, the infection caused by multidrug-resistant A. baumannii is among the most difficult ones to treat. Analysis at tertiary care hospital in 2010 showed that among the 1,085 isolates of Acinetobacter spp., 14.9% and 41.8% were resistant to seven, and to all eight antimicrobial agents tested, respectively. It is known to be difficult to prevent Acinetobacter spp. infection in hospitalized patients, because the organisms are ubiquitous in hospital environment. Efforts to control resistant bacteria in Korea by hospitals, relevant scientific societies and government agencies have only partially been successful. We need concerted multidisciplinary efforts to preserve the efficacy of currently available antimicrobial agents, by following the principles of antimicrobial stewardship. PMID:22028150

  2. Extrahuman Epidemiology of Acinetobacter baumannii in Lebanon

    PubMed Central

    Rafei, Rayane; Hamze, Monzer; Pailhoriès, Hélène; Eveillard, Matthieu; Marsollier, Laurent; Joly-Guillou, Marie-Laure; Dabboussi, Fouad

    2015-01-01

    The presence of Acinetobacter baumannii outside hospitals is still a controversial issue. The objective of our study was to explore the extrahospital epidemiology of A. baumannii in Lebanon. From February 2012 to October 2013, a total of 73 water samples, 51 soil samples, 37 raw cow milk samples, 50 cow meat samples, 7 raw cheese samples, and 379 animal samples were analyzed by cultural methods for the presence of A. baumannii. Species identification was performed by rpoB gene sequencing. Antibiotic susceptibility was investigated, and the A. baumannii population was studied by two genotyping approaches: multilocus sequence typing (MLST) and blaOXA-51 sequence-based typing (SBT). A. baumannii was detected in 6.9% of water samples, 2.7% of milk samples, 8.0% of meat samples, 14.3% of cheese samples, and 7.7% of animal samples. All isolates showed a susceptible phenotype against most of the antibiotics tested and lacked carbapenemase-encoding genes, except one that harbored a blaOXA-143 gene. MLST analysis revealed the presence of 36 sequence types (STs), among which 24 were novel STs reported for the first time in this study. blaOXA-51 SBT showed the presence of 34 variants, among which 21 were novel and all were isolated from animal origins. Finally, 30 isolates had new partial rpoB sequences and were considered putative new Acinetobacter species. In conclusion, animals can be a potential reservoir for A. baumannii and the dissemination of new emerging carbapenemases. The roles of the novel animal clones identified in community-acquired infections should be investigated. PMID:25616788

  3. Synergy between Colistin and the Signal Peptidase Inhibitor MD3 Is Dependent on the Mechanism of Colistin Resistance in Acinetobacter baumannii.

    PubMed

    Martínez-Guitián, Marta; Vázquez-Ucha, Juan C; Odingo, Joshua; Parish, Tanya; Poza, Margarita; Waite, Richard D; Bou, German; Wareham, David W; Beceiro, Alejandro

    2016-07-01

    Synergy between colistin and the signal peptidase inhibitor MD3 was tested against isogenic mutants and clinical pairs of Acinetobacter baumannii isolates. Checkerboard assays and growth curves showed synergy against both colistin-susceptible strains (fractional inhibitory concentration index [FICindex] = 0.13 to 0.24) and colistin-resistant strains with mutations in pmrB and phosphoethanolamine modification of lipid A (FICindex = 0.14 to 0.25) but not against colistin-resistant Δlpx strains with loss of lipopolysaccharide (FICindex = 0.75 to 1). A colistin/MD3 combination would need to be targeted to strains with specific colistin resistance mechanisms. PMID:27139471

  4. Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system.

    PubMed

    Bhattacharya, Amrik; Gupta, Anshu; Kaur, Amarjeet; Malik, Darshan

    2014-12-01

    The present study shows the feasibility of a newly isolated strain Acinetobacter sp. B9 for concurrent removal of phenol and Cr (VI) from wastewater. The experiments were conducted in a batch reactor under aerobic conditions. Initially, when mineral salt solution was used as the culture medium, the strain was found to utilize phenol as sole carbon and energy source while no Cr (VI) removal was observed. However, the addition of glucose as co-carbon source resulted in the removal of both toxicants. This co-removal efficiency of the strain was further improved with nutrient-rich media (NB). Optimum co-removal was determined at 188 mg L(-1) of phenol and 3.5 mg L(-1) of Cr (VI) concentrations at pH 7.0. Strain B9 followed the orthometabolic pathway for phenol degradation. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) studies showed sorption of chromium as one of the major mechanisms for Cr (VI) removal by B9 cells. Acinetobacter sp. B9 was later on checked for bioremediation of real tannery wastewater. After 96 h of batch treatment of tannery effluent containing an initial 47 mg L(-1) phenol and 16 mg L(-1) Cr (VI), complete removal of phenol and 87 % reduction of Cr (VI) were attained, showing high efficiency of the bacterial strain for potential application in industrial pollution control. PMID:25062955

  5. Biofilm Formation and Motility Depend on the Nature of the Acinetobacter baumannii Clinical Isolates

    PubMed Central

    Vijayakumar, Saranya; Rajenderan, Sangeetha; Laishram, Shakti; Anandan, Shalini; Balaji, Veeraraghavan; Biswas, Indranil

    2016-01-01

    Acinetobacter baumannii is a nosocomial pathogen involved in various infections ranging from minor soft-tissue infections to more severe infections such as ventilator-associated pneumonia and bacteremia. The severity and the type of infections depend on the genetic and phenotypic variations of the strains. In this study, we compared the extent of biofilm formation and motility displayed by 60 multidrug-resistant A. baumannii clinical strains isolated from blood and sputum samples from patients from Southern India. Our results showed that isolates from the sputum samples formed significantly more robust biofilm compared to the blood isolates. On the other hand, we observed that the blood isolates were more motile than the sputum isolates. To the best of our knowledge, this is the first study that systematically evaluated the correlation between these two phenotypic traits and the nature of the isolates. PMID:27252939

  6. Donor platelet plasma components inactivate sensitive and multidrug resistant Acinetobacter baumannii isolates.

    PubMed

    Edelblute, Chelsea M; Pakhomova, Olga N; Li, Fanying; Hargrave, Barbara Y; Heller, Loree C

    2015-12-01

    Acinetobacter baumannii is an environmentally resilient healthcare-associated opportunistic pathogen responsible for infections at many body sites. In the last 10 years, clinical strains resistant to many or all commonly used antibiotics have emerged globally. With few antimicrobial agents in the pharmaceutical pipeline, new and alternative agents are essential. Platelets secrete a large number of proteins, including proteins with antimicrobial activity. In a previous study, we demonstrated that donor platelet supernatants and plasma significantly inhibited the growth of a reference strain of A. baumannii in broth and on skin. This inhibition appeared to be unrelated to the platelet activation state. In this study, we demonstrate that this growth inhibition extends to clinical multidrug resistant isolates. We also demonstrate that there is no relationship between this activity and selected platelet-derived antimicrobial proteins. Instead, the donor plasma components complement and alpha-2 macroglobulin are implicated. PMID:26500225

  7. Biofilm Formation and Motility Depend on the Nature of the Acinetobacter baumannii Clinical Isolates.

    PubMed

    Vijayakumar, Saranya; Rajenderan, Sangeetha; Laishram, Shakti; Anandan, Shalini; Balaji, Veeraraghavan; Biswas, Indranil

    2016-01-01

    Acinetobacter baumannii is a nosocomial pathogen involved in various infections ranging from minor soft-tissue infections to more severe infections such as ventilator-associated pneumonia and bacteremia. The severity and the type of infections depend on the genetic and phenotypic variations of the strains. In this study, we compared the extent of biofilm formation and motility displayed by 60 multidrug-resistant A. baumannii clinical strains isolated from blood and sputum samples from patients from Southern India. Our results showed that isolates from the sputum samples formed significantly more robust biofilm compared to the blood isolates. On the other hand, we observed that the blood isolates were more motile than the sputum isolates. To the best of our knowledge, this is the first study that systematically evaluated the correlation between these two phenotypic traits and the nature of the isolates. PMID:27252939

  8. Biofilm-Related Genes: Analyses in Multi-Antibiotic Resistant Acinetobacter Baumannii Isolates From Mainland China

    PubMed Central

    Liu, Hui; Wu, Yong-Quan; Chen, Li-Ping; Gao, Xiang; Huang, Hao-Nan; Qiu, Fu-Lan; Wu, Ding-Chang

    2016-01-01

    Background Acinetobacter baumannii is an important nosocomial pathogen which shows a high level of mortality risk. Several papers have reported biofilm formation as a well-known pathogenic mechanism in A. baumannii infections and exceptional antibiotic resistance. The study aims to explore the potential relationships between biofilm-related genes and antimicrobial resistance. Material/Methods Samples from 122 patients with lower respiratory tract infections of A. baumannii were collected at Fujian Longyan First Hospital from January 2013 to September 2014. A. baumannii was isolated from sputum specimens. Biofilm-related genes including abaI, csuE, ompA, and bla-PER1 were analyzed by PCR. The minimum inhibitory concentration method was used to determine the sensitivity of each strain to antibiotics. Results The clinical manifestations of A. baumannii-induced lower respiratory tract infections lacked specificity. Infected patients were most commonly admitted to intensive care units (54.9%) and frequently had chronic obstructive pulmonary disease (27.0%). The detection rates of abaI and csuE were both 59.8%, and those of ompA and bla-PER1 were 100% and 0%, respectively. After genetic testing, antimicrobial resistance to amikacin, ampicillin/sulbactam, and 14 other types of antimicrobials was higher in abaI- and csuE-positive strains than in abaI- and csuE-negative strains (P<0.05). Conclusions The findings of our study suggest that abaI- and csuE-positive Acinetobacter baumannii strains are associated with a higher incidence of antibiotic resistance in 14 types of antimicrobials. PMID:27234982

  9. Biofilm-Related Genes: Analyses in Multi-Antibiotic Resistant Acinetobacter Baumannii Isolates From Mainland China.

    PubMed

    Liu, Hui; Wu, Yong-Quan; Chen, Li-Ping; Gao, Xiang; Huang, Hao-Nan; Qiu, Fu-Lan; Wu, Ding-Chang

    2016-01-01

    BACKGROUND Acinetobacter baumannii is an important nosocomial pathogen which shows a high level of mortality risk. Several papers have reported biofilm formation as a well-known pathogenic mechanism in A. baumannii infections and exceptional antibiotic resistance. The study aims to explore the potential relationships between biofilm-related genes and antimicrobial resistance. MATERIAL AND METHODS Samples from 122 patients with lower respiratory tract infections of A. baumannii were collected at Fujian Longyan First Hospital from January 2013 to September 2014. A. baumannii was isolated from sputum specimens. Biofilm-related genes including abaI, csuE, ompA, and bla-PER1 were analyzed by PCR. The minimum inhibitory concentration method was used to determine the sensitivity of each strain to antibiotics. RESULTS The clinical manifestations of A. baumannii-induced lower respiratory tract infections lacked specificity. Infected patients were most commonly admitted to intensive care units (54.9%) and frequently had chronic obstructive pulmonary disease (27.0%). The detection rates of abaI and csuE were both 59.8%, and those of ompA and bla-PER1 were 100% and 0%, respectively. After genetic testing, antimicrobial resistance to amikacin, ampicillin/sulbactam, and 14 other types of antimicrobials was higher in abaI- and csuE-positive strains than in abaI- and csuE-negative strains (P<0.05). CONCLUSIONS The findings of our study suggest that abaI- and csuE-positive Acinetobacter baumannii strains are associated with a higher incidence of antibiotic resistance in 14 types of antimicrobials. PMID:27234982

  10. Impact of Acinetobacter baumannii Superoxide Dismutase on Motility, Virulence, Oxidative Stress Resistance and Susceptibility to Antibiotics

    PubMed Central

    Heider, Christine; Skiebe, Evelyn; Wilharm, Gottfried

    2014-01-01

    Acinetobacter baumannii is a Gram-negative bacterium appearing as an opportunistic pathogen in hospital settings. Superoxide dismutase (SOD) contributes to virulence in several pathogenic bacteria by detoxifying reactive oxygen species released in the course of host defense reactions. However, the biological role of SODs in A. baumannii has not yet been elucidated. Here, we inactivated in A. baumannii ATCC 17978 gene A1S_2343, encoding a putative SOD of the Fe-Mn type by transposon insertion, resulting in mutant ATCC 17978 sod2343::Km. The mutation was also introduced in two naturally competent A. baumannii isolates by transformation with chromosomal DNA derived from mutant ATCC 17978 sod2343::Km. We demonstrate that inactivation of sod2343 leads to significant motility defects in all three A. baumannii strains. The mutant strains were more susceptible to oxidative stress compared to their parental strains. Susceptibility to colistin and tetracycline was increased in all mutant strains while susceptibility of the mutants to gentamicin, levofloxacin and imipenem was strain-dependent. In the Galleria mellonella infection model the mutant strains were significantly attenuated. In conclusion, sod2343 plays an important role in motility, resistance to oxidative stress, susceptibility to antibiotics and virulence in A. baumannii. PMID:25000585

  11. Differential Role of the T6SS in Acinetobacter baumannii Virulence

    PubMed Central

    Foucault-Grunenwald, Marie-Laure; Borges, Vitor; Charpentier, Xavier; Limansky, Adriana S.; Gomes, João Paulo; Viale, Alejandro M.; Salcedo, Suzana P.

    2015-01-01

    Gram-negative bacteria, such as Acinetobacter baumannii, are an increasing burden in hospitals worldwide with an alarming spread of multi-drug resistant (MDR) strains. Herein, we compared a type strain (ATCC17978), a non-clinical isolate (DSM30011) and MDR strains of A. baumannii implicated in hospital outbreaks (Ab242, Ab244 and Ab825), revealing distinct patterns of type VI secretion system (T6SS) functionality. The T6SS genomic locus is present and was actively transcribed in all of the above strains. However, only the A. baumannii DSM30011 strain was capable of killing Escherichia coli in a T6SS-dependent manner, unlike the clinical isolates, which failed to display an active T6SS in vitro. In addition, DSM30011 was able to outcompete ATCC17978 as well as Pseudomonas aeruginosa and Klebsiella pneumoniae, bacterial pathogens relevant in mixed nosocomial infections. Finally, we found that the T6SS of DSM30011 is required for host colonization of the model organism Galleria mellonella suggesting that this system could play an important role in A. baumannii virulence in a strain-specific manner. PMID:26401654

  12. Resistance and integron characterization of Acinetobacter baumannii in a teaching hospital in Chongqing, China

    PubMed Central

    Huang, C.; Long, Q.; Qian, K.; Fu, T.; Zhang, Z.; Liao, P.; Xie, J.

    2015-01-01

    A total of 189 Acinetobacter baumannii isolates were collected in 2011 from a teaching hospital in Chongqing, China. Susceptibility data showed strains carrying integrons were significantly more resistant to all tested antibiotics that strains lacking integrons. Five types of gene cassettes belonging to class I integrons were identified in this study, and for the first time two types of gene cassettes belonging to class II integrons are reported. Most of the cassettes belong to a class I integron (136/144) encoding arr3, aacA4, dfrA17, aadA5, aadB, cat, blaOXA10, aadA1, aadA2, dfrA and aacC1. Isolates contained a class I gene cassette; AadA2-HP-dfrA was the prevalent strain in this hospital. A class II integron was detected in eight strains, which contained the type IV fimbriae expression regulatory gene pilR and sulfate adenylyltransferase, suggesting a possible role in multidrug resistance. The major epidemic strains from intensive care unit patients belong to international clone 2. In conclusion, the presence of integrons was significantly associated with multiple drug resistance of A. baumannii in this hospital, and class I integron isolates bearing AadA2-HP-dfrA were the prevalent strain in this hospital. PMID:26649184

  13. The rise of carbapenem-resistant Acinetobacter baumannii.

    PubMed

    Evans, Benjamin A; Hamouda, Ahmed; Amyes, Sebastian G B

    2013-01-01

    Acinetobacter spp. are Gram-negative bacteria that have become one of the most difficult pathogens to treat. The species A. baumannii, largely unknown 30 years ago, has risen to prominence particularly because of its ability to cause infections in immunocompromised patients. It is now a predominant pathogen in many hospitals as it has acquired resistance genes to virtually all antibiotics capable of treating Gram-negative bacteria, including the fluoroquinolones and the cephalosporins. Some members of the species have accumulated these resistance genes in large resistance islands, located in a "hot-spot" within the bacterial chromosome. The only conventional remaining treatment options were the carbapenems. However, A. baumannii possesses an inherent class D β-lactamase gene (blaOXA-51-like) that can have the ability to confer carbapenem resistance. Additionally, mechanisms of carbapenem resistance have emerged that derive from the importation of the distantly related class D β-lactamase genes blaOXA-23 and blaOXA-58. Although not inducible, the expression of these genes is controlled by mobile promoters carried on ISAba elements. It has also been found that other resistance genes including the chromosomal class C β-lactamase genes conferring cephalosporin resistance are controlled in the same manner. Colistin is now considered to be the final drug capable of treating infections caused by carbapenem-resistant A. baumannii; however, strains are now being isolated that are resistant to this antibiotic as well. The increasing inability to treat infections caused by A. baumannii ensures that this pathogen more than ranks with MRSA or Clostridium difficile as a threat to modern medicine. PMID:22894617

  14. Characterization of carbapenem-resistant Acinetobacter baumannii clinical isolates in a tertiary care hospital in Saudi Arabia.

    PubMed

    Abdalhamid, Baha; Hassan, Hoda; Itbaileh, Ahmad; Shorman, Mahmoud

    2014-01-01

    This study characterized the occurrence of carbapenem resistance of Acinetobacter baumannii isolates in a tertiary care hospital in Saudi Arabia. From January 2010 until February 2012, Acinetobacter spp. isolates were collected from different wards and were identified using Vitek 2 system and 16S rRNA gene sequencing. Vitek 2 system and Etest were used for susceptibility testing. PCR and Pulse field gel electrophoresis (PFGE) were used for detecting and typing genes associated with carbapenem resistance. A total of 141 isolates were identified as A. baumannii. A total of 46 (32.6%) isolates were carbapenem-resistant Acinetobacter baumannii (CRAB) isolates and had wild diversity by PFGE. Metallo ?-lactamase confirmatory test was positive for 43 isolates with negative PCR for blaIMP and blaVIM. Among the 46 CRAB strains, 37 isolates harbored blaOXA-23 which was encoded downstream of ISAba1 and 1 isolate had ISAba1 encoded upstream blaOXA-51. These data reveal that the interhospital transmission of CRAB isolates was apparently insignificant. BlaOXA-23 adjacent to ISAba1 was the main mechanism of carbapenem resistance in these isolates. To our knowledge, this is the first molecular study characterizing carbapenem resistance in A. baumannii in the Eastern Province of Saudi Arabia. PMID:24531172

  15. Clinical and economic outcomes of Acinetobacter vis a vis non-Acinetobacter infections in an Indian teaching hospital

    PubMed Central

    Asim, Priyendu; Naik, Nagappa Anantha; Muralidhar, Varma; Vandana, K. Eshwara; Varsha, A. Prabhu

    2016-01-01

    Context: Acinetobacter infections are a major nosocomial infection causing epidemics of infection in the Intensive Care Units (ICU). Aims: This study estimates the clinical and economic outcomes of Acinetobacter infections and compares them with those of non-Acinetobacter bacterial infections. Settings and Design: Prospective cross-sectional observational study carried out for 6 months in the medicine ICU of a tertiary care hospital. Materials and Methods: Patients were divided in two groups, one group with Acinetobacter infections and the other with non-Acinetobacter infections. The data was collected for infection, length of stay (LOS), mortality and cost along with patient demographics from the hospital records for analysis. Statistical Analysis Used: The data was analyzed using Statistical Package for the Social Sciences Version 15.0. The LOS and cost of treatment (COT) for the two groups were compared using the nonparametric Mann–Whitney U-test. Results: A total of 220 patients were studied out of which 91 had Acinetobacter infections. The median LOS was 20 days in Group-A and 12 days in Group-B (P < 0.0001). The median COT was INR 125,862 in Group-A and INR 68,228 in the Group-B (P < 0.0001). Mortality in Group-A and Group-B was 32.97 and 32.56 (P = 0.949) respectively. Conclusion: The burden of Acinetobacter infections in ICUs is increasing with the increase in LOS and COT for the patients. The infection control team has to play a major role in reducing the rate of nosocomial infections. PMID:26955573

  16. Epidemiological Characteristics of blaNDM-1 in Enterobacteriaceae and the Acinetobacter calcoaceticus-Acinetobacter baumannii Complex in China from 2011 to 2012

    PubMed Central

    Ou, Weimei; Cui, Lanqing; Li, Yun; Zheng, Bo; Lv, Yuan

    2014-01-01

    Objectives The study aimed to investigate the prevalence and epidemiological characteristics of blaNDM-1 (encoding New Delhi metallo-β-lactamase 1) in Enterobacteriaceae and the Acinetobacter calcoaceticus-Acinetobacter baumannii complex (ABC) in China from July 2011 to June 2012. Methods PCR was used to screen for the presence of blaNDM-1 in all organisms studied. For blaNDM-1-positive strains, 16S rRNA analysis and Analytical Profile Index (API) strips were used to identify the bacterial genus and species. The ABCs were reconfirmed by PCR detection of blaOXA-51-like. Antibiotic susceptibilities of the bacteria were assessed by determining minimum inhibitory concentration (MIC) of them using two-fold agar dilution test, as recommended by the Clinical and Laboratory Standards Institute (CLSI). Molecular typing was performed using pulsed-field gel electrophoresis (PFGE). S1 nuclease-pulsed-field gel electrophoresis (S1-PFGE) and Southern blot hybridization were conducted to ascertain the gene location of blaNDM-1. Conjugation experiments were conducted to determine the transmission of blaNDM-1-positive strains. Results Among 2,170 Enterobacteriaceae and 600 ABCs, seven Enterobacteriaceae strains and two A. calcoaceticus isolates from five different cities carried the blaNDM-1 gene. The seven Enterobacteriaceae strains comprised four Klebsiella pneumoniae, one Enterobacter cloacae, one Enterobacter aerogen and one Citrobacter freundii. All seven were non-susceptible to imipenem, meropenem or ertapenem. Two A. calcoaceticus species were resistant to imipenem and meropenem. Three K. pneumoniae showed the same PFGE profiles. The blaNDM-1 genes of eight strains were localized on plasmids, while one was chromosomal. Conclusions Compared with previous reports, the numbers and species containing the blaNDM-1 in Enterobacteriaceae have significantly increased in China. Most of them are able to disseminate the gene, which is cause for concern. Consecutive surveillance should

  17. Chemical Analysis of the Outer Membrane and Other Layers of the Cell Envelope of Acinetobacter sp

    PubMed Central

    Thorne, Kareen J. I.; Thornley, Margaret J.; Glauert, Audrey M.

    1973-01-01

    Chemical analysis of fractions of the cell envelope of Acinetobacter sp. strain MJT/F5/199A, prepared by breakage in the French press and removal of plasma membranes, followed by sequential treatment with lysozyme and with papain, confirmed the existence of layers previously identified by electron microscopy. Outside the plasma membrane and periplasmic space, the envelope is composed of (i) a peptidoglycan-containing dense layer, (ii) an intermediate layer, (iii) a lipopolysaccharide-containing outer membrane, and (iv) an ordered array of protein subunits. A small amount of carbohydrate (3%) is found associated with protein in the fraction containing both the surface subunits and the intermediate layer. The papain-treated outer membranes contain 67% protein, 24% lipid, together with 11% lipopolysaccharide, and about 6% of non-lipopolysaccharide hexosamine. Lipid is located only in the papain-treated outer-membrane and is mainly phospholipid: 29% phosphatidyl glycerol, 30% phosphatidyl ethanolamine, and 40% cardiolipin. The principal fatty acid is C18:1. Significant amounts of alcohols16:1 and alcohols18:1, which are found in Acinetobacter waxes, were recovered from the outer membrane. Images PMID:4745422

  18. Code blue: Acinetobacter baumannii, a nosocomial pathogen with a role in the oral cavity.

    PubMed

    Richards, A M; Abu Kwaik, Y; Lamont, R J

    2015-02-01

    Actinetobacter baumannii is an important nosocomial pathogen that can cause a wide range of serious conditions including pneumonia, meningitis, necrotizing fasciitis and sepsis. It is also a major cause of wound infections in military personnel injured during the conflicts in Afghanistan and Iraq, leading to its popular nickname of 'Iraqibacter'. Contributing to its success in clinical settings is resistance to environmental stresses such as desiccation and disinfectants. Moreover, in recent years there has been a dramatic increase in the number of A. baumannii strains with resistance to multiple antibiotic classes. Acinetobacter baumannii is an inhabitant of oral biofilms, which can act as a reservoir for pneumonia and chronic obstructive pulmonary disease. Subgingival colonization by A. baumannii increases the risk of refractory periodontitis. Pathogenesis of the organism involves adherence, biofilm formation and iron acquisition. In addition, A. baumannii can induce apoptotic cell death in epithelial cells and kill hyphal forms of Candida albicans. Virulence factors that have been identified include pili, the outer membrane protein OmpA, phospholipases and extracellular polysaccharide. Acinetobacter baumannii can sense blue light through a blue-light sensing using flavin (BLUF) domain protein, BlsA. The resulting conformational change in BlsA leads to changes in gene expression, including virulence genes. PMID:25052812

  19. Characterization of affinity-purified isoforms of Acinetobacter calcoaceticus Y1 glutathione transferases.

    PubMed

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  20. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    PubMed Central

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  1. Role of Thin Fimbriae in Adherence and Growth of Acinetobacter calcoaceticus RAG-1 on Hexadecane.

    PubMed

    Rosenberg, M; Bayer, E A; Delarea, J; Rosenberg, E

    1982-10-01

    Acinetobacter calcoaceticus RAG-1, a hydrocarbon-degrading bacterium which adheres avidly to hydrocarbons and other hydrophobic surfaces, possesses numerous thin fimbriae (ca. 3.5-nm diameter) on the cell surface. MR-481, a nonadherent mutant of RAG-1 which is unable to grow on hexadecane under conditions of limited emulsification and low initial cell density, lacks these fimbriae. Prolonged incubation of MR-481 in hexadecane medium enriched for partial adherence revertants. The reappearance of thin fimbriae was observed in all such revertant strains. RAG-1 cells and partial revertant strains were agglutinated in the presence of antibody, whereas MR-481 cells were not. Another mutant, AB15, which was previously isolated on the basis of its nonagglutinability in the presence of antibody, also lacked thin fimbriae and was conditionally nonadherent. Furthermore, strain AB15 was unable to grow on hexadecane medium. Adherence of RAG-1 cells to hexadecane was considerably reduced after shearing treatment. The material removed from the cell surface by shearing of RAG-1 and the partial revertant strains yielded a single antigenic band in RAG-1 and partial revertant strains, as observed by crossed immunoelectrophoresis. This band was absent in both fimbriae-less mutants, MR-481 and AB15. The data demonstrate that the thin fimbriae of RAG-1 (i) are a major factor in adherence to polystyrene and hydrocarbon, (ii) may be crucial in enabling growth of cells on hexadecane, and (iii) constitute the major cell surface agglutinogen. PMID:16346118

  2. Role of Thin Fimbriae in Adherence and Growth of Acinetobacter calcoaceticus RAG-1 on Hexadecane

    PubMed Central

    Rosenberg, Mel; Bayer, Edward A.; Delarea, Jacob; Rosenberg, Eugene

    1982-01-01

    Acinetobacter calcoaceticus RAG-1, a hydrocarbon-degrading bacterium which adheres avidly to hydrocarbons and other hydrophobic surfaces, possesses numerous thin fimbriae (ca. 3.5-nm diameter) on the cell surface. MR-481, a nonadherent mutant of RAG-1 which is unable to grow on hexadecane under conditions of limited emulsification and low initial cell density, lacks these fimbriae. Prolonged incubation of MR-481 in hexadecane medium enriched for partial adherence revertants. The reappearance of thin fimbriae was observed in all such revertant strains. RAG-1 cells and partial revertant strains were agglutinated in the presence of antibody, whereas MR-481 cells were not. Another mutant, AB15, which was previously isolated on the basis of its nonagglutinability in the presence of antibody, also lacked thin fimbriae and was conditionally nonadherent. Furthermore, strain AB15 was unable to grow on hexadecane medium. Adherence of RAG-1 cells to hexadecane was considerably reduced after shearing treatment. The material removed from the cell surface by shearing of RAG-1 and the partial revertant strains yielded a single antigenic band in RAG-1 and partial revertant strains, as observed by crossed immunoelectrophoresis. This band was absent in both fimbriae-less mutants, MR-481 and AB15. The data demonstrate that the thin fimbriae of RAG-1 (i) are a major factor in adherence to polystyrene and hydrocarbon, (ii) may be crucial in enabling growth of cells on hexadecane, and (iii) constitute the major cell surface agglutinogen. Images PMID:16346118

  3. Outer membrane Protein A plays a role in pathogenesis of Acinetobacter nosocomialis.

    PubMed

    Kim, Sang Woo; Oh, Man Hwan; Jun, So Hyun; Jeon, Hyejin; Kim, Seung Il; Kim, Kwangho; Lee, Yoo Chul; Lee, Je Chul

    2016-05-18

    Acinetobacter nosocomialis is an important nosocomial pathogen that causes a variety of human infections. However, the specific virulence factors of this microorganism have not yet been determined. We investigated the role of outer membrane protein A (OmpA) in the pathogenesis of A. nosocomialis. A ΔompA mutant of the A. nosocomialis ATCC 17903(T) strain was constructed using markerless gene deletion. The ΔompA mutant displayed reduced biofilm formation in polystyrene tubes and reduced adherence to A549 cells in comparison to the wild-type strain. These virulence traits of the ΔompA mutant strain were restored when the ompA gene was complemented. Cytotoxicity was not significantly different between the wild-type strain and the ΔompA mutant when A549 cells were infected with bacteria or treated with outer membrane vesicles (OMVs). However, OMVs from the wild-type strain induced cytotoxicity in HEp-2 cells, whereas OMVs from the ΔompA mutant did not induce cytotoxicity. Proteomic analysis of OMVs revealed that OmpA influenced the distribution of envelope and periplasmic proteins. Overall, this study is the first report that links OmpA to A. nosocomialis pathogenesis, and highlights OmpA as a putative target to develop anti-virulence agents or vaccines against A. nosocomialis infection. PMID:26759990

  4. Acinetobacter baumannii Genes Required for Bacterial Survival during Bloodstream Infection

    PubMed Central

    Subashchandrabose, Sargurunathan; Smith, Sara; DeOrnellas, Valerie; Crepin, Sebastien; Kole, Monica; Zahdeh, Carina

    2015-01-01

    ABSTRACT Acinetobacter baumannii is emerging as a leading global multiple-antibiotic-resistant nosocomial pathogen. The identity of genes essential for pathogenesis in a mammalian host remains largely unknown. Using transposon-directed insertion-site sequencing (TraDIS), we identified A. baumannii genes involved in bacterial survival in a leukopenic mouse model of bloodstream infection. Mice were inoculated with a pooled transposon mutant library derived from 109,000 mutants, and TraDIS was used to map transposon insertion sites in the genomes of bacteria in the inoculum and of bacteria recovered from mouse spleens. Unique transposon insertion sites were mapped and used to calculate a fitness factor for every insertion site based on its relative abundance in the inoculum and postinfection libraries. Eighty-nine transposon insertion mutants that were underrepresented after experimental infection in mice compared to their presence in the inocula were delineated as candidates for further evaluation. Genetically defined mutants lacking feoB (ferrous iron import), ddc (d-ala-d-ala-carboxypeptidase), and pntB (pyridine nucleotide transhydrogenase subunit) exhibited a fitness defect during systemic infection resulting from bacteremia. In vitro, these mutants, as well as a fepA (ferric enterobactin receptor) mutant, are defective in survival in human serum and within macrophages and are hypersensitive to killing by antimicrobial peptides compared to the survival of the parental strain under these conditions. Our data demonstrate that FepA is involved in the uptake of exogenous enterobactin in A. baumannii. Genetic complementation rescues the phenotypes of mutants in assays that emulate conditions encountered during infection. In summary, we have determined novel A. baumannii fitness genes involved in the pathogenesis of mammalian infection. IMPORTANCE A. baumannii is a significant cause of bacterial bloodstream infection in humans. Since multiple antibiotic resistance

  5. A case of community-acquired Acinetobacter junii-johnsonii cellulitis.

    PubMed

    Henao-Martínez, Andrés F; González-Fontal, Guido R; Johnson, Steven

    2012-06-01

    Acinetobacter skin and soft tissue infection outside of the traumatic wound setting are rare occurrences. The majority of cases occur in the presence of significant comorbilities and by Acinetobacter baumanii. Herein a case is reported of community-onset, health-care-associated, non-traumatic cellulitis caused by Acinetobacter, species junii-johnsonii with bacteremia. This is the first reported case of Acinetobacter junii-johnsonii skin and soft tissue infection. Hemorrhagic bullae might be one of the clinical features of Acinetobacter cellulitis. PMID:23242290

  6. Molecular Epidemiology and Clinical Impact of Acinetobacter calcoaceticus-baumannii Complex in a Belgian Burn Wound Center.

    PubMed

    De Vos, Daniel; Pirnay, Jean-Paul; Bilocq, Florence; Jennes, Serge; Verbeken, Gilbert; Rose, Thomas; Keersebilck, Elkana; Bosmans, Petra; Pieters, Thierry; Hing, Mony; Heuninckx, Walter; De Pauw, Frank; Soentjens, Patrick; Merabishvili, Maia; Deschaght, Pieter; Vaneechoutte, Mario; Bogaerts, Pierre; Glupczynski, Youri; Pot, Bruno; van der Reijden, Tanny J; Dijkshoorn, Lenie

    2016-01-01

    Multidrug resistant Acinetobacter baumannii and its closely related species A. pittii and A. nosocomialis, all members of the Acinetobacter calcoaceticus-baumannii (Acb) complex, are a major cause of hospital acquired infection. In the burn wound center of the Queen Astrid military hospital in Brussels, 48 patients were colonized or infected with Acb complex over a 52-month period. We report the molecular epidemiology of these organisms, their clinical impact and infection control measures taken. A representative set of 157 Acb complex isolates was analyzed using repetitive sequence-based PCR (rep-PCR) (DiversiLab) and a multiplex PCR targeting OXA-51-like and OXA-23-like genes. We identified 31 rep-PCR genotypes (strains). Representatives of each rep-type were identified to species by rpoB sequence analysis: 13 types to A. baumannii, 10 to A. pittii, and 3 to A. nosocomialis. It was assumed that isolates that belonged to the same rep-type also belonged to the same species. Thus, 83.4% of all isolates were identified to A. baumannii, 9.6% to A. pittii and 4.5% to A. nosocomialis. We observed 12 extensively drug resistant Acb strains (10 A. baumannii and 2 A. nosocomialis), all carbapenem-non-susceptible/colistin-susceptible and imported into the burn wound center through patients injured in North Africa. The two most prevalent rep-types 12 and 13 harbored an OXA-23-like gene. Multilocus sequence typing allocated them to clonal complex 1 corresponding to EU (international) clone I. Both strains caused consecutive outbreaks, interspersed with periods of apparent eradication. Patients infected with carbapenem resistant A. baumannii were successfully treated with colistin/rifampicin. Extensive infection control measures were required to eradicate the organisms. Acinetobacter infection and colonization was not associated with increased attributable mortality. PMID:27223476

  7. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3

    PubMed Central

    Kurth, Daniel; Belfiore, Carolina; Gorriti, Marta F.; Cortez, Néstor; Farias, María E.; Albarracín, Virginia H.

    2015-01-01

    Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth’s surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an “UV-resistome” was defined, encompassing the genes that would support the outstanding UV-resistance of this strain. PMID:25954258

  8. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3.

    PubMed

    Kurth, Daniel; Belfiore, Carolina; Gorriti, Marta F; Cortez, Néstor; Farias, María E; Albarracín, Virginia H

    2015-01-01

    Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth's surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an "UV-resistome" was defined, encompassing the genes that would support the outstanding UV-resistance of this strain. PMID:25954258

  9. Molecular Epidemiology and Clinical Impact of Acinetobacter calcoaceticus-baumannii Complex in a Belgian Burn Wound Center

    PubMed Central

    Bilocq, Florence; Jennes, Serge; Verbeken, Gilbert; Rose, Thomas; Keersebilck, Elkana; Bosmans, Petra; Pieters, Thierry; Hing, Mony; Heuninckx, Walter; De Pauw, Frank; Soentjens, Patrick; Merabishvili, Maia; Deschaght, Pieter; Vaneechoutte, Mario; Bogaerts, Pierre; Glupczynski, Youri; Pot, Bruno; van der Reijden, Tanny J.; Dijkshoorn, Lenie

    2016-01-01

    Multidrug resistant Acinetobacter baumannii and its closely related species A. pittii and A. nosocomialis, all members of the Acinetobacter calcoaceticus-baumannii (Acb) complex, are a major cause of hospital acquired infection. In the burn wound center of the Queen Astrid military hospital in Brussels, 48 patients were colonized or infected with Acb complex over a 52-month period. We report the molecular epidemiology of these organisms, their clinical impact and infection control measures taken. A representative set of 157 Acb complex isolates was analyzed using repetitive sequence-based PCR (rep-PCR) (DiversiLab) and a multiplex PCR targeting OXA-51-like and OXA-23-like genes. We identified 31 rep-PCR genotypes (strains). Representatives of each rep-type were identified to species by rpoB sequence analysis: 13 types to A. baumannii, 10 to A. pittii, and 3 to A. nosocomialis. It was assumed that isolates that belonged to the same rep-type also belonged to the same species. Thus, 83.4% of all isolates were identified to A. baumannii, 9.6% to A. pittii and 4.5% to A. nosocomialis. We observed 12 extensively drug resistant Acb strains (10 A. baumannii and 2 A. nosocomialis), all carbapenem-non-susceptible/colistin-susceptible and imported into the burn wound center through patients injured in North Africa. The two most prevalent rep-types 12 and 13 harbored an OXA-23-like gene. Multilocus sequence typing allocated them to clonal complex 1 corresponding to EU (international) clone I. Both strains caused consecutive outbreaks, interspersed with periods of apparent eradication. Patients infected with carbapenem resistant A. baumannii were successfully treated with colistin/rifampicin. Extensive infection control measures were required to eradicate the organisms. Acinetobacter infection and colonization was not associated with increased attributable mortality. PMID:27223476

  10. Acinetobacter Peritoneal Dialysis Peritonitis: A Changing Landscape over Time

    PubMed Central

    Chao, Chia-Ter; Lee, Szu-Ying; Yang, Wei-Shun; Chen, Huei-Wen; Fang, Cheng-Chung; Yen, Chung-Jen; Chiang, Chih-Kang; Hung, Kuan-Yu; Huang, Jenq-Wen

    2014-01-01

    Background Acinetobacter species are assuming an increasingly important role in modern medicine, with their persistent presence in health-care settings and antibiotic resistance. However, clinical reports addressing this issue in patients with peritoneal dialysis (PD) peritonitis are rare. Methods All PD peritonitis episodes caused by Acinetobacter that occurred between 1985 and 2012 at a single centre were retrospectively reviewed. Clinical features, microbiological data, and outcomes were analysed, with stratifications based upon temporal periods (before and after 2000). Results Acinetobacter species were responsible for 26 PD peritonitis episodes (3.5% of all episodes) in 25 patients. A. baumannii was the most common pathogen (54%), followed by A. iwoffii (35%), with the former being predominant after 2000. Significantly more episodes resulted from breaks in exchange sterility after 2000, while those from exit site infections decreased (P = 0.01). The interval between the last and current peritonitis episodes lengthened significantly after 2000 (5 vs. 13.6 months; P = 0.05). All the isolates were susceptible to cefepime, fluoroquinolone, and aminoglycosides, with a low ceftazidime resistance rate (16%). Nearly half of the patients (46%) required hospitalisation for their Acinetobacter PD-associated peritonitis, and 27% required an antibiotic switch. The overall outcome was fair, with no mortality and a 12% technique failure rate, without obvious interval differences. Conclusions The temporal change in the microbiology and origin of Acinetobacter PD-associated peritonitis in our cohort suggested an important evolutional trend. Appropriate measures, including technique re-education and sterility maintenance, should be taken to decrease the Acinetobacter peritonitis incidence in PD patients. PMID:25314341

  11. Diversity in the Major Polysaccharide Antigen of Acinetobacter Baumannii Assessed by DNA Sequencing, and Development of a Molecular Serotyping Scheme

    PubMed Central

    Dijkshoorn, Lenie; Wang, Lei; Reeves, Peter R.

    2013-01-01

    We have sequenced the gene clusters for type strains of the Acinetobacter baumannii serotyping scheme developed in the 1990s, and used the sequences to better understand diversity in surface polysaccharides of the genus. We obtained genome sequences for 27 available serovar type strains, and identified 25 polysaccharide gene cluster sequences. There are structures for 12 of these polysaccharides, and in general the genes present are appropriate to the structure where known. This greatly facilitates interpretation. We also find 53 different glycosyltransferase genes, and for 7 strains can provisionally allocate specific genes to all linkages. We identified primers that will distinguish the 25 sequence forms by PCR or microarray, or alternatively the genes can be used to determine serotype by “molecular serology”. We applied the latter to 190 Acinetobacter genome-derived gene-clusters, and found 76 that have one of the 25 gene-cluster forms. We also found novel gene clusters and added 52 new gene-cluster sequence forms with different wzy genes and different gene contents. Altogether, the strains that have one of the original 25 sequence forms include 98 A. baumannii (24 from our strains) and 5 A. nosocomialis (3 from our strains), whereas 32 genomes from 12 species other than A. baumannii or A. nosocomialis, all have new sequence forms. One of the 25 serovar type sequences is found to be in European clone I (EC I), 2 are in EC II but none in EC III. The public genome strains add an additional 52 new sequence forms, and also bring the number found in EC I to 5, in EC II to 9 and in EC III to 2. PMID:23922982

  12. VEB-1 Extended-Spectrum β-lactamase–producing Acinetobacter baumannii, France1

    PubMed Central

    Coignard, Bruno; Carbonne, Anne; Blanckaert, Karine; Bajolet, Odile; Bernet, Claude; Verdeil, Xavier; Astagneau, Pascal; Desenclos, Jean-Claude; Nordmann, Patrice

    2006-01-01

    VEB-1 extended-spectrum β-lactamase–producing Acinetobacter baumannii was responsible for an outbreak in hospitals in France. A national alert was triggered in September 2003 when 4 hospitals reported clusters of A. baumannii infection with similar susceptibility profiles. Case definitions and laboratory guidelines were disseminated, and prospective surveillance was implemented; strains were sent to a single laboratory for characterization and typing. From April 2003 through June 2004, 53 hospitals reported 290 cases of A. baumannii infection or colonization; 275 isolates were blaVEB-1-positive and clonally related. Cases were first reported in 5 districts of northern France, then in 10 other districts in 4 regions. Within a region, interhospital spread was associated with patient transfer. In northern France, investigation and control measures led to a reduction of reported cases after January 2004. The national alert enabled early control of new clusters, demonstrating the usefulness of early warning about antimicrobial drug resistance. PMID:16965700

  13. Genome shuffling improves production of the low-temperature alkalophilic lipase by Acinetobacter johnsonii.

    PubMed

    Wang, HaiKuan; Zhang, Jie; Wang, XiaoJie; Qi, Wei; Dai, YuJie

    2012-01-01

    The production of a low-temperature alkalophilic lipase from Acinetobacter johnsonii was improved using genome shuffling. The starting populations, obtained by UV irradiation and diethyl sulfate mutagenesis, were subjected to recursive protoplast fusion. The optimal conditions for protoplast formation and regeneration were 0.15 mg lysozyme/ml for 45 min at 37°C. The protoplasts were inactivated under UV for 20 min or heated at 60°C for 60 min and a fusant probability of ~98% was observed. The positive colonies were created by fusing the inactivated protoplasts. After two rounds of genome shuffling, one strain, F22, with a lipase activity of 7 U/ml was obtained. PMID:21972140

  14. Acinetobactin Isomerization Enables Adaptive Iron Acquisition in Acinetobacter baumannii through pH-Triggered Siderophore Swapping.

