Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric
2006-07-01
In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.
Optimization of the acoustic absorption coefficients of certain functional absorbents
NASA Technical Reports Server (NTRS)
Pocsa, V.; Biborosch, L.; Veres, A.; Halpert, E.; Lorian, R.; Botos, T.
1974-01-01
The sound absorption coefficients of some functional absorbents (mineral wool plates) are determined by the reverberation chamber method. The influence of the angle of inclination of the sound absorbing material with respect to the surface to be treated is analyzed as well as the influence of the covering index, defined as the ratio of the designed area of a plate and the area of the treated surface belonging to another plate. As compared with the conventional method of applying sound-absorbing plates, the analyzed structures have a higher technological and economical efficiency. The optimum structure corresponds to an angle of inclination of 15 deg and a covering index of 0.8.
Measurement of Acoustic Attenuation and Absorption Coefficients using Thermometry
NASA Astrophysics Data System (ADS)
Morris, Hugh; Rivens, Ian; Shaw, Adam; ter Haar, Gail
2007-05-01
Accurate knowledge of both the attenuation and the absorption coefficient of tissue are required when planning an optimal high intensity focused ultrasound treatment. A novel technique for simple measurement of this parameters has been developed in which a thin-film thermocouple (TFT) is placed between two layers of tissue of different thicknesses. The sample can be rotated about an axis through the junction of the TFT so that it can be insonated from either side leaving the tissue adjacent to the junction unchanged, but changing the overlying thickness. The attenuation and absorption coefficients can be calculated from the heating curves measured in the two orientations. Experiments have been carried out in both tissue mimicking material (TMM) and in ex vivo liver tissue. Weakly focused transducers, resonant at 1.05 MHz, 2.4 MHz and 3.55 MHz were used at free-field spatial peak intensities of 9-14 W/cm2. The temperature rise was measured as a function of time using a TFT. These thermocouples are not subject to the viscous heating artefact that is common to other thermocouple devices and so are advantageous for this purpose. Alignment was achieved with a 3D automated gantry system, which was controlled with specialised software. Timing and data acquisition were also controlled with this software. All experiments were carried out in degassed water. Results for TMM and degassed excised bovine liver are presented.
Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V
2012-06-01
Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.
Effect of sealants of the sound absorption coefficients of acoustical friable insulating materials
NASA Astrophysics Data System (ADS)
Wayman, J. L.; Lory, M. K.
1984-10-01
Acoustical friable insulating materials (AFIM), which often in the past contained asbestos, have been used for sound control since the mid 1930's. Because of their widespread use and the ease of fiber dissemination, friable asbestos materials are considered to be the major source of asbestos fiber contamination in the indoor environment. Encapsulation of asbestos materials with a commercial sealant product is one of several methods used to control potential asbestos exposure in rooms. A sealant product that preserves most of the acoustical properties of the material is preferred in this usage. AFIM sample materials were treated with 6 types of sealants and the effects on normally incident absorption coefficients from 100 to 2500 Hz were measured using a fixed, dual-microphone technique. Penetrating type sealants were found to have a less detrimental effect on sound absorption than those of a bridging type.
Lee, Joong Seok; Kim, Yoon Young; Kim, Jung Soo; Kang, Yeon June
2008-04-01
Optimal shape design of a two-dimensional poroelastic acoustical foam is formulated as a topology optimization problem. For a poroelastic acoustical system consisting of an air region and a poroelastic foam region, two different physical regions are continuously changed in an iterative design process. To automatically account for the moving interfaces between two regions, we propose a new unified model to analyze the whole poroelastic acoustical foam system with one set of governing equations; Biot's equations are modified with a material property interpolation from a topology optimization method. With the unified analysis model, we carry out two-dimensional optimal shape design of a poroelastic acoustical foam by a gradient-based topology optimization setting. The specific objective is the maximization of the absorption coefficient in low and middle ranges of frequencies with different amounts of a poroelastic material. The performances of the obtained shapes are compared with those of well-known wedge shapes, and the improvement of absorption is physically interpreted.
Hoche, S; Hussein, M A; Becker, T
2015-03-01
The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations.
Measurement of acoustic absorption coefficient with phase-conjugate ultrasonic waves
NASA Astrophysics Data System (ADS)
Smagin, N. V.; Krutyansky, L. M.; Brysev, A. P.; Bunkin, F. V.
2011-07-01
Experimental results on measurements of the acoustic absorption coefficient in test objects that were obtained with two methods, i.e., a standard insert-substitution method and a modification thereof using phase-conjugate waves, are given. Samples of gelatin and biological tissue in vitro (porcine muscle fibers) were used as test objects. Gelatin objects were manufactured that were both homogeneous and with inhomogeneities in the form of a rough surface or inclusions (air bubbles) distributed over the volume. A rough surface leads mainly to phase distortions of a probe beam, while bubble inclusions cause additional field scattering. For all homogeneous samples, both compared methods produce identical results. In the case of inhomogeneous samples including biological tissues, absorption measurement by a standard method may lead to significant errors. It is demonstrated that the use of properties of phase-conjugate waves provides an opportunity to eliminate almost completely the measurement error connected with phase distortions and reduce the error in the case of a medium with scatterers.
Acoustic Absorption Characteristics of People.
ERIC Educational Resources Information Center
Kingsbury, H. F.; Wallace, W. J.
1968-01-01
The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…
Brillouin-scattering measurements of the acoustic absorption coefficient in liquid CS2
NASA Technical Reports Server (NTRS)
Coakley, R. W.; Detenbeck, R. W.
1975-01-01
High-resolution Brillouin spectra were recorded for light scattered at small angles from liquid CS2. The use of a single-mode He-Ne laser, locked in frequency to a Fabry-Perot interferometer, permitted measurements of line widths of the order of 10 MHz for frequencies in the range 300-1000 MHz. These measurements extend previous Brillouin line-width measurements at higher frequencies into the region where relaxation effects are dominant and connect the optical measurements with lower-frequency acoustical data.
Guo, Zijian; Hu, Song; Wang, Lihong V
2010-06-15
Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin, and it can be used to quantify the concentrations of nonfluorescent molecules. We propose a method to use acoustic spectra of photoacoustic signals to quantify the absolute optical absorption. This method is self-calibrating and thus insensitive to variations in the optical fluence. Factors such as system bandwidth and acoustic attenuation can affect the quantification but can be canceled by dividing the acoustic spectra measured at two optical wavelengths. Using optical-resolution photoacoustic microscopy, we quantified the absolute optical absorption of black ink samples with various concentrations. We also quantified both the concentration and oxygen saturation of hemoglobin in a live mouse in absolute units.
Acoustic absorption by sunspots
NASA Technical Reports Server (NTRS)
Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.
1987-01-01
The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.
Acoustic Absorption in Porous Materials
NASA Technical Reports Server (NTRS)
Kuczmarski, Maria A.; Johnston, James C.
2011-01-01
An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.
Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A
2009-09-30
A new method for measuring the local light absorption coefficient in turbid media, for example, biological tissues, is proposed. The method is based on the fact that the amplitude of the excited opto-acoustic (OA) signal is proportional to the absorbed laser power density (the product of the light absorption coefficient and the laser fluence) at the medium interface. In the first part of the paper, the influence of the laser beam diameter, the light absorption and reduced scattering coefficients on the maximal amplitude of the laser fluence at the laser beam axis in the near-surface layer of the turbid medium is studied by using the Monte-Carlo simulation. The conditions are predicted under which the amplitude of the OA signal detected in a transparent medium in contact with the scattering medium should remain proportional to the light absorption coefficient of the medium under study, when the scattering coefficient in it changes more than twice. The results of the numerical simulation are used for the theoretical substantiation of the OA method being proposed. (measurement of parametrs of laser radiation)
Phononic glass: a robust acoustic-absorption material.
Jiang, Heng; Wang, Yuren
2012-08-01
In order to achieve strong wide band acoustic absorption under high hydrostatic pressure, an interpenetrating network structure is introduced into the locally resonant phononic crystal to fabricate a type of phononic composite material called "phononic glass." Underwater acoustic absorption coefficient measurements show that the material owns high underwater sound absorption coefficients over 0.9 in 12-30 kHz. Moreover, the quasi-static compressive behavior shows that the phononic glass has a compressive strength over 5 MPa which is crucial for underwater applications.
Absorption Coefficient of Alkaline Earth Halides.
1980-04-01
levels . As a natural consequence, the magnitude of the absorption coefficient is the key parameter in selecting laser window materials. Over the past...of as can be achieved through improved crystal growing techniques and surface polishing. 2.5. Urbach’s Rule A central question for the development of...high absorption levels , inaccuracies progressively increasing with decreasing absorption level , a natural consequence of decreasing in instrumental
Anomalous absorption of laser light on ion acoustic fluctuations
NASA Astrophysics Data System (ADS)
Rozmus, Wojciech; Bychenkov, Valery Yu.
2016-10-01
Theory of laser light absorption due to ion acoustic turbulence (IAT) is discussed in high Z plasmas where ion acoustic waves are weakly damped. Our theory applies to the whole density range from underdense to critical density plasmas. It includes an absorption rate for the resonance anomalous absorption due to linear conversion of electromagnetic waves into electron plasma oscillations by the IAT near the critical density in addition to the absorption coefficient due to enhanced effective electron collisionality. IAT is driven by large electron heat flux through the return current instability. Stationary spectra of IAT are given by weak plasma turbulence theory and applied in description of the anomalous absorption in the inertial confinement fusion plasmas at the gold walls of a hohlraum. This absorption is anisotropic in nature due to IAT angular anisotropy and differs for p- and s-polarization of the laser radiation. Possible experiments which could identify the resonance anomalous absorption in a laser heated plasma are discussed.
Absorption coefficient instrument for turbid natural waters.
Friedman, E; Poole, L; Cherdak, A; Houghton, W
1980-05-15
An instrument has been developed that directly measures the multispectral absorption coefficient of turbid natural water. The design incorporates methods for compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in background light level. When used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
Optical absorption coefficients of pure water
NASA Astrophysics Data System (ADS)
Lu, Zheng; Zhao, Xianzhen; Fry, Edward S.
2002-10-01
The integrating cavity absorption meter(ICAM), which is independent of scattering effect, is used to measure the absolute values of small optical absorption coefficients of liquid. A modified ICAM is being used to measure the absorption of water in the wavelength range 300 to 700 nm. The ultrapure water produced by a two-stages water purification system reaches Type I quality. This is equal to or better than ASTM,CAP and NCCLS water quality standards. To avoid the fact that dissolved oxygen absorbs ultraviolet light due to the photochemical effect, the water sample is delivered through a nitrogen sealed system which will prevent the sample from contacting with oxygen. A compassion of our absorption spectrum with other existing data is given.
Absorption coefficient instrument for turbid natural waters
NASA Astrophysics Data System (ADS)
Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.
1980-05-01
The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
Absorption coefficient instrument for turbid natural waters
NASA Technical Reports Server (NTRS)
Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.
1980-01-01
The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
Absorption of surface acoustic waves by graphene
NASA Astrophysics Data System (ADS)
Zhang, S. H.; Xu, W.
2011-06-01
We present a theoretical study on interactions of electrons in graphene with surface acoustic waves (SAWs). We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAW absorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAW absorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram
2015-01-01
The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.
Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.
NASA Astrophysics Data System (ADS)
Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.
2007-12-01
aerosol Angstrom absorption exponents by linear regression over the entire UV-visible spectral range. These results are compared to results obtained from the absorbance measurements obtained in the field. The differences in calculated Angstrom absorption exponents between the field and laboratory measurements are attributed partly to the differences in time resolution of the sample collection resulting in heavier particle pileup on the filter surface of the 12-hour samples. Some differences in calculated results can also be attributed to the presence of narrow band absorbers below 400 nm that do not fall in the wavelengths covered by the 7 wavelengths of the aethalometer. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, "The determination of scattering and absorption coefficients of size-fractionated aerosols for radiative transfer calculations." Aerosol Sci. Technol., 34, 535-549, (2001). This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.
Reflection and Scattering of Acoustical Waves from a Discontinuity in Absorption
NASA Astrophysics Data System (ADS)
Jones, J. P.; Leeman, S.; Nolan, E.; Lee, D.
The reflection and transmission of a plane acoustical wave from a planar boundary at the interface between two homogeneous media of different acoustical properties is a classical problem in acoustics that has served as a basis for many developments in acoustics for over 100 years. This problem, detailed in virtually every textbook on acoustics, provides us with the acoustical analogue to Snell's Law in optics and gives us correspondingly simple results. Classical acoustics predicts that a reflection from a boundary occurs only if the characteristic acoustical impedances of the two media are different. Here we show that a reflection also occurs if the media have the same impedances but different absorption coefficients. Our analysis yields some surprising results. For example, a reflection will occur at a discontinuity in absorption even if the impedance is uniform and continuous across the interface. In addition, a discontinuity in impedance at an interface between two media that have constant and equal, but non-zero absorption, results in a reflection coefficient that is dependent on absorption as well as impedance. In general, reflection coefficients now become frequency dependent. To experimentally test our results, we measured the reflection at the interface between water and castor oil, two liquids with similar impedances but very different absorption coefficients. Measurement of the reflection coefficient between 1 and 50 MHz demonstrated a frequency dependence that was in good agreement with our analysis.
New acoustical technology of sound absorption based on reverse horn
NASA Astrophysics Data System (ADS)
Zhang, Yong Yan; Wu, Jiu Hui; Cao, Song Hua; Cao, Pei; Zhao, Zi Ting
2016-12-01
In this paper, a novel reverse horn’s sound-absorption mechanism and acoustic energy focusing mechanism for low-frequency broadband are presented. Due to the alternation of the reverse horn’s thickness, the amplitude of the acoustic pressure propagated in the structure changes, which results in growing energy focused in the edge and in the reverse horn’s tip when the characteristic length is equal to or less than a wavelength and the incident wave is compressed. There are two kinds of methods adopted to realize energy dissipation. On the one hand, sound-absorbing materials are added in incident direction in order to overcome the badness of the reverse horn’s absorption in high frequency and improve the overall high-frequency and low-frequency sound-absorption coefficients; on the other hand, adding mass and film in its tip could result in mechanical energy converting into heat energy due to the coupled vibration of mass and the film. Thus, the reverse horn with film in the tip could realize better sound absorption for low-frequency broadband. These excellent properties could have potential applications in the one-dimensional absorption wedge and for the control of acoustic wave.
Thin structured rigid body for acoustic absorption
NASA Astrophysics Data System (ADS)
Starkey, T. A.; Smith, J. D.; Hibbins, A. P.; Sambles, J. R.; Rance, H. J.
2017-01-01
We present a thin acoustic metamaterial absorber, comprised of only rigid metal and air, that gives rise to near unity absorption of airborne sound on resonance. This simple, easily fabricated, robust structure comprising a perforated metal plate separated from a rigid wall by a deeply subwavelength channel of air is an ideal candidate for a sound absorbing panel. The strong absorption in the system is attributed to the thermo-viscous losses arising from a sound wave guided between the plate and the wall, defining the subwavelength channel.
Absorption and impedance boundary conditions for phased geometrical-acoustics methods.
Jeong, Cheol-Ho
2012-10-01
Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been developed on which boundary condition produces accurate results. In this study, various boundary conditions in terms of normal, random, and field incidence absorption coefficients and normal incidence surface impedance are used in a phased beam tracing model, and the simulated results are validated with boundary element solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. Effects of the neglect of reflection phase shift are also investigated. It is concluded that the impedance, random incidence, and field incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials.
Determination of decay coefficients for combustors with acoustic absorbers
NASA Technical Reports Server (NTRS)
Mitchell, C. E.; Espander, W. R.; Baer, M. R.
1972-01-01
An analytical technique for the calculation of linear decay coefficients in combustors with acoustic absorbers is presented. Tuned circumferential slot acoustic absorbers were designed for the first three transverse modes of oscillation, and decay coefficients for these absorbers were found as a function of backing distance for seven different chamber configurations. The effectiveness of the absorbers for off-design values of the combustion response and acoustic mode is also investigated. Results indicate that for tuned absorbers the decay coefficient increases approximately as the cube of the backing distance. For most off-design situations the absorber still provides a damping effect. However, if an absorber designed for some higher mode of oscillation is used to damp lower mode oscillations, a driving effect is frequently found.
The experimental determination of atmospheric absorption from aircraft acoustic flight tests
NASA Technical Reports Server (NTRS)
Miller, R. L.; Oncley, P. B.
1971-01-01
A method for determining atmospheric absorption coefficients from acoustic flight test data is presented. Measurements from five series of acoustic flight tests were included in the study. The number of individual flights totaled 24: six Boeing 707 flights performed in May 1969 in connection with the turbofan nacelle modification program, eight flights from Boeing tests conducted during the same period, and 10 flights of the Boeing 747 airplane. The effects of errors in acoustic, meteorological, and aircraft performance and position measurements are discussed. Tabular data of the estimated sample variance of the data for each test are given for source directivity angles from 75 deg to 120 deg and each 1/3-octave frequency band. Graphic comparisons are made of absorption coefficients derived from ARP 866, using atmospheric profile data, with absorption coefficients determined by the experimental method described in the report.
Determination of optical absorption coefficient with focusing photoacoustic imaging.
Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R
2012-06-01
Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.
Effect of applied mechanical stress on absorption coefficient of compounds
Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.
2015-08-28
The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al{sub 2}O{sub 3}, CaCO{sub 3}, ZnO{sub 2}, SmO{sub 2} and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.
[Experimental determination of the absorption coefficients of biological tissues].
Kovtun, A V; Kondrat'ev, V S; Terekhov, D V
1980-01-01
Procedure is presented for studying the coefficient of biological tissue absorption of radiation with the wavelength lambda = 1.06 mkm. The absorption coefficient is determined by the temperature values of biological tissue experimentally measured with thermopairs. The coherent radiation current falls on the surface of biological tissue. A mathematical model is formulated for biological tissue heating with radiation. Solution of Furier equation obtained by means of Green function is given. Using the relationship found, the energy absorbed by the biological tissue was calculated and the absorption coefficient of radiation with lambda - 1.06 mkm was determined. The results were analysed and the error of the obtained values of absorption coefficients of biological tissues under study were determined.
Continuum Absorption Coefficient of Atoms and Ions
NASA Technical Reports Server (NTRS)
Armaly, B. F.
1979-01-01
The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.
The effect of continuous pore stratification on the acoustic absorption in open cell foams
NASA Astrophysics Data System (ADS)
Mahasaranon, Sararat; Horoshenkov, Kirill V.; Khan, Amir; Benkreira, Hadj
2012-04-01
This work reports new data on the acoustical properties of open cell foam with pore stratification. The pore size distribution as a function of the sample depth is determined in the laboratory using methods of optical image analysis. It is shown that the pore size distribution in this class of materials changes gradually with the depth. It is also shown that the observed pore size distribution gradient is responsible for the air flow resistivity stratification, which is measured acoustically and non-acoustically. The acoustical absorption coefficient of the developed porous sample is measured using a standard laboratory method. A suitable theoretical model for the acoustical properties of porous media with pore size distribution is adopted. The measured data for open porosity, tortuosity, and standard deviation data are used together with this model to predict the observed acoustic absorption behavior of the developed material sample. The transfer matrix approach is used in the modeling process to account for the pore size stratification. This work suggests that it is possible to design and manufacture porous media with continuous pore size stratification, which can provide an improvement to conventional porous media with uniform pore size distribution in terms of the attained acoustic absorption coefficient.
Automatic speech segmentation using throat-acoustic correlation coefficients
NASA Astrophysics Data System (ADS)
Mussabayev, Rustam Rafikovich; Kalimoldayev, Maksat N.; Amirgaliyev, Yedilkhan N.; Mussabayev, Timur R.
2016-11-01
This work considers one of the approaches to the solution of the task of discrete speech signal automatic segmentation. The aim of this work is to construct such an algorithm which should meet the following requirements: segmentation of a signal into acoustically homogeneous segments, high accuracy and segmentation speed, unambiguity and reproducibility of segmentation results, lack of necessity of preliminary training with the use of a special set consisting of manually segmented signals. Development of the algorithm which corresponds to the given requirements was conditioned by the necessity of formation of automatically segmented speech databases that have a large volume. One of the new approaches to the solution of this task is viewed in this article. For this purpose we use the new type of informative features named TAC-coefficients (Throat-Acoustic Correlation coefficients) which provide sufficient segmentation accuracy and effi- ciency.
Prediction of absorption coefficients by pulsed laser induced photoacoustic measurements.
Priya, Mallika; Satish Rao, B S; Ray, Satadru; Mahato, K K
2014-06-05
In the current study, a pulsed laser induced photoacoustic spectroscopy setup was designed and developed, aiming its application in clinical diagnostics. The setup was optimized with carbon black samples in water and with various tryptophan concentrations at 281nm excitations. The sensitivity of the setup was estimated by determining minimum detectable concentration of tryptophan in water at the same excitation, and was found to be 0.035mM. The photoacoustic experiments were also performed with various tryptophan concentrations at 281nm excitation for predicting optical absorption coefficients in them and for comparing the outcomes with the spectrophotometrically-determined absorption coefficients for the same samples. Absorption coefficients for a few serum samples, obtained from some healthy female volunteers, were also determined through photoacoustic and spectrophotometric measurements at the same excitations, which showed good agreement between them, indicating its clinical implications.
NUMERICAL CALCULATION OF MAGNETOBREMSSTRAHLUNG EMISSION AND ABSORPTION COEFFICIENTS
Leung, Po Kin; Gammie, Charles F.; Noble, Scott C. E-mail: gammie@illinois.edu
2011-08-10
Magnetobremsstrahlung (MBS) emission and absorption play a role in many astronomical systems. We describe a general numerical scheme for evaluating MBS emission and absorption coefficients for both polarized and unpolarized light in a plasma with a general distribution function. Along the way we provide an accurate scheme for evaluating Bessel functions of high order. We use our scheme to evaluate the accuracy of earlier fitting formulae and approximations. We also provide an accurate fitting formula for mildly relativistic (kT/(m{sub e}c{sup 2}) {approx}> 0.5) thermal electron emission (and therefore absorption). Our scheme is too slow, at present, for direct use in radiative transfer calculations but will be useful for anyone seeking to fit emission or absorption coefficients in a particular regime.
Methane Absorption Coefficients for the Jovian Planets and Titan
NASA Astrophysics Data System (ADS)
Karkoschka, Erich; Tomasko, M. G.
2009-09-01
We combined 11 data sets of methane transmission measurements within 0.4-5.5 micrometer wavelength in order to better understand the variation of methane absorption with temperature and pressure for conditions in the atmospheres of the Jovian planets and Titan. Eight data sets are based on published laboratory measurements. Another two data sets come from two spectrometers onboard the Huygens probe that measured methane absorption inside Titan's atmosphere (Tomasko et al. 2008, PSS 56, 624). We present the data with a refined analysis. The last data set consists of Hubble Space Telescope images of Jupiter taken in 2005 and 2007 as Ganymede started to be occulted by Jupiter. Using Ganymede as a light source, we probed Jupiter's stratosphere with large methane pathlengths. Below 1000 nm wavelength, we find methane absorption coefficients generally similar to those by Karkoschka (1998, Icarus 133, 134). We added descriptions of temperature and pressure dependence, which are typically small in this wavelength range. Data in this wavelength range are consistent with each other, except between 882 and 902 nm wavelength where laboratory data predict larger absorptions in the Jovian atmospheres than observed. We present possible explanations. Above 1000 nm, our analysis of the Huygens data confirms methane absorption coefficients by Irwin et al. (2006, Icarus 181, 309) at their laboratory temperatures. Huygens data are consistent with Irwin's model of the pressure dependence of methane absorption. However, when large extrapolations were needed, such as from laboratory data above 200 K to Titan's temperatures near 80 K, Irwin's model of temperature dependence predicts absorption coefficients up to 100 times lower than measured by Huygens. We combined Irwin's and Huygens' data to obtain more reliable methane absorption coefficients for the temperatures in the atmospheres of the Jovian planets and Titan. This research was supported by NASA grants NAG5-12014 and NNX08AE74G.
Surface acoustic admittance and absorption of highly porous, layered, fibrous materials
NASA Astrophysics Data System (ADS)
Tesar, J. S.; Lambert, R. F.
1984-06-01
Some acoustic properties of Kevlar-29 - a fine fibered, layered material is investigated. Kevlar is characterized by very high strength, uniform filaments arranged in a parallel batt where most filaments are random in the x-y plane but ordered as planes in the z direction. For experimental purposes, volume porosity, static flow resistance and mean filament diameter are used to identify the material. To determine the acoustic surface admittance of Kevlar, batts of the material are cut into small pads and placed into a standing wave tube terminated by a rigid brass plug. The attenuation and relative phase shift are recorded at each frequency in the range of 50 to 6000 Hz. Normalized conductance and susceptance are combined to form the acoustic absorption coefficient. The data are compared with theory by plotting the normalized admittance and normal incident absorption coefficient versus cyclic frequency.
Surface acoustic admittance and absorption of highly porous, layered, fibrous materials
NASA Technical Reports Server (NTRS)
Tesar, J. S.; Lambert, R. F.
1984-01-01
Some acoustic properties of Kevlar-29 - a fine fibered, layered material is investigated. Kevlar is characterized by very high strength, uniform filaments arranged in a parallel batt where most filaments are random in the x-y plane but ordered as planes in the z direction. For experimental purposes, volume porosity, static flow resistance and mean filament diameter are used to identify the material. To determine the acoustic surface admittance of Kevlar, batts of the material are cut into small pads and placed into a standing wave tube terminated by a rigid brass plug. The attenuation and relative phase shift are recorded at each frequency in the range of 50 to 6000 Hz. Normalized conductance and susceptance are combined to form the acoustic absorption coefficient. The data are compared with theory by plotting the normalized admittance and normal incident absorption coefficient versus cyclic frequency.
Sound absorption coefficient in situ: an alternative for estimating soil loss factors.
Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina
2015-01-01
The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field.
Vapor-Phase Infrared Absorptivity Coefficient of HN1
2013-08-01
infrared spectrometer GC gas chromatography HD sulfur mustard HeNe helium–neon (laser) HgCdTe mercury–cadmium–telluride detector HN1, HN2, HN3...coefficient of the compound. 15. SUBJECT TERMS Vapor phase Saturator cell Infrared (IR) HN1 Vapor pressure Nitrogen mustard Vesicant...9 1 VAPOR-PHASE INFRARED ABSORPTIVITY COEFFICIENT OF HN1 1. INTRODUCTION The nitrogen mustards (HN1, HN2, and HN3) are similar to
Groby, J-P; Lagarrigue, C; Brouard, B; Dazel, O; Tournat, V; Nennig, B
2015-01-01
This paper studies the acoustical properties of hard-backed porous layers with periodically embedded air filled Helmholtz resonators. It is demonstrated that some enhancements in the acoustic absorption coefficient can be achieved in the viscous and inertial regimes at wavelengths much larger than the layer thickness. This enhancement is attributed to the excitation of two specific modes: Helmholtz resonance in the viscous regime and a trapped mode in the inertial regime. The enhancement in the absorption that is attributed to the Helmholtz resonance can be further improved when a small amount of porous material is removed from the resonator necks. In this way the frequency range in which these porous materials exhibit high values of the absorption coefficient can be extended by using Helmholtz resonators with a range of carefully tuned neck lengths.
Yin, Lu; Wang, Qiang; Zhang, Qizhi; Jiang, Huabei
2007-09-01
We present a new method that can provide high resolution images of absolute optical absorption coefficient in heterogeneous turbid media. In this method, acoustic measurements in conventional photoacoustic tomography are combined with diffusing light measurements to separate the product of absorption coefficient and optical fluence or photon density. We validate this method using a series of tissuelike phantom experiments. The experimental results show that targets as small as 0.5 mm in diameter with optical absorption contrasts as low as 1.5 relative to a 50 mm diameter scattering background medium can be clearly detected.
Ozone absorption coefficients' role in Dobson instrument ozone measurement accuracy
NASA Astrophysics Data System (ADS)
Basher, R. E.
1982-11-01
The differences of 10% or more between the laboratory measurements of UV absorption coefficients by different investigators indicate accuracies that are quite inadequate for current needs in the measurement of atmospheric ozone. The standard band-integrated set of coefficients now used with the Dobson instrument are mutually consistent to about 2%, but their absolute accuracy is still in question. The accurate calculation of band-integrated coefficients must take account of their dependence on source spectral irradiance, atmospheric spectral transmittance, mean ozone temperature, and instrument spectral transmittance. A careful examination shows that Komhyr's (1980) case for an error of about +5% in the standard Dobson AD ozone estimation is subject to large uncertainties and certain lacks of independence. The obvious solution to this accuracy problem lies in better laboratory measurements of ozone absorption.
Acoustic spectroscopy of lithium niobate: Elastic and piezoelectric coefficients
NASA Astrophysics Data System (ADS)
Ogi, Hirotsugu; Kawasaki, Yasunori; Hirao, Masahiko; Ledbetter, Hassel
2002-09-01
We report simultaneous measurement of the complete set of elastic and piezoelectric coefficients of lithium niobate (LiNbO3), which has trigonal crystal symmetry (3m point group) and thus six independent elastic-stiffness coefficients Cij, four piezoelectric coefficients eij, and two dielectric coefficients kappaij. We used a single specimen: an oriented rectangular parallelepiped about 5 mm in size. Our measurement method, acoustic spectroscopy, focuses on the crystal's macroscopic resonance frequencies and is sensitive to any property that affects those frequencies. We overcame the principal obstacle to precise measurements--mode misidentification--by using laser-Doppler interferometry to detect the displacement distribution on a vibrating surface. This approach yields unambiguous mode identification. We used 56 resonances ranging in frequency from 0.3 to 1.2 MHz and determined the Cij and eij with known kappaij. The ten unknowns always converged to the same values even with unreasonable initial guesses. The Cij uncertainty averages 0.09% for the diagonal Cij. The eij uncertainty averages 5%. All our coefficients fall within the (surprisingly wide) error limits of previous (conventional) measurements.
Acoustic absorption measurement of human hair and skin within the audible frequency range.
Katz, B F
2000-11-01
Utilizing the two-microphone impedance tube method, the acoustic absorption of human skin and hair is measured in the frequency range 1-6 kHz. Various locations on a number of human subjects are measured to determine if the presence of bone or an air pocket affects the acoustic absorption of human skin. The absorption coefficient of human hair is also measured. Additional techniques are utilized to minimize errors due to sample mounting methods. Techniques are employed to minimize potential errors in sensor and sample locations. The results of these measurements are compared to relevant historical papers on similar investigations. Results for skin measurements compare well with previous work. Measured hair absorption data do not agree with previous work in the area but do coincide with expected trends, which previous works do not.
Navarro, Juan M; Escolano, José; Cobos, Maximo; López, José J
2013-03-01
The diffusion equation model was used for room acoustic simulations to predict the sound pressure level and the reverberation time. The technical literature states that the diffusion equation method accurately models the late portion of the room impulse response if the energy is sufficiently scattered. This work provides conclusions on the validity of the diffusion equation model for rooms with homogeneous dimensions in relation to the scattering coefficients of the boundaries. A systematic evaluation was conducted out to determine the ranges of the absorption and scattering coefficient values that result in low noticeable differences between the predictions from a geometrical acoustic model and those from the diffusion equation model.
Li, Xiaoqi; Jiang, Huabei
2013-02-21
We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data-up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.
NASA Astrophysics Data System (ADS)
Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.
2015-07-01
MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.
Absorption of surface acoustic waves by topological insulator thin films
Li, L. L.; Xu, W.
2014-08-11
We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.
Absorption of surface acoustic waves by topological insulator thin films
NASA Astrophysics Data System (ADS)
Li, L. L.; Xu, W.
2014-08-01
We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.
Field testing of sound absorption coefficients in a classroom
NASA Astrophysics Data System (ADS)
Pettyjohn, Steve
2005-09-01
Formal procedures for determining the sound absorption coefficients of materials installed in the field do not exist. However, the U.S. Air Force requested such tests to prove that the sound-absorbing material used in classrooms at Beale AFB in Marysville, CA, met the specified NRC of 0.80. They permitted the use of two layers of 0.5-in. fiberboard or 1-in.-thick fiberglass panels to meet the specified NRC rating. Post-construction tests showed reverberation times longer than expected. Unrealistic sound-absorption coefficients for room finish materials had to be used with the Sabine equation to achieve agreement between the measured and predicted reverberation time. By employing the Fitzroy equation and generally published absorption coefficients for ceiling tile, carpet, and fiberboard, the model provided excellent agreement with the measured reverberation times. The NRC of the fiberboard was computed to be 0.35, agreeing with published data. Since this did not meet project specifications, the Fitzroy model was used to learn the type and quantity of material needed to meet design goals. Follow-up tests showed good agreement between the predicted and measured reverberation times with material added, and project specifications were met. Results are also compared with the requirements of ANSI 12.60.
The effective air absorption coefficient for predicting reverberation time in full octave bands.
Wenmaekers, R H C; Hak, C C J M; Hornikx, M C J
2014-12-01
A substantial amount of research has been devoted to producing a calculation model for air absorption for pure tones. However, most statistical and geometrical room acoustic prediction models calculate the reverberation time in full octave bands in accordance with ISO 3382-1 (International Organization for Standardization, 2009). So far, the available methods that allow calculation of air absorption in octave bands have not been investigated for room acoustic applications. In this paper, the effect of air absorption on octave band reverberation time calculations is investigated based on calculations. It is found that the approximation method, as described in the standard ANSI S1.26 (American National Standards Institute, 1995), fails to estimate accurate decay curves for full octave bands. In this paper, a method is used to calculate the energy decay curve in rooms based on a summation of pure tones within the band. From this decay curve, which is found to be slightly concave upwards, T20 and T30 can be determined. For different conditions, an effective intensity attenuation coefficient mB ;eff for the full octave bands has been calculated. This mB ;eff can be used for reverberation time calculations, if results are to be compared with T20 or T30 measurements. Also, guidelines are given for the air absorption correction of decay curves, measured in a scale model.
A method for monitoring nuclear absorption coefficients of aviation fuels
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Shen, Chih-Ping
1989-01-01
A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.
Measurements of the absorption coefficient of stratospheric aerosols
NASA Technical Reports Server (NTRS)
Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.
1981-01-01
The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.
On the Acoustic Absorption of Porous Materials with Different Surface Shapes and Perforated Plates
NASA Astrophysics Data System (ADS)
CHEN, WEN-HWA; LEE, FAN-CHING; CHIANG, DAR-MING
2000-10-01
In architectural acoustic design, perforated plates are often used to protect porous materials from erosion. Although porous materials are usually applied to passive noise control, the effects of their surface shapes are seldom studied. To study the acoustic absorption of porous materials with different surface shapes and perforated plates, an efficient finite element procedure, which is derived by the Galerkin residual method and Helmholtz wave propagation equation, is used in this work. The two-microphone transfer function method and the modified Ingard and Dear impedance tube testing system are employed to measure the parameters deemed necessary for the finite element analysis, such as complex wave propagation constant, characteristic impedance and flow resistivity. For verifying the finite element results, the two-microphone transfer function method is also applied to measure the absorption coefficients of the discussed acoustic absorbers. Four surface shapes of commercially available porous materials, i.e., triangle, semicircle, convex rectangle and plate shapes, are chosen for analysis. The porosity of perforated plates is then evaluated. Finally, the distinct effect of the flow resistivity of porous materials on the acoustic absorption is demonstrated.
Photon absorption potential coefficient as a tool for materials engineering
NASA Astrophysics Data System (ADS)
Akande, Raphael Oluwole; Oyewande, Emmanuel Oluwole
2016-09-01
Different atoms achieve ionizations at different energies. Therefore, atoms are characterized by different responses to photon absorption in this study. That means there exists a coefficient for their potential for photon absorption from a photon source. In this study, we consider the manner in which molecular constituents (atoms) absorb photon from a photon source. We observe that there seems to be a common pattern of variation in the absorption of photon among the electrons in all atoms on the periodic table. We assume that the electrons closest to the nucleus (En) and the electrons closest to the outside of the atom (Eo) do not have as much potential for photon absorption as the electrons at the middle of the atom (Em). The explanation we give to this effect is that the En electrons are embedded within the nuclear influence, and similarly, Eo electrons are embedded within the influence of energies outside the atom that there exists a low potential for photon absorption for them. Unlike En and Eo, Em electrons are conditioned, such that there is a quest for balance between being influenced either by the nuclear force or forces external to the atom. Therefore, there exists a higher potential for photon absorption for Em electrons than for En and Eo electrons. The results of our derivations and analysis always produce a bell-shaped curve, instead of an increasing curve as in the ionization energies, for all elements in the periodic table. We obtained a huge data of PAPC for each of the several materials considered. The point at which two or more PAPC values cross one another is termed to be a region of conflicting order of ionization, where all the atoms absorb equal portion of the photon source at the same time. At this point, a greater fraction of the photon source is pumped into the material which could lead to an explosive response from the material. In fact, an unimaginable and unreported phenomenon (in physics) could occur, when two or more PAPCs cross, and
Method and apparatus for background signal reduction in opto-acoustic absorption measurement
NASA Technical Reports Server (NTRS)
Rosengren, L. G. (Inventor)
1976-01-01
The sensitivity of an opto-acoustic absorption detector is increased to make it possible to measure trace amounts of constituent gases. A second beam radiation path is created through the sample cell identical to a first path except as to length, alternating the beam through the two paths and minimizing the detected pressure difference for the two paths while the beam wavelength is tuned away from the absorption lines of the sample. Then with the beam wavelength tuned to the absorption line of any constituent of interest, the pressure difference is a measure of trace amounts of the constituent. The same improved detector may also be used for measuring the absorption coefficient of known concentrations of absorbing gases.
NASA Astrophysics Data System (ADS)
Kim, H. K.; Lee, H. K.
2010-03-01
The results of acoustic absorption modeling of porous concrete considering the gradation and shape of aggregates and void ratio are presented. To model the void texture of porous concrete, the multi-layered micro-perforated rigid panel model considering air gaps [1,2] is adopted. The parameters used in this acoustic absorption modeling are determined by a geometrical and experimental approach considering the gradation and shape of aggregates and void ratio. The predicted acoustic absorption spectra are compared with experimental results to verify the proposed acoustic absorption modeling approach. Finally, a parametric study is conducted to investigate the influence of design factors on the acoustic absorption properties of porous concrete.
A novel acoustic sensor approach to classify seeds based on sound absorption spectra.
Gasso-Tortajada, Vicent; Ward, Alastair J; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G; Green, Ole
2010-01-01
A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials.
Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.
2009-05-01
The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 {+-} 1.3%, emissivity reduction 8.2 {+-} 1.4%, and local suppression 68.5 {+-} 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10{sup -5} rad s{sup -1}.
Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models
NASA Technical Reports Server (NTRS)
Rosenthal, C. S.
1992-01-01
Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.
NASA Astrophysics Data System (ADS)
Moseev, D.; Laqua, H. P.; Marsen, S.; Marushchenko, N.; Stange, T.; Braune, H.; Gellert, F.; Hirsch, M.; Hoefel, U.; Knauer, J.; Oosterbeek, J. W.; Turkin, Y.; The Wendelstein 7-X Team
2017-03-01
The efficiency of electron cyclotron heating is determined by the microwave absorption of the plasma. Good microwave absorption is also crucial for the machine safety. In this paper we present a method of evaluating the microwave absorption coefficient from stray radiation measurements. The discussed method is computationally simple and can be applied potentially in real time. Evolution of the second harmonic extraordinary mode (X2) microwave absorption coefficient in Wendelstein 7-X during the start-up phase is presented, as well as an estimate of the absorption coefficient for the second harmonic ordinary mode (O2) wave.
A sound absorptive element comprising an acoustic resonance nanofibrous membrane.
Kalinova, Klara
2015-01-01
As absorption of sound of lower frequencies is quite problematic with fibrous material made up of coarser fibers, development of highly efficient sound absorption material is called for. This is why this work deals with the development of new high sound absorption material. To absorb the low frequencies, especially the structures based on resonance principle of nanofibrous layers are used, when through resonance of some elements the acoustic energy is transferred into thermal energy. The goal of the invention is achieved by a sound absorbing means which contains resonance membrane formed by a layer of polymeric nanofibers, which is attached to a frame. For production of nanofibrous membranes, the cord electrospinning was used. The resonance membrane was then, upon impact of sound waves of low frequency, brought into forced vibrations, whereby the kinetic energy of the membrane was converted into thermal energy by friction of individual nanofibers, by the friction of the membrane with ambient air and possibly with other layers of material arranged in its proximity, and some of the energy was also transmitted to the frame, through which the vibrations of the resonance membrane were damped. The density and shape of the mesh of frame formations determine the resonance frequency of the acoustic means. The goal of the invention is therefore to eliminate or at least reduce the disadvantages of the present state of the art and to propose sound absorbing means that would be capable of absorbing, with good results sounds in as broadest frequency range as possible. Here, we also discussed some patents relevant to the topic.
NASA Technical Reports Server (NTRS)
Molina, L. T.; Grant, W. B.
1984-01-01
The absorption spectra of three hydrazines and four of their air-oxidation products were measured in the 9-12-micron spectral region with a Fourier transform infrared (FTIR) spectrometer with a 0.05-kayser resolution to determine absorption coefficients at CO2 and tunable diode laser wavelengths. The measurements agreed well with published CO2 laser determinations for many of the absorption coefficients, except where the published values are thought to be in error. The coefficients were then used to estimate the sensitivity for remote detection of these gases using CO2 and tunable diode lasers in long-path differential absorption measurements.
Dynamic absorption coefficients of CAR and non-CAR resists at EUV
NASA Astrophysics Data System (ADS)
Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin
2016-03-01
The dynamic absorption coefficients of several CAR and non-CAR EUV photoresists are measured experimentally using a specifically developed setup in transmission mode at the XIL beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called Chemical Sensitivity to account for all the post-absorption chemical reaction ongoing in the resist, which is also predicts a quantitative clearing volume, and respectively clearing radius, due to the photon absorption in the resist. These parameters may help in deeper insight into the underlying mechanisms of EUV concept of clearing volume and clearing radius are then defined and quantitatively calculated.
