Science.gov

Sample records for acoustic absorption peak

  1. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  2. Absorption, Creativity, Peak Experiences, Empathy, and Psychoticism.

    ERIC Educational Resources Information Center

    Mathes, Eugene W.; And Others

    Tellegen and Atkinson suggested that the trait of absorption may play a part in meditative skill, creativity, capacity for peak experiences, and empathy. Although the absorption-meditative skill relationship has been confirmed, other predictions have not been tested. Tellegen and Atkinson's Absorption Scale was completed by undergraduates in four…

  3. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  4. Cosmic microwave background acoustic peak locations

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Knox, L.; Mulroe, B.; Narimani, A.

    2016-07-01

    The Planck collaboration has measured the temperature and polarization of the cosmic microwave background well enough to determine the locations of eight peaks in the temperature (TT) power spectrum, five peaks in the polarization (EE) power spectrum and 12 extrema in the cross (TE) power spectrum. The relative locations of these extrema give a striking, and beautiful, demonstration of what we expect from acoustic oscillations in the plasma; e.g. that EE peaks fall half way between TT peaks. We expect this because the temperature map is predominantly sourced by temperature variations in the last scattering surface, while the polarization map is predominantly sourced by gradients in the velocity field, and the harmonic oscillations have temperature and velocity 90 deg out of phase. However, there are large differences in expectations for extrema locations from simple analytic models versus numerical calculations. Here, we quantitatively explore the origin of these differences in gravitational potential transients, neutrino free-streaming, the breakdown of tight coupling, the shape of the primordial power spectrum, details of the geometric projection from three to two dimensions, and the thickness of the last scattering surface. We also compare the peak locations determined from Planck measurements to expectations under the Λ cold dark matter model. Taking into account how the peak locations were determined, we find them to be in agreement.

  5. Absorption cross section of canonical acoustic holes

    SciTech Connect

    Crispino, Luis C. B.; Oliveira, Ednilton S.; Matsas, George E. A.

    2007-11-15

    We compute numerically the absorption cross section of a canonical acoustic hole for sound waves with arbitrary frequencies. Our outputs are in full agreement with the expected low- and high-frequency limits.

  6. Determination of the total absorption peak in an electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Cheng, Jia-Hua; Wang, Zhe; Lebanowski, Logan; Lin, Guey-Lin; Chen, Shaomin

    2016-08-01

    A physically motivated function was developed to accurately determine the total absorption peak in an electromagnetic calorimeter and to overcome biases present in many commonly used methods. The function is the convolution of a detector resolution function with the sum of a delta function, which represents the complete absorption of energy, and a tail function, which describes the partial absorption of energy and depends on the detector materials and structures. Its performance was tested with the simulation of three typical cases. The accuracy of the extracted peak value, resolution, and peak area was improved by an order of magnitude on average, relative to the Crystal Ball function.

  7. Automatic Locking of Laser Frequency to an Absorption Peak

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.

    2006-01-01

    An electronic system adjusts the frequency of a tunable laser, eventually locking the frequency to a peak in the optical absorption spectrum of a gas (or of a Fabry-Perot cavity that has an absorption peak like that of a gas). This system was developed to enable precise locking of the frequency of a laser used in differential absorption LIDAR measurements of trace atmospheric gases. This system also has great commercial potential as a prototype of means for precise control of frequencies of lasers in future dense wavelength-division-multiplexing optical communications systems. The operation of this system is completely automatic: Unlike in the operation of some prior laser-frequency-locking systems, there is ordinarily no need for a human operator to adjust the frequency manually to an initial value close enough to the peak to enable automatic locking to take over. Instead, this system also automatically performs the initial adjustment. The system (see Figure 1) is based on a concept of (1) initially modulating the laser frequency to sweep it through a spectral range that includes the desired absorption peak, (2) determining the derivative of the absorption peak with respect to the laser frequency for use as an error signal, (3) identifying the desired frequency [at the very top (which is also the middle) of the peak] as the frequency where the derivative goes to zero, and (4) thereafter keeping the frequency within a locking range and adjusting the frequency as needed to keep the derivative (the error signal) as close as possible to zero. More specifically, the system utilizes the fact that in addition to a zero crossing at the top of the absorption peak, the error signal also closely approximates a straight line in the vicinity of the zero crossing (see Figure 2). This vicinity is the locking range because the linearity of the error signal in this range makes it useful as a source of feedback for a proportional + integral + derivative control scheme that

  8. RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK

    SciTech Connect

    MartInez, Vicent J.; Arnalte-Mur, Pablo; De la Cruz, Pablo; Saar, Enn; Tempel, Elmo; Pons-BorderIa, MarIa Jesus

    2009-05-01

    The correlation function of the distribution of matter in the universe shows, at large scales, baryon acoustic oscillations, which were imprinted prior to recombination. This feature was first detected in the correlation function of the luminous red galaxies of the Sloan Digital Sky Survey (SDSS). Recently, the final release (DR7) of the SDSS has been made available, and the useful volume is about two times bigger than in the old sample. We present here, for the first time, the redshift-space correlation function of this sample at large scales together with that for one shallower, but denser volume-limited subsample drawn from the Two-Degree Field Redshift Survey. We test the reliability of the detection of the acoustic peak at about 100 h {sup -1} Mpc and the behavior of the correlation function at larger scales by means of careful estimation of errors. We confirm the presence of the peak in the latest data although broader than in previous detections.

  9. Picosecond Surface Acoustic Waves Using A Suboptical Wavelength Absorption Grating

    SciTech Connect

    Hurley, David Howard; Telschow, Kenneth Louis

    2002-10-01

    We have demonstrated laser generation and detection of Rayleigh surface acoustic waves (SAW’s) with acoustic wavelengths that are smaller than the optical wavelength of both the excitation and the detection beams. SAW generation was achieved using electron beam lithography to modulate the surface reflectivity and hence the lateral thermal gradients on a suboptical wavelength scale. The generation and detection characteristics of two material systems were investigated (aluminum absorption gratings on Si and GaAs substrates). The polarization sensitive absorption characteristics of the suboptical wavelength lithographic grating were exploited in order to explore various acoustic generation and detection schemes.