    PubMed

    Shapiro, Justin A; Wencewicz, Timothy A

    2016-02-12

    Pathogenic strains of Acinetobacter baumannii excrete multiple siderophores that enhance iron scavenging from host sources. The oxazoline siderophore pre-acinetobactin undergoes an unusual non-enzymatic isomerization, producing the isoxazolidinone acinetobactin. In this study, we explored the kinetics, mechanism, and biological consequence of this siderophore swapping. Pre-acinetobactin is excreted to the extracellular space where the isomerization to acinetobactin occurs with a pH-rate profile consistent with 5-exo-tet cyclization at C5' with clean stereochemical inversion. Pre-acinetobactin persists at pH <6, and acinetobactin is rapidly formed at pH >7, matching each siderophore's pH preference for iron(III) chelation and A. baumannii growth promotion. Acinetobactin isomerization provides two siderophores for the price of one, enabling A. baumannii to sequester iron over a broad pH range likely to be encountered during the course of an infection. PMID:27624967

  15. Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein

    SciTech Connect

    Allen, C. Leigh; Gulick, Andrew M.

    2014-06-01

    The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented. Microorganisms produce a variety of natural products via secondary metabolic biosynthetic pathways. Two of these types of synthetic systems, the nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), use large modular enzymes containing multiple catalytic domains in a single protein. These multidomain enzymes use an integrated carrier protein domain to transport the growing, covalently bound natural product to the neighboring catalytic domains for each step in the synthesis. Interestingly, some PKS and NRPS clusters contain free-standing domains that interact intermolecularly with other proteins. Being expressed outside the architecture of a multi-domain protein, these so-called type II proteins present challenges to understand the precise role they play. Additional structures of individual and multi-domain components of the NRPS enzymes will therefore provide a better understanding of the features that govern the domain interactions in these interesting enzyme systems. The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented here. Comparison with the closest structural homologs of other carrier proteins identifies the requirements for a conserved glycine residue and additional important sequence and structural requirements within the regions that interact with partner proteins.

  16. Bacterial O-methylation of halogen-substituted phenols. [Rhodococcus; Acinetobacter

    SciTech Connect

    Allard, A.S.; Remberger, M.; Neilson, A.H.

    1987-04-01

    Two strains of bacteria capable of carrying out the O-methylation of phenolic compounds, one from the gram-positive genus Rhodococcus and one from the gram-negative genus Acinetobacter, were used to examine the O-methylation of phenols carrying fluoro-, chloro-, and bromo-substituents. Zero-order rates of O-methylation were calculated from data for the chloro- and bromophenols; there was no simple relationship between the rate of reaction and the structure of the substrates, and significant differences were observed in the responses of the two test organisms. For the gram-negative strain, the pattern of substitution was as important as the number of substituents. Hexachlorophene was resistant to O-methylation by both strains, and tetrabromobisphenol-A was O-methylated only by the gram-positive strain. It is suggested that in the natural environment, bacterial O-methylation of phenols carrying electron-attracting substituents might be a significant alternative to biodegradation.

  17. Effect of carbonyl cyanide 3-chlorophenylhydrazone (CCCP) on killing Acinetobacter baumannii by colistin.

    PubMed

    Park, Young Kyoung; Ko, Kwan Soo

    2015-01-01

    We investigated the effect of cyanide 3-chlorophenylhydrazone (CCCP) and other efflux pump inhibitors (EPIs) on the colistin susceptibility in Acinetobacter baumannii. While minimum inhibitory concentrations (MICs) of colistin in all colistin-resistant strains decreased significantly with 25 μM of CCCP and 2,4-dinitrophenol (DNP), phenyl-arginine-β-naphthylamide (PAβN), and reserpine did not decrease the colistin MICs. However, CCCP and DNP as well as PAβN and reserpine did not have a significant effect on the MICs of the other agents. Efflux pump gene expressions in colistin-resistant strains were not increased compared with those in colistin-susceptible strains. When only 5X MIC of colistin (5 mg/L) was provided to a colistin-susceptible A. baumannii strain, the bacterial cell number was reduced by 9 h after exposure to colistin, but regrowth was observed. When CCCP was added to colistin, bacterial cells were completely killed after 24 to 48 h of incubation, which was not due to the toxicity of CCCP itself. Colistin resistance in A. baumannii may not be due to efflux pumps. Our present study suggests that bacterial cells with reduced metabolic activity by CCCP are more susceptible to colistin in A. baumannii. It may show the possibility that combined therapy with colistin and other antimicrobial agents could effective against A. baumannii infections. PMID:25557480

  18. [A urinary outbreak of Acinetobacter baumanii in a spinal cord injury unit].

    PubMed

    Pedraza, F; Andreu, A; Saune, M; Moreno, A; Ramírez, L; García, L

    1993-02-01

    From January 1990 to April 1992, 114 urinary strains of Acinetobacter baumanii were isolated in 57 patients with traumatic spinal cord [correction of medular] injury. The strains were characterized by having all of them the same biochemical identification, except for citrate, maltose and tryptophan-desaminase. Until December 1990, (5 strains) were resistant to all antibiotics, except to tobramicine, amikacine, cotrimoxazol and imipenem (6.3%, 33.9%, 26.7% and 0% of resistances, respectively); since January 1991, (99 strains) became resistant to all of them, except to imipenem. 39.5% of AB were isolated in pure cultures, 46% of them with pyuria. Between February 1991 and January 1992, we observed the highest number of affected patients, although without seasonal predominance. We observed as well a higher incidence among males (46 males, 11 females). 80% of them carried a permanent probe. Only 6 patients presented clinical signs directly related to AB. The environmental study could not demonstrate any source of contagion or transmission mechanism. PMID:8452972

  19. Molecular Epidemiology and Characterization of Genotypes of Acinetobacter baumannii Isolates from Regions of South China.

    PubMed

    Ying, Jun; Lu, Junwan; Zong, Li; Li, Ailing; Pan, Ruowang; Cheng, Cong; Li, Kunpeng; Chen, Liqiang; Ying, Jianchao; Tou, Huifen; Zhu, Chuanxin; Xu, Teng; Yi, Huiguang; Li, Jinsong; Ni, Liyan; Xu, Zuyuan; Bao, Qiyu; Li, Peizhen

    2016-05-20

    The aim of this study was to analyze the molecular epidemiologic characteristics of Acinetobacter baumannii. A total of 398 isolates were collected in 7 regions of South China from January to June of 2012. Drug sensitivity was tested toward 15 commonly used antibiotics; thus, 146 multi-drug-resistant strains (resistant to more than 7 drugs) were identified, representing 36.7% of all isolates. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used for molecular subtyping. According to the PFGE results (with a cutoff of 70% similarity for the DNA electrophoretic bands), 146 strains were subdivided into 15 clusters, with cluster A being the largest (33.6%, distributed in all districts except Jiaxing). Cluster B was also widespread and included 14.4% of all strains. In addition, MLST results revealed 11 sequence types (ST), with ST208 being the most prevalent, followed by ST191 and ST729. Furthermore, 4 novel alleles and 6 novel STs were identified. Our results showed that multi-drug-resistant A. baumannii in South China shares the origin with other widespread strains in other countries. The nosocomial infections caused by A. baumannii have been severe in South China. Continuous monitoring and judicious antibiotic use are required. PMID:26166496

  20. Geographical Patterns in Antimicrobial Resistance of Acinetobacter in Clinical Isolates

    PubMed Central

    Sehgal, Sonal; Prakash, S. Krishna

    2014-01-01

    Objectives: Acinetobacter spp. has emerged as a threat to the healthcare workers throughout the globe, owing to its property of multidrug resistance. The aim of the present study was to evaluate the antimicrobial resistance patterns of Acinetobacter spp. among indoor and out patients in our hospital and compare the resistance patterns in India and abroad. Materials and Methods: In this retrospective study, which was carried out between Over a period of one year, a total of 5593 clinical specimens of pus and purulent fluids were examined and antimicrobial resistance pattern for Acinetobacter spp. using Modified Stoke’s were evaluated. Also a comparison was done with the other similar studies. Statistical Analysis: Using the proportions of sensitive and resistant, the statistical analysis was done. The total, mean and percentage were calculated by using SPSS. Results: A high level of antimicrobial multidrug-resistance was found in almost all the clinical isolate. Our study was also found to be concordant with the results of other studies. Conclusion: There is an emerging need for identification of the genes and mechanisms for multidrug resistance among Acinetobacter spp. PMID:24959441

  1. 21 CFR 866.3010 - Acinetobacter calcoaceticus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acinetobacter calcoaceticus serological reagents. 866.3010 Section 866.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  2. 21 CFR 866.3010 - Acinetobacter calcoaceticus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Acinetobacter calcoaceticus serological reagents. 866.3010 Section 866.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  3. 21 CFR 866.3010 - Acinetobacter calcoaceticus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Acinetobacter calcoaceticus serological reagents. 866.3010 Section 866.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  4. 21 CFR 866.3010 - Acinetobacter calcoaceticus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Acinetobacter calcoaceticus serological reagents. 866.3010 Section 866.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  5. 21 CFR 866.3010 - Acinetobacter calcoaceticus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Acinetobacter calcoaceticus serological reagents. 866.3010 Section 866.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  6. Characterization of Acinetobacter baumannii biofilm associated components

    NASA Astrophysics Data System (ADS)

    Brossard, Kari A.

    Acinetobacter baumannii is a Gram-negative aerobic coccobaccillus that is a major cause of nosocomial infections worldwide. Infected individuals may develop pneumonia, urinary tract, wound, and other infections that are associated with the use of indwelling medical devices such as catheters and mechanical ventilation. Treatment is difficult because many A. baumannii isolates have developed multi-drug resistance and the bacterium can persist on abiotic surfaces. Persistence and resistance may be due to formation of biofilms, which leads to long-term colonization, evasion of the host immune system and resistance to treatment with antibiotics and disinfectants. While biofilms are complex multifaceted structures, two bacterial components that have been shown to be important in formation and stability are exopolysaccharides (EPS) and the biofilm-associated protein (Bap). An EPS, poly-beta-1,6-N-acetylglucosamine, PNAG, has been described for E. coli and S. epidermidis. PNAG acts as an intercellular adhesin. Production of this adhesin is dependent on the pga/icaABCD locus. We have identified a homologous locus in A. baumannii 307-0294 that is involved in production of an exopolysaccharide, recognized by an anti-PNAG antibody. We hypothesized that the A. baumannii pgaABCD locus plays a role in biofilm formation, and protection against host innate defenses and disinfectants suggesting that PNAG is a possible virulence factor for the organism. The first aim of this thesis will define the pgaABCD locus. We have previously identified Bap, a protein with similarity to those described for S. aureus and we have demonstrated that this protein is involved in maintaining the stability of biofilms on glass. We hypothesized that A. baumannii Bap plays a role in persistence and pathogenesis and is regulated by quorum sensing. In our second aim we will examine the role of Bap in attachment and biofilm formation on medically relevant surfaces and also determine if Bap is involved in

  7. Intraspecies Transfer of the Chromosomal Acinetobacter baumannii blaNDM-1 Carbapenemase Gene.

    PubMed

    Krahn, Thomas; Wibberg, Daniel; Maus, Irena; Winkler, Anika; Bontron, Séverine; Sczyrba, Alexander; Nordmann, Patrice; Pühler, Alfred; Poirel, Laurent; Schlüter, Andreas

    2016-05-01

    The species Acinetobacter baumannii is one of the most important multidrug-resistant human pathogens. To determine its virulence and antibiotic resistance determinants, the genome of the nosocomial blaNDM-1-positive A. baumannii strain R2090 originating from Egypt was completely sequenced. Genome analysis revealed that strain R2090 is highly related to the community-acquired Australian A. baumannii strain D1279779. The two strains belong to sequence type 267 (ST267). Isolate R2090 harbored the chromosomally integrated transposon Tn125 carrying the carbapenemase gene blaNDM-1 that is not present in the D1279779 genome. To test the transferability of the metallo-β-lactamase (MBL) gene region, the clinical isolate R2090 was mated with the susceptible A. baumannii recipient CIP 70.10, and the carbapenem-resistant derivative R2091 was obtained. Genome sequencing of the R2091 derivative revealed that it had received an approximately 66-kb region comprising the transposon Tn125 embedding the blaNDM-1 gene. This region had integrated into the chromosome of the recipient strain CIP 70.10. From the four known mechanisms for horizontal gene transfer (conjugation, outer membrane vesicle-mediated transfer, transformation, and transduction), conjugation could be ruled out, since strain R2090 lacks any plasmid, and a type IV secretion system is not encoded in its chromosome. However, strain R2090 possesses three putative prophages, two of which were predicted to be complete and therefore functional. Accordingly, it was supposed that the transfer of the resistance gene region from the clinical isolate R2090 to the recipient occurred by general transduction facilitated by one of the prophages present in the R2090 genome. Hence, phage-mediated transduction has to be taken into account for the dissemination of antibiotic resistance genes within the species A. baumannii. PMID:26953198

  8. Evaluation of CHROMagar Acinetobacter for Detection of Enteric Carriage of Multidrug-Resistant Acinetobacter baumannii in Samples from Critically Ill Patients▿

    PubMed Central

    Gordon, N. C.; Wareham, D. W.

    2009-01-01

    CHROMagar Acinetobacter was used to screen stool and perineal swabs for enteric carriage of multidrug-resistant Acinetobacter baumannii in samples from critically ill patients. Results were compared with a molecular assay resulting in sensitivity and specificity of culture compared to PCR of 91.7% and 89.6%, respectively. PMID:19439546

  9. Isolation and Characterization of Rhamnolipid-Producing Bacterial Strains from a Biodiesel Facility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel strains of rhamnolipid-producing bacteria were isolated from soils at a biodiesel facility on the basis of their ability to grow on glycerol as a sole carbon source. Strains were identified as Acinetobacter calcoaceticus, Enterobacter asburiae, E. hormaecheii, Pantoea stewartii and Pseudomona...

  10. Characterization of a fluoride-resistant bacterium Acinetobacter sp. RH5 towards assessment of its water defluoridation capability

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shraboni; Yadav, Vaibhav; Mondal, Madhumanti; Banerjee, Soumya; Halder, Gopinath

    2015-12-01

    The present study investigates the defluoridation capability of fluoride-resistant bacteria from contaminated groundwater collected from Asanjola and Madhabpur, West Bengal, India. Seven strains of fluoride-resistant bacteria were isolated employing culture media containing 10-250 mg/L of fluoride to evaluate their ability in reducing fluoride concentration in water. Five isolates exhibited significant amount of reduction in fluoride. Isolate RH5 achieved a maximum fluoride removal of 25.7 % from the media at 30 °C and pH 7 after 8 days of incubation. Based on morphological, physiological characteristics and analysis of 16S rDNA gene sequence, isolate RH5 was identified as Acinetobacter sp. RH5. Growth of RH5 was analysed at a diverse pH range, and it could thrive at pH 5-10. The present investigation revealed that the selective pressure of fluoride results in growth of fluoride-resistant bacteria capable of secreting high-affinity anion-binding compounds. This bacterium played a dominant bioremediative role by concentrating the anions so that they become less available. Hence, the fluoride-resistant bacteria, Acinetobacter sp. RH5, could be used as a promising strain for application in water defluoridation from contaminated sites.

  11. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii.

    PubMed

    Miyasaki, Yoko; Rabenstein, John D; Rhea, Joshua; Crouch, Marie-Laure; Mocek, Ulla M; Kittell, Patricia Emmett; Morgan, Margie A; Nichols, Wesley Stephen; Van Benschoten, M M; Hardy, William David; Liu, George Y

    2013-01-01

    The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii) is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii. PMID:23630600

  12. Screening and Quantification of the Expression of Antibiotic Resistance Genes in Acinetobacter baumannii with a Microarray▿

    PubMed Central

    Coyne, Sébastien; Guigon, Ghislaine; Courvalin, Patrice; Périchon, Bruno

    2010-01-01

    An oligonucleotide-based DNA microarray was developed to evaluate expression of genes for efflux pumps in Acinetobacter baumannii and to detect acquired antibiotic resistance determinants. The microarray contained probes for 205 genes, including those for 47 efflux systems, 55 resistance determinants, and 35 housekeeping genes. The microarray was validated by comparative analysis of mutants overexpressing or deficient in the pumps relative to the parental strain. The performance of the microarray was also evaluated using in vitro single-step mutants obtained on various antibiotics. Overexpression, confirmed by quantitative reverse transcriptase PCR, of RND efflux pumps AdeABC, due to a G30D substitution in AdeS in a multidrug-resistant (MDR) strain obtained on gentamicin, and AdeIJK, in two mutants obtained on cefotaxime or tetracycline, was detected. A new efflux pump, AdeFGH, was found to be overexpressed in a mutant obtained on chloramphenicol. Study of MDR clinical isolates, including the AYE strain, whose entire sequence has been determined, indicated overexpression of AdeABC and of the chromosomally encoded cephalosporinase as well as the presence of several acquired resistance genes. The overexpressed and acquired determinants detected by the microarray could account for nearly the entire MDR phenotype of the isolates. The microarray is potentially useful for detection of resistance in A. baumannii and should allow detection of new efflux systems associated with antibiotic resistance. PMID:19884373

  13. CspE is Overproduced by Temperature Downshift in the Acinetobacter johnsonii DBP-3.

    PubMed

    Su, Dan; Hao, Linlin; Chen, Fuwang; Li, Siming; Abdelrahman, Ahmed Mohamed; Zhang, Yu; Yu, Hao; Liu, Songcai; Li, Mingtang

    2016-05-01

    The denitrifying bacterium Acinetobacter johnsonii strain DBP-3 which was capable of removing phosphate, nitrate, and ammoniacal salt is psychrotolerant, whereas, the cold shock response mechanisms or the cold shock proteins (Csps) was unclear. In this article, the optimal growth temperature (25 °C) and cold shock temperature (7.5 °C) were determined firstly by an Arrhenius plot of the growth of the strain DBP-3. Then, among the seven cold shock-like protein genes which were cloned and identified referenced by A. johnsonii SH046 genome, qRT-PCR and shotgun-LTQ mass spectrometry showed that Csp3 and Csp4 were overexpressed under cold shock condition. Furthermore, Western blotting confirmed the result with the antibodies against Csp3 and Csp4 prepared by ourselves. Finally, the phylogenetic analysis showed that the similarity percent between Csp3 and Csp4 was 76.85 %, and Csp3 and Csp4 belonged to CspE family. The results indicated that CspE is overproduced by temperature downshift and may play an important role in the psychrotolerant process of strain DBP-3. PMID:26794214

  14. The First Outbreak Caused by Acinetobacter baumannii ST208 and ST195 in China

    PubMed Central

    Qu, Junyan; Du, Yu

    2016-01-01

    This study aimed to analyze the clinical characteristics of patients and molecular mechanisms of the first outbreak mainly caused by sequence types (STs) 208 multidrug resistant (MDR) Acinetobacter baumannii in China. A total of 10 clinical samples were collected from 5 patients who were involved in the outbreak. Bacterial identification and antibiotic sensitivity tests were performed by the VITEK-2 COMPACT automated system. MICs of tigecycline for clinical isolates were determined using broth microdilution. The clonal relatedness of A. baumannii clinical isolates in our local settings was determinated by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). A total of 7 A. baumannii strains were isolated and all were MDR strains; two of them were carbapenem-nonsusceptible strains. blaOXA-23 was the only acquired carbapenemase gene in the isolates. The isolates belonged to a single clonal pulsotype determined by PFGE and two sequences types (STs) determined by MLST. The isolates belonged to the globally disseminated clonal complex 92, among which ST195 and ST208 were the most common sequence types (71.43% and 28.57%). The outbreak was successfully controlled by stringent infection control measures, especially improving the hand hygiene compliance and enhancing antimicrobial stewardship. In conclusion, this is the first description of an outbreak caused mainly by A. baumannii of ST208 in China. Infection control measures should be strengthened when infection outbreaks in hospital. PMID:27144176

  15. Correlation of Ciprofloxacin Resistance with the AdeABC Efflux System in Acinetobacter baumannii Clinical Isolates

    PubMed Central

    Ardebili, Abdollah; Talebi, Malihe

    2014-01-01

    Background Acinetobacter baumannii is one of the most important pathogens capable of colonization in burn patients, leading to drug-resistant wound infections. This study evaluated the distribution of the AdeABC efflux system genes and their relationship to ciprofloxacin resistance in A. baumannii isolates collected from burn patients. Methods A total of 68 A. baumannii clinical strains were isolated from patients hospitalized in Motahari Burns Center in Tehran, Iran. Ciprofloxacin susceptibility was tested by the disk diffusion and agar dilution methods. PCR amplification of the adeRS-adeB drug efflux genes was performed for all resistant and susceptible isolates. To assess the role of the drug efflux pump in ciprofloxacin susceptibility, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was used as an efflux pump inhibitor (EPI). Results Approximately 95.6% of the Acinetobacter isolates were resistant to ciprofloxacin, with minimum inhibitory concentration (MIC) values ranging from 4 to ≥128 µg/mL. The susceptibility of 86.1% of the resistant isolates increased by factors of 2 to 64 in the presence of CCCP. All resistant isolates were positive for the adeRS-adeB genes, and 73.2% of them had mutations in the AdeRS regulatory system. Conclusions The results showed that AdeABC genes are common in A. baumannii, which might be associated with ciprofloxacin non-susceptibility, as indicated by the observed linkage to the presence of the genes essential for the activity of the AdeABC, several single mutations occurring in the adeRS regulatory system, and an increase of ciprofloxacin susceptibility in the presence of a CCCP EPI. PMID:25368818

  16. Identification of Acinetobacter baumannii Serum-Associated Antibiotic Efflux Pump Inhibitors

    PubMed Central

    Blanchard, Catlyn; Barnett, Pamela; Perlmutter, Jessamyn

    2014-01-01

    Adaptive antibiotic resistance is a newly described phenomenon by which Acinetobacter baumannii induces efflux pump activity in response to host-associated environmental cues that may, in part, account for antibiotic treatment failures against clinically defined susceptible strains. To that end, during adaptation to growth in human serum, the organism induces approximately 22 putative efflux-associated genes and displays efflux-mediated minocycline tolerance at antibiotic concentrations corresponding to patient serum levels. Here, we show that in addition to minocycline, growth in human serum elicits A. baumannii efflux-mediated tolerance to the antibiotics ciprofloxacin, meropenem, tetracycline, and tigecycline. Moreover, using a whole-cell high-throughput screen and secondary assays, we identified novel serum-associated antibiotic efflux inhibitors that potentiated the activities of antibiotics toward serum-grown A. baumannii. Two compounds, Acinetobacter baumannii efflux pump inhibitor 1 (ABEPI1) [(E)-4-((4-chlorobenzylidene)amino)benezenesulfonamide] and ABEPI2 [N-tert-butyl-2-(1-tert-butyltetrazol-5-yl)sulfanylacetamide], were shown to lead to minocycline accumulation within A. baumannii during serum growth and inhibit the efflux potential of the organism. While both compounds also inhibited the antibiotic efflux properties of the bacterial pathogen Pseudomonas aeruginosa, they did not display significant cytotoxicity toward human cells or mammalian Ca2+ channel inhibitory effects, suggesting that ABEPI1 and ABEPI2 represent promising structural scaffolds for the development of new classes of bacterial antibiotic efflux pump inhibitors that can be used to potentiate the activities of current and future antibiotics for the therapeutic intervention of Gram-negative bacterial infections. PMID:25114126

  17. Clinically Relevant Growth Conditions Alter Acinetobacter baumannii Antibiotic Susceptibility and Promote Identification of Novel Antibacterial Agents

    PubMed Central

    Colquhoun, Jennifer M.; Wozniak, Rachel A. F.; Dunman, Paul M.

    2015-01-01

    Biological processes that govern bacterial proliferation and survival in the host-environment(s) are likely to be vastly different from those that are required for viability in nutrient-rich laboratory media. Consequently, growth-based antimicrobial screens performed in conditions modeling aspects of bacterial disease states have the potential to identify new classes of antimicrobials that would be missed by screens performed in conventional laboratory media. Accordingly, we performed screens of the Selleck library of 853 FDA approved drugs for agents that exhibit antimicrobial activity toward the Gram-negative bacterial pathogen Acinetobacter baumannii during growth in human serum, lung surfactant, and/or the organism in the biofilm state and compared those results to that of conventional laboratory medium. Results revealed that a total of 90 compounds representing 73 antibiotics and 17 agents that were developed for alternative therapeutic indications displayed antimicrobial properties toward the test strain in at least one screening condition. Of the active library antibiotics only four agents, rifampin, rifaximin, ciprofloxacin and tetracycline, exhibited antimicrobial activity toward the organism during all screening conditions, whereas the remainder were inactive in ≥ 1 condition; 56 antibiotics were inactive during serum growth, 25 and 38 were inactive toward lung surfactant grown and biofilm-associated cells, respectively, suggesting that subsets of antibiotics may outperform others in differing infection settings. Moreover, 9 antibiotics that are predominantly used for the treatment Gram-positive pathogens and 10 non-antibiotics lacked detectable antimicrobial activity toward A. baumannii grown in conventional medium but were active during ≥ 1 alternative growth condition(s). Such agents may represent promising anti-Acinetobacter agents that would have likely been overlooked by antimicrobial whole cell screening assays performed in traditional

  18. Detection of blaSPM-1, blaKPC, blaTEM and blaCTX-M genes in isolates of Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella spp. from cancer patients with healthcare-associated infections.

    PubMed

    Jácome, Paula Regina Luna de Araújo; Alves, Lílian Rodrigues; Jácome-Júnior, Agenor Tavares; Silva, Maria Jesuíta Bezerra da; Lima, Jailton Lobo da Costa; Araújo, Paulo Sérgio Ramos; Lopes, Ana Catarina S; Maciel, Maria Amélia Vieira

    2016-07-01

    Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella spp. are three of the pathogens most frequently involved in infections of cancer patients, and the production of β -lactamases is a major mechanism of resistance due to its wide diversity of existing enzymes. Therefore, the aim of the present study was to investigate the microbiological profile and data related to patients and infections, and to search for β -lactamase genes in bacterial isolates from hospitalized cancer patients in a hospital in Recife, Pernambuco, Brazil. A total of 169 isolates were recovered between 2012 and 2014, of which 58 were P. aeruginosa, 36 were Acinetobacter spp. and 75 were Klebsiella spp. A high percentage of carbapenem resistance was observed in P. aeruginosa and Acinetobacter spp. Among the carbapenem-resistant bacteria, the blaSPM-1 gene was detected in P. aeruginosa (35.5 %) and Acinetobacter spp. (3.8 %), while blaKPC was detected in P. aeruginosa (25.8 %) only. Among the third- and fourth-generation cephalosporin-resistant strains, in Klebsiella spp. we detected the genes blaTEM (30.6 %), blaCTX-M (58.3 %) and blaKPC (5.6 %), and in Acinetobacter spp. only blaTEM (25.9 %). This the first report of an Acinetobacter baumannii blaSPM-1 gene carrier that has been isolated in Brazil. The most frequent cancer types were bowel tumour [14.8 %; 95 % confidence interval (CI95 %) 9.8-21.1 %], breast cancer (13.6 %; CI95 % 8.8-19.7 %) and prostate cancer (11.2%; CI95 % 6.9-17.0 %). These results therefore provide knowledge of susceptibility profile and resistance mechanisms and thus can contribute to the strategic formulation of hospital infection control plans and the rational use of antimicrobials, reducing mortality from infection levels in cancer patients. PMID:27217349

  19. Membrane proteomes of Pseudomonas aeruginosa and Acinetobacter baumannii.

    PubMed

    Dé, E; Cosette, P; Coquet, L; Siroy, A; Alexandre, S; Duncan, A; Naudin, B; Rihouey, C; Schaumann, A; Junter, G A; Jouenne, T

    2011-12-01

    Acinetobacter baumannii and Pseudomonas aeruginosa are known for their intrinsic resistance to antibiotics. Between mechanisms involved in this resistance, diminished expression of outer membrane proteins and up-regulation of efflux pumps play an important role. The characterization of membrane proteins is consequently necessary because of their importance in the antibiotic resistance but also in virulence. This review presents proteomic investigations aiming to describe the protein content of the membranes of these two bacterial species. PMID:19942379

  20. Acinetobacter community-acquired pneumonia in a healthy child.

    PubMed

    Moreira Silva, G; Morais, L; Marques, L; Senra, V

    2012-01-01

    Acinetobacter is involved in a variety of infectious diseases primarily associated with healthcare. Recently there has been increasing evidence of the important role these pathogens play in community acquired infections. We report on the case of a previously healthy child, aged 28 months, admitted for fever, cough and pain on the left side of the chest, which on radiographic examination corresponded to a lower lobe necrotizing pneumonia. After detailed diagnostic work-up, community acquired Acinetobacter lwoffii pneumonia was diagnosed. The child had frequently shared respiratory equipment with elderly relatives with chronic obstructive pulmonary disease. As there were no other apparent risk factors, it could be assumed that the sharing of the equipment was the source of infection. The authors wish to draw attention to this possibility, that a necrotising community-acquired pneumonia due to Acinetobacter lwoffii can occur in a previously healthy child and to the dangers of inappropriate use and poor sterilisation of nebulisers. This case is a warning of the dangers that these bacteria may pose in the future in a community setting. PMID:21963110

  1. AtaA, a New Member of the Trimeric Autotransporter Adhesins from Acinetobacter sp. Tol 5 Mediating High Adhesiveness to Various Abiotic Surfaces

    PubMed Central

    Ishikawa, Masahito; Nakatani, Hajime; Hori, Katsutoshi

    2012-01-01

    Acinetobacter sp. Tol 5 exhibits an autoagglutinating nature and noteworthy adhesiveness to various abiotic surfaces from hydrophobic plastics to hydrophilic glass and stainless steel. Although previous studies have suggested that bacterionanofibers on Tol 5 cells are involved in the adhesive phenotype of Tol 5, the fiber that directly mediates Tol 5 adhesion has remained unknown. Here, we present a new member of trimeric autotransporter adhesins designated AtaA, which we discovered by analyzing a less adhesive mutant of Tol 5, T1, obtained by transposon mutagenesis. AtaA forms thinner and shorter nanofibers than fimbriae on Tol 5 cells. We performed target disruption of ataA by allelic marker exchange, and the resulting ΔataA strain was complemented with ataA on the Escherichia coli-Acinetobacter shuttle vector, which was newly constructed. These results proved that AtaA is essential for Tol 5’s autoagglutinating nature and high adhesiveness to surfaces of various materials. In addition, the adhesiveness to solid surfaces mediated by AtaA is notably higher than that mediated by YadA of Yersinia enterocolitica WA-314. Moreover, and importantly, these characteristics can be conferred to the non-adhesive, non-agglutinating bacterium Acinetobacter sp. ADP1 in trans by transformation with ataA, with expected applications to microbial immobilization. PMID:23155410

  2. Immunochemical identification of the major cell surface agglutinogen of Acinetobacter calcoaceticus RAG-92.

    PubMed

    Bayer, E A; Skutelsky, E; Goldman, S; Rosenberg, E; Gutnick, D L

    1983-04-01

    The immunochemical and immunocytochemical characteristics of three Acinetobacter calcoaceticus RAG strains were compared in order to clarify the relationship between antibody-induced agglutination and the production of polyanionic extracellular emulsifier (termed emulsan). In addition to the parent, RAG-92, two mutant strains were examined: (1) a non-agglutinating emulsan-producer (AB15), and (2) an agglutinating mutant (16TLU) defective in the production of emulsan. A combined genetic-immunochemical approach was employed. This included the comparison of crossed immunoelectrophoresis patterns of parent and mutant supernates and the effect of absorption of anti-whole cell antiserum with mutant cells. In addition, agglutinability and competition studies were performed as well as electron microscopic cytochemistry. The results demonstrated that three major antigenic components were associated with the cell surface and the supernate. Mutant cells were altered both in their cell surface properties and in their extracellular products. One antigenic component, termed component C3, was the major cell surface agglutinogen; this component was absent in non-agglutinating mutants. Component C3 may be identical with or attached to the 300 nm projections on the parent cell surface, but it is not directly related to the presence of emulsan. It appears that emulsan plays little or no role in the phenomenon of antibody-induced agglutination of this organism. PMID:6688443

  3. Treatment Options for Carbapenem-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections

    PubMed Central

    Viehman, J. Alexander; Nguyen, Minh-Hong; Doi, Yohei

    2014-01-01

    Acinetobacter baumannii is a leading cause of healthcare-associated infections worldwide. Due to various intrinsic and acquired mechanisms of resistance, most β-lactam agents are not effective against many strains, and carbapenems have played an important role in therapy. Recent trends show many infections are caused by carbapenem-resistant, or even extensively drug-resistant (XDR) strains, for which effective therapy is not well established. Evidence to date suggests that colistin constitutes the backbone of therapy, but the unique pharmacokinetic properties of colistin have led many to suggest the use of combination antimicrobial therapy. However, the combination of agents and dosing regimens that delivers the best clinical efficacy while minimizing toxicity is yet to be defined. Carbapenems, sulbactam, rifampin and tigecycline have been the most studied in the context of combination therapy. Most data regarding therapy for invasive, resistant A. baumannii infections come from uncontrolled case series and retrospective analyses, though some clinical trials have been completed and others are underway. Early institution of appropriate antimicrobial therapy is shown to consistently improve survival of patients with carbapenem-resistant and XDR A. baumannii infection, but the choice of empiric therapy in these infections remains an open question. This review summarizes the most current knowledge regarding the epidemiology, mechanisms of resistance, and treatment considerations of carbapenem-resistant and XDR A. baumannii. PMID:25091170

  4. Production and Secretion of the Polysaccharide Biodispersan of Acinetobacter calcoaceticus A2 in Protein Secretion Mutants.

    PubMed

    Elkeles, A; Rosenberg, E; Ron, E Z

    1994-12-01

    Biodispersan is an extracellular anionic polysaccharide produced by Acinetobacter calcoaceticus A2 that changes the surface properties of limestone and acts both as a dispersant and as a grinding aid (E. Rosenberg, C. Rubinovitz, A. Gottlieb, S. Rosenhak, and E. Z. Ron, Appl. Environ. Microbiol. 54:317-322, 1988; E. Rosenberg, C. Rubinovitz, R. Legmann, and E. Z. Ron, Appl. Environ. Microbiol. 54:323-326, 1988; E. Rosenberg, Z. Schwartz, A. Tenenbaum, C. Rubinovitz, R. Legmann, and E. Z. Ron, J. Dispersion Sci. Technol. 10:241-250, 1989). Extracellular fluid also contains a high concentration of secreted proteins that create problems in the purification and application of biodispersan. In order to obtain preparations of biodispersan that contained smaller amounts of protein, we selected mutants of strain A2 that were defective in protein secretion. These mutants produced equal, or even higher, levels of total biodispersan compared with those of the parental strain. Moreover, although there was a significant drop in the concentration of extracellular proteins in the medium, the secretion of biodispersan was unaffected. These results suggest that secretion mutants are potentially useful for the production of extracellular polysaccharides. PMID:16349473

  5. Clinical Use of Colistin Induces Cross-Resistance to Host Antimicrobials in Acinetobacter baumannii

    PubMed Central

    Napier, Brooke A.; Burd, Eileen M.; Satola, Sarah W.; Cagle, Stephanie M.; Ray, Susan M.; McGann, Patrick; Pohl, Jan; Lesho, Emil P.; Weiss, David S.

    2013-01-01

    ABSTRACT The alarming rise in antibiotic resistance has led to an increase in patient mortality and health care costs. This problem is compounded by the absence of new antibiotics close to regulatory approval. Acinetobacter baumannii is a human pathogen that causes infections primarily in patients in intensive care units (ICUs) and is highly antibiotic resistant. Colistin is one of the last-line antibiotics for treating A. baumannii infections; however, colistin-resistant strains are becoming increasingly common. This cationic antibiotic attacks negatively charged bacterial membranes in a manner similar to that seen with cationic antimicrobials of the innate immune system. We therefore set out to determine if the increasing use of colistin, and emergence of colistin-resistant strains, is concomitant with the generation of cross-resistance to host cationic antimicrobials. We found that there is indeed a positive correlation between resistance to colistin and resistance to the host antimicrobials LL-37 and lysozyme among clinical isolates. Importantly, isolates obtained before and after treatment of individual patients demonstrated that colistin use correlated with increased resistance to cationic host antimicrobials. These data reveal the overlooked risk of inducing cross-resistance to host antimicrobials when treating patients with colistin as a last-line antibiotic. PMID:23695834

  6. Biotechnological tools to improve bioremediation of phenol by Acinetobacter sp. RTE1.4.

    PubMed

    Paisio, Cintia E; Talano, Melina A; González, Paola S; Magallanes-Noguera, Cynthia; Kurina-Sanz, Marcela; Agostini, Elizabeth

    2016-09-01

    The use of native bacteria is a useful strategy to decontaminate industrial effluents as well as the environment. Acinetobacter sp. RTE1.4 was previously isolated from polluted environments and constitutes a promising alternative for this purpose due to its capability to remove phenol from synthetic solutions and industrial effluents. In this work, this strain was identified at species level as A. tandoii RTE1.4. Phenol degradation pathway was studied and some reaction intermediates were detected, confirming that this strain degraded phenol through ortho-cleavage of the aromatic ring. Phenol removal assays were carried out in a stirred tank bioreactor and a complete degradation of the contaminant was achieved after only 7 h, at an aeration rate of 3 vvm and at agitation of 600 rpm. Moreover, this bacterium was immobilized into calcium alginate beads and an increase in phenol biodegradation with respect to free cells was observed. The immobilized cells were reused for four consecutive cycles and stored at 4°C for 9 months, during which phenol removal efficiency was maintained. Post-removal solutions were evaluated by Microtox® test, showing a toxicity reduction after bacterial treatment. These findings demonstrated that A. tandoii RTE1.4 might be considered as a useful biotechnological tool for an efficient treatment of different solutions contaminated with phenol in bioreactors, using either free or immobilized cells. PMID:26853946

  7. Joint Transcriptional Control of Virulence and Resistance to Antibiotic and Environmental Stress in Acinetobacter baumannii

    PubMed Central

    Gallagher, Larry A.; Jacobson, Rachael K.; Usacheva, Elena A.; Peterson, Lance R.; Zurawski, Daniel V.; Shuman, Howard A.