Study of the absorption coefficient in layers of a semiconductor laser heterostructure
Veselov, D A; Pikhtin, N A; Lyutetskiy, A V; Nikolaev, D N; Slipchenko, S O; Sokolova, Z N; Shamakhov, V V; Shashkin, I S; Voronkova, N V; Tarasov, I S
2015-07-31
A method of studying the absorption coefficient in layers of semiconductor lasers is proposed. Using lasers based on MOVPE-grown separate-confinement heterostructures with a broadened waveguide, the absorption coefficient is investigated under pulsed current pumping. It is found that when the pump current flows through the laser in question, an additional internal optical absorption arises in the heterostructure layers. It is shown that an increase in the pump current density up to 20 kA cm{sup -2} leads to an increase in absorption up to 2.5 cm{sup -1}. The feasibility of studying free-carrier absorption in the active region is demonstrated. (lasers)
Measurement of the absorption coefficient using the sound-intensity technique
NASA Technical Reports Server (NTRS)
Atwal, M.; Bernhard, R.
1984-01-01
The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.
NASA Astrophysics Data System (ADS)
Busch, T. A.; Nugent, R. E.
2003-10-01
In situ testing determined the insertion loss ( IL) and absorption coefficients of a candidate absorptive noise barrier (soundwall) to abate railway noise for residents of Anaheim, CA. A 4000 m barrier is proposed south of the tracks, but residential areas to the north have expressed concerns that barrier reflections will increase their noise exposure. To address these concerns, a 3.66 m high by 14.6 m long demonstration barrier was built in the parking lot of Edison Field, Anaheim, as part of a public open house, thereby allowing for acoustical measurements. Insertion loss ( IL) was measured in third-octave bands assuming 1/2-scale construction. The IL for three, scaled railway noise sub-sources (rail/wheel interface, locomotive, and train horn) was measured at six, scaled distances. The highest total, A-weighted IL, after corrections for finite-barrier and point-source speaker effects was 22 dB(A) for rail/wheel noise, 18 dB(A) for locomotive noise, and 20 dB(A) for train horn noise. These results can be compared favourably to IL predictions made using algorithms from the US Federal Rail Administration (FRA) noise assessment guidelines. For the actual barrier installation, shielded residential receivers located south of the project are expected to see their future noise exposures reduced from an unmitigated 78 CNEL to 65 CNEL. Absorption coefficients were measured using time delay spectrometry. At lower frequencies, measured absorption coefficients were notably less than the reverberation room results advertised in the manufacturer's literature, but generally conformed with impedance tube results. At higher frequencies the correspondence between measured absorption coefficients and reverberation room results was much improved. For the actual barrier installation, unshielded residential receivers to the north are expected to experience noise exposure increases of less than 1 dB(A). This factor of increase is consistent with a finding of no impact when assessed
Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves
Wei, Pengjiang; Croënne, Charles; Tak Chu, Sai; Li, Jensen
2014-03-24
We investigate tunable acoustic absorption enabled by the coherent control of input waves. It relies on coherent perfect absorption originally proposed in optics. By designing appropriate acoustic metamaterial structures with resonating effective bulk modulus or density, we show that complete absorption of incident waves impinging on the metamaterial can be achieved for either symmetrical or anti-symmetrical inputs in the forward and backward directions. By adjusting the relative phase between the two incident beams, absorption can be tuned effectively from unity to zero, making coherent control useful in applications like acoustic modulators, noise controllers, transducers, and switches.
Absorption Coefficient Imaging by Near-Field Scanning Optical Microscopy in Bacteria
NASA Astrophysics Data System (ADS)
de Paula, Ana M.; Chaves, Claudilene R.; Silva, Haroldo B.; Weber, Gerald
2003-06-01
We present a method for obtaining a position-dependent absorption coefficient from near-field scanning optical transmission microscopy. We show that the optical transmission intensity can be combined with the topography, resulting into an absorption coefficient that simplifies the analysis of different materials within a sample. The method is tested with the dye rhodamine 6G, and we show some analysis in biological samples such as bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa . The calculated absorption coefficient images show important details of the bacteria, in particular for P. aeruginosa , in which membrane vesicles are clearly seen.
Absorption coefficients for water vapor at 193 nm from 300 to 1073 K
NASA Technical Reports Server (NTRS)
Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.
1993-01-01
Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.
Acoustic speed and attenuation coefficient in sheep aorta measured at 5-9 MHz.
Fraser, Katharine H; Poepping, Tamie L; McNeilly, Alan; Megson, Ian L; Hoskins, Peter R
2006-06-01
B-mode ultrasound (US) images from blood vessels in vivo differ significantly from vascular flow phantom images. Phantoms with acoustic properties more closely matched to those of in vivo arteries may give better images. A method was developed for measuring the speed and attenuation coefficient of US over the range 5 to 9 MHz in samples of sheep aorta using a pulse-echo technique. The times-of-flight method was used with envelope functions to identify the reference points. The method was tested with samples of tissue-mimicking material of known acoustic properties. The tissue samples were stored in Krebs physiologic buffer solution and measured over a range of temperatures. At 37 degrees C, the acoustic speed and attenuation coefficient as a function of frequency in MHz were 1600 +/- 50 ms(-1) and 1.5 +/- 4f(0.94 +/- 1.3) dB cm(-1), respectively.
NASA Astrophysics Data System (ADS)
Presser, Cary
2012-05-01
A laser-heating technique, referred as the laser-driven thermal reactor, was used in conjunction with laser transmissivity measurements to determine the absorption coefficient of particle-laden substrates (e.g., quartz-fiber filters). The novelty of this approach is that it analyzes a wide variety of specific samples (not just filtered samples) and overcomes measurement issues (e.g., absorption enhancement) associated with other filter-based particle absorption techniques. The absorption coefficient was determined for nigrosin-laden, quartz-fiber filters and the effect of the filter on the absorption measurements was estimated when compared to the isolated nigrosin results. The isolated nigrosin absorption coefficient compared favorably with Lorenz-Mie calculations for an idealized polydispersion of spherical particles (based on a measured nigronsin/de-ionized water suspension size distribution) dispersed throughout a volume equivalent to that of the nigrosin-laden filter. To validate the approach, the absorption coefficient of a nigrosin/de-ionized water suspension was in good agreement with results obtained from an ultraviolet/visible spectrometer. In addition, the estimated imaginary part of the refractive index from the Lorenz-Mie calculations compared well with literature values and was used to estimate the absorption coefficient of optically opaque packed nigrosin.
Visible and Near Infrared Absorption Coefficients of Kaolinite and Related Clays.
propagation of light. This work is intended to provide a quantitative estimate of the absorption coefficient of kaolinite clays by application of a method based on the Kubelka - Munk theory of diffuse reflectance.
A method for determination mass absorption coefficient of gamma rays by Compton scattering.
El Abd, A
2014-12-01
A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed.
Hoge, F E; Wright, C W; Lyon, P E; Swift, R N; Yungel, J K
1999-12-20
Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual "big three" inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM)-detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled-unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM-detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled-unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled-unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the
Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.
ERIC Educational Resources Information Center
Ouseph, P. J.; And Others
1982-01-01
Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…
Determination of absorption coefficients in AlInP lattice matched to GaAs
NASA Astrophysics Data System (ADS)
Cheong, J. S.; Ng, J. S.; Krysa, A. B.; Ong, J. S. L.; David, J. P. R.
2015-10-01
The absorption properties of Al0.52In0.48P have been investigated near the fundamental absorption edge by measuring the photocurrent as a function of wavelength in a series of PIN and NIP diodes. Modelling of the photocurrent in these structures enables the absorption coefficients to be determined accurately over a wide dynamic range, which allows the direct and indirect band-gap to be determined.
ERIC Educational Resources Information Center
Cordon, Gabriela B.; Lagorio, M. Gabriela
2007-01-01
A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.
Air-ground interface: Surface waves, surface impedance and acoustic-to-seismic coupling coefficient
NASA Technical Reports Server (NTRS)
Daigle, Gilles; Embleton, Tony
1990-01-01
In atmospheric acoustics, the subject of surface waves has been an area of discussion for many years. The existence of an acoustic surface wave is now well established theoretically. The mathematical solution for spherical wave propagation above an impedance boundary includes the possibility of a contribution that possesses all the standard properties for a surface wave. Surface waves exist when the surface is sufficiently porous, relative to its acoustical resistance, that it can influence the airborne particle velocity near the surface and reduce the phase velocity of sound waves in air at the surface. This traps some of the sound energy in the air to remain near the surface as it propagates. Above porous grounds, the existence of surface waves has eluded direct experimental confirmation (pulse experiments have failed to show a separate arrival expected from the reduced phase speed) and indirect evidence for its existence has appeared contradictory. The experimental evidence for the existence of an acoustical surface wave above porous boundaries is reviewed. Recent measurements including pulse experiments are also described. A few years ago the acoustic impedance of a grass-covered surface was measured in the frequency range 30 to 300 Hz. Here, further measurements on the same site are discussed. These measurements include core samples, a shallow refractive survey to determine the seismic velocities, and measurements of the acoustic-to-seismic coupling coefficient.
Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns
NASA Technical Reports Server (NTRS)
May, R. D.; Molina, L. T.; Webster, C. R.
1988-01-01
A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.
Determination of molar absorption coefficients of organic compounds adsorbed in porous media.
Ciani, Andrea; Goss, Kai-Uwe; Schwarzenbach, René P
2005-12-01
The kinetics of direct photochemical transformations of organic compounds in light absorbing and scattering media has been sparsely investigated. This is mostly due to the experimental difficulties to assess the major parameters: light intensity in porous media, the reaction quantum yield and the molar absorption coefficient of the adsorbed compound, epsilon(i) (lambda). Here, we propose a method for the determination of the molar absorption coefficient of compounds adsorbed to air-dry surfaces using the Kubelka-Munk model for the description of radiative transfer. To illustrate the method, the molar absorption coefficients of three compounds, i.e. 4-nitroanisole (PNA), the herbicide trifluralin and the flame retardant decabromodiphenyl ether (DecaBDE), were determined on air-dry kaolinite. The measured diffuse reflectance spectra were evaluated with the Kubelka-Munk model and with previously determined Kubelka-Munk absorption and scattering coefficients (k and s), for kaolinite. For all compounds the maximum absorption band was found to be red shifted and the corresponding epsilon(i) (lambda) values were significantly greater than those determined in solvents. Together with the absorption and scattering coefficient of the medium, the measured epsilon(i) (lambda) can be used to determine the quantum yield of the photochemical reaction in this medium from experimentally determined reaction kinetics.
Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang
2012-04-01
Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.
NASA Astrophysics Data System (ADS)
Fry, Patrick M.; Sromovsky, L. A.
2009-09-01
Using new methane absorption coefficients from Karkoschka and Tomasko (2009, submitted to Icarus, "Methane Absorption Coefficients for the Jovian Planets from Laboratory, Huygens, and HST Data"), we fit Uranus near-IR spectra previously analyzed in Sromovsky et al. (2006, Icarus 182, 577-593, Fink and Larson, 1979 J- and H-band), Sromovsky and Fry (2008, Icarus 193, 252-266, 2006 NIRC2 J- and H-band, 2006 SpeX) using Irwin et al. (2006, Icarus 181, 309-319) methane absorption coefficients. Because the new absorption coefficients usually result in higher opacities at the low temperatures seen in Uranus' upper troposphere, our previously derived cloud altitudes are expected to generally rise to higher altitudes. For example, using Lindal et al. (1987, JGR 92, 14987-15001) model D temperature and methane abundance profiles, we are better able to fit the J-band 43-deg. south bright band with the new coefficients (chi-square=205, vs. 315 for Irwin), with the pressure of the upper tropospheric cloud decreasing to 1.6 bars (from 2.4 bars using Irwin coefficients). Improvements in fitting H-band spectra from the same latitude are not as readily obtained. Derived upper tropospheric cloud pressures are very similar using the two absorption datasets (1.6-1.7 bars), but the character of the fits differs. New Karkoschka and Tomasko coefficients better fit some details in the 1.5-1.58 micron region, but Irwin fits the broad absorption band wing at 1.61-1.62 microns better, and the fit chi-square values are similar (K&T: 243, Irwin: 220). Results for a higher methane concentration (Lindal et al. model F) were similar. Whether the new coefficients will simply raise derived altitudes across the planet or will result in fundamental changes in structure is as yet unclear. This work was suported by NASA planetary astronomy and planetary atmospheres programs.
Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm
NASA Astrophysics Data System (ADS)
Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew
2016-04-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.
Nonlinear absorption coefficient of pulsed laser deposited MgZnO thin film
Agrawal, Arpana Dar, Tanveer A.; Solanki, Ravi; Sen, Pratima; Phase, D. M.
2015-06-24
We report the imaginary part of 3{sup rd} order nonlinear susceptibility and the nonlinear absorption coefficient of Mg doped ZnO thin film using standard Z-scan technique. The origin of nonlinear absorption is attributed to the two photon absorption followed by the free carrier absorption because of the presence of oxygen vacancy defects. We have also confirmed the experimental results with the theoretical results obtained by considering the steady state response of a two level atom with the monochromatic field models.
Ellwood, R; Stratoudaki, T; Sharples, S D; Clark, M; Somekh, M G
2015-11-01
Much interest has arisen in nonlinear acoustic techniques because of their reported sensitivity to variations in residual stress, fatigue life, and creep damage when compared to traditional linear ultrasonic techniques. However, there is also evidence that the nonlinear acoustic properties are also sensitive to material microstructure. As many industrially relevant materials have a polycrystalline structure, this could potentially complicate the monitoring of material processes when using nonlinear acoustics. Variations in the nonlinear acoustoelastic coefficient on the same length scale as the microstructure of a polycrystalline sample of aluminum are investigated in this paper. This is achieved by the development of a measurement protocol that allows imaging of the acoustoelastic response of a material across a samples surface at the same time as imaging the microstructure. The development, validation, and limitations of this technique are discussed. The nonlinear acoustic response is found to vary spatially by a large factor (>20) between different grains. A relationship is observed when the spatial variation of the acoustoelastic coefficient is compared to the variation in material microstructure.
Kulpe, Jason A; Lee, Chang-Yong; Leamy, Michael J
2011-08-01
A multi-scale homogenization technique and a finite element-based solution procedure are employed to compute acoustic absorption in smooth and rough packed microtubes. The absorption considered arises from thermo-viscous interactions between the fluid media and the microtube walls. The homogenization technique requires geometric periodicity, which for smooth tubes is invoked using the periodicity of the finite element mesh; for rough microtubes, the periodicity invoked is that associated with the roughness. Analysis of the packed configurations, for the specific microtube radii considered, demonstrates that surface roughness does not appreciably increase the overall absorption, but instead shifts the peaks and values of the absorption curve. Additionally, the effect of the fluid media temperature on acoustic absorption is also explored. The results of the investigation are used to make conclusions about tailored design of acoustically absorbing microtube-based materials.
Mehnati, Parinaz; Jafari Tirtash, Maede; Zakerhamidi, Mohammad Sadegh; Mehnati, Parisa
2016-01-01
Background Blood concentrations and oxygen saturation levels are important biomarkers for breast cancer diagnosis. Objectives In this study, the absorption coefficient of hemoglobin (Hb) was used to distinguish between normal and abnormal breast tissue. Materials and Methods A near-infrared source (637 nm) was transmitted from major and minor vessels of a breast phantom containing 2×, 4× concentrations of oxy- and deoxy-Hb. The absorption coefficients were determined from spectrometer (SM) and powermeter (PM) data. Results The absorption coefficients were 0.075 ± 0.026 cm-1 for oxygenated Hb (normal) in major vessels and 0.141 ± 0.023 cm-1 at 4× concentration (abnormal) with SM, whereas the breast absorption coefficients were 0.099 ± 0.017 cm-1 for oxygenated Hb (normal) in minor vessels and 0.171 ± 0.005 cm-1 at 4× concentrations with SM. A comparison of the data obtained using a SM and a PM was not significant statistically. Conclusion The study of the absorption coefficient data of different concentrations of Hb in normal and abnormal breasts via the diffusion of near-infrared light is a valuable method and has the potential to aid in early detection of breast abnormalities with SM and PM in major and minor vessels. PMID:27895869
NASA Astrophysics Data System (ADS)
Dumitras, D. C.; Dutu, D. C.; Matei, C.; Cernat, R.; Banita, S.; Patachia, M.; Bratu, A. M.; Petrus, M.; Popa, C.
2011-04-01
Photoacoustic spectroscopy represents a powerful technique for measuring extremely low absorptions independent of the path length and offers a degree of parameter control that cannot be attained by other methods. We report precise measurements of the ammonia absorption coefficients at the CO2 laser wavelengths by using a photoacoustic (PA) cell in an extracavity configuration and we compare our results with other values reported in the literature. Ammonia presents a clear fingerprint spectrum and high absorption strengths in the CO2 wavelengths region. Because more than 250 molecular gases of environmental concern for atmospheric, industrial, medical, military, and scientific spheres exhibit strong absorption bands in the region 9.2-10.8 μm, we have chosen a frequency tunable CO2 laser. In the present work, ammonia absorption coefficients were measured at both branches of the CO2 laser lines by using a calibrated mixture of 10 ppm NH3 in N2. We found the maximum absorption in the 9 μm region, at 9R(30) line of the CO2 laser. One of the applications based on the ammonia absorption coefficients is used to measure the ammonia levels in exhaled human breath. This can be used to determine the exact time necessary at every session for an optimal degree of dialysis at patients with end-stage renal disease.
Minority carrier diffusion lengths and absorption coefficients in silicon sheet material
NASA Technical Reports Server (NTRS)
Dumas, K. A.; Swimm, R. T.
1980-01-01
Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.
NASA Astrophysics Data System (ADS)
Orlova, K. N.; Borovikov, I. F.; Gaidamak, M. A.
2016-08-01
The paper presents background value equivalent dose of gamma-radiation investigation in different weather: clear cloudy and overcast. The change of the dose rate of gamma radiation, depending on the weather and the ability cloudiness to shield gamma rays is shown. A new method for eliminating the consequences of accidents at nuclear power plants or plants using radioactive elements is proposed. A calculation method of cloudiness coefficient absorption and cloudiness gamma-radiation multiplicity attenuation is developed. The gamma- radiation multiplicity attenuation and the absorption coefficient of gamma radiation were calculated.
A numerical study of a method for measuring the effective in situ sound absorption coefficient.
Kuipers, Erwin R; Wijnant, Ysbrand H; de Boer, André
2012-09-01
The accuracy of a method [Wijnant et al., Proc. of ISMA 31, Leuven, Belgium (2010), Vol. 31] for measurement of the effective area-averaged in situ sound absorption coefficient is investigated. Based on a local plane wave assumption, this method can be applied to sound fields for which a model is not available. Investigations were carried out by means of finite element simulations for a typical case. The results show that the method is a promising method for determining the effective area-averaged in situ sound absorption coefficient in complex sound fields.
Measurement of optical absorption coefficient of bio-tissue at 532nm wavelength
NASA Astrophysics Data System (ADS)
Huang, Chuyun; Li, Zhengjia; Yao, Yucheng; He, Yanyan
2007-05-01
Laser technology has succeeded in medical application. High power 532nm laser has applied in prostate ablation and other clinic application. To understand optical property of bio-tissue at 532nm wavelength, a method of monitoring surface temperature was used to measure absorption coefficient of gall-stone, porcine liver and canine prostate. The absorption coefficient of gall-stone is about 62cm -1 at 532nm wavelength, and those of porcine liver and canine prostate are about 13cm -1 and 5.4cm -1, respectively. These results help to understand the optical property of bio-tissue and offer theoretic reference for optical dosimetry in clinic application.
NASA Astrophysics Data System (ADS)
Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal R.; Bohndiek, Sarah E.
2016-03-01
Optoacoustic Tomography is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound detection with the high contrast available from optical absorption in tissue. The spectral profile of near infrared excitation light used in optoacoustic tomography instruments is modified by absorption and scattering as it propagates deep into biological tissue. The resulting images therefore provide only qualitative insight into the distribution of tissue chromophores. Knowledge of the spectral profile of excitation light across the mouse is needed for accurate determination of the absorption coefficient in vivo. Under the conditions of constant Grueneisen parameter and accurate knowledge of the light fluence, a linear relationship should exist between the initial optoacoustic pressure amplitude and the tissue absorption coefficient. Using data from a commercial optoacoustic tomography system, we implemented an iterative optimization based on the σ-Eddington approximation to the Radiative Transfer Equation to derive a light fluence map within a given object. We segmented the images based on the positions of phantom inclusions, or mouse organs, and used known scattering coefficients for initialization. Performing the fluence correction in simple phantoms allowed the expected linear relationship between recorded and independently measured absorption coefficients to be retrieved and spectral coloring to be compensated. For in vivo data, the correction resulted in an enhancement of signal intensities in deep tissues. This improved our ability to visualize organs at depth (> 5mm). Future work will aim to perform the optimization without data normalization and explore the need for methodology that enables routine implementation for in vivo imaging.
NASA Astrophysics Data System (ADS)
Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin
2016-07-01
The dynamic absorption coefficients of several chemically amplified resists (CAR) and non-CAR extreme ultraviolet (EUV) photoresists are measured experimentally using a specifically developed setup in transmission mode at the x-ray interference lithography beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general, the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called chemical sensitivity to account for all the postabsorption chemical reaction ongoing in the resist, which also predicts a quantitative clearing volume and clearing radius, due to the photon absorption in the resist. These parameters may help provide deeper insight into the underlying mechanisms of the EUV concepts of clearing volume and clearing radius, which are then defined and quantitatively calculated.
NASA Astrophysics Data System (ADS)
Kim, J. H.; Kim, S. W.; Yoon, S. C.; Park, R.; Ogren, J. A.
2014-12-01
Filter-based instrument, such as aethalometer, is being widely used to measure equivalent black carbon(EBC) mass concentration and aerosol absorption coefficient(AAC). However, many other previous studies have poited that AAC and its aerosol absorption angstrom exponent(AAE) are strongly affected by the multi-scattering correction factor(C) when we retrieve AAC from aethalometer EBC mass concentration measurement(Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 2006; Coen et al., 2010). We determined the C value using the method given in Weingartner et al. (2003) by comparing 7-wavelngth aethalometer (AE-31, Magee sci.) to 3-wavelength Photo-Acoustic Soot Spectrometer (PASS-3, DMT) at Gosan climate observatory, Korea(GCO) during Cheju ABC plume-asian monsoon experiment(CAPMEX) campaign(August and September, 2008). In this study, C was estimated to be 4.04 ± 1.68 at 532 nm and AAC retrieved with this value was decreased as approximately 100% as than that retrieved with soot case value from Weingartner et al (2003). We compared the AAC determined from aethalomter measurements to that from collocated Continuous Light Absorption Photometer (CLAP) measurements from January 2012 to December 2013 at GCO and found good agreement in both AAC and AAE. This result suggests the determination of site-specific C is crucially needed when we calculate AAC from aethalometer measurements.
Measurement of the absorption properties of acoustic materials used in the fabrication of cowlings
NASA Astrophysics Data System (ADS)
Corlay, B.; Delalot, G.
1981-07-01
A wide selection of sound absorbing materials was tested, using the stationary wave tube method, and absorption factors were determined. Results are used to compile a catalog of industrial acoustically absorbant materials which can be employed as interior linings on cowlings for mobile or fixed noisy equipment. Theory that explains the absorptivity of these materials when used alone or in combinations is also presented. Results for low and middle frequency absorption are stressed.
Determination of the Accommodation Coefficient Using Vapor/gas Bubble Dynamics in an Acoustic Field
NASA Technical Reports Server (NTRS)
Gumerov, Nail A.; Hsiao, Chao-Tsung; Goumilevski, Alexei G.; Allen, Jeff (Technical Monitor)
2001-01-01
Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or "accommodation" coefficient, Beta, which is a property of the interface. Existing measurement techniques for Beta are complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of Beta for a wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic field strongly depends on the value of Beta. It is known that near the saturation temperature, small vapor bubbles grow under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective measurement technique of Beta. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measurement of Beta can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and conditions which can be efficiently used for measurements of Beta. Measurements of Beta can be performed in both reduced and normal gravity environments.
NASA Astrophysics Data System (ADS)
Ladhaf, Bibifatima M.; Pawar, Pravina P.
2015-04-01
We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.
Determination of Absorption and Scattering Coefficients for Nonhomogeneous Media: II. Experiment.
prepared from a glass of known absorption coefficient variation. The new model produces an accuracy inprovement up to a factor of 2.5 over the Kubelka ... Munk theory. Off-axis scattering measurements were made with improved instrumentation between 0.33 and 2.7 micrometers. The model was then applied to
Nelson, N B; Prézelin, B B
1993-11-20
Measuring the absolute absorption of suspensions of absorbing particles with unknown scattering characteristics is not possible in conventional spectrophotometers or in integrating spheres that have the sample located outside the sphere. A method for the calibration and use of an integrating sphere with a centrally located sample to measure absolute absorption coefficients of scattering suspensions is presented. Under the tested conditions the integrating sphere used in this study was insensitive to changes in the scattering coefficient of the sample but had a nonlinear response to increasing absorption of the sample, which could be corrected with an empirically derived function. This response was analyzed by using a Monte Carlo simulation, and results indicated that amplification of the absorption signal was primarily due to photons reflected from the sphere surface and the baffle reentering the cuvette. The calibration procedure described here may be generally applicable to spheres of different configurati n. An example of the use of the sphere for determining the absorption and scattering coefficients of marine phytoplankton samples is presented.
NASA Astrophysics Data System (ADS)
Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.
2014-09-01
Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.
Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming
2013-07-01
In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state.
Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo Cho, Sungjong
2015-07-15
A novel method to determine acoustic parameters involved in measuring the nonlinearity parameter of fluids or solids is proposed. The approach is based on the measurement of fundamental and second harmonic pressures with a calibrated receiver, and on a nonlinear least squares data-fitting to multi-Gaussian beam (MGB) equations which explicitly define the attenuation and diffraction effects in the quasilinear regime. Results obtained in water validate the proposed method. The choice of suitable source pressure is discussed with regard to the quasilinear approximation involved. The attenuation coefficients are also acquired in nonlinear regime and their relations are discussed.
Karsten, A E; Singh, A; Karsten, P A; Braun, M W H
2013-02-01
An individualised laser skin treatment may enhance the treatment and reduces risks and side-effects. The optical properties (absorption and scattering coefficients) are important parameters in the propagation of laser light in skin tissue. The differences in the melanin content of different skin phototypes influence the absorption of the light. The absorption coefficient at the treatment wavelength for an individual can be determined by diffuse reflectance spectroscopy, using a probe containing seven fibres. Six of the fibres deliver the light to the measurement site and the central fibre collects the diffused reflected light. This is an in vivo technique, offering benefits for near-real-time results. Such a probe, with an effective wavelength band from 450 to 800 nm, was used to calibrate skin-simulating phantoms consisting of intralipid and ink. The calibration constants were used to calculate the absorption coefficients from the diffuse reflectance measurements of three volunteers (skin phototypes, II, IV and V) for sun-exposed and non-exposed areas on the arm.
NASA Astrophysics Data System (ADS)
Goela, P.; Icely, J.; Cristina, S.; Newton, A.
2010-12-01
Variability of particulate absorption coefficients was studied off the south-west coast of Portugal, as part of a validation exercise for the Medium Resolution Image Spectrometer Sensor. Regular sampling campaigns occurred at three stations on a transect from inshore to offshore to compare fluctuations in these coefficients at the local scale. Transmittance-reflectance method with sodium hypochlorite bleaching was used to determine absorption coefficients for phytoplankton and non-algal particles. Photosynthetic pigment concentrations were determined by High Performance Liquid Chromatography. Results show that the absorption of light by particulate matter is almost totally dependent on the phytoplankton, with no significant contribution from non-algal particles, both in coastal and oceanic waters. Specific phytoplankton coefficients show significant fluctuations between seasons and stations, ranging from 0.012 to 0.038 at 678 nm. Particulate absorption is dominant over dissolved absorption. The variations in the coefficients of absorption are analysed as a function of species assemblages.
Parameterization of the Mie Extinction and Absorption Coefficients for Water Clouds.
NASA Astrophysics Data System (ADS)
Mitchell, David L.
2000-05-01
It was found that the anomalous diffraction approximation (ADA) could be made to approximate Mie theory for absorption and extinction in water clouds by parameterizing the missing physics: 1) internal reflection/refraction, 2) photon tunneling, and 3) edge diffraction. Tunneling here refers to processes by which tangential or grazing photons beyond the physical cross section of a spherical particle may be absorbed. Contributions of the above processes to extinction and/or absorption were approximated in terms of particle size, index of refraction, and wavelength. It was found that tunneling can explain most of the difference between ADA and Mie theory for water clouds in the thermal IR.The modified ADA yielded analytical expressions for the absorption and extinction efficiencies, Qabs and Qext, which were integrated over a gamma size distribution to yield expressions for the absorption and extinction coefficients, abs and ext. These coefficients were expressed in terms of the three gamma distribution parameters, which were related to measured properties of the size distribution: liquid water content, mean, and mass-median diameter. Errors relative to Mie theory for abs and ext were generally 10% for the effective radius range in water clouds of 5-30 m, for any wavelength in the solar or terrestrial spectrum. For broadband emissivities and absorptivities regarding terrestrial and solar radiation, the errors were less than 1.2% and 4%, respectively. The modified ADA dramatically reduces computation times relative to Mie theory while yielding reasonably accurate results.
Thin-film absorption coefficients by attenuated-total-reflection spectroscopy.
Holm, R T; Palik, E D
1978-02-01
The application of attenuated-total-reflection spectroscopy to the measurement of the absorption coefficient of thin films is presented. For low absorption the sensitivity of ATR is discussed in terms of the concept of an effective thickness. Both the case in which the refractive index of the film is higher and the case in which it is lower than that of the ATR trapezoid are considered. Experimental ATR data for antireflection-coating materials for laser windows is analyzed and compared with calorimetric data.
Measurement and calculation of the sound absorption coefficient of pine wood charcoal
NASA Astrophysics Data System (ADS)
Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo
2013-10-01
Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.
Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping
2016-01-01
A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418
Deckers, Elke; Claeys, Claus; Atak, Onur; Groby, Jean-Philippe; Dazel, Olivier; Desmet, Wim
2016-05-01
This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch–Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch–Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.
NASA Astrophysics Data System (ADS)
Deckers, Elke; Claeys, Claus; Atak, Onur; Groby, Jean-Philippe; Dazel, Olivier; Desmet, Wim
2016-05-01
This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch-Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch-Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.
Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Varanasi, P.; Gopalan, A.; Brannon, J. F., Jr.
1992-01-01
Spectral absorption coefficients, k(nu)/cm per atm, of SF6 have been measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. The data obtained with the Doppler-limited spectral resolution (about 0.0001/cm) of a tunable-diode laser spectrometer are useful in the atmospheric remote sensing of this trace gas.
Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data
NASA Astrophysics Data System (ADS)
Karkoschka, Erich; Tomasko, Martin G.
2010-02-01
We use 11 data sets of methane transmission measurements within 0.4-5.5 μm wavelength to model the methane transmission for temperature and pressure conditions in the jovian planets. Eight data sets are based on published laboratory measurements. Another two data sets come from two spectrometers onboard the Huygens probe that measured methane absorption inside Titan's atmosphere ( Tomasko et al., 2008b, PSS 56, 624), and we provide a refined analysis. The last data set is a set of new Jupiter images by the Hubble Space Telescope to measure atmospheric transmission with Ganymede as the light source. Below 1000 nm wavelength, our resulting methane absorption coefficients are generally close to those by Karkoschka (1998, Icarus 133, 134), but we add descriptions of temperature and pressure dependence. One remaining inconsistency occurs between 882 and 902 nm wavelength where laboratory data predict larger absorptions in the jovian atmospheres than observed. We present possible explanations. Above 1000 nm, our analysis of the Huygens data confirms methane absorption coefficients by Irwin et al. (2006, Icarus 181, 309) at their laboratory temperatures. Huygens data also confirm Irwin's model of extrapolation to Titan's lower pressures. However, their model of extrapolation to Titan's lower temperatures predicts absorption coefficients up to 100 times lower than measured by Huygens. For each of ˜3700 wavelengths, we present a temperature dependence that is consistent with all laboratory data and the Huygens data. Since the Huygens data probe similar temperatures as many observations of Saturn, Uranus, Neptune, and Titan, our methane model will allow more reliable radiative transfer models for their atmospheres.
NASA Technical Reports Server (NTRS)
Hozman, Aron D.; Hughes, William O.
2014-01-01
It is important to realize that some test-articles may have significant sound absorption that may challenge the acoustic power capabilities of a test facility. Therefore, to mitigate this risk of not being able to meet the customers target spectrum, it is prudent to demonstrate early-on an increased acoustic power capability which compensates for this test-article absorption. This paper describes a concise method to reduce this risk when testing aerospace test-articles which have significant absorption. This method was successfully applied during the SpaceX Falcon 9 Payload Fairing acoustic test program at the NASA Glenn Research Center Plum Brook Stations RATF.
The influence of surface preparation on the absorption coefficient of laser radiation
NASA Astrophysics Data System (ADS)
Kurp, Piotr; Mucha, Zygmunt; Mulczyk, Krystian; Gradoń, Ryszard; Trela, Paweł
2016-12-01
The absorption coefficient of the surface of a workpiece is of importance in laser treatment, particularly in the treatment where the temperature of an element must be strictly controlled. Laser surface treatment (such as hardening, metallic glazing) and laser forming can be primarily included in this type of technology. In another case, surface temperature must be precisely controlled, especially if structural changes are to be avoided. There are a number of ways to increase the absorption coefficient of the surface of an element. Since the laser forming is the research subject of the authors of the presented paper, it was necessary to determine the absorption coefficient for the different surfaces preparation of workpieces. Raw surface, oxidized surface, sandblasted surface, black enamel covered surface and waterglass covered surface were examined, respectively. The experiment was performed using a CO2 laser with a head for a surface treatment which generates a rectangular beam of dimensions 2x20 mm, and the samples were made of X5CrNi18-10 stainless steel.
Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review
NASA Technical Reports Server (NTRS)
Grant, William B.
1990-01-01
Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.
Dependence of dose coefficients for inhaled 239Pu on absorption parameters.
Suzuki, K; Sekimoto, H; Ishigure, N
2001-01-01
With regard to dissolution of particles in the respiratory tract after inhalation, the International Commission on Radiological Protection (ICRP) has classified all radionuclides into only three types according to the chemical form of compounds, and default values of absorption parameters are proposed for each type. However, it is just a simplification to estimate doses for practical use, and there is a possibility of unfitness in such an assortment. A code has been developed to reproduce the ICRP's dose coefficients for 239Pu, which is one of the most important elements for occupational exposure. By using this code, the respective absorption parameters were modified, and the effect owing to these changes evaluated. It was shown consequently that changes of absorption parameters do not greatly influence the effective doses of 239Pu for workers.
Khalifah, Peter
2015-02-01
The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0°more » to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less
Two-photon interband absorption coefficients in tungstate and molybdate crystals
NASA Astrophysics Data System (ADS)
Lukanin, V. I.; Karasik, A. Ya.
2015-02-01
Two-photon absorption (TPA) coefficients were measured in tungstate and molybdate crystals - BaWO4, KGW, CaMoO4, BaMoO4, CaWO4, PbWO4 and ZnWO4 upon different orientations of excitation polarization with respect to the crystallographic axes. Trains of 25 ps pulses with variable radiation intensities of third (349 nm) harmonics of passively mode-locked 1047 nm Nd:YLF laser were used for interband two-photon excitation of the crystals. It was suggested that in the case, when 349 nm radiation pumping energy exceeds the bandgap width (hν>Eg), the nonlinear excitation process can be considered as two-step absorption. The interband two-photon absorption in all the studied crystals induces the following one-photon absorption from the exited states, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the excitation intensity. This fact was taken into account under analysis of the experimental dependences of the reciprocal transmission on the excitation intensity. Laser excitation in the transparency region of the crystals caused stimulated Raman scattering (SRS) not for all the crystals studied. The measured nonlinear coefficients allowed us to explain the suppression of SRS in crystals as a result of competition between the SRS and TPA.
Khalifah, Peter
2015-02-01
The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θ_{D} of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.
Acoustic Absorption Measurements for Characterization of Gas Mixing
2007-11-02
of the box (Gas A). Gas B is humidified by passing the same grade CO2 through a bubbler. The humidity of the gas is varied by mixing the relative...the accuracy with which the “mixedness profile” can be inverted. 1Bhatia, A., Ultrasonic Absorption, Dover Publications: New York, 1967. 2
NASA Astrophysics Data System (ADS)
Song, W. J.; Cha, D. J.
2017-01-01
A phenomenon that potentially influences the reliability of power generation systems is the presence of thermo-acoustic oscillations in the combustion chamber of a land- based gas turbine. To develop specific measures that prevent the instability, it is essential to predict and/or evaluate the underlying physics of the thermo-acoustics, which requires the acoustic boundary condition at the exit of the burner, that is, at the inlet of the combustor. Here we report a procedure for calculating acoustic reflection coefficients at the burner exit by utilizing two microphone method (TMM) for dynamic pressure signals. The procedure has been verified by comparing its results with reported ones and further successfully employed to determine the acoustic boundary condition of the burner of a partially-premixed model gas turbine combustor.
NASA Technical Reports Server (NTRS)
Giurgiu, I. I.
1974-01-01
The sound insulating capacity of building elements made up of light concretes is considered. Analyzing differentially the behavior of light concrete building elements under the influence of incident acoustic energy and on the basis of experimental measurements, coefficients of correction are introduced into the basic formulas for calculating the sound insulating capacity for the 100-3,2000 Hz frequency band.
Parameterization of the Mie extinction and absorption coefficients for water clouds
Mitchell, D.L.
2000-05-01
It was found that the anomalous diffraction approximation (ADA) could be made to approximate Mie theory for absorption and extinction in water clouds by parameterizing the missing physics: (1) internal reflection/refraction, (2) photon tunneling, and (3) edge diffraction. Tunneling here refers to processes by which tangential or grazing photons beyond the physical cross section of a spherical particle may be absorbed. Contributions of the above processes to extinction and/or absorption were approximated in terms of particle size, index of refraction, and wavelength. It was found that tunneling can explain most of the difference between ADA and Mie theory for water clouds in the thermal IR. The modified ADA yielded analytical expressions for the absorption and extinction efficiencies, Q{sub abs} and Q{sub ext}, which were integrated over a gamma size distribution to yield expressions for the absorption and extinction coefficients, {beta}{sub abs} and {beta}{sub ext}. These coefficients were expressed in terms of the three gamma distribution parameters, which were related to measured properties of the size distribution: liquid water content, mean, and mass-median diameter. Errors relative to Mie theory for {beta}{sub abs} and {beta}{sub ext} were generally {le}10% for the effective radius range in water clouds of 5--30 {micro}m, for any wavelength in the solar or terrestrial spectrum. For broadband emissivities and absorptivities regarding terrestrial and solar radiation, the errors were less than 1.2% and 4%, respectively. The modified ADA dramatically reduces computation times relative to Mie theory while yielding reasonably accurate results.
Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study
NASA Technical Reports Server (NTRS)
Walter, Steven J.; Spilker, Thomas R.
1995-01-01
A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging
Parker, K; Morrison, G
2016-08-01
Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb.
Parthasarathy, Ranganathan; Misra, Anil; Park, Jonggu; Ye, Qiang; Spencer, Paulette
2012-01-01
The diffusion of water into dentin adhesive polymers and leaching of unpolymerized monomer from the adhesive are linked to their mechanical softening and hydrolytic degradation. Therefore, diffusion coefficient data are critical for the mechanical design of these polymeric adhesives. In this study, diffusion coefficients of water and leachables were obtained for sixteen methacrylate-based crosslinked polymers using absorption experiments. The experimental mass change data was interpreted using numerical solution of the two-dimensional diffusion equations. The calculated diffusion coefficients varied from 1.05 × 10−8 cm2/sec (co-monomer TMTMA) to 3.15 × 10−8 cm2/sec (co-monomer T4EGDMA). Correlation of the diffusion coefficients with crosslink density and hydrophilicity showed an inverse trend (R2 = 0.41). The correlation of diffusion coefficient with crosslink density and hydrophilicity are closer for molecules differing by simple repeat units (R2 = 0.95). These differences in the trends reveal mechanisms of interaction of the diffusing water with the polymer structure. PMID:22430592
NASA Astrophysics Data System (ADS)
Yin, Yan; Chen, Yu; Wang, Weiwei; Yan, Jiade; Qian, Ling; Tong, Yaoqing; Lin, Zhenyi
2008-08-01
The absorption and scattering coefficients of atmospheric aerosols were continuously measured with a Photoacoustic Soot Spectrometer (PASS, DMT Inc. USA) at a suburb site of Nanjing, one of the regions experiencing rapid industrialization in China. The measurements were carried out during autumn and winter 2007. A preliminary analysis of the data shows that, the scattering coefficient, Bscat, is two to ten times larger than the absorption coefficient, Babs, implying that the aerosols formed/emitted in this area are more scattering than previous assumed, and can be more important in cooling the Earth-atmosphere system. The results also indicate that the absolute values of both parameters are very much dependent on the meteorological conditions, such as wind speed and direction, fog, rain, etc. as well as the time of the day. Higher values often appear at nighttimes when wind is weak, especially when a temperature inverse layer is present near the surface. Higher values of Bscat and Babs were also observed under hazy and foggy weather conditions or when wind is blown from east, where a large industrial zone is located. Simultaneous measurements of the number concentrations, chemical compositions, and size distributions of aerosol particles are used to explain the characteristics of the changes in Bscat and Babs.
Porogranular materials composed of elastic Helmholtz resonators for acoustic wave absorption.