  10. Absorption of surface acoustic waves by topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.

    2014-08-11

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  11. Subwavelength total acoustic absorption with degenerate resonators

    NASA Astrophysics Data System (ADS)

    Yang, Min; Meng, Chong; Fu, Caixing; Li, Yong; Yang, Zhiyu; Sheng, Ping

    2015-09-01

    We report the experimental realization of perfect sound absorption by sub-wavelength monopole and dipole resonators that exhibit degenerate resonant frequencies. This is achieved through the destructive interference of two resonators' transmission responses, while the matching of their averaged impedances to that of air implies no backscattering, thereby leading to total absorption. Two examples, both using decorated membrane resonators (DMRs) as the basic units, are presented. The first is a flat panel comprising a DMR and a pair of coupled DMRs, while the second one is a ventilated short tube containing a DMR in conjunction with a sidewall DMR backed by a cavity. In both examples, near perfect absorption, up to 99.7%, has been observed with the airborne wavelength up to 1.2 m, which is at least an order of magnitude larger than the composite absorber. Excellent agreement between theory and experiment is obtained.

  12. Sound absorption of microperforated panels inside compact acoustic enclosures

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Cheng, Li

    2016-01-01

    This paper investigates the sound absorption effect of microperforated panels (MPPs) in small-scale enclosures, an effort stemming from the recent interests in using MPPs for noise control in compact mechanical systems. Two typical MPP backing cavity configurations (an empty backing cavity and a honeycomb backing structure) are studied. Although both configurations provide basically the same sound absorption curves from standard impedance tube measurements, their in situ sound absorption properties, when placed inside a small enclosure, are drastically different. This phenomenon is explained using a simple system model based on modal analyses. It is shown that the accurate prediction of the in situ sound absorption of the MPPs inside compact acoustic enclosures requires meticulous consideration of the configuration of the backing cavity and its coupling with the enclosure in front. The MPP structure should be treated as part of the entire system, rather than an absorption boundary characterized by the surface impedance, calculated or measured in simple acoustic environment. Considering the spatial matching between the acoustic fields across the MPP, the possibility of attenuating particular enclosure resonances by partially covering the enclosure wall with a properly designed MPP structure is also demonstrated.

  13. Acoustic Power Absorption and its Relation to Vector Magnetic Field of a Sunspot

    NASA Astrophysics Data System (ADS)

    Gosain, S.; Mathew, S. K.; Venkatakrishnan, P.

    2011-02-01

    The distribution of acoustic power over sunspots shows an enhanced absorption near the umbra - penumbra boundary. Previous studies revealed that the region of enhanced absorption coincides with the region of strongest transverse potential field. The aim of this paper is to i) utilize the high-resolution vector magnetograms derived using Hinode SOT/SP observations and study the relationship between the vector magnetic field and power absorption and ii) study the variation of power absorption in sunspot penumbrae due to the presence of spine-like radial structures. It is found that i) both potential and observed transverse fields peak at a similar radial distance from the center of the sunspot, and ii) the magnitude of the transverse field, derived from Hinode observations, is much larger than the potential transverse field derived from SOHO/MDI longitudinal-field observations. In the penumbra, the radial structures called spines (intra-spines) have stronger (weaker) field strength and are more vertical (horizontal). The absorption of acoustic power in the spine and intra-spine shows different behavior, with the absorption being larger in the spine as compared to the intra-spine.

  14. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  15. Equivalence of the Boson Peak in Glasses to the Transverse Acoustic van Hove Singularity in Crystals

    SciTech Connect

    Chumakov, A. I.; Monaco, G.; Monaco, A.; Crichton, W. A.; Bosak, A.; Rueffer, R.; Meyer, A.; Kargl, F.; Comez, L.; Fioretto, D.; Giefers, H.; Roitsch, S.; Wortmann, G.; Manghnani, M. H.; Hushur, A.; Balogh, J.; Williams, Q.; Parlinski, K.; Jochym, P.; Piekarz, P.

    2011-06-03

    We compare the atomic dynamics of the glass to that of the relevant crystal. In the spectra of inelastic scattering, the boson peak of the glass appears higher than the transverse acoustic (TA) singularity of the crystal. However, the density of states shows that they have the same number of states. Increasing pressure causes the transformation of the boson peak of the glass towards the TA singularity of the crystal. Once corrected for the difference in the elastic medium, the boson peak matches the TA singularity in energy and height. This suggests the identical nature of the two features.

  16. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3

  17. A sound absorptive element comprising an acoustic resonance nanofibrous membrane.

    PubMed

    Kalinova, Klara

    2015-01-01

    As absorption of sound of lower frequencies is quite problematic with fibrous material made up of coarser fibers, development of highly efficient sound absorption material is called for. This is why this work deals with the development of new high sound absorption material. To absorb the low frequencies, especially the structures based on resonance principle of nanofibrous layers are used, when through resonance of some elements the acoustic energy is transferred into thermal energy. The goal of the invention is achieved by a sound absorbing means which contains resonance membrane formed by a layer of polymeric nanofibers, which is attached to a frame. For production of nanofibrous membranes, the cord electrospinning was used. The resonance membrane was then, upon impact of sound waves of low frequency, brought into forced vibrations, whereby the kinetic energy of the membrane was converted into thermal energy by friction of individual nanofibers, by the friction of the membrane with ambient air and possibly with other layers of material arranged in its proximity, and some of the energy was also transmitted to the frame, through which the vibrations of the resonance membrane were damped. The density and shape of the mesh of frame formations determine the resonance frequency of the acoustic means. The goal of the invention is therefore to eliminate or at least reduce the disadvantages of the present state of the art and to propose sound absorbing means that would be capable of absorbing, with good results sounds in as broadest frequency range as possible. Here, we also discussed some patents relevant to the topic. PMID:25986230

  18. A sound absorptive element comprising an acoustic resonance nanofibrous membrane.

    PubMed

    Kalinova, Klara

    2015-01-01

    As absorption of sound of lower frequencies is quite problematic with fibrous material made up of coarser fibers, development of highly efficient sound absorption material is called for. This is why this work deals with the development of new high sound absorption material. To absorb the low frequencies, especially the structures based on resonance principle of nanofibrous layers are used, when through resonance of some elements the acoustic energy is transferred into thermal energy. The goal of the invention is achieved by a sound absorbing means which contains resonance membrane formed by a layer of polymeric nanofibers, which is attached to a frame. For production of nanofibrous membranes, the cord electrospinning was used. The resonance membrane was then, upon impact of sound waves of low frequency, brought into forced vibrations, whereby the kinetic energy of the membrane was converted into thermal energy by friction of individual nanofibers, by the friction of the membrane with ambient air and possibly with other layers of material arranged in its proximity, and some of the energy was also transmitted to the frame, through which the vibrations of the resonance membrane were damped. The density and shape of the mesh of frame formations determine the resonance frequency of the acoustic means. The goal of the invention is therefore to eliminate or at least reduce the disadvantages of the present state of the art and to propose sound absorbing means that would be capable of absorbing, with good results sounds in as broadest frequency range as possible. Here, we also discussed some patents relevant to the topic.