    2015-01-01

    ABSTRACT The increasing emergence of antibiotic-resistant bacterial pathogens represents a serious risk to human health and the entire health care system. Many currently circulating strains of Acinetobacter baumannii exhibit resistance to multiple antibiotics. A key limitation in combating A. baumannii is that our understanding of the molecular mechanisms underlying the pathogenesis of A. baumannii is lacking. To identify potential virulence determinants of a contemporary multidrug-resistant isolate of A. baumannii, we used transposon insertion sequencing (TnSeq) of strain AB5075. A collection of 250,000 A. baumannii transposon mutants was analyzed for growth within Galleria mellonella larvae, an insect-based infection model. The screen identified 300 genes that were specifically required for survival and/or growth of A. baumannii inside G. mellonella larvae. These genes encompass both known, established virulence factors and several novel genes. Among these were more than 30 transcription factors required for growth in G. mellonella. A subset of the transcription factors was also found to be required for resistance to antibiotics and environmental stress. This work thus establishes a novel connection between virulence and resistance to both antibiotics and environmental stress in A. baumannii. PMID:26556274

  8. Enhanced Efficacy of Combinations of Pexiganan with Colistin Versus Acinetobacter Baumannii in Experimental Sepsis.

    PubMed

    Cirioni, Oscar; Simonetti, Oriana; Pierpaoli, Elisa; Barucca, Alessandra; Ghiselli, Roberto; Orlando, Fiorenza; Pelloni, Maria; Minardi, Daniele; Trombettoni, Maria Michela Cappelletti; Guerrieri, Mario; Offidani, Annamaria; Giacometti, Andrea; Provinciali, Mauro

    2016-08-01

    We investigated the efficacy of colistin combined with pexiganan in experimental mouse models of Acinetobacter baumannii infection.Adult male BALB/c mice received intraperitoneally 1 mL saline containing 2 × 10 CFU of susceptible and multiresistant A. baumannii. Two hours after bacterial challenge, animals received 1 mg/kg of colistin, 1 mg/kg of pexiganan, or 1 mg/kg of colistin plus 1 mg/kg of pexiganan.Blood culture positivity, the quantities of bacteria in the intra-abdominal fluid, the rate of lethality and immunological studies, such as immunophenotyping and NK cytotoxicity, were evaluated.In the in vitro study, A. baumannii showed susceptibility to colistin and pexiganan and a strong synergy was observed by testing colistin combined with pexiganan with fractionary inhibitory concentration index of 0.312 for both strains.In the in vivo study colistin or pexiganan alone showed a good antimicrobial efficacy. When colistin was combined with pexiganan, the positive interaction produced low bacterial counts that were statistically significant versus singly treated groups. For both strains the highest rate of survival was observed in combined-treated groups (90%).Pexiganan increased NK cytotoxic activity over the levels of infected and colistin-treated animals.In conclusion, pexiganan combined with colistin was found to be efficacious against A. baumannii infection. PMID:26849630

  9. Outbreak of multiresistant OXA-24- and OXA-51-producing Acinetobacter baumannii in an internal medicine ward.

    PubMed

    Tena, Daniel; Martínez, Nora Mariela; Oteo, Jesús; Sáez, David; Vindel, Ana; Azañedo, María Luisa; Sánchez, Lorenzo; Espinosa, Alfredo; Cobos, Juan; Sánchez, Rosario; Otero, Ignacio; Bisquert, Julia

    2013-01-01

    Here we describe the clinical, microbiological, epidemiological, and molecular characterization of an outbreak of multidrug-resistant Acinetobacter baumannii (MRAB) involving 5 patients admitted to the internal medicine ward of our hospital. Over a 6-week period, 5 MRAB isolates were recovered from 5 patients, including 1 with fatal meningitis, 3 with skin and soft tissue infections, and 1 with respiratory colonization. One sample obtained during environmental monitoring in the ward was A. baumannii-positive. According to the pulsed-field gel electrophoresis typing results, the strains isolated from all patients and the environmental sample belonged to a single clone, identified as ST79 by multilocus sequence typing. The blaOXA-24 and blaOXA-51 carbapenemases were detected in all isolates. Four patients died, but only the death of the meningitis patient was probably related to the A. baumannii infection. The infection source was probably the hands of the healthcare workers because the outbreak strain was isolated from the surface of a serum container. The results of the present study revealed the importance of strict adherence to control measures by all healthcare workers because the consequences of noncompliance can be very serious. PMID:23883845

  10. Resistance patterns of multidrug resistant Acinetobacter baumannii in an ICU of a tertiary care hospital, Malaysia

    PubMed Central

    Janahiraman, Sivakami; Aziz, Muhammad Nazri; Hoo, Fan Kee; P’ng, Hon Shen; Boo, Yang Liang; Ramachandran, Vasudevan; Shamsuddin, Ahmad Fuad

    2015-01-01

    Backgrounds & Objective: Antimicrobial resistance is a major health problem worldwide in hospitals. The main contributing factors are exposures to broad-spectrum antimicrobials and cross-infections. Understanding the extent and type of antimicrobial use in tertiary care hospitals will aid in developing national antimicrobial stewardship priorities. Methods: In this study, we have analyzed the antimicrobial agents’ usage for acquisition of multidrug resistant using retrospective, cross-sectional, single-centre study in a multidisciplinary ICU at tertiary care hospital. Results: Acinetobacter baumannii (ACB) was isolated in various specimens from 662 patients. From these, 136 patients who were diagnosed with Ventilator-associated pneumonia (VAP) caused by ACB were included into the study. In our study, MDR strain accounts for 51% of all VAP cases caused by ACB. The development of ACB VAP were 10.5 + 6.4 days for MDR strains compared to susceptible organism (7.8 + 4.5 days) and had significantly longer ICU stay. Conclusion: The study concludes that prudent use of antimicrobial agents is important to reduce acquisition of MDR ACB. PMID:26870101

  11. Outbreak of septicaemic cases caused by Acinetobacter ursingii in a neonatal intensive care unit.

    PubMed

    Máder, Krisztina; Terhes, Gabriella; Hajdú, Edit; Urbán, Edit; Sóki, József; Magyar, Tibor; Márialigeti, Károly; Katona, Márta; Nagy, Elisabeth; Túri, Sándor

    2010-06-01

    Neonatal infections may be caused by various microorganisms, but as far as we are aware, Acinetobacter ursingii has not yet been reported in connection with nosocomial infections of premature infants. During 2 months, 3 premature babies were treated with nosocomial infection caused by A. ursingii at the same ward, and on the basis of molecular typing results the same strain was responsible for all of these cases. Traditional biochemical methods and automatic identification systems failed to identify this bacterium on the species level, and only 16S rDNA sequencing gave acceptable species identifications. The isolated strains proved to be susceptible to all of the tested antimicrobials, including ampicillin/sulbactam, doxycyclin, netilmicin, ciprofloxacin, piperacillin/tazobactam, ceftazidime, imipenem, meropenem, trimethoprim/sulfametoxazole, gentamicin, tobramycin, amikacin, and levofloxacin according to the CLSI standard. In spite of the environmental screening, the source of the infection could not be clarified. One of 3 neonates died, the others recovered and were discharged home after several months of hospitalization. PMID:19931486

  12. High prevalence of blaOXA-23 in Acinetobacter spp. and detection of blaNDM-1 in A. soli in Cuba: report from National Surveillance Program (2010–2012)

    PubMed Central

    Quiñones, D.; Carvajal, I.; Perez, Y.; Hart, M.; Perez, J.; Garcia, S.; Salazar, D.; Ghosh, S.; Kawaguchiya, M.; Aung, M.S.; Kobayashi, N.

    2015-01-01

    As a first national surveillance of Acinetobacter in Cuba, a total of 500 Acinetobacter spp. isolates recovered from 30 hospitals between 2010 and 2012 were studied. Acinetobacter baumannii–calcoaceticus complex accounted for 96.4% of all the Acinetobacter isolates, while other species were detected at low frequency (A. junii 1.6%, A. lwoffii 1%, A. haemolyticus 0.8%, A. soli 0.2%). Resistance rates of isolates were 34–61% to third-generation cephalosporins, 49–50% to β-lactams/inhibitor combinations, 42–47% to aminoglycosides, 42–44% to carbapenems and 55% to ciprofloxacin. However, resistance rates to colistin, doxycycline, tetracycline and rifampin were less than 5%. Among carbapenem-resistant isolates, 75% harboured different blaOXA genes (OXA-23, 73%; OXA-24, 18%; OXA-58, 3%). The blaNDM-1 gene was identified in an A. soli strain, of which the species was confirmed by sequence analysis of 16S rRNA gene, rpoB, rpoB–rpoC and rpoL–rpoB intergenic spacer regions and gyrB. The sequences of blaNDM-1 and its surrounding genes were identical to those reported for plasmids of A. baumannii and A. lwoffi strains. This is the first report of blaNDM-1 in A. soli, together with a high prevalence of OXA-23 carbapenemase for carbapenem resistance in Acinetobacter spp. in Cuba. PMID:26236494

  13. Update on Acinetobacter species: mechanisms of antimicrobial resistance and contemporary in vitro activity of minocycline and other treatment options.

    PubMed

    Castanheira, Mariana; Mendes, Rodrigo E; Jones, Ronald N

    2014-12-01

    Among Acinetobacter species, A. baumannii and other closely related species are commonly implicated in nosocomial infections. These organisms are usually multidrug resistant (MDR), and therapeutic options to treat A. baumannii infections are very limited. Clinicians have been resorting to older antimicrobial agents to treat infections caused by MDR A. baumannii, and some of these agents have documented toxicity and/or are not optimized for the infection type to be treated. Recent clinical experience supported by antimicrobial susceptibility data suggests that minocycline has greater activity than other tetracyclines and glycylcyclines against various MDR pathogens that have limited therapeutic options available, including Acinetobacter species. An intravenous formulation of minocycline has recently become available for clinical use, and in contrast to most older tetracyclines, minocycline has high activity against Acinetobacter species. In this report, we summarized some of the characteristics of the tetracycline class, and quantified the minocycline activity against contemporary (2007-2011) isolates and its potential therapeutic role against a collection of 5477 A. baumannii and other relevant gram-negative organisms when compared directly with tetracycline, doxycycline, and other broad-spectrum antimicrobial agents. Acinetobacter baumannii strains were highly resistant to all agents tested, with the exception of minocycline (79.1% susceptible) and colistin (98.8% susceptible). Minocycline (minimum inhibitory concentration that inhibits 50% and 90% of the isolates [MIC(50/90)]: 1/8 µg/mL) displayed greater activity than doxycycline (MIC(50/90): 2/>8 µg/mL) and tetracycline hydrochloride (HCL) (only 30.2% susceptible) against A. baumannii isolates, and was significantly more active than other tetracyclines against Burkholderia cepacia, Escherichia coli, Serratia marcescens, and Stenotrophomonas maltophilia isolates. In vitro susceptibility testing using

  14. Effect of Chlorine Exposure on the Survival and Antibiotic Gene Expression of Multidrug Resistant Acinetobacter baumannii in Water

    PubMed Central

    Karumathil, Deepti Prasad; Yin, Hsin-Bai; Kollanoor-Johny, Anup; Venkitanarayanan, Kumar

    2014-01-01

    Acinetobacter baumannii is a multidrug resistant pathogen capable of causing a wide spectrum of clinical conditions in humans. Acinetobacter spp. is ubiquitously found in different water sources. Chlorine being the most commonly used disinfectant in water, the study investigated the effect of chlorine on the survival of A. baumannii in water and transcription of genes conferring antibiotic resistance. Eight clinical isolates of A. baumannii, including a fatal meningitis isolate (ATCC 17978) (~108 CFU/mL) were separately exposed to free chlorine concentrations (0.2, 1, 2, 3 and 4 ppm) with a contact time of 30, 60, 90 and 120 second. The surviving pathogen counts at each specified contact time were determined using broth dilution assay. In addition, real-time quantitative PCR (RT-qPCR) analysis of the antibiotic resistance genes (efflux pump genes and those encoding resistance to specific antibiotics) of three selected A. baumannii strains following exposure to chlorine was performed. Results revealed that all eight A. baumannii isolates survived the tested chlorine levels during all exposure times (p > 0.05). Additionally, there was an up-regulation of all or some of the antibiotic resistance genes in A. baumannii, indicating a chlorine-associated induction of antibiotic resistance in the pathogen. PMID:24514427

  15. Algicidal and denitrification characterization of Acinetobacter sp. J25 against Microcystis aeruginosa and microbial community in eutrophic landscape water.

    PubMed

    Su, Jun Feng; Ma, Min; Wei, Li; Ma, Fang; Lu, Jin Suo; Shao, Si Cheng

    2016-06-15

    Acinetobacter sp. J25 exhibited good denitrification and high algicidal activity against toxic Microcystis aeruginosa. Response surface methodology (RSM) experiments showed that the maximum algicidal ratio occurred under the following conditions: temperature, 30.46°C; M. aeruginosa density, 960,000cellsmL(-1); and inoculum, 23.75% (v/v). Of these, inoculum produced the maximum effect. In the eutrophic landscape water experiment, 10% bacterial culture was infected with M. aeruginosa cells in the landscape water. After 24days, the removal ratios of nitrate and chlorophyll-a were high, 100% and 87.86%, respectively. The denitrification rate was approximately 0.118mgNO3(-)-N·L(-1)·h(-1). Moreover, the high-throughput sequencing result showed that Acinetobacter sp. J25 was obviously beneficial for chlorophyll-a and nitrate removal performance in the eutrophic landscape water treatment. Therefore, strain J25 is promising for the simultaneous removal of chlorophyll-a and nitrate in the eutrophic landscape water treatment. PMID:27126181

  16. Genome Sequence of Jumbo Phage vB_AbaM_ME3 of Acinetobacter baumanni

    PubMed Central

    Buttimer, Colin; O’Sullivan, Lisa; Elbreki, Mohamed; Neve, Horst; McAuliffe, Olivia; Ross, R. Paul; Hill, Colin; O’Mahony, Jim

    2016-01-01

    Bacteriophage (phage) vB_AbaM_ME3 was previously isolated from wastewater effluent using the propagating host Acinetobacter baumannii DSM 30007. The full genome was sequenced, revealing it to be the largest Acinetobacter bacteriophage sequenced to date with a size of 234,900 bp and containing 326 open reading frames (ORFs). PMID:27563033

  17. Genome Sequence of Jumbo Phage vB_AbaM_ME3 of Acinetobacter baumanni.

    PubMed

    Buttimer, Colin; O'Sullivan, Lisa; Elbreki, Mohamed; Neve, Horst; McAuliffe, Olivia; Ross, R Paul; Hill, Colin; O'Mahony, Jim; Coffey, Aidan

    2016-01-01

    Bacteriophage (phage) vB_AbaM_ME3 was previously isolated from wastewater effluent using the propagating host Acinetobacter baumannii DSM 30007. The full genome was sequenced, revealing it to be the largest Acinetobacter bacteriophage sequenced to date with a size of 234,900 bp and containing 326 open reading frames (ORFs). PMID:27563033

  18. Emergence of NDM-1 and OXA-72 producing Acinetobacter pittii clinical isolates in Lebanon.

    PubMed

    Al Atrouni, A; Joly-Guillou, M-L; Hamze, M; Kempf, M

    2016-07-01

    Acinetobacter spp. have emerged as global opportunistic pathogen causing a wide range of infections. Emergence of carbapenem resistance in these organisms is a matter of great concern. We report here the first detection of Acinetobacter pittii clinical isolates in Lebanon carrying either the bla NDM-1 or the bla OXA-72 gene. PMID:27222717

  19. The Complete Genome and Phenome of a Community-Acquired Acinetobacter baumannii

    PubMed Central

    Farrugia, Daniel N.; Elbourne, Liam D. H.; Hassan, Karl A.; Eijkelkamp, Bart A.; Tetu, Sasha G.; Brown, Melissa H.; Shah, Bhumika S.; Peleg, Anton Y.; Mabbutt, Bridget C.; Paulsen, Ian T.

    2013-01-01

    Many sequenced strains of Acinetobacter baumannii are established nosocomial pathogens capable of resistance to multiple antimicrobials. Community-acquired A. baumannii in contrast, comprise a minor proportion of all A. baumannii infections and are highly susceptible to antimicrobial treatment. However, these infections also present acute clinical manifestations associated with high reported rates of mortality. We report the complete 3.70 Mbp genome of A. baumannii D1279779, previously isolated from the bacteraemic infection of an Indigenous Australian; this strain represents the first community-acquired A. baumannii to be sequenced. Comparative analysis of currently published A. baumannii genomes identified twenty-four accessory gene clusters present in D1279779. These accessory elements were predicted to encode a range of functions including polysaccharide biosynthesis, type I DNA restriction-modification, and the metabolism of novel carbonaceous and nitrogenous compounds. Conversely, twenty genomic regions present in previously sequenced A. baumannii strains were absent in D1279779, including gene clusters involved in the catabolism of 4-hydroxybenzoate and glucarate, and the A. baumannii antibiotic resistance island, known to bestow resistance to multiple antimicrobials in nosocomial strains. Phenomic analysis utilising the Biolog Phenotype Microarray system indicated that A. baumannii D1279779 can utilise a broader range of carbon and nitrogen sources than international clone I and clone II nosocomial isolates. However, D1279779 was more sensitive to antimicrobial compounds, particularly beta-lactams, tetracyclines and sulphonamides. The combined genomic and phenomic analyses have provided insight into the features distinguishing A. baumannii isolated from community-acquired and nosocomial infections. PMID:23527001

  20. Involvement of a plasmid in growth on and dispersion of crude oil by Acinetobacter calcoaceticus RA57

    SciTech Connect

    Rusansky, S.; Avigad, R.; Michaeli, S.; Gutnick, D.L.

    1987-08-01

    A crude-oil-degrading Acinetobacter species, Acinetobacter calcoaceticus RA57, was isolated by standard enrichment culture techniques on the basis of its ability to utilize the oily sludge found in the vicinity of a local gas station. Strain RA57 was found to contain four plasmids: pSR1, pSR2, pSR3, and pSR4. Both supercoiled and open circular forms of the first three plasmids were identified by two-dimensional gel electrophoresis. Restriction endonuclease analysis of pSR4 demonstrated that the plasmid contained a circular map. Colonies were isolated at random after growth in the presence of acridine orange and found to fall into two categories: (i) those which had lost the ability to grow on and disperse crude oil in liquid culture and concurrently were cured of pSR4 and (ii) those which retained the ability to both grow on and disperse crude oil and which contained pSR4. Strains from the first class continued to grow on hydrocarbon vapors, indicating that the defect associated with the curing of pSR4 was related to the physical interaction of the cells with the hydrocarbon substrate, rather than to its metabolism. No differences in either adherence to hydrocarbons or production of extracellular emulsifying activity were found between the two classes of mutants. In growth experiments on crude oil in mixed culture with strains which either contained or lacked pSR4, no sparing of the growth defect was observed. The results are consistent with the possibility that pSR4 encodes a factor(s) which is tightly associated with the cell surface.

  1. Acinetobacter sp. isolates from emergency departments in two hospitals of South Korea.

    PubMed

    Choi, Ji-Young; Ko, Eun Ah; Kwon, Ki Tae; Lee, Shinwon; Kang, Choel In; Chung, Doo-Ryeon; Peck, Kyong Ran; Song, Jae-Hoon; Ko, Kwan Soo

    2014-10-01

    A total of 114 Acinetobacter sp. isolates were collected from patients in the emergency departments (EDs) of two Korean hospitals. Most isolates belonged to the Acinetobacter baumannii complex (105 isolates, 92.1 %). Imipenem resistance was found in 39 isolates (34.2 %) of the Acinetobacter sp. isolates, and 6 colistin-resistant isolates were also identified. Species distribution and antimicrobial-resistance rates were different between the two hospitals. In addition, two main clones were identified in the imipenem-resistant A. baumannii isolates from hospital B, but very diverse and novel genotypes were found in those from hospital A. Many Acinetobacter sp. isolates, including the imipenem-resistant A. baumannii, are considered to be associated with the community. The evidence of high antimicrobial resistance and different features in these Acinetobacter sp. isolates between the two EDs suggests the need for continuous testing to monitor changes in epidemiology. PMID:25062943

  2. Chlorine Dioxide is a Better Disinfectant than Sodium Hypochlorite against Multi-Drug Resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii.

    PubMed

    Hinenoya, Atsushi; Awasthi, Sharda Prasad; Yasuda, Noritomo; Shima, Ayaka; Morino, Hirofumi; Koizumi, Tomoko; Fukuda, Toshiaki; Miura, Takanori; Shibata, Takashi; Yamasaki, Shinji

    2015-01-01

    In this study, we evaluated and compared the antibacterial activity of chlorine dioxide (ClO2) and sodium hypochlorite (NaClO) on various multidrug-resistant strains in the presence of bovine serum albumin and sheep erythrocytes to mimic the blood contamination that frequently occurs in the clinical setting. The 3 most important species that cause nosocomial infections, i.e., methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa (MDRP), and multidrug-resistant Acinetobacter baumannii (MDRA), were evaluated, with three representative strains of each. At a 10-ppm concentration, ClO2 drastically reduced the number of bacteria of all MDRP and MDRA strains, and 2 out of 3 MRSA strains. However, 10 ppm of NaClO did not significantly kill any of the 9 strains tested in 60 seconds (s). In addition, 100 ppm of ClO2 completely killed all MRSA strains, whereas 100 ppm of NaClO failed to significantly lower the number of 2 MRSA strains and 1 MDRA strain. A time-course experiment demonstrated that, within 15 s, 100 ppm of ClO2, but not 100 ppm of NaClO, completely killed all tested strains. Taken together, these data suggest that ClO2 is more effective than NaClO against MRSA, MDRP, and MDRA, and 100 ppm is an effective concentration against these multidrug-resistant strains, which cause fatal nosocomial infections. PMID:25672403

  3. Efflux-Mediated Antibiotic Resistance in Acinetobacter spp. ▿

    PubMed Central

    Coyne, Sébastien; Courvalin, Patrice; Périchon, Bruno

    2011-01-01

    Among Acinetobacter spp., A. baumannii is the most frequently implicated in nosocomial infections, in particular in intensive care units. It was initially thought that multidrug resistance (MDR) in this species was due mainly to horizontal acquisition of resistance genes. However, it has recently become obvious that increased expression of chromosomal genes for efflux systems plays a major role in MDR. Among the five superfamilies of pumps, resistance-nodulation-division (RND) systems are the most prevalent in multiply resistant A. baumannii. RND pumps typically exhibit a wide substrate range that can include antibiotics, dyes, biocides, detergents, and antiseptics. Overexpression of AdeABC, secondary to mutations in the adeRS genes encoding a two-component regulatory system, constitutes a major mechanism of multiresistance in A. baumannii. AdeIJK, intrinsic to this species, is responsible for natural resistance, but since overexpression above a certain threshold is toxic for the host, its contribution to acquired resistance is minimal. The recently described AdeFGH, probably regulated by a LysR-type transcriptional regulator, also confers multidrug resistance when overexpressed. Non-RND efflux systems, such as CraA, AmvA, AbeM, and AbeS, have also been characterized for A. baumannii, as have AdeXYZ and AdeDE for other Acinetobacter spp. Finally, acquired narrow-spectrum efflux pumps, such as the major facilitator superfamily (MFS) members TetA, TetB, CmlA, and FloR and the small multidrug resistance (SMR) member QacE in Acinetobacter spp., have been detected and are mainly encoded by mobile genetic elements. PMID:21173183

  4. Dissemination of 16S rRNA Methylase ArmA-Producing Acinetobacter baumannii and Emergence of OXA-72 Carbapenemase Coproducers in Japan

    PubMed Central

    Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Shimada, Kayo; Shimojima, Masahiro

    2014-01-01

    Forty-nine clinical isolates of multidrug-resistant Acinetobacter baumannii were obtained from 12 hospitals in 7 prefectures throughout Japan. Molecular phylogenetic analysis revealed the clonal spread of A. baumannii sequence type 208 (ST208) and ST455 isolates harboring the armA gene and ST512 harboring the armA and blaOXA-72 genes. These findings show that A. baumannii isolates harboring armA are disseminated throughout Japan, and this is the first report to show that A. baumannii strains harboring blaOXA-72 and armA are emerging in hospitals in Japan. PMID:24550340

  5. Bacterial Peritonitis Due to Acinetobacter baumannii Sequence Type 25 with Plasmid-Borne New Delhi Metallo-β-Lactamase in Honduras

    PubMed Central

    Snesrud, Erik; Clifford, Robert J.; Kwak, Yoon I.; Munoz-Urbizo, Ivón P.; Tabora-Castellanos, Juana; Milillo, Michael; Preston, Lan; Aviles, Ricardo; Sutter, Deena E.; Lesho, Emil P.

    2013-01-01

    A carbapenem-resistant Acinetobacter baumannii strain was isolated from the peritoneal fluid of a patient with complicated intra-abdominal infection and evaluated at the Multidrug-resistant Organism Repository and Surveillance Network by whole-genome sequencing and real-time PCR. The isolate was sequence type 25 and susceptible to colistin and minocycline, with low MICs of tigecycline. blaNDM-1 was located on a plasmid with >99% homology to pNDM-BJ02. The isolate carried numerous other antibiotic resistance genes, including the 16S methylase gene, armA. PMID:23817381

  6. Novel Approach To Optimize Synergistic Carbapenem-Aminoglycoside Combinations against Carbapenem-Resistant Acinetobacter baumannii

    PubMed Central

    Yadav, Rajbharan; Landersdorfer, Cornelia B.; Nation, Roger L.; Boyce, John D.

    2015-01-01

    Acinetobacter baumannii is among the most dangerous pathogens and emergence of resistance is highly problematic. Our objective was to identify and rationally optimize β-lactam-plus-aminoglycoside combinations via novel mechanism-based modeling that synergistically kill and prevent resistance of carbapenem-resistant A. baumannii. We studied combinations of 10 β-lactams and three aminoglycosides against four A. baumannii strains, including two imipenem-intermediate (MIC, 4 mg/liter) and one imipenem-resistant (MIC, 32 mg/liter) clinical isolate, using high-inoculum static-concentration time-kill studies. We present the first application of mechanism-based modeling for killing and resistance of A. baumannii using Monte Carlo simulations of human pharmacokinetics to rationally optimize combination dosage regimens for immunocompromised, critically ill patients. All monotherapies achieved limited killing (≤2.3 log10) of A. baumannii ATCC 19606 followed by extensive regrowth for aminoglycosides. Against this strain, imipenem-plus-aminoglycoside combinations yielded more rapid and extensive killing than other β-lactam-plus-aminoglycoside combinations. Imipenem at 8 mg/liter combined with an aminoglycoside yielded synergistic killing (>5 log10) and prevented regrowth of all four strains. Modeling demonstrated that imipenem likely killed the aminoglycoside-resistant population and vice versa and that aminoglycosides enhanced the target site penetration of imipenem. Against carbapenem-resistant A. baumannii (MIC, 32 mg/liter), optimized combination regimens (imipenem at 4 g/day as a continuous infusion plus tobramycin at 7 mg/kg of body weight every 24 h) were predicted to achieve >5 log10 killing without regrowth in 98.2% of patients. Bacterial killing and suppression of regrowth were best achieved for combination regimens with unbound imipenem steady-state concentrations of at least 8 mg/liter. Imipenem-plus-aminoglycoside combination regimens are highly promising and

  7. In vitro synergy of colistin combinations against extensively drug-resistant Acinetobacter baumannii producing OXA-23 carbapenemase.

    PubMed

    Wei, Wenjuan; Yang, Haifei; Liu, Yanyan; Ye, Ying; Li, Jiabin

    2016-06-01

    Fifty extensively drug-resistant Acinetobacter baumannii (XDRAB) were isolated from patients. The chequerboard microdilution method was used to determine the in vitro activities of five colistin (COL)-based combinations including COL+fosfomycin (FOS), COL+rifampicin (RIF), COL+imipenem (IMP), COL+sulbactam (SUP) and COL+levofloxacin (LVX). The synergistic activity was evaluated by the fractional inhibitory concentration index (FICI). According to our results, the combination of COL was synergistic with FOS, RIF, IMP, SUP and LVX with the ratios of 50, 72, 88, 92 and 64%, respectively. When combined with COL, the other five agents showed increased antimicrobial activities. In addition, two of the combinations, COL+RIF and COL+IMP, were more active than the combinations of COL+FOS, COL+SUP and COL+LVX. More importantly, these combination regimens could exert synergistic effects at the sub-minimum inhibitory concentration (MIC) levels against XDRAB strains. PMID:25978105

  8. The outer membrane porin OmpW of Acinetobacter baumannii is involved in iron uptake and colistin binding.

    PubMed

    Catel-Ferreira, Manuella; Marti, Sara; Guillon, Laurent; Jara, Luis; Coadou, Gaël; Molle, Virginie; Bouffartigues, Emeline; Bou, German; Shalk, Isabelle; Jouenne, Thierry; Vila-Farrés, Xavier; Dé, Emmanuelle

    2016-01-01

    This study was undertaken to characterize functions of the outer membrane protein OmpW, which potentially contributes to the development of colistin- and imipenem-resistance in Acinetobacter baumannii. Reconstitution of OmpW in artificial lipid bilayers showed that it forms small channels (23 pS in 1 m KCl) and markedly interacts with iron and colistin, but not with imipenem. In vivo, (55) Fe uptake assays comparing the behaviours of ΔompW mutant and wild-type strains confirmed a role for OmpW in A. baumannii iron homeostasis. However, the loss of OmpW expression did not have an impact on A. baumannii susceptibilities to colistin or imipenem. PMID:26823169

  9. Common components of industrial metal-working fluids as sources of carbon for bacterial growth. [Acinetobacter; Pseudomonas

    SciTech Connect

    Foxall-vanAken, S.; Brown, J.A. Jr.; Young, W.; Salmeen, I.; McClure, T.; Napier, S. Jr.; Olsen, R.H.

    1986-06-01

    Water-based metal-working fluids in large-scale industrial operations consist of many components, but in the most commonly used formulations only three classes of components are present in high enough concentrations that they could, in principle, provide enough carbon to support the high bacterial densities (10/sup 9/ CFU/ml) often observed in contaminated factory fluids. These components are petroleum oil (1 to 5%), petroleum sulfonates (0.1 to 0.5%), and fatty acids (less than 0.1%, mainly linoleic and oleic acids supplied as tall oils). Pure strains of predominating bacteria were isolated from contaminated reservoirs of two metal-working systems and randomly selected 12 strains which were tested in liquid culture for growth with each of the metal-working fluid components as the sole source of carbon. Of the 12 strains, 7 reached high density (10/sup 9/ CFU/ml from an initial inoculum of less than 2 x 10/sup 3/) in 24 h, and 1 strain did the same in 48 h with 0.05% oleic or linoleic acid as the carbon source. These same strains also grew on 1% naphthenic petroleum oil but required up to 72 h to reach densities near 10/sup 8/ CFU/ml. One strain grew slightly and the others not at all on the petroleum sulfonates. The four remaining strains did not grow on any of the components, even though they were among the predominating bacteria in the contaminated system. Of the seven strains that grew best on the fatty acids and on the naphthenic petroleum oil, five were tentatively identified as Acinetobacter species and two were identified as Pseudomonas species. Four of the bacteria that did not grow were tentatively identified as species of Pseudomonas, and one could not be identified.

  10. Acinetobacter infection is associated with acquired glucose intolerance in burn patients.

    PubMed

    Furniss, Dominic; Gore, Sinclair; Azadian, Berge; Myers, Simon R

    2005-01-01

    Infection with antibiotic-resistant Acinetobacter spp. is an increasing problem in critical care environments worldwide. Acinetobacter spp. are known to produce an insulin-cleaving protease. We hypothesized that infection with Acinetobacter spp. was associated with the acquisition of glucose intolerance in burn patients. Data were collected prospectively on all 473 patients admitted to the Burns Centre between January 2002 and March 2003. A total of 3.4% of patients acquired glucose intolerance during admission. Patients with Acinetobacter spp. infection were 9.8 times more likely to develop glucose intolerance than those without the infection (P < .0001). The association persisted after controlling for TBSA (P < .001). In patients with deep Acinetobacter spp. infection, 47% had glucose intolerance, compared with 12% in those with infection of the burn only (P = .03). In patients with pre-existing diabetes mellitus, 27% developed Acinetobacter spp. infection compared with only 8.5% of patients without diabetes (P = .04). This study demonstrates a clear association between Acinetobacter spp. infection and glucose intolerance in burns patients. PMID:16151285

  11. Blood stream infections caused by Acinetobacter baumannii group in Japan - Epidemiological and clinical investigation.

    PubMed

    Fujikura, Yuji; Yuki, Atsushi; Hamamoto, Takaaki; Kawana, Akihiko; Ohkusu, Kiyofumi; Matsumoto, Tetsuya

    2016-06-01

    Acinetobacter calcoaceticus-Acinetobacter baumannii complex, especially A. baumannii, Acinetobacter pittii and Acinetobacter nosocomialis, constitutes an important group of nosocomial pathogens; however, epidemiological or clinical characteristics and prognosis is limited in Japan. From 2009 to 2013, 47 blood stream infection cases resulting from A. baumannii group were reviewed at the National Defense Medical College, an 800-bed tertiary hospital. To determine the genospecies, further comparative nucleotide sequence analyses of the RNA polymerase b-subunit (rpoB) gene were performed. Sequence analysis of rpoB gene showed that 25 (49.0%), 17 (33.3%) and 5 (9.8%) cases were caused by A. baumannii, A. pittii and A. nosocomialis, respectively. The 30-day and in-hospital mortality rates of A. baumannii were 8.5% and 25.5%, respectively, and there were no significant differences between Acinetobacter species. Clinical characteristics were statistically insignificant. Multidrug-resistant Acinetobacter species were detected in 3 cases (5.9%) with same pulsed-field gel electrophoresis (PFGE) pattern and A. baumannii was less susceptible to amikacin and levofloxacin. In this study, the mortality and clinical characteristics were similar among A. baumannii group isolate cases despite some showing drug resistance. However, identification of Acinetobacter species helps to initiate appropriate antibiotic therapy in earlier treatment phase, because A. baumannii shows some drug resistance. PMID:26993173

  12. High prevalence of extensively drug-resistant and metallo beta-lactamase-producing clinical Acinetobacter baumannii in Iran.

    PubMed

    Maspi, Hossein; Mahmoodzadeh Hosseini, Hamideh; Amin, Mohsen; Imani Fooladi, Abbas Ali

    2016-09-01

    Acinetobacter species particularly Acinetobacter baumannii (A. baumannii) have been widely reported as broad-spectrum antibiotic resistant pathogens. Expression of various types of metallo beta-lactamases (MBL), classified as Ambler class B, has been associated with carbapenem resistance. Here, we attempted to assess the frequency of extensively drug-resistant (XDR) and MBL-producing A. baumannii among clinical isolates. 86 clinical A. baumannii strains were collected from 2014 to 2015 and their susceptibility to meropenem (10 μg), imipenem (10 μg), azteronem (30 μg), pipracillin (100 μg) tazobactam (110 μg), tobramycin (10 μg), fosfomycin (200 μg), rifampicin (5 μg), colistin (10 μg), tigecycline (15 μg), sulbactam/ampicillin (10 μg + 10 μg) and polymixin B (300 U) was evaluated using disk diffusion method. The MBL-producing isolates were screened using combined disc diffusion method. Furthermore, the presence of blaVIM, blaIMP, blaSPM, blaGIM, blaSIM and blaNDM was detected by PCR. 34.9% of isolates were recovered from bronchoalveolar lavage (BAL). 81 (94.2%) and 62 (71.2%) isolates were multidrug resistance (MDR) and XDR, respectively. 44 (51.2%) and 65 (75.6%) isolates were MBL-producing strains with resistance to imipenem and meropenem, respectively. 2 (2.3%), 13 (15.1%), 2 (2.3%), 4 (4.7%) and 2 (2.3%) isolates carried blaVIM, blaIMP, blaSPM, blaGIM and blaSIM genes, respectively. Our data showed that the rate of XDR and MBL A. baumannii is on the rise. PMID:27448835

  13. Treatment for patients with multidrug resistant Acinetobacter baumannii pulmonary infection

    PubMed Central

    PAN, TAO; LIU, XIAOYUN; XIANG, SHOUGUI; JI, WENLI

    2016-01-01

    Bacterial infections are common but have become increasingly resistant to drugs. The aim of the present study was to examine the combined treatment of traditional Chinese and Western medicine in 30 cases of pulmonary infection with multidrug resistant Acinetobacter baumannii. Patients were divided into groups A and B according to drug treatments. Cefoperazone or sulbactam and tanreqing were administered in group A, and cefoperazone or sulbactam in group B. The curative effect and prognosis of the two groups were recorded and the remaining treatments were performed routinely in the clinic. For the combined therapy group, which was administered sulperazone and tanreqing, 8 patients were recovered, 6 patients had significant effects, 3 patients exhibited some improvement and 1 patient had no response. One of the patients did not survive after 28 days. By contrast, there were 4 patients that were successfully treated, 3 patients with significant effects, 2 patients with some improvement and 2 patients had no response in the sulperazone group, and 4 patients did not survive after 28 days. In conclusion, the combined therapy of cefoperazone or sulbactam supplemented with tanreqing was identified to be more effective than cefoperazone or sulbactam as monotherapy, for treating multidrug resistant Acinetobacter baumannii. PMID:27073447

  14. Surface activity of Acinetobacter calcoaceticus sp. 2CA2

    SciTech Connect

    Neufeld, R.J.; Zajic, J.E.

    1984-01-01

    The hydrocarbon metabolizing Acinetobacter calcoaceticus sp. 2CA2 reduces the surface tension of the culture broth during growth on liquid hydrocarbons. This activity, which is not evident during growth on soluble substrates, is associated with the whole cells. Removing the cells from the culture broth increases the surface tension of the liquid phase. The cells when resuspended in water result in a dramatic lowering of the surface tension. Acinetobacter sp. 2CA2 tends to partition between the two liquid phases during growth on hydrocarbons. Both the hydrocarbon bound and nonadhering cells are equally surface active. The whole cells are also able to form and stabilize kerosene-water emulsions. This ability is not related to the lowering of the liquid surface or interfacial tension, since both surface active and nonsurface active cells demonstrated the same emulsifying properties. An extracellular lipopeptide produced during growth on hydrocarbons is not surface active but effectively forms and stabilizes kerosene-water emulsions. The cells and extracellular lipopeptide are also effective in de-emulsifying surfactant stabilized test emulsions. The cells and extracellular lipopeptide are also effective in de-emulsifying surfactant stabilized test emulsions. The lipopeptide product reduced the half-life of a Tween-Span (TS) stabilized kerosene-water emulsion from 650 to 0.4 h at product concentrations of less than 1% (w/v).

  15. Acinetobacter baumannii in Localised Cutaneous Mycobacteriosis in Falcons.

    PubMed

    Muller, Margit Gabriele; George, Ancy Rajeev; Walochnik, Julia

    2010-01-01

    Between May 2007 and April 2009, 29 falcons with identically localized, yellowish discolored cutaneous lesions in the thigh and lateral body wall region were presented at Abu Dhabi Falcon Hospital. Out of 18 falcons integrated in this study, 16 tested positive to Mycobacterium. avium complex. The 2 negative falcons tested positive in the Mycobacterium genus PCR. Moreover, 1 falcon tested positive to M. avium. paratuberculosis in tissue samples by PCR. In all cases, blood and fecal samples tested negative. In the acid-fast stain, all samples showed the for mycobacteriosis typical rods. Moreover, in 13 samples Acinetobacter baumannii was detected by PCR and proven by DNA sequencing. Clinical features included highly elevated WBCs, heterophilia, lymphocytopenia, monocytosis, severe anemia and weight loss. A. baumannii, a gram-negative bacillus with the ability to integrate foreign DNA, has emerged as one of the major multidrug resistant bacteria. In veterinary medicine, it has so far been detected in dogs, cats, horses and wild birds. To the authors' knowledge, this is the first report of an A. baumannii infection in falcons and of a veterinary Mycobacterium-Acinetobacter coinfection. PMID:20871867

  16. The Response Regulator BfmR Is a Potential Drug Target for Acinetobacter baumannii

    PubMed Central

    Manohar, Akshay; Beanan, Janet M.; Olson, Ruth; MacDonald, Ulrike; Graham, Jessica

    2016-01-01

    ABSTRACT Identification and validation is the first phase of target-based antimicrobial development. BfmR (RstA), a response regulator in a two-component signal transduction system (TCS) in Acinetobacter baumannii, is an intriguing potential antimicrobial target. A unique characteristic of BfmR is that its inhibition would have the dual benefit of significantly decreasing in vivo survival and increasing sensitivity to selected antimicrobials. Studies on the clinically relevant strain AB307-0294 have shown BfmR to be essential in vivo. Here, we demonstrate that this phenotype in strains AB307-0294 and AB908 is mediated, in part, by enabling growth in human ascites fluid and serum. Further, BfmR conferred resistance to complement-mediated bactericidal activity that was independent of capsular polysaccharide. Importantly, BfmR also increased resistance to the clinically important antimicrobials meropenem and colistin. BfmR was highly conserved among A. baumannii strains. The crystal structure of the receiver domain of BfmR was determined, lending insight into putative ligand binding sites. This enabled an in silico ligand binding analysis and a blind docking strategy to assess use as a potential druggable target. Predicted binding hot spots exist at the homodimer interface and the phosphorylation site. These data support pursuing the next step in the development process, which includes determining the degree of inhibition needed to impact growth/survival and the development a BfmR activity assay amenable to high-throughput screening for the identification of inhibitors. Such agents would represent a new class of antimicrobials active against A. baumannii which could be active against other Gram-negative bacilli that possess a TCS with shared homology. IMPORTANCE Increasing antibiotic resistance in bacteria, particularly Gram-negative bacilli, has significantly affected the ability of physicians to treat infections, with resultant increased morbidity, mortality, and

  17. The Response Regulator BfmR Is a Potential Drug Target for Acinetobacter baumannii.

    PubMed

    Russo, Thomas A; Manohar, Akshay; Beanan, Janet M; Olson, Ruth; MacDonald, Ulrike; Graham, Jessica; Umland, Timothy C

    2016-01-01

    Identification and validation is the first phase of target-based antimicrobial development. BfmR (RstA), a response regulator in a two-component signal transduction system (TCS) in Acinetobacter baumannii, is an intriguing potential antimicrobial target. A unique characteristic of BfmR is that its inhibition would have the dual benefit of significantly decreasing in vivo survival and increasing sensitivity to selected antimicrobials. Studies on the clinically relevant strain AB307-0294 have shown BfmR to be essential in vivo. Here, we demonstrate that this phenotype in strains AB307-0294 and AB908 is mediated, in part, by enabling growth in human ascites fluid and serum. Further, BfmR conferred resistance to complement-mediated bactericidal activity that was independent of capsular polysaccharide. Importantly, BfmR also increased resistance to the clinically important antimicrobials meropenem and colistin. BfmR was highly conserved among A. baumannii strains. The crystal structure of the receiver domain of BfmR was determined, lending insight into putative ligand binding sites. This enabled an in silico ligand binding analysis and a blind docking strategy to assess use as a potential druggable target. Predicted binding hot spots exist at the homodimer interface and the phosphorylation site. These data support pursuing the next step in the development process, which includes determining the degree of inhibition needed to impact growth/survival and the development a BfmR activity assay amenable to high-throughput screening for the identification of inhibitors. Such agents would represent a new class of antimicrobials active against A. baumannii which could be active against other Gram-negative bacilli that possess a TCS with shared homology. IMPORTANCE Increasing antibiotic resistance in bacteria, particularly Gram-negative bacilli, has significantly affected the ability of physicians to treat infections, with resultant increased morbidity, mortality, and health

  18. Global metabolic analyses identify key differences in metabolite levels between polymyxin-susceptible and polymyxin-resistant Acinetobacter baumannii.