Griffiths, Stéphane; Nennig, Benoit; Job, Stéphane
2017-01-01
A theoretical and experimental study of the acoustic absorption of granular porous media made of non-cohesive piles of spherical shells is presented. These shells are either rigid or elastic, possibly drilled with a neck (Helmholtz resonators), and either porous or impervious. A description is given of acoustic propagation through these media using the effective medium models proposed by Johnson (rigid particles) and Boutin (rigid Helmholtz resonators), which are extended to the configurations studied in this work. A solution is given for the local equation of elasticity of a shell coupled to the viscous flow of air through the neck and the micropores. The models and the simulations are compared to absorption spectra measured in reflection in an impedance tube. The effective medium models and the measurements show excellent agreement for configurations made of rigid particles and rigid Helmholtz resonators that induce an additional peak of absorption at low frequency. A shift of the Helmholtz resonance toward low frequencies, due to the softness of the shells is revealed by the experiments for elastic shells made of soft elastomer and is well reproduced by the simulations. It is shown that microporous shells enhance and broaden acoustic absorption compared to stiff or elastic resonators.
NASA Astrophysics Data System (ADS)
Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.
2016-11-01
The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.
The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure.
Fornasini, P; Grisenti, R
2014-10-28
The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient α(bond)(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient α(tens)(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where α(bond) prevails over α(tens); this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed.
NASA Astrophysics Data System (ADS)
Thomas, S. M.
2015-12-01
Minor and trace element chemistry, phase relations, rheology, thermal structure and the role of volatiles and their abundance in the deep Earth mantle are still far from fully explored, but fundamental to understanding the processes involved in Earth formation and evolution. Theory and high pressure experiments imply a significant water storage capacity of nominally anhydrous minerals, such as majoritic garnet, olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. Studying the effect of water incorporation on chemical and physical mineral properties is of importance, because the presence of trace amounts of water, incorporated as OH through charge-coupled chemical substitutions into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. Knowledge of absolute water contents in nominally anhydrous minerals is essential for modeling the Earth's interior water cycle. One of the most common and sensitive tools for water quantification is IR spectroscopy for which mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry, Raman spectroscopy or proton-proton(pp)-scattering. Here, analytical advances and mineral-specific IR absorption coefficients for the quantification of H2O in major phases of the Earth's mantle will be discussed. Furthermore, new data from optical absorption measurements in resistively heated diamond-anvil cells at high pressures and temperatures up to 1000 K will be presented. Experiments were performed on synthetic single-crystals of olivine, ringwoodite, majoritic garnet, and Al-bearing phase D with varying iron, aluminum and OH contents to calculate radiative thermal conductivities and study their contribution to heat transfer in the Earth's interior
2007-05-21
samples were collected with 1.7 L Niskin bottles mounted on a rosette equipped with a SBE19 CTD which provides temperature and salinity data. Samples were...21 November is 2002) on board R/V Yanping I1. Figure 1 shows the stations for CTD surveys and ab- sorption sampling . The 2001 cruise involved one...were sampled in both cruise legs for absorption coefficients (the second sampling is annotated as Sta. 6’ and Sta. 2’, respectively). 1559 Our sample
Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm
NASA Astrophysics Data System (ADS)
Bristow, Alan D.; Rotenberg, Nir; van Driel, Henry M.
2007-05-01
The degenerate two-photon absorption coefficient β and Kerr nonlinearity n2 are measured for bulk Si at 300K using 200fs pulses with carrier wavelength of 850<λ<2200nm for which indirect gap transitions occur. With a broad peak near the indirect gap and maximum value of 2±0.5cm/GW, the dispersion of β compares favorably with theoretical calculations of Garcia and Kalyanaraman [J. Phys. B 39, 2737 (2006)]. Within our wavelength range, n2 varies by a factor of 4 with a peak value of 1.2×10-13cm2/W at λ =1800nm.
Vapor-Phase Absorptivity Coefficient of Ethyl N,N-Dimethylphosphoramidocyanidate
2010-01-01
diluted in solvent by gas chromotography -mass spectrometry (GC-MS) indicated 3.4% triethyl phosphate (TEPO), as well ə% each of 0-ethyl-N,N-dimethyl...absorptivity coefficient of the chemical warfare agent ethyl N,N-dimethyl- phosphoramidocyanidate ( GA ) in the mid-infrared (4000-550 cm"’) at a...spectral resolution of 0.125 cm"’. The GA used in the feedstock was purified by fractional distillation and analyzed by nuclear magnetic resonance and
Absorption of intense microwaves and ion acoustic turbulence due to heat transport
De Groot, J.S.; Liu, J.M.; Matte, J.P.
1994-02-04
Measurements and calculations of the inverse bremsstrahlung absorption of intense microwaves are presented. The isotropic component of the electron distribution becomes flat-topped in agreement with detailed Fokker-Planck calculations. The plasma heating is reduced due to the flat-topped distributions in agreement with calculations. The calculations show that the heat flux at high microwave powers is very large, q{sub max} {approx} 0.3 n{sub e}v{sub e}T{sub e}. A new particle model to, calculate the heat transport inhibition due to ion acoustic turbulence in ICF plasmas is also presented. One-dimensional PIC calculations of ion acoustic turbulence excited due to heat transport are presented. The 2-D PIC code is presently being used to perform calculations of heat flux inhibition due to ion acoustic turbulence.
NASA Technical Reports Server (NTRS)
Harward, C. N.
1977-01-01
Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.
NASA Astrophysics Data System (ADS)
Gaudette, Richard J.; Brooks, Dana H.; Di Marzio, Charles A.; Kilmer, Misha E.; Miller, Eric L.; Gaudette, Thomas; Boas, David A.
2000-04-01
We compare, through simulations, the performance of four linear algorithms for diffuse optical tomographic reconstruction of the three-dimensional distribution of absorption coefficient within a highly scattering medium using the diffuse photon density wave approximation. The simulation geometry consisted of a coplanar array of sources and detectors at the boundary of a half-space medium. The forward solution matrix is both underdetermined, because we estimate many more absorption coefficient voxels than we have measurements, and ill-conditioned, due to the ill-posedness of the inverse problem. We compare two algebraic techniques, ART and SIRT, and two subspace techniques, the truncated SVD and CG algorithms. We compare three-dimensional reconstructions with two-dimensional reconstructions which assume all inhomogeneities are confined to a known horizontal slab, and we consider two `object-based' error metrics in addition to mean square reconstruction error. We include a comparison using simulated data generated using a different FDFD method with the same inversion algorithms to indicate how our conclusions are affected in a somewhat more realistic scenario. Our results show that the subspace techniques are superior to the algebraic techniques in localization of inhomogeneities and estimation of their amplitude, that two-dimensional reconstructions are sensitive to underestimation of the object depth, and that an error measure based on a location parameter can be a useful complement to mean squared error.
Spectral absorption coefficients of argon and silicon and spectral reflectivity of aluminum
NASA Technical Reports Server (NTRS)
Krascella, N. L.
1972-01-01
A theoretical investigation was conducted to estimate the spectral properties of argon as a function of pressure, temperature, and wave number. The spectral characteristics of the argon buffer gas exert a strong influence on radiative energy transfer in the in-reactor test configuration of the nuclear light bulb engine. An existing computer program was modified and used to calculate the spectral absorption coefficients of argon at total pressures of 50, 100, 250, 500, 750 and 1000 atm in the temperature interval between 1000 and 30,000 K. At each pressure and temperature, spectral properties were calculated for forty-seven wave numbers in the interval between 1000 and 1,000,000 cm/1. Estimates of the spectral absorption coefficients of silicon were made as part of an evaluation of silicon vapor as a possible buffer-gas seeding agent for the reference nuclear light bulb engine. Existing cross-section data were used to calculate the spectral characteristics of silicon at twenty-four temperatures in the interval between 2000 and 10,000 K.
NASA Astrophysics Data System (ADS)
André, Frédéric; Solovjov, Vladimir; Vaillon, Rodolphe; Lemonnier, Denis
2013-07-01
The generalized k-moment method is formulated in terms of Cutteridge-Devyatov polynomials (CDP). In this novel approach, the moments involved are spectral averages of integer powers of the logarithm of the absorption coefficient. The technique to obtain k-distributions from those generalized moments is detailed both theoretically and from a practical point of view. Its outputs are afterward assessed against reference data in several test cases of increasing complexity. Indeed, the first ones involve single lines in the Lorentz, Doppler and Voigt regimes. The most sophisticated situations investigated in this work concern applications of the method to high resolution LBL data for pure CO2 at temperatures between 300K and 2300K and at atmospheric pressure. In any case, the CDP solution to the generalized k-moment problem is found to provide very accurate results. The present technique outperforms our previous approach to k-moment modeling of the cumulative distribution of absorption coefficients of gases that were based on first, second, first inverse and logarithmic moments, in all the situations investigated. Equations required to apply the model are provided in the paper, both over narrow bands and the full spectrum.
Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.
Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt
2016-04-10
A method for measuring the absorption coefficient μ_{a} of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3 mm^{-1}<μ_{a}<1.55 mm^{-1}) and 1.0 vol.% (1.0 mm^{-1}<μ_{a}<4.0 mm^{-1}) concentrations with 1 vol.% (μs'≈1.4 mm^{-1}) and 10 vol.% (μs'≈14 mm^{-1}) Intralipid dilutions. The low concentrations give μ_{a} and μ_{s} values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μ_{a} values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μ_{a} values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry.
De Roo, Jonathan; Ibáñez, Maria; Geiregat, Pieter; Nedelcu, Georgian; Walravens, Willem; Maes, Jorick; Martins, Jose C; Van Driessche, Isabel; Kovalenko, Maksym V; Hens, Zeger
2016-02-23
Lead halide perovskite materials have attracted significant attention in the context of photovoltaics and other optoelectronic applications, and recently, research efforts have been directed to nanostructured lead halide perovskites. Collodial nanocrystals (NCs) of cesium lead halides (CsPbX3, X = Cl, Br, I) exhibit bright photoluminescence, with emission tunable over the entire visible spectral region. However, previous studies on CsPbX3 NCs did not address key aspects of their chemistry and photophysics such as surface chemistry and quantitative light absorption. Here, we elaborate on the synthesis of CsPbBr3 NCs and their surface chemistry. In addition, the intrinsic absorption coefficient was determined experimentally by combining elemental analysis with accurate optical absorption measurements. (1)H solution nuclear magnetic resonance spectroscopy was used to characterize sample purity, elucidate the surface chemistry, and evaluate the influence of purification methods on the surface composition. We find that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures. However, when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity. In addition, we find that a high amine content in the ligand shell increases the quantum yield due to the improved binding of the carboxylic acid.
The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy
NASA Astrophysics Data System (ADS)
Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno
2015-06-01
A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.
2009-01-01
The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."
NASA Technical Reports Server (NTRS)
Hozman, Aron D.; Hughes, William O.
2014-01-01
The exposure of a customers aerospace test-article to a simulated acoustic launch environment is typically performed in a reverberant acoustic test chamber. The acoustic pre-test runs that will ensure that the sound pressure levels of this environment can indeed be met by a test facility are normally performed without a test-article dynamic simulator of representative acoustic absorption and size. If an acoustic test facilitys available acoustic power capability becomes maximized with the test-article installed during the actual test then the customers environment requirement may become compromised. In order to understand the risk of not achieving the customers in-tolerance spectrum requirement with the test-article installed, an acoustic power margin evaluation as a function of frequency may be performed by the test facility. The method for this evaluation of acoustic power will be discussed in this paper. This method was recently applied at the NASA Glenn Research Center Plum Brook Stations Reverberant Acoustic Test Facility for the SpaceX Falcon 9 Payload Fairing acoustic test program.
NASA Technical Reports Server (NTRS)
Hozman, Aron D.; Hughes, William O.
2014-01-01
The exposure of a customer's aerospace test-article to a simulated acoustic launch environment is typically performed in a reverberant acoustic test chamber. The acoustic pre-test runs that will ensure that the sound pressure levels of this environment can indeed be met by a test facility are normally performed without a test-article dynamic simulator of representative acoustic absorption and size. If an acoustic test facility's available acoustic power capability becomes maximized with the test-article installed during the actual test then the customer's environment requirement may become compromised. In order to understand the risk of not achieving the customer's in-tolerance spectrum requirement with the test-article installed, an acoustic power margin evaluation as a function of frequency may be performed by the test facility. The method for this evaluation of acoustic power will be discussed in this paper. This method was recently applied at the NASA Glenn Research Center Plum Brook Station's Reverberant Acoustic Test Facility for the SpaceX Falcon 9 Payload Fairing acoustic test program.
Doutres, Olivier; Atalla, Noureddine
2010-08-01
The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound absorption behavior can affect the performance of the double panel structure.
Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A
2012-01-31
We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.
NASA Astrophysics Data System (ADS)
Zhang, Chi; Hu, Xinhua
2016-12-01
Metamaterials are engineered materials which exhibit fascinating properties unreachable by traditional materials. Here, we report on the design, fabrication, and experimental characterization of a three-dimensional single-port labyrinthine acoustic metamaterial. By using curled perforations with one end closed and with appropriate loss inside, the metamaterial can perfectly absorb airborne sounds in a low-frequency band. Both the position and the relative width of the band can be tuned flexibly. A trade-off is uncovered between the relative absorption bandwidth and thickness of the metamaterial. When the relative absorption bandwidth is as high as 51%, the requirement of deep-subwavelength thickness (0.07 λ ) can still be satisfied. We emphasize that the perfect absorption with large tunability in relative bandwidth (from 9% to >180 % ) was not attainable previously and may find applications ranging from noise reduction to sound imaging.
Photo-acoustic measurements of gas and aerosol absorption with diode lasers.
Ponomarev, Yu N
2004-12-01
The results of designing multipurpose high-sensitive photo-acoustic (PA) detectors and their application to high-resolution diode laser spectroscopy of molecular gases, gas analysis, and aerosol absorption measurements are summarized in this paper. The hardware and software of the diode laser spectrometer with a Helmholtz resonant PA detector providing an absorption sensitivity limit of better than 10(-7)Wm(-1)Hz(-1/2) are described. A procedure is proposed for an experiment involving the measurements of the rotational structure of hot vibrational bands of molecules. The results of the application of the nonresonant PA cell with temporal resolution of signals to measurements of weak nonresonant absorption of gases and soot aerosols are presented, and the possibility of creating a broad-band PA laser diode aerosol-meter is discussed.
Remote-Sensing Technique for Determination of the Volume Absorption Coefficient of Turbid Water
NASA Astrophysics Data System (ADS)
Sydor, Michael; Arnone, Robert A.; Gould, Richard W., Jr.; Terrie, Gregory E.; Ladner, Sherwin D.; Wood, Christoper G.
1998-07-01
We use remote-sensing reflectance from particulate R rs to determine the volume absorption coefficient a of turbid water in the 400 700-nm spectral region. The calculated and measured values of a ( ) show good agreement for 0 . 5 a 10 (m 1 ). To determine R rs from a particulate, we needed to make corrections for remote-sensing reflectance owing to surface roughness S rs . We determined the average spectral distribution of S rs from the difference in total remote-sensing reflectance measured with and without polarization. The spectral shape of S rs showed an excellent fit to theoretical formulas for glare based on Rayleigh and aerosol scattering from the atmosphere.
The Optical Absorption Coefficient of Maize Grains Investigated by Photoacoustic Spectroscopy
NASA Astrophysics Data System (ADS)
Rodríguez-Páez, C. L.; Carballo-Carballo, A.; Rico-Molina, R.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Moreno-Martínez, E.
2017-01-01
In the maize and tortilla industry, it is important to characterize the color of maize ( Zea mays L.) grain, as it is one of the attributes that directly affect the quality of the tortillas consumed by the population. For this reason, the availability of alternative techniques for assessing and improving the quality of grain is valued. Photoacoustic spectroscopy has proven to be a useful tool for characterizing maize grain. So, the objective of the present study was to determine the optical absorption coefficient β of the maize grain used to make tortillas from two regions of Mexico: (a) Valles Altos, 2012-2013 production cycle and (b) Guasave, Sinaloa, 2013-2014 production cycle. Traditional reflectance measurements, physical characteristics of the grain and nutrient content were also calculated. The experimental results show different characteristics for maize grains.
Study of the absorption coefficient of alpha particles to lower hybrid waves in tokamak
Wang, Jianbing Zhang, Xianmei Yu, Limin Zhao, Xiang
2014-02-12
Part of the energy of the Lower Hybrid (LH) waves may be absorbed by the α particles via the so-called perpendicular landau damping mechanism, which depends on various parameters of fusion reactors and the LH waves. In this article, we calculate the absorption coefficient γ{sub α} of LH waves due to α particles. Results show that, the γ{sub α} increases with the parallel refraction index n{sub ∥} while deceases with increasing the frequency of LH waves ω{sub LH} over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption, and there is a peak value of γ{sub α} when n{sub e}≈8×10{sup 19}m{sup −3} for ITER-like scenario. The thermal corrections to the cold plasma dispersion relation will change the damping rate to a certain extent under some specific conditions. We have also evaluated the fraction of LH power absorbed by the alpha particles, η ≈ 0.47% and 4.1% for an LH frequency of 5 GHz and 3.7 GHz respectively for ITER-like scenario. This work gives the effective reference for the choice of parameters of future fusion reactors.
Kapitanov, V A; Ponomarev, Yu N; Tyryshkin, I S; Rostov, A P
2007-04-01
We describe the hardware and software of the high-sensitive two-channel opto-acoustic spectrometer with a near infrared diode laser. A semiconductor TEC-100 laser with outer resonator generates a continuous single-frequency radiation in the range of 6040-6300 cm-1 with spectral resolution better that 10 MHz. The newly designed model of photo-acoustic cells in the form of a ring type resonator was used in the spectrometer, and the system allows the measurement of a weak absorption coefficient equal to 1.4x10(-7) cm-1 Hz-1/2 with a laser radiation power of 0.003 W. The methane absorption spectra within a range of 6080-6180 cm-1 were measured with a spectral resolution of 10 MHz and the signal to noise ratio more than 10(3). Six hundred absorption lines were recorded, which is twice as many as in HITRAN-2004. The accurate measurements of the half-width and shift of methane unresolved triplet R3 of 2nu3 band permit us to determine values of the broadening and shift coefficients for CH4-air, CH4-N2, and CH4-SF6 mixtures.
Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil
Alkire, Randall W.
2016-11-01
In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less
Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil
Alkire, Randall W.
2016-11-01
In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the Ni
IR Absorption Coefficients for the Quantification of Water in Hydrous Ringwoodite
NASA Astrophysics Data System (ADS)
Thomas, S.; Jacobsen, S. D.; Bina, C. R.; Smyth, J. R.; Frost, D. J.
2009-12-01
Raman spectroscopy, combined with the ‘Comparator technique’ has been developed to determine water contents ranging from a few wt ppm to wt% in glasses and nominally anhydrous minerals including garnets, olivine, and SiO2 polymorphs (Thomas et al. 2009). The routine is one promising example of quantification tools to determine mineral specific molar absorption coefficients (ɛ) for IR spectroscopy. Mineral specific absorption coefficients are required because general IR calibrations do not necessarily apply to minerals with water incorporated as hydroxyl point defects. Here we utilize the ‘Comparator technique’ to provide ɛ-values for a set of synthetic Fe-free and Fe-bearing (Fo90) ringwoodites, as well as for γ-Mg2GeO4. Ringwoodite is considered one of the major phases of the Earth’s lower transition zone (520-660 km depth) and the knowledge of its absolute water storage capacity is essential for modeling the Earth’s deep water cycle. Samples were synthesized at variable P-T conditions in a multi-anvil press and cover a range of OH contents. Single-crystals were characterized using X-ray diffraction and IR spectroscopy. Mineral specific IR absorption coefficients were calculated from independently determined water contents from Raman spectroscopy. Unpolarized IR spectra of Mg-ringwoodite show broad absorption features in the OH region with band maxima at ~2350, 2538, 3127, 3172, 3598 and 3688 cm-1. In the spectra of Fe-bearing ringwoodite and γ-Mg2GeO4 the maxima of the main OH band are shifted to 3172 cm-1 and 3207 cm-1, respectively. For Mg-ringwoodite with the mean wavenumber (area-weighted average of the peak position) of 3109 cm-1 an ɛ-value of 170000 ± 51000 L cm-2 / molH2O was determined. For a Fo90 sample with the mean wavenumber of 3132 cm-1 the value was calculated to be 123000 ± 37000 L cm-2 / molH2O. The latter two values are in good agreement with the data from the linear calibration of ~159000 L cm-2 / molH2O and ~153000 L cm-2
NASA Astrophysics Data System (ADS)
Tamandani, Shahryar; Darvish, Ghafar
2017-02-01
We present an analytical method to calculate photon absorption coefficient in mono and bilayer circular graphene quantum dots (CGQDs). We use kobo equation to extract new closed relation as the main goal. First, we calculate real and imaginary part of optical conductance separately. Then, joint density of states is obtained using a new relation that was extracted for the energy levels of mono and bilayer circular grapheme quantum dots. In this work we use closed equations to calculate energy levels in CGQDs. Next we obtain a new closed formula to calculate the photon absorption coefficient. The results show that the absorption coefficient is related to the size of CGQDs and number of layers. The photon absorption coefficient becomes lower with larger size of CGQDs. It is seen that the results of our method is compatible with the results of practical works. We also compare photon absorption in biased and unbiased bilayer CGQDs and investigate the effect of external magnetic field on photon absorption. rights reserved
NASA Astrophysics Data System (ADS)
Dombrovsky, Leonid A.
2016-03-01
A significant uncertainty in the absorption coefficient of highly scattering dispersed materials is typical in the spectral ranges of very weak absorption. The traditional way to identify the main absorption and scattering characteristics of semi-transparent materials is based on spectral measurements of normal-hemispherical reflectance and transmittance for the material sample. Unfortunately this way cannot be used in the case of in vivo measurements of optical properties of biological tissues. A method suggested in the present paper is based on thermal response to the periodic radiative heating of the open surface of a semi-transparent material. It is shown that the period of a variation of the surface temperature is sensitive to the value of an average absorption coefficient in the surface layer. As a result, the monochromatic external irradiation combined with the surface temperature measurements can be used to retrieve the spectral values of absorption coefficient. Possible application of this method to porous semi-transparent ceramics is considered. An example problem is also solved to illustrate the applicability of this method to human skin. The approach suggested enables one to estimate an average absorption coefficient of human skin of a patient just before the thermal processing.
NASA Astrophysics Data System (ADS)
Kienle, Alwin; Lilge, Lothar; Patterson, Michael S.; Hibst, Raimund; Steiner, Rudolf; Wilson, Brian C.
1996-05-01
The absorption and transport scattering coefficients of biological tissues determine the radial dependence of the diffuse reflectance that is due to a point source. A system is described for making remote measurements of spatially resolved absolute diffuse reflectance and hence noninvasive, noncontact estimates of the tissue optical properties. The system incorporated a laser source and a CCD camera. Deflection of the incident beam into the camera allowed characterization of the source for absolute reflectance measurements. It is shown that an often used solution of the diffusion equation cannot be applied for these measurements. Instead, a neural network, trained on the results of Monte Carlo simulations, was used to estimate the absorption and scattering coefficients from the reflectance data. Tests on tissue-simulating phantoms with transport scattering coefficients between 0.5 and 2.0 mm-1 and absorption coefficients between 0.002 and 0.1 mm -1 showed the rms errors of this technique to be 2.6% for the transport scattering coefficient and 14% for the absorption coefficients. The optical properties of bovine muscle, adipose, and liver tissue, as well as chicken muscle (breast), were also measured ex vivo at 633 and 751 nm. For muscle tissue it was found that the Monte Carlo simulation did not agree with experimental measurements of reflectance at distances less than 2 mm from the incident beam. Carlo, neural network.
Van Dijck, Gert; Van Hulle, Marc M
2011-01-01
The damage caused by corrosion in chemical process installations can lead to unexpected plant shutdowns and the leakage of potentially toxic chemicals into the environment. When subjected to corrosion, structural changes in the material occur, leading to energy releases as acoustic waves. This acoustic activity can in turn be used for corrosion monitoring, and even for predicting the type of corrosion. Here we apply wavelet packet decomposition to extract features from acoustic emission signals. We then use the extracted wavelet packet coefficients for distinguishing between the most important types of corrosion processes in the chemical process industry: uniform corrosion, pitting and stress corrosion cracking. The local discriminant basis selection algorithm can be considered as a standard for the selection of the most discriminative wavelet coefficients. However, it does not take the statistical dependencies between wavelet coefficients into account. We show that, when these dependencies are ignored, a lower accuracy is obtained in predicting the corrosion type. We compare several mutual information filters to take these dependencies into account in order to arrive at a more accurate prediction.
Van Dijck, Gert; Van Hulle, Marc M.
2011-01-01
The damage caused by corrosion in chemical process installations can lead to unexpected plant shutdowns and the leakage of potentially toxic chemicals into the environment. When subjected to corrosion, structural changes in the material occur, leading to energy releases as acoustic waves. This acoustic activity can in turn be used for corrosion monitoring, and even for predicting the type of corrosion. Here we apply wavelet packet decomposition to extract features from acoustic emission signals. We then use the extracted wavelet packet coefficients for distinguishing between the most important types of corrosion processes in the chemical process industry: uniform corrosion, pitting and stress corrosion cracking. The local discriminant basis selection algorithm can be considered as a standard for the selection of the most discriminative wavelet coefficients. However, it does not take the statistical dependencies between wavelet coefficients into account. We show that, when these dependencies are ignored, a lower accuracy is obtained in predicting the corrosion type. We compare several mutual information filters to take these dependencies into account in order to arrive at a more accurate prediction. PMID:22163921
NASA Astrophysics Data System (ADS)
Lee, H. J.; Aiona, P. K.; Nizkorodov, S.; Laskin, J.; Laskin, A.
2014-12-01
Atmospheric aerosols that absorb solar radiation have a direct effect on climate. Brown carbon (BrC) represents the type of carbonaceous aerosols characterized by large absorption coefficients in the near-UV range of the spectrum. BrC can be either directly emitted into the atmosphere from combustion sources, or be formed in the atmosphere through multi-phase reactions, such as aging of secondary organic aerosols (SOA) mediated by ammonium sulfate (AS). Under the conditions of exposure to solar radiation, both primary and secondary BrC can potentially change their molecular composition and optical properties as a result of photodegradation of chromophoric compounds. This presentation will discuss the molecular level composition, the absorption and fluorescence spectra, and the mechanism of photodegradation among several representative types of BrC. The primary BrC samples include aerosol produced by smoldering wood combustion. The secondary BrC samples include AS aged products of chamber-generated SOA, products of reaction between methylglyoxal and AS, and SOA produced by the hogh-NOx photooxdiation of aromatic compounds, such as naphthalene. This presentation will also include preliminary data on the absorption and fluorescence spectra of photo-degraded bioaerosols. In all cases, absorption spectra of extracted bulk samples are measured during irradiation by a known flux of UV or visible light. The molecular level composition of the fresh and photobleached samples are characterized by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Photobleaching of BrC is found to occur over a range of atmospherically relevant time scales. In many cases, the molecular level composition of photobleached BrC exhibits only subtle changes suggesting that the optical and fluorescence properties of BrC are controlled by a few compounds present in low quantities. The observed fluorescence from non-biological BrC indicates potential issues in using fluorescence
Goodman, W A; Goorsky, M S
1995-06-20
We engineered a factor-of-4 reduction in the bulk absorption coefficient over the 2.6-to-3.0-µm bandwidth in single-crystal Czochralski silicon optics for high-energy infrared lasers with high-temperature annealing treatments. Defect engineering adapted from the integrated circuit industry has been used to reduce the absorption coefficient across the 1.5-to-5-µm bandwidth for substrates up to 5 cm thick. A high-temperature oxygen-dispersion anneal dissolves precipitates and thermal donors that are present in the as-grown material. The process has been verified experimentally with Fourier transform infrared spectroscopy, infrared laser calorimetry, and Hall measurements. Reduction of the absorption coefficient results in less substrate heating and thermal distortion of the optical surface. The process is appropriate for other silicon infrared optics applications such as thermal-imaging systems, infrared windows, and spectrophotometers.
Surface acoustic wave response to optical absorption by graphene composite film.
Chivukula, Venkata S; Ciplys, Daumantas; Kim, Jin Ho; Rimeika, Romualdas; Xu, Jimmy M; Shur, Michael S
2012-02-01
Propagation of surface acoustic waves in YZ LiNbO3 overlaid with graphene flakes has been investigated and its optical response to illumination by 633-nm light from a He-Ne laser was studied. The heating of the sample surface caused by optical absorption by the graphene led to a downshift in the transmitted SAW phase caused by the wave velocity's dependence on temperature. The proposed simple model based on optothermal SAW phase modulation was found to be in good agreement with the experimental results.
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.
2007-01-01
Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
Hart, Roger C; Herring, G C; Balla, R Jeffrey
2007-06-15
Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
NASA Technical Reports Server (NTRS)
Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.
1990-01-01
A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.
Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )
1990-05-01
A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.
Effects of combined scattering and absorption coefficients on laser speckle contrast imaging values
NASA Astrophysics Data System (ADS)
Khaksari, Kosar; Kirkpatrick, Sean J.
2015-03-01
Laser Speckle contrast imaging (LSCI) is a non-invasive or minimally invasive method for visualizing blood flow and perfusion in biological tissues. In LSCI the motion of scattering particles results in a reduction in global and regional speckle contrast. A variety of parameters can affect the calculated contrast values in LSCI techniques, including the optical properties of the fluid and surrounding tissue. In typical LSCI where the motion of blood is of interests, optical properties are influenced by hematocrit levels. In this work we considered the combined effects of both the scattering and absorption coefficients on LSCI measurements on a flow phantom. Fluid phantoms consisting of various concentrations of neutrally buoyant ~10 micron microspheres and India ink mixed with DI water were formulated to mimic the optical properties of whole blood with various levels of hematocrit. In these flow studies, it was found that an increase in μa and/or μs led to a decrease in contrast values when all other experimental parameters were held constant. The observed reduction in contrast due to optical property changes could easily be confused with a contrast reduction due to increased flow velocity. These results suggest that optical properties need to be considered when using LSCI to make flow estimates.
Optoelectronic properties of Mg{sub 2}Si semiconducting layers with high absorption coefficients
Kato, Takashi; Sago, Yuichiro; Fujiwara, Hiroyuki
2011-09-15
In an attempt to develop a low-cost material for solar cell devices, polycrystalline magnesium silicide (poly-Mg{sub 2}Si) semiconducting layers have been prepared by applying rf magnetron sputtering using a Mg{sub 2}Si target. The optimum substrate temperature for the poly-Mg{sub 2}Si growth was found to be T{sub s} = 200 deg. C; the film deposition at higher temperatures leads to desorption of Mg atoms from the growing surface, while the amorphous phase formation occurs at room temperature. The poly-Mg{sub 2}Si layer deposited at T{sub s} = 200 deg. C shows the (111) preferential orientation with a uniform grain size of {approx}50 nm. The dielectric function of the poly-Mg{sub 2}Si layer has been determined accurately by spectroscopic ellipsometry. From the analysis, quite high absorption coefficients and an indirect gap of 0.77 eV in the poly-Mg{sub 2}Si layer have been confirmed. The above poly-Mg{sub 2}Si layer shows clear photoconductivity and can be applied as a narrow-gap bottom layer in multi-junction solar cell devices.
Noise-driven optical absorption coefficients of impurity doped quantum dots
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas
2016-01-01
We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.
Effects of nanosilver on sound absorption coefficients in solid wood species.
Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib
2016-06-01
Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens.
Ellwood, R; Stratoudaki, T; Sharples, S D; Clark, M; Somekh, M G
2014-03-01
The third-order elastic constants of a material are believed to be sensitive to residual stress, fatigue, and creep damage. The acoustoelastic coefficient is directly related to these third-order elastic constants. Several techniques have been developed to monitor the acoustoelastic coefficient using ultrasound. In this article, two techniques to impose stress on a sample are compared, one using the classical method of applying a static strain using a bending jig and the other applying a dynamic stress due to the presence of an acoustic wave. Results on aluminum samples are compared. Both techniques are found to produce similar values for the acoustoelastic coefficient. The dynamic strain technique however has the advantages that it can be applied to large, real world components, in situ, while ensuring the measurement takes place in the nondestructive, elastic regime.
NASA Technical Reports Server (NTRS)
Barstow, M. A.; Lewis, M.; Petre, R.
1983-01-01
Transmittances of thin-film filters fabricated for an extreme-UV astronomy sounding-rocket experiment yield values for the linear absorption coefficient of beryllium in the 50-300-A wavelength range, in which previous measurements are sparse. The inferred values are consistent with the lowest data previously published and may have important consequences for extreme-UV astronomers.
Chazel, V; Houpert, P; Paquet, F; Ansoborlo, E
2001-01-01
In the Human Respiratory Tract Model (HRTM) described in ICRP Publication 66, time-dependent dissolution is described by three parameters: the fraction dissolved rapidly, fr, and the rapid and slow dissolution rates sr and ss. The effect of these parameters on the dose coefficient has been studied. A theoretical analysis was carried out to determine the sensitivity of the dose coefficient to variations in the values of these absorption parameters. Experimental values of the absorption parameters and the doses per unit intake (DPUI) were obtained from in vitro dissolution tests, or from in vivo experiments with rats, for five industrial uranium compounds UO2, U3O8, UO4, UF4 and a mixture of uranium oxides. These compounds were classified in terms of absorption types (F, M or S) according to ICRP. The overall result was that the factor which has the greatest influence on the dose coefficient was the slow dissolution rate ss. This was verified experimentally, with a variation of 20% to 55% for the DPUI according to the absorption type of the compound. In contrast, the rapid dissolution rate sr had little effect on the dose coefficient, excepted for Type F compounds.
Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...
Wang, J.; Zhang, X. Yu, L.; Zhao, X.
2014-12-15
In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γ{sub α} of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γ{sub α} increases with the parallel refraction index n{sub ‖}, while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γ{sub α} increases with n{sub e} when n{sub e} ≤ 8 × 10{sup 19} m{sup −3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of γ{sub α} when n{sub e} ≈ 8 × 10{sup 19} m{sup −1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γ{sub α} with n{sub ‖} being 2.5 is almost two times larger than that with n{sub ‖} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.
Benmakhlouf, Hamza; Bouchard, Hugo; Fransson, Annette; Andreo, Pedro
2011-11-21
Backscatter factors, B, and mass energy-absorption coefficient ratios, (μ(en)/ρ)(w, air), for the determination of the surface dose in diagnostic radiology were calculated using Monte Carlo simulations. The main purpose was to extend the range of available data to qualities used in modern x-ray techniques, particularly for interventional radiology. A comprehensive database for mono-energetic photons between 4 and 150 keV and different field sizes was created for a 15 cm thick water phantom. Backscattered spectra were calculated with the PENELOPE Monte Carlo system, scoring track-length fluence differential in energy with negligible statistical uncertainty; using the Monte Carlo computed spectra, B factors and (μ(en)/ρ)(w, air) were then calculated numerically for each energy. Weighted averaging procedures were subsequently used to convolve incident clinical spectra with mono-energetic data. The method was benchmarked against full Monte Carlo calculations of incident clinical spectra obtaining differences within 0.3-0.6%. The technique used enables the calculation of B and (μ(en)/ρ)(w, air) for any incident spectrum without further time-consuming Monte Carlo simulations. The adequacy of the extended dosimetry data to a broader range of clinical qualities than those currently available, while keeping consistency with existing data, was confirmed through detailed comparisons. Mono-energetic and spectra-averaged values were compared with published data, including those in ICRU Report 74 and IAEA TRS-457, finding average differences of 0.6%. Results are provided in comprehensive tables appropriated for clinical use. Additional qualities can easily be calculated using a designed GUI interface in conjunction with software to generate incident photon spectra.
NASA Astrophysics Data System (ADS)
Millán-Núñez, Eduardo; Sieracki, Michael E.; Millán-Núñez, Roberto; Lara-Lara, José Rubén; Gaxiola-Castro, Gilberto; Trees, Charles C.
2004-03-01
In recent years, experts of optical hydrology have shown great interest in the variability of the specific absorption coefficient of light by phytoplankton (aph*). This parameter is important and necessary for comparing in situ bio-optical and satellite optical measurements. Such comparisons are needed for detecting primary productivity at a mesoscale level. At present, however, the parameters used in algorithms for predicting productivity are global averages. To avoid this bias, we measured the spatial-temporal variability of aph* as part of the Jan-01 Investigaciones Mexicanas de la Corriente de California cruise along the southern California Current. We observed median values of 0.041 m2 (mg chlorophyll a (Chl a))-1 at 440 nm and 0.015 at 674 nm, with significant differences between inshore and offshore stations. In general, the stations located in the area of Bahía Vizcaíno, with oceanographic conditions favorable for the growth of phytoplankton, showed lower values of the aph* . The nano-microphytoplankton (>5 μm) community comprised of 26 diatom genera with mean abundance values of the 19.5×103 cells l-1. Nitzschia closterium, a pennate diatom, was almost uniform throughout the study region. Flow cytometry measurements indicated that the picoplankton (<5 μm) community consisted of two prokaryotes, Prochlorococcus (mean 3.6×106 cells l-1) and Synechococcus (mean 10.4×106 cells l-1), and a mixture of picoeukaryotes (mean 6.5×106 cells l-1). Analyses of Chl and carotenoid pigments determined by high-performance liquid chromatographic confirmed the presence of the divinyl Chl a characteristic of Prochlorococcus. The nano-micro- and picoplankton were 82% and 18% of total phytoplankton biomass (μg C l-1), respectively. In general, we concluded that the phytoplankton community structure and biomass on this cruise showed conditions similar to oligotrophic systems.
NASA Astrophysics Data System (ADS)
Nicolas, L.; Furstoss, M.; Galland, M. A.
1998-10-01
An analogy between electromagnetism and acoustics is presented in 2D. The propagation of sound in presence of absorbing material is modeled using an open boundary microwave package. Validation is performed through analytical and experimental results. Application to local impedance active control for free field sound absorption is finally described. Une analogie entre acoustique et électromagnétisme est présentée en 2D, afin de modéliser la propagation d'ondes acoustiques, en présence de matériau absorbant et à l'aide d'un logiciel de micro-ondes en domaine ouvert. Cette analogie est validée par des résultats analytiques et expérimentaux. Une application au contrôle actif de l'impédance acoustique de surface de matériaux poreux est finalement décrite.
Danilov, A A; Masloboev, Iu P; Selishchev, S V; Tereshchenko, S A
2006-01-01
A method for experimental determination of optical characteristics of a highly-dispersive medium (radiation scattering and absorption coefficients) is described. The method is based on two mathematical models of ultrashort laser pulse propagation through a highly-dispersive medium (HDM), an axial model and a diffusion model. Milk dissolved in water was used as HDM. Dependences of optical characteristics of HDM on the concentration of milk in water are obtained. The limits of applicability of the axial and diffusion models to media with different scattering and absorption characteristics are determined.
The absorption coefficient of the liquid N2 2.15-micron band and application to Triton
NASA Technical Reports Server (NTRS)
Grundy, William M.; Fink, Uwe
1991-01-01
The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.
Zhang, Yumin; Chan, Yum-Ji; Huang, Lixi
2014-05-01
Broadband noise with profound low-frequency profile is prevalent and difficult to be controlled mechanically. This study demonstrates effective broadband sound absorption by reducing the mechanical reactance of a loudspeaker using a shunt circuit through electro-mechanical coupling, which induces reactance with different signs from that of loudspeaker. An RLC shunt circuit is connected to the moving coil to provide an electrically induced mechanical impedance which counters the cavity stiffness at low frequencies and reduces the system inertia above the resonance frequency. A sound absorption coefficient well above 0.5 is demonstrated across frequencies between 150 and 1200 Hz. The performance of the proposed device is superior to existing passive absorbers of the same depth (60 mm), which has lower frequency limits of around 300 Hz. A passive noise absorber is further proposed by paralleling a micro-perforated panel with shunted loudspeaker which shows potentials in absorbing band-limit impulse noise.
Methods for the treatment of acoustic and absorptive/dispersive wave field measurements
NASA Astrophysics Data System (ADS)
Innanen, Kristopher Albert Holm
Many recent methods of seismic wave field processing and inversion concern themselves with the fine detail of the amplitude and phase characteristics of measured events. Processes of absorption and dispersion have a strong impact on both; the impact is particularly deleterious to the effective resolution of images created from the data. There is a need to understand the dissipation of seismic wave energy as it affects such methods. I identify: algorithms based on the inverse scattering series, algorithms based on multiresolution analysis, and algorithms based on the estimation of the order of the singularities of seismic data, as requiring this kind of study. As it turns out, these approaches may be cast such that they deal directly with issues of attenuation, to the point where they can be seen as tools for viscoacoustic forward modelling, Q estimation; viscoacoustic inversion, and/or Q compensation. In this thesis I demonstrate these ideas in turn. The forward scattering series is formulated such that a viscoacoustic wave field is represented as an expansion about an acoustic reference; analysis of the convergence properties and scattering diagrams are carried out, and it is shown that (i) the attenuated wave field may be generated by the nonlinear interplay of acoustic reference fields, and (ii) the cumulative effect of certain scattering types is responsible for macroscopic wave field properties: also, the basic form of the absorptive/dispersive inversion problem is predicted. Following this, the impact of Q on measurements of the local regularity of a seismic trace, via Lipschitz exponents, is discussed, with the aim of using these exponents as a means to estimate local Q values. The problem of inverse scattering based imaging and inversion is treated next: I present a simple, computable form for the simultaneous imaging and wavespeed inversion of 1D acoustic wave field data. This method is applied to 1D, normal incidence synthetic data: its sensitivity with
NASA Astrophysics Data System (ADS)
Dowell, M.
2006-12-01
Chlorophyll-a specific absorption (aph*) is a parameter used in bio-optical and primary production models and its coefficients are usually assumed to be constant. However, it has been documented in previous studies that these coefficients vary significantly due to pigmentation and "the package effect" which are a function of the taxonomic composition and the physiological state of the algal population. As part of the Coastal Ocean Observing Center (COOC) at the University of New Hampshire, HPLC pigments and phytoplankton absorption measurements were taken from water samples collected within the Gulf of Maine from 2004-2006. These data were then partitioned spatially, temporally, seasonally, and by other classification criteria. Spectral aph* means were generated for all partitions within each classification method. The results were used to parameterize province-specific bio-optical models for a regional algorithm. The separation of aph* means into different classes captured the effects of taxonomy and the package effect by reducing aph* variability.