  19. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    PubMed

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications. PMID:27143336

  20. Twin-peaks absorption spectra of excess electron in ionic liquids

    NASA Astrophysics Data System (ADS)

    Musat, Raluca M.; Kondoh, Takafumi; Yoshida, Yoichi; Takahashi, Kenji

    2014-07-01

    The solvated electron in room temperature ionic liquids (RTILs) has been the subject of several investigations and several reports exist on its nature and absorption spectrum. These studies concluded that the solvated electron exhibits an absorption spectrum peaking in the 1000-1400 nm region; a second absorption band peaking in the UV region has been assigned to the hole or dication radicals simultaneously formed in the system. Here we report on the fate of the excess electron in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, P14+/NTf2- using nanosecond pulse radiolysis. Scavenging experiments allowed us to record and disentangle the complex spectrum measured in P14+/NTf2-. We identified a bi-component absorption spectrum, due to the solvated electron, the absorption maxima located at 1080 nm and around 300 nm, as predicted by previous ab-initio molecular dynamics simulations for the dry excess electron. We also measured the spectra using different ionic liquids and confirmed the same feature of two absorption peaks. The present results have important implications for the characterization of solvated electrons in ionic liquids and better understanding of their structure and reactivity.

  1. Acoustic excitations in glassy sorbitol and their relation with the fragility and the boson peak

    NASA Astrophysics Data System (ADS)

    Ruta, B.; Baldi, G.; Scarponi, F.; Fioretto, D.; Giordano, V. M.; Monaco, G.

    2012-12-01

    We report a detailed analysis of the dynamic structure factor of glassy sorbitol by using inelastic X-ray scattering and previously measured light scattering data [B. Ruta, G. Monaco, F. Scarponi, and D. Fioretto, Philos. Mag. 88, 3939 (2008), 10.1080/14786430802317586]. The thus obtained knowledge on the density-density fluctuations at both the mesoscopic and macroscopic length scale has been used to address two debated topics concerning the vibrational properties of glasses. The relation between the acoustic modes and the universal boson peak (BP) appearing in the vibrational density of states of glasses has been investigated, also in relation with some recent theoretical models. Moreover, the connection between the elastic properties of glasses and the slowing down of the structural relaxation process in supercooled liquids has been scrutinized. For what concerns the first issue, it is here shown that the wave vector dependence of the acoustic excitations can be used, in sorbitol, to quantitatively reproduce the shape of the boson peak, supporting the relation between BP and acoustic modes. For what concerns the second issue, a proper study of elasticity over a wide spatial range is shown to be fundamental in order to investigate the relation between elastic properties and the slowing down of the dynamics in the corresponding supercooled liquid phase.

  2. Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves

    SciTech Connect

    Wei, Pengjiang; Croënne, Charles; Tak Chu, Sai; Li, Jensen

    2014-03-24

    We investigate tunable acoustic absorption enabled by the coherent control of input waves. It relies on coherent perfect absorption originally proposed in optics. By designing appropriate acoustic metamaterial structures with resonating effective bulk modulus or density, we show that complete absorption of incident waves impinging on the metamaterial can be achieved for either symmetrical or anti-symmetrical inputs in the forward and backward directions. By adjusting the relative phase between the two incident beams, absorption can be tuned effectively from unity to zero, making coherent control useful in applications like acoustic modulators, noise controllers, transducers, and switches.

  3. REMOVING BARYON-ACOUSTIC-OSCILLATION PEAK SHIFTS WITH LOCAL DENSITY TRANSFORMS

    SciTech Connect

    McCullagh, Nuala; Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan

    2013-01-20

    Large-scale bulk flows in the universe distort the initial density field, broadening the baryon-acoustic-oscillation (BAO) feature that was imprinted when baryons were strongly coupled to photons. Additionally, there is a small shift inward in the peak of the conventional overdensity correlation function, a mass-weighted statistic. This shift occurs when high-density peaks move toward each other. We explore whether this shift can be removed by applying to the density field a transform (such as a logarithm) that gives fairer statistical weight to fluctuations in underdense regions. Using configuration-space perturbation theory in the Zel'dovich approximation, we find that the log-density correlation function shows a much smaller inward shift in the position of the BAO peak at low redshift than is seen in the overdensity correlation function. We also show that if the initial, Lagrangian density of matter parcels could be estimated at their Eulerian positions, giving a displaced-initial-density field, its peak shift would be even smaller. In fact, a transformed field that accentuates underdensities, such as the reciprocal of the density, pushes the peak the other way, outward. In our model, these shifts in the peak position can be attributed to shift terms, involving the derivative of the linear correlation function, that entirely vanish in this displaced-initial-density field.

  4. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Yang; Wu, Ying; Zhang, Xiao-Liu; Ni, Xu; Chen, Ze-Guo; Lu, Ming-Hui; Chen, Yan-Feng

    2013-10-01

    We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  5. Communication: High-frequency acoustic excitations and boson peak in glasses: A study of their temperature dependence

    NASA Astrophysics Data System (ADS)

    Ruta, B.; Baldi, G.; Giordano, V. M.; Orsingher, L.; Rols, S.; Scarponi, F.; Monaco, G.