    PubMed

    Mahamad Maifiah, Mohd Hafidz; Cheah, Soon-Ee; Johnson, Matthew D; Han, Mei-Ling; Boyce, John D; Thamlikitkul, Visanu; Forrest, Alan; Kaye, Keith S; Hertzog, Paul; Purcell, Anthony W; Song, Jiangning; Velkov, Tony; Creek, Darren J; Li, Jian

    2016-01-01

    Multidrug-resistant Acinetobacter baumannii presents a global medical crisis and polymyxins are used as the last-line therapy. This study aimed to identify metabolic differences between polymyxin-susceptible and polymyxin-resistant A. baumannii using untargeted metabolomics. The metabolome of each A. baumannii strain was measured using liquid chromatography-mass spectrometry. Multivariate and univariate statistics and pathway analyses were employed to elucidate metabolic differences between the polymyxin-susceptible and -resistant A. baumannii strains. Significant differences were identified between the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii strains. The lipopolysaccharide (LPS) deficient, polymyxin-resistant 19606R showed perturbation in specific amino acid and carbohydrate metabolites, particularly pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle intermediates. Levels of nucleotides were lower in the LPS-deficient 19606R. Furthermore, 19606R exhibited a shift in its glycerophospholipid profile towards increased abundance of short-chain lipids compared to the parent polymyxin-susceptible ATCC 19606. In contrast, in a pair of clinical isolates 03-149.1 (polymyxin-susceptible) and 03-149.2 (polymyxin-resistant, due to modification of lipid A), minor metabolic differences were identified. Notably, peptidoglycan biosynthesis metabolites were significantly depleted in both of the aforementioned polymyxin-resistant strains. This is the first comparative untargeted metabolomics study to show substantial differences in the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii. PMID:26924392

  19. Global metabolic analyses identify key differences in metabolite levels between polymyxin-susceptible and polymyxin-resistant Acinetobacter baumannii

    PubMed Central

    Mahamad Maifiah, Mohd Hafidz; Cheah, Soon-Ee; Johnson, Matthew D.; Han, Mei-Ling; Boyce, John D.; Thamlikitkul, Visanu; Forrest, Alan; Kaye, Keith S.; Hertzog, Paul; Purcell, Anthony W.; Song, Jiangning; Velkov, Tony; Creek, Darren J.; Li, Jian

    2016-01-01

    Multidrug-resistant Acinetobacter baumannii presents a global medical crisis and polymyxins are used as the last-line therapy. This study aimed to identify metabolic differences between polymyxin-susceptible and polymyxin-resistant A. baumannii using untargeted metabolomics. The metabolome of each A. baumannii strain was measured using liquid chromatography-mass spectrometry. Multivariate and univariate statistics and pathway analyses were employed to elucidate metabolic differences between the polymyxin-susceptible and -resistant A. baumannii strains. Significant differences were identified between the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii strains. The lipopolysaccharide (LPS) deficient, polymyxin-resistant 19606R showed perturbation in specific amino acid and carbohydrate metabolites, particularly pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle intermediates. Levels of nucleotides were lower in the LPS-deficient 19606R. Furthermore, 19606R exhibited a shift in its glycerophospholipid profile towards increased abundance of short-chain lipids compared to the parent polymyxin-susceptible ATCC 19606. In contrast, in a pair of clinical isolates 03–149.1 (polymyxin-susceptible) and 03–149.2 (polymyxin-resistant, due to modification of lipid A), minor metabolic differences were identified. Notably, peptidoglycan biosynthesis metabolites were significantly depleted in both of the aforementioned polymyxin-resistant strains. This is the first comparative untargeted metabolomics study to show substantial differences in the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii. PMID:26924392

  20. A glimpse into evolution and dissemination of multidrug-resistant Acinetobacter baumannii isolates in East Asia: a comparative genomics study

    PubMed Central

    Feng, Ye; Ruan, Zhi; Shu, Jianfeng; Chen, Chyi-Liang; Chiu, Cheng-Hsun

    2016-01-01

    Clonal dissemination is characteristic of the important nosocomial pathogen Acinetobacter baumannii, as revealed by previous multi-locus sequence typing (MLST) studies. However, the disseminated phyletic unit is actually MLST sequence type instead of real bacterial clone. Here we sequenced the genomes of 13 multidrug-resistant (MDR) A. baumannii strains from Taiwan, and compared them with that of A. baumannii from other East Asian countries. Core-genome phylogenetic tree divided the analyzed strains into three major clades. Among them, one ST455 clade was a hybrid between the ST208 clade and the other ST455 clade. Several strains showed nearly identical genome sequence, but their isolation sources differed by over 2,500 km and 10 years apart, suggesting a wide dissemination of the phyletic units, which were much smaller than the sequence type. Frequent structural variation was detected even between the closely related strains in antimicrobial resistance elements such as AbaRI, class I integron, indicating strong selection pressure brought by antimicrobial use. In conclusion, wide clonal dissemination and frequent genomic variation simultaneously characterize the clinical MDR A. baumannii in East Asia. PMID:27072398

  1. A glimpse into evolution and dissemination of multidrug-resistant Acinetobacter baumannii isolates in East Asia: a comparative genomics study.

    PubMed

    Feng, Ye; Ruan, Zhi; Shu, Jianfeng; Chen, Chyi-Liang; Chiu, Cheng-Hsun

    2016-01-01

    Clonal dissemination is characteristic of the important nosocomial pathogen Acinetobacter baumannii, as revealed by previous multi-locus sequence typing (MLST) studies. However, the disseminated phyletic unit is actually MLST sequence type instead of real bacterial clone. Here we sequenced the genomes of 13 multidrug-resistant (MDR) A. baumannii strains from Taiwan, and compared them with that of A. baumannii from other East Asian countries. Core-genome phylogenetic tree divided the analyzed strains into three major clades. Among them, one ST455 clade was a hybrid between the ST208 clade and the other ST455 clade. Several strains showed nearly identical genome sequence, but their isolation sources differed by over 2,500 km and 10 years apart, suggesting a wide dissemination of the phyletic units, which were much smaller than the sequence type. Frequent structural variation was detected even between the closely related strains in antimicrobial resistance elements such as AbaRI, class I integron, indicating strong selection pressure brought by antimicrobial use. In conclusion, wide clonal dissemination and frequent genomic variation simultaneously characterize the clinical MDR A. baumannii in East Asia. PMID:27072398

  2. Identification and Characterization of a Glycosyltransferase Involved in Acinetobacter baumannii Lipopolysaccharide Core Biosynthesis▿

    PubMed Central

    Luke, Nicole R.; Sauberan, Shauna L.; Russo, Thomas A.; Beanan, Janet M.; Olson, Ruth; Loehfelm, Thomas W.; Cox, Andrew D.; St. Michael, Frank; Vinogradov, Evgeny V.; Campagnari, Anthony A.

    2010-01-01

    Although Acinetobacter baumannii has emerged as a significant cause of nosocomial infections worldwide, there have been few investigations describing the factors important for A. baumannii persistence and pathogenesis. This paper describes the first reported identification of a glycosyltransferase, LpsB, involved in lipopolysaccharide (LPS) biosynthesis in A. baumannii. Mutational, structural, and complementation analyses indicated that LpsB is a core oligosaccharide glycosyl transferase. Using a genetic approach, lpsB was compared with the lpsB homologues of several A. baumannii strains. These analyses indicated that LpsB is highly conserved among A. baumannii isolates. Furthermore, we developed a monoclonal antibody, monoclonal antibody 13C11, which reacts to an LPS core epitope expressed by approximately one-third of the A. baumannii clinical isolates evaluated to date. Previous studies describing the heterogeneity of A. baumannii LPS were limited primarily to structural analyses; therefore, studies evaluating the correlation between these surface glycolipids and pathogenesis were warranted. Our data from an evaluation of LpsB mutant 307::TN17, which expresses a deeply truncated LPS glycoform consisting of only two 3-deoxy-d-manno-octulosonic acid residues and lipid A, suggest that A. baumannii LPS is important for resistance to normal human serum and confers a competitive advantage for survival in vivo. These results have important implications for the role of LPS in A. baumannii infections. PMID:20194587

  3. Characterization of carbapenem-resistant Acinetobacter baumannii isolates in a Chinese teaching hospital

    PubMed Central

    Chang, Yaowen; Luan, Guangxin; Xu, Ying; Wang, Yanhong; Shen, Min; Zhang, Chi; Zheng, Wei; Huang, Jinwei; Yang, Jingni; Jia, Xu; Ling, Baodong

    2015-01-01

    Carbapenem-resistant Acinetobacter baumannii (CRAB) presents a serious therapeutic and infection control challenge. In this study, we investigated the epidemiological and molecular differences of CRAB and the threatening factors for contributing to increased CRAB infections at a hospital in western China. A total of 110 clinical isolates of A. baumannii, collected in a recent 2-year period, were tested for carbapenem antibiotic susceptibility, followed by a molecular analysis of carbapenemase genes. Genetic relatedness of the isolates was characterized by multilocus sequence typing. Sixty-seven of the 110 isolates (60.9%) were resistant to carbapenems, 80.60% (54/67) of which carried the blaOXA-23 gene. Most of these CRAB isolates (77.62%) were classified as clone complex 92 (CC92), and sequence type (ST) 92 was the most prevalent STs, followed by ST195, ST136, ST843, and ST75. One CRAB isolate of ST195 harbored plasmid pAB52 from a Chinese patient without travel history. This plasmid contains toxin–antitoxin elements related to adaptation for growth, which might have emerged as a common vehicle indirectly mediating the spread of OXA-23 in CRAB. Thus, CC92 A. baumannii carrying OXA-23 is a major drug-resistant strain spreading in China. Our findings indicate that rational application of antibiotics is indispensable for minimizing widespread of drug resistance. PMID:26388854

  4. Higher Isolation of NDM-1 Producing Acinetobacter baumannii from the Sewage of the Hospitals in Beijing

    PubMed Central

    Cui, Jiajun; Wang, Pan; Huang, Liuyu; Klena, John D.; Song, Hongbin

    2013-01-01

    Multidrug resistant microbes present in the environment are a potential public health risk. In this study, we investigate the presence of New Delhi metallo-β-lactamase 1 (NDM-1) producing bacteria in the 99 water samples in Beijing City, including river water, treated drinking water, raw water samples from the pools and sewage from 4 comprehensive hospitals. For the blaNDM-1 positive isolate, antimicrobial susceptibility testing was further analyzed, and Pulsed Field Gel Electrophoresis (PFGE) was performed to determine the genetic relationship among the NDM-1 producing isolates from sewage and human, as well as the clinical strains without NDM-1. The results indicate that there was a higher isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals, while no NDM-1 producing isolates were recovered from samples obtained from the river, drinking, or fishpond water. Surprisingly, these isolates were markedly different from the clinical isolates in drug resistance and pulsed field gel electrophoresis profiles, suggesting different evolutionary relationships. Our results showed that the hospital sewage may be one of the diffusion reservoirs of NDM-1 producing bacteria. PMID:23755152

  5. The induction and identification of novel Colistin resistance mutations in Acinetobacter baumannii and their implications

    PubMed Central

    Thi Khanh Nhu, Nguyen; Riordan, David W.; Do Hoang Nhu, Tran; Thanh, Duy Pham; Thwaites, Guy; Huong Lan, Nguyen Phu; Wren, Brendan W.; Baker, Stephen; Stabler, Richard A

    2016-01-01

    Acinetobacter baumannii is a significant cause of opportunistic hospital acquired infection and has been identified as an important emerging infection due to its high levels of antimicrobial resistance. Multidrug resistant A. baumannii has risen rapidly in Vietnam, where colistin is becoming the drug of last resort for many infections. In this study we generated spontaneous colistin resistant progeny (up to >256 μg/μl) from four colistin susceptible Vietnamese isolates and one susceptible reference strain (MIC <1.5 μg/μl). Whole genome sequencing was used to identify single nucleotide mutations that could be attributed to the reduced colistin susceptibility. We identified six lpxACD and three pmrB mutations, the majority of which were novel. In addition, we identified further mutations in six A. baumannii genes (vacJ, pldA, ttg2C, pheS and conserved hypothetical protein) that we hypothesise have a role in reduced colistin susceptibility. This study has identified additional mutations that may be associated with colistin resistance through novel resistance mechanisms. Our work further demonstrates how rapidly A. baumannii can generate resistance to a last resort antimicrobial and highlights the need for improved surveillance to identified A. baumannii with an extensive drug resistance profile. PMID:27329501

  6. Colistin Resistance in Acinetobacter baumannii Is Mediated by Complete Loss of Lipopolysaccharide Production ▿

    PubMed Central

    Moffatt, Jennifer H.; Harper, Marina; Harrison, Paul; Hale, John D. F.; Vinogradov, Evgeny; Seemann, Torsten; Henry, Rebekah; Crane, Bethany; St. Michael, Frank; Cox, Andrew D.; Adler, Ben; Nation, Roger L.; Li, Jian; Boyce, John D.

    2010-01-01

    Infections caused by multidrug-resistant (MDR) Gram-negative bacteria represent a major global health problem. Polymyxin antibiotics such as colistin have resurfaced as effective last-resort antimicrobials for use against MDR Gram-negative pathogens, including Acinetobacter baumannii. Here we show that A. baumannii can rapidly develop resistance to polymyxin antibiotics by complete loss of the initial binding target, the lipid A component of lipopolysaccharide (LPS), which has long been considered to be essential for the viability of Gram-negative bacteria. We characterized 13 independent colistin-resistant derivatives of A. baumannii type strain ATCC 19606 and showed that all contained mutations within one of the first three genes of the lipid A biosynthesis pathway: lpxA, lpxC, and lpxD. All of these mutations resulted in the complete loss of LPS production. Furthermore, we showed that loss of LPS occurs in a colistin-resistant clinical isolate of A. baumannii. This is the first report of a spontaneously occurring, lipopolysaccharide-deficient, Gram-negative bacterium. PMID:20855724

  7. Emergence and clonal dissemination of carbapenem-hydrolysing OXA-58-producing Acinetobacter baumannii isolates in Bolivia.

    PubMed

    Sevillano, Elena; Fernández, Elena; Bustamante, Zulema; Zabalaga, Silvia; Rosales, Ikerne; Umaran, Adelaida; Gallego, Lucía

    2012-01-01

    Acinetobacter baumannii is an emerging multidrug-resistant pathogen and very little information is available regarding its imipenem resistance in Latin American countries such as Bolivia. This study investigated the antimicrobial resistance profile of 46 clinical strains from different hospitals in Cochabamba, Bolivia, from March 2008 to July 2009, and the presence of carbapenemases as a mechanism of resistance to imipenem. Isolates were obtained from 46 patients (one isolate per patient; 30 males,16 females) with an age range of 1 day to 84 years, and were collected from different sample types, the majority from respiratory tract infections (17) and wounds (13). Resistance to imipenem was detected in 15 isolates collected from different hospitals of the city. These isolates grouped into the same genotype, named A, and were resistant to all antibiotics tested including imipenem, with susceptibility only to colistin. Experiments to detect carbapenemases revealed the presence of the OXA-58 carbapenemase. Further analysis revealed the location of the bla(OXA-58) gene on a 40 kb plasmid. To our knowledge, this is the first report of carbapenem resistance in A. baumannii isolates from Bolivia that is conferred by the OXA-58 carbapenemase. The presence of this gene in a multidrug-resistant clone and its location within a plasmid is of great concern with regard to the spread of carbapenem-resistant A. baumannii in the hospital environment in Bolivia. PMID:21873380

  8. Antimicrobial Resistance of Acinetobacter baumannii to Imipenem in Iran: A Systematic Review and Meta-Analysis

    PubMed Central

    Pourhajibagher, Maryam; Hashemi, Farhad B.; Pourakbari, Babak; Aziemzadeh, Masoud; Bahador, Abbas

    2016-01-01

    Imipenem-resistant multi-drug resistant (IR-MDR) Acinetobacter baumannii has been emerged as a morbidity successful nosocomial pathogen throughout the world.To address imipenem being yet the most effective antimicrobial agent against A. baumannii to control outbreaks and treat patients, a systematic review and meta-analysis was performed to evaluate the prevalence of IR-MDR A. baumannii. We systematically searched Web of Science, PubMed, MEDLINE, Science Direct, EMBASE, Scopus, Cochrane Library, Google Scholar, and Iranian databases to identify studies addressing the antibiotic resistance of A. baumannii to imipenem and the frequency of MDR strains in Iran. Out of 58 articles and after a secondary screening using inclusion and exclusion criteria and on the basis of title and abstract evaluation, 51 studies were selected for analysis. The meta-analysis revealed that 55% [95% confidence interval (CI), 53.0–56.5] of A. baumannii were resistant to imipenem and 74% (95% CI, 61.3–83.9) were MDR. The MDR A. baumannii population in Iran is rapidly changing toward a growing resistance to imipenem. Our findings highlight the critical need for a comprehensive monitoring and infection control policy as well as a national susceptibility review program that evaluates IR-MDR A. baumannii isolates from various parts of Iran. PMID:27099638

  9. Identification and Characterization of Type II Toxin-Antitoxin Systems in the Opportunistic Pathogen Acinetobacter baumannii

    PubMed Central

    Jurėnaitė, Milda; Markuckas, Arvydas

    2013-01-01

    Acinetobacter baumannii is an opportunistic pathogen that causes nosocomial infections. Due to the ability to persist in the clinical environment and rapidly acquire antibiotic resistance, multidrug-resistant A. baumannii clones have spread in medical units in many countries in the last decade. The molecular basis of the emergence and spread of the successful multidrug-resistant A. baumannii clones is not understood. Bacterial toxin-antitoxin (TA) systems are abundant genetic loci harbored in low-copy-number plasmids and chromosomes and have been proposed to fulfill numerous functions, from plasmid stabilization to regulation of growth and death under stress conditions. In this study, we have performed a thorough bioinformatic search for type II TA systems in genomes of A. baumannii strains and estimated at least 15 possible TA gene pairs, 5 of which have been shown to be functional TA systems. Three of them were orthologs of bacterial and archaeal RelB/RelE, HicA/HicB, and HigB/HigA systems, and others were the unique SplT/SplA and CheT/CheA TA modules. The toxins of all five TA systems, when expressed in Escherichia coli, inhibited translation, causing RNA degradation. The HigB/HigA and SplT/SplA TA pairs of plasmid origin were highly prevalent in clinical multidrug-resistant A. baumannii isolates from Lithuanian hospitals belonging to the international clonal lineages known as European clone I (ECI) and ECII. PMID:23667234

  10. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii.

    PubMed

    Wan, Guoqing; Ruan, Lingao; Yin, Yu; Yang, Tian; Ge, Mei; Cheng, Xiaodong

    2016-01-01

    Acinetobacter baumannii resistance to carbapenem antibiotics is a serious clinical challenge. As a newly developed technology, silver nanoparticles (AgNPs) show some excellent characteristics compared to older treatments, and are a candidate for combating A. baumannii infection. However, its mechanism of action remains unclear. In this study, we combined AgNPs with antibiotics to treat carbapenem-resistant A. baumannii (aba1604). Our results showed that single AgNPs completely inhibited A. baumannii growth at 2.5 μg/mL. AgNP treatment also showed synergistic effects with the antibiotics polymixin B and rifampicin, and an additive effect with tigecyline. In vivo, we found that AgNPs-antibiotic combinations led to better survival ratios in A. baumannii-infected mouse peritonitis models than that by single drug treatment. Finally, we employed different antisense RNA-targeted Escherichia coli strains to elucidate the synergistic mechanism involved in bacterial responses to AgNPs and antibiotics. PMID:27574420

  11. Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis.

    PubMed

    Luke, Nicole R; Sauberan, Shauna L; Russo, Thomas A; Beanan, Janet M; Olson, Ruth; Loehfelm, Thomas W; Cox, Andrew D; St Michael, Frank; Vinogradov, Evgeny V; Campagnari, Anthony A

    2010-05-01

    Although Acinetobacter baumannii has emerged as a significant cause of nosocomial infections worldwide, there have been few investigations describing the factors important for A. baumannii persistence and pathogenesis. This paper describes the first reported identification of a glycosyltransferase, LpsB, involved in lipopolysaccharide (LPS) biosynthesis in A. baumannii. Mutational, structural, and complementation analyses indicated that LpsB is a core oligosaccharide glycosyl transferase. Using a genetic approach, lpsB was compared with the lpsB homologues of several A. baumannii strains. These analyses indicated that LpsB is highly conserved among A. baumannii isolates. Furthermore, we developed a monoclonal antibody, monoclonal antibody 13C11, which reacts to an LPS core epitope expressed by approximately one-third of the A. baumannii clinical isolates evaluated to date. Previous studies describing the heterogeneity of A. baumannii LPS were limited primarily to structural analyses; therefore, studies evaluating the correlation between these surface glycolipids and pathogenesis were warranted. Our data from an evaluation of LpsB mutant 307::TN17, which expresses a deeply truncated LPS glycoform consisting of only two 3-deoxy-d-manno-octulosonic acid residues and lipid A, suggest that A. baumannii LPS is important for resistance to normal human serum and confers a competitive advantage for survival in vivo. These results have important implications for the role of LPS in A. baumannii infections. PMID:20194587

  12. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii

    PubMed Central

    Wan, Guoqing; Ruan, Lingao; Yin, Yu; Yang, Tian; Ge, Mei; Cheng, Xiaodong

    2016-01-01

    Acinetobacter baumannii resistance to carbapenem antibiotics is a serious clinical challenge. As a newly developed technology, silver nanoparticles (AgNPs) show some excellent characteristics compared to older treatments, and are a candidate for combating A. baumannii infection. However, its mechanism of action remains unclear. In this study, we combined AgNPs with antibiotics to treat carbapenem-resistant A. baumannii (aba1604). Our results showed that single AgNPs completely inhibited A. baumannii growth at 2.5 μg/mL. AgNP treatment also showed synergistic effects with the antibiotics polymixin B and rifampicin, and an additive effect with tigecyline. In vivo, we found that AgNPs–antibiotic combinations led to better survival ratios in A. baumannii-infected mouse peritonitis models than that by single drug treatment. Finally, we employed different antisense RNA-targeted Escherichia coli strains to elucidate the synergistic mechanism involved in bacterial responses to AgNPs and antibiotics. PMID:27574420

  13. The induction and identification of novel Colistin resistance mutations in Acinetobacter baumannii and their implications.

    PubMed

    Thi Khanh Nhu, Nguyen; Riordan, David W; Do Hoang Nhu, Tran; Thanh, Duy Pham; Thwaites, Guy; Huong Lan, Nguyen Phu; Wren, Brendan W; Baker, Stephen; Stabler, Richard A

    2016-01-01

    Acinetobacter baumannii is a significant cause of opportunistic hospital acquired infection and has been identified as an important emerging infection due to its high levels of antimicrobial resistance. Multidrug resistant A. baumannii has risen rapidly in Vietnam, where colistin is becoming the drug of last resort for many infections. In this study we generated spontaneous colistin resistant progeny (up to >256 μg/μl) from four colistin susceptible Vietnamese isolates and one susceptible reference strain (MIC <1.5 μg/μl). Whole genome sequencing was used to identify single nucleotide mutations that could be attributed to the reduced colistin susceptibility. We identified six lpxACD and three pmrB mutations, the majority of which were novel. In addition, we identified further mutations in six A. baumannii genes (vacJ, pldA, ttg2C, pheS and conserved hypothetical protein) that we hypothesise have a role in reduced colistin susceptibility. This study has identified additional mutations that may be associated with colistin resistance through novel resistance mechanisms. Our work further demonstrates how rapidly A. baumannii can generate resistance to a last resort antimicrobial and highlights the need for improved surveillance to identified A. baumannii with an extensive drug resistance profile. PMID:27329501

  14. Characterization of the anaerobic denitrification bacterium Acinetobacter sp. SZ28 and its application for groundwater treatment.

    PubMed

    Su, Jun feng; Zheng, Sheng Chen; Huang, Ting lin; Ma, Fang; Shao, Si Cheng; Yang, Shao Fei; Zhang, Li na

    2015-09-01

    Acinetobacter sp. SZ28 exhibited efficient autotrophic denitrification ability using Mn(2+) as an electron donor. Sequence amplification identified the presence of the nirS gene. Meteorological chromatography analysis showed that N2 was produced as an end product. Response surface methodology experiments showed that the maximum removal of nitrate occurred under the following conditions: Mn(2+) concentration of 143.56 mg/L, C/N ratio of 6.82, initial pH of 5.17, and temperature of 34.26 °C, where the initial Mn(2+) concentration produced the largest effect. In the groundwater experiment, nitrate levels decreased from 1.63 mg/L to 0 mg/L. Three-dimensional fluorescence analysis showed a decrease in the peak intensity of the original humus. Humus and the small-molecule amino acid tryptophan were detected. These results demonstrated that strain SZ28 is a suitable candidate for the simultaneous removal of nitrogen and Mn(2+) in groundwater treatment. PMID:26094190

  15. DNA microarray for genotyping antibiotic resistance determinants in Acinetobacter baumannii clinical isolates.

    PubMed

    Dally, Simon; Lemuth, Karin; Kaase, Martin; Rupp, Steffen; Knabbe, Cornelius; Weile, Jan

    2013-10-01

    In recent decades, Acinetobacter baumannii has emerged as an organism of great concern due to its ability to accumulate antibiotic resistance. In order to improve the diagnosis of resistance determinants in A. baumannii in terms of lead time and accuracy, we developed a microarray that can be used to detect 91 target sequences associated with antibiotic resistance within 4 h from bacterial culture to result. The array was validated with 60 multidrug-resistant strains of A. baumannii in a blinded, prospective study. The results were compared to phenotype results determined by the automated susceptibility testing system VITEK2. Antibiotics considered were piperacillin-tazobactam, ceftazidime, imipenem, meropenem, trimethoprim-sulfamethoxazole, amikacin, gentamicin, tobramycin, ciprofloxacin, and tigecycline. The average positive predictive value, negative predictive value, sensitivity, and specificity were 98, 98, 99, and 94%, respectively. For carbapenemase genes, the array results were compared to singleplex PCR results provided by the German National Reference Center for Gram-Negative Pathogens, and results were in complete concordance. The presented array is able to detect all relevant resistance determinants of A. baumannii in parallel. The short handling time of 4 h from culture to result helps to provide fast results in order to initiate adequate anti-infective therapy for critically ill patients. Another application would be data acquisition for epidemiologic surveillance. PMID:23856783

  16. [In vitro activity of tigecycline against multiple resistant Acinetobacter baumannii and carbapenem resistant Klebsiella pneumoniae isolates].

    PubMed

    Arikan Akan, Ozay; Uysal, Sevil

    2008-04-01

    In order to detect the in vitro activity of tigecycline against multiple resistant gram-negative bacilli isolated in our hospital, tigecycline susceptibilities of clinical isolates of multiple and/or panresistant 100 Acinetobacter baumannii isolates, and 38 carbapenem resistant Klebsiella pneumoniae (17 of which were panresistant), obtained between January 2005 and August 2007, were evaluated by using E-test (AB Biodisc, Sweden). Carbapenem resistance rate was found to be 59% for A.baumannii, using Vitek2 Compact System (Bio-Merieux, France) which is present in our laboratory for routine use. Minimal inhibitory concentration (MIC) levels for tigecycline were < or =2 mcg/ml in 93% of the isolates while the MIC level was 3 mcg/ml for 7% of the isolates. Tigecycline MIC50 and MIC 90 values were 1.5 and 2 mcg/ml, respectively. Among K. pneumoniae the least resistance was detected against amikacin (52.6% resistant) while tigecycline MIC levels were between 0.13 mcg/ml and 2 mcg/ml. All of the K.pneumoniae strains were susceptible to tigecycline, and the MIC50 ve MIC90 values of these isolates were 1 mcg/ml and 1.5 mcg/ml, respectively. The in vitro susceptibility rates of tigecycline against multiple and/or panresistant A. baumannii and K. pneumoniae isolates are found to be promising for use in therapy. PMID:18697418

  17. Molecular Methods for Identification of Acinetobacter Species by Partial Sequencing of the rpoB and 16S rRNA Genes

    PubMed Central

    Khosravi, Azar Dokht; Shahraki, Abdolrazagh Hashemi; Heidarieh, Parvin; Sheikhi, Nasrin

    2015-01-01

    Background Acinetobacter spp. is a diverse group of Gram-negative bacteria which are ubiquitous in soil and water, and an important cause of nosocomial infections. The purpose of this study was to identify a collection of Acinetobacter spp. clinical isolates accurately and to investigate their antibiotic susceptibility patterns. Materials and Methods A total of 197 non-duplicate clinical isolates of Acinetobacter spp. isolates identified using conventional biochemical tests. The molecular technique of PCR-RFLP and sequence analysis of rpoB and 16S rRNA genes was applied for species identification. Antimicrobial susceptibility test was performed with a disk diffusion assay. Results Based on 16S rRNA and rpoB genes analysis separately, most of clinical isolates can be identified with high bootstrap values. However, the identity of the isolate 555T was uncertain due to high similarity of A. grimontii and A. junii. Identification by concatenation of 16S rRNA and rpoB confirmed the identity of clinical isolates of Acenitobacer to species level confidently. Accordingly, the isolate 555T assigned as A. grimontii due to 100% similarity to A. grimontii. Moreover, this isolate showed 98.64% to A. junii. Besides, the identity of the isolates 218T and 364T was confirmed as Genomic species 3 and A. calcoaceticus respectively. So, the majority of Acinetobacter spp. isolates, were identified as: A. baumannii (131 isolates, 66%), A. calcoaceticus (9 isolates, 4.5%), and A. genomosp 16 (8 isolates, 4%). The rest of identified species showed the lower frequencies. In susceptibility test, 105 isolates (53%), presented high antibiotic resistance of 90% to ceftriaxone, piperacillin, piperacillin tazobactam, amikacin, and 81% to ciprofloxacin. Conclusion Sequence analysis of the 16S rRNA and rpoB spacer simultaneously was able to do identification of Acinetobacter spp. to species level. A.baumannii was identified as the most prevalent species with high antibiotic resistance. Other

  18. Antimicrobial susceptibility profiling and genomic diversity of Acinetobacter baumannii isolates: A study in western Iran

    PubMed Central

    Mohajeri, Parviz; Farahani, Abbas; Feizabadi, Mohammad Mehdi; Ketabi, Hosnieh; Abiri, Ramin; Najafi, Farid

    2013-01-01

    Background and Objective Acinetobacter baumannii is an aerobic non-motile Gram-negative bacterial pathogen that is resistant to most antibiotics. Carbapenems are the most common antibiotics for the treatment of infections caused by this pathogen. Mechanisms of antibiotic-resistance in A. baumannii are mainly mediated by efflux pumps-lactamases. The aim of this study was to determine antibiotic susceptibility, the possibility of existence of OXAs genes and fingerprinting by Pulsed-Field Gel Electrophoresis (PFGE) among clinical isolates of Acinetobacter collected from Kermanshah hospitals. Materials and Methods One hundred and four isolates were collected from patients attending Imam Reza, Taleghani and Imam Khomeini hospitals of Kermanshah (Iran). Isolates were identified by biochemical tests and API 20NE kit. The susceptibility to different antibiotics was assessed with Kirby-Bauer disk diffusion method. PCR was performed for detection of bla OXA-23, bla OXA-24, bla OXA-51 and bla OXA-58 beta-lactamase genes. Clonal relatedness was estimated by PFGE (with the restriction enzyme Apa I) and DNA patterns were analyzed by Gel compare II 6.5 software. Results All isolates showed high-level of resistance to imipenem, meropenem as well as to other antimicrobial agents, while no resistance to polymyxin B, colistin, tigecylcine and minocycline was observed. The bla OXA-23like and bla OXA-24 like were found among 77.9% and 19.2% of the isolates, respectively. All isolates were positive for bla OXA-51, but none produced any amplicon for bla OXA-58. PFGE genotype analysis suggested the existence of eight clones among the 104 strains [A (n = 35), B (n = 29), C (n = 19), D (n = 10), E (n = 4), F (n = 3), G (n = 3), H (n = 1)]. Clone A was the dominant clone in hospital settings particularly infection wards so that the isolates in this group, compared to the other clones, showed higher levels of resistance to antibiotics. Conclusion The bla OXA-51-like and bla OXA-23like were

  19. Paradoxical Effect of Polymyxin B: High Drug Exposure Amplifies Resistance in Acinetobacter baumannii.

    PubMed

    Tsuji, Brian T; Landersdorfer, Cornelia B; Lenhard, Justin R; Cheah, Soon-Ee; Thamlikitkul, Visanu; Rao, Gauri G; Holden, Patricia N; Forrest, Alan; Bulitta, Jürgen B; Nation, Roger L; Li, Jian

    2016-07-01

    Administering polymyxin antibiotics in a traditional fashion may be ineffective against Gram-negative ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Here, we explored increasing the dose intensity of polymyxin B against two strains of Acinetobacter baumannii in the hollow-fiber infection model. The following dosage regimens were simulated for polymyxin B (t1/2 = 8 h): non-loading dose (1.43 mg/kg of body weight every 12 h [q12h]), loading dose (2.22 mg/kg q12h for 1 dose and then 1.43 mg/kg q12h), front-loading dose (3.33 mg/kg q12h for 1 dose followed by 1.43 mg/kg q12h), burst (5.53 mg/kg for 1 dose), and supraburst (18.4 mg/kg for 1 dose). Against both A. baumannii isolates, a rapid initial decline in the total population was observed within the first 6 h of polymyxin exposure, whereby greater polymyxin B exposure resulted in greater maximal killing of -1.25, -1.43, -2.84, -2.84, and -3.40 log10 CFU/ml within the first 6 h. Unexpectedly, we observed a paradoxical effect whereby higher polymyxin B exposures dramatically increased resistant subpopulations that grew on agar containing up to 10 mg/liter of polymyxin B over 336 h. High drug exposure also proliferated polymyxin-dependent growth. A cost-benefit pharmacokinetic/pharmacodynamic relationship between 24-h killing and 336-h resistance was explored. The intersecting point, where the benefit of bacterial killing was equal to the cost of resistance, was an fAUC0-24 (area under the concentration-time curve from 0 to 24 h for the free, unbound fraction of drug) of 38.5 mg · h/liter for polymyxin B. Increasing the dose intensity of polymyxin B resulted in amplification of resistance, highlighting the need to utilize polymyxins as part of a combination against high-bacterial-density A. baumannii infections. PMID:27067330

  20. Investigation of the molecular epidemiology of Acinetobacter baumannii isolated from patients and environmental contamination.

    PubMed

    Ying, Chunmei; Li, Yongli; Wang, Yaping; Zheng, Bing; Yang, Chengde

    2015-09-01

    The objective of this work was to investigate correlations between Acinetobacter baumannii isolates from neurosurgical intensive care unit patients and its environment. This is a prospective, observational study. The minimal inhibitory concentrations of antimicrobial agents against 27 clinical and 28 environmental isolates were determined by the agar dilution method. Molecular genotyping was performed by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR), pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of carbapenemase and metallo-β-lactamase genes were analyzed by specific PCRs and DNA sequencing. From the clinical A. baumannii isolates, 25.9% were found resistant to minocycline, 51.9% to cefoperazone-sulbactam, 59.3% to imipenem and 70% resistant to other antimicrobial agents. Environmental isolates were more sensitive compared with clinical isolates (P<0.05). Twenty-seven clinical isolates comprised three ERIC-PCR genotypes, four major PFGE pulsotypes and five distinct MLST sequence types (STs) (ST208, ST368, ST191, ST195, ST540), all belonging to CC92 with only one locus (gpi) difference among them. Twenty-eight environmental isolates showed more diverse genetic types than clinical isolates and comprised six ERIC-PCR groups, nine PFGE groups and two main STs (ST208, ST229). Four clinical and 15 environmental isolates could not be identified by MLST and were assigned to non-clonal STs. We identified the presence of the blaOXA-23 carbapenemase encoding gene in most of the clinical (21/27) but fewer in the environmental isolates (3/28). The A. baumannii strains isolated from patients were genetically similar to the environmental strains, with CC92 members as the major fraction but with different antibiotic susceptibilities. PMID:25873322

  1. Synergistic effects of sulbactam in multi-drug-resistant Acinetobacter baumannii.

    PubMed

    Temocin, Fatih; Erdinc, Fatma Sebnem; Tulek, Necla; Demirelli, Meryem; Ertem, Gunay; Kinikli, Sami; Koksal, Eda

    2015-01-01

    Acinetobacter baumannii is a frequently isolated etiologic agent of nosocomial infections, especially in intensive care units. With the increase in multi-drug resistance of A. baumannii isolates, finding appropriate treatment alternatives for infections caused by these bacteria has become more difficult, and available alternate treatments include the use of older antibiotics such as colistin or a combination of antibiotics. The current study aimed to evaluate the in vitro efficacy of various antibiotic combinations against multi-drug resistant A. baumannii strains. Thirty multi-drug and carbapenem resistant A. baumannii strains isolated at the Ankara Training and Research Hospital between June 2011 and June 2012 were used in the study. Antibiotic susceptibility tests and species-level identification were performed using conventional methods and the VITEK 2 system. The effects of meropenem, ciprofloxacin, amikacin, tigecycline, and colistin alone and in combination with sulbactam against the isolates were studied using Etest (bioMérieux) in Mueller-Hinton agar medium. Fractional inhibitory concentration index (FIC) was used to determine the efficacy of the various combinations. While all combinations showed a predominant indifferent effect, a synergistic effect was also observed in 4 of the 5 combinations. Synergy was demonstrated in 43% of the isolates with the meropenem-sulbactam combination, in 27% of the isolates with tigecycline-sulbactam, and in 17% of the isolates with colistin-sulbactam and amikacin-sulbactam. No synergy was detected with the sulbactam-ciprofloxacin combination and antagonism was detected only in the sulbactam-colistin combination (6.66% of the isolates). Antibiotic combinations can be used as an alternative treatment approach in multi-drug resistant A. baumannii infections. PMID:26691470

  2. OmpA Binding Mediates the Effect of Antimicrobial Peptide LL-37 on Acinetobacter baumannii

    PubMed Central

    Lin, Ming-Feng; Tsai, Pei-Wen; Chen, Jeng-Yi; Lin, Yun-You; Lan, Chung-Yu

    2015-01-01

    Multidrug-resistant Acinetobacter baumannii has recently emerged as an important pathogen in nosocomial infection; thus, effective antimicrobial regimens are urgently needed. Human antimicrobial peptides (AMPs) exhibit multiple functions and antimicrobial activities against bacteria and fungi and are proposed to be potential adjuvant therapeutic agents. This study examined the effect of the human cathelicidin-derived AMP LL-37 on A. baumannii and revealed the underlying mode of action. We found that LL-37 killed A. baumannii efficiently and reduced cell motility and adhesion. The bacteria-killing effect of LL-37 on A. baumannii was more efficient compared to other AMPs, including human ß–defensin 3 (hBD3) and histatin 5 (Hst5). Both flow cytometric analysis and immunofluorescence staining showed that LL-37 bound to A. baumannii cells. Moreover, far-western analysis demonstrated that LL-37 could bind to the A. baumannii OmpA (AbOmpA) protein. An ELISA assay indicated that biotin-labelled LL-37 (BA-LL37) bound to the AbOmpA74-84 peptide in a dose-dependent manner. Using BA-LL37 as a probe, the ~38 kDa OmpA signal was detected in the wild type but the ompA deletion strain did not show the protein, thereby validating the interaction. Finally, we found that the ompA deletion mutant was more sensitive to LL-37 and decreased cell adhesion by 32% compared to the wild type. However, ompA deletion mutant showed a greatly reduced adhesion defect after LL-37 treatment compared to the wild strain. Taken together, this study provides evidence that LL-37 affects A. baumannii through OmpA binding. PMID:26484669

  3. Immunization against Multidrug-Resistant Acinetobacter baumannii Effectively Protects Mice in both Pneumonia and Sepsis Models

    PubMed Central

    Huang, Weiwei; Yao, Yufeng; Long, Qiong; Yang, Xu; Sun, Wenjia; Liu, Cunbao; Jin, Xiaomei; li, Yang; Chu, Xiaojie; Chen, Bin; Ma, Yanbing

    2014-01-01

    Objective Acinetobacter baumannii is considered the prototypical example of a multi- or pan- drug-resistant bacterium. It has been increasingly implicated as a major cause of nosocomial and community-associated infections. This study proposed to evaluate the efficacy of immunological approaches to prevent and treat A. baumannii infections. Methods Mice were immunized with outer membrane vesicles (OMVs) prepared from a clinically isolated multidrug-resistant strain of A. baumannii. Pneumonia and sepsis models were used to evaluate the efficacy of active and passive immunization with OMVs. The probable effective mechanisms and the protective potential of clonally distinct clinical isolates were investigated in vitro using an opsonophagocytic assay. Results Intramuscular immunization with OMVs rapidly produced high levels of OMV-specific IgG antibodies, and subsequent intranasal challenge with A. baumannii elicited mucosal IgA and IgG responses. Both active and passive immunization protected the mice from challenges with homologue bacteria in a sepsis model. Bacterial burden in bronchoalveolar lavage fluids (BALF), lung, and spleen, inflammatory cell infiltration in BALF and lung, and inflammatory cytokine accumulation in BALF was significantly suppressed in the pneumonia model by both active and passive immunization strategies. The antisera from immunized mice presented with significant opsonophagocytic activities in a dose-dependent manner against not only homologous strains but also five of the other six clonally distinct clinical isolates. Conclusions Utilizing immunological characteristics of outer membrane proteins to elevate protective immunity and circumvent complex multidrug-resistance mechanisms might be a viable approach to effectively control A. baumannii infections. PMID:24956279

  4. Deciphering the Function of the Outer Membrane Protein OprD Homologue of Acinetobacter baumannii

    PubMed Central

    Catel-Ferreira, Manuella; Nehmé, Rony; Molle, Virginie; Aranda, Jesús; Bouffartigues, Emeline; Chevalier, Sylvie; Bou, Germán; Jouenne, Thierry

    2012-01-01

    The increasing number of carbapenem-resistant Acinetobacter baumannii isolates is a major cause for concern which restricts therapeutic options to treat severe infections caused by this emerging pathogen. To identify the molecular mechanisms involved in carbapenem resistance, we studied the contribution of an outer membrane protein homologue of the Pseudomonas aeruginosa OprD porin. Suspected to be the preferred pathway of carbapenems in A. baumannii, the oprD homologue gene was inactivated in strain ATCC 17978. Comparison of wild-type and mutant strains did not confirm the expected increased resistance to any antibiotic tested. OprD homologue sequence analysis revealed that this protein actually belongs to an OprD subgroup but is closer to the P. aeruginosa OprQ protein, with which it could share some functions, e.g., allowing bacterial survival under low-iron or -magnesium growth conditions or under poor oxygenation. We thus overexpressed and purified a recombinant OprD homologue protein to further examine its functional properties. As a specific channel, this porin presented rather low single-channel conductance, i.e., 28 pS in 1 M KCl, and was partially closed by micro- and millimolar concentrations of Fe3+ and Mg2+, respectively, but not by imipenem and meropenem or basic amino acids. The A. baumannii OprD homologue is likely not involved in the carbapenem resistance mechanism, but as an OprQ-like protein, it could contribute to the adaptation of this bacterium to magnesium- and/or iron-depleted environments. PMID:22564848

  5. Clinical epidemiology and resistance mechanisms of carbapenem-resistant Acinetobacter baumannii, French Guiana, 2008-2014.

    PubMed

    Mahamat, Aba; Bertrand, Xavier; Moreau, Brigitte; Hommel, Didier; Couppie, Pierre; Simonnet, Christine; Kallel, Hatem; Demar, Magalie; Djossou, Felix; Nacher, Mathieu

    2016-07-01

    This study investigated the clinical epidemiology and resistance mechanisms of Acinetobacter baumannii and characterised the clonal diversity of carbapenem-resistant A. baumannii (CRAB) during an ICU-associated outbreak at Cayenne Hospital, French Guiana. All non-duplicate A. baumannii isolates from 2008 to 2014 were tested for antibiotic susceptibility by disk diffusion. Multilocus sequence typing, pulsed-field gel electrophoresis (PFGE) and characterisation of carbapenemase-encoding genes were performed on CRAB. Of the 441 A. baumannii isolates, most were from males (54.0%) and were detected mainly from the ICU (30.8%) and medicine wards (21.8%). In the ICU, strains were mainly isolated from the respiratory tract (44.1%) and bloodstream (14.0%), whereas in medicine wards they mainly were from wound/drainage (36.5%) and bloodstream (25.0%). A. baumannii showed the greatest susceptibility to piperacillin/tazobactam (92.7%), imipenem (92.5%), colistin (95.6%) and amikacin (97.2%), being lower in the ICU and medicine wards compared with other wards. An outbreak of OXA-23-producing CRAB occurred in the 13-bed ICU in 2010. CRAB strains were more co-resistant to other antimicrobials compared with non-CRAB. Molecular genetics analysis revealed five sequence types [ST78, ST107 and ST642 and two new STs (ST830 and ST831)]. Analysis of PFGE profiles indicated cross-transmissions of CRAB within the ICU, between the ICU and one medicine ward during transfer of patients, and within that medicine ward. This study provides the first clinical and molecular data of A. baumannii from French Guiana and the Amazon basin. The ICU was the highest risk unit of this nosocomial outbreak of OXA-23-producing CRAB, which could subsequently disseminate within the hospital. PMID:27236843

  6. Antimicrobial Resistance Determinants in Acinetobacter baumannii Isolates Taken from Military Treatment Facilities

    PubMed Central

    Leski, Tomasz A.; Stockelman, Michael G.; Craft, David W.; Zurawski, Daniel V.; Kirkup, Benjamin C.; Vora, Gary J.