NASA Astrophysics Data System (ADS)
Beckwith, Clyfe Gordon
This research investigated the feasibility of accurately measuring Virial coefficients in an acoustically resonant cylindrical cavity. Gases studied were: Argon, Helium, Nitrogen, Carbon Dioxide, and Methane. Parameters considered were: resonant frequencies (f_ {rm r}- also a measure of speed of sound), quality factors (Q), and signal amplitudes. We studied the longitudinal modes smaller than 2000 Hz, at room temperature and at pressures of 200, 500, and 800 mm of Hg. The choice of the longitudinal modes was predetermined by our wish to compare acoustic and photoacoustic resonance techniques of the same mode. The acoustic excitation is limited to the longitudinal modes and is achieved by placing a loudspeaker close to one end of the cavity. Photoacoustically we excite a small concentration of molecular Iodine, mixed in with the buffer gases, by a periodically interrupted Xenon light beam. By increasing the length of the cavity we could decrease the space between the modes of frequency. Our observations focused on the behaviors that (a) f_{rm r} shifted with pressure, (b) the f_{rm r} deviated from the simple laws of harmonics, and (c) the amplitudes for the two techniques varied differently with frequency. Effect (a) is due to the fact that the gases are not "ideal", and due to the presence of boundary layers caused by thermal conduction and viscosity gradients. Effect (b) arises because of the f_{rm r}'s mode dependence, caused by the wave scattering due to imperfect geometrical symmetries. Effect (c) is governed by the coupling factors. All measurements could theoretically be justified to within instrumental error, the only noted discrepancy is the lack of a theoretical mode dependence. We conclude that it is feasible to study the accuracy of Virial coefficients of simple gases provided that the boundary layer loss effects and the mode dependent wave scattering can be quantified; in regions of high pressures and high frequencies the Virial effects dominate the
NASA Technical Reports Server (NTRS)
Varanasi, Prasad
1992-01-01
Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.
Sturtevant, Blake T; Davulis, Peter M; da Cunha, Mauricio Pereira
2009-04-01
This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120 degrees C are reported and discussed in this work.
NASA Technical Reports Server (NTRS)
Calvin, Wendy M.
1990-01-01
Reflectance spectra of carbon dioxide frosts were calculated using the optical constants provided by Warren (1986) for the wavelength region 2-6 microns. In comparing these calculated spectra to spectra of frosts observed in the laboratory and on the surface of Mars, problems in the optical constants presented by Warren (1986) became apparent. Absorption coefficients for CO2 ice have been derived using laboratory reflectance measurements and the Hapke (1981) model for calculating diffuse reflectance. This provides approximate values in regions where no data were previously available and indicates where corrections to the compilation by Warren (1986) are required. Using these coefficients to calculate the reflectance of CO2 ice at varying grain sizes indicates that a typical Mariner polar cap spectrum is dominated by absorptions due to CO2 frost or ice at grain sizes that are quite large, probably of the order of millimeters to centimeters. There are indications of contamination of water frost or dust, but confirmation will require more precise absorption coefficients for solid CO2 than can be obtained from the method used here.
NASA Technical Reports Server (NTRS)
Mogro-Campero, A.; Fillius, W.
1976-01-01
The process of trapped particle absorption by the inner Jovian satellites is considered in detail taking into account both the particle and satellite motions in a magnetic dipole field which is displaced from the center of the planet and tilted with respect to the planetary rotation axis. An expression is derived for computing the sweeping time at a given satellite, defined as the time required for the satellite to sweep up a given fraction of the trapped particles within its sweeping region. By making use of the sweeping time and the radial diffusion equation of particle transport approximate expressions for the diffusion coefficient are derived. Measurements obtained by Pioneer 10 are then used to obtain estimates of the diffusion coefficient at the orbits of Io and Europa. We find that the diffusion coefficient is a function of energy and magnetic latitude for electrons in the energy range 0.7-14 MeV.
Chen, Sheng-Hui; Wang, Hsuan-Wen; Chang, Ting-Wei
2012-03-12
Considering the Mott-Davis density of state model and Rayleigh scattering effect, we present an approach to model the absorption profile of microcrystalline silicon thin films in this paper. Maxwell-Garnett effective medium theory was applied to analyze the absorption curves. To validate the model, several experimental profiles have been established and compared with those results from the model. With the assistance of the genetic algorithm, our results show that the absorption curves from the model are in good agreement with the experiments. Our findings also indicate that, as the crystal volume fraction increases, not only do the defects in amorphous silicon reduce, but the bulk scattering effect is gradually enhanced as well.
Effective Reflection Coefficients for the Mean Acoustic Field Between Two Rough Interfaces
1994-02-14
scattering ampitudes, as in the work of Kuperman and Ingenito Q0 (3], are considerably different that those calculated using renormalized reflection...shows that in fact, G is not singular as A1,2 --+ 1. Thus the normal modes are determined only by the zeros of 1 - VKt (K)V,’/(K). These zeros occur for...between two interfaces. 13 V Second order calculations In this section the simplest approximation for the effective reflection coefficients will be de
Snell-Rood, Emilie C
2012-02-01
The divergence of signals along ecological gradients may lead to speciation. The current research tests the hypothesis that variation in sound absorption selects for divergence in acoustic signals along climatic gradients, which has implications for understanding not only diversification, but also how organisms may respond to climate change. Because sound absorption varies with temperature, humidity, and the frequency of sound, individuals or species may vary signal structure with changes in climate over space or time. In particular, signals of lower frequency, narrower bandwidth, and longer duration should be more detectable in environments with high sound absorption. Using both North American wood warblers (Parulidae) and bats of the American Southwest, this work found evidence of associations between signal structure and sound absorption. Warbler species with higher mean absorption across their range were more likely to have narrow bandwidth songs. Bat species found in higher absorption habitats were more likely to have lower frequency echolocation calls. In addition, bat species changed echolocation call structure across seasons, using longer duration, lower frequency calls in the higher absorption rainy season. These results suggest that signals may diverge along climatic gradients due to variation in sound absorption, although the effects of absorption are modest.
Ritter, André; Anton, Gisela; Weber, Thomas
2016-01-01
A maximum-likelihood reconstruction technique for X-ray Talbot-Lau tomography is presented. This technique allows the iterative simultaneous reconstruction of discrete distributions of absorption coefficient, refractive index and a dark-field scattering coefficient. This technique avoids prior phase retrieval in the tomographic projection images and thus in principle allows reconstruction from tomographic data with less than three phase steps per projection. A numerical phantom is defined which is used to evaluate convergence of the technique with regard to photon statistics and with regard to the number of projection angles and phase steps used. It is shown that the use of a random phase sampling pattern allows the reconstruction even for the extreme case of only one single phase step per projection. The technique is successfully applied to measured tomographic data of a mouse. In future, this reconstruction technique might also be used to implement enhanced imaging models for X-ray Talbot-Lau tomography. These enhancements might be suited to correct for example beam hardening and dispersion artifacts and improve overall image quality of X-ray Talbot-Lau tomography. PMID:27695126
Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.
2005-03-01
The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.
Uranyl ion: A convenient standard for transient molar absorption coefficient measurements
Bakac, A.; Burrows, H.D.
1997-12-01
Transient absorption spectra of an aqueous solution of uranyl sulfate have been measured in the ultraviolet and visible spectra. The excited uranyl ion may be a convenient standard for actinometry and photoacoustic calorimetry. (AIP) {copyright} {ital 1997} {ital Society for Applied Spectroscopy}
Park, Seoung-Hwan; Ahn, Doyeol; Park, Chan-Yong
2017-02-20
Intersubband absorption properties of lattice-matched BGaN/AlN quantum well (QW) structures grown on AlN substrate are theoretically investigated using an effective mass theory considering the nonparabolicity of the conduction band. These results are compared with those of GaN/AlN QW structures. The intersubband absorption coefficient of the BGaN/AlN QW structure is shown to be enhanced significantly, compared to that of the conventional GaN/AlN QW structure. This can be explained by the fact that the BGaN/AlN QW structure exhibits larger intersuband dipole moment and quasi-Fermi-level separation than the GaN/AlN QW structure, due to the increase in the carrier confinement by a larger internal field. We expect that the BGaN/AlN QW structure with a high absorption coefficient can be used for telecommunication applications at 1.55 µm under the lattice-matched condition, instead of the conventional GaN/AlN QW structure with the large strain.
NASA Astrophysics Data System (ADS)
Riddick, Caitlin A. L.; Hunter, Peter D.; Tyler, Andrew N.; Martinez-Vicente, Victor; Horváth, Hajnalka; Kovács, Attila W.; Vörös, Lajos; Preston, Tom; Présing, Mátyás.
2015-10-01
In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass-specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11-4.39 m-1, aph(675) = 0.048-2.52 m-1), while there was less variability in chlorophyll-specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg-1, a*ph(675) = 0.010 ± 0.0020 m2 mg-1) and adjoining wetland system, Kis-Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg-1, a*ph(675) = 0.0088 ± 0.0017 m2 mg-1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters.
Wang, Wenbo; He, Xingli; Ye, Zhi E-mail: jl2@bolton.ac.uk; Wang, Xiaozhi; Mayrhofer, Patrick M.; Gillinger, Manuel; Bittner, Achim; Schmid, Ulrich
2014-09-29
AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.
NASA Astrophysics Data System (ADS)
Pérez Reyes, Ma. C.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Moreno Martínez, E.
2015-09-01
Laser light as a biostimulator has been applied in agriculture, and some scientific reports evidence its usefulness. A knowledge about seed optical parameters is of great relevance in the biostimulation process, because information can be provided about the light absorption of seeds. Thus, the objective of the present study was to determine the optical absorption coefficient (β ) of barley ( Hordeum vulgare L.) seeds by means of photoacoustic spectroscopy; these seeds were studied in two conditions: seeds in their natural color and seeds dyed with methylene blue. The seeds were biostimulated by a laser beam (650 nm wavelength) to evaluate the effects of pre-sowing biostimulation in natural mycobiota associated with different laser irradiation times (0 s, 60 s, 120 s, 240 s, and 480 s). The results of this research demonstrated changes in the optical parameters (absorption and penetration) that occur in the seeds by changing the natural condition to a dyed condition. The dyed seeds, by the methylene blue photosensitizer, become optically opaque, producing greater optical absorption at 650 nm which causes an increase in the effect of laser stimulation. The experimental results showed that the biggest mycobiota reduction (52 %) corresponded to dyed seeds irradiated with a laser for 120 s.
Specific absorption and backscatter coefficient signatures in southeastern Atlantic coastal waters
NASA Astrophysics Data System (ADS)
Bostater, Charles R., Jr.
1998-12-01
Measurements of natural water samples in the field and laboratory of hyperspectral signatures of total absorption and reflectance were obtained using long pathlength absorption systems (50 cm pathlength). Water was sampled in Indian River Lagoon, Banana River and Port Canaveral, Florida. Stations were also occupied in near coastal waters out to the edge of the Gulf Stream in the vicinity of Kennedy Space Center, Florida and estuarine waters along Port Royal Sound and along the Beaufort River tidal area in South Carolina. The measurements were utilized to calculate natural water specific absorption, total backscatter and specific backscatter optical signatures. The resulting optical cross section signatures suggest different models are needed for the different water types and that the common linear model may only appropriate for coastal and oceanic water types. Mean particle size estimates based on the optical cross section, suggest as expected, that particle size of oceanic particles are smaller than more turbid water types. The data discussed and presented are necessary for remote sensing applications of sensors as well as for development and inversion of remote sensing algorithms.
Abe, Tomomi; Hashimoto, Shuji; Matsumoto, Mitsuharu
2010-02-01
epsilon-filter can reduce most kinds of noise from a single-channel noisy signal while preserving signals that vary drastically such as speech signals. It can reduce not only stationary noise but also nonstationary noise. However, it has some parameters whose values are set empirically. So far, there have been few studies to evaluate the appropriateness of the parameter settings for epsilon-filter. This paper employs the correlation coefficient of the filter output and the difference between the filter input and output as the evaluation function of the parameter setting. This paper also describes the algorithm to set the optimal parameter value of epsilon-filter automatically. To evaluate the adequateness of the obtained parameter, the mean absolute error is calculated. The experimental results show that the adequate parameter in epsilon-filter can be obtained automatically by using the proposed method.
NASA Astrophysics Data System (ADS)
Mendonca, J.; Strong, K.; Sung, K.; Devi, V. M.; Toon, G. C.; Wunch, D.; Franklin, J. E.
2017-03-01
A quadratic-speed-dependent Voigt line shape (qSDV) with line mixing (qSDV+LM), together with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4, was used to retrieve total columns of CH4 from atmospheric solar absorption spectra. The qSDV line shape (Tran et al., 2013) [3] with line mixing (Lévy et al., 1992) [4] was implemented into the forward model of GFIT (the retrieval algorithm that is at the heart of the GGG software (Wunch et al., 2015) [5]) to calculate CH4 absorption coefficients. High-resolution laboratory spectra of CH4 were used to assess absorption coefficients calculated using a Voigt line shape and spectroscopic parameters from the atm line list (Toon, 2014) [6]. The same laboratory spectra were used to test absorption coefficients calculated using the qSDV+LM line shape with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4 and a Voigt line shape for lines that don't belong to the 2v3 band. The spectral line list for lines that don't belong to the 2v3 band is an amalgamation of multiple spectral line lists. We found that for the P, Q, and R branches of the 2v3 band, the qSDV+LM simulated the laboratory spectra better than the Voigt line shape. The qSDV+LM was also used in the spectral fitting of high-resolution solar absorption spectra from four ground-based remote sensing sites and compared to spectra fitted with a Voigt line shape. The average root mean square (RMS) residual for 131,124 solar absorption spectra fitted with absorption coefficients calculated using the qSDV+LM for the 2v3 band of CH4 and the new spectral line list for lines for lines that don't belong to the 2v3 band, was reduced in the P, Q, and R branches by 5%, 13%, and 3%, respectively when compared with spectra fitted using a Voigt line shape and the atm line list. We found that the average total column of CH4 retrieved from these 131,124 spectra, with the qSDV+LM was 1.1±0.3% higher than the retrievals performed using a
TU-A-9A-07: X-Ray Acoustic Computed Tomography (XACT): 100% Sensitivity to X-Ray Absorption
Xiang, L; Ahmad, M; Nikoozadeh, A; Pratx, G; Khuri-Yakub, B; Xing, L
2014-06-15
Purpose: To assess whether X-ray acoustic computed tomography (XACT) is more sensitive to X-ray absorption than that of the conventional X-ray imaging. Methods: First, a theoretical model was built to analyze the X-ray absorption sensitivity of XACT imaging and conventional X-ray imaging. Second, an XACT imaging system was developed to evaluate the X-ray induced acoustic signal generation as well as the sensitivity improvement over transmission x-ray imaging. Ultra-short x-ray pulses (60-nanosecond) were generated from an X-ray source operated at the energy of 150 kVp with a 10-Hz repetition rate. The X-ray pulse was synchronized with the acoustic detection via a x-ray scintillation triggering to acquire the X-ray induced acoustic signal. Results: Theoretical analysis shows that X-ray induced acoustic signal is sensitive only to the X-ray absorption, while completely insensitive to out the X-ray scattering and fluorescence. XACT has reduced background and increased contrast-to-noise ratio, and therefore has increased sensitivity compared to transmission x-ray imaging. For a 50-μm size, gadolinium insertion in tissue exposed to 40 keV X-rays; the sensitivity of XACT imaging is about 28.9 times higher than that of conventional X-ray imaging. Conclusion: X-ray acoustic computer tomography (XACT) as a new imaging modality combines X-ray absorption contrast and high ultrasonic resolution in a single modality. It is feasible to improve the imaging sensitivity with XACT imaging compared with conventional X-ray imaging. Taking advantage of the high ultrasonic resolution, it is possible to perform 3-D imaging with a single x-ray pulse with arrays of transducers without any mechanical motion of the imaging system. This single-shot capability offers the potential of reducing radiation dose by a factor of 1000, and imaging 100 times faster when compared to the conventional X-ray CT, and thus revolutionizing x-ray imaging applications in medicine and biology. The authors
Kabi, Sanjib; Perera, A. G. Unil
2015-03-28
The intersublevel absorption peak energy and absorption coefficient of non-uniform quantum dot (QD) ensembles are calculated analytically. The effect of size variations and size distribution of QDs on their energy states is analyzed. The dots are considered as a quantum box with finite potential at the barriers and the size distribution described by a Gaussian function. The influence of the aspect ratio (base to height ratio) of the QDs on the optical transitions is studied. Our model predicts the dot size (height and base) accurately to determine the absorption peaks and corresponding absorption coefficient. We also compute the absorption coefficient of the QD with different size distributions to verify the results calculated using this model with the reported experimental and other theoretical results.
Pinfield, Valerie J
2007-07-01
Measurements of ultrasound speed and attenuation can be related to the properties of dispersed systems by applying a scattering model. Rayleigh's method for scattering of sound by a spherical object, and its subsequent developments to include viscous, thermal, and other effects (known as the ECAH model) has been widely adopted. The ECAH method has difficulties, including numerical ill-conditioning, calculation of Bessel functions at large arguments, and inclusion of thermal effects in all cases. The present work develops techniques for improving the ECAH calculations to allow its use in instrumentation. It is shown that thermal terms can be neglected in some boundary equations up to approximately 100 GHz in water, and several simplified solutions result. An analytical solution for the zero-order coefficient is presented, with separate nonthermal and thermal parts, allowing estimation of the thermal contribution. Higher orders have been simplified by estimating the small shear contribution as the inertial limit is approached. The condition of the matrix solutions have been greatly improved by these techniques and by including appropriate scaling factors. A method is presented for calculating the required Bessel functions when the argument is large (high frequency or large particle size). The required number of partial wave orders is also considered.
NASA Astrophysics Data System (ADS)
Minimala, N. S.; Peter, A. John
2013-02-01
Effects of magnetic field strength and the built-in electric fields on the exciton binding energy and the non-linear optical property such as absorption coefficients in a GaN/AlGaN wide band gap heterostructure are investigated. The internal fields due to spontaneous and piezo-electric polarizations are included in the Hamiltonian. Our results show that the optical absorption coefficients strongly depend on the internal fields and the applied magnetic field.
NASA Astrophysics Data System (ADS)
Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.
2016-04-01
In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.
NASA Astrophysics Data System (ADS)
Fukutomi, D.; Ishii, K.; Awazu, K.
2015-12-01
Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.
NASA Astrophysics Data System (ADS)
Barik, A. R.; Adarsh, K. V.; Naik, Ramakanta; Sandeep, C. S. Suchand; Philip, Reji; Zhao, Donghui; Jain, Himanshu
2011-05-01
We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way.
NASA Astrophysics Data System (ADS)
McKee, David; Röttgers, Rüdiger; Neukermans, Griet; Calzado, Violeta Sanjuan; Trees, Charles; Ampolo-Rella, Marina; Neil, Claire; Cunningham, Alex
2014-12-01
Understanding variability in the chlorophyll-specific absorption of marine phytoplankton, aph*Chl (λ), is essential for primary production modelling, calculation of underwater light field characteristics, and development of algorithms for remote sensing of chlorophyll concentrations. Previous field and laboratory studies have demonstrated significant apparent variability in aph*Chl (λ) for natural samples and algal cultures. However, the potential impact of measurement uncertainties on derived values of aph*Chl (λ) has received insufficient study. This study presents an analysis of measurement uncertainties for a data set collected in the Ligurian Sea in Spring and assesses the impact on estimates of aph*Chl (λ). It is found that a large proportion of apparent variability in this set of aph*Chl (λ) can be attributed to measurement errors. Application of the same analysis to the global NOMAD data set suggests that a significant fraction of variability in aph*Chl (λ) may also be due to measurement errors. The copyright line for this article was changed on 16 JAN 2015 after original online publication.
Effects of suspended sediment concentration on the absorption and scattering coefficients
NASA Astrophysics Data System (ADS)
Terrie, Gregory E.; Ladner, Sherwin; Gould, Richard A., Jr.
1997-02-01
The scattering coefficient (b) for the nearshore waters off the coast of North Carolina near Camp Lejeune is strongly influenced by suspended sediment concentration and total particulate cross-sectional area (xg). In-situ measurements of a and b were made using a WET Labs AC9 meter. Estimates of suspended sediment concentration and total particulate cross-sectional area were determined from laser particle size analyses of surface water samples. The SeaWiFS bio-optical algorithm was modified for Case II waters and used to estimate a and bb from remote sensing reflectance (Rrs). After conversion from backscattering (bb) to total scattering (b), modeled a and b values from the modified SeaWiFS algorithm were compared to the measured values. The differences between the measured and estimated values appear to be directly related to increases in suspended sediment concentration and xg. Correlations of about 0.90 were obtained for b vs xg and bb vs xg.
Li, Jun; Zhou, Xianming; Li, Jiabo
2008-12-01
An experimental method was developed to perform time-resolved, single-pass optical absorption measurements and to determine absorption coefficients of window materials under strong shock compression up to approximately 200 GPa. Experimental details are described of (i) a configuration to generate an in situ dynamic, bright, optical source and (ii) a sample assembly with a lithium fluoride plate to essentially eliminate heat transfer from the hot radiator into the specimen and to maintain a constant optical source within the duration of the experiment. Examples of measurements of optical absorption coefficients of several initially transparent single crystal materials at high shock pressures are presented.
Cuppo, F L S; Gómez, S L; Figueiredo Neto, A M
2004-04-01
In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.
Bhargavi, K. S.; Patil, Sukanya; Kubakaddi, S. S.
2015-07-28
The theory of free-carrier absorption (FCA) is given for monolayers of transition-metal dichalcogenides, particularly for molybdenum disulphide (MoS{sub 2}), when carriers are scattered by phonons. Explicit expressions for the absorption coefficient α are obtained and discussed for acoustic phonon scattering via screened deformation potential and piezoelectric coupling taking polarization of the radiation in the plane of the layer. It is found that α monotonously decreases with the increasing photon frequency Ω, increases with the increasing temperature T, and linearly depends on two-dimensional electron concentration n{sub s}. Effect of screening, which is ignored in all the earlier FCA studies, is found to reduce α significantly, attributing to the larger effective mass of the electrons. Results are also obtained in the classical and quantum limit giving the power laws α ∼ Ω{sup −2} and T. Comparison of the results is made with those in bulk semiconductors and semiconductor quantum wells.
Jose, Jithin; Willemink, Rene G H; Resink, Steffen; Piras, Daniele; van Hespen, J C G; Slump, Cornelis H; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang
2011-01-31
We present a 'hybrid' imaging approach which can image both light absorption properties and acoustic transmission properties of an object in a two-dimensional slice using a computed tomography (CT) photoacoustic imager. The ultrasound transmission measurement method uses a strong optical absorber of small cross-section placed in the path of the light illuminating the sample. This absorber, which we call a passive element acts as a source of ultrasound. The interaction of ultrasound with the sample can be measured in transmission, using the same ultrasound detector used for photoacoustics. Such measurements are made at various angles around the sample in a CT approach. Images of the ultrasound propagation parameters, attenuation and speed of sound, can be reconstructed by inversion of a measurement model. We validate the method on specially designed phantoms and biological specimens. The obtained images are quantitative in terms of the shape, size, location, and acoustic properties of the examined heterogeneities.
NASA Astrophysics Data System (ADS)
Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio
2016-04-01
The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.
NASA Astrophysics Data System (ADS)
Zhong, Min; Jang, Myoseon
2011-08-01
A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.
Theoretical Estimation of the Acoustic Energy Generation and Absorption Caused by Jet Oscillation
NASA Astrophysics Data System (ADS)
Takahashi, Kin'ya; Iwagami, Sho; Kobayashi, Taizo; Takami, Toshiya
2016-04-01
We investigate the energy transfer between the fluid field and acoustic field caused by a jet driven by an acoustic particle velocity field across it, which is the key to understanding the aerodynamic sound generation of flue instruments, such as the recorder, flute, and organ pipe. Howe's energy corollary allows us to estimate the energy transfer between these two fields. For simplicity, we consider the situation such that a free jet is driven by a uniform acoustic particle velocity field across it. We improve the semi-empirical model of the oscillating jet, i.e., exponentially growing jet model, which has been studied in the field of musical acoustics, and introduce a polynomially growing jet model so as to apply Howe's formula to it. It is found that the relative phase between the acoustic oscillation and jet oscillation, which changes with the distance from the flue exit, determines the quantity of the energy transfer between the two fields. The acoustic energy is mainly generated in the downstream area, but it is consumed in the upstream area near the flue exit in driving the jet. This theoretical examination well explains the numerical calculation of Howe's formula for the two-dimensional flue instrument model in our previous work [http://doi.org/10.1088/0169-5983/46/6/061411, Fluid Dyn. Res. 46, 061411 (2014)] as well as the experimental result of Yoshikawa et al. [http://doi.org/10.1016/j.jsv.2012.01.026, J. Sound Vib. 331, 2558 (2012)].
Gaonkar, Harshavardhan Ashok; Kumar, Dinesh; Ramasubramaniam, Rajagopal; Roy, Arindam
2014-05-01
Efforts are underway to better understand the absorption properties of micro- and nano-sized particles due to their potential in various photonic applications. However, most of these particles exhibit strong scattering in the spectral regions of interest in addition to absorption. Due to strong interference from scattering, the absorption of these turbid samples cannot be directly measured using conventional spectroscopy techniques. The optical properties of these particles are also different from that of the bulk due to quantum confinement and plasmon resonance effects and cannot be inferred from their bulk properties. By measuring the total transmittance and total reflectance (diffuse and collimated) of turbid samples and using an empirical relation between the coefficients of the Kubelka-Munk and radiative transfer theories, we have demonstrated a method to calculate the absorption and reduced scattering coefficients of turbid samples. This method is capable of extracting the absorption coefficient of turbid samples with an error of 2%. Using this method, we have decoupled the specific absorption and specific reduced scattering coefficients of commercially available micro-sized iron oxide particles. The current method can be used to measure the optical properties of irregularly shaped particle dispersions, which are otherwise difficult to estimate theoretically.
Optimization of absorption placement using geometrical acoustic models and least squares.
Saksela, Kai; Botts, Jonathan; Savioja, Lauri
2015-04-01
Given a geometrical model of a space, the problem of optimally placing absorption in a space to match a desired impulse response is in general nonlinear. This has led some to use costly optimization procedures. This letter reformulates absorption assignment as a constrained linear least-squares problem. Regularized solutions result in direct distribution of absorption in the room and can accommodate multiple frequency bands, multiple sources and receivers, and constraints on geometrical placement of absorption. The method is demonstrated using a beam tracing model, resulting in the optimal absorption placement on the walls and ceiling of a classroom.
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.; Grosveld, Ferdinand
2007-01-01
The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.
Tayong, Rostand; Dupont, Thomas; Leclaire, Philippe
2010-05-01
The acoustic behavior of micro-perforated panels (MPP) is studied theoretically and experimentally at high level of pressure excitation. A model based on Forchheimer's regime of flow velocity in the perforations is proposed. This model is valid at relatively high Reynolds numbers and low Mach numbers. The experimental method consists in measuring the acoustical pressure at three different positions in an impedance tube, the two measurement positions usually considered in an impedance tube and one measurement in the vicinity of the rear surface of the MPP. The impedance tube is equipped with a pressure driver instead of the usual loudspeaker and capable of delivering a high sound pressure level up to 160 dB. MPP specimens made out of steel, dural and polypropylene were tested. Measurements using random noise or sinusoidal excitation in a frequency range between 200 and 1600 Hz were carried out on MPPs backed by air cavities. It was observed that the maximum of absorption can be a positive or a negative function of the flow velocity in the perforations. This suggests the existence of a maximum of absorption as a function of flow velocity. This behavior was predicted by the model and confirmed experimentally.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Eversman, W.
1986-01-01
Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a 'Gutin' propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Eversman, W.
1986-01-01
Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a "Gutin" propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.
Tonoue, Ryota; Katsura, Makoto; Hamamoto, Mai; Bessho, Hiroki; Nakashima, Satoru
2014-01-01
A method was developed to obtain the absorption coefficient spectrum of a grain of coal (as small as 10(-7)) in the region of aliphatic and aromatic C-H stretching bands (2700-3200 cm(-1)) using infrared transflection microspectroscopy. In this method, the complex refractive index n - ik was determined using an optimization algorithm with the Kramers-Kronig transform so that the calculated transflection spectrum from the Fresnel equation corresponded to the measured one. The obtained absorption coefficients were compared with the bulk values determined from the potassium bromide (KBr) pellet measurement method.
Mean absorption coefficients of He/Ar/N2/(C1-x-y , Ni x , Co y ) thermal plasmas for CNT synthesis
NASA Astrophysics Data System (ADS)
Salem, D.; Hannachi, R.; Cressault, Y.; Teulet, Ph; Béji, L.
2017-01-01
In this paper, we present the mean absorption coefficients (MACs) calculated for plasma mixtures of argon-helium-nitrogen-carbon-nickel-cobalt at 60 kPa and in a temperature range from 1 kK to 20 kK. These coefficients have been computed under the assumption of a local thermodynamic equilibrium (LTE), isothermal plasma, including atomic and molecular continuum, molecular bands and lines radiation splitted into nine spectral intervals. The results show that the continuum absorption coefficients strongly depend on photodissociation and photoionization processes of the molecular species N2, CN and C2, with a significant effect on photodetachment processes of C- in a frequency interval lower than 1 × 1015 Hz and for low temperature (<6 kK). While at high temperature, the main contribution in continuum absorption coefficient comes from radiative recombination processes except in the infrared region (<0.5 × 1015 Hz) where the inverse bremsstrahlung represents the most important component in continuum processes for all temperature values. On the other hand, the calculation of MAC shows that the role of molecular continuum, molecular bands and line absorption of the neutral catalysis species Ni/Co are only important in a small range of temperature and in a few spectral bands located in visible and infrared regions, while at high temperature and in UV and visible regions, the foremost contributions to MAC come from atomic continuum and line absorption.
NASA Astrophysics Data System (ADS)
Shori, Ramesh K.
The interaction of high-intensity, short-pulsed radiation with liquid water results in dynamic changes in the optical absorption coefficient of water. These changes and their implications, as related to mid-infrared laser ablation of tissue, were not investigated until the late 1980's and early 1990's. Classical models of absorption and heating do not explain the dynamic, non-linear changes in water. The objective of the present work was to quantify the dynamic changes in the absorption coefficient of liquid water as a function of incident energy at three clinically relevant infrared wavelengths (λ = 2.94, 9.6, 10.6 μm). To investigate the changes in the absorption spectrum of water in the 3-μm band, a stable, high-energy Q- switched Er:YAG laser emitting 2.94-μm radiation in a near-perfect TEMoo spatial beam profile was developed. Key to the development of this laser was careful attention to the gain medium, optical pump system, system optics, and the thermal system. The final system design was capable of emitting 110 mJ/pulse at of 2-4 Hz with a lamp lifetime exceeding 12 million pulses The laser was used in two sets of experiments in order to quantify the above changes. First, the laser was used to measure the velocity of the shock front produced by vaporizing a gelatin-based tissue phantom. The measured shock velocity was related to the optical energy absorbed by the tissue phantom and the absorption coefficient, based on the pressure relationships derived using a 1-D piston model for an expanding plume. The shock front velocity measurements indicate that the absorption coefficient is constant for incident fluences less than 20 J/cm2, a result consistent with transmission data. For higher fluences, the data indicate a decrease in the absorption coefficient, which is again consistent with transmission data. Quantification of the absorption coefficient can, however, not be made without violating assumptions that form the basis for the 1-D piston model. Second
NASA Technical Reports Server (NTRS)
Kraft, R. E.
1996-01-01
A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.
Benning, Stephen D; Rozalski, Vincent; Klingspon, Kara L
2015-10-01
Trait absorption reflects a propensity to have one's attention drawn to engaging sensory or imaginal experiences. It is related to self-reported levels of positive and negative emotionality, but little work has examined whether absorption is related to greater levels of basic emotional processing. We used the late positive potential (LPP) to pictures and P3 response to subsequent startle probes during those pictures to examine how absorption was related to initial emotional processing and reactivity to a second stimulus. Across genders, absorption was positively related to LPP amplitude to emotional versus neutral pictures at PZ, and it was negatively related to overall P3 amplitude to startle probes at FZ. Thus, absorption appears to index greater processing of emotional material at the cost of reduced processing of subsequent incoming stimuli.
Krska, Rudolf; Schubert-Ullrich, Patricia; Josephs, Ralf D; Emteborg, Håkan; Buttinger, Gerhard; Pettersson, Hans; van Egmond, Hans P; Schothorst, Ronald C; Macdonald, Susan; Chan, Danny
2007-07-01
This paper presents results from the European Commission-funded project Doncalibrant, the objective of which was to produce calibrators with certified mass fractions of the Fusarium toxins deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-Ac-DON), 15-acetyldeoxynivalenol (15-Ac-DON), and nivalenol (NIV), in acetonitrile. The calibrators, available in ampoules, were sufficiently homogeneous, with between-bottle variations (s (bb)) of less than 2%. Long-term stability studies performed at four different temperatures between -18 and 40 degrees C revealed no significant negative trends (at a confidence level of 95%). Molar absorptivity coefficients (in L mol(-1) cm(-1)) were determined for all four toxins (DON: 6805 +/- 126, NIV: 6955 +/- 205, 3-Ac-DON: 6983 +/- 141, 15-Ac-DON: 6935 +/- 142) on the basis of a mini-interlaboratory exercise. The overall uncertainty of the calibrators' target values for DON and NIV were evaluated on the basis of gravimetric preparation data and include uncertainty contributions from possible heterogeneity, storage, and transport. The Doncalibrant project resulted in the production of calibrators for DON (IRMM-315) and NIV (IRMM-316) in acetonitrile with certified mass fractions of 25.1 +/- 1.2 microg g(-1) and 24.0 +/- 1.1 microg g(-1), respectively. Both CRMs became commercially available from the Institute for Reference Materials and Measurements (IRMM, Geel, Belgium) at the beginning of 2007.
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya
2015-03-01
Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.
Chen, Shi; Zhang, Yinhong; Lin, Shuyu; Fu, Zhiqiang
2014-02-01
The electromechanical coupling coefficient of Rayleigh-type surface acoustic waves in semi-infinite piezoelectrics/non-piezoelectrics superlattices is investigated by the transfer matrix method. Research results show the high electromechanical coupling coefficient can be obtained in these systems. The optimization design of it is also discussed fully. It is significantly influenced by electrical boundary conditions on interfaces, thickness ratios of piezoelectric and non-piezoelectric layers, and material parameters (such as velocities of pure longitudinal and transversal bulk waves in non-piezoelectric layers). In order to obtain higher electromechanical coupling coefficient, shorted interfaces, non-piezoelectric materials with large velocities of longitudinal and transversal bulk waves, and proper thickness ratios should be chosen.
Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy
NASA Technical Reports Server (NTRS)
Steinfeld, J. I.
1975-01-01
Data were obtained which will provide a test of the accuracy of the differential absorption method for trace contaminant detection in many-component gas mixtures. The necessary accurate absorption coefficient determinations were carried out for several gases; acetonitrile, 1,2-dichloroethane, Freon-113, furan, methyl ethyl ketone, and t-butyl alcohol. The absorption coefficients are displayed graphically. An opto-acoustic method was tested for measuring absorbance, similar to the system described by Dewey.
Treeby, Bradley E; Cox, B T
2011-06-01
An efficient Green's function solution for acoustic initial value problems in homogeneous media with power law absorption is derived. The solution is based on the homogeneous wave equation for lossless media with two additional terms. These terms are dependent on the fractional Laplacian and separately account for power law absorption and dispersion. Given initial conditions for the pressure and its temporal derivative, the solution allows the pressure field for any time t>0 to be calculated in a single step using the Fourier transform and an exact k-space time propagator. For regularly spaced Cartesian grids, the former can be computed efficiently using the fast Fourier transform. Because no time stepping is required, the solution facilitates the efficient computation of the pressure field in one, two, or three dimensions without stability constraints. Several computational aspects of the solution are discussed, including the effect of using a truncated Fourier series to represent discrete initial conditions, the use of smoothing, and the properties of the encapsulated absorption and dispersion.
Bénilan, Y; Bruston, P; Raulin, F; Courtin, R; Guillemin, J C
1995-01-01
The interpretation of mid-UV albedo spectra of planetary atmospheres, especially that of Titan, is the main goal of the SIPAT (Spectroscopie uv d'Interet Prebiologique dans l'Atmosphere de Titan) research program. This laboratory experiment has been developed in order to systematically determine the absorption coefficients of molecular compounds which are potential absorbers of scattered sunlight in planetary atmospheres, with high spectral resolution, and at various temperatures below room temperature. From photochemical modelling and experimental simulations, we may expect triacetylene (C6H2) to be present in the atmosphere of Titan, even though it has not yet been detected. We present here the first determination of the absolute absorption coefficient of that compound in the 200-300 nm range and at two temperatures (296 K and 233 K). The temperature dependence of the C6H2 absorption coefficient in that wavelength range is compared to that previously observed in the case of cyanoacetylene (HC3N). We then discuss the implications of the present results for the interpretation of Titan UV spectra, where it appears that large uncertainities can be introduced either by the presence of trace impurities in laboratory samples or by the variations of absorption coefficients with temperature.
Excellent low-frequency sound absorption of radial membrane acoustic metamaterial
NASA Astrophysics Data System (ADS)
Gao, Nansha; Wu, Jiu Hui; Hou, Hong; Yu, Lie
2017-01-01
This paper proposes a new radial membrane acoustic metamaterial (RMAM) structure, wherein a layer membrane substrate is covered with a rigid ring (polymethyl methacrylate frame and aluminum lump). The dispersion relationships, transmission spectra and displacement fields of the eigenmodes of this radial membrane acoustic metamaterial are studied with FEM. In contrast to the traditional radial phononic crystals (RPCs), the proposed structures can open bandgaps (BGs) in lower frequency range (0-300 Hz). Simulation results show that the physical mechanism behind the bandgaps is the coupling effects between the rotational vibration of aluminum lump and the transverse vibration of membrane. Geometrical parameters which can adjust the bandgaps’ widths or positions are analyzed. Finally, we investigate the axial sound transmission loss of this acoustic metamaterial structure, and discuss the effects of factor loss, membrane thickness and the number of layers of unit cell on the axial sound transmission loss. Dynamic effective density proves the accuracy of the FEM results. This kind of structure has potential application in pipe or circular ring structure for damping/noise reduction.
Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators
NASA Astrophysics Data System (ADS)
Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.
2016-01-01
Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.
Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators
Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.
2016-01-01
Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction. PMID:26781863
Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators.
Romero-García, V; Theocharis, G; Richoux, O; Merkel, A; Tournat, V; Pagneux, V
2016-01-19
Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Romero-García, Vicent; Pagneux, Vincent; Groby, Jean-Philippe
2017-01-01
We theoretically and experimentally report subwavelength resonant panels for low-frequency quasiperfect sound absorption including transmission by using the accumulation of cavity resonances due to the slow sound phenomenon. The subwavelength panel is composed of periodic horizontal slits loaded by identical Helmholtz resonators (HRs). Due to the presence of the HRs, the propagation inside each slit is strongly dispersive, with near-zero phase velocity close to the resonance of the HRs. In this slow sound regime, the frequencies of the cavity modes inside the slit are down-shifted and the slit behaves as a subwavelength resonator. Moreover, due to strong dispersion, the cavity resonances accumulate at the limit of the band gap below the resonance frequency of the HRs. Near this accumulation frequency, simultaneously symmetric and antisymmetric quasicritical coupling can be achieved. In this way, using only monopolar resonators quasiperfect absorption can be obtained in a material including transmission.
Treeby, Bradley E; Cox, B T
2010-05-01
The efficient simulation of wave propagation through lossy media in which the absorption follows a frequency power law has many important applications in biomedical ultrasonics. Previous wave equations which use time-domain fractional operators require the storage of the complete pressure field at previous time steps (such operators are convolution based). This makes them unsuitable for many three-dimensional problems of interest. Here, a wave equation that utilizes two lossy derivative operators based on the fractional Laplacian is derived. These operators account separately for the required power law absorption and dispersion and can be efficiently incorporated into Fourier based pseudospectral and k-space methods without the increase in memory required by their time-domain fractional counterparts. A framework for encoding the developed wave equation using three coupled first-order constitutive equations is discussed, and the model is demonstrated through several one-, two-, and three-dimensional simulations.