    2010-07-01

    The results of a combined experimental study of the high-frequency acoustic dynamics and of the vibrational density of states (VDOS) as a function of temperature in a glass of sorbitol are reported here. The excess in the VDOS at ˜4.5 meV over the Debye, elastic continuum prediction (boson peak) is found to be clearly related to anomalies observed in the acoustic dispersion curve in the mesoscopic wavenumber range of few nm-1. The quasiharmonic temperature dependence of the acoustic dispersion curves offers a natural explanation for the observed scaling of the boson peak with the elastic medium properties.

  6. Reflection and Scattering of Acoustical Waves from a Discontinuity in Absorption

    NASA Astrophysics Data System (ADS)

    Jones, J. P.; Leeman, S.; Nolan, E.; Lee, D.

    The reflection and transmission of a plane acoustical wave from a planar boundary at the interface between two homogeneous media of different acoustical properties is a classical problem in acoustics that has served as a basis for many developments in acoustics for over 100 years. This problem, detailed in virtually every textbook on acoustics, provides us with the acoustical analogue to Snell's Law in optics and gives us correspondingly simple results. Classical acoustics predicts that a reflection from a boundary occurs only if the characteristic acoustical impedances of the two media are different. Here we show that a reflection also occurs if the media have the same impedances but different absorption coefficients. Our analysis yields some surprising results. For example, a reflection will occur at a discontinuity in absorption even if the impedance is uniform and continuous across the interface. In addition, a discontinuity in impedance at an interface between two media that have constant and equal, but non-zero absorption, results in a reflection coefficient that is dependent on absorption as well as impedance. In general, reflection coefficients now become frequency dependent. To experimentally test our results, we measured the reflection at the interface between water and castor oil, two liquids with similar impedances but very different absorption coefficients. Measurement of the reflection coefficient between 1 and 50 MHz demonstrated a frequency dependence that was in good agreement with our analysis.

  7. Identification of infrared absorption peaks of amorphous silicon-carbon alloy by thermal annealing

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Liang; Tsai, Hsiung-Kuang; Lee, Si-Chen; Sah, Wen-Jyh; Tzeng, Wen-Jer

    1987-12-01

    Amorphous silicon-carbon hydrogen alloy was prepared by radio frequency glow discharge decomposition of a silane-methane mixture. The infrared absorption spectra were measured at various stages of thermal annealing. By observing the change of relative intensities between these peaks the hydrogen bonding responsible for the absorption peaks could be assigned more accurately, for example, the stretching mode of monohydride Si-H is determined by its local environment, which supports H. Wagner's and W. Beyer's results [Solid State Commun. 48, 585 (1983)] but is inconsistent with the commonly believed view. It is also found that a significant fraction of carbon atoms are introduced into the film in -CH3 configuration which forms a local void and enhances the formation of polysilane chain and dangling bond defects. Only after high-temperature annealing are the hydrogen atoms driven out, and Si and C start to form a better silicon carbide network.

  8. Absorption and impedance boundary conditions for phased geometrical-acoustics methods.

    PubMed

    Jeong, Cheol-Ho

    2012-10-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been developed on which boundary condition produces accurate results. In this study, various boundary conditions in terms of normal, random, and field incidence absorption coefficients and normal incidence surface impedance are used in a phased beam tracing model, and the simulated results are validated with boundary element solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. Effects of the neglect of reflection phase shift are also investigated. It is concluded that the impedance, random incidence, and field incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials.

  9. Investigation of Hydraulic Fracture Propagation Using a Post-Peak Control System Coupled with Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Chen, Li-Hsien; Chen, Wei-Chih; Chen, Yao-Chung; Benyamin, Leo; Li, An-Jui

    2015-05-01

    This study investigates the fracture mechanism of fluid coupled with a solid resulting from hydraulic fracture. A new loading machine was designed to improve upon conventional laboratory hydraulic fracture testing and to provide a means of better understanding fracture behavior of solid media. Test specimens were made of cement mortar. An extensometer and acoustic emission (AE) monitoring system recorded the circumferential deformation and crack growth location/number during the test. To control the crack growth at the post-peak stage the input fluid rate can be adjusted automatically according to feedback from the extensometer. The complete stress-deformation curve, including pre- and post-peak stages, was therefore obtained. The crack extension/growth developed intensively after the applied stress reached the breakdown pressure. The number of cracks recorded by the AE monitoring system was in good agreement with the amount of deformation (expansion) recorded by the extensometer. The results obtained in this paper provide a better understanding of the hydraulic fracture mechanism which is useful for underground injection projects.

  10. Disorder-induced absorption of far-infrared waves by acoustic modes in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Nenashev, A. V.; Wiemer, M.; Koch, M.; Dvurechenskii, A. V.; Gebhard, F.; Baranovskii, S. D.

    2016-08-01

    A mechanism of light absorption at THz frequencies in nematic liquid crystals based on intermolecular dynamics is proposed. In this mechanism, the energy conservation is supplied by acoustic phonons, whereas momentum conservation is provided by static spatial fluctuations of the director field. The mechanism predicts a continuous absorption spectrum in a broad frequency range.

  11. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    SciTech Connect

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-11-20

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  12. THERMAL ABSORPTION AS THE CAUSE OF GIGAHERTZ-PEAKED SPECTRA IN PULSARS AND MAGNETARS

    SciTech Connect

    Lewandowski, Wojciech; Rożko, Karolina; Kijak, Jarosław; Melikidze, George I.

    2015-07-20

    We present a model that explains the observed deviation of the spectra of some pulsars and magnetars from the power-law spectra that are seen in the bulk of the pulsar population. Our model is based on the assumption that the observed variety of pulsar spectra can be naturally explained by the thermal free–free absorption that takes place in the surroundings of the pulsars. In this context, the variety of the pulsar spectra can be explained according to the shape, density, and temperature of the absorbing media and the optical path of the line of sight across it. We have put specific emphasis on the case of the radio magnetar SGR J1745–2900 (also known as the Sgr A* magnetar), modeling the rapid variations of the pulsar spectrum after the outburst of 2013 April as due to the free–free absorption of the radio emission in the electron material ejected during the magnetar outburst. The ejecta expands with time and consequently the absorption rate decreases and the shape of the spectrum changes in such a way that the peak frequency shifts toward the lower radio frequencies. In the hypothesis of an absorbing medium, we also discuss the similarity between the spectral behavior of the binary pulsar B1259–63 and the spectral peculiarities of isolated pulsars.