    2014-01-01

    Multidrug-resistant (MDR) Acinetobacter baumannii infections are of particular concern within medical treatment facilities, yet the gene assemblages that give rise to this phenotype remain poorly characterized. In this study, we tested 97 clinical A. baumannii isolates collected from military treatment facilities (MTFs) from 2003 to 2009 by using a molecular epidemiological approach that enabled for the simultaneous screening of 236 antimicrobial resistance genes. Overall, 80% of the isolates were found to be MDR, each strain harbored between one and 17 resistant determinants, and a total of 52 unique resistance determinants or gene families were detected which are known to confer resistance to β-lactam (e.g., blaGES-11, blaTEM, blaOXA-58), aminoglycoside (e.g., aphA1, aacC1, armA), macrolide (msrA, msrB), tetracycline [e.g., tet(A), tet(B), tet(39)], phenicol (e.g., cmlA4, catA1, cat4), quaternary amine (qacE, qacEΔ1), streptothricin (sat2), sulfonamide (sul1, sul2), and diaminopyrimidine (dfrA1, dfrA7, dfrA19) antimicrobial compounds. Importantly, 91% of the isolates harbored blaOXA-51-like carbapenemase genes (including six new variants), 40% harbored the blaOXA-23 carbapenemase gene, and 89% contained a variety of aminoglycoside resistance determinants with up to six unique determinants identified per strain. Many of the resistance determinants were found in potentially mobile gene cassettes; 45% and 7% of the isolates contained class 1 and class 2 integrons, respectively. Combined, the results demonstrate a facile approach that supports a more complete understanding of the genetic underpinnings of antimicrobial resistance to better assess the load, transmission, and evolution of MDR in MTF-associated A. baumannii. PMID:24247131

  7. In Vivo Selection of Pan-Drug Resistant Acinetobacter baumannii during Antibiotic Treatment

    PubMed Central

    Kim, Yoonjung; Bae, Il Kwon; Yong, Dongeun; Lee, Kyungwon

    2015-01-01

    Purpose Colistin resistance in Acinetobacter baumannii (A. baumannii) is mediated by a complete loss of lipopolysaccharide production via mutations in lpxA, lpxC, and lpxD gene or lipid A modifications via mutations in the pmrA and pmrB genes. However, the exact mechanism of therapy-induced colistin resistance in A. baumannii is not well understood. Materials and Methods We investigated the genotypic and phenotypic changes that underlie pan-drug resistance mechanisms by determining differences between the alterations in extensively drug-resistant (XDR) A. baumannii (AB001 and AB002) isolates and a pan-drug resistant (PDR) counterpart (AB003) recovered from one patient before and after antibiotic treatment, respectively. Results All three clinical isolates shared an identical sequence type (ST138), belonging to the global epidemic clone, clonal complex 92, and all produced OXA-23 carbapenemase. The PDR AB003 showed two genetic differences, acquisition of armA gene and an amino acid substitution (Glu229Asp) in pmrB gene, relative to XDR isolates. No mutations were detected in the pmrA, pmrC, lpxA, lpxC, or lpxD genes in all three isolates. In matrix-assisted laser desorption ionization-time of flight analysis, the three isolates commonly showed two major peaks at 1728 m/z and 1912 m/z, but peaks at 2034 m/z, 2157 m/z, 2261 m/z, and 2384 m/z were detected only in the PDR A. baumannii AB003 isolate. Conclusion Our results show that changes in lipid A structure via a mutation in the pmrB gene and acquisition of armA gene might confer resistance to colistin and aminoglycosides to XDR A. baumannii strains, resulting in appearance of a PDR A. baumannii strain of ST138. PMID:26069113

  8. Contamination of Ambient Air with Acinetobacter baumannii on Consecutive Inpatient Days.

    PubMed

    Shimose, Luis A; Doi, Yohei; Bonomo, Robert A; De Pascale, Dennise; Viau, Roberto A; Cleary, Timothy; Namias, Nicholas; Kett, Daniel H; Munoz-Price, L Silvia

    2015-07-01

    Acinetobacter-positive patients had their ambient air tested for up to 10 consecutive days. The air was Acinetobacter positive for an average of 21% of the days; the rate of contamination was higher among patients colonized in the rectum than in the airways (relative risk [RR], 2.35; P = 0.006). Of the 6 air/clinical isolate pairs available, 4 pairs were closely related according to rep-PCR results. PMID:25926496

  9. Update on the Epidemiology, Treatment, and Outcomes of Carbapenem-resistant Acinetobacter infections

    PubMed Central

    Kim, Uh Jin; Kim, Hee Kyung; An, Joon Hwan; Cho, Soo Kyung; Park, Kyung-Hwa

    2014-01-01

    Carbapenem-resistant Acinetobacter species are increasingly recognized as major nosocomial pathogens, especially in patients with critical illnesses or in intensive care. The ability of these organisms to accumulate diverse mechanisms of resistance limits the available therapeutic agents, makes the infection difficult to treat, and is associated with a greater risk of death. In this review, we provide an update on the epidemiology, resistance mechanisms, infection control measures, treatment, and outcomes of carbapenem-resistant Acinetobacter infections. PMID:25229014

  10. Stress responses in the opportunistic pathogen Acinetobacter baumannii

    PubMed Central

    Fiester, Steven E; Actis, Luis A

    2013-01-01

    Acinetobacter baumannii causes a wide range of severe infections among compromised and injured patients worldwide. The relevance of these infections are, in part, due to the ability of this pathogen to sense and react to environmental and host stress signals, allowing it to persist and disseminate in medical settings and the human host. This review summarizes current knowledge on the roles that environmental and cellular stressors play in the ability of A. baumannii to resist nutrient deprivation, oxidative and nitrosative injury, and even the presence of the commonly used antiseptic ethanol, which could serve as a nutrient- and virulence-enhancing signal rather than just being a convenient disinfectant. Emerging experimental evidence supports the role of some of these responses in the pathogenesis of the infections A. baumannii causes in humans and its capacity to resist antibiotics and host response effectors. PMID:23464372

  11. Acinetobacter baumannii Infection and IL-17 Mediated Immunity

    PubMed Central

    Yan, Zihe; Yang, Junjun; Hu, Renjing; Hu, Xichi; Chen, Kong

    2016-01-01

    Acinetobacter baumannii is a significant cause of severe hospital-acquired infections with a recent rise in multidrug-resistant infections involving traumatic wounds of military personnel. The interleukin-17 (IL-17) pathway is essential for neutrophil recruitment in response to a variety of pathogens, while the control of A. baumannii infection is known to be dependent on neutrophils. This suggests that IL-17 may play an important role in A. baumannii infection; however, this has yet to be studied. Here, we summarize the recent advances in understanding the host-pathogen interaction of A. baumannii and propose a potential role of the IL-17 pathway in generating a protective immune response. PMID:26977122

  12. Genetic Determinants of Intrinsic Colistin Tolerance in Acinetobacter baumannii

    PubMed Central

    Hood, M. Indriati; Becker, Kyle W.; Roux, Christelle M.; Dunman, Paul M.

    2013-01-01

    Acinetobacter baumannii is a leading cause of multidrug-resistant infections worldwide. This organism poses a particular challenge due to its ability to acquire resistance to new antibiotics through adaptation or mutation. This study was undertaken to determine the mechanisms governing the adaptability of A. baumannii to the antibiotic colistin. Screening of a transposon mutant library identified over 30 genes involved in inducible colistin resistance in A. baumannii. One of the genes identified was lpsB, which encodes a glycosyltransferase involved in lipopolysaccharide (LPS) synthesis. We demonstrate that loss of LpsB function results in increased sensitivity to both colistin and cationic antimicrobial peptides of the innate immune system. Moreover, LpsB is critical for pathogenesis in a pulmonary model of infection. Taken together, these data define bacterial processes required for intrinsic colistin tolerance in A. baumannii and underscore the importance of outer membrane structure in both antibiotic resistance and the pathogenesis of A. baumannii. PMID:23230287

  13. Antimicrobial susceptibility of clinical isolates of Acinetobacter baumannii.

    PubMed

    Shi, Z Y; Liu, P Y; Lau, Y; Lin, Y; Hu, B S; Shir J-M

    1996-02-01

    The in-vitro activity of 18 antimicrobial agents alone or in combination against 248 clinical isolates of Acinetobacter baumannii from Taiwan were tested by agar dilution. The MIC90S of ampicillin, amoxicillin, piperacillin, cefuroxime, cefotaxime, ceftriaxone, gentamicin, and amikacin were at least 128 mu g/ml. Ceftazidime, cefepime, sulbactam, clavulanic acid, and tazobactam presented moderate activity with MIC90S of 32, 16, 16, 32, and 32 mu g/ml, respectively. The increased activity of ampicillin/sulbactam, amoxicillin/clavulanic acid, and piperacillin/tazobactam was due to the intrinsic effect of sulbactam, clavulanic acid, and tazobactam, respectively. Imipenem, meropenem, and ciprofloxacin were the most active antimicrobial agents with MIC90S of 1, 1, and 0.5 mu g/ml, respectively. Nineteen isolates (7.7%) were resistant to all aminoglycosides and beta-lactam antibiotics, except carbapenems and ciprofloxacin. We are concerned about the multidrug resistance of A. baumannii in this study. PMID:9147913

  14. A Case of Acinetobacter Septic Pulmonary Embolism in an Infant

    PubMed Central

    Ananthan, Anitha; David, Jane; Ghildiyal, Radha

    2016-01-01

    Case Characteristics. An 11-month-old girl presented with fever and breathlessness for 5 days. Patient had respiratory distress with bilateral coarse crepitations. Chest radiograph revealed diffuse infiltrations in the right lung with thick walled cavities in mid and lower zone. Computed tomography showed multiple cystic spaces and emboli. Blood culture grew Acinetobacter species. Intervention. Patient was treated with Meropenem and Vancomycin. Outcome. Complete clinical and radiological recovery was seen in child. Message. Blood cultures and CT of the chest are invaluable in the evaluation of a patient with suspected septic pulmonary embolism. With early diagnosis and appropriate antimicrobial therapy, complete recovery can be expected in patients with septic pulmonary embolism. PMID:27529040

  15. The Response of Acinetobacter baumannii to Zinc Starvation.

    PubMed

    Nairn, Brittany L; Lonergan, Zachery R; Wang, Jiefei; Braymer, Joseph J; Zhang, Yaofang; Calcutt, M Wade; Lisher, John P; Gilston, Benjamin A; Chazin, Walter J; de Crécy-Lagard, Valerie; Giedroc, David P; Skaar, Eric P

    2016-06-01

    Zinc (Zn) is an essential metal that vertebrates sequester from pathogens to protect against infection. Investigating the opportunistic pathogen Acinetobacter baumannii's response to Zn starvation, we identified a putative Zn metallochaperone, ZigA, which binds Zn and is required for bacterial growth under Zn-limiting conditions and for disseminated infection in mice. ZigA is encoded adjacent to the histidine (His) utilization (Hut) system. The His ammonia-lyase HutH binds Zn very tightly only in the presence of high His and makes Zn bioavailable through His catabolism. The released Zn enables A. baumannii to combat host-imposed Zn starvation. These results demonstrate that A. baumannii employs several mechanisms to ensure bioavailability of Zn during infection, with ZigA functioning predominately during Zn starvation, but HutH operating in both Zn-deplete and -replete conditions to mobilize a labile His-Zn pool. PMID:27281572

  16. Community-acquired Acinetobacter baumannii: clinical characteristics, epidemiology and pathogenesis.

    PubMed

    Dexter, Carina; Murray, Gerald L; Paulsen, Ian T; Peleg, Anton Y

    2015-05-01

    Community-acquired Acinetobacter baumannii (CA-Ab) is a rare but serious cause of community-acquired pneumonia in tropical regions of the world. CA-Ab infections predominantly affect individuals with risk factors, which include excess alcohol consumption, diabetes mellitus, smoking and chronic lung disease. CA-Ab pneumonia presents as a surprisingly fulminant course and is characterized by a rapid onset of fever, severe respiratory symptoms and multi-organ dysfunction, with a mortality rate reported as high as 64%. It is unclear whether the distinct clinical syndrome caused by CA-Ab is because of host predisposing factors or unique bacterial characteristics, or a combination of both. Deepening our understanding of the drivers of overwhelming CA-Ab infection will provide important insights into preventative and therapeutic strategies. PMID:25850806

  17. Contribution of Efflux Pumps, Porins, and β-Lactamases to Multidrug Resistance in Clinical Isolates of Acinetobacter baumannii

    PubMed Central

    Rumbo, C.; Gato, E.; López, M.; Ruiz de Alegría, C.; Fernández-Cuenca, F.; Martínez-Martínez, L.; Vila, J.; Pachón, J.; Cisneros, J. M.; Rodríguez-Baño, J.; Pascual, A.

    2013-01-01

    We investigated the mechanisms of resistance to carbapenems, aminoglycosides, glycylcyclines, tetracyclines, and quinolones in 90 multiresistant clinical strains of Acinetobacter baumannii isolated from two genetically unrelated A. baumannii clones: clone PFGE-ROC-1 (53 strains producing the OXA-58 β-lactamase enzyme and 18 strains with the OXA-24 β-lactamase) and clone PFGE-HUI-1 (19 strains susceptible to carbapenems). We used real-time reverse transcriptase PCR to correlate antimicrobial resistance (MICs) with expression of genes encoding chromosomal β-lactamases (AmpC and OXA-51), porins (OmpA, CarO, Omp33, Dcap-like, OprB, Omp25, OprC, OprD, and OmpW), and proteins integral to six efflux systems (AdeABC, AdeIJK, AdeFGH, CraA, AbeM, and AmvA). Overexpression of the AdeABC system (level of expression relative to that by A. baumannii ATCC 17978, 30- to 45-fold) was significantly associated with resistance to tigecycline, minocycline, and gentamicin and other biological functions. However, hyperexpression of the AdeIJK efflux pump (level of expression relative to that by A. baumannii ATCC 17978, 8- to 10-fold) was significantly associated only with resistance to tigecycline and minocycline (to which the TetB efflux system also contributed). TetB and TetA(39) efflux pumps were detected in clinical strains and were associated with resistance to tetracyclines and doxycycline. The absence of the AdeABC system and the lack of expression of other mechanisms suggest that tigecycline-resistant strains of the PFGE-HUI-1 clone may be associated with a novel resistance-nodulation-cell efflux pump (decreased MICs in the presence of the inhibitor Phe-Arg β-naphthylamide dihydrochloride) and the TetA(39) system. PMID:23939894

  18. In vitro Comparison of Anti-Biofilm Effects against Carbapenem-Resistant Acinetobacter baumannii: Imipenem, Colistin, Tigecycline, Rifampicin and Combinations

    PubMed Central

    2015-01-01

    Background Multi-drug resistant (MDR) Acinetobacter baumannii has emerged as one of the most important nosocomial pathogens. In addition to the diverse resistance mechanisms, some A. baumannii strains are known to have biofilm-producing capacity, thereby decreasing antibiotic effectiveness. Materials and Methods This study was designed to assess biofilm-producing capacity of three different MDR A. baumannii strains with diverse resistance mechanisms (OXA-51, IMP-1 and VIM-2 type β-lactamases), and intended to compare the effect of each antibiotic regimen (rifampicin, colistin, imipenem, tigecycline, rifampicin-imipenem and rifampicin-colistin) on mature A. baumannii biofilms using in vitro polystyrene plate biofilm assay. Results Among three MDR A. baumannii strains, only VIM-2 strain produced strong biofilm compared to the controls (optical density, 8.04 ± 2.16 vs. 0.49 ± 0.26). Regarding VIM-2 strains, none of imipenem, colistin and rifampicin reduced biofilm formation alone at MIC of each antibiotic agent (inhibition of biofilm synthesis, less than 30%). In comparison, tigecyclin (0.76 ± 0.23), imipenem-rifampicin (1.07 ± 0.31) and colistin-rifampicin (1.47 ± 0.54) showed a significant inhibition of biofilm synthesis compared to the positive controls at 48 hours after incubation (P<0.01). Tigecycline inhibited biofilm formation even at the one fourth level of MIC (1.17 ± 0.21). Likewise, both imipenem and colistin were also effective even with the reduced concentrations when those were combined with rifampicin. Such biofilm-inhibiting effects with those antibiotic regimens sustained up to 96 hours after incubation. Conclusion Tigecycline, imipenem-rifampicin and colistin-rifampicin would be effective for the prevention or reduction of biofilm formation caused by A. baumannii strains. PMID:25844260

  19. Contribution of efflux pumps, porins, and β-lactamases to multidrug resistance in clinical isolates of Acinetobacter baumannii.

    PubMed

    Rumbo, C; Gato, E; López, M; Ruiz de Alegría, C; Fernández-Cuenca, F; Martínez-Martínez, L; Vila, J; Pachón, J; Cisneros, J M; Rodríguez-Baño, J; Pascual, A; Bou, G; Tomás, M

    2013-11-01

    We investigated the mechanisms of resistance to carbapenems, aminoglycosides, glycylcyclines, tetracyclines, and quinolones in 90 multiresistant clinical strains of Acinetobacter baumannii isolated from two genetically unrelated A. baumannii clones: clone PFGE-ROC-1 (53 strains producing the OXA-58 β-lactamase enzyme and 18 strains with the OXA-24 β-lactamase) and clone PFGE-HUI-1 (19 strains susceptible to carbapenems). We used real-time reverse transcriptase PCR to correlate antimicrobial resistance (MICs) with expression of genes encoding chromosomal β-lactamases (AmpC and OXA-51), porins (OmpA, CarO, Omp33, Dcap-like, OprB, Omp25, OprC, OprD, and OmpW), and proteins integral to six efflux systems (AdeABC, AdeIJK, AdeFGH, CraA, AbeM, and AmvA). Overexpression of the AdeABC system (level of expression relative to that by A. baumannii ATCC 17978, 30- to 45-fold) was significantly associated with resistance to tigecycline, minocycline, and gentamicin and other biological functions. However, hyperexpression of the AdeIJK efflux pump (level of expression relative to that by A. baumannii ATCC 17978, 8- to 10-fold) was significantly associated only with resistance to tigecycline and minocycline (to which the TetB efflux system also contributed). TetB and TetA(39) efflux pumps were detected in clinical strains and were associated with resistance to tetracyclines and doxycycline. The absence of the AdeABC system and the lack of expression of other mechanisms suggest that tigecycline-resistant strains of the PFGE-HUI-1 clone may be associated with a novel resistance-nodulation-cell efflux pump (decreased MICs in the presence of the inhibitor Phe-Arg β-naphthylamide dihydrochloride) and the TetA(39) system. PMID:23939894

  20. Biodegradation of medium chain hydrocarbons by Acinetobacter venetianus 2AW immobilized to hair-based adsorbent mats.

    PubMed

    Luckarift, Heather R; Sizemore, Susan R; Farrington, Karen E; Fulmer, Preston A; Biffinger, Justin C; Nadeau, Lloyd J; Johnson, Glenn R

    2011-01-01

    The natural attenuation of hydrocarbons can be hindered by their rapid dispersion in the environment and limited contact with bacteria capable of oxidizing hydrocarbons. A functionalized composite material is described herein, that combines in situ immobilized alkane-degrading bacteria with an adsorbent material that collects hydrocarbon substrates, and facilitates biodegradation by the immobilized bacterial population. Acinetobacter venetianus 2AW was isolated for its ability to utilize hydrophobic n-alkanes (C10-C18) as the sole carbon and energy source. Growth of strain 2AW also resulted in the production of a biosurfactant that aided in the dispersion of complex mixtures of hydrophobic compounds. Effective immobilization of strain 2AW to the surface of Ottimat™ adsorbent hair mats via vapor phase deposition of silica provided a stable and reproducible biocatalyst population that facilitates in situ biodegradation of n-alkanes. Silica-immobilized strain 2AW demonstrated ca. 85% removal of 1% (v/v) tetradecane and hexadecane within 24 h, under continuous flow conditions. The methodology for immobilizing whole bacterial cells at the surface of an adsorbent, for in situ degradation of hydrocarbons, has practical application in the bioremediation of oil in water emulsions. Published 2011 American Institute of Chemical Engineers Biotechnol Prog., 2011. PMID:21948333

  1. Evaluation of Virulence Gene Expression Patterns in Acinetobacter baumannii Using Quantitative Real-Time Polymerase Chain Reaction Array.

    PubMed

    Lannan, Ford M; O'conor, Daniel K; Broderick, Joseph C; Tate, Jamison F; Scoggin, Jacob T; Moran, Nicholas A; Husson, Christopher M; Hegeman, Erik M; Ogrydziak, Cole E; Singh, Sneha A; Vafides, Andrew G; Brinkley, Carl C; Goodin, Jeremy L

    2016-09-01

    According to the Centers for Disease Control's recently devised National Strategy for Combating Antibiotic-Resistant Bacteria, Acinetobacter baumannii is a "serious" threat level pathogen. A. baumannii's notoriety stems from the fact that a large number of modern strains are multidrug resistant and persist in the hospital setting, thus causing numerous deaths per year. It is imperative that research focus on a more fundamental understanding of the factors responsible for the success of A. baumannii. Toward this end, our group investigated virulence gene expression patterns in a recently characterized wound isolate, AB5075, using quantitative real-time polymerase chain reaction array. Notably, several genes showed statistically significant upregulation at 37°C compared to 25°C; MviM, Wbbj, CarO, and certain genes of the Bas, Bar, and Csu operons. Additionally, we found that in vitro biofilm formation by Csu transposon insertion mutant strains is attenuated. These findings validate previous reports that suggest a link between the Csu operon and biofilm formation. More importantly, our results demonstrate a successful method for evaluating the significance of previously identified virulence factors in a modern and clinically relevant strain of A. baumannii, thereby providing a path toward a more fundamental understanding of the pathogenicity of A. baumannii. PMID:27612361

  2. Decolorization and biodegradation of the Congo red by Acinetobacter baumannii YNWH 226 and its polymer production's flocculation and dewatering potential.

    PubMed

    Li, Ruijing; Ning, Xun-an; Sun, Jian; Wang, Yujie; Liang, Jieying; Lin, Meiqing; Zhang, Yaping

    2015-10-01

    The strain Acinetobacter baumannii YNWH 226 was utilized to degrade Congo red (CR) under aerobic conditions. CR was employed as the sole carbon source to produce extracellular polymeric substances (EPS) used as potent bioflocculants in this strain. A total of 98.62% CR was removed during the 48-h decoloration experiments using CR (100 mg/L). A total of 83% bioadsorption and 65% biodegradation were responsible for the decoloration and degradation of CR through the strain. The bioflocculant showed high flocculation activity and dewaterability on textile dyeing sludge. A maximum flocculation of 78.62% with a minimum SBF of 3.07×10(9) s(2)/g and a CST of 58.4 s were achieved. We investigated the internal relationship between the decolorization efficiency of YNWH 226 and the flocculation activity and dewatering capacity of its EPS. The components and structure of the EPS highly influenced the decolorization efficiency of CR and the flocculation activity and dewatering capacity on sludge. PMID:26207869

  3. Identification of Ata, a Multifunctional Trimeric Autotransporter of Acinetobacter baumannii

    PubMed Central

    Bentancor, Leticia V.; Camacho-Peiro, Ana; Bozkurt-Guzel, Cagla; Pier, Gerald B.

    2012-01-01

    Acinetobacter baumannii has recently emerged as a highly troublesome nosocomial pathogen, especially in patients in intensive care units and in those undergoing mechanical ventilation. We have identified a surface protein adhesin of A. baumannii, designated the Acinetobacter trimeric autotransporter (Ata), that contains all of the typical features of trimeric autotransporters (TA), including a long signal peptide followed by an N-terminal, surface-exposed passenger domain and a C-terminal domain encoding 4 β-strands. To demonstrate that Ata encoded a TA, we created a fusion protein in which we replaced the entire passenger domain of Ata with the epitope tag V5, which can be tracked with specific monoclonal antibodies, and demonstrated that the C-terminal 101 amino acids of Ata were capable of exporting the heterologous V5 tag to the surface of A. baumannii in a trimeric form. We found that Ata played a role in biofilm formation and bound to various extracellular matrix/basal membrane (ECM/BM) components, including collagen types I, III, IV, and V and laminin. Moreover, Ata mediated the adhesion of whole A. baumannii cells to immobilized collagen type IV and played a role in the survival of A. baumannii in a lethal model of systemic infection in immunocompetent mice. Taken together, these results reveal that Ata is a TA of A. baumannii involved in virulence, including biofilm formation, binding to ECM/BM proteins, mediating the adhesion of A. baumannii cells to collagen type IV, and contributing to the survival of A. baumannii in a mouse model of lethal infection. PMID:22609912

  4. Epidemiological Monitoring of Nosocomial Infections Caused by Acinetobacter Baumannii

    PubMed Central

    Custovic, Amer; Smajlovic, Jasmina; Tihic, Nijaz; Hadzic, Sadeta; Ahmetagic, Sead; Hadzagic, Haris

    2014-01-01

    Introduction: Acinetobacter baumannii is a frequent cause of infections in hospitals around the world, which is very difficult to control and treat. It is particularly prevalent in intensive care wards. Aim: The main objective of the research was to establish the application of epidemiological monitoring of nosocomial infections (NIs) caused by A. baumannii in order to determine: the type and distribution of NIs, and to investigate antimicrobial drug resistance of A. baumannii. Material and Methods: 855 patients treated at the Clinic of Anesthesiology and Reanimation, University Clinical Center Tuzla during 2013 were followed prospectively for the development of NIs. Infections caused by A. baumannii were characterized by the anatomical site and antibiotics resistance profile. Results: NIs were registered in 105 patients (12.3%; 855/105). The predominant cause of infection was A. baumannii with an incidence of 51.4% (54/105), followed by ESBL-producing Klebsiella pneumoniae with 15.2% (16/105) of cases, methicillin-resistant Staphylococcus aureus with 8.6% (9/105), and ESBL-producing Proteus mirabilis with 7.6% (8/105). According to the anatomical site, and type of NIs caused by A. baumannii, the most frequent were respiratory infections (74.1%; 40/54). Infections of surgical sites were registered in 11.1% (6/54) of cases, while bloodstream infections in 9.2% (5/54). A. baumannii isolates tested resistant against most antibiotics examined, but showed a high degree of susceptibility to tobramycin (87%; 47/54) and colistin (100%; 54/54). Conclusion: The increasing incidence of multi- and extensively drug-resistant Acinetobacter spp. emphasizes the importance of administration of an adequate antibiotic strategy and the implementation of strict monitoring of the measures for controlling nosocomial infections. PMID:25648217

  5. RT-PCR and statistical analyses of adeABC expression in clinical isolates of Acinetobacter calcoaceticus-Acinetobacter baumannii complex.

    PubMed

    Ruzin, Alexey; Immermann, Frederick W; Bradford, Patricia A

    2010-06-01

    The relationship between expression of adeABC and minimal inhibitory concentration (MIC) of tigecycline was investigated by RT-PCR and statistical analyses in a population of 106 clinical isolates (MIC range, 0.0313-16 microg/ml) of Acinetobacter calcoaceticus-Acinetobacter baumannii complex. There was a statistically significant linear relationship (p < 0.0001) between log-transformed expression values and log-transformed MIC values, indicating that overexpression of AdeABC efflux pump is a prevalent mechanism for decreased susceptibility to tigecycline in A. calcoaceticus-A. baumannii complex. PMID:20438348

  6. Mutations Decreasing Intrinsic β-Lactam Resistance Are Linked to Cell Division in the Nosocomial Pathogen Acinetobacter baumannii.

    PubMed

    Knight, Daniel; Dimitrova, Daniela D; Rudin, Susan D; Bonomo, Robert A; Rather, Philip N

    2016-06-01

    Transposon mutagenesis was used to identify novel determinants of intrinsic β-lactam resistance in Acinetobacter baumannii An EZ-Tn5 transposon insertion in a gene corresponding to the A1S_0225 sequence resulted in a 4-fold decrease in resistance to ampicillin, cefotaxime, imipenem, and ceftriaxone but did not alter resistance to other classes of antibiotics. Based on this phenotype, the gene was designated blhA (β-lactam hypersusceptibility). The blhA::EZ-Tn5 mutation conferred a similar phenotype in A. baumannii strain ATCC 17978. The wild-type blhA gene complemented the blhA::EZTn5 insertion and restored β-lactam resistance levels back to wild-type levels. The blhA mutation also increased β-lactam susceptibility in an adeB adeJ double mutant, indicating that the blhA mutation acted independently of these efflux systems to mediate susceptibility. In addition, mRNA levels for the blaOXA and blaADC β-lactamase genes were not altered by the blhA mutation. The blhA mutation resulted in a prominent cell division and morphological defect, with cells exhibiting a highly elongated phenotype, combined with large bulges in some cells. The blhA gene is unique to Acinetobacter and likely represents a novel gene involved in cell division. Three additional mutations, in zipA, zapA, and ftsK, each of which encode predicted cell division proteins, also conferred increased β-lactam susceptibility, indicating a common link between cell division and intrinsic β-lactam resistance in A. baumannii. PMID:27067318

  7. The pmrCAB Operon Mediates Polymyxin Resistance in Acinetobacter baumannii ATCC 17978 and Clinical Isolates through Phosphoethanolamine Modification of Lipid A▿

    PubMed Central

    Arroyo, Luis A.; Herrera, Carmen M.; Fernandez, Lucia; Hankins, Jessica V.; Trent, M. Stephen; Hancock, Robert E. W.

    2011-01-01

    The emergence of multidrug resistance among Acinetobacter baumannii is leading to an increasing dependence on the use of polymyxins as last-hope antibiotics. Here, we utilized genetic and biochemical methods to define the involvement of the pmrCAB operon in polymyxin resistance in this organism. Sequence analysis of 16 polymyxin B-resistant strains, including 6 spontaneous mutants derived from strain ATCC 17978 and 10 clinical isolates from diverse sources, revealed that they had independent mutations in the pmrB gene, encoding a sensor kinase, or in the response regulator PmrA. Knockout of the pmrB gene in two mutants and two clinical isolates led to a decrease in the polymyxin B susceptibility of these strains, which could be restored with the cloned pmrAB genes from the mutants but not from the wild type. Reverse transcription-quantitative PCR (RT-qPCR) analysis also showed a correlation between the expression of pmrC and polymyxin B resistance. Characterization of lipid A species from the mutant strains, by thin-layer chromatography and mass spectrometry, indicated that the addition of phosphoethanolamine to lipid A correlated with resistance. This addition is performed in Salmonella enterica serovar Typhimurium by the product of the pmrC gene, which is a homolog of the pmrC gene from Acinetobacter. Knockout of this gene in the mutant R2 [pmrB(T235I)] reversed resistance as well as phosphoethanolamine modification of lipid A. These results demonstrate that specific alterations in the sequence of the pmrCAB operon are responsible for resistance to polymyxins in A. baumannii. PMID:21646482

  8. Identifying more epidemic clones during a hospital outbreak of multidrug-resistant Acinetobacter baumannii.

    PubMed

    Domenech de Cellès, Matthieu; Salomon, Jérôme; Marinier, Anne; Lawrence, Christine; Gaillard, Jean-Louis; Herrmann, Jean-Louis; Guillemot, Didier

    2012-01-01

    Infections caused by multidrug-resistant bacteria are a major concern in hospitals. Current infection-control practices legitimately focus on hygiene and appropriate use of antibiotics. However, little is known about the intrinsic abilities of some bacterial strains to cause outbreaks. They can be measured at a population level by the pathogen's transmission rate, i.e. the rate at which the pathogen is transmitted from colonized hosts to susceptible hosts, or its reproduction number, counting the number of secondary cases per infected/colonized host. We collected data covering a 20-month surveillance period for carriage of multidrug-resistant Acinetobacter baumannii (MDRAB) in a surgery ward. All isolates were subjected to molecular fingerprinting, and a cluster analysis of profiles was performed to identify clonal groups. We then applied stochastic transmission models to infer transmission rates of MDRAB and each MDRAB clone. Molecular fingerprinting indicated that 3 clonal complexes spread in the ward. A first model, not accounting for different clones, quantified the level of in-ward cross-transmission, with an estimated transmission rate of 0.03/day (95% credible interval [0.012-0.049]) and a single-admission reproduction number of 0.61 [0.30-1.02]. The second model, accounting for different clones, suggested an enhanced transmissibility of clone 3 (transmission rate 0.047/day [0.018-0.091], with a single-admission reproduction number of 0.81 [0.30-1.56]). Clones 1 and 2 had comparable transmission rates (respectively, 0.016 [0.001-0.045], 0.014 [0.001-0.045]). The method used is broadly applicable to other nosocomial pathogens, as long as surveillance data and genotyping information are available. Building on these results, more epidemic clones could be identified, and could lead to follow-up studies dissecting the functional basis for variation in transmissibility of MDRAB lineages. PMID:23029226

  9. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.

    PubMed

    Zhao, Zhenyong; Wong, Jonathan W C

    2009-03-01

    A thermophilic bacterial strain, Acinetobacter calcoaceticus BU03, with a biosurfactant-producing capability, was isolated from petroleum-contaminated soil with an improved procedure which employed the solubilization of polycyclic aromatic hydrocarbons (PAHs), i.e. naphthalene in agar plate, as a selection criterion. Crude biosurfactant was recovered from the culture of BU03 by extraction with n-hexane, and its properties were investigated. Biosurfactants from A. calcoaceticus BU03 constitute a thermo-stable mixture, composed of different agents with surface activities. At their critical micelle concentration (CMC) of 152.4 mg L(-1), the crude biosurfactants produced from A. calcoaceticus BU03 decreased the air-water surface tension to 38.4 mN m(-1). In thermophilic conditions, the emulsifying activity is 2.8 times that of Tween 80. The effects of the biosurfactants produced by A. calcoaceticus on the solubility and biodegradation of PAHs were investigated in batch systems. Biosurfactants produced by A. calcoaceticus BU03 at 25 times their CMC significantly increased the apparent aqueous solubility of phenanthrene (PHE), pyrene (PYR) and benzo(a)pyrene (B[a]P) to 54.3, 6.33 and 2.08 mg L(-1), respectively. In aqueous system, the biosurfactants at concentrations of 0.5 CMC and 1 CMC slightly enhanced the biodegradation of PHE by a consortium of PAH-degrading microrganisms. Results indicate that biosurfactants from A. calcoaceticus BU03 have potential to enhance the removal of PAHs from contaminated sites. PMID:19438062

  10. Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms.

    PubMed Central

    Nielsen, K M; van Weerelt, M D; Berg, T N; Bones, A M; Hagler, A N; van Elsas, J D

    1997-01-01

    A small microcosm, based on optimized in vitro transformation conditions, was used to study the ecological factors affecting the transformation of Acinetobacter calcoaceticus BD413 in soil. The transforming DNA used was A. calcoaceticus homologous chromosomal DNA with an inserted gene cassette containing a kanamycin resistance gene, nptII. The effects of soil type (silt loam or loamy sand), bacterial cell density, time of residence of A. calcoaceticus or of DNA in soil before transformation, transformation period, and nutrient input were investigated. There were clear inhibitory effects of the soil matrix on transformation and DNA availability. A. calcoaceticus cells reached stationary phase and lost the ability to be transformed shortly after introduction into sterile soil. The use of an initially small number of A. calcoaceticus cells and nutrients, resulting in bacterial growth, enhanced transformation frequencies within a limited period. The availability of introduced DNA for transformation of A. calcoaceticus cells disappeared within a few hours in soil. Differences in transformation frequencies between soils were found; A. calcoaceticus cells were transformed at a higher rate and for a longer period in a silt loam than in a loamy sand. Physical separation of DNA and A. calcoaceticus cells had a negative effect on transformation. Transformation was also detected in nonsterile soil microcosms, albeit only in the presence of added nutrients and at a reduced frequency. These results suggest that chromosomal DNA released into soil rapidly becomes unavailable for transformation of A. calcoaceticus. In addition, strain BD413 quickly loses the ability to receive, stabilize, and/or express exogenous DNA after introduction into soil. PMID:9143126

  11. Protective Effect of a Synbiotic against Multidrug-Resistant Acinetobacter baumannii in a Murine Infection Model.

    PubMed

    Asahara, Takashi; Takahashi, Akira; Yuki, Norikatsu; Kaji, Rumi; Takahashi, Takuya; Nomoto, Koji

    2016-05-01

    This study investigated the ability of the probiotic Bifidobacterium breve strain Yakult (BbY) to protect against infection, as well as the potentiation of BbY activity by the synbiotic combination of BbY and prebiotic galactooligosaccharides (GOS). The study employed a mouse model of lethal intestinal multidrug-resistant Acinetobacter baumannii (MDRAb) infection. The endogenous intestinal microbiota was disrupted by the administration of multiple antibiotics, causing the loss of endogenous Bifidobacterium Oral infection of these mice with MDRAb resulted in marked growth of this organism. Additional treatment of the infected mice with a sublethal dose of 5-fluorouracil (5-FU) induced systemic invasion by MDRAb and subsequent animal death. The continuous oral administration of BbY increased the survival rate and inhibited the intestinal growth and invasion by MDRAb in the infection model. Disruptions of the intestinal environment and barrier function in the infected mice were attenuated by BbY. Protection against the MDRAb infection was markedly potentiated by a synbiotic combination of BbY and GOS, although GOS by itself did not provide protection. Negative correlations were observed between intestinal MDRAb and BbY counts or acetic acid levels; positive correlations were observed between acetic acid levels and intestinal epithelium expression of tight-junction-related genes. These results demonstrated that the probiotic and synbiotic markedly potentiated protection against fatal intestinal infection caused by a multidrug-resistant bacterium. Probiotics and synbiotics are presumed to provide protection by compensation for the disrupted indigenous populations, thereby maintaining the intestinal environments and barrier functions otherwise targeted during opportunistic infection by MDRAb. PMID:26953197

  12. In vitro and in vivo antimicrobial activities of gallium nitrate against multidrug-resistant Acinetobacter baumannii.

    PubMed

    Antunes, Luísa C S; Imperi, Francesco; Minandri, Fabrizia; Visca, Paolo

    2012-11-01

    Multidrug-resistant Acinetobacter baumannii poses a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumannii chemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO(3))(3), the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58 A. baumannii strains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 μM and from 4 to 64 μM, respectively. Ga(NO(3))(3) delayed the entry of A. baumannii into the exponential phase and drastically reduced bacterial growth rates. Ga(NO(3))(3) activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO(3))(3) also protected Galleria mellonella larvae from lethal A. baumannii infection, with survival rates of ≥75%. At therapeutic concentrations for humans (28 μM plasma levels), Ga(NO(3))(3) inhibited the growth in human serum of 76% of the multidrug-resistant A. baumannii isolates tested by ≥90%, raising expectations on the therapeutic potential of gallium for the treatment of A. baumannii bloodstream infections. Ga(NO(3))(3) also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistant A. baumannii. PMID:22964249

  13. Ultraviolet C light for Acinetobacter baumannii wound infections in mice: Potential use for battlefield wound decontamination?

    PubMed Central

    Dai, Tianhong; Murray, Clinton K.; Vrahas, Mark S.; Baer, David G.; Tegos, George P.; Hamblin, Michael R.

    2012-01-01

    BACKGROUND Since the beginning of the conflicts in the Middle East, US Army physicians have noted a high rate of multidrug-resistant Acinetobacter baumannii infections among US soldiers wounded and initially treated in Iraq. In this study, we investigated the use of ultraviolet C (UVC) light for prevention of multidrug-resistant A. baumannii wound infections using mouse models. METHODS Partial-thickness skin abrasions and full-thickness burns in mice were infected with a multidrug-resistant A. baumannii isolate recovered from a wounded US soldier deployed to Iraq. The luxCDABE operon, which was contained in plasmid pMF 385, was cloned into the A. baumannii strain. This allowed real-time monitoring of the extent of infection in mice using bioluminescence imaging. UVC light was delivered to the mouse wounds at 30 minutes after the inoculation of A. baumannii. Groups of infected mouse wounds without being exposed to UVC served as the controls. RESULTS In vitro studies demonstrated that A. baumannii cells were inactivated at UVC exposures much lower than those needed for a similar effect on mammalian cells. It was observed in animal studies that UVC (3.24 J/cm2 for abrasions and 2.59 J/cm2 for burns) significantly reduced the bacterial burdens in UVC-treated wounds by approximately 10-fold compared with nontreated controls (p = 0.004 for abrasions, p = 0.019 for burns). DNA lesions were observed by immunofluorescence in mouse skin abrasions immediately after a UVC exposure of 3.24 J/cm2; however, the lesions were extensively repaired within 72 hours. CONCLUSION These results suggested that UVC may be useful in preventing combat-related wound infections. PMID:22929495

  14. Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii.

    PubMed

    Qi, Lihua; Li, Hao; Zhang, Chuanfu; Liang, Beibei; Li, Jie; Wang, Ligui; Du, Xinying; Liu, Xuelin; Qiu, Shaofu; Song, Hongbin

    2016-01-01

    In this study, we aimed to examine the relationships between antibiotic resistance, biofilm formation, and biofilm-specific resistance in clinical isolates of Acinetobacter baumannii. The tested 272 isolates were collected from several hospitals in China during 2010-2013. Biofilm-forming capacities were evaluated using the crystal violet staining method. Antibiotic resistance/susceptibility profiles to 21 antibiotics were assessed using VITEK 2 system, broth microdilution method or the Kirby-Bauer disc diffusion method. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) to cefotaxime, imipenem, and ciprofloxacin were evaluated using micro dilution assays. Genetic relatedness of the isolates was also analyzed by pulsed-field gel electrophoresis (PFGE) and plasmid profile. Among all the 272 isolates, 31 were multidrug-resistant (MDR), and 166 were extensively drug-resistant (XDR). PFGE typing revealed 167 pattern types and 103 clusters with a similarity of 80%. MDR and XDR isolates built up the main prevalent genotypes. Most of the non-MDR isolates were distributed in a scattered pattern. Additionally, 249 isolates exhibited biofilm formation, among which 63 were stronger biofilm formers than type strain ATCC19606. Population that exhibited more robust biofilm formation likely contained larger proportion of non-MDR isolates. Isolates with higher level of resistance tended to form weaker biofilms. The MBECs for cefotaxime, imipenem, and ciprofloxacin showed a positive correlation with corresponding MICs, while the enhancement in resistance occurred independent of the quantity of biofilm biomass produced. Results from this study imply that biofilm acts as a mechanism for bacteria to get a better survival, especially in isolates with resistance level not high enough. Moreover, even though biofilms formed by isolates with high level of resistance are always weak, they could still provide similar level of protection for the

  15. Photodynamic Inactivation of Acinetobacter baumannii Using Phenothiazinium Dyes: In Vitro and In Vivo Studies

    PubMed Central

    Ragàs, Xavier; Dai, Tianhong; Tegos, George P.; Agut, Montserrat; Nonell, Santi; Hamblin, Michael R.