NASA Astrophysics Data System (ADS)
Allali, Karima; Bricaud, Annick; Claustre, Hervé
1997-01-01
Chlorophyll-specific absorption coefficients of particles, a*p(λ), and of phytoplankton, a*ph(λ), were determined using the glass-fiber filter technique along 150°W in the equatorial Pacific (13°S-1°N). A site-specific algorithm for correcting the path length amplification effect was derived from field measurements. Then a decomposition technique using the high-performance liquid chromatography pigment information and taking into account the package effect was used to partition a*ph into the contributions of photosynthetic pigments (a*ps) and nonphotosynthetic pigments (a*nps). Both a*ph and a*nps values were observed to decrease from the oligotrophic waters of the subequatorial area (13°-1°S) to the mesotrophic waters of the equatorial area (1°S-1°N) and from the surface to deep waters. The a*ph variations were primarily, but not exclusively, caused by changes in the concentrations of nonphotosynthetic pigments. The level of pigment packaging was also variable both horizontally and vertically, as a result of changes in populations and photoacclimation. In comparison with a*ph, a*ps exhibited a reduced range of variation with depth and along the latitudinal gradient. The variations in a*ps originating from the package effect were partly compensated by variations in the concentrations of photosynthetic pigments. We extended this analysis to include data collected in other areas with different trophic states. The a*ps values varied over a factor of 4 at 440 nm, instead of 8 for a*ph, for chlorophyll a concentrations covering 2 orders of magnitude (0.02-2 mg m-3). In agreement with a previous study performed off California with a different method [Sosik and Mitchell, 1995], we conclude that a*ps is less dependent on environmental parameters than a*ph. In addition, our results provide evidence that the variability in a*ps cannot be neglected. The use of a*ps instead of a*ph in light-photosynthesis models (in conjunction with a quantum yield for carbon fixation
Nonlinear acoustic enhancement in photoacoustic imaging with wideband absorptive nanoemulsion beads
NASA Astrophysics Data System (ADS)
Wei, Chen-wei; Lombardo, Michael; Xia, Jinjun; Pelivanov, Ivan; Perez, Camilo; Larson-Smith, Kjersta; Matula, Thomas J.; Pozzo, Danilo; O'Donnell, Matthew
2014-03-01
A nanoemulsion contrast agent with a perfluorohexane core and optically absorptive gold nanospheres (GNSs) assembled on the surface, is presented to improve the specificity of photoacoustic (PA) molecular imaging in differentiating targeted cells or aberrant regions from heterogeneous background signals. Compared to distributed GNSs, clustered GNSs at the emulsion oil-water interface produce a red-shifted and broadened absorption spectrum, exhibiting fairly high absorption in the near-infrared region commonly used for deep tissue imaging. Above a certain laser irradiation fluence threshold, a phase transition creating a microbubble in the emulsion core leads to more than 10 times stronger PA signals compared with conventional thermal-expansion-induced PA signals. These signals are also strongly non-linear, as verified by a differential scheme using recorded PA images at different laser fluences. Assuming a linear relation between laser fluence and the PA signal amplitude, differential processing results in nearly perfect suppression of linear sources, but retains a significant residue for the non-linear nanoemulsion with more than 35 dB enhancement. This result demonstrates that contrast specificity can be improved using the nanoemulsion as a targeting agent in PA molecular imaging by suppressing all background signals related to a linear PA response. Furthermore, combined with a system providing simultaneous laser/ultrasound excitation, cavitation-generated bubbles have the potential to be a highly specific contrast agent for ultrasound molecular imaging and harmonic imaging, as well as a targeted means for noninvasive ultrasound-based therapies.
NASA Technical Reports Server (NTRS)
Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.
1982-01-01
Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.
2012-09-01
bandwidth of the pulse. Using the standard laboratory and analysis methods of Sheik- Bahae et al., we obtain a two-photon absorption coefficient, β, of...organic thin-film materials deposited on various substrates. 15 6. References 1. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W. High...sensitivity, Single-beam n2 Measurements. Optics Letters 1989, 14 (17). 2. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W.; Wei, T-H; Hagan, D. J
NASA Technical Reports Server (NTRS)
Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.
2008-01-01
At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.
NASA Technical Reports Server (NTRS)
Temma, T.; Baines, K. H.; Butler, R. A. H.; Brown, L. R.; Sagui, L.; Kleiner, I.
2006-01-01
PH3 exponential sum k coefficients were computed between 2750 and 3550/cm (2.82-3.64 (microns), in view of future application to radiative transfer analyses of Jupiter and Saturn in a phosphine absorption band near 3 microns. The temperature and pressure of this data set cover the ranges from 80 to 350 K and from 10 (exp -3)to 10(exp 1) bars, respectively. Transmission uncertainty incurred by the use of the k coefficients is smaller than a few percent as long as the radiation is confined above an altitude of a few bars in the giant planets. In spectral regions of weak absorption at high pressures close to 10 bars, contributions from far wings of strong absorption lines must be carefully taken into account. Our data set helps map the three-dimensional distribution of PH3 on the giant planets, revealing their global atmospheric dynamics extending down to the deep interior. The complete k coefficient data set of this work is available at the Web site of the NASA Planetary Data System Atmospheres Node.
NASA Astrophysics Data System (ADS)
Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji
2012-02-01
A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.
Nader, Christelle Abou; Nassif, Rana; Pellen, Fabrice; Le Jeune, Bernard; Le Brun, Guy; Abboud, Marie
2015-12-10
In this paper, we present the evolution of speckle pattern polarimetric parameters in response to controlled changes in scatterer sizes, proportions, and the absorption coefficient in media. The experimental study was performed on mixtures of polystyrene microspheres with dye in order to ensure biological medium-like properties. The speckle grain sizes and degrees of polarization for linear and circular light were monitored. We observed helicity flipping in the degree of circular polarization for small scatterer proportion around 25%. Furthermore, linear depolarization decreased slightly for media containing more small particles. Good agreement was shown with numerical results computed using a Monte Carlo simulation of polarized light taking into account our experimental configuration. Speckle grain size also evolves with the increase of small scatterers as well as the media absorption coefficient. Such variations of properties are encountered during fruit maturation, in tissues in precancerous stages, and any transformation that causes a modification in particle proportions and absorption coefficient in biological media. The computed parameters proved to be sensitive to these changes.
Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H
2012-12-21
For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.
Acoustic Absorption Characteristics of an Orifice With a Mean Bias Flow
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.; Jones, Mike (Technical Monitor)
2000-01-01
The objective of the study reported here was to acquire acoustic and flow data for numerical validation of impedance models that simulate bias flow through perforates. The impedance model is being developed by researchers at High Technology Corporation. This report documents normal incidence impedance measurements a singular circular orifice with mean flow passing through it. All measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube. The mean flow is introduced upstream of the orifice (with the flow and incident sound wave travelling in the same direction) with an anechoic termination downstream of the orifice. Velocity profiles are obtained upstream of the orifice to characterize the inflow boundary conditions. Velocity in the center of the orifice is also obtained. All velocity measurements are made with a hot wire anemometer and subsequent checked with mass flow measurements made concurrently. All impedance measurements are made using the Two-Microphone Method. Although we have left the analysis of the data to the developers of the impedance models that simulate bias flow through perforate, our initial examination indicates that our results follow the trends consistent with published theory on impedance of perforates with a steady bias flow.
NASA Astrophysics Data System (ADS)
Khoa, Doan Quoc; Phuong, Le Thi Thu; Hoi, Bui Dinh
2017-03-01
A quantum kinetic equation for electrons interacting with confined phonons is used to investigate the nonlinear absorption of an intense electromagnetic wave by electrons in cylindrical GaAs/AlAs quantum wires. The analytic expression for absorption coefficient is calculated for three models of confined optical phonons: the dielectric continuum (DC), hydrodynamic continuum (HC), and Huang-Zhu (HZ) models. The absorption coefficient depends on the square of the electromagnetic wave amplitude. The electrophonon resonance and optically detected electrophonon resonance (ODEPR) are observed through the absorption spectrum. The full width at half maximum (the line-width) of the ODEPR peaks is obtained by a computational method. The line-width is found to increase with increasing temperature and decrease with increasing the quantum wire radius. In particular, numerical results show that the DC and HZ models lead to a similar behaviour of electron - confined phonon interaction whereas the HC model results in a quite different one, especially at small quantum wire radius. For large quantum wire radii, above mentioned phonon models have equivalent contributions to the ODEPR line-width.
1975-07-01
coefficient. Diffuse reflectance spectroscopy, and in particular the Kubelka - Munk (K-M) theory, can provide such information. A convenient method for...34Uber Den Streukoeffizienten Der Kubelka - Munk -Theorie," Z. Naturforsch, 19a, 28. 3. J. B. Gillespie, J. D. Lindberg and L. S. Laude, 1975 " Kubelka ... Munk Optical Coefficients for a Barium Sulfate White Reflectance Standard," Appl. Opt. 14, 807. 4. F. Grum and G. W. Lucky, 1968, "Optical Sphere
Saarelma, Jukka; Savioja, Lauri
2016-12-01
The finite-difference time-domain method has gained increasing interest for room acoustic prediction use. A well-known limitation of the method is a frequency and direction dependent dispersion error. In this study, the audibility of dispersion error in the presence of air absorption is measured. The results indicate that the dispersion error in the worst-case direction of the studied scheme gets masked by the air absorption at a phase velocity error percentage of 0.28% at the frequency of 20 kHz.
NASA Astrophysics Data System (ADS)
Ivascu, I. R.; Matei, C. E.; Patachia, M.; Bratu, A. M.; Dumitras, D. C.
2016-06-01
Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8 μm and power levels up to 4.7 W. Measurements revealed a predominant absorption for ethanol within 9.4 μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68 cm- 1 atm- 1 at 9R(20) line and 3.65 cm- 1 atm- 1 at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30 ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.
Ivascu, I R; Matei, C E; Patachia, M; Bratu, A M; Dumitras, D C
2016-06-15
Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8μm and power levels up to 4.7W. Measurements revealed a predominant absorption for ethanol within 9.4μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68cm(-1)atm(-1) at 9R(20) line and 3.65cm(-1)atm(-1) at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.
NASA Astrophysics Data System (ADS)
Sheng, Wang; Yun, Kang; Xianli, Li
2016-11-01
Within the quasi-one-dimensional effective potential model and effective mass approximation, we obtain the wavefunctions and energy eigenvalues of the ground (j = 1) and first 2 excited states (j = 2 and 3) of a donor impurity in a rectangular GaAs quantum dot in the presence of electric field. The donor impurity-related linear and nonlinear optical absorption as well as refractive index changes for the transitions j = 1-2 and j = 2-3 are investigated. The results show that the impurity position, incident optical intensity and electric field play important roles in the optical absorption coefficients and refractive index changes. We find that the impurity effect induces the blueshift for j = 1-2 and redshift for j = 3-2 in the absence of the electric field, but it leads to redshift for j = 1-2 and blueshift for j = 3-2 in the existence of the field. Also, the optical coefficient for the higher energy transitions j = 2-3 is insensitive to variation of impurity positions, while that for the low energy transition j = 1-2 depends significantly on the positions of impurity. In addition, the saturation and splitting phenomenon of the optical absorption are observed as the incident optical intensity increases. Project supported by the Science and Technology Project of Education Department of Heilongjiang Province of China (No. 12541070).
NASA Astrophysics Data System (ADS)
Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.
2015-01-01
Mass-specific optical absorption coefficients (MACs) and the imaginary part (κ) of the refractive indices of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at the wavelengths of 1064, 532, 355 and 266 nm. The MAC values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. Values of κ were calculated from the measured and particle-loss-corrected data by using a Mie-theory-based retrieval algorithm. The determined values could be used for comparisons with calculated wavelength-dependent κ values typically deduced from bulk-phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk-phase measurements.
NASA Technical Reports Server (NTRS)
Lee, Zhong-Ping; Carder, Kendall L.
2001-01-01
A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.
Baba, Justin S; Koju, Vijay; John, Dwayne O
2016-01-01
The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.
NASA Astrophysics Data System (ADS)
Jajodia, S.; Chimankar, O. P.; Kalambe, A.; Goswami, S. G.
2012-12-01
Amino acids are the building blocks of the proteins; their study provides important information, about the behaviour of larger biomolecules such as proteins. The properties of proteins such as their structure, solubility, denaturation, etc. are greatly influenced by electrolytes. Ultrasonic velocity and density values have been used for evaluation of thermal expansion coefficient and adiabatic compressibility for ternary systems (amino acid/salt + water) namely L-leucine / L-asparagine each in 1.5 M aqueous solution of NaCl used as solvent for various concentrations and at different temperatures (298.15K - 323.15K). Present paper reports the variation of various thermoacoustical parameters such as Moelwyn-Hughes parameter (C1), Beyer's non-linearity parameter (B/A), internal pressure (Pi), fractional free volume (f), available volume (Va), repulsive exponent (n), molecular constant (r), van der Waals' constant (b), Debye temperatue (θD), etc. have been computed from the thermal expansion coefficient with the change of concentration and temperature. The variations of all these parameters have been interpreted in terms of various intermolecular interactions such as strong, weak, charge transfer, complex formation, hydrogen bonding interaction. The structure making and breaking properties of the interacting components existing in proposed ternary systems. It shows the associating and dissociating tendency of the molecules of solute in solvent.The hetromolecular interactions are present in both the ternary systems.
Ghysels, M; Durry, G; Amarouche, N
2013-04-15
By using a tunable diode laser absorption spectrometer in conjunction with a cryogenically cooled multipath cell, we have revisited the air-induced pressure-broadening coefficients and the narrowing coefficients related to the Dicke effect, as well as the temperature dependences, for the R(18) and R(20) lines of the (10°1)I←(00°0) vibrational band at 2.68 μm of carbon dioxide. The selected transitions are used to probe in situ CO2 in the troposphere and the lower stratosphere by using balloon-borne laser sensors. The achieved measurements are thoroughly compared to existing former determinations. The impact of processing the in situ atmospheric CO2 spectra with this new set of molecular data is reported.
Kitamura, Ryunosuke; Inagaki, Tetsuya; Tsuchikawa, Satoru
2016-02-22
The true absorption coefficient (μa) and reduced scattering coefficient (μ´s) of the cell wall substance in Douglas fir were determined using time-of-flight near infrared spectroscopy. Samples were saturated with hexane, toluene or quinolone to minimize the multiple reflections of light on the boundary between pore-cell wall substance in wood. μ´s exhibited its minimum value when the wood was saturated with toluene because the refractive index of toluene is close to that of the wood cell wall substance. The optical parameters of the wood cell wall substance calculated were μa = 0.030 mm(-1) and μ´s= 18.4 mm(-1). Monte Carlo simulations using these values were in good agreement with the measured time-resolved transmittance profiles.
Park, Hyunjin; Green, Michael H
2014-03-28
In the existing compartmental models of human vitamin A metabolism, parameters related to the absorption of the isotopic oral dose have not been well identified. We hypothesised that fixing some poorly identified parameters related to vitamin A absorption would improve parameter identifiability and add statistical certainty to such models. In the present study, data for serum vitamin A kinetics in nine subjects given [2H8]retinyl acetate orally and a model with absorption fixed at 75 % were used to test this hypothesis. In addition to absorption efficiency, we fixed two other fractional transfer coefficients: one representing the initial processing of the ingested dose and the other representing the direct secretion of retinol bound to retinol-binding protein (RBP) from enterocytes into the plasma. The Windows version of Simulation, Analysis and Modeling software (WinSAAM) was used to fit serum tracer data v. time for each subject. Then, a population model was generated by WinSAAM's Extended Multiple Studies Analysis. All the parameters had fractional standard deviations < 0·5, and none of the pairs of parameters had a correlation coefficient >0·8 (accepted criteria for well-identified parameters). Similar to the values predicted by the original model, total traced mass for retinol was 1160 (sd 468) μmol, and the time for retinol to appear in the plasma bound to RBP was 31·3 (sd 4·4) h. In conclusion, we suggest that this approach holds promise for advancing compartmental modelling of vitamin A kinetics in humans when the dose must be administered orally.
Ergün, A Sanlı
2011-10-01
Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well.
2012-01-01
The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497
NASA Astrophysics Data System (ADS)
Vartanian, A. L.; Asatryan, A. L.; Vardanyan, L. A.
2017-03-01
We have investigated the influence of an image charge effect (ICE) on the energies of the ground and first few excited states of a hydrogen-like impurity in a spherical quantum dot (QD) in the presence of an external electric field. The oscillator strengths of transitions from the 1 s -like state to excited states of 2px and 2pz symmetries are calculated as the functions of the strengths of the confinement potential and the electric field. Also, we have studied the effect of image charges on linear and third-order nonlinear optical absorption coefficients and refractive index changes (RICs). The results show that image charges lead to the decrease of energies for all the hydrogen-like states, to the significant enhancement of the oscillator strengths of transitions between the impurity states, and to comparatively large blue shifts in linear, nonlinear, and total absorption coefficients and refractive index changes. Our results indicate that the total optical characteristics can be controlled by the strength of the confinement and the electric field.
Büermann, L; Grosswendt, B; Kramer, H-M; Selbach, H-J; Gerlach, M; Hoffmann, M; Krumrey, M
2006-10-21
For the first time absolute photon mass energy-absorption coefficients of air in the energy range 3 keV to 10 keV have been measured with relative standard uncertainties less than 1%, significantly smaller than those of up to 5% assumed hitherto for calculated data. Monochromatized synchrotron radiation was used to measure both the total radiant energy by means of silicon photodiodes calibrated against a cryogenic radiometer and the fraction of radiant energy that is deposited in dry air by means of a free air ionization chamber. The measured ionization charge was converted into energy absorbed in air by calculated effective W values of photons as a function of their energy based on new measurements of the W values in dry air for electron kinetic energies between 1 keV and 7 keV, also presented in this work. The measured absorption coefficients were compared with state-of-the art calculations and found to agree within 0.7% with data calculated earlier by Hubbell at energies above 4 keV but were found to differ by values up to 2.1% at 10 keV from more recent calculations of Seltzer.
NASA Astrophysics Data System (ADS)
Conny, J. M.; Norris, G.
2007-12-01
In thermal-optical transmission analysis (TOT), laser light passing through a particle-laden filter is monitored while carbonaceous material is removed in several heating steps and measured by flame ionization detection. In a helium atmosphere, the laser signal is attenuated by the pyrolysis of organic carbon (OC). Later, while carbon is removed in an oxidizing atmosphere, the laser signal returns to its value prior to pyrolysis (split point), whereupon the amount of carbon equivalent to the native BC is measured. Since pyrolyzed OC may actually evolve beyond the split point, the specific absorption cross sections of pyrolyzed OC and native BC must be equivalent. Moreover, OC pyrolysis must be sufficient so that unpyrolyzed OC is not measured as BC beyond the split point. Using response surfaces models of the apparent specific absorption cross sections for pyrolyzed OC and what the instrument measures as native BC, we determined the thermal conditions for establishing the equivalence of the apparent cross sections while insuring sufficient pyrolysis of OC. In this way, we have optimized TOT for BC mass based on the Beer-Lambert Law but without the need for an absolute mass absorption coefficient (or an absolute attenuation coefficient) for BC. Optimal thermal conditions for the equivalence of the cross sections were indicated by the intersection of the response surfaces. Concurrently, optimal conditions for sufficient pyrolysis of OC were indicated by a plateau in the response surface for the BC cross section. Modeling was based on extensive analyses of PM2.5 samples collected from Atlanta, Los Angeles, and Seattle. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.
Esteves, Freddy; Moutinho, Carla; Matos, Carla
2013-06-01
Absorption and consequent therapeutic action are key issues in the development of new drugs by the pharmaceutical industry. In this sense, different models can be used to simulate biological membranes to predict the absorption of a drug. This work compared the octanol/water and the liposome/water models. The parameters used to relate the two models were the distribution coefficients between liposomes and water and octanol and water and the fraction of drug orally absorbed. For this study, 66 drugs were collected from literature sources and divided into four groups according to charge and ionization degree: neutral; positively charged; negatively charged; and partially ionized/zwitterionic. The results show a satisfactory linear correlation between the octanol and liposome systems for the neutral (R²= 0.9324) and partially ionized compounds (R²= 0.9367), contrary to the positive (R²= 0.4684) and negatively charged compounds (R²= 0.1487). In the case of neutral drugs, results were similar in both models because of the high fraction orally absorbed. However, for the charged drugs (positively, negatively, and partially ionized/zwitterionic), the liposomal model has a more-appropriate correlation with absorption than the octanol model. These results show that the neutral compounds only interact with membranes through hydrophobic bonds, whereas charged drugs favor electrostatic interactions established with the liposomes. With this work, we concluded that liposomes may be a more-appropriate biomembrane model than octanol for charged compounds.
NASA Technical Reports Server (NTRS)
Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.
2008-01-01
Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.
NASA Astrophysics Data System (ADS)
Recent developments in acoustic-intensity measurement are discussed in reviews and reports of theoretical and experimental investigations. Instrumentation, vector acoustics, sound radiation, intensity in the presence of flow, intensity in structures, sound power, source localization, impedance, absorption, and transmission are the fields covered by the contributions. Specific topics addressed include microphone configurations for intensity probes, the rotational structure of intensity fields, acoustic intensity and numerical simulation, sound-power measurement in the presence of background noise, and techniques for measuring the absorption coefficient of acoustic materials. Graphs, drawings, diagrams, tables of numerical data, and photographs of test setups are provided.
Sound absorption of metallic sound absorbers fabricated via the selective laser melting process
NASA Astrophysics Data System (ADS)
Cheng, Li-Wei; Cheng, Chung-Wei; Chung, Kuo-Chun; Kam, Tai-Yan
2017-01-01
The sound absorption capability of metallic sound absorbers fabricated using the additive manufacturing (selective laser melting) method is investigated via both the experimental and theoretical approaches. The metallic sound absorption structures composed of periodic cubic cells were made of laser-melted Ti6Al4 V powder. The acoustic impedance equations with different frequency-independent and frequency-dependent end corrections factors are employed to calculate the theoretical sound absorption coefficients of the metallic sound absorption structures. The calculated sound absorption coefficients are in close agreement with the experimental results for the frequencies ranging from 2 to 13 kHz.
Crowe, Iain F; Clark, Nicholas; Hussein, Siham; Towlson, Brian; Whittaker, Eric; Milosevic, Milan M; Gardes, Frederic Y; Mashanovich, Goran Z; Halsall, Matthew P; Vijayaraghaven, Aravind
2014-07-28
We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, n(eff) = 2.23 ± 0.02 and linear absorption coefficient, α(gTE) = 0.11 ± 0.01dBμm(-1). The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.
Baba, Justin S; Allegood, Marcus S
2008-01-01
Light interaction with biological tissue can be described using three parameters: the scattering and absorption coefficients (us and ua), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specific wavelengths, and simultaneously, would be beneficial for a variety of different biomedical applications. The goal of this project was to take a user-defined g-value and determine the remaining two parameters for a specified wavelength range for an integrating sphere with a collimated white light input source system. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW was used to write programs to automate: raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl's Inverse Adding-Doubling (IAD) C code execution, and computation of the optical properties based on the output from the IAD code. To allow data to be passed efficiently between LabVIEW and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms and determination of the absorption and scattering coefficients showed excellent agreement with theory for wavelengths were the user inputted single g-value was sufficiently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete system multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to study actual biological tissues for the purpose of deriving and refining models for light-tissue interactions.
Gao, Feifei; Wang, Yuan; Shi, Dong; Zhang, Jing; Wang, Mingkui; Jing, Xiaoyan; Humphry-Baker, Robin; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael
2008-08-13
We report two new heteroleptic polypyridyl ruthenium complexes, coded C101 and C102, with high molar extinction coefficients by extending the pi-conjugation of spectator ligands, with a motivation to enhance the optical absorptivity of mesoporous titania film and charge collection yield in a dye-sensitized solar cell. On the basis of this C101 sensitizer, several DSC benchmarks measured under the air mass 1.5 global sunlight have been reached. Along with an acetonitrile-based electrolyte, the C101 sensitizer has already achieved a strikingly high efficiency of 11.0-11.3%, even under a preliminary testing. More importantly, based on a low volatility 3-methoxypropionitrile electrolyte and a solvent-free ionic liquid electrolyte, cells have corresponding >9.0% and approximately 7.4% efficiencies retained over 95% of their initial performances after 1000 h full sunlight soaking at 60 degrees C. With the aid of electrical impedance measurements, we further disclose that, compared to the cell with an acetonitrile-based electrolyte, a dye-sensitized solar cell with an ionic liquid electrolyte shows a feature of much shorter effective electron diffusion lengths due to the lower electron diffusion coefficients and shorter electron lifetimes in the mesoporous titania film, explaining the photocurrent difference between these two type devices. This highlights the next necessary efforts to further improve the efficiency of cells with ionic liquid electrolytes, facilitating the large-scale production and application of flexible thin film mesoscopic solar cells.
Sato, Chie; Shimada, Miho; Tanikawa, Yukari; Hoshi, Yoko
2013-09-01
Expanding our previously proposed "time segment analysis" for a two-layered turbid medium, this study attempted to selectively determine the absorption coefficient (μa) of the bottom layer in a four-layered human head model with time-domain near-infrared measurements. The difference curve in the temporal profiles of the light attenuation between an object and a reference medium, which are obtained from Monte Carlo simulations, is divided into segments along the time axis, and a slope for each segment is calculated to obtain the depth-dependent μa(μaseg). The reduced scattering coefficient (μs') of the reference is determined by curve fitting with the temporal point spread function derived from the analytical solution of the diffusion equation to the time-resolved reflectance of the object. The deviation of μaseg from the actual μa is expressed by a function of the ratio of μaseg in an earlier time segment to that in a later segment for mediums with different optical properties and thicknesses of the upper layers. Using this function, it is possible to determine the μa of the bottom layer in a four-layered epoxy resin-based phantom. These results suggest that the method reported here has potential for determining the μa of the cerebral tissue in humans.
Acoustic dose and acoustic dose-rate.
Duck, Francis
2009-10-01
Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.
Acoustical properties of highly porous fibrous materials
NASA Technical Reports Server (NTRS)
Lambert, R. F.
1979-01-01
Highly porous, fibrous bulk sound absorbing materials are studied with a view toward understanding their acoustical properties and performance in a wide variety of applications including liners of flow ducts. The basis and criteria for decoupling of acoustic waves in the pores of the frame and compressional waves in the frame structure are established. The equations of motion are recast in a form that elucidates the coupling mechanisms. The normal incidence surface impedance and absorption coefficient of two types of Kevlar 29 and an open celled foam material are studied. Experimental values and theoretical results are brought into agreement when the structure factor is selected to provide a fit to the experimental data. A parametric procedure for achieving that fit is established. Both a bulk material quality factor and a high frequency impedance level are required to characterize the real and imaginary part of the surface impedance and absorption coefficient. A derivation of the concepts of equivalent density and dynamic resistance is presented.
Adams, M.E.; Marshall, T.L.; Rowley, R.L.
1998-07-01
Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.
NASA Astrophysics Data System (ADS)
Zhong, Jie; Wen, Ji-Hong; Zhao, Hong-Gang; Yin, Jian-Fei; Yang, Hai-Bin
2015-08-01
Locally resonant sonic materials, due to their ability to control the propagation of low-frequency elastic waves, have become a promising option for underwater sound absorption materials. In this paper, the finite element method is used to investigate the absorption characteristics of a viscoelastic panel periodically embedded with a type of infinite-long non-coaxially cylindrical locally resonant scatterers (LRSs). The effect of the core position in the coating layer of the LRS on the low-frequency (500 Hz-3000 Hz) sound absorption property is investigated. With increasing the longitudinal core eccentricity e, there occur few changes in the absorptance at the frequencies below 1500 Hz, however, the absorptance above 1500 Hz becomes gradually better and the valid absorption (with absorptance above 0.8) frequency band (VAFB) of the viscoelastic panel becomes accordingly broader. The absorption mechanism is revealed by using the displacement field maps of the viscoelastic panel and the steel slab. The results show two typical resonance modes. One is the overall resonance mode (ORM) caused by steel backing, and the other is the core resonance mode (CRM) caused by LRS. The absorptance of the viscoelastic panel by ORM is induced mainly by the vibration of the steel slab and affected little by core position. On the contrary, with increasing the core eccentricity, the CRM shifts toward high frequency band and decouples with the ORM, leading to two separate absorption peaks and the broadened VAFB of the panel. Project supported by the National Natural Science Foundation of China (Grant No. 51275519).
NASA Astrophysics Data System (ADS)
Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus
2016-04-01
Light absorbing carbon in atmospheric aerosol plays a critical role in radiative forcing and climate change. Despite the long term measurements across the Arctic, comparing data obtained by a variety of methods across stations requires caution. A method for extracting the aerosol absorption coefficient from data obtained over the decades by filter based instrument is still under development. An IASOA Aerosol working group has been initiated to address this and other cross-site aerosol comparison opportunities. Continuous ambient measurements of EBC/light attenuation by means of a Magee Sci. AE-31 aethalometer operating at the Zeppelinfjellet station (474 m asl; 78°54'N, 11°53'E), Ny Ålesund, Svalbard, have been available since 2001 (Eleftheriadis et al, 2009), while a new aethalometer model (AE33, Drinovec et al, 2014) has been installed to operate in parallel from the same inlet since June 2015. Measurements are recorded by a Labview routine collecting all available parameters reported by the two instrument via RS232 protocol. Data are reported at 1 and 10 minute intervals as averages for EBC (μg m-3) and aerosol absorption coefficients (Mm-1) by means of routine designed to report Near Real Time NRT data at the EBAS WDCA database (ebas.nilu.no) Results for the first 6 month period are reported here in an attempt to evaluate comparative performance of the two instruments in terms of their response with respect to the variable aerosol load of light absorbing carbon during the warm and cold seasons found in the high arctic. The application of available conversion schemes for obtaining the absorption coefficient by the two instruments is found to demonstrate a marked difference in their output. During clean periods of low aerosol load (EBC < 30 ng m-3), the two instruments display a better agreement with regression slope for the 880 nm signal between the two at ~ 0.9 compared to a slope at ~ 0.6 during the period of higher absorbing carbon loads (400< EBC<30 ng m
Distinct effects of moisture and air contents on acoustic properties of sandy soil.
Oshima, Takuya; Hiraguri, Yasuhiro; Okuzono, Takeshi
2015-09-01
Knowledge of distinct effects of moisture content and air volume on acoustic properties of soil is sought to predict the influence of human activities such as cultivation on acoustic propagation outdoors. This work used an impedance tube with the two-thickness method to investigate such effects. For a constant moisture weight percentage, the magnitude of the characteristic impedance became smaller and the absorption coefficient became higher with increase of the air space ratio. For a constant air space ratio, the absorption coefficient became larger and the magnitude of the propagation constant became smaller with increasing moisture weight percentage.
Zogka, Antonia G; Mellouki, Abdelwahid; Romanias, Manolis N; Bedjanian, Yuri; Idir, Mahmoud; Grosselin, Benoit; Daële, Véronique
2016-11-17
The rate coefficients for the reactions of OH and Cl with 1-methoxy 2-propyl acetate (MPA) in the gas phase were measured using absolute and relative methods. The kinetic study on the OH reaction was conducted in the temperature (263-373) K and pressure (1-760) Torr ranges using the pulsed laser photolysis-laser-induced fluorescence technique, a low pressure fast flow tube reactor-quadrupole mass spectrometer, and an atmospheric simulation chamber/GC-FID. The derived Arrhenius expression is kMPA+OH(T) = (2.01 ± 0.02) × 10(-12) exp[(588 ± 123/T)] cm(3) molecule(-1) s(-1). The absolute and relative rate coefficients for the reaction of Cl with MPA were measured at room temperature in the flow reactor and the atmospheric simulation chamber, which led to k(Cl+MPA) = (1.98 ± 0.31) × 10(-10) cm(3) molecule(-1) s(-1). GC-FID, GC-MS, and FT-IR techniques were used to investigate the reaction mechanism in the presence of NO. The products formed from the reaction of MPA with OH and their yields were methyl formate (80 ± 7.3%), acetic acid (50 ± 4.8%), and acetic anhydride (22 ± 2.4%), while for Cl reaction, the obtained yields were 60 ± 5.4, 41 ± 3.8, and 11 ± 1.2%, respectively, for the same products. The UV absorption cross section spectrum of MPA was determined in the wavelength range 210-370 nm. The study has shown no photolysis of MPA under atmospheric conditions. The obtained results are used to derive the atmospheric implication.
Acoustic properties of low growing plants.
Horoshenkov, Kirill V; Khan, Amir; Benkreira, Hadj
2013-05-01
The plane wave normal incidence acoustic absorption coefficient of five types of low growing plants is measured in the presence and absence of soil. These plants are generally used in green living walls and flower beds. Two types of soil are considered in this work: a light-density, man-made soil and a heavy-density natural clay base soil. The absorption coefficient data are obtained in the frequency range of 50-1600 Hz using a standard impedance tube of diameter 100 mm. The equivalent fluid model for sound propagation in rigid frame porous media proposed by Miki [J. Acoust. Soc. Jpn. (E) 11, 25-28 (1990)] is used to predict the experimentally observed behavior of the absorption coefficient spectra of soils, plants, and their combinations. Optimization analysis is employed to deduce the effective flow resistivity and tortuosity of plants which are assumed to behave acoustically as an equivalent fluid in a rigid frame porous medium. It is shown that the leaf area density and dominant angle of leaf orientation are two key morphological characteristics which can be used to predict accurately the effective flow resistivity and tortuosity of plants.
Duan, Yuetao; Luo, Jie; Wang, Guanghao; Hang, Zhi Hong; Hou, Bo; Li, Jensen; Sheng, Ping; Lai, Yun
2015-01-01
We derive and numerically demonstrate that perfect absorption of elastic waves can be achieved in two types of ultra-thin elastic meta-films: one requires a large value of almost pure imaginary effective mass density and a free space boundary, while the other requires a small value of almost pure imaginary effective modulus and a hard wall boundary. When the pure imaginary density or modulus exhibits certain frequency dispersions, the perfect absorption effect becomes broadband, even in the low frequency regime. Through a model analysis, we find that such almost pure imaginary effective mass density with required dispersion for perfect absorption can be achieved by elastic metamaterials with large damping. Our work provides a feasible approach to realize broadband perfect absorption of elastic waves in ultra-thin films. PMID:26184117
Duan, Yuetao; Luo, Jie; Wang, Guanghao; Hang, Zhi Hong; Hou, Bo; Li, Jensen; Sheng, Ping; Lai, Yun
2015-07-17
We derive and numerically demonstrate that perfect absorption of elastic waves can be achieved in two types of ultra-thin elastic meta-films: one requires a large value of almost pure imaginary effective mass density and a free space boundary, while the other requires a small value of almost pure imaginary effective modulus and a hard wall boundary. When the pure imaginary density or modulus exhibits certain frequency dispersions, the perfect absorption effect becomes broadband, even in the low frequency regime. Through a model analysis, we find that such almost pure imaginary effective mass density with required dispersion for perfect absorption can be achieved by elastic metamaterials with large damping. Our work provides a feasible approach to realize broadband perfect absorption of elastic waves in ultra-thin films.
Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing
2011-04-11
Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time.
Protasenko, Vladimir; Bacinello, Daniel; Kuno, Masaru
2006-12-21
Absorption cross-sections and corresponding molar extinction coefficients of solution-based CdSe and CdTe nanowires (NWs) are determined. Chemically grown semiconductor NWs are made via a recently developed solution-liquid-solid (SLS) synthesis, employing low melting Au/Bi bimetallic nanoparticle "catalysts" to induce one-dimensional (1D) growth. Resulting wires are highly crystalline and have diameters between 5 and 12 nm as well as lengths exceeding 10 microm. Narrow diameters, below twice the corresponding bulk exciton Bohr radius of each material, place CdSe and CdTe NWs within their respective intermediate to weak confinement regimes. Supporting this are solution linear absorption spectra of NW ensembles showing blue shifts relative to the bulk band gap as well as structure at higher energies. In the case of CdSe, the wires exhibit band edge emission as well as strong absorption/emission polarization anisotropies at the ensemble and single-wire levels. Analogous photocurrent polarization anisotropies have been measured in recently developed CdSe NW photodetectors. To further support fundamental NW optical/electrical studies as well as to promote their use in device applications, experimental absorption cross-sections are determined using correlated transmission electron microscopy, UV/visible extinction spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Measured CdSe NW cross-sections for 1 microm long wires (diameters, 6-42 nm) range from 6.93 x 10(-13) to 3.91 x 10(-11) cm2 at the band edge (692-715 nm, 1.73-1.79 eV) and between 3.38 x 10(-12) and 5.50 x 10(-11) cm2 at 488 nm (2.54 eV). Similar values are obtained for 1 microm long CdTe NWs (diameters, 7.5-11.5 nm) ranging from 4.32 x 10(-13) to 5.10 x 10(-12) cm2 at the band edge (689-752 nm, 1.65-1.80 eV) and between 1.80 x 10(-12) and 1.99 x 10(-11) cm2 at 2.54 eV. These numbers compare well with previous theoretical estimates of CdSe/CdTe NW cross-sections far to the blue of the
Sánchez-Castaño, G; Ruíz-García, A; Bañón, N; Bermejo, M; Merino, V; Freixas, J; Garriguesx, T M; Plá-Delfina, J M
2000-11-01
A preliminary study attempting to predict the intrinsic absolute bioavailability of a group of antibacterial 6-fluoroquinolones-including true and imperfect homologues as well as heterologues-was carried out. The intrinsic absolute bioavailability of the test compounds, F, was assessed on permanently cannulated conscious rats by comparing the trapezoidal normalized areas under the plasma concentration-time curves obtained by intravenous and oral routes (n = 8-12). The high-performance liquid chromatography analytical methods used for plasma samples are described. Prediction of the absolute bioavailability of the compounds was based on their intrinsic rat gut in situ absorption rate constant, k(a). The working equation was: where T represents the mean absorbing time. A T value of 0.93 (+/-0.06) h provides the best correlation between predicted and experimentally obtained bioavailabilities (F' and F, respectively) when k(a) values are used (slope a = 1.10; intercept b = -0.05; r = 0.991). The k(a) values can also be expressed in function of the in vitro partition coefficients, P, between n-octanol and a phosphate buffer. In this case, theoretical k(a) values can be determined with the parameters of a standard k(a)/P correlation previously established for a group of model compounds. When P values are taken instead of k(a) values, reliable bioavailability predictions can also be made. These and other relevant features of the method are discussed.
Estimating surface acoustic impedance with the inverse method.
Piechowicz, Janusz
2011-01-01
Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.
2015-07-17
under-ice scattering , bathymetric diffraction and the application of the ocean acoustic Parabolic Equation to infrasound. 2. Tasks a. Task 1...QSR-14C0172-Ocean Acoustics -063015 Figure 10. Estimated reflection coefficient as a function of frequency by taking the difference of downgoing and...OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics -063015 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics
NASA Technical Reports Server (NTRS)
Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.
1990-01-01
FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.
NASA Astrophysics Data System (ADS)
Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.
1990-11-01
FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.
ERIC Educational Resources Information Center
Beyer, Robert
1981-01-01
Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)
NASA Astrophysics Data System (ADS)
Lee, Byoung Wan; Ko, Jae-Hyeon; Park, Jaehoon; Shin, Dong-Myeong; Hwang, Yoon-Hwae
2016-04-01
The temperature dependences of the acoustic properties and the dielectric relaxation times of polydimethylsiloxane were investigated by using high-resolution Brillouin and broadband dielectric spectroscopies. The longitudinal sound velocity showed a large increase upon approaching the glass transition temperature while the acoustic absorption coefficient exhibited a maximum at ~263 K. Comparison of these results with previous ultrasonic data revealed a substantial frequency dispersion of the acoustic properties of this silicone-based elastomer. The relaxation times derived from the acoustic absorption peaks were consistent with the temperature dependence of the dielectric relaxation time of the structural a process, indicating a strong coupling between the acoustic waves and the segmental motions of the main chains.
Effect of Coversheet Materials on the Acoustic Performance of Melamine Foam
NASA Technical Reports Server (NTRS)
McNelis, Anne M.; Hughes, William O.
2015-01-01
Melamine foam is a highly absorptive material that is often used inside the payload fairing walls of a launch vehicle. This foam reduces the acoustic excitation environment that the spacecraft experiences during launch. Often, the melamine foam is enclosed by thin coversheet materials for contamination protection, thermal protection, and electrostatic discharge control. Previous limited acoustic testing by NASA Glenn Research Center has shown that the presence of a coversheet material on the melamine foam can have a significant impact on the absorption coefficient and the transmission loss. As a result of this preliminary finding a more extensive acoustic test program using several different coversheet materials on melamine foam was performed. Those test results are summarized in this paper. Additionally, a method is provided to use the acoustic absorption and transmission loss data obtained from panel level testing to predict their combined effect for the noise reduction of a launch vehicle payload fairing.
Mitri, F G
2017-01-01
Hermite-Gaussian (HGl) acoustical-sheets are introduced and their beamforming properties are examined. A general nonparaxial mathematical solution for the incident beam of any order l is derived based on the angular spectrum decomposition in plane waves. The beam-shape coefficients characterizing the incident beam in cylindrical coordinates are expressed in an integral form and computed using the standard numerical integration procedure based on the trapezoidal rule. The analysis is further extended to calculate the longitudinal and transverse acoustic radiation force functions as well as the axial radiation torque function for a viscous fluid cylindrical cross-section submerged in a non-viscous fluid and located arbitrarily in space in the field of the HGl beams in the Rayleigh and resonance (Mie) regimes. The numerical results show that the absorptive cylinder can be pulled, pushed, or manipulated and rotated around its center of mass when placed in the acoustical field of a HGl beam. Clockwise or anticlockwise rotations can arise depending on the cylinder position in the acoustic field. Moreover, a particle dynamics analysis is established based on Newton's second law of motion during which the trajectories of the cylinder subjected to the acoustical field of forces are computed. The results can find potential applications in particle manipulation and handling, acoustical microscopy imaging, and surface acoustic waves to name a few examples.
Hanford, Amanda D; O'Connor, Patrick D; Anderson, James B; Long, Lyle N
2008-06-01
In the current study, real gas effects in the propagation of sound waves are simulated using the direct simulation Monte Carlo method for a wide range of frequencies. This particle method allows for treatment of acoustic phenomena at high Knudsen numbers, corresponding to low densities and a high ratio of the molecular mean free path to wavelength. Different methods to model the internal degrees of freedom of diatomic molecules and the exchange of translational, rotational and vibrational energies in collisions are employed in the current simulations of a diatomic gas. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration. A second method takes into account the discrete quantum energy levels for vibration with the closely spaced rotational levels classically treated. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. Applications of these methods are investigated in diatomic nitrogen gas in order to study the propagation of sound and its attenuation and dispersion along with their dependence on temperature. With the direct simulation method, significant deviations from continuum predictions are also observed for high Knudsen number flows.
NASA Astrophysics Data System (ADS)
Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas
2016-09-01
We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.
Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas
2016-01-01
We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids. PMID:27633351
Biot theory and acoustical properties of high porosity fibrous materials and plastic foams
NASA Technical Reports Server (NTRS)
Allard, J.; Aknine, A.
1987-01-01
Experimental values of acoustic wave propagation constant and characteristic impedance in fibrous materials, and normal absorption for two plastic foams, were compared to theoretical predictions obtained with Biot's theory. The best agreement was observed for fibrous materials between Biot's theory and Delany and Bazley experiments for a nearly zero mass coupling parameter. For foams, the lambda/4 structure resonance effect on absorption was calculated by using four-pole modelling of the medium. A significant mass coupling parameter is then necessary for obtaining agreement between the behavior of the measured absorption coefficients and the theoretical predictions. It is shown how the formalism used for predicting foams absorption coefficients may be used for studying the acoustic behavior of multi-layered media.