  13. Measuring the acoustic absorption coefficient in biological tissue specimens using ultrasonic phase conjugation

    NASA Astrophysics Data System (ADS)

    Smagin, N. V.; Krutyansky, L. M.; Zelenova, Z. V.; Brysev, A. P.

    2014-03-01

    Acoustic absorption has been measured in a series of biological tissue specimens—porcine muscle, renal and fat tissues—by the standard insert-substitution method, as well as by ultrasonic phase conjugation. Comparison of the experimental results and revealed differences confirm the promise of using phase conjugate waves to measure acoustic losses in biological objects. It is demonstrated that in inhomogeneous tissues, the phase conjugation method makes it possible to obtain a more reliable estimate of dissipative losses.

  14. Modeling scale-dependent bias on the baryonic acoustic scale with the statistics of peaks of Gaussian random fields

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Crocce, Martin; Scoccimarro, Roman; Sheth, Ravi K.

    2010-11-01

    Models of galaxy and halo clustering commonly assume that the tracers can be treated as a continuous field locally biased with respect to the underlying mass distribution. In the peak model pioneered by Bardeen et al. [Astrophys. J. 304, 15 (1986)ASJOAB0004-637X10.1086/164143], one considers instead density maxima of the initial, Gaussian mass density field as an approximation to the formation site of virialized objects. In this paper, the peak model is extended in two ways to improve its predictive accuracy. First, we derive the two-point correlation function of initial density peaks up to second order and demonstrate that a peak-background split approach can be applied to obtain the k-independent and k-dependent peak bias factors at all orders. Second, we explore the gravitational evolution of the peak correlation function within the Zel’dovich approximation. We show that the local (Lagrangian) bias approach emerges as a special case of the peak model, in which all bias parameters are scale independent and there is no statistical velocity bias. We apply our formulas to study how the Lagrangian peak biasing, the diffusion due to large scale flows, and the mode coupling due to nonlocal interactions affect the scale dependence of bias from small separations up to the baryon acoustic oscillation (BAO) scale. For 2σ density peaks collapsing at z=0.3, our model predicts a ˜5% residual scale-dependent bias around the acoustic scale that arises mostly from first order Lagrangian peak biasing (as opposed to second order gravity mode coupling). We also search for a scale dependence of bias in the large scale autocorrelation of massive halos extracted from a very large N-body simulation provided by the MICE Collaboration. For halos with mass M≳1014M⊙/h, our measurements demonstrate a scale-dependent bias across the BAO feature which is very well reproduced by a prediction based on the peak model.

  15. An Evaluation of the Additional Acoustic Power Needed to Overcome the Effects of a Test-Articles Absorption During Reverberant Chamber Acoustic Testing of Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.

    2014-01-01

    It is important to realize that some test-articles may have significant sound absorption that may challenge the acoustic power capabilities of a test facility. Therefore, to mitigate this risk of not being able to meet the customers target spectrum, it is prudent to demonstrate early-on an increased acoustic power capability which compensates for this test-article absorption. This paper describes a concise method to reduce this risk when testing aerospace test-articles which have significant absorption. This method was successfully applied during the SpaceX Falcon 9 Payload Fairing acoustic test program at the NASA Glenn Research Center Plum Brook Stations RATF.

  16. Surface acoustic admittance and absorption of highly porous, layered, fibrous materials

    NASA Technical Reports Server (NTRS)

    Tesar, J. S.; Lambert, R. F.

    1984-01-01

    Some acoustic properties of Kevlar-29 - a fine fibered, layered material is investigated. Kevlar is characterized by very high strength, uniform filaments arranged in a parallel batt where most filaments are random in the x-y plane but ordered as planes in the z direction. For experimental purposes, volume porosity, static flow resistance and mean filament diameter are used to identify the material. To determine the acoustic surface admittance of Kevlar, batts of the material are cut into small pads and placed into a standing wave tube terminated by a rigid brass plug. The attenuation and relative phase shift are recorded at each frequency in the range of 50 to 6000 Hz. Normalized conductance and susceptance are combined to form the acoustic absorption coefficient. The data are compared with theory by plotting the normalized admittance and normal incident absorption coefficient versus cyclic frequency.

  17. Experimental investigation of sound absorption of acoustic wedges for anechoic chambers

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Golubev, A. Yu.; Zverev, A. Ya.; Makashov, S. Yu.; Palchikovskiy, V. V.; Sobolev, A. F.; Chernykh, V. V.

    2015-09-01

    The results of measuring the sound absorption by acoustic wedges, which were performed in AC-3 and AC-11 reverberation chambers at the Central Aerohydrodynamic Institute (TsAGI), are presented. Wedges of different densities manufactured from superfine basaltic and thin mineral fibers were investigated. The results of tests of these wedges were compared to the sound absorption of wedges of the operating AC-2 anechoic facility at TsAGI. It is shown that basaltic-fiber wedges have better sound-absorption characteristics than the investigated analogs and can be recommended for facing anechoic facilities under construction.

  18. WE-D-BRF-02: Acoustic Signal From the Bragg Peak for Range Verification in Proton Therapy

    SciTech Connect

    Reinhardt, S; Assmann, W; Fink, A; Thirolf, P; Parodi, K; Kellnberger, S; Omar, M; Ntziachristos, V; Gaebisch, C; Moser, M; Dollinger, G; Sergiadis, G

    2014-06-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams. Aim of this work is to study the feasibility of determining the ion range with sub-mm accuracy by use of high frequency ultrasonic (US) transducers and to image the Bragg peak by tomography. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity, length and repetition rate. The acoustic signal of single proton pulses was measured by different PZT-based US detectors (3.5 MHz and 10 MHz central frequencies). For tomography a 64 channel US detector array was used and moved along the ion track by a remotely controlled motor stage. Results: A clear signal of the Bragg peak was visible for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Range measurements were reproducible within +/− 20 micrometer and agreed well with Geant4 simulations. The tomographic reconstruction does not only allow to measure the ion range but also the beam spot size at the Bragg peak position. Conclusion: Range verification by acoustic means is a promising new technique for treatment modalities where the tumor can be localized by US imaging. Further improvement of sensitivity is required to account for higher attenuation of the US signal in tissue, as well as lower energy density in the Bragg peak in realistic treatment cases due to higher particle energy and larger spot sizes. Nevertheless, the acoustic range verification approach could offer the possibility of combining anatomical US imaging with Bragg Peak imaging in the near future. The work was funded by the DFG cluster of excellence Munich Centre for Advanced Photonics (MAP)

  19. Control of acoustic absorption in one-dimensional scattering by resonant scatterers

    NASA Astrophysics Data System (ADS)

    Merkel, A.; Theocharis, G.; Richoux, O.; Romero-García, V.; Pagneux, V.