    2010-01-01

    Background and Objective Phenothiazinium dyes have been reported to be effective photosensitizers inactivating a wide range of microorganisms in vitro after illumination with red light. However, their application in vivo has not extensively been explored. This study evaluates the bactericidal activity of phenothiazinium dyes against multidrug-resistant Acinetobacter baumannii both in vitro and in vivo. Study Design/Materials and Methods We report the investigation of toluidine blue O, methylene blue, 1,9-dimethylmethylene blue, and new methylene blue for photodynamic inactivation of multidrug-resistant A. baumannii in vitro. The most effective dye was selected to carry out in vivo studies using third-degree mouse burns infected with a bioluminescent A. baumannii strain, upon irradiation with a 652 nm noncoherent light source. The mice were imaged daily for 2 weeks to observe differences in the bioluminescence–time curve between the photodynamic therapy (PDT)-treated mice in comparison with untreated burns. Results All the dyes were effective in vitro against A. baumannii after 30 J/cm2 irradiation of 635 or 652 nm red light had been delivered, with more effective killing when the dye remained in solution. New methylene blue was the most effective of the four dyes, achieving a 3.2-log reduction of the bacterial luminescence during PDT in vivo after 360 J/cm2 and an 800 μM dye dose. Moreover, a statistically significant reduction of the area under the bioluminescence–time curve of PDT-treated mice was observed showing that the infection did not recur after PDT. Conclusions Phenothiazinium dyes, and especially new methylene blue, are potential photosensitizers for PDT to treat burns infected with multidrug-resistant A. baumannii in vivo. PMID:20583252

  16. Simple Method for Markerless Gene Deletion in Multidrug-Resistant Acinetobacter baumannii.

    PubMed

    Oh, Man Hwan; Lee, Je Chul; Kim, Jungmin; Choi, Chul Hee; Han, Kyudong

    2015-05-15

    The traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistant Acinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection of A. baumannii merodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion in A. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition by A. baumannii ATCC 19606 and to ompA gene deletion in other A. baumannii strains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistant A. baumannii. PMID:25746991

  17. Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii

    PubMed Central

    Qi, Lihua; Li, Hao; Zhang, Chuanfu; Liang, Beibei; Li, Jie; Wang, Ligui; Du, Xinying; Liu, Xuelin; Qiu, Shaofu; Song, Hongbin

    2016-01-01

    In this study, we aimed to examine the relationships between antibiotic resistance, biofilm formation, and biofilm-specific resistance in clinical isolates of Acinetobacter baumannii. The tested 272 isolates were collected from several hospitals in China during 2010–2013. Biofilm-forming capacities were evaluated using the crystal violet staining method. Antibiotic resistance/susceptibility profiles to 21 antibiotics were assessed using VITEK 2 system, broth microdilution method or the Kirby-Bauer disc diffusion method. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) to cefotaxime, imipenem, and ciprofloxacin were evaluated using micro dilution assays. Genetic relatedness of the isolates was also analyzed by pulsed-field gel electrophoresis (PFGE) and plasmid profile. Among all the 272 isolates, 31 were multidrug-resistant (MDR), and 166 were extensively drug-resistant (XDR). PFGE typing revealed 167 pattern types and 103 clusters with a similarity of 80%. MDR and XDR isolates built up the main prevalent genotypes. Most of the non-MDR isolates were distributed in a scattered pattern. Additionally, 249 isolates exhibited biofilm formation, among which 63 were stronger biofilm formers than type strain ATCC19606. Population that exhibited more robust biofilm formation likely contained larger proportion of non-MDR isolates. Isolates with higher level of resistance tended to form weaker biofilms. The MBECs for cefotaxime, imipenem, and ciprofloxacin showed a positive correlation with corresponding MICs, while the enhancement in resistance occurred independent of the quantity of biofilm biomass produced. Results from this study imply that biofilm acts as a mechanism for bacteria to get a better survival, especially in isolates with resistance level not high enough. Moreover, even though biofilms formed by isolates with high level of resistance are always weak, they could still provide similar level of protection for the

  18. Impact of a Cross-Kingdom Signaling Molecule of Candida albicans on Acinetobacter baumannii Physiology

    PubMed Central

    Kostoulias, Xenia; Murray, Gerald L.; Cerqueira, Gustavo M.; Kong, Jason B.; Bantun, Farkad; Mylonakis, Eleftherios; Khoo, Chen Ai

    2015-01-01

    Multidrug-resistant (MDR) Acinetobacter baumannii is an opportunistic human pathogen that has become highly problematic in the clinical environment. Novel therapies are desperately required. To assist in identifying new therapeutic targets, the antagonistic interactions between A. baumannii and the most common human fungal pathogen, Candida albicans, were studied. We have observed that the C. albicans quorum-sensing molecule, farnesol, has cross-kingdom interactions, affecting the viability of A. baumannii. To gain an understanding of its mechanism, the transcriptional profile of A. baumannii exposed to farnesol was examined. Farnesol caused dysregulation of a large number of genes involved in cell membrane biogenesis, multidrug efflux pumps (AcrAB-like and AdeIJK-like), and A. baumannii virulence traits such as biofilm formation (csuA, csuB, and ompA) and motility (pilZ and pilH). We also observed a strong induction in genes involved in cell division (minD, minE, ftsK, ftsB, and ftsL). These transcriptional data were supported by functional assays showing that farnesol disrupts A. baumannii cell membrane integrity, alters cell morphology, and impairs virulence characteristics such as biofilm formation and twitching motility. Moreover, we showed that A. baumannii uses efflux pumps as a defense mechanism against this eukaryotic signaling molecule. Owing to its effects on membrane integrity, farnesol was tested to see if it potentiated the activity of the membrane-acting polymyxin antibiotic colistin. When coadministered, farnesol increased sensitivity to colistin for otherwise resistant strains. These data provide mechanistic understanding of the antagonistic interactions between diverse pathogens and may provide important insights into novel therapeutic strategies. PMID:26482299

  19. Gene cloning and characterization of a cold-adapted esterase from Acinetobacter venetianus V28.

    PubMed

    Kim, Young-Ok; Heo, Yu Li; Kim, Hyung-Kwoun; Nam, Bo-Hye; Kong, Hee Jeong; Kim, Dong-Gyun; Kim, Woo-Jin; Kim, Bong-Seok; Jee, Young-Ju; Lee, Sang-Jun

    2012-09-01

    Acinetobacter venetians V28 was isolated from the intestine of righteye flounder, Poecilopsetta plinthus caught in Vietnam seawater, and the esterase gene was cloned using a shotgun method. The amino acid sequence deduced from the nucleotide sequence (1,017 bp) corresponded to a protein of 338 amino acid residues with a molecular weight of 37,186. The esterase had 87% and 72% identities with the lipases of A. junii SH205 and A. calcoaceticus RUH2202, respectively. The esterase contained a putative leader sequence, as well as the conserved catalytic triad (Ser, His, Asp), consensus pentapeptide GXSXG, and oxyanion hole sequence (HG). The protein from the strain V28 was produced in both a soluble and an insoluble form when the Escherichia coli cells harboring the gene were cultured at 18 degrees C. The maximal activity of the purified enzyme was observed at a temperature of 40 degrees C and pH 9.0 using p-NP-caprylate as substrate; however, relative activity still reached to 70% even at 5 degrees C with an activation energy of 3.36 kcal/mol, which indicated that it was a cold-adapted enzyme. The enzyme was a nonmetalloprotein and was active against p-nitrophenyl esters of C4, C8, and C14. Remarkably, this enzyme retained much of its activity in the presence of commercial detergents and organic solvents. This cold-adapted esterase will be applicable as catalysts for reaction in the presence of organic solvents and detergents. PMID:22814499

  20. Simple Method for Markerless Gene Deletion in Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Oh, Man Hwan; Lee, Je Chul; Kim, Jungmin

    2015-01-01

    The traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistant Acinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection of A. baumannii merodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion in A. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition by A. baumannii ATCC 19606 and to ompA gene deletion in other A. baumannii strains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistant A. baumannii. PMID:25746991

  1. Nature, nomenclature and taxonomy of obligate methanol utilizing strains.

    PubMed

    Cercel, M

    1999-01-01

    In a screening program, a number of different bacterial strains with the ability to utilize methanol as a sole carbon and energy source were isolated and described. They are well known methanol utilizing genera Pseudomonas, Klebsiella, Micrococcus, Methylomonas or, on the contrary, the new, unknown genera and species of methylotrophic bacteria. In the last category, Acinetobacter and Alcaligenes are the new reported genera of organisms able to use methanol as a sole carbon and energy source. The present paper reports the very complex physiological and biochemical modifications when very versatile bacteria such as Pseudomonas aeruginosa and Acinetobacter calcoaceticus are cultured on methanol and when the obligate methylotrophic state is compared with the facultative methylotrophic state of the same bacterial strain. Based on experiments and comparisons with literature data, it seems that Methylomonas methanica is the obligate methylotrophic state of Pseudomonas aeruginosa and that Acinetobacter calcoaceticus is the facultative methylotrophic state of Methylococcus capsulatus, an obligate methylotroph. The relationship of the obligate to the facultative and of the facultative to the obligate methylotrophy were established. These new methylotrophic genera and species, the profound physiological and biochemical modifications as well as the new data concerning nature, nomenclature and taxonomy of methanol utilizing bateria were reported for the first time in 1983. PMID:11845445

  2. Colistin and Fusidic Acid, a Novel Potent Synergistic Combination for Treatment of Multidrug-Resistant Acinetobacter baumannii Infections

    PubMed Central

    Betts, Jonathan W.; Bharathan, Binutha

    2015-01-01

    The spread of multidrug-resistant Acinetobacter baumannii (MDRAB) has led to the renaissance of colistin (COL), often the only agent to which MDRAB remains susceptible. Effective therapy with COL is beset with problems due to unpredictable pharmacokinetics, toxicity, and the rapid selection of resistance. Here, we describe a potent synergistic interaction when COL was combined with fusidic acid (FD) against A. baumannii. Synergy in vitro was assessed against 11 MDRAB isolates using disc diffusion, checkerboard methodology (fractional inhibitory concentration index [FICI] of ≤ 0.5, susceptibility breakpoint index [SBPI] of >2), and time-kill methodology (≥2 log10 CFU/ml reduction). The ability of FD to limit the emergence of COL resistance was assessed in the presence and absence of each drug alone and in combination. Synergy was demonstrated against all strains, with an average FICI and SBPI of 0.064 and 78.85, respectively. In time-kill assays, COL-FD was synergistic and rapidly bactericidal, including against COL-resistant strains. Fusidic acid prevented the emergence of COL resistance, which was readily selected with COL alone. This is the first description of a novel COL-FD regimen for the treatment of MDRAB. The combination was effective at low concentrations, which should be therapeutically achievable while limiting toxicity. Further studies are warranted to determine the mechanism underlying the interaction and the suitability of COL-FD as an unorthodox therapy for the treatment of multidrug-resistant Gram-negative infections. PMID:25987639

  3. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter Baumannii Complex Isolates from Patients that were Injured During the Eastern Ukrainian Conflict.

    PubMed

    Granzer, Heike; Hagen, Ralf Matthias; Warnke, Philipp; Bock, Wolfgang; Baumann, Tobias; Schwarz, Norbert Georg; Podbielski, Andreas; Frickmann, Hagen; Koeller, Thomas

    2016-06-24

    This study addressed carbapenem-resistant Acinetobacter baumannii complex (ABC) isolates from patients that were injured during the military conflict in the Eastern Ukraine and treated at German Armed Forces Hospitals in 2014 and 2015. Clonal diversity of the strains and potential ways of transmission were analyzed. Patients with one or several isolation events of carbapenem-resistant ABC were included. Isolates were characterized by VITEK II-based identification and resistance testing, molecular screening for frequent carbapenemase genes, and DiversiLab rep-PCR-based typing. Available clinical information of the patients was assessed. From 21 young male Ukrainian patients with battle injuries, 32 carbapenem- and fluoroquinolone-resistant ABC strains were isolated. Four major clonal clusters were detected. From four patients (19%), ABC isolates from more than one clonal cluster were isolated. The composition of the clusters suggested transmission events prior to the admission to the German hospitals. The infection and colonization pressure in the conflict regions of the Eastern Ukraine with ABC of low clonal diversity is considerable. Respective infection risks have to be considered in case of battle-related injuries in these regions. The low number of local clones makes any molecular exclusion of transmission events difficult. PMID:27429793

  4. Colistin and Fusidic Acid, a Novel Potent Synergistic Combination for Treatment of Multidrug-Resistant Acinetobacter baumannii Infections.

    PubMed

    Phee, Lynette M; Betts, Jonathan W; Bharathan, Binutha; Wareham, David W

    2015-08-01

    The spread of multidrug-resistant Acinetobacter baumannii (MDRAB) has led to the renaissance of colistin (COL), often the only agent to which MDRAB remains susceptible. Effective therapy with COL is beset with problems due to unpredictable pharmacokinetics, toxicity, and the rapid selection of resistance. Here, we describe a potent synergistic interaction when COL was combined with fusidic acid (FD) against A. baumannii. Synergy in vitro was assessed against 11 MDRAB isolates using disc diffusion, checkerboard methodology (fractional inhibitory concentration index [FICI] of ≤ 0.5, susceptibility breakpoint index [SBPI] of >2), and time-kill methodology (≥2 log10 CFU/ml reduction). The ability of FD to limit the emergence of COL resistance was assessed in the presence and absence of each drug alone and in combination. Synergy was demonstrated against all strains, with an average FICI and SBPI of 0.064 and 78.85, respectively. In time-kill assays, COL-FD was synergistic and rapidly bactericidal, including against COL-resistant strains. Fusidic acid prevented the emergence of COL resistance, which was readily selected with COL alone. This is the first description of a novel COL-FD regimen for the treatment of MDRAB. The combination was effective at low concentrations, which should be therapeutically achievable while limiting toxicity. Further studies are warranted to determine the mechanism underlying the interaction and the suitability of COL-FD as an unorthodox therapy for the treatment of multidrug-resistant Gram-negative infections. PMID:25987639

  5. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter Baumannii Complex Isolates from Patients that were Injured During the Eastern Ukrainian Conflict

    PubMed Central

    Granzer, Heike; Hagen, Ralf Matthias; Warnke, Philipp; Bock, Wolfgang; Baumann, Tobias; Schwarz, Norbert Georg; Podbielski, Andreas; Frickmann, Hagen; Koeller, Thomas

    2016-01-01

    This study addressed carbapenem-resistant Acinetobacter baumannii complex (ABC) isolates from patients that were injured during the military conflict in the Eastern Ukraine and treated at German Armed Forces Hospitals in 2014 and 2015. Clonal diversity of the strains and potential ways of transmission were analyzed. Patients with one or several isolation events of carbapenem-resistant ABC were included. Isolates were characterized by VITEK II-based identification and resistance testing, molecular screening for frequent carbapenemase genes, and DiversiLab rep-PCR-based typing. Available clinical information of the patients was assessed. From 21 young male Ukrainian patients with battle injuries, 32 carbapenem- and fluoroquinolone-resistant ABC strains were isolated. Four major clonal clusters were detected. From four patients (19%), ABC isolates from more than one clonal cluster were isolated. The composition of the clusters suggested transmission events prior to the admission to the German hospitals. The infection and colonization pressure in the conflict regions of the Eastern Ukraine with ABC of low clonal diversity is considerable. Respective infection risks have to be considered in case of battle-related injuries in these regions. The low number of local clones makes any molecular exclusion of transmission events difficult. PMID:27429793

  6. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2.

    PubMed

    Yao, Shuo; Ni, Jinren; Ma, Tao; Li, Can

    2013-07-01

    A psychrotrophic heterotrophic nitrifying-aerobic denitrifying bacterium was newly isolated and identified as Acinetobacter sp. with phenotypic and phylogenetic analysis. The strain possessed excellent tolerance to low temperature with 20°C as its optimum and 4°C as viable. Moreover, ammonium, nitrite and nitrate could be removed efficiently under low-temperature, solely aerobic conditions with little accumulation of intermediates. The average removal rate at 10°C reached as high as 3.03, 2.51 and 1.88 mg NL(-1)h(-1) for ammonium, nitrite and nitrate respectively. N2 was produced through heterotrophic nitrification and aerobic denitrification via nitrite but N2O was never detected in the whole process. Nitrogen balance analysis indicated that N2 and intracellular nitrogen were two major fates of the initial ammonium, accounting for 32.4 and 49.2%, respectively. Further aerated batch test demonstrated efficient removal of COD and TN from synthetic wastewater, which implied promising practical application of the present strain. PMID:23644073

  7. Mucosal immunization with purified OmpA elicited protective immunity against infections caused by multidrug-resistant Acinetobacter baumannii.

    PubMed

    Zhang, Xiaojiao; Yang, Tianxiang; Cao, Ju; Sun, Jide; Dai, Wei; Zhang, Liping

    2016-07-01

    Multidrug-resistant Acinetobacter baumannii (A. baumannii) is a rapidly emerging pathogen causing infections with high mortality rates due to inadequate medical treatment. New ways to prevent and treat such infections are of a critical medical need. In this study, intranasal vaccination with A. baumannii outer membrane protein A (OmpA) induced both systemic and mucosal antibodies. After challenge intraperitoneally by clinical strains of multidrug-resistant A. baumannii, mice immunized with OmpA had a significantly higher survival rate than control mice. The OmpA protein level tested positive by western blot in clinical strains of A. baumannii. Furthermore, characterization of human sera for anti-OmpA immunoglobulin G (IgG) antibody levels demonstrated that OmpA protein was immunogenic in healthy individuals and patients with A. baumannii invasive infections. In conclusion, to the best of our knowledge, this is the first study protective efficacy of mucosal immunization with OmpA as a protein antigen against multidrug-resistant A. Baumannii. PMID:27133268

  8. CarbAcineto NP Test for Rapid Detection of Carbapenemase-Producing Acinetobacter spp.

    PubMed Central

    Dortet, Laurent; Poirel, Laurent; Errera, Caroline

    2014-01-01

    Multidrug-resistant Acinetobacter baumannii isolates, particularly those that produce carbapenemases, are increasingly reported worldwide. The biochemically based Carba NP test, extensively validated for the detection of carbapenemase producers among Enterobacteriaceae and Pseudomonas spp., has been modified to detect carbapenemase production in Acinetobacter spp. A collection of 151 carbapenemase-producing and 69 non-carbapenemase-producing Acinetobacter spp. were tested using the Carba NP test and a modified Carba NP protocol (the CarbAcineto NP test) in this study. The CarbAcineto NP test requires modified lysis conditions and an increased bacterial inoculum compared to those of the original Carba NP test. The Carba NP test detects metallo-β-lactamase producers but failed to detect the production of other carbapenemase types among Acinetobacter spp. In contrast, the newly designed CarbAcineto NP test, which is rapid and reproducible, detects all types of carbapenemases with a sensitivity of 94.7% and a specificity of 100%. This cost-effective technique offers a reliable and affordable technique for identifying carbapenemase production in Acinetobacter spp., which is a marker of multidrug resistance in those species. Its use will facilitate the recognition of these carbapenemases and prevent their spread. PMID:24759709

  9. Place of Colistin-Rifampicin Association in the Treatment of Multidrug-Resistant Acinetobacter Baumannii Meningitis: A Case Study

    PubMed Central

    Souhail, Dahraoui; Bouchra, Belefquih; Belarj, Badia; Laila, Rar; Mohammed, Frikh; Nassirou, Oumarou Mamane; Azeddine, Ibrahimi; Haimeur, Charki; Lemnouer, Abdelhay; Elouennass, Mostafa

    2016-01-01

    Treatment of Acinetobacter baumannii meningitis is an important challenge due to the accumulation of resistance of this bacteria and low meningeal diffusion of several antimicrobial requiring use of an antimicrobial effective combination to eradicate these species. We report a case of Acinetobacter baumannii multidrug-resistant nosocomial meningitis which was successfully treated with intravenous and intrathecal colistin associated with rifampicin. PMID:27064923

  10. Effects of Saline, an Ambient Acidic Environment, and Sodium Salicylate on OXA-Mediated Carbapenem Resistance in Acinetobacter baumannii.

    PubMed

    Zander, Esther; Seifert, Harald; Higgins, Paul G

    2016-06-01

    Different physiological conditions, such as NaCl, low pH, and sodium salicylate, have been shown to affect antibiotic resistance determinants in Acinetobacter baumannii isolates. Therefore, the aim of this study was to investigate the effects of NaCl, sodium salicylate, and low pH on the susceptibility of A. baumannii to carbapenem. We cloned genes encoding oxacillinases (OXA) of different subclasses, with their associated promoters, from carbapenem-resistant A. baumannii isolates into the same vector and transferred them to the A. baumannii reference strains ATCC 19606 and ATCC 17978. Carbapenem MICs were determined at least in triplicate by agar dilution under standard conditions, as well as in the presence of 200 mM NaCl or 16 mM sodium salicylate, or at pH 5.8. OXA-58-like gene expression was determined by reverse transcription-quantitative PCR (qRT-PCR). Under some experimental conditions, significant MIC reductions were shown for some transformants but not for others. Only in one instance were all transformants harboring the same OXA affected by the same condition: at pH 5.8, the imipenem and meropenem MICs for strains expressing OXA-58-like enzymes decreased from a resistant level (32 to 64 mg/liter) to an intermediate-susceptible level (8 mg/liter). However, blaOXA-58-like gene expression remained the same. MICs for both wild-type reference strains were not affected by the conditions tested. Our results indicate that the effects of the experimental conditions tested on OXA in vivo are mostly strain dependent. MICs were not reduced to wild-type levels, suggesting that the conditions tested do not lead to complete OXA inhibition in the bacterial cell. PMID:27001819

  11. Carbapenem-resistant Acinetobacter baumannii from Brazil: role of carO alleles expression and blaOXA-23 gene

    PubMed Central

    2013-01-01

    Background Carbapenems are the antibiotics of choice to treat infections caused by Acinetobacter baumannii, and resistance to this class can be determined by loss of membrane permeability and enzymatic mechanisms. Here, we analyzed the basis of carbapenem resistance in clinical A. baumannii isolates from different Brazilian regions. Results The analyses addressed the carbapenemase activity of OXA-23, CarO expression and alterations in its primary structure. Susceptibility test revealed that the strains presented the COS (Colistin-Only-Sensitive) profile. PCR and sequencing showed the presence of the chromosomally-encoded blaOXA-51 in all isolates. The majority of strains (53%) carried the carbapenemase blaOXA-23 gene associated with ISAba1. The Hodge test indicated that these strains are carbapenemase producers. PFGE revealed 14 genotypes among strains from Rio de Janeiro and Maranhão. The influence of carO on imipenem resistance was evaluated considering two aspects: the composition of the primary amino acid sequence; and the expression level of this porin. Sequencing and in silico analyses showed the occurrence of CarOa, CarOb and undefined CarO types, and Real Time RT-PCR revealed basal and reduced carO transcription levels among isolates. Conclusions We concluded that, in general, for these Brazilian isolates, the major carbapenem resistance mechanism was due to OXA-23 carbapenemase activity and that loss of CarO porin plays a minor role in this phenotype. However, it was possible to associate the carO alleles and their expression with imipenem resistance. Therefore, these findings underline the complexity in addressing the role of different mechanisms in carbapenem resistance and highlight the possible influence of CarO type in this phenotype. PMID:24195496

  12. Impaired growth under iron-limiting conditions associated with the acquisition of colistin resistance in Acinetobacter baumannii.

    PubMed

    López-Rojas, Rafael; García-Quintanilla, Meritxell; Labrador-Herrera, Gema; Pachón, Jerónimo; McConnell, Michael J

    2016-06-01

    Acquisition of colistin resistance in Acinetobacter baumannii has been associated with reduced bacterial fitness and virulence, although the mechanisms underlying this fitness loss have not been well characterised. In this study, the role played by environmental iron levels on the growth and survival of colistin-resistant strains of A. baumannii was assessed. Growth assays with the colistin-susceptible ATCC 19606 strain and its colistin-resistant derivative RC64 [colistin minimum inhibitory concentration (MIC) of 64 mg/L] demonstrated that the strains grew similarly in rich laboratory medium (Mueller-Hinton broth), whereas RC64 demonstrated impaired growth compared with ATCC 19606 in human serum (>100-fold at 24 h). Compared with RC64, ATCC 19606 grew in the presence of higher concentrations of the iron-specific chelator 2,2'-bipyridine and grew more readily under iron-limiting conditions in solid and liquid media. In addition, iron supplementation of human serum increased the growth of RC64 compared with unsupplemented human serum to a greater extent than ATCC 19606. The ability of 11 colistin-resistant clinical isolates with mutations in the pmrB gene to grow in iron-replete and iron-limiting conditions was assessed, demonstrating that eight of the strains showed reduced growth under iron limitation. Individual mutations in the pmrB gene did not directly correlate with a decreased capacity for growth under iron limitation, suggesting that mutations in pmrB may not directly produce this phenotype. Together these results indicate that acquisition of colistin resistance in A. baumannii can be associated with a decreased ability to grow in low-iron environments. PMID:27179817

  13. Biodegradation of Ochratoxin A by Bacterial Strains Isolated from Vineyard Soils.

    PubMed

    De Bellis, Palmira; Tristezza, Mariana; Haidukowski, Miriam; Fanelli, Francesca; Sisto, Angelo; Mulè, Giuseppina; Grieco, Francesco

    2015-12-01

    Ochratoxin A (OTA) is a mycotoxin with a main nephrotoxic activity contaminating several foodstuffs. In the present report, five soil samples collected from OTA-contaminated vineyards were screened to isolate microorganisms able to biodegrade OTA. When cultivated in OTA-supplemented medium, OTA was converted in OTα by 225 bacterial isolates. To reveal clonal relationships between isolates, molecular typing by using an automated rep-PCR system was carried out, thus showing the presence of 27 different strains (rep-PCR profiles). The 16S-rRNA gene sequence analysis of an isolate representative of each rep-PCR profiles indicated that they belonged to five bacterial genera, namely Pseudomonas, Leclercia, Pantoea, Enterobacter, and Acinetobacter. However, further evaluation of OTA-degrading activity by the 27 strains revealed that only Acinetobacter calcoaceticus strain 396.1 and Acinetobacter sp. strain neg1, consistently conserved the above property; their further characterization showed that they were able to convert 82% and 91% OTA into OTα in six days at 24 °C, respectively. The presence of OTα, as the unique OTA-degradation product was confirmed by LC-HRMS. This is the first report on OTA biodegradation by bacterial strains isolated from agricultural soils and carried out under aerobic conditions and moderate temperatures. These microorganisms might be used to detoxify OTA-contaminated feed and could be a new source of gene(s) for the development of a novel enzymatic detoxification system. PMID:26633497

  14. Biodegradation of Ochratoxin A by Bacterial Strains Isolated from Vineyard Soils

    PubMed Central

    De Bellis, Palmira; Tristezza, Mariana; Haidukowski, Miriam; Fanelli, Francesca; Sisto, Angelo; Mulè, Giuseppina; Grieco, Francesco

    2015-01-01

    Ochratoxin A (OTA) is a mycotoxin with a main nephrotoxic activity contaminating several foodstuffs. In the present report, five soil samples collected from OTA-contaminated vineyards were screened to isolate microorganisms able to biodegrade OTA. When cultivated in OTA-supplemented medium, OTA was converted in OTα by 225 bacterial isolates. To reveal clonal relationships between isolates, molecular typing by using an automated rep-PCR system was carried out, thus showing the presence of 27 different strains (rep-PCR profiles). The 16S-rRNA gene sequence analysis of an isolate representative of each rep-PCR profiles indicated that they belonged to five bacterial genera, namely Pseudomonas, Leclercia, Pantoea, Enterobacter, and Acinetobacter. However, further evaluation of OTA-degrading activity by the 27 strains revealed that only Acinetobacter calcoaceticus strain 396.1 and Acinetobacter sp. strain neg1, consistently conserved the above property; their further characterization showed that they were able to convert 82% and 91% OTA into OTα in six days at 24 °C, respectively. The presence of OTα, as the unique OTA-degradation product was confirmed by LC-HRMS. This is the first report on OTA biodegradation by bacterial strains isolated from agricultural soils and carried out under aerobic conditions and moderate temperatures. These microorganisms might be used to detoxify OTA-contaminated feed and could be a new source of gene(s) for the development of a novel enzymatic detoxification system. PMID:26633497

  15. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside

    PubMed Central

    Lin, Ming-Feng; Lan, Chung-Yu

    2014-01-01

    Acinetobacter baumannii (A. baumannii) is undoubtedly one of the most successful pathogens in the modern healthcare system. With invasive procedures, antibiotic use and immunocompromised hosts increasing in recent years, A. baumannii has become endemic in hospitals due to its versatile genetic machinery, which allows it to quickly evolve resistance factors, and to its remarkable ability to tolerate harsh environments. Infections and outbreaks caused by multidrug-resistant A. baumannii (MDRAB) are prevalent and have been reported worldwide over the past twenty or more years. To address this problem effectively, knowledge of species identification, typing methods, clinical manifestations, risk factors, and virulence factors is essential. The global epidemiology of MDRAB is monitored by persistent surveillance programs. Because few effective antibiotics are available, clinicians often face serious challenges when treating patients with MDRAB. Therefore, a deep understanding of the resistance mechanisms used by MDRAB can shed light on two possible strategies to combat the dissemination of antimicrobial resistance: stringent infection control and antibiotic treatments, of which colistin-based combination therapy is the mainstream strategy. However, due to the current unsatisfying therapeutic outcomes, there is a great need to develop and evaluate the efficacy of new antibiotics and to understand the role of other potential alternatives, such as antimicrobial peptides, in the treatment of MDRAB infections. PMID:25516853

  16. Stress Conditions Induced by Carvacrol and Cinnamaldehyde on Acinetobacter baumannii.

    PubMed

    Montagu, Angélique; Joly-Guillou, Marie-Laure; Rossines, Elisabeth; Cayon, Jérome; Kempf, Marie; Saulnier, Patrick

    2016-01-01

    Acinetobacter baumannii has emerged as a major cause of nosocomial infections. The ability of A. baumannii to display various resistance mechanisms against antibiotics has transformed it into a successful nosocomial pathogen. The limited number of antibiotics in development and the disengagement of the pharmaceutical industry have prompted the development of innovative strategies. One of these strategies is the use of essential oils, especially aromatic compounds that are potent antibacterial molecules. Among them, the combination of carvacrol and cinnamaldehyde has already demonstrated antibacterial efficacy against A. baumannii. The aim of this study was to determine the biological effects of these two compounds in A. baumannii, describing their effect on the rRNA and gene regulation under environmental stress conditions. Results demonstrated rRNA degradation by the carvacrol/cinnamaldehyde mixture, and this effect was due to carvacrol. Degradation was conserved after encapsulation of the mixture in lipid nanocapsules. Results showed an upregulation of the genes coding for heat shock proteins, such as groES, groEL, dnaK, clpB, and the catalase katE, after exposure to carvacrol/cinnamaldehyde mixture. The catalase was upregulated after carvacrol exposure wich is related to an oxidative stress. The combination of thiourea (hydroxyl radical scavenger) and carvacrol demonstrated a potent bactericidal effect. These results underline the development of defense strategies of the bacteria by synthesis of reactive oxygen species in response to environmental stress conditions, such as carvacrol. PMID:27486453

  17. Stress Conditions Induced by Carvacrol and Cinnamaldehyde on Acinetobacter baumannii

    PubMed Central

    Montagu, Angélique; Joly-Guillou, Marie-Laure; Rossines, Elisabeth; Cayon, Jérome; Kempf, Marie; Saulnier, Patrick

    2016-01-01

    Acinetobacter baumannii has emerged as a major cause of nosocomial infections. The ability of A. baumannii to display various resistance mechanisms against antibiotics has transformed it into a successful nosocomial pathogen. The limited number of antibiotics in development and the disengagement of the pharmaceutical industry have prompted the development of innovative strategies. One of these strategies is the use of essential oils, especially aromatic compounds that are potent antibacterial molecules. Among them, the combination of carvacrol and cinnamaldehyde has already demonstrated antibacterial efficacy against A. baumannii. The aim of this study was to determine the biological effects of these two compounds in A. baumannii, describing their effect on the rRNA and gene regulation under environmental stress conditions. Results demonstrated rRNA degradation by the carvacrol/cinnamaldehyde mixture, and this effect was due to carvacrol. Degradation was conserved after encapsulation of the mixture in lipid nanocapsules. Results showed an upregulation of the genes coding for heat shock proteins, such as groES, groEL, dnaK, clpB, and the catalase katE, after exposure to carvacrol/cinnamaldehyde mixture. The catalase was upregulated after carvacrol exposure wich is related to an oxidative stress. The combination of thiourea (hydroxyl radical scavenger) and carvacrol demonstrated a potent bactericidal effect. These results underline the development of defense strategies of the bacteria by synthesis of reactive oxygen species in response to environmental stress conditions, such as carvacrol. PMID:27486453

  18. Pregnancy and Perinatal Outcomes Associated with Acinetobacter baumannii Infection.

    PubMed

    He, Mai; Kostadinov, Stefan; Gundogan, Fusun; Struminsky, Judith; Pinar, Halit; Sung, C James

    2013-05-01

    Objective To determine perinatal and pregnancy outcomes of Acinetobacter baumannii infection using clinicopathologic material from pregnant women, neonates, and perinatal postmortem examinations with positive cultures. Study Design This is a retrospective record review with placental and postmortem examination. Results During a 5-year period, 40 positive cultures were found. Three pregnancies with positive cultures close in the peripartum period were all associated with adverse outcomes including spontaneous abortion, preterm labor, and one full-term birth with histological chorioamnionitis. Two positive cultures were found in preterm neonates in the neonatal intensive care unit. Two of three cases of perinatal death grew pure cultures from blood and/or fetal tissue with placental or fetal examination demonstrating evidence of infection/inflammation with fetal inflammatory response. Conclusion This is the first case series report of A. baumannii-positive cultures in maternal, fetal, and neonatal specimen, with histopathologic evidence of infection. The results suggest a significant role of A. baumannii infection in adverse pregnancy and perinatal outcomes. PMID:23943711

  19. Pregnancy and Perinatal Outcomes Associated with Acinetobacter baumannii Infection

    PubMed Central

    He, Mai; Kostadinov, Stefan; Gundogan, Fusun; Struminsky, Judith; Pinar, Halit; Sung, C. James

    2013-01-01

    Objective To determine perinatal and pregnancy outcomes of Acinetobacter baumannii infection using clinicopathologic material from pregnant women, neonates, and perinatal postmortem examinations with positive cultures. Study Design This is a retrospective record review with placental and postmortem examination. Results During a 5-year period, 40 positive cultures were found. Three pregnancies with positive cultures close in the peripartum period were all associated with adverse outcomes including spontaneous abortion, preterm labor, and one full-term birth with histological chorioamnionitis. Two positive cultures were found in preterm neonates in the neonatal intensive care unit. Two of three cases of perinatal death grew pure cultures from blood and/or fetal tissue with placental or fetal examination demonstrating evidence of infection/inflammation with fetal inflammatory response. Conclusion This is the first case series report of A. baumannii-positive cultures in maternal, fetal, and neonatal specimen, with histopathologic evidence of infection. The results suggest a significant role of A. baumannii infection in adverse pregnancy and perinatal outcomes. PMID:23943711

  20. Methylation of halogenated phenols and thiophenols by cell extracts of gram-positive and gram-negative bacteria. [Rhodococcus sp. ; Pseudomonas sp. ; Acinetobacter sp

    SciTech Connect

    Neilson, A.H.; Lindgren, C.; Hynning, P.A.; Remberger, M.

    1988-02-01

    O-methylation of 2,6-dibromophenol was studied in cell extracts prepared from Rhodococcus sp. strain 1395. O-methylation activity was also demonstrated in extracts from two other Rhodococcus sp. strains, an Acinetobacter sp. strain, and a Pseudomonas sp. strain. A diverse range of chloro- and bromophenols, chlorothiophenols, chloro- and bromoguaiacols, and chloro- and bromocatechols were assayed as the substrates by using extracts prepared from strain 1395; all of the compounds were methylated to the corresponding anisoles, veratroles, or guaiacols. The specific activity of the enzyme towards the thiophenols was significantly higher than it was towards all the other substrates-high activity was found with pentafluorothiophenol, although the activity with pentafluorophenol was undetectable with the incubation times used. For the chlorophenols, the position of the substituents was of cardinal importance. The enzyme had higher activity towards the halogenated catechols than towards the corresponding guaiacols, and selective O-methylation of the 3,4,5-trihalogenocatechols yielded predominantly the 3,4,5-trihalogenoguaiacols. Neither 2,4-dinitrophenol, hexachlorophene, nor 5-chloro- or 5-bromovanillin was O-methylated. The results showed conclusively that the methylation reactions were enzymatic and confirmed the conclusion from extensive studies using whole cells that methylation of halogenated phenols may be a significant alternative to biodegradation.

  1. Infections Caused by Acinetobacter baumannii in Recipients of Hematopoietic Stem Cell Transplantation

    PubMed Central

    Al-Anazi, Khalid Ahmed; Al-Jasser, Asma M.

    2014-01-01

    Acinetobacter baumannii (A. baumannii) is a Gram-negative, strictly aerobic, non-fermentative coccobacillus, which is widely distributed in nature. Recently, it has emerged as a major cause of health care-associated infections (HCAIs) in addition to its capacity to cause community-acquired infections. Risk factors for A. baumannii infections and bacteremia in recipients of hematopoietic stem cell transplantation include: severe underlying illness such as hematological malignancy, prolonged use of broad-spectrum antibiotics, invasive instrumentation such as central venous catheters or endotracheal intubation, colonization of respiratory, gastrointestinal, or urinary tracts in addition to severe immunosuppression caused by using corticosteroids for treating graft versus host disease. The organism causes a wide spectrum of clinical manifestations, but serious complications such as bacteremia, septic shock, ventilator-associated pneumonia, extensive soft tissue necrosis, and rapidly progressive systemic infections that ultimately lead to multi-organ failure and death are prone to occur in severely immunocompromised hosts. The organism is usually resistant to many antimicrobials including penicillins, cephalosporins, trimethoprim–sulfamethoxazole, almost all fluoroquinolones, and most of the aminoglycosides. The recently increasing resistance to carbapenems, colistin, and polymyxins is alarming. Additionally, there are geographic variations in the resistance patterns and several globally and regionally resistant strains have already been described. Successful management of A. baumannii infections depends upon appropriate utilization of antibiotics and strict application of preventive and infection control measures. In uncomplicated infections, the use of a single active beta-lactam may be justified, while definitive treatment of complicated infections in critically ill individuals may require drug combinations such as colistin and rifampicin or colistin and carbapenem

  2. A study of the efficiency of edible oils degraded in alkaline conditions by Pseudomonas aeruginosa SS-219 and Acinetobacter sp. SS-192 bacteria isolated from Japanese soil.

    PubMed

    Sugimori, Daisuke; Utsue, Tomohiro

    2012-03-01

    High lipid concentration contained in wastewater inhibits the activity of microorganisms in biological wastewater treatment systems such as activated sludge and methane fermentation. To reduce the inhibitory effects, microorganisms capable of efficiently degrading edible oils were screened from various environmental sources. From Japanese soil, we isolated 2 bacteria strains with high degradation abilities at an alkaline pH without consumption of biological oxygen demand (BOD) constituents. Acinetobacter sp. strain SS-192 and Pseudomonas aeruginosa strain SS-219 degraded 77.5 ± 0.6% and 89.5 ± 1.5%, respectively, of 3,000 ppm of mixed oil consisting of salad oil/lard/beef tallow (1/1/1, w/w/w) at 37°C and pH 9.0 in 24 h. Efficient degradation by the two strains occurred at pH 8-9 and 25-40°C. Strain SS-219 degraded lipids even at pH 3. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-192 was 79.9 ± 2.6%, 63.6 ± 1.9%, and 70.1 ± 1.2%, respectively, during a 24-h cultivation. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-219 was 82.3 ± 2.1%, 71.9 ± 2.2%, and 71.0 ± 1.1%, respectively, during a 24-h cultivation. After mixed oil degradation by both strains, the BOD value of the cell culture increased from 2,100 ppm to 3,200-4,000 ppm. The fact that neither strain utilizes BOD ingredients will be beneficial to pretreatment of methane fermentation systems such as upflow anaerobic sludge blanket reactors. In addition, the growth of usual heterotrophic microorganisms utilizing soluble BOD can be suppressed under alkaline pH. PMID:22805803

  3. Identification and characterisation of potential biofertilizer bacterial strains

    NASA Astrophysics Data System (ADS)

    Karagöz, Kenan; Kotan, Recep; Dadaşoǧlu, Fatih; Dadaşoǧlu, Esin

    2016-04-01

    In this study we aimed that isolation, identification and characterizations of PGPR strains from rhizosphere of legume plants. 188 bacterial strains isolated from different legume plants like clover, sainfoin and vetch in Erzurum province of Turkey. These three plants are cultivated commonly in the Erzurum province. It was screen that 50 out of 188 strains can fix nitrogen and solubilize phosphate. These strains were identified via MIS (Microbial identification system). According to MIS identification results, 40 out of 50 strains were identified as Bacillus, 5 as Pseudomonas, 3 as Paenibacillus, 1 as Acinetobacter, 1 as Brevibacterium. According to classical test results, while the catalase test result of all isolates are positive, oxidase, KOH and starch hydrolysis rest results are variable.

  4. Acinetobacter Infections and Outcomes at an Academic Medical Center: A Disease of Long-Term Care

    PubMed Central

    Townsend, Jennifer; Park, An Na; Gander, Rita; Orr, Kathleen; Arocha, Doramarie; Zhang, Song; Greenberg, David E.