Till, S J; Milsom, P K; Rowlands, G
2004-07-01
Shock waves have been proposed in the literature as a mechanism for retinal damage induced by ultra-short laser pulses. For a spherical absorber, we derive a set of linear equations describing the propagation of pressure waves. We show that the formation of shock fronts is due to the form of the absorber rather than the inclusion of nonlinear terms in the equations. The analytical technique used avoids the need for a Laplace transform approach and is easily applied to other absorber profiles. Our analysis suggests that the 'soft' nature of the membrane surrounding retinal melanosomes precludes shock waves as a mechanism for the retinal damage induced by ultra-short pulse lasers. The quantitative estimates of the pressure gradients induced by laser absorption which are made possible by this work, together with detailed meso-scale or molecular modelling, will allow alternative damage mechanisms to be identified.
The impact of the neck material on the sound absorption performance of Helmholtz resonators
NASA Astrophysics Data System (ADS)
Yang, Dong; Wang, Xiaolin; Zhu, Min
2014-12-01
Helmholtz resonators with sound absorption materials filling the neck may have an improved sound absorption capacity. In this work, parallel perforated ceramics with different perforation diameters were installed into the neck of a Helmholtz resonator to improve its acoustic impedance to simultaneously achieve a better acoustic absorption coefficient and a wider absorption bandwidth. An experimental system was built to investigate the effect of the perforation diameters on the sound absorption performance of the resonator. It is found that nonlinear effects near the resonance frequency affect the resonator's neck mouth impedance and further its sound absorption performance significantly. For frequency range 50-500 Hz, a model of the neck mouth impedance is developed based on a revised Forchheimer relationship. The experimental results are in good agreement with the theoretical model.
NASA Astrophysics Data System (ADS)
Kir'yanov, Alexander V.; Barmenkov, Yuri O.
2006-07-01
We reply to the comment [R. Paschotta and A.C. Tropper, Opt. Express, to be published (2006)] on our recent work reporting a study of the cooperative absorption and emission in heavily-doped Ytterbium silica fibers and mechanisms of the fiber nonlinear transmission coefficient reduction due to the Ytterbium ion-pairs’ effect [A.V. Kir’yanov et al., Opt. Express, 14 (9), 3981 (2006)]. We provide some additional evidences for that our work hypotheses and conclusions.
1990-12-07
Proceedings of the 13th Interna- tional Congress on Acoustics, Belgrade, Yugoslavia, August 1989, edited by P. Pravica and G. Drakulic (Sava Centar...Congress on Acoustics (Sava Centar, Belgrade, 1989), edited by P. Pravica and G. Drakulic , Vol. 1, pp. 145-148. [11] K.-E. Froysa, "Weakly nonlinear...Congress on Acoustics (Sava Centar, Belgrade, 1989), edited by P. Pravica and G. Drakulic , Vol. 1, pp. 283-286. [41] C. M. Darvennes, M. F. Hamilton, J
A modified diffusion equation for room-acoustic predication.
Jing, Yun; Xiang, Ning
2007-06-01
This letter presents a modified diffusion model using an Eyring absorption coefficient to predict the reverberation time and sound pressure distributions in enclosures. While the original diffusion model [Ollendorff, Acustica 21, 236-245 (1969); J. Picaut et al., Acustica 83, 614-621 (1997); Valeau et al., J. Acoust. Soc. Am. 119, 1504-1513 (2006)] usually has good performance for low absorption, the modified diffusion model yields more satisfactory results for both low and high absorption. Comparisons among the modified model, the original model, a geometrical-acoustics model, and several well-established theories in terms of reverberation times and sound pressure level distributions, indicate significantly improved prediction accuracy by the modification.
Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.
Acoustic simulations of Mudejar-Gothic churches.
Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara
2009-09-01
In this paper, an iterative process is used in order to estimate the values of absorption coefficients of those materials of which little is known in the literature, so that an acoustic simulation can be carried out in Mudejar-Gothic churches. The estimation of the scattering coefficients, which is even less developed, is based on the size of the irregularities. This methodology implemented is applied to six Mudejar-Gothic churches of Seville (southern Spain). The simulated monophonic acoustic parameters, both in the frequency domain and as a function of source-receiver distance (spatial distribution), are analyzed and compared with the in situ measures. Good agreement has been found between these sets of values, whereby each parameter is discussed in terms of the just noticeable difference. This procedure for existing buildings, especially for those which are rich in heritage, enables a reliable evaluation of the effect on the maintenance, restoration, and conditioning for new uses, as well as the recreation of the acoustic environment of ancient times. Along these lines, the acoustic influence of the timber roof and the presence of the public in these churches have also been studied.
NASA Astrophysics Data System (ADS)
Daneshvar, L.; Földes, T.; Buldyreva, J.; Vander Auwera, J.
2014-12-01
High resolution Fourier transform spectra of the 21102-00001 band of 12C16O2 near 3340 cm-1 have been recorded and analyzed to extract isolated-line intensities and collisional parameters, and first-order line-mixing coefficients. Voigt, hard-collision Rautian and Sobel'man, and quadratic-speed-dependent Voigt profiles have been used. The line-mixing coefficients measured for the three branches have also been evaluated using an Energy-Corrected Sudden approach employing a symmetric metric in the Liouville space. These coefficients compare very favorably with the experimental results and estimations with an algorithm available in the literature. Results of straightforward ECS-modeling of complete band shapes have been compared to the recorded spectra and future improvements of this model required at subatmospheric pressures have been outlined.
1983-01-01
r 2) it is not expected that these issues will pose serious problems. It appears that the %7 grid is of fundamental importance in the Hankel... invesion of pressue field data to obtain the parameters of the bottom. In this contwt it is of interest to geophysiciut and others who wih to...RECEIVER HEIGHT COMPENSATION A(k,) Figure V.1.1 The invesion procedure to estimate the plane wave reflection coefficient from the mul field Senerated
Acoustic Classification and Optimization for Multi-Modal Rendering of Real-World Scenes.
Schissler, Carl; Loftin, Christian; Manocha, Dinesh
2017-02-09
We present a novel algorithm to generate virtual acoustic effects in captured 3D models of real-world scenes for multimodal augmented reality. We leverage recent advances in 3D scene reconstruction in order to automatically compute acoustic material properties. Our technique consists of a two-step procedure that first applies a convolutional neural network (CNN) to estimate the acoustic material properties, including frequency-dependent absorption coefficients, that are used for interactive sound propagation. In the second step, an iterative optimization algorithm is used to adjust the materials determined by the CNN until a virtual acoustic simulation converges to measured acoustic impulse responses. We have applied our algorithm to many reconstructed real-world indoor scenes and evaluated its fidelity for augmented reality applications.
NASA Astrophysics Data System (ADS)
Sun, Yang; Li, Zhaohui; Huang, Aigen; Li, Qihu
2015-10-01
Piezoelectric shunt damping technology has been applied in the field of underwater sound absorption in recent years. In order to achieve broadband echo reduction, semi-active control of sound absorption of multi-layered piezoelectric coating by shunt damping is significant. In this paper, a practical method is proposed to control the underwater sound absorption coefficients of piezoelectric coating layers by combining design of the shunt impedance that allows certain sound absorption coefficients at setting frequencies. A one-dimensional electro-acoustic model of the piezoelectric coating and the backing is established based on the Mason equivalent circuit theory. First, the shunt impedance of the coating is derived under the constraint of sound absorption coefficient at one frequency. Then, taking the 1-3 piezoelectric composite coating as an example, the sound absorption properties of the coating shunted to the designed shunt impedance are investigated. Next, on the basis of that, an iterative method for two constrained frequencies and an optimizing algorithm for multiple constrained frequencies are provided for combining design of the shunt impedances. At last, an experimental sample with four piezoelectric material layers is manufactured, of which the sound absorption coefficients are measured in an impedance tube. The experimental results show good agreement with the finite element simulation results. It is proved that a serial R-L circuit can control the peak frequency, maximum and bandwidth of the sound absorption coefficient and the combining R-L circuits shunted to multiple layers can control the sound absorption coefficients at multiple frequencies.
Gajardo, Francisco; Barrera, Mauricio; Vargas, Ricardo; Crivelli, Irma; Loeb, Barbara
2011-07-04
When tested in solar cells, ruthenium polypyridinic dyes with extended π systems show an enhanced light-harvesting capacity that is not necessarily reflected by a high (collected electrons)/(absorbed photons) ratio. Provided that metal-to-ligand charge transfer bands, MLCT, are more effective, due to their directionality, than intraligand (IL) π-π* bands for the electron injection process in the solar cell, it seems important to explore and clarify the nature of the absorption bands present in these types of dyes. This article aims to elucidate if all the absorbed photons of these dyes are potentially useful in the generation of electric current. In other words, their potentiality as dyes must also be analyzed from the point of view of their contribution to the generation of excited states potentially useful for direct injection. Focusing on the assignment of the absorption bands and the nature of the emitting state, a systematic study for a series of ruthenium complexes with 4,4'-distyryl-2,2'-dipyridine (LH) and 4,4'-bis[p-(dimethylamino)-α-styryl]-2,2'-bipyridine (LNMe(2)) "chromophoric" ligands was undertaken. The observed experimental results were complemented with TDDFT calculations to elucidate the nature of the absorption bands, and a theoretical model was proposed to predict the available energy that could be injected from a singlet or a triplet excited state. For the series studied, the results indicate that the percentage of MLCT character to the anchored ligand for the lower energy absorption band follows the order [Ru(deebpy)(2)(LNMe(2))](PF(6))(2) > [Ru(deebpy)(2)(LH)](PF(6))(2) > [Ru(deebpy)(LH)(2)](PF(6))(2), where deebpy is 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine, predicting that, at least from this point of view, their efficiency as dyes should follow the same trend.
Measured acoustic properties of variable and low density bulk absorbers
NASA Technical Reports Server (NTRS)
Dahl, M. D.; Rice, E. J.
1985-01-01
Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.
Jaeger, Michael; Niederhauser, Joël J; Hejazi, Marjaneh; Frenz, Martin
2005-01-01
An optoacoustic detection method suitable for depth profiling of optical absorption of layered or continuously varying tissue structures is presented. Detection of thermoelastically induced pressure transients allows reconstruction of optical properties of the sample to a depth of several millimeters with a spatial resolution of 24 mum. Acoustic detection is performed using a specially designed piezoelectric transducer, which is transparent for optical radiation. Thus, ultrasonic signals can be recorded at the same position the tissue is illuminated. Because the optoacoustical sound source is placed in the pulsed-acoustic near field of the pressure sensor, signal distortions commonly associated with acoustical diffraction are eliminated. Therefore, the acoustic signals mimic exactly the depth profile of the absorbed energy. This is illustrated by imaging the absorption profile of a two-layered sample with different absorption coefficients, and of a dye distribution while diffusing into a gelatin phantom.
Sound absorption by clamped poroelastic plates.
Aygun, H; Attenborough, K
2008-09-01
Measurements and predictions have been made of the absorption coefficient and the surface acoustic impedance of poroelastic plates clamped in a large impedance tube and separated from the rigid termination by an air gap. The measured and predicted absorption coefficient and surface impedance spectra exhibit low frequency peaks. The peak frequencies observed in the absorption coefficient are close to those predicted and measured in the deflection spectra of the clamped poroelastic plates. The influences of the rigidity of the clamping conditions and the width of the air gap have been investigated. Both influences are found to be important. Increasing the rigidity of clamping reduces the low frequency absorption peaks compared with those measured for simply supported plates or plates in an intermediate clamping condition. Results for a closed cell foam plate and for two open cell foam plates made from recycled materials are presented. For identical clamping conditions and width of air gap, the results for the different materials differ as a consequence mainly of their different elasticity, thickness, and cell structure.
Dakhlaoui, Hassen
2015-04-07
In the present paper, the linear and nonlinear optical absorption coefficients and refractive index changes between the ground and the first excited states in double GaN/Al{sub x}Ga{sub (1−x)}N quantum wells are studied theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger-Poisson equations self-consistently within the effective mass approximation. The obtained results show that the optical absorption coefficients and refractive index changes can be red- and blue-shifted through varying the left quantum well width and the aluminum concentration x{sub b2} of the central barrier, respectively. These structural parameters are found to present optimum values for carrying out the transition of 0.8 eV (1.55 μm). Furthermore, we show that the desired transition can also be achieved by replacing the GaN in the left quantum well with Al{sub y}Ga{sub (1−y)}N and by varying the aluminum concentration y{sub Al}. The obtained results give a new degree of freedom in optoelectronic device applications such as optical fiber telecommunications operating at (1.55 μm)
Pelivanov, Ivan M; Belov, Sergej A; Solomatin, Vladimir S; Khokhlova, Tanya D; Karabutov, Aleksander A
2006-12-31
The problem of opto-acoustic (AO) diagnostics of light scattering and absorption in biological media is considered. The objects under study were milk, bovine and porcine liver, and bovine muscle tissue. The forward and backward schemes for recording acoustic signals were used in experiments. The spatial distribution of the light intensity was measured for each biological medium from the temporal profile of the excited OA pulse and the absorption coefficient and reduced scattering coefficient were determined. Opto-acoustic signals were excited by a 1064-nm pulsed Nd:YAG laser and a tunable Ti:sapphire laser at 779 nm. It is shown that the proposed method can be used for obtaining a priori information on a biological medium in problems of optical and AO tomography. (special issue devoted to multiple radiation scattering in random media)
Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound
Tang, Yufan; Ren, Shuwei; Meng, Han; Xin, Fengxian; Huang, Lixi; Chen, Tianning; Zhang, Chuanzeng; Lu, Tian Jain
2017-01-01
A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption. PMID:28240239
Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound
NASA Astrophysics Data System (ADS)
Tang, Yufan; Ren, Shuwei; Meng, Han; Xin, Fengxian; Huang, Lixi; Chen, Tianning; Zhang, Chuanzeng; Lu, Tian Jain
2017-02-01
A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption.
Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound.
Tang, Yufan; Ren, Shuwei; Meng, Han; Xin, Fengxian; Huang, Lixi; Chen, Tianning; Zhang, Chuanzeng; Lu, Tian Jain
2017-02-27
A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption.
Allegood, M.S.; Baba, J.S.
2008-01-01
Light interaction with biological tissue can be described using three parameters: the scattering and absorption coeffi cients (μs and μa), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specifi c wavelengths simultaneously would be benefi cial for a variety of different biomedical applications. The goal of this project was to take a user defi ned g-value and determine the remaining two parameters for a specifi ed wavelength range. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW® was used to write programs to automate raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl’s Inverse Adding-Doubling (IAD) C code execution, and fi nally computation of the optical properties based on the output from the IAD code. To allow data to be passed effi ciently between LabVIEW® and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms. Determination of the absorption and scattering coeffi cients showed excellent agreement with theory for wavelengths where the user inputted single g-value was suffi ciently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to examine actual biological tissues for the purpose of building and refi ning models for light-tissue interactions.
Horoshenkov, Kirill V; Khan, Amir; Bécot, François-Xavier; Jaouen, Luc; Sgard, Franck; Renault, Amélie; Amirouche, Nesrine; Pompoli, Francesco; Prodi, Nicola; Bonfiglio, Paolo; Pispola, Giulio; Asdrubali, Francesco; Hübelt, Jörn; Atalla, Noureddine; Amédin, Celse K; Lauriks, Walter; Boeckx, Laurens
2007-07-01
This paper reports the results of reproducibility experiments on the interlaboratory characterization of the acoustical properties of three types of consolidated porous media: granulated porous rubber, reticulated foam, and fiberglass. The measurements are conducted in several independent laboratories in Europe and North America. The studied acoustical characteristics are the surface complex acoustic impedance at normal incidence and plane wave absorption coefficient which are determined using the standard impedance tube method. The paper provides detailed procedures related to sample preparation and installation and it discusses the dispersion in the acoustical material property observed between individual material samples and laboratories. The importance of the boundary conditions, homogeneity of the porous material structure, and stability of the adopted signal processing method are highlighted.
Choi, Young-Ji; Bradley, John S; Jeong, Dae-Up
2015-01-01
This paper examines how the individual variations of chair type, row spacing, as well as the presence of occupants and carpet, combine to influence the absorption characteristics of theater chairs as a function of sample perimeter-to-area (P/A) ratios. Scale models were used to measure the interactive effects of the four test variables on the chair absorption characteristics, avoiding the practical difficulties of full scale measurements. All of the test variables led to effects that could lead to important changes to auditorium acoustics conditions. At mid and higher frequencies, the various effects can usually be explained as due to, more or less, porous absorbing material. In the 125 and 250 Hz octave bands, the major changes were attributed to resonant absorbing mechanisms. The results indicate that for accurate predictions of the effective absorption of the chairs in an auditorium, one should use the P/A method and reverberation chamber tests of the chair absorption coefficients to predict the absorption coefficients of each block of chairs and use these results as input in a room acoustics computer model of the auditorium. The application of these results to auditorium acoustics design is described, more approximate approaches are considered, and relations to existing methods are discussed.
The emission coefficient of uranium plasmas
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Campbell, H. D.; Mack, J. M.
1973-01-01
The emission coefficient for uranium plasmas (Temperature: 8000 K) was measured for the wavelength range (200 A - 6000 A). The results are compared to theory and other measurements. The absorption coefficient for the same wavelength interval is also given.
On the simulation of seat-dip effect using geometrical acoustics software
NASA Astrophysics Data System (ADS)
Cirillo, Ettore; Martellotta, Francesco
2004-05-01
A group of Italian churches was surveyed in order to measure the most important acoustic parameters according to ISO 3382 Standard. Computer models of the same churches were made using acoustic simulation software. Absorption coefficients found in the literature were used and later calibrated to match predicted and measured T30 values. The results of the simulations were compared with the observed values, showing some discrepancies at mid-low frequencies. This discrepancy appeared to be due to a lack of direct sound in the measured responses, particularly at the 250-Hz and 500-Hz octave bands, indicating the probable presence of a seat-dip effect caused by the wooden pews. Since the acoustic simulation software provided the possibility to use acoustically semitransparent planes, this feature was used to simulate the effect of selective absorption of the direct sound due to the seat-dip effect. The comparison between measured acoustic parameters and those predicted including the simulation of the seat-dip effect showed that an improvement in the prediction accuracy can be achieved. Different configurations were tested in order to define the optimal placing of the semitransparent plane, and a criterion to choose the transparency coefficients is finally proposed.
Ding, Lei; Van Renterghem, Timothy; Botteldooren, Dick; Horoshenkov, Kirill; Khan, Amir
2013-12-01
The influence of loose plant leaves on the acoustic absorption of a porous substrate is experimentally and numerically studied. Such systems are typical in vegetative walls, where the substrate has strong acoustical absorbing properties. Both experiments in an impedance tube and theoretical predictions show that when a leaf is placed in front of such a porous substrate, its absorption characteristics markedly change (for normal incident sound). Typically, there is an unaffected change in the low frequency absorption coefficient (below 250 Hz), an increase in the middle frequency absorption coefficient (500-2000 Hz) and a decrease in the absorption at higher frequencies. The influence of leaves becomes most pronounced when the substrate has a low mass density. A combination of the Biot's elastic frame porous model, viscous damping in the leaf boundary layers and plate vibration theory is implemented via a finite-difference time-domain model, which is able to predict accurately the absorption spectrum of a leaf above a porous substrate system. The change in the absorption spectrum caused by the leaf vibration can be modeled reasonably well assuming the leaf and porous substrate properties are uniform.
... search IRSA's site Unique Hits since January 2003 Acoustic Neuroma Click Here for Acoustic Neuroma Practice Guideline ... to microsurgery. One doctor's story of having an acoustic neuroma In August 1991, Dr. Thomas F. Morgan ...
A study of sound absorption by street canyon boundaries and asphalt rubber concrete pavement
NASA Astrophysics Data System (ADS)
Drysdale, Graeme Robert
A sound field model, based on a classical diffusion equation, is extended to account for sound absorption in a diffusion parameter used to model sound energy in a narrow street canyon. The model accounts for a single sound absorption coefficient, separate accommodation coefficients and a combination of separate absorption and accommodation coefficients from parallel canyon walls. The new expressions are compared to the original formula through numerical simulations to reveal the effect of absorption on sound diffusion. The newly established analytical formulae demonstrate satisfactory agreement with their predecessor under perfect reflection. As well, the influence of the extended diffusion parameter on normalized sound pressure levels in a narrow street canyon is in agreement with experimental data. The diffusion parameters are used to model sound energy density in a street canyon as a function of the sound absorption coefficient of the street canyon walls. The acoustic and material properties of conventional and asphalt rubber concrete (ARC) pavement are also studied to assess how the crumb rubber content influences sound absorption in street canyons. The porosity and absolute permeability of compacted specimens of asphalt rubber concrete are measured and compared to their normal and random incidence sound absorption coefficients as a function of crumb rubber content in the modified binder. Nonlinear trends are found between the sound absorption coefficients, porosity and absolute permeability of the compacted specimens and the percentage of crumb rubber in the modified binders. The cross-sectional areas of the air voids on the surfaces of the compacted specimens are measured using digital image processing techniques and a linear relationship is obtained between the average void area and crumb rubber content. The measured material properties are used to construct an empirical formula relating the average porosity, normal incidence noise reduction coefficients and
Enhancing rigid frame porous layer absorption with three-dimensional periodic irregularities.
Groby, J-P; Brouard, B; Dazel, O; Nennig, B; Kelders, L
2013-02-01
This papers reports a three-dimensional (3D) extension of the model proposed by Groby et al. [J. Acoust. Soc. Am. 127, 2865-2874 (2010)]. The acoustic properties of a porous layer backed by a rigid plate with periodic rectangular irregularities are investigated. The Johnson-Champoux-Allard model is used to predict the complex bulk modulus and density of the equivalent fluid in the porous material. The method of variable separation is used together with the radiation conditions and Floquet theorem to derive the analytical expression for the acoustic reflection coefficient from the porous layer with 3D inhomogeneities. Finite element method is also used to validate the proposed analytical solution. The theoretical and numerical predictions agree well with the experimental data obtained from an impedance tube experiment. It is shown that the measured acoustic absorption coefficient spectrum exhibits a quasi-total absorption peak at the predicted frequency of the mode trapped in the porous layer. When more than one irregularity per spatial period is considered, additional absorption peaks are observed.
Stephens, Terrance L; Budwig, Ralph S
2007-01-01
Two acoustic devices to stabilize a droplet in an open gas stream (single-axis and three-axis levitators) have been designed and tested. The gas stream was provided by a jet apparatus with a 64 mm exit diameter and a uniform velocity profile. The acoustic source used was a Langevin vibrator with a concave reflector. The single-axis levitator relied primarily on the radial force from the acoustic field and was shown to be limited because of significant droplet wandering. The three-axis levitator relied on a combination of the axial and radial forces. The three-axis levitator was applied to examine droplet deformation and circulation and to investigate the uptake of SO(2) from the gas stream to the droplet. Droplets ranging in diameters from 2 to 5 mm were levitated in gas streams with velocities up to 9 ms. Droplet wandering was on the order of a half droplet diameter for a 3 mm diameter droplet. Droplet circulation ranged from the predicted Hadamard-Rybczynski pattern to a rotating droplet pattern. Droplet pH over a central volume of the droplet was measured by planar laser induced fluorescence. The results for the decay of droplet pH versus time are in general agreement with published theory and experiments.
Scattering of Acoustic Waves from Ocean Boundaries
2014-09-30
derived reflection coefficients as a function of range along the reverberation track (right). RESULTS Analysis of Acoustic Scattering for Layered and... acoustic interaction with the ocean floor, including penetration through and reflection from smooth and rough water/sediment interfaces, scattering ...can account for the all of the physical processes and variability of acoustic propagation and scattering in ocean environments with special emphasis
Excess attenuation of an acoustic beam by turbulence.
Pan, Naixian
2003-12-01
A theory based on the concept of a spatial sinusoidal diffraction grating is presented for the estimation of the excess attenuation in an acoustic beam. The equation of the excess attenuation coefficient shows that the excess attenuation of acoustic beam not only depends on the turbulence but also depends on the application parameters such as the beam width, the beam orientation and whether for forward propagation or back scatter propagation. Analysis shows that the excess attenuation appears to have a frequency dependence of cube-root. The expression for the excess attenuation coefficient has been used in the estimations of the temperature structure coefficient, C(T)2, in sodar sounding. The correction of C(T)2 values for excess attenuation reduces their errors greatly. Published profiles of temperature structure coefficient and the velocity structure coefficient in convective conditions are used to test our theory, which is compared with the theory by Brown and Clifford. The excess attenuation due to scattering from turbulence and atmospheric absorption are both taken into account in sodar data processing for deducing the contribution of the lower atmosphere to seeing, which is the sharpness of a telescope image determined by the degree of turbulence in the Earth's atmosphere. The comparison between the contributions of the lowest 300-m layer to seeing with that of the whole atmosphere supports the reasonableness of our estimation of excess attenuation.
González, Sergio; Jiménez, Elena; Ballesteros, Bernabé; Martínez, Ernesto; Albaladejo, José
2015-04-01
CF3CH=CH2 (hydrofluoroolefin, HFO-1243zf) is a potential replacement of high global-warming potential (GWP) hydrofluorocarbon (HFC-134a, CF3CFH2). Both the atmospheric lifetime and the radiative efficiency of HFO-1243zf are parameters needed for estimating the GWP of this species. Therefore, the aim of this work is (i) to estimate the atmospheric lifetime of HFO-1243zf from the reported OH rate coefficients, k OH, determined under tropospheric conditions and (ii) to calculate its radiative efficiency from the reported IR absorption cross sections. The OH rate coefficient at 298 K also allows the estimation of the photochemical ozone creation potential (ε(POCP)). The pulsed laser photolysis coupled to a laser-induced fluorescence technique was used to determine k OH for the reaction of OH radicals with HFO-1243zf as a function of pressure (50-650 Torr of He) and temperature (263-358 K). Gas-phase IR spectra of HFO-1243zf were recorded at room temperature using a Fourier transform IR spectrometer between 500 and 4,000 cm(-1). At all temperatures, k OH did not depend on bath gas concentration (i.e., on the total pressure between 50 and 650 Torr of He). A slight but noticeable T dependence of k OH was observed in the temperature range investigated. The observed behavior is well described by the following Arrhenius expression: k OH(T) = (7.65 ± 0.26) × 10(-13) exp [(165 ± 10) / T] cm(3) molecule(-1) s(-1). Negligible IR absorption of HFO-1243zf was observed at wavenumbers greater than 1,700 cm(-1). Therefore, IR absorption cross sections, [Formula: see text], were determined in the 500-1,700 cm(-1) range. Integrated [Formula: see text] were determined between 650 and 1,800 cm(-1) for comparison purposes. The main diurnal removal pathway for HFO-1243zf is the reaction with OH radicals, which accounts for 64% of the overall loss by homogeneous reactions at 298 K. Globally, the lifetime due to OH reaction (τ OH) was estimated to be 8.7 days under
Laser generation of acoustic waves in liquids and gases
NASA Astrophysics Data System (ADS)
Sigrist, Markus W.
1986-10-01
The laser generation of sound in liquids and gases is reviewed. The sound-generating mechanisms of laser interaction with matter are discussed with emphasis on the thermoelastic process. The studies on strongly absorbing liquids include detailed theoretical considerations of the thermoelastic sound generation with pulsed lasers. Acoustic waveforms for H2O and D2O are calculated analytically on the basis of a model laser-pulse shape. Both free and rigid boundaries on the surface of the liquid are considered. Good agreement between theory and experiments with respect to waveforms and amplitudes is obtained. The experiments are performed with a hybrid CO2 laser and piezoelectric or optical detection of the acoustic transients. In view of a present controversy, special emphasis is put on the temperature dependence of the acoustic amplitudes in H2O, D2O, and in aqueous MgSO4 solutions. Good agreement is found between experimental data and a new, pure thermal model which takes heat conduction into account. The distortion of the acoustic waveform during the propagation through the liquid is treated in terms of sound absorption, diffraction, and nonlinear acoustics. A simple experimental method for the determination of Beyer's nonlinearity parameter B/A is presented. In the last section some characteristics of photoacoustic spectroscopy (PAS) in gaseous media are reviewed. This method has been demonstrated to be highly sensitive. The measurement of absorption coefficients as low as 10-8 cm-1 is possible. PA studies on H2O vapor are discussed with new results on line and continuum absorption in the 9-11-μm wavelength range. Finally, the impact of PAS on trace gas analysis is demonstrated. With PAS the detection of gas concentrations in the ppb range is feasible. The operational characteristics of a stationary CO laser and a mobile CO2 laser-PAS system are presented, including first results on continuous in situ air pollution monitoring.
Absorption Coefficient of Alkali Halides. Part I.
1979-03-01
442 LIAY OF ~:S42.~SON T111 ALiSON ,’FlON CU12rCIUNT OF .l~i~ FLUORIVIl: (iviunLvr Iiepcndcncu) (cort .i.j) S’t .~Ue Rne uhr~) ~clo Wvna,br n rt...al. [134j reported their results for the region from 0.170 to 0.197 um and Handi et al. [24] reported results for the range of 35 to 770 pm. Li (331...lection Spectra of Pure and Doped Potassium Iodide at Low Temperatures," Appl. Opt., 7(1), 161-5 (1968). L, __ 243 26. Vergnat, P., Claudel, J., Handi
Optoacoustic spectroscopy and its application to molecular and particle absorption
NASA Astrophysics Data System (ADS)
Trees, Charles C.; Voss, Kenneth J.
1990-09-01
Light absorption in the ocean has been the least studied optical property because of the difficulties in making accurate measurements. With the previously used techniques, large differences have been reported for the specific absorption coefficient of phytoplankton (cultures and natural assemblages). It is difficult to determine if the diversity in these values are methodological or a function of actual variations in absorption. With the renewed interest and activity in optoacoustic spectroscopy (OAS), which accurately measures absorption, some of these discrepancies should be resolved. In this method, as molecules and particles absorb light from a modulated source, they thermally expand and contract, thereby generating acoustic waves, at the modulation frequency, which are detected by a hydrophone. Optoacoustic spectroscopy is ideally suited for measuring dissolved organic material and particle absorptions because of its high sensitivity (105m1) and the egligible effect of scattered light. In this paper the instrumental design for an optoacoustic spectrophotometer (OAS), which pecifically measures phytoplankton absorption (420-S5Onm), is described. The spectral absorption of dissolved organic material and a phytoplankton culture is presented. OAS holds promise in being able to measure absorption without use of either filtration or concentration techniques.
Aerosol Absorption Measurements in MILAGRO.
NASA Astrophysics Data System (ADS)
Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.
2007-12-01
to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.
Acoustic loading effects on oscillating rod bundles
Lin, W.H.
1980-01-01
An analytical study of the interaction between an infinite acoustic medium and a cluster of circular rods is described. The acoustic field due to oscillating rods and the acoustic loading on the rods are first solved in a closed form. The acoustic loading is then used as a forcing function for rod responses, and the acousto-elastic couplings are solved simultaneously. Numerical examples are presented for several cases to illustrate the effects of various system parameters on the acoustic reaction force coefficients. The effect of the acoustic loading on the coupled eigenfrequencies are discussed.
Wang, Chunqi; Huang, Lixi
2011-07-01
The acoustic properties of a compound micro-perforated panel (MPP) absorber array are investigated. The absorber array consists of three parallel-arranged MPP absorbers with different cavity depths. A finite element procedure is used to simulate its acoustic behaviors under normal incidence. Experimental studies are carried out to verify the numerical simulations. Due to different reactance matching conditions in the absorber array, strong local resonance occurs and the corresponding local resonance absorption dominates. Compared with single MPP absorber, the absorber array requires lower acoustic resistance for good absorption performance, and the resonance frequencies shift due to inter-resonator interactions. The different acoustic resistance requirement is explained by considering the reduced effective perforation rate of the MPP in the absorber array. The performance of the absorber array varies with the sizes and spatial arrangement of the component absorbers. When the distance between component absorbers is larger than a quarter-wavelength, the above-mentioned parallel absorption mechanism diminishes. In the experimental study, the normal incidence absorption coefficients of a prototype MPP absorber array are tested. The measured results compare well with the numerical predictions. The experimental study also shows that although other absorption mechanisms may exist, dissipation by the MPP is dominant in the MPP absorber array.
Kanfoud, Jamil; Ali Hamdi, Mohamed; Becot, François-Xavier; Jaouen, Luc
2009-02-01
During lift-off, space launchers are submitted to high-level of acoustic loads, which may damage sensitive equipments. A special acoustic absorber has been previously integrated inside the fairing of space launchers to protect the payload. A new research project has been launched to develop a low cost fairing acoustic protection system using optimized layers of porous materials covered by a thin layer of fabric. An analytical model is used for the analysis of acoustic wave propagation within the multilayer porous media. Results have been validated by impedance tube measurements. A parametric study has been conducted to determine optimal mechanical and acoustical properties of the acoustic protection under dimensional thickness constraints. The effect of the mounting conditions has been studied. Results reveal the importance of the lateral constraints on the absorption coefficient particularly in the low frequency range. A transmission study has been carried out, where the fairing structure has been simulated by a limp mass layer. The transmission loss and noise reduction factors have been computed using Biot's theory and the local acoustic impedance approximation to represent the porous layer effect. Comparisons between the two models show the frequency domains for which the local impedance model is valid.
Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1988-01-01
An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.
Chemical generation of acoustic waves: A giant photoacoustic effect
Chen, H.; Diebold, G.
1995-11-10
An anomalous photoacoustic effect is produced when a suspension of carbon particles in water is irradiated by a high-power, pulsed laser. The photoacoustic effect has an amplitude on the order of 2000 times that produced by a dye solution with an equivalent absorption coefficient and gives a distinctly audible sound above an uncovered cell. Transient grating experiments with carbon suspensions show a doubling of the acoustic frequency corresponding to the optical fringe spacing of the grating. The effect is thought to originate in high-temperature chemical reactions between the surface carbon and the surrounding water. 26 refs., 1 fig.
The effects of acoustic attenuation in optoacoustic signals.
Deán-Ben, X Luís; Razansky, Daniel; Ntziachristos, Vasilis
2011-09-21
In this paper, it is demonstrated that the effects of acoustic attenuation may play a significant role in establishing the quality of tomographic optoacoustic reconstructions. Accordingly, spatially dependent reduction of signal amplitude leads to quantification errors in the reconstructed distribution of the optical absorption coefficient while signal broadening causes loss of image resolution. Here we propose a correction algorithm for accounting for attenuation effects, which is applicable in both the time and frequency domains. It is further investigated which part of the optoacoustic signal spectrum is practically affected by those effects in realistic imaging scenarios. The validity and benefits of the suggested modelling and correction approaches are experimentally validated in phantom measurements.
ERIC Educational Resources Information Center
Hamilton, M. W.
2007-01-01
A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…
An environmental and economical solution to sound absorption using straw
NASA Astrophysics Data System (ADS)
McGinnes, Courtney; Kleiner, Mendel; Xiang, Ning
2005-09-01
The growing attentiveness to using environmentally friendly materials in the building construction industry as a whole has led many architects to research the use of natural materials. Natural fibers, such as straw, are advantageous due to their accessibility, ease of processing, and their ability to be discarded with a lesser environmental impact through biodegradability. While the material focus may have shifted, the need for quality acoustic environments has remained the same. In a set of preliminary studies, the absorption coefficients of sound absorbers using natural fibers have been proven to have comparable values relative to other highly absorptive, nonenvironmentally friendly materials such as mineral wool and fiberglass. The absorption coefficients were evaluated for octave and third-octave frequencies (125 to 4000 Hz) using the impedance tube method with one microphone. While these absorbers may be acoustically effective as well as environmentally friendly, there may be potential concerns in using natural fibers such as their life span, fire rating, and potential health risks, i.e., disposal techniques, allergenic reactions, and insect and fungus infestation.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.
2014-01-01
The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.
Acoustical Evaluation of Combat Arms Firing Range, Schriever AFB, Colorado
2014-08-19
with AFOSH Standard 48-20, due to acoustical reflections. Therefore, it was recommended that acoustical absorption be added to these side walls to...and side walls from the red line back to the rear wall, as well as the the rear wall, with acoustical absorption material. Quilted fiberglass, or...Consultative Letter 3. DATES COVERED (From – To) April – June 2014 4. TITLE AND SUBTITLE Acoustical Evaluation of Combat Arms Firing Range
Statistical Analysis and Computer Generation of Spatially Correlated Acoustic Noise (Preprint)
2006-05-01
this paper, we describe an approach for generating simulated acoustic noise with a spatial correlation coefficient distribution and maximum extreme... correlation coefficient and MEV distributions which drive the computer generation of a large number of simulated acoustic noise signals.
Acoustic bubble removal method
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)
1983-01-01
A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Woodward, Richard P.
1990-01-01
The test section of the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel was acoustically treated to allow the measurement of sound under simulated free-field conditions. The treatment was designed for high sound absorption at frequencies above 250 Hz and for withstanding the environmental conditions in the test section. In order to achieve the design requirements, a fibrous, bulk-absorber material was packed into removable panel sections. Each section was divided into two equal-depth layers packed with material to different bulk densities. The lower density was next to the facing of the treatment. The facing consisted of a perforated plate and screening material layered together. Sample tests for normal-incidence acoustic absorption were also conducted in an impedance tube to provide data to aid in the treatment design. Tests with no airflow, involving the measurement of the absorptive properties of the treatment installed in the 9- by 15-foot wind tunnel test section, combined the use of time-delay spectrometry with a previously established free-field measurement method. This new application of time-delay spectrometry enabled these free-field measurements to be made in nonanechoic conditions. The results showed that the installed acoustic treatment had absorption coefficients greater than 0.95 over the frequency range 250 Hz to 4 kHz. The measurements in the wind tunnel were in good agreement with both the analytical prediction and the impedance tube test data.
Acoustic simulations with a ray-tracing program: Reporting an experience
NASA Astrophysics Data System (ADS)
Granado, Milton V., Jr.
2002-11-01
The possibility of exporting to ray-tracing type programs the geometry generated by Auto-Cad, is very appealing for the architect who wishes to simulate the acoustic behavior of a room. It was found that a good knowledge of room acoustic is necessary for the selection of the program parameters and the objective acoustical measures outputted by the program for the assessment of the required acoustical quality. There is scarce information on the absorption coefficients of lining materials, but it is on the choice of the diffusion coefficients where lie the greatest uncertainties. Because of the considerable impact that these data have on the computational results, the user may feel insecure about the results of his efforts. Therefore it is advisable that trained personnel participate in the efficient use of this computational tool. It was found however that one form of the output of the program, that in which the acoustical parameters are color mapped, have qualitatively corroborated speech intelligibility results objectively measured in the field. (To be presented in Portuguese.)
An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...
2008-03-07
a national naval responsibility. Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial...problem and acoustic navigation and communications within the context of distributed autonomous persistent undersea surveillance sensor networks...Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial coherence and the description of ambient
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor)
2006-01-01
The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor)
2006-01-01
The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.
Attenuation of acoustic waves in glacial ice and salt domes
NASA Astrophysics Data System (ADS)
Price, P. B.
2006-02-01
Two classes of natural solid media, glacial ice and salt domes, are under consideration as media in which to deploy instruments for detection of neutrinos with energy ≥1018 eV. Though insensitive to 1011 to 1016 eV neutrinos for which observatories (e.g., AMANDA and IceCube) that utilize optical Cherenkov radiation detectors are designed, radio and acoustic methods are suited for searches for the very low fluxes of neutrinos with energies >1017 eV. This is because owing to the very long attenuation lengths of radio and acoustic waves produced by interactions of such neutrinos in ice and salt, detection modules can be spaced at horizontal distances ˜1 km, in contrast to the 0.12 km distances between strings of IceCube modules. In this paper, I calculate the absorption and scattering coefficients as a function of frequency and grain size for acoustic waves in glacial ice and salt domes and show that experimental measurements on laboratory samples and in glacial ice and salt domes are consistent with theory. For South Pole ice with grain size ˜0.2 cm at depths ≤600 m, scattering lengths are calculated to be 2000 and 25 km at frequencies 10 and 30 kHz, respectively; for grain size ˜0.4 cm at 1500 m (the maximum depth to be instrumented acoustically), scattering lengths are calculated to be 250 and 3 km. These are within the range of frequencies where most of the energy of the acoustic wave is concentrated. The absorption length is calculated to be 9 ± 3 km at all frequencies above ˜100 Hz. For NaCl (rock salt) with grain size 0.75 cm, scattering lengths are calculated to be 120 and 1.4 km at 10 and 30 kHz, and absorption lengths are calculated to be 3 × 104 and 3300 km at 10 and 30 kHz. Existing measurements are consistent with theory. For ice, absorption is the limiting factor; for salt, scattering is the limiting factor. Both media would be suitable for detection of acoustic waves from ultrahigh-energy neutrino interactions.
Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.
Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y
2016-03-01
Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect.
Acoustical evaluation of preschool classrooms
NASA Astrophysics Data System (ADS)
Yang, Wonyoung; Hodgson, Murray
2003-10-01
An investigation was made of the acoustical environments in the Berwick Preschool, Vancouver, in response to complaints by the teachers. Reverberation times (RT), background noise levels (BNL), and in-class sound levels (Leq) were measured for acoustical evaluation in the classrooms. With respect to the measured RT and BNL, none of the classrooms in the preschool were acceptable according to the criteria relevant to this study. A questionnaire was administered to the teachers to assess their subjective responses to the acoustical and nonacoustical environments of the classrooms. Teachers agreed that the nonacoustical environments in the classrooms were fair, but that the acoustical environments had problems. Eight different classroom configurations were simulated to improve the acoustical environments, using the CATT room acoustical simulation program. When the surface absorption was increased, both the RT and speech levels decreased. RASTI was dependent on the volumes of the classrooms when the background noise levels were high; however, it depended on the total absorption of the classrooms when the background noise levels were low. Ceiling heights are critical as well. It is recommended that decreasing the volume of the classrooms is effective. Sound absorptive materials should be added to the walls or ceiling.