    2015-12-01

    We experimentally report perfect acoustic absorption through the interplay of the inherent losses and transparent modes with high Q factor. These modes are generated in a two-port, one-dimensional waveguide, which is side-loaded by isolated resonators of moderate Q factor. In symmetric structures, we show that in the presence of small inherent losses, these modes lead to coherent perfect absorption associated with one-sided absorption slightly larger than 0.5. In asymmetric structures, near perfect one-sided absorption is possible (96%) with a deep sub-wavelength sample ( λ / 28 , where λ is the wavelength of the sound wave in the air). The control of strong absorption by the proper tuning of the radiation leakage of few resonators with weak losses will open possibilities in various wave-control devices.

  20. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube.

    PubMed

    Murphy, William J; Fackler, Cameron J; Berger, Elliott H; Shaw, Peter B; Stergar, Mike

    2015-01-01

    Impulse peak insertion loss (IPIL) was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF). Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL) were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB), 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH) ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs ® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH) ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL.

  1. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube

    PubMed Central

    Murphy, William J.; Fackler, Cameron J.; Berger, Elliott H.; Shaw, Peter B.; Stergar, Mike

    2015-01-01

    Impulse peak insertion loss (IPIL) was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF). Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL) were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB), 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH) ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH) ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL. PMID:26356380

  2. Relationship between peak spatial-averaged specific absorption rate and peak temperature elevation in human head in frequency range of 1-30 GHz

    NASA Astrophysics Data System (ADS)

    Morimoto, Ryota; Laakso, Ilkka; De Santis, Valerio; Hirata, Akimasa

    2016-07-01

    This study investigates the relationship between the peak temperature elevation and the peak specific absorption rate (SAR) averaged over 10 g of tissue in human head models in the frequency range of 1-30 GHz. As a wave source, a half-wave dipole antenna resonant at the respective frequencies is located in the proximity of the pinna. The bioheat equation is used to evaluate the temperature elevation by employing the SAR, which is computed by electromagnetic analysis, as a heat source. The computed SAR is post-processed by calculating the peak spatial-averaged SAR with six averaging algorithms that consider different descriptions provided in international guidelines and standards, e.g. the number of tissues allowed in the averaging volume, different averaging shapes, and the consideration of the pinna. The computational results show that the SAR averaging algorithms excluding the pinna are essential when correlating the peak temperature elevation in the head excluding the pinna. In the averaging scheme considering an arbitrary shape, for better correlation, multiple tissues should be included in the averaging volume rather than a single tissue. For frequencies higher than 3-4 GHz, the correlation for peak temperature elevation in the head excluding the pinna is modest for the different algorithms. The 95th percentile value of the heating factor as well as the mean and median values derived here would be helpful for estimating the possible temperature elevation in the head.

  3. Relationship between peak spatial-averaged specific absorption rate and peak temperature elevation in human head in frequency range of 1–30 GHz

    NASA Astrophysics Data System (ADS)

    Morimoto, Ryota; Laakso, Ilkka; De Santis, Valerio; Hirata, Akimasa

    2016-07-01

    This study investigates the relationship between the peak temperature elevation and the peak specific absorption rate (SAR) averaged over 10 g of tissue in human head models in the frequency range of 1–30 GHz. As a wave source, a half-wave dipole antenna resonant at the respective frequencies is located in the proximity of the pinna. The bioheat equation is used to evaluate the temperature elevation by employing the SAR, which is computed by electromagnetic analysis, as a heat source. The computed SAR is post-processed by calculating the peak spatial-averaged SAR with six averaging algorithms that consider different descriptions provided in international guidelines and standards, e.g. the number of tissues allowed in the averaging volume, different averaging shapes, and the consideration of the pinna. The computational results show that the SAR averaging algorithms excluding the pinna are essential when correlating the peak temperature elevation in the head excluding the pinna. In the averaging scheme considering an arbitrary shape, for better correlation, multiple tissues should be included in the averaging volume rather than a single tissue. For frequencies higher than 3–4 GHz, the correlation for peak temperature elevation in the head excluding the pinna is modest for the different algorithms. The 95th percentile value of the heating factor as well as the mean and median values derived here would be helpful for estimating the possible temperature elevation in the head.

  4. Novel limiting circle theory in acoustic wave scattering and absorption

    NASA Astrophysics Data System (ADS)

    Huang, Changzheng

    Wave scattering theory is the basis for many key technologies that have important military and commercial applications. The familiar examples are radar, sonar, and various ultrasound instruments commonly used in remote sensing, target identification, non-destructive evaluation, medical diagnosis, and many other areas. Their mathematical model involves the solution of the so- called inverse scattering problem where an incident wave is used to probe a remote or inaccessible object. From the scattered field measurement, the shape and/or the material composition of the object can be determined. A new wave scattering theory, termed limiting circle theory (LCT), has been developed in this dissertation based on a novel approach of decomposing the wave scattering matrix. LCT has rigorously proved that the scattered wave field from any penetrable object (of cylinder and sphere geometries) is composed of three contributions: a rigid background, a soft background, and a pure resonance. This is a significant modification to the existing resonance scattering theory (RST) which states that the scattered field is made up of only two components: a proper background (either rigid or soft), and a pure resonance. LCT formalism led to the discovery of the limiting circle patterns associated with all normal modes or partial waves. These patterns provide a clear understanding of the resonance behavior such as the resonance period and the resonance intensity. The analytical LCT approach could also be the key to solving the background problems for shell structures that have remained unsolved for many years in acoustics.