    2015-01-01

    Background. Our study aims to describe the epidemiology, microbial resistance patterns, and clinical outcomes of Acinetobacter infections at an academic university hospital. This retrospective study analyzed all inpatient clinical isolates of Acinetobacter collected at an academic medical center over 4 years. The data were obtained from an Academic tertiary referral center between January 2008 and December 2011. All consecutive inpatients during the study period who had a clinical culture positive for Acinetobacter were included in the study. Patients without medical records available for review or less than 18 years of age were excluded. Methods. Records were reviewed to determine source of isolation, risk factors for acquisition, drug resistance patterns, and clinical outcomes. Repetitive sequence-based polymerase chain reaction of selected banked isolates was used to determine patterns of clonal spread in and among institutions during periods of higher infection rates. Results. Four hundred eighty-seven clinical isolates of Acinetobacter were found in 212 patients (in 252 admissions). Patients with Acinetobacter infections were frequently admitted from healthcare facilities (HCFs) (59%). One hundred eighty-three of 248 (76%) initial isolates tested were resistant to meropenem. One hundred ninety-eight of 249 (79.5%) initial isolates were multidrug resistant (MDR). Factors associated with mortality included bacteremia (odds ratio [OR] = 1.93, P = .024), concomitant steroid use (OR = 2.87, P < .001), admission from a HCF (OR = 6.34, P = .004), and chronic obstructive pulmonary disease (OR = 3.17, P < .001). Conclusions. Acinetobacter isolates at our institution are frequently MDR and are more common among those who reside in HCFs. Our findings underline the need for new strategies to prevent and treat this pathogen, including stewardship efforts in long-term care settings. PMID:26034772

  5. Analysis on distribution features and drug resistance of clinically isolated Acinetobacter baumannii

    PubMed Central

    Ren, Guangming; Zhou, Min; Ding, Ning; Zhou, Ning; Li, Qingling

    2016-01-01

    The aim of the present study was to examine the clinical distribution and drug resistance of Acinetobacter baumannii infection, and provide evidence of clinical medication as well as the prophylaxis for the treatment of drug resistance bacteria. In total, 306 Acinetobacter baumanniis selected from routine culture were collected between January 2012 and December 2013, to analyze the distributions among clinical specimens and wards and their drug resistance state. Of the 306 Acinetobacter baumanniis, the main distribution of specimens was sputum, accounting for 77.78%. The distribution of administrative office was dominated by intensive care unit with a proportion of 40.0% in 2012, which rapidly increased to 60.9% in 2013, followed by neurosurgery, respiration medicine and orthopedics with proportions of 23, 12 and 9.0% in 2012 and 9.71, 8.74 and 3.88% in 2013, respectively. The Acinetobacter baumannii's drug resistance rate of Tazobactam and Piperacillin was increased from 68.0% in 2012 to 71.36% in 2013. At the same time, the drug resistance rate of imipenem was enhanced from 66.0% in 2012 to 72.81% in 2013. By 2013, the drug resistance rates of penbritin, ceftizoxime, cefotetan and macrodantin reached ≤100%. In conclusion, Acinetobacter baumannii mainly causes respiratory tract infection with severe drug resistance. The drug resistance of Acinetobacter baumannii was mainly manifested as multidrug resistance or even pan-drug resistance with an obvious increasing trend of tolerance. Thus, it is necessary to prevent and treat nosocomial infection, to minimize usage of antibiotics and to standardize medical operating, to reduce the increase in persistence. PMID:27602085

  6. Prognostic differences between VAP from Acinetobacter baumanii and VAP from other microorganisms.

    PubMed

    Di Bonito, Marianna; Caiazzo, Simona; Iannazzone, Marta; Miccichè, Viviana; De Marco, Giuseppe; De Robertis, Edoardo; Tufano, Rosalba; Piazza, Ornella

    2012-05-01

    Nosocomial infection, in particular pneumonia, is an important risk factor for hospital mortality and morbidity. Acinetobacter baumanii is a common multi-resistant microorganism responsible of Ventilator Associated Pneumonia (VAP). Currently Colistin is a rescue therapy for this pathogen. The purpose of this retrospective study is to compare the outcome of VAP caused by Acinetobacter baumanii and VAP from other microorganisms in critical patients. Comorbidity, prognostic scores, mortality and eradication frequency did not turn out significantly different between the two study groups. Colistin safety was tested. PMID:23905048

  7. Prognostic differences between VAP from Acinetobacter baumanii and VAP from other microorganisms

    PubMed Central

    Di Bonito, Marianna; Caiazzo, Simona; Iannazzone, Marta; Miccichè, Viviana; De Marco, Giuseppe; De Robertis, Edoardo; Tufano, Rosalba; Piazza, Ornella

    2012-01-01

    Nosocomial infection, in particular pneumonia, is an important risk factor for hospital mortality and morbidity. Acinetobacter baumanii is a common multi-resistant microorganism responsible of Ventilator Associated Pneumonia (VAP). Currently Colistin is a rescue therapy for this pathogen. The purpose of this retrospective study is to compare the outcome of VAP caused by Acinetobacter baumanii and VAP from other microorganisms in critical patients. Comorbidity, prognostic scores, mortality and eradication frequency did not turn out significantly different between the two study groups. Colistin safety was tested. PMID:23905048

  8. Photodynamic therapy for Acinetobacter baumannii burn infections in mice.

    PubMed

    Dai, Tianhong; Tegos, George P; Lu, Zongshun; Huang, Liyi; Zhiyentayev, Timur; Franklin, Michael J; Baer, David G; Hamblin, Michael R

    2009-09-01

    Multidrug-resistant Acinetobacter baumannii infections represent a growing problem, especially in traumatic wounds and burns suffered by military personnel injured in Middle Eastern conflicts. Effective treatment with traditional antibiotics can be extremely difficult, and new antimicrobial approaches are being investigated. One of these alternatives to antimicrobials could be the combination of nontoxic photosensitizers (PSs) and visible light, known as photodynamic therapy (PDT). We report on the establishment of a new mouse model of full-thickness thermal burns infected with a bioluminescent derivative of a clinical Iraqi isolate of A. baumannii and its PDT treatment by topical application of a PS produced by the covalent conjugation of chlorin(e6) to polyethylenimine, followed by illumination of the burn surface with red light. Application of 10(8) A. baumannii cells to the surface of 10-s burns made on the dorsal surface of shaved female BALB/c mice led to chronic infections that lasted, on average, 22 days and that were characterized by a remarkably stable bacterial bioluminescence. PDT carried out on day 0 soon after application of the bacteria gave over 3 log units of loss of bacterial luminescence in a light exposure-dependent manner, while PDT carried out on day 1 and day 2 gave an approximately 1.7-log reduction. The application of PS dissolved in 10% or 20% dimethyl sulfoxide without light gave only a modest reduction in the bacterial luminescence from mouse burns. Some bacterial regrowth in the treated burn was observed but was generally modest. It was also found that PDT did not lead to the inhibition of wound healing. The data suggest that PDT may be an effective new treatment for multidrug-resistant localized A. baumannii infections. PMID:19564369

  9. Epidemiologic and Clinical Impact of Acinetobacter baumannii Colonization and Infection

    PubMed Central

    Villar, Macarena; Cano, María E.; Gato, Eva; Garnacho-Montero, José; Miguel Cisneros, José; Ruíz de Alegría, Carlos; Fernández-Cuenca, Felipe; Martínez-Martínez, Luis; Vila, Jordi; Pascual, Alvaro; Tomás, María; Bou, Germán; Rodríguez-Baño, Jesús

    2014-01-01

    Abstract Acinetobacter baumannii is one of the most important antibiotic-resistant nosocomial bacteria. We investigated changes in the clinical and molecular epidemiology of A. baumannii over a 10-year period. We compared the data from 2 prospective multicenter cohort studies in Spain, one performed in 2000 (183 patients) and one in 2010 (246 patients), which included consecutive patients infected or colonized by A. baumannii. Molecular typing was performed by repetitive extragenic palindromic polymerase chain reaction (REP-PCR), pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). The incidence density of A. baumannii colonization or infection increased significantly from 0.14 in 2000 to 0.52 in 2010 in medical services (p < 0.001). The number of non-nosocomial health care-associated cases increased from 1.2% to 14.2%, respectively (p < 0.001). Previous exposure to carbapenems increased in 2010 (16.9% in 2000 vs 27.3% in 2010, p = 0.03). The drugs most frequently used for definitive treatment of patients with infections were carbapenems in 2000 (45%) and colistin in 2010 (50.3%). There was molecular-typing evidence of an increase in the frequency of A. baumannii acquisition in non-intensive care unit wards in 2010 (7.6% in 2000 vs 19.2% in 2010, p = 0.01). By MSLT, the ST2 clonal group predominated and increased in 2010. This epidemic clonal group was more frequently resistant to imipenem and was associated with an increased risk of sepsis, although not with severe sepsis or mortality. Some significant changes were noted in the epidemiology of A. baumannii, which is increasingly affecting patients admitted to conventional wards and is also the cause of non-nosocomial health care-associated infections. Epidemic clones seem to combine antimicrobial resistance and the ability to spread, while maintaining their clinical virulence. PMID:25181313

  10. Prediction of Putative Resistance Islands in a Carbapenem-Resistant Acinetobacter baumannii Global Clone 2 Clinical Isolate

    PubMed Central

    Lee, Yangsoon; D'Souza, Roshan; Lee, Kyungwon

    2016-01-01

    Background We investigated the whole genome sequence (WGS) of a carbapenem-resistant Acinetobacter baumannii isolate belonging to the global clone 2 (GC2) and predicted resistance islands using a software tool. Methods A. baumannii strain YU-R612 was isolated from the sputum of a 61-yr-old man with sepsis. The WGS of the YU-R612 strain was obtained by using the PacBio RS II Sequencing System (Pacific Biosciences Inc., USA). Antimicrobial resistance genes and resistance islands were analyzed by using ResFinder and Genomic Island Prediction software (GIPSy), respectively. Results The YU-R612 genome consisted of a circular chromosome (ca. 4,075 kb) and two plasmids (ca. 74 kb and 5 kb). Its sequence type (ST) under the Oxford scheme was ST191, consistent with assignment to GC2. ResFinder analysis showed that YU-R612 possessed the following resistance genes: four β-lactamase genes blaADC-30, blaOXA-66, blaOXA-23, and blaTEM-1; armA, aadA1, and aacA4 as aminoglycoside resistance-encoding genes; aac(6')Ib-cr for fluoroquinolone resistance; msr(E) for macrolide, lincosamide, and streptogramin B resistance; catB8 for phenicol resistance; and sul1 for sulfonamide resistance. By GIPSy analysis, six putative resistant islands (PRIs) were determined on the YU-R612 chromosome. Among them, PRI1 possessed two copies of Tn2009 carrying blaOXA-23, and PRI5 carried two copies of a class I integron carrying sul1 and armA genes. Conclusions By prediction of resistance islands in the carbapenem-resistant A. baumannii YU-R612 GC2 strain isolated in Korea, PRIs were detected on the chromosome that possessed Tn2009 and class I integrons. The prediction of resistance islands using software tools was useful for analysis of the WGS. PMID:27139604

  11. Nitric oxide-releasing polysaccharide derivative exhibits 8-log reduction against Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus.

    PubMed

    Pegalajar-Jurado, Adoracion; Wold, Kathryn A; Joslin, Jessica M; Neufeld, Bella H; Arabea, Kristin A; Suazo, Lucas A; McDaniel, Stephen L; Bowen, Richard A; Reynolds, Melissa M

    2015-11-10

    Health-care associated infections (HAIs) and the increasing number of antibiotic-resistant bacteria strains remain significant public health threats worldwide. Although the number of HAIs has decreased by using improved sterilization protocols, the cost related to HAIs is still quantified in billions of dollars. Furthermore, the development of multi-drug resistant strains is increasing exponentially, demonstrating that current treatments are inefficient. Thus, the quest for new methods to eradicate bacterial infection is increasingly important in antimicrobial, drug delivery and biomaterials research. Herein, the bactericidal activity of a water-soluble NO-releasing polysaccharide derivative was evaluated in nutrient broth media against three bacteria strains that are commonly responsible for HAIs. Data confirmed that this NO-releasing polysaccharide derivative induced an 8-log reduction in bacterial growth after 24h for Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus. Additionally, the absence of bacteria after 72h of exposure to NO illustrates the inability of the bacteria to recover and the prevention of biofilm formation. The presented 8-log reduction in bacterial survival after 24h is among the highest reduction reported for NO delivery systems to date, and reaches the desired standard for industrially-relevant reduction. More specifically, this system represents the only water-soluble antimicrobial to reach such a significant bacterial reduction in nutrient rich media, wherein experimental conditions more closely mimic the in vivo environment than those in previous reports. Furthermore, the absence of bacterial activity after 72h and the versatility of using a water-soluble compound suggest that this NO-releasing polysaccharide derivative is a promising route for treating HAIs. PMID:26374942

  12. Cloning and expression of quorum sensing N-acyl-homoserine synthase (LuxI) gene detected in Acinetobacter baumannii

    PubMed Central

    Modarresi, Farzan; Azizi, Omid; Shakibaie, Mohammad Reza; Motamedifar, Mohammad; Mansouri, Shahla

    2016-01-01

    Background and Objectives: In present study we aimed to clone the luxI gene encoding N-acyl-homoserine synthase detected in clinical isolates of Acinetobacter baumannii and study its expression in Escherichia coli transformants. Materials and Methods: Four A. baumannii hospital strains which demonstrated strong biofilm activity were selected in this investigation. The presence of luxI gene was detected using PCR technique. Purified PCR product DNA was initially cloned into pTG19 and transformed to E. coli DH5α. The gene was then recovered from agarose gel and ligated by T4 DNA ligase into pET28a expression vector using NdeI and XhoI enzymes. pET28a + luxI was transformed into E. coli BL21 (DE3). The luxI putative gene was further detected in the transformants by colony PCR. Expression of the luxI gene in the recombinant E. coli BL21 cells was studied by quantitative real time PCR (qRT-PCR) and the presence of N-acylhomoserine lactone (AHL) was checked by colorimetric assay and Fourier Transform Infra-Red (FT-IR) spectroscopy. Results: We successfully cloned AHL gene from A. baumannii strain 23 to pET28a expression vector. There was four fold increases in expression of luxI in the transformants (P ≤ 0.05). It was found that, strain 23 and the transformants showed highest amount of AHL activity (OD = 1.524). The FT-IR analysis indicated stretching C=O bond of the lactone ring and primary amides (N=H) at 1764.69 cm−1 and 1659.23 cm−1 respectively. Conclusion: From above results we concluded that, luxI in A. baumannii is indeed responsible for AHL production and not regulation and pET28a vector allows efficient AHL expression in E. coli BL21 transformants. PMID:27307980

  13. Biofilm Formation Caused by Clinical Acinetobacter baumannii Isolates Is Associated with Overexpression of the AdeFGH Efflux Pump

    PubMed Central

    He, Xinlong; Lu, Feng; Yuan, Fenglai; Jiang, Donglin; Zhao, Peng; Zhu, Jie; Cheng, Huali

    2015-01-01

    Chronic wound infections are associated with biofilm formation, which in turn has been correlated with drug resistance. However, the mechanism by which bacteria form biofilms in clinical environments is not clearly understood. This study was designed to investigate the biofilm formation potency of Acinetobacter baumannii and the potential association of biofilm formation with genes encoding efflux pumps, quorum-sensing regulators, and outer membrane proteins. A total of 48 clinically isolated A. baumannii strains, identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR as types A-II, A-III, and A-IV, were analyzed. Three representative strains, which were designated A. baumannii ABR2, ABR11, and ABS17, were used to evaluate antimicrobial susceptibility, biofilm inducibility, and gene transcription (abaI, adeB, adeG, adeJ, carO, and ompA). A significant increase in the MICs of different classes of antibiotics was observed in the biofilm cells. The formation of a biofilm was significantly induced in all the representative strains exposed to levofloxacin. The levels of gene transcription varied between bacterial genotypes, antibiotics, and antibiotic concentrations. The upregulation of adeG correlated with biofilm induction. The consistent upregulation of adeG and abaI was detected in A-III-type A. baumannii in response to levofloxacin and meropenem (1/8 to 1/2× the MIC), conditions which resulted in the greatest extent of biofilm induction. This study demonstrates a potential role of the AdeFGH efflux pump in the synthesis and transport of autoinducer molecules during biofilm formation, suggesting a link between low-dose antimicrobial therapy and a high risk of biofilm infections caused by A. baumannii. This study provides useful information for the development of antibiofilm strategies. PMID:26033730

  14. In vitro activity of curcumin in combination with epigallocatechin gallate (EGCG) versus multidrug-resistant Acinetobacter baumannii

    PubMed Central

    2014-01-01

    Background Acinetobacter baumannii is an opportunistic human pathogen often associated with life-threatening infections in the immunocompromised and the critically ill. Strains are often multidrug-resistant (MDR) and due to the lack of new synthetic antimicrobials in development for treatment, attention is increasingly focused on natural compounds either as stand-alone or adjunctive agents. Curcumin (CCM) is a natural polyphenol found in turmeric and isolated from the plant, Curcuma longa. Curcumin has been found to possess many biological properties, including antibacterial activity. In this study the antimicrobial activity of CCM and synergistic effects with epigallocatechin gallate (EGCG) against multidrug-resistant strains of A. baumannii were investigated and assessed via checkerboard and time-kill assays. Results The MIC of CCM was >256 μg/mL against all strains of A. baumannii whilst those for EGCG ranged from 128-1024 μg/mL. In checkerboard studies synergy was observed against 5/9 isolates, with an additive effect noted in the remaining 4. The addition of EGCG reduced the MIC of CCM by 3- to 7-fold, with the greatest interaction resulting in a CCM MIC of 4 μg/mL. Time-kill curves indicated that a CCM-EGCG (1:8 and 1:4) combination was bactericidal with a 4 to 5-log reduction in viable counts after 24 h compared to the most effective polyphenol alone. Conclusions This study demonstrates that despite little antibacterial activity alone, CCM activity is greatly enhanced in the presence of EGCG resulting in antibacterial activity against MDR A. baumannii. The combination may have a potential use in medicine as a topical agent to prevent or treat A. baumannii infections. PMID:24969489

  15. Purification, crystallization and preliminary X-ray crystallographic analysis of the UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine ligase (MurF) from Acinetobacter baumannii.

    PubMed

    An, Young Jun; Jeong, Chang-Sook; Yu, Jeong Hee; Chung, Kyung Min; Cha, Sun-Shin

    2014-07-01

    The emergence and global spread of multidrug-resistant Acinetobacter baumannii strains are major threats to public health. Inhibition of peptidoglycan biosynthesis is an effective strategy for the development of antibiotics. The ATP-dependent UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine ligase (MurF) that is responsible for the last step of peptidoglycan biosynthesis is a validated target for the development of antibiotics. Crystals of A. baumannii MurF in complex with ATP were grown by the microbatch crystallization method at 295 K. The crystals belonged to space group P322₁, with unit-cell parameters a=b=85.42, c=129.86 Å. Assuming the presence of one molecule in the asymmetric unit, the solvent content was estimated to be about 54.32%. PMID:25005102

  16. Identification of a novel Baeyer‐Villiger monooxygenase from Acinetobacter radioresistens: close relationship to the Mycobacterium tuberculosis prodrug activator EtaA

    PubMed Central

    Minerdi, Daniela; Zgrablic, Ivan; Sadeghi, Sheila J.; Gilardi, Gianfranco

    2012-01-01

    Summary This work demonstrates that Acinetobacter radioresistens strain S13 during the growth on medium supplemented with long‐chain alkanes as the sole energy source expresses almA gene coding for a Baeyer‐Villiger monooxygenase (BVMO) involved in alkanes subterminal oxidation. Phylogenetic analysis placed the sequence of this novel BVMO in the same clade of the prodrug activator ethionamide monooxygenase (EtaA) and it bears only a distant relation to the other known class I BVMO proteins. In silico analysis of the 3D model of the S13 BVMO generated by homology modelling also supports the similarities with EtaA by binding ethionamide to the active site. In vitro experiments carried out with the purified enzyme confirm that this novel BVMO is indeed capable of typical Baeyer‐Villiger reactions as well as oxidation of the prodrug ethionamide. PMID:22862894

  17. A combination of tigecycline, colistin, and meropenem against multidrug-resistant Acinetobacter baumannii bacteremia in a renal transplant recipient: pharmacodynamic and microbiological aspects.

    PubMed

    Candel, F J; Calvo, N; Head, J; Sánchez, A; Matesanz, M; Culebras, E; Barrientos, A; Picazo, J

    2010-06-01

    Acinetobacter baumannii are emerging as the causal agents of healthcare-associated infections. We describe arenal transplant recipient who developed bacteremia caused by multiresistant A. baumannii, which received a combination of tigecycline, colistin, and meropenem in continuous infusion. The clinical outcome was favorable. In this article we made a molecular study of this multiresistant strain. Our analysis reveals the presence of abla-OXA-72 gene,a class D of oxacillinase belonging to bla-OXA-40-like group,which constitutes the most disseminated familiy of carbapenemases in Spain. Thus, we found different susceptibility patterns of A. baumannii when we used different Mueller-Hinton agars with different manganese concentrations. Lastly, we explain the combination of these three antibiotics administered to increase microbiologic and pharmacodynamic yield. PMID:20559610

  18. Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce).

    PubMed

    Suzuki, Wakako; Sugawara, Masayuki; Miwa, Kyoko; Morikawa, Masaaki

    2014-07-01

    Acinetobacter calcoaceticus P23 is a plant growth-promoting bacterium that was isolated from the surface of duckweed (Lemna aoukikusa). The bacterium was observed to colonize on the plant surfaces and increase the chlorophyll content of not only the monocotyledon Lemna minor but also the dicotyledon Lactuca sativa in a hydroponic culture. This effect on the Lactuca sativa was significant in nutrient-poor (×1/100 dilution of H2 medium) and not nutrient-rich (×1 or ×1/10 dilutions of H2 medium) conditions. Strain P23 has the potential to play a part in the future development of fertilizers and energy-saving hydroponic agricultural technologies. PMID:24468072

  19. Head-to-Head Comparison of Two Multi-Locus Sequence Typing (MLST) Schemes for Characterization of Acinetobacter baumannii Outbreak and Sporadic Isolates

    PubMed Central

    Stefanik, Danuta; Wisplinghoff, Hilmar; Seifert, Harald

    2016-01-01

    To compare the two Acinetobacter baumannii multi-locus sequence typing (MLST) schemes and to assess their suitability to aid in outbreak analysis we investigated the molecular epidemiology of 99 Acinetobacter baumannii isolates representing outbreak-related and sporadic isolates from 24 hospitals in four different countries (Germany, Poland, Sweden, and Turkey). Pulsed-field gel electrophoresis (PFGE) was used as the reference method to determine the epidemiologic relatedness of isolates and compared to MLST using both the Oxford and Pasteur scheme. Rep-PCR was used to define international clonal lineages (IC). We identified 26 unique outbreak strains and 21 sporadic strains. The majority of outbreaks were associated with carbapenem-resistant A. baumannii harbouring oxacillinase OXA-23-like and corresponding to IC 2. Sequence types (STs) obtained from the Oxford scheme correlate well with PFGE patterns, while the STs of the Pasteur scheme are more in accordance with rep-PCR grouping, but neither one is mirroring completely the results of the comparator. On two occasions the Oxford scheme identified two different STs within a single outbreak where PFGE patterns had only one band difference. The CCs of both MLST schemes were able to define clonal clusters that were concordant with the ICs determined by rep-PCR. IC4 corresponds to the previously described CC15 Pasteur (= CC103 Oxford). It can be concluded that both MLST schemes are valuable tools for population-based studies. In addition, the higher discriminatory power of the Oxford scheme that compares with the resolution obtained with PFGE can often aid in outbreak analysis. PMID:27071077

  20. Biochemical and molecular mechanisms involved in simultaneous phenol and Cr(VI) removal by Acinetobacter guillouiae SFC 500-1A.

    PubMed

    Ontañon, Ornella M; González, Paola S; Agostini, Elizabeth

    2015-09-01

    Bioremediation has emerged as an environmental friendly strategy to deal with environmental pollution. Since the majority of polluted sites contain complex mixtures of inorganic and organic pollutants, it is important to find bacterial strains that can cope with multiple contaminants. In this work, a bacterial strain isolated from tannery sediments was identified as Acinetobacter guillouiae SFC 500-1A. This strain was able to simultaneously remove high phenol and Cr(VI) concentrations, and the mechanisms involved in such process were evaluated. The phenol biodegradation was catalized by a phenol-induced catechol 1,2-dioxygenase through an ortho-cleavage pathway. Also, NADH-dependent chromate reductase activity was measured in the cytosolic fraction. The ability of this strain to reduce Cr(VI) to Cr(III) was corroborated by detection of Cr(III) in cellular biomass after the removal process. While phenol did not affect significantly the chromate reductase activity, Cr(VI) was a major disruptor of catechol dioxygenase activity. Nevertheless, this activity was high even in presence of high Cr(VI) concentrations. Our results suggest the potential application of A. guillouiae SFC 500-1A for wastewaters treatment, and the obtained data provide the insights into the removal mechanisms, dynamics, and possible limitations of the bioremediation. PMID:25916475

  1. OXA-23 carbapenemase in multidrug-resistant Acinetobacter baumannii ST2 type: first identification in L'Aquila Hospital (Italy).

    PubMed

    Perilli, Mariagrazia; Sabatini, Alessia; Pontieri, Eugenio; Celenza, Giuseppe; Segatore, Bernardetta; Bottoni, Carlo; Bellio, Pierangelo; Mancini, Alisia; Marcoccia, Francesca; Brisdelli, Fabrizia; Amicosante, Gianfranco

    2015-02-01

    In this study 114 extensively drug-resistant Acinetobacter baumannii clinical isolates were characterized. The strains were collected at L'Aquila Hospital after the earthquake in L'Aquila city (central Italy) on the 6th of April 2009. The genes blaOXA-23 and blaOXA-51 were detected in all clinical isolates analyzed, whereas blaTEM-1 allele was detected in 56/114 isolates. The blaOXA-23 gene is located downstream the ISAba region and is under control of a strong promoter. On 42/80 A. baumannii the presence of two class 1 integrons was ascertained on chromosomal DNA. Variable regions show different gene array: (1) aadB and aadA2, (2) aacA4, aac(6')-Ib-cr, and aadA1. Macrorestriction analysis using ApaI restriction endonuclease identifies three clusters (A, B, and C) according to pulsed-field gel electrophoresis profiles. All isolates analyzed belong to the clone A. baumannii sequence type 2. PMID:25275951

  2. Comparative Evaluation of Colistin Susceptibility Testing Methods among Carbapenem-Nonsusceptible Klebsiella pneumoniae and Acinetobacter baumannii Clinical Isolates.

    PubMed

    Dafopoulou, Konstantina; Zarkotou, Olympia; Dimitroulia, Evangelia; Hadjichristodoulou, Christos; Gennimata, Vasiliki; Pournaras, Spyros; Tsakris, Athanasios

    2015-08-01

    We compared six colistin susceptibility testing (ST) methods on 61 carbapenem-nonsusceptible Klebsiella pneumoniae (n = 41) and Acinetobacter baumannii (n = 20) clinical isolates with provisionally elevated colistin MICs by routine ST. Colistin MICs were determined by broth microdilution (BMD), BMD with 0.002% polysorbate 80 (P80) (BMD-P80), agar dilution (AD), Etest, Vitek2, and MIC test strip (MTS). BMD was used as the reference method for comparison. The EUCAST-recommended susceptible and resistant breakpoints of ≤2 and >2 μg/ml, respectively, were applied for both K. pneumoniae and A. baumannii. The proportions of colistin-resistant strains were 95.1, 77, 96.7, 57.4, 65.6, and 98.4% by BMD, BMD-P80, AD, Etest, MTS, and Vitek2, respectively. The Etest and MTS methods produced excessive rates of very major errors (VMEs) (39.3 and 31.1%, respectively), while BMD-P80 produced 18% VMEs, AD produced 3.3% VMEs, and Vitek2 produced no VMEs. Major errors (MEs) were rather limited by all tested methods. These data show that gradient diffusion methods may lead to inappropriate colistin therapy. Clinical laboratories should consider the use of automated systems, such as Vitek2, or dilution methods for colistin ST. PMID:26014928

  3. Comparative Evaluation of Colistin Susceptibility Testing Methods among Carbapenem-Nonsusceptible Klebsiella pneumoniae and Acinetobacter baumannii Clinical Isolates

    PubMed Central

    Dafopoulou, Konstantina; Zarkotou, Olympia; Dimitroulia, Evangelia; Hadjichristodoulou, Christos; Gennimata, Vasiliki; Tsakris, Athanasios

    2015-01-01

    We compared six colistin susceptibility testing (ST) methods on 61 carbapenem-nonsusceptible Klebsiella pneumoniae (n = 41) and Acinetobacter baumannii (n = 20) clinical isolates with provisionally elevated colistin MICs by routine ST. Colistin MICs were determined by broth microdilution (BMD), BMD with 0.002% polysorbate 80 (P80) (BMD-P80), agar dilution (AD), Etest, Vitek2, and MIC test strip (MTS). BMD was used as the reference method for comparison. The EUCAST-recommended susceptible and resistant breakpoints of ≤2 and >2 μg/ml, respectively, were applied for both K. pneumoniae and A. baumannii. The proportions of colistin-resistant strains were 95.1, 77, 96.7, 57.4, 65.6, and 98.4% by BMD, BMD-P80, AD, Etest, MTS, and Vitek2, respectively. The Etest and MTS methods produced excessive rates of very major errors (VMEs) (39.3 and 31.1%, respectively), while BMD-P80 produced 18% VMEs, AD produced 3.3% VMEs, and Vitek2 produced no VMEs. Major errors (MEs) were rather limited by all tested methods. These data show that gradient diffusion methods may lead to inappropriate colistin therapy. Clinical laboratories should consider the use of automated systems, such as Vitek2, or dilution methods for colistin ST. PMID:26014928

  4. The first report on the outbreak of OXA-24/40-like carbapenemase-producing Acinetobacter baumannii in Turkey.

    PubMed

    Sarı, Ayşe Nur; Biçmen, Meral; Gülay, Zeynep

    2013-01-01

    Carbapenem resistance due to OXA-type carbapenemases seriously limits therapeutic options in nosocomial infections caused by Acinetobacter baumannii. Previous studies have shown the presence of OXA-51, OXA-58, and OXA-23 carbapenemases but not OXA-24/40 in A. baumannii in Turkey. In this study, we investigated carbapenem-hydrolyzing class D β-lactamases (CHDLs) in A. baumannii and the molecular epidemiology of CHDL producers at the Dokuz Eylul Hospital, Izmir Turkey, and detected blaOXA-24/40 in a clinical isolate from a patient in the medical intensive care unit (ICU). The specific enzyme type was OXA-72. Additional studies revealed 22 more isolates from 20 patients and that the OXA-72-producing strain caused an outbreak in the medical ICU from September 2012 to March 2013, which still continues. To our knowledge, this is the first report of OXA-24/40 carbapenemases in A. baumannii in Turkey. Emergency infection control should be implemented following the arrival of a new OXA at a hospital where A. baumannii is highly endemic. PMID:24047747

  5. Biosynthesis of UDP-N,N′-Diacetylbacillosamine in Acinetobacter baumannii: Biochemical Characterization and Correlation to Existing Pathways†

    PubMed Central

    Morrison, Michael J.; Imperiali, Barbara

    2013-01-01

    The Gram-negative, opportunistic pathogen Acinetobacter baumannii has recently captured headlines due to its ability to circumvent current antibiotic therapies. Herein we show that the multi-drug resistant (MDR) AYE strain of A. baumannii contains a gene locus that encodes three enzymes responsible for the biosynthesis of the highly-modified bacterial nucleotide sugar, UDP-N,N -diacetylbacillosamine (UDP-diNAcBac). Previously, this UDP-sugar has been implicated in the pgl pathway of Campylobacter jejuni. Here we report the overexpression, purification, and biochemical characterization of the A. baumannii enzymes WeeK, WeeJ, and WeeI that are responsible for the production of UDP-diNAcBac. We also demonstrate the function of the phosphoglycosyltransferase (WeeH), which transfers the diNAcBac moiety to undecaprenyl-phosphate. UDP-diNAcBac biosynthesis in A. baumannii is also directly compared to the homologous pathways in the pathogens C. jejuni and Neisseria gonorrhoeae. This work demonstrates for the first time the ability of A. baumannii to generate the highly-modified, UDP-diNAcBac nucleotide sugar found previously in other bacteria adding to the growing list of pathogens that assemble glycoconjugates including bacillosamine. Additionally, characterization of these pathway enzymes highlights the opportunity for investigating the significance of highly-modified sugars in bacterial pathogenesis. PMID:23747578

  6. Immunoprotective Efficacy of Acinetobacter baumannii Outer Membrane Protein, FilF, Predicted In silico as a Potential Vaccine Candidate

    PubMed Central

    Singh, Ravinder; Garg, Nisha; Shukla, Geeta; Capalash, Neena; Sharma, Prince

    2016-01-01

    Acinetobacter baumannii is emerging as a serious nosocomial pathogen with multidrug resistance that has made it difficult to cure and development of efficacious treatment against this pathogen is direly needed. This has led to investigate vaccine approach to prevent and treat A. baumannii infections. In this work, an outer membrane putative pilus assembly protein, FilF, was predicted as vaccine candidate by in silico analysis of A. baumannii proteome and was found to be conserved among the A. baumannii strains. It was cloned and expressed in E. coli BL21(DE3) and purified by Ni-NTA chromatography. Immunization with FilF generated high antibody titer (>64,000) and provided 50% protection against a standardized lethal dose (108 CFU) of A. baumannii in murine pneumonia model. FilF immunization reduced the bacterial load in lungs by 2 and 4 log cycles, 12 and 24 h post infection as compared to adjuvant control; reduced the levels of pro-inflammatory cytokines TNF-α, IL-6, IL-33, IFN-γ, and IL-1β significantly and histology of lung tissue supported the data by showing considerably reduced damage and infiltration of neutrophils in lungs. These results demonstrate the in vivo validation of immunoprotective efficacy of a protein predicted as a vaccine candidate by in silico proteomic analysis and open the possibilities for exploration of a large array of uncharacterized proteins. PMID:26904021

  7. The Complex Genetic Context of blaPER-1 Flanked by Miniature Inverted-Repeat Transposable Elements in Acinetobacter johnsonii

    PubMed Central

    Zong, Zhiyong

    2014-01-01

    On a large plasmid of Acinetobacter johnsonii strain XBB1 from hospital sewage, blaPER-1 and ISCR1 were found in a complex Tn402-like integron carrying an arr3-aacA4 cassette array. The integron was truncated by the same 439-bp miniature inverted-repeat transposable element (MITE) at both ends. blaPER-1 and its complex surroundings might have been mobilized by the MITEst into an orf of unknown function, evidenced by the presence of the characteristic 5-bp direct target repeats. The same 439-bp MITEs have also been found flanking class 1 integrons carrying metallo-β-lactamases genes blaIMP-1, blaIMP-5 and blaVIM-2 before but without ISCR1. Although the cassette arrays are different, integrons have always been truncated by the 439-bp MITEs at the exact same locations. The results suggested that MITEs might be able to mobilize class 1 integrons via transposition or homologous recombination and therefore represent a possible common mechanism for mobilizing antimicrobial resistance determinants. PMID:24587208

  8. Early detection of metallo-β-lactamase NDM-1- and OXA-23 carbapenemase-producing Acinetobacter baumannii in Libyan hospitals.

    PubMed

    Mathlouthi, Najla; El Salabi, Allaaeddin Ali; Ben Jomàa-Jemili, Mariem; Bakour, Sofiane; Al-Bayssari, Charbel; Zorgani, Abdulaziz A; Kraiema, Abdulmajeed; Elahmer, Omar; Okdah, Liliane; Rolain, Jean-Marc; Chouchani, Chedly

    2016-07-01

    Acinetobacter baumannii is an opportunistic pathogen causing various nosocomial infections. The aim of this study was to characterise the molecular support of carbapenem-resistant A. baumannii clinical isolates recovered from two Libyan hospitals. Bacterial isolates were identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Antibiotic susceptibility testing was performed using disk diffusion and Etest methods, and carbapenem resistance determinants were studied by PCR amplification and sequencing. Multilocus sequence typing (MLST) was performed for typing of the isolates. All 36 imipenem-resistant isolates tested were identified as A. baumannii. The blaOXA-23 gene was detected in 29 strains (80.6%). The metallo-β-lactamase blaNDM-1 gene was detected in eight isolates (22.2%), showing dissemination of multidrug-resistant (MDR) A. baumannii in Tripoli Medical Center and Burn and Plastic Surgery Hospital in Libya, including one isolate that co-expressed the blaOXA-23 gene. MLST revealed several sequence types (STs). Imipenem-resistant A. baumannii ST2 was the predominant clone (16/36; 44.4%). This study shows that NDM-1 and OXA-23 contribute to antibiotic resistance in Libyan hospitals and represents the first incidence of the association of these two carbapenemases in an autochthonous MDR A. baumannii isolated from patients in Libya, indicating that there is a longstanding infection control problem in these hospitals. PMID:27216382

  9. Antibiotic resistance and OXA-type carbapenemases-encoding genes in airborne Acinetobacter baumannii isolated from burn wards.

    PubMed

    Gao, Jing; Zhao, Xiaonan; Bao, Ying; Ma, Ruihua; Zhou, Yufa; Li, Xinxian; Chai, Tongjie; Cai, Yumei

    2014-03-01

    The study was conducted to investigate drug resistance, OXA-type carbapenemases-encoding genes and genetic diversity in airborne Acinetobacter baumannii (A. baumannii) in burn wards. Airborne A. baumannii were collected in burn wards and their corridors using Andersen 6-stage air sampler from January to June 2011. The isolates susceptibility to 13 commonly used antibiotics was examined according to the CLSI guidelines; OXA-type carbapenemases-encoding genes and molecular diversity of isolates were analyzed, respectively. A total of 16 non-repetitive A. baumannii were isolated, with 10 strains having a resistance rate of greater than 50% against the 13 antibiotics. The resistance rate against ceftriaxone, cyclophosvnamide, ciprofloxacin, and imipenem was 93.75% (15/16), but no isolate observed to be resistant to cefoperazone/sulbactam. Resistance gene analyses showed that all 16 isolates carried OXA-51, and 15 isolates carried OXA-23 except No.15; but OXA-24 and OXA-58 resistance genes not detected. The isolates were classified into 13 genotypes (A-M) according to repetitive extragenic palindromic sequence PCR (REP-PCR) results and only six isolates had a homology ≥90%. In conclusion, airborne A. baumannii in the burn wards had multidrug resistance and complex molecular diversity, and OXA-23 and OXA-51 were dominant mechanisms for resisting carbapenems. PMID:23886986

  10. Channel Formation by CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of Acinetobacter baumannii

    PubMed Central

    Siroy, Axel; Molle, Virginie; Lemaître-Guillier, Christelle; Vallenet, David; Pestel-Caron, Martine; Cozzone, Alain J.; Jouenne, Thierry; Dé, Emmanuelle

    2005-01-01

    It has been recently shown that resistance to both imipenem and meropenem in multidrug-resistant clinical strains of Acinetobacter baumannii is associated with the loss of a heat-modifiable 25/29-kDa outer membrane protein, called CarO. This study aimed to investigate the channel-forming properties of CarO. Mass spectrometry analyses of this protein band detected another 25-kDa protein (called Omp25), together with CarO. Both proteins presented similar physicochemical parameters (Mw and pI). We overproduced and purified the two polypeptides as His-tagged recombinant proteins. Circular dichroism analyses demonstrated that the secondary structure of these proteins was mainly a β-strand conformation with spectra typical of porins. We studied the channel-forming properties of proteins by reconstitution into artificial lipid bilayers. In these conditions, CarO induced ion channels with a conductance value of 110 pS in 1 M KCl, whereas the Omp25 protein did not form any channels, despite its suggested porin function. The pores formed by CarO showed a slight cationic selectivity and no voltage closure. No specific imipenem binding site was found in CarO, and this protein would rather form unspecific monomeric channels. PMID:16304148

  11. An Acinetobacter trimeric autotransporter adhesin reaped from cells exhibits its nonspecific stickiness via a highly stable 3D structure.