Measurement of attenuation coefficients of the fundamental and second harmonic waves in water
NASA Astrophysics Data System (ADS)
Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing
2016-02-01
Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.
Development of fly ash boards with thermal, acoustic and fire insulation properties.
Leiva, C; Arenas, C; Vilches, L F; Alonso-Fariñas, B; Rodriguez-Galán, M
2015-12-01
This paper presents an experimental analysis on a new board composed of gypsum and fly ashes from coal combustion, which are mutually compatible. Physical and mechanical properties, sound absorption coefficient, thermal properties and leaching test have been obtained. The mechanical properties showed similar values to other commercial products. As far as the acoustic insulation characteristics are concerned, sound absorption coefficients of 0.3 and 0.8 were found. The board presents a low thermal conductivity and a fire resistance higher than 50 min (for 4 cm of thickness). The leaching of trace elements was below the leaching limit values. These boards can be considered as suitable to be used in building applications as partitions.
Acoustic characteristics of circular bends in pipes
NASA Astrophysics Data System (ADS)
Firth, D.; Fahy, F. J.
1984-11-01
The acoustic properties of circular bends in pipework systems are investigated by calculation of the mode shapes and propagation constants of the acoustic modes of the bend, the torus modes, and by evaluation of the transmission and reflection coefficients at a bend in an otherwise infinite straight pipe. The coefficients for the first three cylinder and torus modes are plotted against frequency for the case of a plane wave incident upon a 90° bend. The pipe walls are assumed to be rigid.
NASA Astrophysics Data System (ADS)
Gough, Colin
This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.
Optical absorption measurement system
Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.
1989-01-01
The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.
Mean Flow Augmented Acoustics in Rocket Systems
NASA Technical Reports Server (NTRS)
Fischbach, Sean R.
2014-01-01
present study employs the COMSOL Multphysics framework to solve the coupled eigenvalue problem using the finite element approach. The study requires one way coupling of the CFD High Mach Number Flow (HMNF) and mathematics module. The HMNF module evaluated the gas flow inside of a solid rocket motor using St. Robert's law modeling solid propellant burn rate, slip boundary conditions, and the supersonic outflow condition. Results from the HMNF model are used by the coefficient form of the mathematics module to determine the eigenvalues of the AVPE. The mathematics model is truncated at the nozzle sonic line, where a zero flux boundary condition is self-satisfying. The remaining boundaries are modeled with a zero flux boundary condition, assuming zero acoustic absorption on all surfaces. Pertinent results from these analyses are the complex valued eigenvalue and eigenvectors. Comparisons are made to the French results to evaluate the modeling approach. A comparison of the French results with that of the present analysis is displayed in figures 1 and 2, respectively. The graphic shows the first tangential eigenvector's real (a) and imaginary (b) values.
A numerical investigation of the Fick's law of diffusion in room acoustics.
Visentin, Chiara; Prodi, Nicola; Valeau, Vincent; Picaut, Judicaël
2012-11-01
In this paper the validity of the Fick's law of diffusion in room acoustics is investigated in the stationary state. The Fick's law, underlying the room-acoustics diffusion model, assumes a proportionality relationship between the local sound intensity and the energy density gradient, the proportionality constant being the so-called diffusion coefficient. This relationship, based on an analogy with the behavior of real particles in a scattering medium, is assessed by using a numerical tool simulating the actual dynamics of sound particles in a room. Two types of room geometries are considered: rooms with proportionate dimensions and long rooms. Concerning proportionate rooms the numerical analysis highlights the presence of weak variations of the reverberant energy density, generating an intensity vector pattern which is shown to be correctly described by the theoretical Fick's law and homogeneous diffusion. Conversely, inside long rooms, an estimate of the local value of the diffusion coefficient is carried out, showing that the reverberant sound field is well described by a spatially varying diffusion coefficient (non-homogeneous diffusion). The rate of increase of the estimated diffusion coefficient depends on the cross-sectional area of the room and on the boundaries absorption coefficient.
A normalized wave number variation parameter for acoustic black hole design.
Feurtado, Philip A; Conlon, Stephen C; Semperlotti, Fabio
2014-08-01
In recent years, the concept of the Acoustic Black Hole has been developed as an efficient passive, lightweight absorber of bending waves in plates and beams. Theory predicts greater absorption for a higher thickness taper power. However, a higher taper power also increases the violation of an underlying theory smoothness assumption. This paper explores the effects of high taper power on the reflection coefficient and spatial change in wave number and discusses the normalized wave number variation as a spatial design parameter for performance, assessment, and optimization.
Development and characterization of acoustically efficient cementitious materials
NASA Astrophysics Data System (ADS)
Neithalath, Narayanan
Tire-pavement interaction noise is one of the significant environmental issues in highly populated urban areas situated near busy highways. The understanding that methodologies to reduce the sound at the source itself is necessary, has led to the development of porous paving materials. This thesis outlines the systematic research effort conducted in order to develop and characterize two different types of sound absorbing cementitious materials---Enhanced Porosity Concrete (EPC), that incorporates porosity in the non-aggregate component of the mixture, and Cellulose-Cement Composites, where cellulose fibers are used as porous inclusions. The basic tenet of this research is that carefully introduced porosity of about 15%--25% in the material structure of concrete will allow sound waves to pass through and dissipate its energy. The physical, mechanical, and acoustic properties of EPC mixtures are discussed in detail. Methods are developed to determine the porosity of EPC. The total pore volume, pore size, and pore connectivity are the significant features that influence the behavior of EPC. Using a shape-specific model, and incorporating the principle of acoustic wave propagation through semi-open cells, the acoustic absorption in EPC has been modeled. The pore structure and performance of EPC is characterized using Electrical Impedance Spectroscopy. Using a multi-phase conducting model, a pore connectivity factor has been developed, that correlates well with the acoustic absorption coefficient. A falling head permeameter has been designed to ascertain the water permeability of EPC mixtures. A hydraulic connectivity factor is proposed, which could be used to classify EPC mixtures based on their permeability. Electrical conductivity is shown to be a single measurable parameter that defines the performance of EPC. Preliminary studies conducted on the freezing and thawing response of EPC are also reported. From several porous, compliant materials, morphologically altered
NASA Astrophysics Data System (ADS)
Kuttruff, Heinrich; Mommertz, Eckard
The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.
Experimental study of acoustical characteristics of honeycomb sandwich structures
NASA Astrophysics Data System (ADS)
Peters, Portia Renee
Loss factor measurements were performed on sandwich panels to determine the effects of different skin and core materials on the acoustical properties. Results revealed inserting a viscoelastic material in the core's mid-plane resulted in the highest loss factor. Panels constructed with carbon-fiber skins exhibited larger loss factors than glass-fiber skins. Panels designed to achieve subsonic wave speed did not show a significant increase in loss factor above the coincidence frequency. The para-aramid core had a larger loss factor value than the meta-aramid core. Acoustic absorption coefficients were measured for honeycomb sandwiches designed to incorporate multiple sound-absorbing devices, including Helmholtz resonators and porous absorbers. The structures consisted of conventional honeycomb cores filled with closed-cell polyurethane foams of various densities and covered with perforated composite facesheets. Honeycomb cores filled with higher density foam resulted in higher absorption coefficients over the frequency range of 50 -- 1250 Hz. However, this trend was not observed at frequencies greater than 1250 Hz, where the honeycomb filled with the highest density foam yielded the lowest absorption coefficient among samples with foam-filled cores. The energy-recycling semi-active vibration suppression method (ERSA) was employed to determine the relationship between vibration suppression and acoustic damping for a honeycomb sandwich panel. Results indicated the ERSA method simultaneously reduced the sound transmitted through the panel and the panel vibration. The largest reduction in sound transmitted through the panel was 14.3% when the vibrations of the panel were reduced by 7.3%. The influence of different design parameters, such as core density, core material, and cell size on wave speeds of honeycomb sandwich structures was experimentally analyzed. Bending and shear wave speeds were measured and related to the transmission loss performance for various material
Aoki, Hiroyuki; Nojiri, Mayumi; Mukai, Rieko; Ito, Shinzaburo
2015-01-07
Polymer nano-particles (PNPs) with a near-infrared (NIR) light absorption were prepared by the nano-emulsion method to develop contrast agents for photo-acoustic (PA) imaging. The PNP containing silicon naphthalocyanine showed a high absorption coefficient up to 10(10) M(-1) cm(-1). This is comparable to plasmonic gold nano-particles, which have been studied as PA contrast agents. For the PNP larger than 100 nm, the enhancement of the PA signal was observed compared to the gold nano-particle with a similar absorption coefficient and size. In the case of the PNP, the heat by the light absorption is confined in the particle due to the low thermal diffusivity of polymer materials. We showed that the strong thermal confinement effect of PNP results in the enhancement of the efficiency of the PA signal generation and that the PA intensity can be enhanced by the increase of the Grüneisen parameter of the matrix polymer of PNP. The PA signal from the PNP of poly(methyl methacrylate) was 9-fold larger than that of gold nano-particles with the same absorption coefficient. We demonstrated that in the in vivo PA imaging the detection limit of PNP was of the order of 10(-13) M. The NIR absorbing PNP will be a promising candidate of a sensitive contrast agent for PA imaging.
Space Shuttle payload bay acoustics prediction study. Volume 3A: Addendum to computer users' manual
NASA Technical Reports Server (NTRS)
Wilby, J. F.; Wilby, E. G.
1983-01-01
Since the publication of the Computer User's Manual for Payload Acoustics Environment for Shuttle (PACES), the analytical model was validated by means of measured data from the first three shuttle lift-offs. During the validation process, new information became available and five changes were made to the input data and the computer program. Three changes affect the user. They are: a revision to the recommended exterior sound pressure levels, a revision to the recommended payload bay acoustic absorption coefficients, and a revision to the vertical station datum for the payload bay. The two other changes do not involve the user. The changes are associated with the output of confidence limits for the predicted space-average sound pressure levels in the payload bay, and a modification to the analytical representation of the payload bay door. The changes are discussed briefly in this Addendum to the Computer User's Manual.
Visuri, S R; Heredia, N
2000-03-09
Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.
Fogel, Ronen; Seshia, Ashwin A.
2016-01-01
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040
Fogel, Ronen; Limson, Janice; Seshia, Ashwin A
2016-06-30
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.
Absorption of oblique incidence sound by a finite micro-perforated panel absorber.
Yang, Cheng; Cheng, Li; Pan, Jie
2013-01-01
In this paper, a theoretical model of a micro-perforated panel (MPP) backed by a finite cavity and flush-mounted in an infinite baffle is developed and its performance in terms of sound absorption is analyzed. The model allows an oblique incidence sound impinging upon the MPP absorber. The simplified Rayleigh integral method, thin plate theory and the acoustical impedance of the MPP are used to calculate the sound energy absorbed by the MPP's surface. Results show that the absorption coefficient of the absorber is a function of angle and frequency of the incident sound, and is controlled by the coupling between the MPP and the acoustical modes in the back cavity. In particular, grazing modes can be induced in the cavity by sound with an oblique angle of incidence, which may result in peak sound absorptions at the natural frequencies of the modes. The mechanism involved is used to explain the absorption properties of the MPP absorber for a diffuse incidence of sound.
Generation of acoustic waves by cw laser radiation at the tip of an optical fiber in water
NASA Astrophysics Data System (ADS)
Yusupov, V. I.; Konovalov, A. N.; Ul'yanov, V. A.; Bagratashvili, V. N.
2016-09-01
We investigate the specific features of acoustic signals generated in water under the action of cw laser radiation with a power of 3 W at wavelengths of 0.97, 1.56, and 1.9 μm, emerging from an optical fiber. It is established that when a fiber tip without an absorbing coating is used, quasi-periodic pulse signals are generated according to the thermocavitation mechanism due to the formation and collapse of vapor-gas bubbles of millimeter size. In this case, the maximum energy of a broadband (up to 10 MHz) acoustic signal generated only at wavelengths of 1.56 and 1.9 μm is concentrated in the range of 4-20 kHz. It is shown that when there is no absorbing coating, an increase in the laser-radiation absorption coefficient in water leads to an increase in the frequency of generated acoustic pulses, while the maximum pressure amplitudes in them remain virtually constant. If there is an absorbing coating on the laser-fiber tip, a large number of small vapor-gas bubbles are generated at all laser-radiation wavelengths used. This leads to the appearance of a continuous amplitude-modulated acoustic signal, whose main energy is concentrated in the range of 8-15 kHz. It is shown that in this case, increasing the absorption coefficient of laser radiation in water leads to an increase in the power of an acoustic emission signal. The results can be used to explain the high therapeutic efficiency of moderate-power laser-fiber apparatus.
NASA Astrophysics Data System (ADS)
Kyoung, Ho Han; H. J., Shin
2010-12-01
We investigate the Painlevé integrability of nonautonomous nonlinear Schrödinger (NLS) equations with both space- and time-dependent dispersion, nonlinearity, and external potentials. The Painlevé analysis is carried out without using the Kruskal's simplification, which results in more generalized form of inhomogeneous equations. The obtained equations are shown to be reducible to the standard NLS equation by using a point transformation. We also construct the corresponding Lax pair and carry out its Kundu-type reduction to the standard Lax pair. Special cases of equations from choosing limited form of coefficients coincide with the equations from the previous Painlevé analyses and/or become unknown new equations.
Characterization of anisotropic acoustic metamaterial slabs
NASA Astrophysics Data System (ADS)
Park, Jun Hyeong; Lee, Hyung Jin; Kim, Yoon Young
2016-01-01
In an anisotropic acoustic metamaterial, the off-diagonal components of its effective mass density tensor should be considered in order to describe the anisotropic behavior produced by arbitrarily shaped inclusions. However, few studies have been carried out to characterize anisotropic acoustic metamaterials. In this paper, we propose a method that uses the non-diagonal effective mass density tensor to determine the behavior of anisotropic acoustic metamaterials. Our method accurately evaluates the effective properties of anisotropic acoustic metamaterials by separately dealing with slabs made of single and multiple unit cells along the thickness direction. To determine the effective properties, the reflection and transmission coefficients of an acoustic metamaterial slab are calculated, and then the wave vectors inside of the slab are determined using these coefficients. The effective material properties are finally determined by utilizing the spatial dispersion relation of the anisotropic acoustic metamaterial. Since the dispersion relation of an anisotropic acoustic metamaterial is explicitly used, its effective properties can be easily determined by only using a limited number of normal and oblique plane wave incidences into a metamaterial slab, unlike existing approaches requiring a large number of wave incidences. The validity of the proposed method is verified by conducting wave simulations for anisotropic acoustic metamaterial slabs with Z-shaped elastic inclusions of tilted principal material axes.
Results of measurement of radio wave absorption in the ionosphere by the AI method
NASA Technical Reports Server (NTRS)
Korinevskaya, N. A.
1972-01-01
Median noon absorption values for each month from 1964 through 1967, the diurnal variations of absorption on the regular world days, and the seasonal variations of absorption are given. The dependence of the absorption coefficient on sunspot number is analyzed.
Recent Enhancements to the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Cabell, Randolph H.; Allen, Albert R.
2013-01-01
The Structural Acoustics Loads and Transmission (SALT) facility at the NASA Langley Research Center is comprised of an anechoic room and a reverberant room, and may act as a transmission loss suite when test articles are mounted in a window connecting the two rooms. In the latter configuration, the reverberant room acts as the noise source side and the anechoic room as the receiver side. The noise generation system used for qualification testing in the reverberant room was previously shown to achieve a maximum overall sound pressure level of 141 dB. This is considered to be marginally adequate for generating sound pressure levels typically required for launch vehicle payload qualification testing. Recent enhancements to the noise generation system increased the maximum overall sound pressure level to 154 dB, through the use of two airstream modulators coupled to 35 Hz and 160 Hz horns. This paper documents the acoustic performance of the enhanced noise generation system for a variety of relevant test spectra. Additionally, it demonstrates the capability of the SALT facility to conduct transmission loss and absorption testing in accordance with ASTM and ISO standards, respectively. A few examples of test capabilities are shown and include transmission loss testing of simple unstiffened and built up structures and measurement of the diffuse field absorption coefficient of a fibrous acoustic blanket.
Factor Scores, Structure Coefficients, and Communality Coefficients
ERIC Educational Resources Information Center
Goodwyn, Fara
2012-01-01
This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…
A two-beam acoustic system for tissue analysis.
Sachs, T D; Janney, C D
1977-03-01
In the 'thermo-acoustic sensing technique' (TAST), a burst of sound, called the 'thermometer' beam is passed through tissue and its transit time is measured. A focused sound field, called the heating field, then warms a small volume in the path of the therometer beam, in proportion to the absorption. Finally, the therometer beam burst is repeated and its transit time subtracted from that of the initial thermometer burst. This difference measures the velocity perturbation in the tissue produced by the heating field. The transit time difference is td = K integral of infinity-infinity IP dchi where K is the instrument constant, I the heating field intensity, and P a perturbation factor which characterizes the tissues. The integration is carried out along the path of the thermometer beam. The perturbation factor is P = (formula: see text) where C is the specific heat, rho the denisty, V the velocity of sound, (formula: see text) the temperature coefficient of velocity and alpha the heating field absorption coefficient which is apparently sensitive to tissue structure and condition. Experiments on a fixed human brain showed an ability to distinguish between various tissue types combined with a spatial resolution of better than 3 mm. Should predictions based on the data and theory prove correct, TAST may become a non-invasive alternative to biopsy.
NASA Astrophysics Data System (ADS)
Green, Adam; Marshall, Jeffrey S.; Ma, Dong; Wu, Junru
2016-10-01
A vertically orientated ultrasonic transducer contained within a closed cylindrical Pyrex tube was used to study the acoustic streaming flow within a cylindrical container. A particle-image velocimetry (PIV) system incorporating fluorescent 1.5 μm seeding particles suspended in a mixture of diethyl-phthalate and ethanol, whose optical index was matched to that of Pyrex, was used to allow for undistorted PIV imaging within the Pyrex tube. Temperature on the end-wall surface and acoustic pressure within the cylinder were measured for different end-wall materials. Variables considered included acoustic absorption and reflection coefficients, ultrasound intensity, container height, and thermal properties of the end-wall material. It was observed that a quasi-steady flow field driven by acoustic streaming is rapidly established within the container, which is typically dominated by a stationary vortex ring with downward flow along the ring axis. After sufficient time this quasi-stationary flow exhibits a thermal instability causing it to transform into a secondary flow state. Different types of secondary flow states were observed, including cases where the flow along the cylinder axis is oriented upward toward the ultrasound transducer and cases where the axial flow changes directions along the cylinder axis.
1974-02-14
Wester- velt. [60] Streaming. In 1831, Michael Faraday [61] noted that currents of air were set up in the neighborhood of vibrating plates-the first... ducei in the case of a paramettc amy (from Berktay an Leahy 141). C’ "". k•, SEC 10.1 NONLINEAR ACOUSTICS 345 The principal results of their analysis
Acoustic transducer for acoustic microscopy
Khuri-Yakub, Butrus T.; Chou, Ching H.
1990-01-01
A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.
Acoustic transducer for acoustic microscopy
Khuri-Yakub, B.T.; Chou, C.H.
1990-03-20
A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.
Viscous flow drag reduction by acoustic excitation
NASA Technical Reports Server (NTRS)
Nagel, Robert T.
1986-01-01
An experimental program in which the effectiveness of a single large eddy break up (LEBU) blade is enhanced by proper acoustic excitation is described. Acoustic waves are generated in response to the incident large scale eddies and directed at the blade trailing edge through the test surface floor below the manipulator blade. The acoustic input is phase locked to the incident flow. Control of the acoustic input apparently allows enhancement of the large eddy cancellation process leading to a decrease of skin friction coefficient. Control of this process with acoustic excitation indicates that vortex unwinding is the mechanism for large eddy destruction in the boundary layer. A deeper understanding of this phenomena could lead to better drag reduction technology and further understanding of the physics of the turbulent boundary layer.
Reflective-tube absorption meter
NASA Astrophysics Data System (ADS)
Zaneveld, J. Ronald V.; Bartz, Robert; Kitchen, James C.
1990-09-01
The design and calibration of a proposed in situ spectral absorption meter is evaluated using a laboratory prototype. The design includes a silver coated (second-surface) glass tube, a tungsten light source (stabilized by means of optical feedback), a monochromator, and a solid state detector. The device measures the absorption coefficient plus a portion of the volume scattering function. Theoretical analyses and laboratory experiments which explore the magnitude and variation of the errors due to scattering and internal reflections are described. Similar analyses are performed on the Cary 1 18 Spectrophotometer to allow cross calibration. Algorithms to yield the abscrption coefficient and the zenith-sun diffuse attenuation coefficient are presented and evaluated. Simultaneous measurement of the beam attenuation or backscattering coefficient allows use of algoriThms with much narrower error bands. The various methods of obtaining absorption and diffuse attenuation values are compared. Procedures for using reverse osmosis filtration to produce a clean water calibration standard are described. An absorption spectrum for pure water is obtained. Development of the absorption meter is proceeding along two lines: 1) a two-wavelength side-by-side LED is being fabricated to allow an in situ chlorophyll a absorption meter to be constructed, and 2) scientific projects using a shipboard or laboratory flow.-through pumping system are being planned.
The dyadic diffraction coefficient for a curved edge
NASA Technical Reports Server (NTRS)
Kouyoumjian, R. G.; Pathak, P. H.
1974-01-01
A compact dyadic diffraction coefficient for electromagnetic waves obliquely incident on a curved edge formed by perfectly conducting curved or plane surfaces is obtained. This diffraction coefficent remains valid in the transition regions adjacent to shadow and reflection boundaries, where the diffraction coefficients of Keller's original theory fail. The method is on Keller's method of the canonical problem, which in this case is the perfectly conducting wedge illuminated by plane, cylindrical, conical, and spherical waves. When the proper ray fixed coordinate system is introduced, the dyadic diffraction coefficient for the wedge is found to be the sum of only two dyads, and it is shown that this is also true for the dyadic diffraction coefficients of higher order edges. One dyad contains the acoustic soft diffraction coefficient; the other dyad contains the acoustic hard diffraction coefficient. The expressions for the acoustic wedge diffraction coefficients contain Fresnel integrals, which ensure that the total field is continuous at shadow and reflection boundaries. The diffraction coefficients have the same form for the different types of edge illumination; only the arguments of the Fresnel integrals are different. Since diffraction is a local phenomenon, and locally the curved edge structure is wedge shaped, this result is readily extended to the curved edge.
On the emission coefficient of uranium plasmas.
NASA Technical Reports Server (NTRS)
Schneider, R. T.; Campbell, H. D.; Mack, J. M.
1973-01-01
The emission coefficient for uranium plasmas (temperature: 8000 K) was measured for the wavelength range from 1200 to 6000 A. The results were compared to theoretical calculations and other measurements. Reasonable agreement between theoretical predictions and our measurements was found in the region from 1200 to 2000 A. Although it was difficult to make absolute comparisons among the different reported measurements, considerable disagreement was found for the higher wavelength region. A short discussion regarding the overall comparisons is given, and final suggestions are made as to the most appropriate emission coefficient values to be used in future design calculations. The absorption coefficient for the same wavelength interval is also reported.
Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.
1996-06-01
Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Beach, Kirk W.; Dunmire, Barbrina
Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.
Time-dependent seafloor acoustic backscatter (10-100 kHz).
Sternlicht, Daniel D; de Moustier, Christian P
2003-11-01
A time-dependent model of the acoustic intensity backscattered by the seafloor is described and compared with data from a calibrated, vertically oriented, echo-sounder operating at 33 and 93 kHz. The model incorporates the characteristics of the echo-sounder and transmitted pulse, and the water column spreading and absorption losses. Scattering from the water-sediment interface is predicted using Helmholtz-Kirchhoff theory, parametrized by the mean grain size, the coherent reflection coefficient, and the strength and exponent of a power-law roughness spectrum. The composite roughness approach of Jackson et al. [J. Acoust. Soc. Am. 79, 1410-1422 (1986)], modified for the finite duration of the transmitted signal, is used to predict backscatter from subbottom inhomogeneities. It depends on the sediment's volume scattering and attenuation coefficients, as well as the interface characteristics governing sound transmission into the sediment. Estimation of model parameters (mean grain size, roughness spectrum strength and exponent, volume scattering coefficient) reveals ambiguous ranges for the two spectral components. Analyses of model outputs and of physical measurements reported in the literature yield practical constraints on roughness spectrum parameter settings appropriate for echo-envelope-based sediment classification procedures.
Depth-Dependent Defect Studies Using Coherent Acoustic Phonons
2014-09-29
12211 Research Triangle Park, NC 27709-2211 coherent acoustic phonons, diamond, silicon, photelastic coefficients , refractive index, graphene, Second...attributed to the cooling of the subsystem of hot optical phonons by optical- acoustic phonon scattering . We observe that at different pump energy and...SECURITY CLASSIFICATION OF: Presented is our scientific progress in two areas of research. The first is coherent acoustic phonon (CAP) spectroscopy of
Airy acoustical-sheet spinner tweezers
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2016-09-01
The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in
NASA Technical Reports Server (NTRS)
Heyman, J. S.
1984-01-01
Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.
Subgap Absorption in Conjugated Polymers
DOE R&D Accomplishments Database
Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.
1991-01-01
Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.
Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure
NASA Astrophysics Data System (ADS)
Wang, Tian; Ke, Manzhu; Li, Weiping; Yang, Qian; Qiu, Chunyin; Liu, Zhengyou
2016-09-01
In this work, we give direct demonstration of acoustic radiation force and acoustic torque on particles exerted by an acoustic vortex beam, which is realized by an acoustic artificial structure plate instead of traditional transducer arrays. First, the first order acoustic vortex beam, which has the distinctive features of a linear and continuous phase variation from -π to π around its propagation axis and a magnitude null at its core, is obtained through one single acoustic source incident upon a structured brass plate with Archimedean spiral grating engraved on the back surface. Second, annular self-patterning of polystyrene particles with a radius of 90 μm is realized in the gradient field of this acoustic vortex beam. In addition, we further exhibit acoustic angular momentum transfer to an acoustic absorptive matter, which is verified by a millimeter-sized polylactic acid disk self-rotating in water in the acoustic field of the generated vortex beam.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.
2014-01-01
A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.
Development of Acoustic Based, Multi-tasking Sensing and Actuation Capabilities for Gas Turbines
2007-11-02
Turbine Combustion, Edwards Brothers: Ann Arbor, 1999. 3 Wright, W, Schindel, D, Hutchins, D, Carpenter, P, Jansen, D, Ultrasonic tomographic...Papers Submitted/Published : Cottet, A., Lieuwen, T., Acoustic Absorption Measurements for Characterization of Gas Mixing, AIAA Paper...2003-3259 presented at the 9th AIAA Aeroacoustics Conference, May 2003. Cottet, A., Lieuwen, T., Gas Mixing Diagnostics Using Acoustic Absorption
Full wave-field reflection coefficient inversion.
Dettmer, Jan; Dosso, Stan E; Holland, Charles W
2007-12-01
This paper develops a Bayesian inversion for recovering multilayer geoacoustic (velocity, density, attenuation) profiles from a full wave-field (spherical-wave) seabed reflection response. The reflection data originate from acoustic time series windowed for a single bottom interaction, which are processed to yield reflection coefficient data as a function of frequency and angle. Replica data for inversion are computed using a wave number-integration model to calculate the full complex acoustic pressure field, which is processed to produce a commensurate seabed response function. To address the high computational cost of calculating short range acoustic fields, the inversion algorithms are parallelized and frequency averaging is replaced by range averaging in the forward model. The posterior probability density is interpreted in terms of optimal parameter estimates, marginal distributions, and credibility intervals. Inversion results for the full wave-field seabed response are compared to those obtained using plane-wave reflection coefficients. A realistic synthetic study indicates that the plane-wave assumption can fail, producing erroneous results with misleading uncertainty bounds, whereas excellent results are obtained with the full-wave reflection inversion.
Acoustic vibrations of single suspended gold nanostructures
NASA Astrophysics Data System (ADS)
Major, Todd A.
The acoustic vibrations for single gold nanowires and gold plates were studied using time-resolved ultrafast transient absorption. The objective of this work was to remove the contribution of the supporting substrate from the damping of the acoustic vibrations of the metal nano-objects. This was achieved by suspending the nano-objects across trenches created by photolithography and reactive ion etching. Transient absorption measurements for single suspended gold nanowires were initially completed in air and water environments. The acoustic vibrations for gold nanowires over the trench in air last typically for several nanoseconds, whereas gold nanowires in water are damped more quickly. Continuum mechanics models suggest that the acoustic impedance mismatch between air and water dominates the damping rate. Later transient absorption studies on single suspended gold nanowires were completed in glycerol and ethylene glycol environments. However, our continuum mechanical model suggests nearly complete damping in glycerol due to its high viscosity, but similar damping rates are seen between the two liquids. The continuum mechanics model thus incorrectly addresses high viscosity effects on the lifetimes of the acoustic vibrations, and more complicated viscoelastic interactions occur for the higher viscosity liquids. (Abstract shortened by UMI.).
Bravo, Teresa; Maury, Cédric; Pinhède, Cédric
2013-11-01
Theoretical and experimental results are presented into the sound absorption and transmission properties of multi-layer structures made up of thin micro-perforated panels (ML-MPPs). The objective is to improve both the absorption and insulation performances of ML-MPPs through impedance boundary optimization. A fully coupled modal formulation is introduced that predicts the effect of the structural resonances onto the normal incidence absorption coefficient and transmission loss of ML-MPPs. This model is assessed against standing wave tube measurements and simulations based on impedance translation method for two double-layer MPP configurations of relevance in building acoustics and aeronautics. Optimal impedance relationships are proposed that ensure simultaneous maximization of both the absorption and the transmission loss under normal incidence. Exhaustive optimization of the double-layer MPPs is performed to assess the absorption and/or transmission performances with respect to the impedance criterion. It is investigated how the panel volumetric resonances modify the excess dissipation that can be achieved from non-modal optimization of ML-MPPs.
Cox, Trevor J
2011-03-01
An investigation has been undertaken into acoustic iridescence, exploring how a device can be constructed which alter sound waves, in a similar way to structures in nature that act on light to produce optical iridescence. The main construction had many thin perforated sheets spaced half a wavelength apart for a specified design frequency. The sheets create the necessary impedance discontinuities to create backscattered waves, which then interfere to create strongly reflected sound at certain frequencies. Predictions and measurements show a set of harmonics, evenly spaced in frequency, for which sound is reflected strongly. And the frequency of these harmonics increases as the angle of observation gets larger, mimicking the iridescence seen in natural optical systems. Similar to optical systems, the reflections become weaker for oblique angles of reflection. A second construction was briefly examined which exploited a metamaterial made from elements and inclusions which were much smaller than the wavelength. Boundary element method predictions confirmed the potential for creating acoustic iridescence from layers of such a material.
Drumheller, D.S.
1997-12-30
An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.
Drumheller, Douglas S.
1997-01-01
An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.
Optically selective, acoustically resonant gas detecting transducer
NASA Technical Reports Server (NTRS)
Dimeff, J. (Inventor)
1977-01-01
A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.
NASA Astrophysics Data System (ADS)
Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.
2016-11-01
Acoustic metasurfaces provide useful wavefront shaping capabilities, such as beam steering, acoustic focusing, and asymmetric transmission, in a compact structure. Most acoustic metasurfaces described in the literature are transmissive devices and focus their performance on steering sound beam of the fundamental diffractive order. In addition, the range of incident angles studied is usually below the critical incidence predicted by generalized Snell's law of reflection. In this work, we comprehensively analyze the wave interaction with a generic periodic phase-modulating structure in order to predict the behavior of all diffractive orders, especially for cases beyond critical incidence. Under the guidance of the presented analysis, a broadband reflective metasurface is designed based on an expanded library of labyrinthine acoustic metamaterials. Various local and nonlocal wavefront shaping properties are experimentally demonstrated, and enhanced absorption of higher order diffractive waves is experimentally shown for the first time. The proposed methodology provides an accurate approach for predicting practical diffracted wave behaviors and opens a new perspective for the study of acoustic periodic structures. The designed metasurface extends the functionalities of acoustic metasurfaces and paves the way for the design of thin planar reflective structures for broadband acoustic wave manipulation and extraordinary absorption.
Computed survey spectra of 2-5 micron atmospheric absorption
NASA Astrophysics Data System (ADS)
Leslie, D. H.; Lebow, P. S.
1983-08-01
Computed high resolution survey spectra of atmospheric absorption coefficient vs wavenumber are presented covering the wavelength region 2-5 micrometers. The 1980 AFGL atmospheric absorption parameter compilation was employed with a mid-latitude, sea-level atmospheric model.
Acoustic energy in ducts - Further observations
NASA Technical Reports Server (NTRS)
Eversman, W.
1979-01-01
The transmission of acoustic energy in uniform ducts carrying uniform flow is investigated with the purpose of clarifying two points of interest. The two commonly used definitions of acoustic 'energy' flux are shown to be related by a Legendre transformation of the Lagrangian density exactly as in deriving the Hamiltonian density in mechanics. In the acoustic case the total energy density and the Hamiltonian density are not the same which accounts for two different 'energy' fluxes. When the duct has acoustically absorptive walls neither of the two flux expressions gives correct results. A reevaluation of the basis of derivation of the energy density and energy flux provides forms which yield consistent results for soft walled ducts.
Acoustic Intensity Measurements in the Presence of Low Mach Number Flow
1993-09-01
broadband acoustic holography ,3 intensity measurements in the presence of flow,". 7 in-situ evaluation of the acoustic impedance and sound absorption...Cross Spectra" Ph.D. Thesis, Catholic University, (1987). 3. Loyau, T., Pascal, J., Gaillard, P., "Broadband Acoustic Holography Reconstruction From...AD-A269 995 The Pennsylvania State University APPLIED RESEARCH LABORATORY P.O. Box 30 State College, PA 16804 ACOUSTIC INTENSITY MEASUREMENTS IN THE
Modified Biserial Correlation Coefficients.
ERIC Educational Resources Information Center
Kraemer, Helena Chmura
1981-01-01
Asymptotic distribution theory of Brogden's form of biserial correlation coefficient is derived and large sample estimates of its standard error obtained. Its relative efficiency to the biserial correlation coefficient is examined. Recommendations for choice of estimator of biserial correlation are presented. (Author/JKS)
Steady Flow of Acoustically Fluidized Long Runout Landslides
NASA Astrophysics Data System (ADS)
Melosh, H. J.
2001-12-01
The high mobility exhibited by long runout landslides remains a geologic puzzle. In 1979 I proposed that the presence of strong internal vibrations could fluidize the rock debris composing such a landslide, and permit very large volumes of rock debris (more than 106 m3) to flow with a low coefficient of friction. Numerical simulations by Campbell in 1995 verified that a low friction mode of motion is theoretically possible but their time resolution was insufficient to validate my proposed mechanism. Since my initial proposal I performed laboratory studies of vibrated granular materials that support the rheology predicted by acoustic fluidization theory. I now report theoretical studies that apply this rheologic law to the steady flow of granular material down an incline of uniform slope. Although numerical solutions of the resulting highly nonlinear equations are generally necessary, a simple analytic solution is possible when the sound waves in the landslide propagate only short distances compared to the thickness of the slide mass. This solution shows that sustained flow is possible if a "regeneration parameter" equal to 1/2 Q e sin2 θ is equal to about 1. In this equation Q denotes the rate of energy absorption by inelastic processes, e is the vibrational energy generation efficiency, and θ is the (constant) slope. For plausible values of these parameters the critical slope on which steady sliding is possible is between 7 and 11 degrees, far lower than permitted by the static coefficient of friction. These slopes are similar to those observed for long runout landslides on the Earth, Venus, Mars and Io. The solution also shows that the velocity-depth profile is close to parabolic. Although a basal shear concentration has been reported for the Blackhawk landslide (which also possesses a basal layer of fine sand), more uniform shear is inferred in homogeneous slide masses. Campbell's numerical simulations also exhibit a parabolic velocity profile through the
Finite difference solutions to shocked acoustic waves
NASA Technical Reports Server (NTRS)
Walkington, N. J.; Eversman, W.
1983-01-01
The MacCormack, Lambda and split flux finite differencing schemes are used to solve a one dimensional acoustics problem. Two duct configurations were considered, a uniform duct and a converging-diverging nozzle. Asymptotic solutions for these two ducts are compared with the numerical solutions. When the acoustic amplitude and frequency are sufficiently high the acoustic signal shocks. This condition leads to a deterioration of the numerical solutions since viscous terms may be required if the shock is to be resolved. A continuous uniform duct solution is considered to demonstrate how the viscous terms modify the solution. These results are then compared with a shocked solution with and without viscous terms. Generally it is found that the most accurate solutions are those obtained using the minimum possible viscosity coefficients. All of the schemes considered give results accurate enough for acoustic power calculations with no one scheme performing significantly better than the others.
Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray
1990-01-01
An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.
Drumheller, Douglas S.
2000-01-01
An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.
Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.
2003-08-01
Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.
Temperature and Strain Coefficient of Velocity for Langasite SAW Devices
NASA Technical Reports Server (NTRS)
Wilson, W. C.; Atkinson, G. M.
2013-01-01
Surface Acoustic Wave sensors on Langasite substrates are being investigated for aerospace applications. Characterization of the Langasite material properties must be performed before sensors can be installed in research vehicles. The coefficients of velocity for both strain and temperature have been determined. These values have also been used to perform temperature compensation of the strain measurements.
Numerical simulation of the processes in the normal incidence tube for high acoustic pressure levels
NASA Astrophysics Data System (ADS)
Fedotov, E. S.; Khramtsov, I. V.; Kustov, O. Yu.
2016-10-01
Numerical simulation of the acoustic processes in an impedance tube at high levels of acoustic pressure is a way to solve a problem of noise suppressing by liners. These studies used liner specimen that is one cylindrical Helmholtz resonator. The evaluation of the real and imaginary parts of the liner acoustic impedance and sound absorption coefficient was performed for sound pressure levels of 130, 140 and 150 dB. The numerical simulation used experimental data having been obtained on the impedance tube with normal incidence waves. At the first stage of the numerical simulation it was used the linearized Navier-Stokes equations, which describe well the imaginary part of the liner impedance whatever the sound pressure level. These equations were solved by finite element method in COMSOL Multiphysics program in axisymmetric formulation. At the second stage, the complete Navier-Stokes equations were solved by direct numerical simulation in ANSYS CFX in axisymmetric formulation. As the result, the acceptable agreement between numerical simulation and experiment was obtained.
Near-infrared absorptions of monomethylhydrazine
NASA Technical Reports Server (NTRS)
Murray, Mark; Kurtz, Joe
1993-01-01
The peak absorption coefficients for two near-infrared absorptions of monomethylhydrazine, CH3-N2H3, (MMH) were measured. Absorption bands located at 1.524 micrometers (6560/cm), 1.557 micrometers (6423/cm), and 1.583 micrometers (6316/cm) are assigned to the Delta upsilon = 2 overtones of the infared N-H stretching fundamentals at 3317, 3245 and 3177/cm. An absorption band located at 1.04 micrometers (9620 +/- 100/cm) is assigned to the Delta upsilon = 3 overtone of one of these fundamentals. The peak absorption coefficients (alpha(sub 10)) at 1.524 micrometers (6560 +/- 20/cm) and 1.04 micrometers (9620 +/- 100/cm) are 31 x 10(exp -3) and 0.97 x 10(exp -3)/(cm atm), respectively. Uncertainties in these coefficients were estimated to be less than +/- 20% due primarily to uncertainties in the partial vapor pressure of MMH.
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Rizzi, Stephen A.
1995-01-01
Interior noise and sonic fatigue are important issues in the development and design of advanced subsonic and supersonic aircraft. Conventional aircraft typically employ passive treatments, such as constrained layer damping and acoustic absorption materials, to reduce the structural response and resulting acoustic levels in the aircraft interior. These techniques require significant addition of mass and only attenuate relatively high frequency noise transmitted through the fuselage. Although structural acoustic coupling is in general very important in the study of aircraft fuselage interior noise, analysis of noise transmission through a panel supported in an infinite rigid baffle (separating two semi-infinite acoustic domains) can be useful in evaluating the effects of active/adaptive materials, complex loading, etc. Recent work has been aimed at developing adaptive and/or active methods of controlling the structural acoustic response of panels to reduce the transmitted noise1. A finite element formulation was recently developed to study the dynamic response of shape memory alloy (SMA) hybrid composite panels (conventional composite panel with embedded SMA fibers) subject to combined acoustic and thermal loads2. Further analysis has been performed to predict the far-field acoustic radiation using the finite element dynamic panel response prediction3. The purpose of the present work is to validate the panel vibration and acoustic radiation prediction methods with baseline experimental results obtained from an isotropic panel, without the effect of SMA.
Ultraviolet absorption cross sections of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Lin, C. L.; Rohatgi, N. K.; Demore, W. B.
1978-01-01
Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.
Low-reflection-coefficient liquid interfaces for system characterization.
Hall, T J; Madsen, E L; Dong, F; Medina, I R; Frank, G R
2001-07-01
The use of liquid brominated hydrocarbons to form a planar reflecting interface with water is described. Gravity-based planar reflecting surfaces with known reflection coefficients can be used in system characterization for quantitative ultrasonics, and a set of surfaces with a range of reflection coefficients allows calibration of the output power and receiver gain of ultrasonic imaging systems. The substances reported here are immiscible in water and form interfaces with water, resulting in a broad range of acoustic reflection coefficients. Reflection coefficients were measured at temperatures from 18-24 degrees C for "pure" substances and for mixtures of two brominated hydrocarbons. Results show that reflection coefficients are weakly dependent on temperature and that, at a specific temperature, a significant range of arbitrarily small reflection coefficients is available, in the case of the mixtures, by the appropriate choice of weight-percents of the two brominated hydrocarbons.
Total and Partial Absorption Coefficients for a Nitrogen Plasma
2014-09-26
Boulder, CO 80309 ATTN: Dr. Arthur V. Phelps 43 0 - . .. > . v- . - . -, . . " )h A’ I , U’ C ’ -- o. • p Lawrence Berkeley Laboratory University of...Gerald N. Hays Dr. James Chang Dr. Michael G. Mazerakis RiJ University of California Physics Department Irvine, CA 92664 -ATTN: Dr. Gregory Benford Air
Absorption of CO laser radiation by NO
NASA Technical Reports Server (NTRS)
Hanson, R. K.; Monat, J. P.; Kruger, C. H.