  5. A practical acoustical absorption analysis of coir fiber based on rigid frame modeling

    NASA Astrophysics Data System (ADS)

    Ayub, Md.; Nor, Mohd Jailani Mohd; Fouladi, Mohammad Hosseini; Zulkifli, Rozli; Amin, Nowshad

    2012-03-01

    An analytical study based on rigid frame model is demonstrated to evaluate the acoustic absorption of coir fiber. Effects of different conditions such as combination of air gap and perforated plate (PP) are studied in this work. Materials used here are treated as rigid rather than elastic, since the flow resistivity of coir fiber is very low. The well-known rigid frame Johnson-Allard equivalent-fluid model is applied to obtain the acoustic impedance of single layer coir fiber. Atalla and Sgard model is employed to estimate the surface impedance of PP. Acoustic transmission approach (ATA) is utilized for adding various consecutive layers in multilayer structure. Models are examined in different conditions such as single layer coir fiber, coir fiber backed with air gap, single layer PP in combination with coir fiber and air gap. Experiments are conducted in impedance tube on normal incidence sound absorption to validate the results. Results from the measurement are found to be in well agreement with the theoretical absorption coefficients. The performance of the rigid frame modeling method is checked more specifically in all conditions, by the mean prediction error rate of normal incidence sound absorption coefficients. Comparison between the measured absorption coefficients and predicted by rigid frame method shows discrepancy lower than 20 and 15% for most of the conditions in the frequency range of 0.2-1.5 and 1.5-5 kHz, respectively. Moreover, acoustic absorption of various single and multilayer structures is compared with the simpler empirical methods such as Delany-Bazley and Miki model; and complicated method such as Biot-Allard Model and Allard Transfer Function (TF) method. Comparisons show that the presented method offers a better accuracy of the results than the empirical models. Subsequently, it can provide almost same absorption plot with Biot-Allard model (single layer combination) and TF method (multilayer combination) proving it to be a

  6. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies

    SciTech Connect

    Eisenstein, Daniel J.; Zehavi, Idit; Hogg, David W.; Scoccimarro, Roman; Blanton, Michael R.; Nichol, Robert C.; Scranton, Ryan; Seo, Hee-Jong; Tegmark, Max; Zheng, Zheng; Anderson, Scott F.; Annis, Jim; Bahcall, Neta; Brinkmann, Jon; Burles, Scott; Castander, Francisco J.; Connolly, Andrew; Csabai, Istvan; Doi, Mamoru; Fukugita, Masataka; Frieman, Joshua A.; /Arizona U., Astron. Dept. - Steward Observ. /CCPP, New York /Portsmouth U., ICG /Pittsburgh U. /Pennsylvania U. /MIT /Princeton, Inst. Advanced Study /Washington U., Seattle, Astron. Dept. /Fermilab /Princeton U. Observ. /Apache Point Observ. /Barcelona, IEEC /Eotvos U. /Tokyo U., Inst. Astron. /Tokyo U., ICRR /Chicago U., Astron. Astrophys. Ctr. /Johns Hopkins U. /Naval Observ., Flagstaff /Colorado U., CASA /Baltimore, Space Telescope Sci. /Michigan U.

    2005-01-01

    We present the large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey. The survey region covers 0.72h{sup -3} Gpc{sup 3} over 3816 square degrees and 0.16 < z < 0.47, making it the best sample yet for the study of large-scale structure. We find a well-detected peak in the correlation function at 100h{sup -1} Mpc separation that is an excellent match to the predicted shape and location of the imprint of the recombination-epoch acoustic oscillations on the low-redshift clustering of matter. This detection demonstrates the linear growth of structure by gravitational instability between z {approx} 1000 and the present and confirms a firm prediction of the standard cosmological theory. The acoustic peak provides a standard ruler by which we can measure the ratio of the distances to z = 0.35 and z = 1089 to 4% fractional accuracy and the absolute distance to z = 0.35 to 5% accuracy. From the overall shape of the correlation function, we measure the matter density {Omega}{sub m}h{sup 2} to 8% and find agreement with the value from cosmic microwave background (CMB) anisotropies. Independent of the constraints provided by the CMB acoustic scale, we find {Omega}{sub m} = 0.273 {+-} 0.025 + 0.123(1 + w{sub 0}) + 0.137{Omega}{sub K}. Including the CMB acoustic scale, we find that the spatial curvature is {Omega}{sub K} = -0.010 {+-} 0.009 if the dark energy is a cosmological constant. More generally, our results provide a measurement of cosmological distance, and hence an argument for dark energy, based on a geometric method with the same simple physics as the microwave background anisotropies. The standard cosmological model convincingly passes these new and robust tests of its fundamental properties.

  7. Experiments on hypersonic boundary layer transition on blunt cones with acoustic-absorption coating

    NASA Astrophysics Data System (ADS)

    Shiplyuk, A.; Lukashevich, S.; Bountin, D.; Maslov, A.; Knaus, H.

    2012-01-01

    The laminar-turbulent transition is studied experimentally on a cone with an acoustic-absorption coating and with different nose bluntness in a high-speed flow. The acoustic-absorption coating is a felt metal sheet with a random microstructure. Experiments were carried out on a 1-meter length 7 degree cone at free-stream Mach number M = 8 and zero angle of attack. Locations of the laminar-turbulent transition are detected using heat flux distributions registered by calorimeter sensors. In addition, boundary layer pulsations are measured by means of ultrafast heat flux sensors. It is shown that the laminar-turbulent transition is caused by the second-mode instability, and the laminar run extends as the bluntness is increased. The porous coating effectively suppresses this instability for all tested bluntness values and 1.3-1.85 times extends the laminar run.

  8. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.

    2009-05-01

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 {+-} 1.3%, emissivity reduction 8.2 {+-} 1.4%, and local suppression 68.5 {+-} 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10{sup -5} rad s{sup -1}.