    PubMed

    Yoshimoto, Shogo; Nakatani, Hajime; Iwasaki, Keita; Hori, Katsutoshi

    2016-01-01

    Trimeric autotransporter adhesins (TAAs), cell surface proteins of Gram-negative bacteria, mediate bacterial adhesion to host cells and extracellular matrix proteins. However, AtaA, a TAA in the nonpathogenic Acinetobacter sp. strain Tol 5, shows nonspecific, high adhesiveness to abiotic material surfaces as well as to biotic surfaces. AtaA is a homotrimer of polypeptides comprising 3,630 amino acids and forms long nanofibers; therefore, it is too large and structurally complex to be produced as a recombinant protein. In this study, we isolated AtaA's passenger domain (AtaA PSD), which is translocated to the cell surface through the C-terminal transmembrane domain and exhibits biological functions, using a new method. We introduced a protease recognition site and reaped AtaA nanofibers 225 nm in length from the cell surface through proteolytic cleavage with a specific protease. Biochemical and biophysical analyses of the purified native AtaA PSD revealed that it has a stable structure under alkaline and acidic conditions. Temperatures above 80 °C, which disrupted AtaA's higher-order structure but maintained the full-length AtaA polypeptide, inactivated AtaA's nonspecific adhesiveness, suggesting that the stickiness of AtaA requires its 3D structure. This finding refutes the widespread but vague speculation that large unfolded polypeptides readily stick to various surfaces. PMID:27305955

  12. NDM-1-producing Acinetobacter baumannii ST85 now in Turkey, including one isolate from a Syrian refugee.

    PubMed

    Heydari, Farzad; Mammina, Caterina; Koksal, Fatih

    2015-09-01

    New Delhi metallo-β-lactamase-1 (NDM-1), an acquired class B carbapenemase, is a significant clinical threat owing to the extended hydrolysis of β-lactams including carbapenems. Here, to the best of our knowledge we describe for the first time in Turkey two NDM-1-producing Acinetobacter baumannii isolates recovered from intensive care unit patients. The presence of blaNDM-1 was detected by PCR and confirmed by sequencing. The clonal relationship was assessed by PFGE and multilocus sequence typing. Both isolates were positive for blaNDM-1 and were attributed with the sequence type 85. One isolate was from a Syrian refugee, whereas the second was from a patient who had never travelled outside Turkey. Our findings confirmed that the rapid spread of NDM-1-producing Gram-negative organisms could become a major challenge for the treatment and control of healthcare-associated infections in our geographical area. They suggest also that NDM-1-producing strains and/or their genetic determinants are probably being imported from Syria to neighbouring countries. PMID:26296677

  13. OXA-235, a Novel Class D β-Lactamase Involved in Resistance to Carbapenems in Acinetobacter baumannii

    PubMed Central

    Pérez-Llarena, Francisco J.; Zander, Esther; Fernández, Ana; Bou, Germán; Seifert, Harald

    2013-01-01

    We investigated the mechanism of carbapenem resistance in 10 Acinetobacter baumannii strains isolated from the United States and Mexico between 2005 and 2009. The detection of known metallo-β-lactamase or carbapenem-hydrolyzing oxacillinase (OXA) genes by PCR was negative. The presence of plasmid-encoded carbapenem resistance genes was investigated by transformation of A. baumannii ATCC 17978. Shotgun cloning experiments and sequencing were performed, followed by the expression of a novel β-lactamase in A. baumannii. Three novel OXA enzymes were identified, OXA-235 in 8 isolates and the amino acid variants OXA-236 (Glu173-Val) and OXA-237 (Asp208-Gly) in 1 isolate each. The deduced amino acid sequences shared 85% identity with OXA-134, 54% to 57% identities with the acquired OXA-23, OXA-24, OXA-58, and OXA-143, and 56% identity with the intrinsic OXA-51 and, thus, represent a novel subclass of OXA. The expression of OXA-235 in A. baumannii led to reduced carbapenem susceptibility, while cephalosporin MICs were unaffected. Genetic analysis revealed that blaOXA-235, blaOXA-236, and blaOXA-237 were bracketed between two ISAba1 insertion sequences. In addition, the presence of these acquired β-lactamase genes might result from a transposition-mediated mechanism. This highlights the propensity of A. baumannii to acquire multiple carbapenem resistance determinants. PMID:23439638

  14. An Acinetobacter trimeric autotransporter adhesin reaped from cells exhibits its nonspecific stickiness via a highly stable 3D structure

    PubMed Central

    Yoshimoto, Shogo; Nakatani, Hajime; Iwasaki, Keita; Hori, Katsutoshi

    2016-01-01

    Trimeric autotransporter adhesins (TAAs), cell surface proteins of Gram-negative bacteria, mediate bacterial adhesion to host cells and extracellular matrix proteins. However, AtaA, a TAA in the nonpathogenic Acinetobacter sp. strain Tol 5, shows nonspecific, high adhesiveness to abiotic material surfaces as well as to biotic surfaces. AtaA is a homotrimer of polypeptides comprising 3,630 amino acids and forms long nanofibers; therefore, it is too large and structurally complex to be produced as a recombinant protein. In this study, we isolated AtaA’s passenger domain (AtaA PSD), which is translocated to the cell surface through the C-terminal transmembrane domain and exhibits biological functions, using a new method. We introduced a protease recognition site and reaped AtaA nanofibers 225 nm in length from the cell surface through proteolytic cleavage with a specific protease. Biochemical and biophysical analyses of the purified native AtaA PSD revealed that it has a stable structure under alkaline and acidic conditions. Temperatures above 80 °C, which disrupted AtaA’s higher-order structure but maintained the full-length AtaA polypeptide, inactivated AtaA’s nonspecific adhesiveness, suggesting that the stickiness of AtaA requires its 3D structure. This finding refutes the widespread but vague speculation that large unfolded polypeptides readily stick to various surfaces. PMID:27305955

  15. First Genome Sequence of a Mexican Multidrug-Resistant Acinetobacter baumannii Isolate

    PubMed Central

    Graña-Miraglia, Lucía; Lozano, Luis; Castro-Jaimes, Semiramis; Cevallos, Miguel A.; Volkow, Patricia

    2016-01-01

    Acinetobacter baumannii has emerged as an important nosocomial pathogen worldwide. Here, we present the draft genome of the first multidrug-resistant A. baumannii isolate, sampled from a tertiary hospital in Mexico City. This genome will provide a starting point for studying the genomic diversity of this species in Mexico. PMID:27013043

  16. Is Aerosalization a Problem With Carbapenem-Resistant Acinetobacter baumannii in Thailand Hospital?

    PubMed Central

    Apisarnthanarak, Anucha; Tantajina, Ploenpit; Laovachirasuwan, Pornpimol; Weber, David J.; Singh, Nalini

    2016-01-01

    We evaluated the presence of air contamination with carbapenem-resistant Acinetobacter baumannii (CRAB) in medical units where patients with CRAB pneumonia were hospitalized, and in Obstetrics and Gynecology units with open-air ventilation in-patient settings. There was no evidence of CRAB contamination in either of the units. PMID:27419187

  17. Is Aerosalization a Problem With Carbapenem-Resistant Acinetobacter baumannii in Thailand Hospital?

    PubMed

    Apisarnthanarak, Anucha; Tantajina, Ploenpit; Laovachirasuwan, Pornpimol; Weber, David J; Singh, Nalini

    2016-09-01

    We evaluated the presence of air contamination with carbapenem-resistant Acinetobacter baumannii (CRAB) in medical units where patients with CRAB pneumonia were hospitalized, and in Obstetrics and Gynecology units with open-air ventilation in-patient settings. There was no evidence of CRAB contamination in either of the units. PMID:27419187

  18. Draft Genome Sequence of Acinetobacter johnsonii MB44, Exhibiting Nematicidal Activity against Caenorhabditis elegans

    PubMed Central

    Tian, Shijing; Ali, Muhammad; Xie, Li

    2016-01-01

    Acinetobacter johnsonii MB44 was isolated from a frost-plant-tissue sample, which showed noteworthy nematicidal activity against the model organism Caenorhabditis elegans. Here, we report the 3.4 Mb draft genome of A. johnsonii MB44, which will help in understanding the molecular mechanism of its ability to infect nematodes. PMID:26893438

  19. First Identification of OXA-72 Carbapenemase from Acinetobacter pittii in Colombia

    PubMed Central

    Montealegre, Maria Camila; Maya, Juan José; Correa, Adriana; Espinal, Paula; Mojica, Maria F.; Ruiz, Sory J.; Rosso, Fernando; Vila, Jordi; Quinn, John P.

    2012-01-01

    OXA-72 has been reported in few countries around the world. We report the first case in Colombia in an Acinetobacter pittii clinical isolate. The arrival of a new OXA, into a country with high endemic resistance, poses a significant threat, especially because the potential for widespread dissemination is considerable. PMID:22508295

  20. Whole-Genome Sequence of a Multidrug-Resistant Clinical Isolate of Acinetobacter lwoffii▿

    PubMed Central

    Hu, Yongfei; Zhang, Wei; Liang, Hui; Liu, Liping; Peng, Guojun; Pan, Yuanlong; Yang, Xi; Zheng, Beiwen; Gao, George F.; Zhu, Baoli; Hu, Hongyan

    2011-01-01

    Acinetobacter lwoffii has been considered an opportunistic pathogen that can cause nosocomial infections in humans. Here, we present the genome sequence of A. lwoffii WJ10621, a multidrug-resistant clinical isolate that carries a plasmid with the NDM-1 resistance gene. PMID:21742884

  1. Whole-Genome Sequencing Elucidates Epidemiology of Nosocomial Clusters of Acinetobacter baumannii.

    PubMed

    Willems, Stefanie; Kampmeier, Stefanie; Bletz, Stefan; Kossow, Annelene; Köck, Robin; Kipp, Frank; Mellmann, Alexander

    2016-09-01

    We characterized two epidemiologically similar Acinetobacter baumannii clusters from two separate intensive care units (ICU) using core genome multilocus sequence typing. Clonal spread was confirmed in ICU-1 (12 of 14 isolates shared genotypes); in ICU-2, all genotypes (13 isolates) were diverse, thus excluding transmissions and enabling adequate infection control measures. PMID:27358465

  2. Identification and analysis of polyaromatic hydrocarbons (PAHs)--biodegrading bacterial strains from refinery soil of India.

    PubMed

    Chaudhary, Priyanka; Sahay, Harmesh; Sharma, Richa; Pandey, Alok Kumar; Singh, Shashi Bala; Saxena, A K; Nain, Lata

    2015-06-01

    Polyaromatic hydrocarbons (PAHs) utilizing bacteria were isolated from soils of seven sites of Mathura refinery, India. Twenty-six bacterial strains with different morphotypes were isolated. These strains were acclimatized to utilize a mixture of four polycyclic aromatic hydrocarbons, i.e., anthracene, fluorene, phenanthrene, and pyrene, each at 50 mg/L concentration as sole carbon source. Out of total isolates, 15 potent isolates were subjected to 16S rDNA sequencing and identified as a member of diverse genera, i.e., Bacillus, Acinetobacter, Stenotrophomonas, Alcaligenes, Lysinibacillus, Brevibacterium, Serratia, and Streptomyces. Consortium of four promising isolates (Acinetobacter, Brevibacterium, Serratia, and Streptomyces) were also investigated for bioremediation of PAH mixture. This consortium was proved to be efficient PAH degrader resulting in 40-70 % degradation of PAH within 7 days. Results of this study indicated that these genera may play an active role in bioremediation of PAHs. PMID:26026847

  3. Resistant mechanisms and molecular epidemiology of imipenem-resistant Acinetobacter baumannii.

    PubMed

    Xiao, Shu-Zhen; Chu, Hai-Qing; Han, Li-Zhong; Zhang, Zhe-Min; Li, Bing; Zhao, Lan; Xu, Liyun

    2016-09-01

    The aim of the study was to investigate the resistant mechanisms and homology of imipenem-resistant Acinetobacter baumannii (A. baumannii). A total of 46 non-duplicate imipenem‑resistant A. baumannii clinical isolates were collected from three tertiary hospitals between July, 2011 and June, 2012. The minimal inhibitory concentrations (MICs) of antimicrobial agents were determined using the agar dilution method. Phenylalanine‑arginine β-naphthylamide was used to detect the presence of the efflux pump-mediated resistant mechanism. Polymerase chain reaction was employed to amplify genes associated with drug resistance, including β‑lactamase genes, efflux pump genes and outer membrane protein gene CarO. A few amplicons were randomly selected and sequenced. Multilocus sequence analysis (MLST) was employed in typing A. baumanni. A. baumannii was resistant to imipenem, simultaneously showing resistance to several other antimicrobials. In addtition, 13 A. baumannii were found to mediate drug resistance through operation of the efflux pump. Of the various drug resistance genes tested, blaOXA‑51 was present in 46 isolates, blaOXA‑23 gene was present in 44 isolates and blaNDM gene was found in only one strain. Other drug resistant‑associated genes, including blaKPC, blaIMP, blaOXA-24, blaOXA‑58, blaSHV, blaGIM and blaVIM were not detected. Mutation of adeS and outer membrane protein gene CarO were found in a few of the imipenem‑resistant isolates. The MLST analysis revealed that all 46 clinical isolates were clustered into 11 genotypes and the most frequent genotype was ST208. In conclusion, β‑lactamase genes, genes involved in efflux pump and mutation of outer membrane protein encoding gene may be important in mediating imipenem resistance in A. baumannii. Of the 11 different genotypes, ST11 was shared by the majority of A. baumannii, which may be due to horizontal transfer of patients from hospitals. PMID:27485638

  4. Visual Evidence of Horizontal Gene Transfer between Plants and Bacteria in the Phytosphere of Transplastomic Tobacco▿ †

    PubMed Central

    Pontiroli, Alessandra; Rizzi, Aurora; Simonet, Pascal; Daffonchio, Daniele; Vogel, Timothy M.; Monier, Jean-Michel

    2009-01-01

    Plant surfaces, colonized by numerous and diverse bacterial species, are often considered hot spots for horizontal gene transfer (HGT) between plants and bacteria. Plant DNA released during the degradation of plant tissues can persist and remain biologically active for significant periods of time, suggesting that soil or plant-associated bacteria could be in direct contact with plant DNA. In addition, nutrients released during the decaying process may provide a copiotrophic environment conducive for opportunistic microbial growth. Using Acinetobacter baylyi strain BD413 and transplastomic tobacco plants harboring the aadA gene as models, the objective of this study was to determine whether specific niches could be shown to foster bacterial growth on intact or decaying plant tissues, to develop a competence state, and to possibly acquire exogenous plant DNA by natural transformation. Visualization of HGT in situ was performed using A. baylyi strain BD413(rbcL-ΔPaadA::gfp) carrying a promoterless aadA::gfp fusion. Both antibiotic resistance and green fluorescence phenotypes were restored in recombinant bacterial cells after homologous recombination with transgenic plant DNA. Opportunistic growth occurred on decaying plant tissues, and a significant proportion of the bacteria developed a competence state. Quantification of transformants clearly supported the idea that the phytosphere constitutes a hot spot for HGT between plants and bacteria. The nondisruptive approach used to visualize transformants in situ provides new insights into environmental factors influencing HGT for plant tissues. PMID:19329660

  5. Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco.

    PubMed

    Pontiroli, Alessandra; Rizzi, Aurora; Simonet, Pascal; Daffonchio, Daniele; Vogel, Timothy M; Monier, Jean-Michel

    2009-05-01

    Plant surfaces, colonized by numerous and diverse bacterial species, are often considered hot spots for horizontal gene transfer (HGT) between plants and bacteria. Plant DNA released during the degradation of plant tissues can persist and remain biologically active for significant periods of time, suggesting that soil or plant-associated bacteria could be in direct contact with plant DNA. In addition, nutrients released during the decaying process may provide a copiotrophic environment conducive for opportunistic microbial growth. Using Acinetobacter baylyi strain BD413 and transplastomic tobacco plants harboring the aadA gene as models, the objective of this study was to determine whether specific niches could be shown to foster bacterial growth on intact or decaying plant tissues, to develop a competence state, and to possibly acquire exogenous plant DNA by natural transformation. Visualization of HGT in situ was performed using A. baylyi strain BD413(rbcL-DeltaPaadA::gfp) carrying a promoterless aadA::gfp fusion. Both antibiotic resistance and green fluorescence phenotypes were restored in recombinant bacterial cells after homologous recombination with transgenic plant DNA. Opportunistic growth occurred on decaying plant tissues, and a significant proportion of the bacteria developed a competence state. Quantification of transformants clearly supported the idea that the phytosphere constitutes a hot spot for HGT between plants and bacteria. The nondisruptive approach used to visualize transformants in situ provides new insights into environmental factors influencing HGT for plant tissues. PMID:19329660

  6. Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater.

    PubMed

    Bhattacharya, Amrik; Gupta, Anshu

    2013-09-01

    Present work demonstrates Cr (VI) detoxification and resistance mechanism of a newly isolated strain (B9) of Acinetobacter sp. Bioremediation potential of the strain B9 is shown by simultaneous removal of major heavy metals including chromium from heavy-metals-rich metal finishing industrial wastewater. Strain B9 tolerate up to 350 mg L(-1) of Cr (VI) and also shows level of tolerance to Ni (II), Zn (II), Pb (II), and Cd (II). The strain was capable of reducing 67 % of initial 7.0 mg L(-1) of Cr (VI) within 24 h of incubation, while in presence of Cu ions 100 % removal of initial 7.0 and 10 mg L(-1) of Cr (VI) was observed with in 24 h. pH in the range of 6.0-8.0 and inoculum size of 2 % (v/v) were determined to be optimum for dichromate reduction. Fourier transform infrared spectroscopy and transmission electron microscopy studies suggested absorption or intracellular accumulation and that might be one of the major mechanisms behind the chromium resistance by strain B9. Scanning electron microscopy showed morphological changes in the strain due to chromium stress. Relevance of the strain for treatment of heavy-metals-rich industrial wastewater resulted in 93.7, 55.4, and 68.94 % removal of initial 30 mg L(-1) Cr (VI), 246 mg L(-1) total Cr, and 51 mg L(-1) Ni, respectively, after 144 h of treatment in a batch mode. PMID:23619927

  7. Monitoring Precursor 16S rRNAs of Acinetobacter spp. in Activated Sludge Wastewater Treatment Systems

    PubMed Central

    Oerther, Daniel B.; Pernthaler, Jakob; Schramm, Andreas; Amann, Rudolf; Raskin, Lutgarde

    2000-01-01

    Recently, Cangelosi and Brabant used oligonucleotide probes targeting the precursor 16S rRNA of Escherichia coli to demonstrate that the levels of precursor rRNA were more sensitive to changes in growth phase than the levels of total rRNA (G. A. Cangelosi and W. H. Brabant, J. Bacteriol. 179:4457–4463, 1997). In order to measure changes in the levels of precursor rRNA in activated sludge systems, we designed oligonucleotide probes targeting the 3′ region of the precursor 16S rRNA of Acinetobacter spp. We used these probes to monitor changes in the level of precursor 16S rRNA during batch growth of Acinetobacter spp. in Luria-Bertani (LB) medium, filtered wastewater, and in lab- and full-scale wastewater treatment systems. Consistent with the previous reports for E. coli, results obtained with membrane hybridizations and fluorescence in situ hybridizations with Acinetobacter calcoaceticus grown in LB medium showed a more substantial and faster increase in precursor 16S rRNA levels compared to the increase in total 16S rRNA levels during exponential growth. Diluting an overnight culture of A. calcoaceticus grown in LB medium with filtered wastewater resulted in a pattern of precursor 16S rRNA levels that appeared to follow diauxic growth. In addition, fluorescence in situ hybridizations with oligonucleotide probes targeting total 16S rRNA and precursor 16S rRNA showed that individual cells of A. calcoaceticus expressed highly variable levels of precursor 16S rRNA when adapting from LB medium to filtered sewage. Precursor 16S rRNA levels of Acinetobacter spp. transiently increased when activated sludge was mixed with influent wastewater in lab- and full-scale wastewater treatment systems. These results suggest that Acinetobacter spp. experience a change in growth activity within wastewater treatment systems. PMID:10788395

  8. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1997-01-01

    Logarithmic strain is the preferred measure of strain used by materials scientists, who typically refer to it as the "true strain." It was Nadai who gave it the name "natural strain," which seems more appropriate. This strain measure was proposed by Ludwik for the one-dimensional extension of a rod with length l. It was defined via the integral of dl/l to which Ludwik gave the name "effective specific strain." Today, it is after Hencky, who extended Ludwik's measure to three-dimensional analysis by defining logarithmic strains for the three principal directions.

  9. Efficacy of Lysophosphatidylcholine in Combination with Antimicrobial Agents against Acinetobacter baumannii in Experimental Murine Peritoneal Sepsis and Pneumonia Models.

    PubMed

    Parra Millán, R; Jiménez Mejías, M E; Sánchez Encinales, V; Ayerbe Algaba, R; Gutiérrez Valencia, A; Pachón Ibáñez, M E; Díaz, C; Pérez Del Palacio, J; López Cortés, L F; Pachón, J; Smani, Y

    2016-08-01

    Immune response stimulation to prevent infection progression may be an adjuvant to antimicrobial treatment. Lysophosphatidylcholine (LPC) is an immunomodulator involved in immune cell recruitment and activation. In this study, we aimed to evaluate the efficacy of LPC in combination with colistin, tigecycline, or imipenem in experimental murine models of peritoneal sepsis and pneumonia. We used Acinetobacter baumannii strain Ab9, which is susceptible to colistin, tigecycline, and imipenem, and multidrug-resistant strain Ab186, which is susceptible to colistin and resistant to tigecycline and imipenem. Pharmacokinetic and pharmacodynamic parameters for colistin, tigecycline, and imipenem and the 100% minimal lethal dose (MLD100) were determined for both strains. The therapeutic efficacies of LPC, colistin (60 mg/kg of body weight/day), tigecycline (10 mg/kg/day), and imipenem (180 mg/kg/day), alone or in combination, were assessed against Ab9 and Ab186 at the MLD100 in murine peritoneal sepsis and pneumonia models. The levels of pro- and anti-inflammatory cytokines, i.e., tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10), were determined by enzyme-linked immunosorbent assay (ELISA) for the same experimental models after inoculating mice with the MLD of both strains. LPC in combination with colistin, tigecycline, or imipenem markedly enhanced the bacterial clearance of Ab9 and Ab186 from the spleen and lungs and reduced bacteremia and mouse mortality rates (P < 0.05) compared with those for colistin, tigecycline, and imipenem monotherapies. Moreover, at 4 h post-bacterial infection, Ab9 induced higher TNF-α and lower IL-10 levels than those with Ab186 (4 μg/ml versus 3 μg/ml [P < 0.05] and 2 μg/ml versus 3.4 μg/ml [P < 0.05], respectively). LPC treatment combined with colistin, tigecycline, or imipenem modestly reduced the severity of infection by A. baumannii strains with different resistance phenotypes compared to LPC monotherapy in both

  10. Immunization with Lipopolysaccharide-Deficient Whole Cells Provides Protective Immunity in an Experimental Mouse Model of Acinetobacter baumannii Infection

    PubMed Central

    García-Quintanilla, Meritxell; Pulido, Marina R.; Pachón, Jerónimo; McConnell, Michael J.

    2014-01-01

    The increasing clinical importance of infections caused by multidrug resistant Acinetobacter baumannii warrants the development of novel approaches for prevention and treatment. In this context, vaccination of certain patient populations may contribute to reducing the morbidity and mortality caused by this pathogen. Vaccines against Gram-negative bacteria based on inactivated bacterial cells are highly immunogenic and have been shown to produce protective immunity against a number of bacterial species. However, the high endotoxin levels present in these vaccines due to the presence of lipopolysaccharide complicates their use in human vaccination. In the present study, we used a laboratory-derived strain of A. baumannii that completely lacks lipopolysaccharide due to a mutation in the lpxD gene (IB010), one of the genes involved in the first steps of lipopolysaccharide biosynthesis, for vaccination. We demonstrate that IB010 has greatly reduced endotoxin content (<1.0 endotoxin unit/106 cells) compared to wild type cells. Immunization with formalin inactivated IB010 produced a robust antibody response consisting of both IgG1 and IgG2c subtypes. Mice immunized with IB010 had significantly lower post-infection tissue bacterial loads and significantly lower serum levels of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6 compared to control mice in a mouse model of disseminated A. baumannii infection. Importantly, immunized mice were protected from infection with the ATCC 19606 strain and an A. baumannii clinical isolate. These data suggest that immunization with inactivated A. baumannii whole cells deficient in lipopolysaccharide could serve as the basis for a vaccine for the prevention of infection caused by A. baumannii. PMID:25485716

  11. Outbreaks of Imipenem Resistant Acinetobacter Baumannii Producing OXA-23 β-Lactamase in a Tertiary Care Hospital in Korea

    PubMed Central

    Yang, Hee Young; Suh, Jin Tae; Lee, Kyeong Min

    2009-01-01

    Purpose Since November 2006, imipenem-resistant Acinetobacter baumannii isolates have increased in Kyung Hee University Hospital in Seoul, Korea. The purpose of this study was to determine the genetic basis and molecular epidemiology of outbreak isolates. Materials and Methods Forty-nine non-repetitive isolates of the 734 IRAB strains were investigated in order to determine their characteristics. The modified Hodge and the ethylenediaminetetraacetic acid (EDTA)-disk synergy test were performed for the screening of carbapenemase and metallo-β-lactamase production. Multiplex polymerase chain reaction (PCR) assays were performed for the detection of genes encoding for OXA-23-like, OXA-24-like, OXA-58-like and OXA-51-like carbapenemase. Pulsed-field gel electrophoresis (PFGE) was performed for strain identification. Results All isolates showed 100% resistance to ciprofloxacin and gentamicin, 97.9% resistance to cefepime, piperacillin/tazobactam, aztreonam, ceftazidime and piperacillin, 93.9% resistance to tobramycin and 57.1% resistance to amikacin. All of the 49 isolates (100%) showed positive results in the modified Hodge test and negative results in the EDTA-disk synergy test. They all (100%) possessed the encoding gene for an intrinsic OXA-51-like carbapenemase and an acquired OXA-23-like carbapenemase in the multiplex PCR assay. PFGE patterns revealed that all isolates were clonally related from A1 to A14. Conclusion It is concluded that all of the 49 IRAB isolates acquired resistance to imipenem by producing OXA-23 carbapenemase and they might have originated from a common source. PMID:20046415

  12. Contribution of Resistance-Nodulation-Cell Division Efflux Systems to Antibiotic Resistance and Biofilm Formation in Acinetobacter baumannii

    PubMed Central

    Yoon, Eun-Jeong; Nait Chabane, Yassine; Goussard, Sylvie; Snesrud, Erik; Courvalin, Patrice; Dé, Emmanuelle

    2015-01-01

    ABSTRACT Acinetobacter baumannii is a nosocomial pathogen of increasing importance due to its multiple resistance to antibiotics and ability to survive in the hospital environment linked to its capacity to form biofilms. To fully characterize the contribution of AdeABC, AdeFGH, and AdeIJK resistance-nodulation-cell division (RND)-type efflux systems to acquired and intrinsic resistance, we constructed, from an entirely sequenced susceptible A. baumannii strain, a set of isogenic mutants overexpressing each system following introduction of a point mutation in their cognate regulator or a deletion for the pump by allelic replacement. Pairwise comparison of every derivative with the parental strain indicated that AdeABC and AdeFGH are tightly regulated and contribute to acquisition of antibiotic resistance when overproduced. AdeABC had a broad substrate range, including β-lactams, fluoroquinolones, tetracyclines-tigecycline, macrolides-lincosamides, and chloramphenicol, and conferred clinical resistance to aminoglycosides. Importantly, when combined with enzymatic resistance to carbapenems and aminoglycosides, this pump contributed in a synergistic fashion to the level of resistance of the host. In contrast, AdeIJK was expressed constitutively and was responsible for intrinsic resistance to the same major drug classes as AdeABC as well as antifolates and fusidic acid. Surprisingly, overproduction of AdeABC and AdeIJK altered bacterial membrane composition, resulting in decreased biofilm formation but not motility. Natural transformation and plasmid transfer were diminished in recipients overproducing AdeABC. It thus appears that alteration in the expression of efflux systems leads to multiple changes in the relationship between the host and its environment, in addition to antibiotic resistance. PMID:25805730

  13. Novel Variants of AbaR Resistance Islands with a Common Backbone in Acinetobacter baumannii Isolates of European Clone II

    PubMed Central

    Povilonis, Justas; Sužiedėlienė, Edita

    2012-01-01

    In this study, the genetic organization of three novel genomic antibiotic resistance islands (AbaRs) in Acinetobacter baumannii isolates belonging to group of European clone II (EC II) comM integrated sequences of 18-, 21-, and 23-kb resistance islands were determined. These resistance islands carry the backbone of AbaR-type transposon structures, which are composed of the transposition module coding for potential transposition proteins and other genes coding for the intact universal stress protein (uspA), sulfate permease (sul), and proteins of unknown function. The antibiotic resistance genes strA, strB, tetB, and tetR and insertion sequence CR2 element were found to be inserted into the AbaR transposons. GenBank homology searches indicated that they are closely related to the AbaR sequences found integrated in comM in strains of EC II (A. baumannii strains 1656-2 and TCDC-AB0715) and AbaR4 integrated in another location of A. baumannii AB0057 (EC I). All of the AbaRs showed structural similarity to the previously described AbaR4 island and share a 12,008-bp backbone. AbaRs contain Tn1213, Tn2006, and the multiple fragments which could be derived from transposons Tn3, Tn10, Tn21, Tn1000, Tn5393, and Tn6020, the insertion sequences IS26, ISAba1, ISAba14, and ISCR2, and the class 1 integron. Moreover, chromosomal DNA was inserted into distinct regions of the AbaR backbone. Sequence analysis suggested that the AbaR-type transposons have evolved through insertions, deletions, and homologous recombination. AbaR islands, sharing the core structure similar to AbaR4, appeared to be distributed in isolates of EC I and EC II via integration into distinct genomic sites, i.e., pho and comM, respectively. PMID:22290980

  14. ACINETOBACTER SPP.: DISTINCT MORPHOLOGY ON EOSIN METHYLENE BLUE AGAR AS AN AID TO IDENTIFICATION IN DRINKING WATER

    EPA Science Inventory

    'Acinetobacter calcoaceticus', frequently found in drinking waters and implicated in nosocomial infections, was presumptively identified by its tiny, blue colonial appearance on Levine eosin methylene blue agar. All of the 33 isolates from drinking water showing this distinctive ...

  15. Colistin and tigecycline for management of external ventricular device-related ventriculitis due to multidrug-resistant Acinetobacter baumannii.

    PubMed

    Shrestha, Gentle Sunder; Tamang, Sushil; Paneru, Hem Raj; Shrestha, Pramesh Sunder; Keyal, Niraj; Acharya, Subhash Prasad; Marhatta, Moda Nath; Shilpakar, Sushil

    2016-01-01

    Acinetobacter baumannii is an important cause of nosocomial ventriculitis associated with external ventricular device (EVD). It is frequently multidrug resistant (MDR), carries a poor outcome, and is difficult to treat. We report a case of MDR Acinetobacter ventriculitis treated with intravenous and intraventricular colistin together with intravenous tigecycline. The patient developed nephrotoxicity and poor neurological outcome despite microbiological cure. Careful implementation of bundle of measures to minimize EVD-associated ventriculitis is valuable. PMID:27365967

  16. Colistin and tigecycline for management of external ventricular device-related ventriculitis due to multidrug-resistant Acinetobacter baumannii

    PubMed Central

    Shrestha, Gentle Sunder; Tamang, Sushil; Paneru, Hem Raj; Shrestha, Pramesh Sunder; Keyal, Niraj; Acharya, Subhash Prasad; Marhatta, Moda Nath; Shilpakar, Sushil

    2016-01-01

    Acinetobacter baumannii is an important cause of nosocomial ventriculitis associated with external ventricular device (EVD). It is frequently multidrug resistant (MDR), carries a poor outcome, and is difficult to treat. We report a case of MDR Acinetobacter ventriculitis treated with intravenous and intraventricular colistin together with intravenous tigecycline. The patient developed nephrotoxicity and poor neurological outcome despite microbiological cure. Careful implementation of bundle of measures to minimize EVD-associated ventriculitis is valuable. PMID:27365967

  17. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  18. Nosocomial Infection by Sequence Type 357 Multidrug-Resistant Acinetobacter baumannii Isolates in a Neonatal Intensive Care Unit in Daejeon, Korea

    PubMed Central

    Sung, Ji Youn; Cho, Hye Hyun; Kwon, Kye Chul

    2013-01-01

    Acinetobacter baumannii is an important microorganism responsible for a number of nosocomial outbreaks, in particular, in intensive care units (ICUs). We investigated a nosocomial infection caused by multidrug-resistant (MDR) A. baumannii in a neonatal intensive care unit (NICU) in Korea. A. baumannii isolates were characterized using Etest (AB Biodisk, Sweden), two multiplex PCR assays, and multilocus sequence typing (MLST) scheme. PCR and PCR mapping experiments were performed for detecting and characterizing the determinants of antimicrobial resistance. Eight strains isolated from an NICU belonged to European (EU) clone II and revealed only one sequence type (ST), namely, ST357. All the isolates were susceptible to imipenem but were resistant to amikacin, gentamicin, ceftazidime, cefepime, and ciprofloxacin. To the best of our knowledge, this is the first report of a nosocomial infection in an NICU in Korea caused by ST357 MDR/carbapenem-susceptible A. baumannii strains. This result demonstrates that nosocomial outbreaks of MDR/carbapenem-susceptible strains as well as MDR/carbapenem-resistant isolates may occur in NICUs. PMID:23826565

  19. Prevalence of Pseudomonas aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with chronic periodontal infection.

    PubMed

    Souto, Renata; Silva-Boghossian, Carina M; Colombo, Ana Paula Vieira

    2014-01-01

    P. aeruginosa and Acinetobacter spp. are important pathogens associated with late nosocomial pneumonia in hospitalized and institutionalized individuals. The oral cavity may be a major source of these respiratory pathogens, particularly in the presence of poor oral hygiene and periodontal infection. This study investigated the prevalence of P. aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with periodontal disease or health. Samples were obtained from 55 periodontally healthy (PH) and 169 chronic periodontitis (CP) patients. DNA was obtained from the samples and detection of P. aeruginosa and Acinetobacter spp. was carried out by multiplex and nested PCR. P. aeruginosa and Acinetobacter spp. were detected in 40% and 45% of all samples, respectively. No significant differences in the distribution of these microorganisms between men and women, subgingival biofilm and saliva samples, patients ≤ 35 and > 35 years of age, and smokers and non-smokers were observed regardless periodontal status (p > 0.05). In contrast, the frequencies of P. aeruginosa and Acinetobacter spp. in saliva and biofilm samples were significantly greater in CP than PH patients (p < 0.01). Smokers presenting P. aeruginosa and high frequencies of supragingival plaque were more likely to present CP than PH. P. aeruginosa and Acinetobacter spp. are frequently detected in the oral microbiota of CP. Poor oral hygiene, smoking and the presence of P. aeruginosa are strongly associated with periodontitis. PMID:25242933

  20. Detection of AdeABC efflux pump genes in tetracycline-resistant Acinetobacter baumannii isolates from burn and ventilator-associated pneumonia patients

    PubMed Central

    Beheshti, Maryam; Talebi, Malihe; Ardebili, Abdollah; Bahador, Abbas; Lari, Abdolaziz Rastegar

    2014-01-01

    Purpose: Acinetobacter baumannii is the most prevalent nosocomial pathogen which have been emerged in the past three decades worldwide. The aim of this study was to assess the distribution of the AdeABC efflux pump genes, associated with tetracycline resistance in Acinetobacter baumannii isolates collected from burn infection and Ventilator Associated Pneumonia (VAP). Materials and Methods: Ninety-eight A. baumannii isolates were collected from two different hospitals in Tehran, Iran. Tetracycline susceptibility testing was performed by disk diffusion and agar dilution methods according to the CLSI guidelines. The presence of adeSR, adeB, drug efflux system genes in resistant isolates was assessed by polymerase chain reaction (PCR). Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was used as a chemical inhibitor agent to assess the contribution of AdeABC efflux pump in tetracycline resistance isolates. Results: Approximately 48% (47 out of 98) of isolates showed resistance to tetracycline which 14 (14.2%) isolates were corresponded to burn infection and the remaining 33 (33.8%) strains were isolated from VAP. All tetracycline resistant isolates have AdeABC in PCR assay. The reduction of tetracycline MICs by using 50 μg/ml CCCP were as follows: in 18 isolates 2-4 fold reduction in MICs, 26 isolates showed 8 fold reduction,1 isolate showed 16 fold, 1 isolate showed 32 fold and the remaining 1 isolate showed 128 fold reduction in MICs. Conclusion: The results showed significant correlation between tetracycline resistance and AdeABC efflux pump genes in resistant A. baumannii isolates. PMID:25400404

  1. Purification, biochemical characterization, and implications of an alkali-tolerant catalase from the spacecraft-associated and oxidation-resistant Acinetobacter gyllenbergii 2P01AA.

    PubMed

    Muster, N; Derecho, I; Dallal, F; Alvarez, R; McCoy, K B; Mogul, R

    2015-04-01

    Herein, we report on the purification, characterization, and sequencing of catalase from Acinetobacter gyllenbergii 2P01AA, an extremely oxidation-resistant bacterium that was isolated from the Mars Phoenix spacecraft assembly facility. The Acinetobacter are dominant members of the microbial communities that inhabit spacecraft assembly facilities and consequently may serve as forward contaminants that could impact the integrity of future life-detection missions. Catalase was purified by using a 3-step chromatographic procedure, where mass spectrometry provided respective subunit and intact masses of 57.8 and 234.6 kDa, which were consistent with a small-subunit tetrameric catalase. Kinetics revealed an extreme pH stability with no loss in activity between pH 5 and 11.5 and provided respective kcat/Km and kcat values of ∼10(7) s(-1) M(-1) and 10(6) s(-1), which are among the highest reported for bacterial catalases. The amino acid sequence was deduced by in-depth peptide mapping, and structural homology suggested that the catalases from differing strains of A. gyllenbergii differ only at residues near the subunit interfaces, which may impact catalytic stability. Together, the kinetic, alkali-tolerant, and halotolerant properties of the catalase from A. gyllenbergii 2P01AA are significant, as they are consistent with molecular adaptations toward the alkaline, low-humidity, and potentially oxidizing conditions of spacecraft assembly facilities. Therefore, these results support the hypothesis that the selective pressures of the assembly facilities impact the microbial communities at the molecular level, which may have broad implications for future life-detection missions. PMID:25826195

  2. Distribution of Intrinsic Plasmid Replicase Genes and Their Association with Carbapenem-Hydrolyzing Class D β-Lactamase Genes in European Clinical Isolates of Acinetobacter baumannii▿

    PubMed Central

    Towner, Kevin J.; Evans, Benjamin; Villa, Laura; Levi, Katrina; Hamouda, Ahmed; Amyes, Sebastian G. B.; Carattoli, Alessandra

    2011-01-01

    Ninety-six genetically diverse multidrug-resistant clinical isolates of Acinetobacter baumannii from 25 hospitals in 17 European countries were screened by PCR for specific carbapenemase-hydrolyzing class D β-lactamase (CHDL) genes and by PCR-based replicon typing for the presence of 19 different plasmid replicase (rep) gene homology groups (GRs). Results were confirmed by DNA sequencing where necessary. All 96 isolates contained at least 1 (with a maximum of 4) of the 19 groups of rep genes. Groups detected were GR6 (repAci6; 93 isolates), GR2 (including repAci1 [67 isolates] and repAci2 [3 isolates]), GR16 (repApAB49; 12 isolates), GR12 (p2ABSDF0001; 10 isolates), GR3 (repAci3; 4 isolates), GR4 (repAci4; 3 isolates), GR10 (repAciX; 1 isolate), and GR14 (repp4AYE; 1 isolate). Variations in rep gene content were observed even among epidemiologically related isolates. Genes encoding OXA-58-like CHDLs (22 isolates) were associated with carriage of the repAci1, repAci3, repAci4, and repAciX genes, genes encoding OXA-40-like CHDLs (6 isolates) were associated with repAci2 and p2ABSDF0001, and genes encoding OXA-23-like CHDLs (8 isolates) were associated with repAci1. Most intrinsic Acinetobacter plasmids are non-self-transferable, but the almost ubiquitous repAci6 gene was strongly associated with a potential tra locus that could serve as a general system for plasmid mobilization and consequent horizontal transmission of plasmids and their associated antibiotic resistance genes among strains of A. baumannii. PMID:21300832

  3. Carbapenem Resistance in Acinetobacter baumannii and Other Acinetobacter spp. Causing Neonatal Sepsis: Focus on NDM-1 and Its Linkage to ISAba125

    PubMed Central

    Chatterjee, Somdatta; Datta, Saswati; Roy, Subhasree; Ramanan, Lavanya; Saha, Anindya; Viswanathan, Rajlakshmi; Som, Tapas; Basu, Sulagna

    2016-01-01

    Carbapenem-resistant determinants and their surrounding genetic structure were studied in Acinetobacter spp. from neonatal sepsis cases collected over 7 years at a tertiary care hospital. Acinetobacter spp. (n = 68) were identified by ARDRA followed by susceptibility tests. Oxacillinases, metallo-β-lactamases (MBLs), extended-spectrum β-lactamases and AmpCs, were detected phenotypically and/or by PCR followed by DNA sequencing. Transconjugants possessing the blaNDM−1(New Delhi metallo-β-lactamase) underwent further analysis for plasmids, integrons and associated genes. Genetic environment of the carbapenemases were studied by PCR mapping and DNA sequencing. Multivariate logistic regression was used to identify risk factors for sepsis caused by NDM-1-harboring organisms. A. baumannii (72%) was the predominant species followed by A. calcoaceticus (10%), A. lwoffii (6%), A. nosocomialis (3%), A. junni (3%), A. variabilis (3%), A. haemolyticus (2%), and 14TU (2%). Fifty six percent of the isolates were meropenem-resistant. Oxacillinases present were OXA-23-like, OXA-58-like and OXA-51-like, predominately in A. baumannii. NDM-1 was the dominant MBL (22%) across different Acinetobacter spp. Isolates harboring NDM-1 also possessed bla(VIM−2, PER−1, VEB−2, CTX−M−15), armA, aac(6′)Ib, aac(6′)Ib-cr genes. blaNDM−1was organized in a composite transposon between two copies of ISAba125 in the isolates irrespective of the species. Further, OXA-23-like gene and OXA-58-like genes were linked with ISAba1 and ISAba3 respectively. Isolates were clonally diverse. Integrons were variable in sequence but not associated with carbapenem resistance. Most commonly found genes in the 5′ and 3′conserved segment were aminoglycoside resistance genes (aadB, aadA2, aac4′), non-enzymatic chloramphenicol resistance gene (cmlA1g) and ADP-ribosylation genes (arr2, arr3). Outborn neonates had a significantly higher incidence of sepsis due to NDM-1 harboring isolates than

  4. Bacteremia due to Acinetobacter ursingii in infants: Reports of two cases

    PubMed Central

    Yakut, Nurhayat; Kepenekli, Eda Kadayifci; Karaaslan, Ayse; Atici, Serkan; Akkoc, Gulsen; Demir, Sevliya Ocal; Soysal, Ahmet; Bakir, Mustafa

    2016-01-01

    Acinetobacter ursingii is an aerobic, gram-negative, opportunistic microorganism which is rarely isolated among Acinetobacter species. We present two immunocompetent infants who developed bacteremia due to A. ursingii. The first patient is a two -month- old boy who had been hospitalized in pediatric surgery unit for suspected tracheo-esophageal fistula because of recurrent aspiration pneumonia unresponsive to antibiotic therapy. The second patient is a fourteen -month- old boy with prolonged vomiting and diarrhea. A. ursingii was isolated from their blood cultures. They were successfully treated with ampicillin-sulbactam. Although A. ursingii has recently been isolated from a clinical specimen; reports of infection with A. ursingii in children are rare. A. ursingii should be kept in mind as an opportunistic microorganism in children. PMID:27347282

  5. Toll-Like Receptor 9 Contributes to Defense against Acinetobacter baumannii Infection

    PubMed Central

    Noto, Michael J.; Boyd, Kelli L.; Burns, William J.; Varga, Matthew G.; Peek, Richard M.

    2015-01-01

    Acinetobacter baumannii is a common nosocomial pathogen capable of causing severe diseases associated with significant morbidity and mortality in impaired hosts. Pattern recognition receptors, such as the Toll-like receptors (TLRs), play a key role in pathogen detection and function to alert the immune system to infection. Here, we examine the role for TLR9 signaling in response to A. baumannii infection. In a murine model of A. baumannii pneumonia, TLR9−/− mice exhibit significantly increased bacterial burdens in the lungs, increased extrapulmonary bacterial dissemination, and more severe lung pathology compared with those in wild-type mice. Following systemic A. baumannii infection, TLR9−/− mice have significantly increased bacterial burdens in the lungs, as well as decreased proinflammatory cytokine and chemokine production. These results demonstrate that TLR9-mediated pathogen detection is important for host defense against the opportunistic pathogen Acinetobacter baumannii. PMID:26238