1976-01-01
The paper describes absorption calculations and measurements at selected infrared CO laser wavelengths which are nearly coincident with absorption lines in the fundamental vibration-rotation band of NO near 5.3 microns. Initial work was directed towards establishing the optimal CO laser-NO absorption line coincidence for high temperature applications. Measurements of the absorption coefficient at this optimal laser wavelength were carried out, first using a room-temperature absorption cell for high-temperature calculations and then using a shock tube, for the temperature range 630-4000 K, to validate the high temperature calculations.
Coefficients of Effective Length.
ERIC Educational Resources Information Center
Edwards, Roger H.
1981-01-01
Under certain conditions, a validity Coefficient of Effective Length (CEL) can produce highly misleading results. A modified coefficent is suggested for use when empirical studies indicate that underlying assumptions have been violated. (Author/BW)
Hahn, P. F.; Miller, L. L.; Robscheit-Robbins, F. S.; Bale, W. F.; Whipple, G. H.
1944-01-01
The absorption of red cells from the normal peritoneum of the dog can be demonstrated by means of red cells labeled with radio-iron incorporated in the hemoglobin of these red cells. Absorption in normal dogs runs from 20 to 100 per cent of the amount given within 24 hours. Dogs rendered anemic by bleeding absorb red cells a little less rapidly—ranging from 5 to 80 per cent of the injected red cells. Doubly depleted dogs (anemic and hypoproteinemic) absorb even less in the three experiments recorded. This peritoneal absorption varies widely in different dogs and even in the same dog at different times. We do not know the factors responsible for these variations but there is no question about active peritoneal absorption. The intact red cells pass readily from the peritoneal cavity into lymph spaces in diaphragm and other areas of the peritoneum. The red cells move along the lymphatics and through the lymph glands with little or no phagocytosis and eventually into the large veins through the thoracic ducts. PMID:19871404
Rubin, Deborah C
2004-03-01
Our understanding of nutrient absorption continues to grow, from the development of unique animal models and from studies in which cutting-edge molecular and cellular biologic approaches have been used to analyze the structure and function of relevant molecules. Studies of the molecular genetics of inherited disorders have also provided many new insights into these processes. A major advance in lipid absorption has been the cloning and characterization of several intestinal acyl CoA:monoacylglycerol acyltransferases; these may provide new targets for antiobesity drug therapy. Studies of intestinal cholesterol absorption and reverse cholesterol transport have encouraged the development of novel potential treatments for hyperlipidemia. Observations in genetically modified mice and in humans with mutations in glucose transporter 2 suggest the importance of a separate microsomal membrane transport pathway for glucose transport. The study of iron metabolism has advanced greatly with the identification of the hemochromatosis gene and the continued examination of the genetic regulation of iron absorptive pathways. Several human thiamine transporters have been identified, and their specific roles in different tissues are being explored.
Determination of Dimensionless Attenuation Coefficient in Shaped Resonators
NASA Technical Reports Server (NTRS)
Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.
2003-01-01
The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.
Gasoline-Water Distribution Coefficients of Xylidines
1943-06-01
sample calculated. The extinction (absorption) of light is related to the concentration of the absorbing group by the Beer - Lambert law. It was neceaaar...the use of a Beckman quartz spectrophotometer . Data obtained 1dth the spectzrograph were checzed with the spectrophotom- eter and were reproducible to...within 5 percent of the value of the distribution coefficient given, The use of the spectrophotometer greatly enhanced the speed with which the
Acoustic emission of coal in the postlimiting deformation state
Voznesenskii, A.S.; Tavostin, M.N.
2005-08-01
The features of acoustic emission in coal samples in the state of pre- and postlimiting deformation are considered. It is shown that in the postlimiting deformation stages and in the transient period, a contrary change is observed in a correlation coefficient of the acoustic emission activity N{Sigma} recorded in the upper and lower portions of a sample; whereas in the prelimiting deformation stages, this change is consistent. It is proposed to recognize the stages of deformation by the correlation coefficient of N{Sigma} recorded in different zones: a positive coefficient corresponds to the prelimiting stage of deformation, and a negative one corresponds to the postlimiting stage.
Acoustic source for generating an acoustic beam
Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian
2016-05-31
An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.
Directivity of acoustic radiation from sources
NASA Technical Reports Server (NTRS)
Lansing, D. L.
1979-01-01
The radiation properties of acoustic monopoles and dipoles are described. The directivity of radiation from these sources in a free field and in the presence of an absorptive surface is described. The kinematic effects on source radiation due to translation and rotation are discussed. Experimental measurements of sound from an acoustic monopole in motion and the characteristics of helicopter rotor and propeller noise are reviewed. An introduction is provided to several essential concepts required by noise control engineers making measurements of noise from moving sources in the proximity of the ground.
Directivity of acoustic radiation from sources
NASA Technical Reports Server (NTRS)
Lansing, D. L.
1979-01-01
The radiation properties of acoustic monopoles and dipoles are described, as well as the directivity of radiation from these sources in a free field and in the presence of an absorptive surface. The kinematic effects on source radiation due to translation and rotation are discussed. Experimental measurements of sound from an acoustic monopole in motion and the characteristics of helicopter rotor and propeller noise are reviewed. Several essential concepts required by noise control engineers making measurements of noise from moving sources in the proximity of the ground are introduced.
Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials
NASA Astrophysics Data System (ADS)
Shen, Jian Qi
2016-08-01
In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.
... ANAUSA.org Connect with us! What is an Acoustic Neuroma? Each heading slides to reveal information. Important ... Acoustic Neuroma Important Points To Know About an Acoustic Neuroma An acoustic neuroma, also called a vestibular ...
Investigating broadband acoustic adsorption using rapid manufacturing
NASA Astrophysics Data System (ADS)
Godbold, O.
The reduction of nuisance noise and the removal of unwanted sound modes within a room or component enclosure-area can be accomplished through the use of acoustic absorbers. Sound absorption can be achieved through conversion of the kinetic energy associated with pressure waves, into heat energy via viscous dissipation. This occurs within open porous materials, or by utilising resonant effects produced using simple cavity and orifice configurations. The manufacture of traditional porous and resonant absorbers is commonly realised using basic manufacturing techniques. These techniques restrict the geometry of a given resonant construction, and limit the configuration of porous absorbers. The aim of this work is to exploit new and emerging capabilities of Rapid Manufacturing (RM) to produce components with geometrical freedom, and apply it to the development of broadband acoustic absorption. New and novel absorber geometric configurations are identified and their absorption performance is determined. The capabilities and limitations of RM processes in reproducing these configurations are demonstrated. The geometric configuration of RM resonant absorbers is investigated. Cavity modifications aimed at damping the resonant effect by restricting the motion of cavity air, and adding increased viscous resistance are explored. Modifications relating to cavity shape, the addition of internal perforations and increased cavity surface area have all been shown to add acoustic resistance, thereby increasing the bandwidth of absorption. Decreasing the hydraulic radius of the cavity cross section and reducing internal feature dimensions provide improved resistance over conventional configurations..
Nonlinear effects in an acoustic metamaterial with simultaneous negative modulus and density
NASA Astrophysics Data System (ADS)
Li, Yifeng; Lan, Jun; Li, Baoshun; Liu, Xiaozhou; Zhang, Jiashu
2016-10-01
Nonlinear effects in an acoustic metamaterial with simultaneous negative modulus and density based on Helmholtz resonators and membranes periodically distributed along a pipe are studied theoretically. Analyses of the transmission coefficient and dispersion relation of the composite system are realized using the acoustic transmission line method and Bloch theory, respectively. Due to the nonlinearities of the Helmholtz resonators and membranes, the acoustic wave propagation properties vary with the different incident acoustic intensities, and the frequency band gaps of the transmission coefficient are amplitude dependent. The nonlinearities shift the double negative pass band into the adjacent modulus negative forbidden band and transform the metamaterial from an acoustic insulator into an acoustic conductor, leading to some new potential acoustic applications.
Pressure-Coupled Acoustic-Transducer Assembly
NASA Technical Reports Server (NTRS)
Parker, F. Raymond
1993-01-01
Improved acoustic-transducer assembly easy to assemble, relocatable, and used at high temperatures. In assembly, piezoelectric acoustic transducer pressure-coupled to delay line or fixture through soft metal like aluminum, copper or gold. Transducer subassembly includes layered structure of coupling material, transducer, thin disk of coupling material acting as cushion for transducer, electrode disk with coaxial cable lead attached, insulation/damping material, and pressure plate. Pressure coupling precludes problem of matching coefficients of thermal expansion of transducer, coupling material, and delay line.
... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...
NPL closes acoustics department
NASA Astrophysics Data System (ADS)
Extance, Andy
2016-11-01
The UK's National Physical Laboratory (NPL) has withdrawn funding for its acoustics, polymer and thermoelectrics groups, triggering concern among airborne acoustics specialists that the move could undermine the country's noise-management policies.
Identifying the Acoustic Neuroma
... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey (Inventor)
2015-01-01
A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.
JKTLD: Limb darkening coefficients
NASA Astrophysics Data System (ADS)
Southworth, John
2015-11-01
JKTLD outputs theoretically-calculated limb darkening (LD) strengths for equations (LD laws) which predict the amount of LD as a function of the part of the star being observed. The coefficients of these laws are obtained by bilinear interpolation (in effective temperature and surface gravity) in published tables of coefficients calculated from stellar model atmospheres by several researchers. Many observations of stars require the strength of limb darkening (LD) to be estimated, which can be done using theoretical models of stellar atmospheres; JKTLD can help in these circumstances.
Acoustic emission frequency discrimination
NASA Technical Reports Server (NTRS)
Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)
1988-01-01
In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.
2015-10-19
OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics-093015 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...number. 1. REPORT DATE OCT 2015 2. REPORT TYPE 3. DATES COVERED 01-07-2015 to 30-09-2015 4. TITLE AND SUBTITLE Deep Water Ocean Acoustics...understanding of the impact of the ocean and seafloor environmental variability on deep- water (long-range) ocean acoustic propagation and to develop
Shallow Water Acoustics Studies
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow Water Acoustics Studies James F. Lynch MS #12...N00014-14-1-0040 http://acoustics.whoi.edu/sw06/ LONG TERM GOALS The long term goals of our shallow water acoustics work are to: 1) understand the...nature of low frequency (10-1500 Hz) acoustic propagation, scattering and noise in shallow water when strong oceanic variability is present in the
Xie, Boyang; Tang, Kun; Cheng, Hua; Liu, Zhengyou; Chen, Shuqi; Tian, Jianguo
2017-02-01
Coding acoustic metasurfaces can combine simple logical bits to acquire sophisticated functions in wave control. The acoustic logical bits can achieve a phase difference of exactly π and a perfect match of the amplitudes for the transmitted waves. By programming the coding sequences, acoustic metasurfaces with various functions, including creating peculiar antenna patterns and waves focusing, have been demonstrated.
Tutorial on architectural acoustics
NASA Astrophysics Data System (ADS)
Shaw, Neil; Talaske, Rick; Bistafa, Sylvio
2002-11-01
This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).
Improved input parameters for diffusion models of skin absorption.
Hansen, Steffi; Lehr, Claus-Michael; Schaefer, Ulrich F
2013-02-01
To use a diffusion model for predicting skin absorption requires accurate estimates of input parameters on model geometry, affinity and transport characteristics. This review summarizes methods to obtain input parameters for diffusion models of skin absorption focusing on partition and diffusion coefficients. These include experimental methods, extrapolation approaches, and correlations that relate partition and diffusion coefficients to tabulated physico-chemical solute properties. Exhaustive databases on lipid-water and corneocyte protein-water partition coefficients are presented and analyzed to provide improved approximations to estimate lipid-water and corneocyte protein-water partition coefficients. The most commonly used estimates of lipid and corneocyte diffusion coefficients are also reviewed. In order to improve modeling of skin absorption in the future diffusion models should include the vertical stratum corneum heterogeneity, slow equilibration processes, the absorption from complex non-aqueous formulations, and an improved representation of dermal absorption processes. This will require input parameters for which no suitable estimates are yet available.
Characterization of high intensity focused ultrasound transducers using acoustic streaming.
Hariharan, Prasanna; Myers, Matthew R; Robinson, Ronald A; Maruvada, Subha H; Sliwa, Jack; Banerjee, Rupak K
2008-03-01
A new approach for characterizing high intensity focused ultrasound (HIFU) transducers is presented. The technique is based upon the acoustic streaming field generated by absorption of the HIFU beam in a liquid medium. The streaming field is quantified using digital particle image velocimetry, and a numerical algorithm is employed to compute the acoustic intensity field giving rise to the observed streaming field. The method as presented here is applicable to moderate intensity regimes, above the intensities which may be damaging to conventional hydrophones, but below the levels where nonlinear propagation effects are appreciable. Intensity fields and acoustic powers predicted using the streaming method were found to agree within 10% with measurements obtained using hydrophones and radiation force balances. Besides acoustic intensity fields, the streaming technique may be used to determine other important HIFU parameters, such as beam tilt angle or absorption of the propagation medium.
NASA Astrophysics Data System (ADS)
Chen, Meng; Jiang, Heng; Feng, Yafei; Wang, Yuren
2014-12-01
We experimentally and theoretically investigated the mechanisms of acoustic absorption in phononic glass to optimize its properties. First, we experimentally studied its locally resonant absorption mechanism. From these results, we attributed its strong sound attenuation to its locally resonant units and its broadband absorption to its networked structure. These experiments also indicated that the porosity and thickness of the phononic glass must be tuned to achieve the best sound absorption at given frequencies. Then, using lumped-mass methods, we studied how the absorption bandgaps of the phononic glass were affected by various factors, including the porosity and the properties of the coating materials. These calculations gave optimal ranges for selecting the porosity, modulus of the coating material, and ratio of the compliant coating to the stiff matrix to achieve absorption bandgaps in the range of 6-30 kHz. This paper provides guidelines for designing phononic glasses with proper structures and component materials to work in specific frequency ranges.
X-Ray Attenuation Coefficients from 10 Kev to 100 Mev,
1957-04-30
fig. 1). A well- shielded detector measures the shells account for most of the absorption by this intensity of the trinsmitted beam, and any photon...narrow-beam measurements ----------------- 2 1.4. Combination of attenuation coefficients -------------------- 2 1.5. Energy absorption...thickness is increased measures the unlikely to be absorbed. Consequently, the ab- total probability of the interaction processes. sorption coefficient
Detection and Classification of Whale Acoustic Signals
NASA Astrophysics Data System (ADS)
Xian, Yin
This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale
Materials for Bulk Acoustic Resonators and Filters
NASA Astrophysics Data System (ADS)
Loebl, Hans-Peter
2003-03-01
Highly selective solidly mounted bulk acoustic wave (BAW) band pass filters are suited for mobile and wireless systems in the GHz frequency range between 0.8 and 10 GHz. Electro-acoustic thin film BAW resonators are the building blocks these BAW filters. Piezoelectric materials used in these resonators include mainly AlN or ZnO which can be deposited by dedicated thin film sputter deposition techniques. Using these piezo-electric materials and using suited materials for the acoustic Bragg reflector, BAW resonators with high quality factors can be fabricated. The achievable filter bandwidth is approximately 4Alternatively, also ferroelectric thin films might be used to achieve higher coupling coefficient and thus filter bandwidth. BAW resonators and filters have been designed and fabricated on 6" Silicon and glass wafers. Results are presented for resonators and filters operating between 1.95 and 8 GHz. The talk will give an overview of the material aspects which are important for BAW devices. It will be shown that modeling of the resonator and filter response using 1D electro-acoustic simulation (1,2) which includes losses is essential to extract acoustic and electrical material parameters. (1) Solidly Mounted Bulk Acoustic Wave Filters for the Ghz Frequency Range, H.P. Loebl, C. Metzmacher , D.N.Peligrad , R. Mauczok , M. Klee , W. Brand , R.F. Milsom , P.Lok , F.van Straten , A. Tuinhout , J.W.Lobeek, IEEE 2002 Ultrasonics Symposium Munich, October 2002. (2) Combined Acoustic-Electromagnetic Simulation Of Thin-Film Bulk Acoustic Wave Filters, R.F. Milsom, H-P. Löbl, D.N. Peligrad, J-W. Lobeek, A. Tuinhout, R. H. ten Dolle IEEE 2002 Ultrasonics Symposium Munich, October 2002.
Mizuno, K.; DeGroot, J.S.; Seka, W.
1996-11-01
It is shown that laser light can be anomalously absorbed with a moderate intensity laster (I{lambda}{sup 2}{approx}10{sup 14} W/cm{sup 2}-{mu}m{sup 2}) in a large scale, laser produced plasma. The heating regime, which is characterized by a relatively weak instability in a large region, is different from the regime studied previously, which is characterized by a strong instability in a narrow region. The two dimensional geometrical effect (lateral heating) has an important consequence on the anomalous electron heating. The characteristics of the IADI, and the anomalous absorption of the laser light were studied in a large scale, hot plasma applicable to OMEGA upgrade plasma. These results are important for the diagnostic application of the IADI.
Mechanism of sound absorption by seated audience in halls.
Nishihara, N; Hidaka, T; Beranek, L L
2001-11-01
Four methods are explored for predicting the reverberation times in fully occupied halls for music as related to the sound absorption by their audiences. The methods for providing audience absorptions include two that use reverberation chambers, namely, the ISO 354 method (and other similar standards) (ISO) and Kath and Kuhl's method (K & K) [Acustica 15, 127-131 (1965)], and two that use average data from halls, i.e., Beranek's method (COH) [Concert and Opera Halls: How They Sound (Acoustical Society of America, Melville, NY, 1996)], and the average audience power-per-seat absorption which in practice is multiplied by the number of seats (AA). These methods are applied to the calculation of reverberation times in six existing halls, fully occupied, and the results were compared with actual measurements. The COH method was best for predictions over the entire frequency range. The K & K method showed the highest accuracy at mid-frequencies. Both the ISO and the K & K methods yielded wide differences for the measurements in the 125- and 250-Hz bands. The AA method was as good as the COH method when the measurements for the six halls were averaged, but showed a wide spread in the predictions around the average because it does not consider the degree of upholstering of the seats. It was hypothecated by the authors that the principal reasons for the ISO and K & K discrepancies at low frequencies were (a) differences between the degree of sound diffusion in actual halls and that in reverberation chambers, and (b) lack of information on the mechanisms of absorption of sound by people seated side-by-side in rows, particularly for near-grazing incidence sound fields. First, this article explores the sound diffusivity in a reverberation chamber and in the halls using CAD models. A probability density function of the incident angles of the sound rays that impinge on the audiences is defined and was measured for each case. Using a unique method, the sound absorption
Utilizing computer models for optimizing classroom acoustics
NASA Astrophysics Data System (ADS)
Hinckley, Jennifer M.; Rosenberg, Carl J.
2002-05-01
The acoustical conditions in a classroom play an integral role in establishing an ideal learning environment. Speech intelligibility is dependent on many factors, including speech loudness, room finishes, and background noise levels. The goal of this investigation was to use computer modeling techniques to study the effect of acoustical conditions on speech intelligibility in a classroom. This study focused on a simulated classroom which was generated using the CATT-acoustic computer modeling program. The computer was utilized as an analytical tool in an effort to optimize speech intelligibility in a typical classroom environment. The factors that were focused on were reverberation time, location of absorptive materials, and background noise levels. Speech intelligibility was measured with the Rapid Speech Transmission Index (RASTI) method.
NASA Astrophysics Data System (ADS)
Concha-Abarca, Justo Andres
2002-11-01
The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.
Sound absorption of low-temperature reusable surface insulation candidate materials
NASA Technical Reports Server (NTRS)
Johnston, J. D.
1974-01-01
Sound absorption data from tests of four candidate low-temperature reusable surface insulation materials are presented. Limitations on the use of the data are discussed, conclusions concerning the effective absorption of the materials are drawn, and the relative significance to Vibration and Acoustic Test Facility test planning of the absorption of each material is assessed.
Two-photon absorption in arsenic sulfide glasses
NASA Astrophysics Data System (ADS)
Chunaev, D. S.; Snopatin, G. E.; Plotnichenko, V. G.; Karasik, A. Ya.
2016-10-01
The two-photon absorption coefficient of 1047-{\\text{nm}} light in {\\text{As}}35{\\text{S}}65 chalcogenide glass has been measured. CW probe radiation has been used to observe the linear absorption in glass induced by two-photon excitation. The induced absorption lifetime was found to be ∼ 2 {\\text{ms}}.
Acoustic and elastic properties of Sn(2)P(2)S(6) crystals.
Mys, O; Martynyuk-Lototska, I; Grabar, A; Vlokh, R
2009-07-01
We present the results concerned with acoustic and elastic properties of Sn(2)P(2)S(6) crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.
Acoustical properties of air-saturated porous material with periodically distributed dead-end pores.
Leclaire, P; Umnova, O; Dupont, T; Panneton, R
2015-04-01
A theoretical and numerical study of the sound propagation in air-saturated porous media with straight main pores bearing lateral cavities (dead-ends) is presented. The lateral cavities are located at "nodes" periodically spaced along each main pore. The effect of periodicity in the distribution of the lateral cavities is studied, and the low frequency limit valid for the closely spaced dead-ends is considered separately. It is shown that the absorption coefficient and transmission loss are influenced by the viscous and thermal losses in the main pores as well as their perforation rate. The presence of long or short dead-ends significantly alters the acoustical properties of the material and can increase significantly the absorption at low frequencies (a few hundred hertz). These depend strongly on the geometry (diameter and length) of the dead-ends, on their number per node, and on the periodicity along the propagation axis. These effects are primarily due to low sound speed in the main pores and to thermal losses in the dead-end pores. The model predictions are compared with experimental results. Possible designs of materials of a few cm thicknesses displaying enhanced low frequency absorption at a few hundred hertz are proposed.
Design, characterization and modeling of biobased acoustic foams
NASA Astrophysics Data System (ADS)
Ghaffari Mosanenzadeh, Shahrzad
Polymeric open cell foams are widely used as sound absorbers in sectors such as automobile, aerospace, transportation and building industries, yet there is a need to improve sound absorption of these foams through understanding the relation between cell morphology and acoustic properties of porous material. Due to complicated microscopic structure of open cell foams, investigating the relation between foam morphology and acoustic properties is rather intricate and still an open problem in the field. The focus of this research is to design and develop biobased open cell foams for acoustic applications to replace conventional petrochemical based foams as well as investigating the link between cell morphology and macroscopic properties of open cell porous structures. To achieve these objectives, two industrially produced biomaterials, polylactide (PLA) and polyhydroxyalkanoate (PHA) and their composites were examined and highly porous biobased foams were fabricated by particulate leaching and compression molding. Acoustic absorption capability of these foams was enhanced utilizing the effect of co-continuous blends to form a bimodal porous structure. To tailor mechanical and acoustic properties of biobased foams, blends of PLA and PHA were studied to reach the desired mechanical and viscoelastic properties. To enhance acoustic properties of porous medium for having a broad band absorption effect, cell structure must be appropriately graded. Such porous structures with microstructural gradation are called Functionally Graded Materials (FGM). A novel graded foam structure was designed with superior sound absorption to demonstrate the effect of cell arrangement on performance of acoustic fixtures. Acoustic measurements were performed in a two microphone impedance tube and acoustic theory of Johnson-Champoux-Allard was applied to the fabricated foams to determine micro cellular properties such as tortuosity, viscous and thermal lengths from sound absorption impedance tube
Acoustic Coherent Backscatter Enhancement from Aggregations of Point Scatterers
2014-09-30
acoustic multiple scattering from two- and now three-dimensional aggregations of omni-directional point scatterers to determine the parametric realms in...given by the sum in (1), N is the number of scatterers , gn is the scattering coefficient of the nth scatterer , ψn(rn) is the field incident on the nth...SUBTITLE Acoustic Coherent Backscatter Enhancement from Aggregations of Point Scatterers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
Acoustic agglomeration of power plant fly ash. Final report
Reethof, G.; McDaniel, O.H.
1982-01-01
The work has shown that acoustic agglomeration at practical acoustic intensities and frequencies is technically and most likely economically viable. The following studies were performed with the listed results: The physics of acoustic agglomeration is complex particularly at the needed high acoustic intensities in the range of 150 to 160 dB and frequencies in the 2500 Hz range. The analytical model which we developed, although not including nonlinear acoustic efforts, agreed with the trends observed. We concentrated our efforts on clarifying the impact of high acoustic intensities on the generation of turbulence. Results from a special set of tests show that although some acoustically generated turbulence of sorts exists in the 150 to 170 dB range with acoustic streaming present, such turbulence will not be a significant factor in acoustic agglomeration compared to the dominant effect of the acoustic velocities at the fundamental frequency and its harmonics. Studies of the robustness of the agglomerated particles using the Anderson Mark III impactor as the source of the shear stresses on the particles show that the agglomerates should be able to withstand the rigors of flow through commercial cyclones without significant break-up. We designed and developed a 700/sup 0/F tubular agglomerator of 8'' internal diameter. The electrically heated system functioned well and provided very encouraging agglomeration results at acoustic levels in the 150 to 160 dB and 2000 to 3000 Hz ranges. We confirmed earlier results that an optimum frequency exists at about 2500 Hz and that larger dust loadings will give better results. Studies of the absorption of acoustic energy by various common gases as a function of temperature and humidity showed the need to pursue such an investigation for flue gas constituents in order to provide necessary data for the design of agglomerators. 65 references, 56 figures, 4 tables.
Two-dimensional acoustic metamaterial structure for potential image processing
NASA Astrophysics Data System (ADS)
Sun, Hongwei; Han, Yu; Li, Ying; Pai, Frank
2015-12-01
This paper presents modeling, analysis techniques and experiment of for two-Dimensional Acoustic metamaterial Structure for filtering acoustic waves. For a unit cell of an infinite two-Dimensional Acoustic metamaterial Structure, governing equations are derived using the extended Hamilton principle. The concepts of negative effective mass and stiffness and how the spring-mass-damper subsystems create a stopband are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed acoustic metamaterial structure is based on the concept of conventional mechanical vibration absorbers. It uses the incoming wave in the structure to resonate the integrated membrane-mass-damper absorbers to vibrate in their optical mode at frequencies close to but above their local resonance frequencies to create shear forces and bending moments to straighten the panel and stop the wave propagation. Moreover, a two-dimension acoustic metamaterial structure consisting of lumped mass and elastic membrane is fabricated in the lab. We do experiments on the model and The results validate the concept and show that, for two-dimension acoustic metamaterial structure do exist two vibration modes. For the wave absorption, the mass of each cell should be considered in the design. With appropriate design calculations, the proposed two-dimension acoustic metamaterial structure can be used for absorption of low-frequency waves. Hence this special structure can be used in filtering the waves, and the potential using can increase the ultrasonic imaging quality.
Excavation Equipment Recognition Based on Novel Acoustic Statistical Features.
Cao, Jiuwen; Wang, Wei; Wang, Jianzhong; Wang, Ruirong
2016-09-30
Excavation equipment recognition attracts increasing attentions in recent years due to its significance in underground pipeline network protection and civil construction management. In this paper, a novel classification algorithm based on acoustics processing is proposed for four representative excavation equipments. New acoustic statistical features, namely, the short frame energy ratio, concentration of spectrum amplitude ratio, truncated energy range, and interval of pulse are first developed to characterize acoustic signals. Then, probability density distributions of these acoustic features are analyzed and a novel classifier is presented. Experiments on real recorded acoustics of the four excavation devices are conducted to demonstrate the effectiveness of the proposed algorithm. Comparisons with two popular machine learning methods, support vector machine and extreme learning machine, combined with the popular linear prediction cepstral coefficients are provided to show the generalization capability of our method. A real surveillance system using our algorithm is developed and installed in a metro construction site for real-time recognition performance validation.
Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.
1961-11-14
A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)
Boundary element solution for periodic acoustic problems
NASA Astrophysics Data System (ADS)
Karimi, M.; Croaker, P.; Kessissoglou, N.
2016-01-01
This work shows when using the boundary element method to solve 3D acoustic scattering problems from periodic structures, the coefficient matrix can be represented as a block Toeplitz matrix. By exploiting the Toeplitz structure, the computational time and storage requirements to construct the coefficient matrix are significantly reduced. To solve the linear system of equations, the original matrix is embedded into a larger and more structured matrix called the block circulant matrix. Discrete Fourier transform is then employed in an iterative algorithm to solve the block Toeplitz system. To demonstrate the effectiveness of the formulation for periodic acoustic problems, two exterior acoustic case studies are considered. The first case study examines a continuous structure to predict the noise generated by a sharp-edged flat plate under quadrupole excitation. Directivity plots obtained using the periodic boundary element method technique are compared with numerical results obtained using a conventional boundary element model. The second case study examines a discrete periodic structure to predict the acoustic performance of a sonic crystal noise barrier. Results for the barrier insertion loss are compared with both finite element results and available data in the literature.
Gautier, G; Kelders, L; Groby, J P; Dazel, O; De Ryck, L; Leclaire, P
2011-09-01
Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. The wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently in the case of rigid frame inhomogeneous porous materials. This paper focuses on the solution of the full wave equation in which the acoustic and the elastic properties of the poroelastic material vary in one-dimension. The reflection coefficient of a one-dimensional macroscopically inhomogeneous porous material on a rigid backing is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method at both normal and oblique incidence and to experimental measurements at normal incidence for a known two-layers porous material, considered as a single inhomogeneous layer. Finally, discussion about the absorption coefficient for various inhomogeneity profiles gives further perspectives.
Tuned Chamber Core Panel Acoustic Test Results
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Allen, Albert R.
2016-01-01
This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.
High-frequency attenuation measurements using an acoustic microscope.
Gracewski, S M; Waag, R C; Schenk, E A
1988-06-01
An acoustic microscope was used to measure excess attenuation of aqueous solutions of sugars and proteins at 1.0 GHz. Interference pattern spacing and peak amplitude reduction of V(z) curves, obtained with these solutions as the acoustic microscope coupling liquid, were related to the solution wavespeed and attenuation, respectively. Consistent with published results for lower frequencies, solutions with molecular weight greater than 10,000 had a higher specific absorption than those with a molecular weight less than 1000 and within these two molecular weight ranges specific absorption was independent of concentration.
NASA Technical Reports Server (NTRS)
Houston, Janice; Counter, D.; Giacomoni, D.
2015-01-01
The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.
Doutres, O; Ouisse, M; Atalla, N; Ichchou, M
2014-10-01
This paper deals with the prediction of the macroscopic sound absorption behavior of highly porous polyurethane foams using two unit-cell microstructure-based models recently developed by Doutres, Atalla, and Dong [J. Appl. Phys. 110, 064901 (2011); J. Appl. Phys. 113, 054901 (2013)]. In these models, the porous material is idealized as a packing of a tetrakaidecahedra unit-cell representative of the disordered network that constitutes the porous frame. The non-acoustic parameters involved in the classical Johnson-Champoux-Allard model (i.e., porosity, airflow resistivity, tortuosity, etc.) are derived from characteristic properties of the unit-cell and semi-empirical relationships. A global sensitivity analysis is performed on these two models in order to investigate how the variability associated with the measured unit-cell characteristics affects the models outputs. This allows identification of the possible limitations of a unit-cell micro-macro approach due to microstructure irregularity. The sensitivity analysis mainly shows that for moderately and highly reticulated polyurethane foams, the strut length parameter is the key parameter since it greatly impacts three important non-acoustic parameters and causes large uncertainty on the sound absorption coefficient even if its measurement variability is moderate. For foams with a slight inhomogeneity and anisotropy, a micro-macro model associated to cell size measurements should be preferred.
Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers
Arenas, Celia; Leiva, Carlos; Vilches, Luis F.
2013-11-15
Highlights: • The particle size of bottom ash influenced the acoustic behavior of the barrier. • The best sound absorption coefficients were measured for larger particle sizes. • The maximum noise absorption is displaced to lower frequencies for higher thickness. • A noise barrier was designed with better properties than commercial products. • Recycling products from bottom ash no present leaching and radioactivity problems. - Abstract: The present study aims to determine and evaluate the applicability of a new product consisting of coal bottom ash mixed with Portland cement in the application of highway noise barriers. In order to effectively recycle the bottom ash, the influence of the grain particle size of bottom ash, the thickness of the panel and the combination of different layers with various particle sizes have been studied, as well as some environmental properties including leachability (EN-12457-4, NEN-7345) and radioactivity tests. Based on the obtained results, the acoustic properties of the final composite material were similar or even better than those found in porous concrete used for the same application. According to this study, the material produced presented no environmental risk.
Introduction of acoustical diffraction in the radiative transfer method
NASA Astrophysics Data System (ADS)
Reboul, Emeline; Le Bot, Alain; Perret-Liaudet, Joël
2004-07-01
This Note presents an original approach to include diffraction in the radiative transfer method when applied to acoustics. This approach leads to a better spatial description of the acoustical energy. An energetic diffraction coefficient and some diffraction sources are introduced to model the diffraction phenomena. The amplitudes of these sources are determined by solving a linear sytem of equations resulting from the power balance between all acoustical sources. The approach is applied on bidimensional examples and gives good results except at geometrical boundaries. To cite this article: E. Reboul et al., C. R. Mecanique 332 (2004).
Acoustic Translation of an Acoustically Levitated Sample
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Allen, J. L.
1986-01-01
Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.
Coherent entropy induced and acoustic noise separation in compact nozzles
NASA Astrophysics Data System (ADS)
Tao, Wenjie; Schuller, Thierry; Huet, Maxime; Richecoeur, Franck
2017-04-01
A method to separate entropy induced noise from an acoustic pressure wave in an harmonically perturbed flow through a nozzle is presented. It is tested on an original experimental setup generating simultaneously acoustic and temperature fluctuations in an air flow that is accelerated by a convergent nozzle. The setup mimics the direct and indirect noise contributions to the acoustic pressure field in a confined combustion chamber by producing synchronized acoustic and temperature fluctuations, without dealing with the complexity of the combustion process. It allows generating temperature fluctuations with amplitude up to 10 K in the frequency range from 10 to 100 Hz. The noise separation technique uses experiments with and without temperature fluctuations to determine the relative level of acoustic and entropy fluctuations in the system and to identify the nozzle response to these forcing waves. It requires multi-point measurements of acoustic pressure and temperature. The separation method is first validated with direct numerical simulations of the nonlinear Euler equations. These simulations are used to investigate the conditions for which the separation technique is valid and yield similar trends as the experiments for the investigated flow operating conditions. The separation method then gives successfully the acoustic reflection coefficient but does not recover the same entropy reflection coefficient as predicted by the compact nozzle theory due to the sensitivity of the method to signal noises in the explored experimental conditions. This methodology provides a framework for experimental investigation of direct and indirect combustion noises originating from synchronized perturbations.
Reflectance measurement validation using acoustic horns
Rasetshwane, Daniel M.; Neely, Stephen T.
2015-01-01
Variability in wideband acoustic reflectance (and absorbance) measurements adversely affects the clinical utility of reflectance for diagnosis of middle-ear disorders. A reflectance standard would encourage consistency across different measurement systems and help identify calibration related issues. Theoretical equations exist for the reflectance of finite-length exponential, conical, and parabolic acoustic horns. Reflectance measurements were repeatedly made in each of these three horn shapes and the results were compared to the corresponding theoretical reflectance. A method is described of adjusting acoustic impedance measurements to compensate for spreading of the wave front that propagates from the small diameter sound port of the probe to the larger diameter of the acoustic cavity. Agreement between measured and theoretical reflectance was less than 1 dB at most frequencies in the range from 0.2 to 10 kHz. Pearson correlation coefficients were greater than 0.95 between measured and theoretical time-domain reflectance within the flare region of the horns. The agreement suggests that the distributed reflectance of acoustic horns may be useful for validating reflectance measurements made in human ear canals; however, refinements to reflectance measurement methods may still be needed. PMID:26520306
Reflectance measurement validation using acoustic horns.
Rasetshwane, Daniel M; Neely, Stephen T
2015-10-01
Variability in wideband acoustic reflectance (and absorbance) measurements adversely affects the clinical utility of reflectance for diagnosis of middle-ear disorders. A reflectance standard would encourage consistency across different measurement systems and help identify calibration related issues. Theoretical equations exist for the reflectance of finite-length exponential, conical, and parabolic acoustic horns. Reflectance measurements were repeatedly made in each of these three horn shapes and the results were compared to the corresponding theoretical reflectance. A method is described of adjusting acoustic impedance measurements to compensate for spreading of the wave front that propagates from the small diameter sound port of the probe to the larger diameter of the acoustic cavity. Agreement between measured and theoretical reflectance was less than 1 dB at most frequencies in the range from 0.2 to 10 kHz. Pearson correlation coefficients were greater than 0.95 between measured and theoretical time-domain reflectance within the flare region of the horns. The agreement suggests that the distributed reflectance of acoustic horns may be useful for validating reflectance measurements made in human ear canals; however, refinements to reflectance measurement methods may still be needed.
Acoustic properties of biodegradable nonwovens
NASA Astrophysics Data System (ADS)
Yilmaz, Nazire Deniz
The purpose of this study is to provide a better understanding of acoustical properties of nonwovens, and to model the noise control behavior in terms of material and treatment parameters. A review of existing models on sound absorption of fibrous materials, coupled with experimental data will help in modeling sound absorption in multi-layer needle-punched nonwoven fabrics of different fibers: hemp, polylactide, polypropylene, and glassfiber. The effects of several treatments, which the materials may undergo during sound absorber manufacturing, namely alkalization, compression and heat treatments are investigated. The collected data is evaluated by experts. Expert evaluation further provides information about market demands for sound absorbers, and the perception of the designed nonwovens through the eyes of professionals. This research provides a contribution to the body of knowledge on the sound absorption properties of nonwovens, and provides a better understanding of the effects of some manufacturing processes on nonwovens' noise control performance and contributes to the wider adoption of nonwovens as sound absorbers.
Acoustical evaluation of carbonized and activated cotton nonwovens.
Jiang, N; Chen, J Y; Parikh, D V
2009-12-01
An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise absorption coefficients and sound transmission loss were measured using the Brüel and Kjaer impedance tube instrument. Statistical significance of the differences between the composites was tested using the method of Duncan's grouping. The study concluded that the ACF composite exhibited a greater ability to absorb normal incidence sound waves than the composites with either glassfiber or cotton fiber. The analysis of sound transmission loss revealed that the three composites still obeyed the mass law of transmission loss. The composite with the surface layer of cotton fiber nonwoven possessed a higher fabric density and therefore showed a better sound insulation than the composites with glassfiber and ACF.
THE USE OF ARCHITECTURAL ACOUSTICAL MATERIALS, THEORY AND PRACTICE. SECOND EDITION.
ERIC Educational Resources Information Center
Acoustical Materials Association, New York, NY.
THIS DISCUSSION OF THE BASIC FUNCTION OF ACOUSTICAL MATERIALS--THE CONTROL OF SOUND BY SOUND ABSORPTION--IS BASED ON THE WAVE AND ENERGY PROPERTIES OF SOUND. IT IS STATED THAT, IN GENERAL, A MUCH LARGER VOLUME OF ACOUSTICAL MATERIALS IS NEEDED TO REMOVE DISTRACTING NOISE FROM CLASSROOMS AND OFFICES, FOR EXAMPLE, THAN FROM AUDITORIUMS, WHERE A…
Nearfield Acoustical Holography
NASA Astrophysics Data System (ADS)
Hayek, Sabih I.
Nearfield acoustical holography (NAH) is a method by which a set of acoustic pressure measurements at points located on a specific surface (called a hologram) can be used to image sources on vibrating surfaces on the acoustic field in three-dimensional space. NAH data are processed to take advantage of the evanescent wavefield to image sources that are separated less that one-eighth of a wavelength.
2016-06-28
Estimates of basin-wide sound speed ( temperature ) fields obtained by the combination of acoustic, altimetry, and other data types with ocean...of acoustic coherence at long ranges in the ocean. Estimates of basin-wide sound speed ( temperature ) fields obtained by the combination of acoustic...index.html Award Number N00014-13-1-0053 LONG-TERM GOALS The ultimate limitations to the performance of long-range sonar are due to ocean sound speed
Acoustic Communications (ACOMMS) ATD
2016-06-14
Acoustic Communications (ACOMMS) ATD Tam Nguyen 2531 Jefferson Davis Hwy Arlington, VA 22242 phone: (703) 604-6013 ext 520 fax: (703) 604-6056...email: NguyenTL@navsea.navy.mil Award # N0001499PD30007 LONG-TERM GOALS The goal of the recently completed Acoustic Communications Advanced...Technology Demonstration program (ACOMMS ATD) was to demonstrate long range and moderate data rate underwater acoustic communications between a submarine
2016-04-30
OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics-043016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...understanding of the impact of the ocean and seafloor environmental variability on deep- water (long-range) ocean acoustic propagation and to...improve our understanding. During the past few years, the physics effects studied have been three-dimensional propagation on global scales, deep water
Anisotropic diffraction of bulk acoustic wave beams in lithium niobate.
Naumenko, Natalya F; Chizhikov, Sergey I; Molchanov, Vladimir Ya; Yushkov, Konstantin B
2015-12-01
The formalism of planar diffraction tensor was applied to the analysis of anisotropy of bulk acoustic wave diffraction and to build a full map of anisotropic diffractional coefficients for three bulk acoustic wave modes propagating in lithium niobate. For arbitrary propagation direction the diffractional coefficients derived allow estimation of ultrasonic beam divergence in far-field. Analysis of obtained data revealed that the maxima of acousto-optic figure of merit for anisotropic diffraction in the YZ plane correspond to moderate diffractional spreading of the beams exceeding isotropic diffraction 2-3 times.
Coupled vibro-acoustic model updating using frequency response functions
NASA Astrophysics Data System (ADS)
Nehete, D. V.; Modak, S. V.; Gupta, K.
2016-03-01
Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.
NASA Astrophysics Data System (ADS)
Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.
2016-01-01
The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.