  9. A matched-peak inversion approach for ocean acoustic travel-time tomography

    PubMed

    Skarsoulis

    2000-03-01

    A new approach for the inversion of travel-time data is proposed, based on the matching between model arrivals and observed peaks. Using the linearized model relations between sound-speed and arrival-time perturbations about a set of background states, arrival times and associated errors are calculated on a fine grid of model states discretizing the sound-speed parameter space. Each model state can explain (identify) a number of observed peaks in a particular reception lying within the uncertainty intervals of the corresponding predicted arrival times. The model states that explain the maximum number of observed peaks are considered as the more likely parametric descriptions of the reception; these model states can be described in terms of mean values and variances providing a statistical answer (matched-peak solution) to the inversion problem. A basic feature of the matched-peak inversion approach is that each reception can be treated independently, i.e., no constraints are posed from previous-reception identification or inversion results. Accordingly, there is no need for initialization of the inversion procedure and, furthermore, discontinuous travel-time data can be treated. The matched-peak inversion method is demonstrated by application to 9-month-long travel-time data from the Thetis-2 tomography experiment in the western Mediterranean sea.

  10. An Evaluation of the Additional Acoustic Power Needed to Overcome the Effects of a Test-Article's Absorption During Reverberant Chamber Acoustic Testing of Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.

    2014-01-01

    The exposure of a customer's aerospace test-article to a simulated acoustic launch environment is typically performed in a reverberant acoustic test chamber. The acoustic pre-test runs that will ensure that the sound pressure levels of this environment can indeed be met by a test facility are normally performed without a test-article dynamic simulator of representative acoustic absorption and size. If an acoustic test facility's available acoustic power capability becomes maximized with the test-article installed during the actual test then the customer's environment requirement may become compromised. In order to understand the risk of not achieving the customer's in-tolerance spectrum requirement with the test-article installed, an acoustic power margin evaluation as a function of frequency may be performed by the test facility. The method for this evaluation of acoustic power will be discussed in this paper. This method was recently applied at the NASA Glenn Research Center Plum Brook Station's Reverberant Acoustic Test Facility for the SpaceX Falcon 9 Payload Fairing acoustic test program.

  11. An Evaluation of the Additional Acoustic Power Needed to Overcome the Effects of a Test-Article's Absorption during Reverberant Chamber Acoustic Testing of Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.

    2014-01-01

    The exposure of a customers aerospace test-article to a simulated acoustic launch environment is typically performed in a reverberant acoustic test chamber. The acoustic pre-test runs that will ensure that the sound pressure levels of this environment can indeed be met by a test facility are normally performed without a test-article dynamic simulator of representative acoustic absorption and size. If an acoustic test facilitys available acoustic power capability becomes maximized with the test-article installed during the actual test then the customers environment requirement may become compromised. In order to understand the risk of not achieving the customers in-tolerance spectrum requirement with the test-article installed, an acoustic power margin evaluation as a function of frequency may be performed by the test facility. The method for this evaluation of acoustic power will be discussed in this paper. This method was recently applied at the NASA Glenn Research Center Plum Brook Stations Reverberant Acoustic Test Facility for the SpaceX Falcon 9 Payload Fairing acoustic test program.

  12. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience.

    PubMed

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    "Pure shift" NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording. PMID:27026651

  13. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience.

    PubMed

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    "Pure shift" NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording.

  14. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience

    NASA Astrophysics Data System (ADS)

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    "Pure shift" NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording.

  15. Acoustic contributions of a sound absorbing blanket placed in a double panel structure: absorption versus transmission.

    PubMed

    Doutres, Olivier; Atalla, Noureddine

    2010-08-01

    The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound absorption behavior can affect the performance of the double panel structure.

  16. [Thermoelastic excitation of acoustic waves in biological models under the effect of the high peak-power pulsed electromagnetic radiation of extremely high frequency].

    PubMed

    Gapeev, A B; Rubanik, A V; Pashovkin, T N; Chemeris, N K

    2007-01-01

    The capability of high peak-power pulsed electromagnetic radiation of extremely high frequency (35,27 GHz, pulse widths of 100 and 600 ns, peak power of 20 kW) to excite acoustic waves in model water-containing objects and muscular tissue of animals has been experimentally shown for the first time. The amplitude and duration of excited acoustic pulses are within the limits of accuracy of theoretical assessments and have a complex nonlinear dependence on the energy input of electromagnetic radiation supplied. The velocity of propagation of acoustic pulses in water-containing models and isolated muscular tissue of animals was close to the reference data. The excitation of acoustic waves in biological systems under the action of high peak-power pulsed electromagnetic radiation of extremely high frequency is the important phenomenon, which essentially contributes to the understanding of the mechanisms of biological effects of these electromagnetic fields.

  17. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  18. Acoustic anechoic layers with singly periodic array of scatterers: Computational methods, absorption mechanisms, and optimal design

    NASA Astrophysics Data System (ADS)

    Yang, Hai-Bin; Li, Yue; Zhao, Hong-Gang; Wen, Ji-Hong; Wen, Xi-Sen

    2014-10-01

    The acoustic properties of anechoic layers with a singly periodic array of cylindrical scatterers are investigated. A method combined plane wave expansion and finite element analysis is extended for out-of-plane incidence. The reflection characteristics of the anechoic layers with cavities and locally resonant scatterers are discussed. The backing is a steel plate followed by an air half space. Under this approximate zero transmission backing condition, the reflection reduction is induced by the absorption enhancement. The absorption mechanism is explained by the scattering/absorption cross section of the isolated scatterer. Three types of resonant modes which can induce efficient absorption are revealed. Due to the fact that the frequencies of the resonant modes are related to the size of the scatterers, anechoic layers with scatterers of mixed size can broaden the absorption band. A genetic optimization algorithm is adopted to design the anechoic layer with scatterers of mixed size at a desired frequency band from 2 kHz to 10 kHz for normal incidence, and the influence of the incident angle is also discussed.

  19. Effects of hydration levels on the bandwidth of microwave resonant absorption induced by confined acoustic vibrations

    NASA Astrophysics Data System (ADS)

    Liu, Tzu-Ming; Chen, Hung-Pin; Yeh, Shih-Chia; Wu, Chih-Yu; Wang, Chung-Hsiung; Luo, Tang-Nian; Chen, Yi-Jan; Liu, Shen-Iuan; Sun, Chi-Kuang

    2009-10-01

    We found the hydration levels on the capsid surface of viruses can affect the bandwidth of microwave resonant absorption (MRA) induced by the confined acoustic vibrations (CAV). By decreasing the pH value of solution down to 5.2 or inactivating the capsid proteins, we enhanced the surface hydrophilicity and increased the magnitude of surface potentials. Both of these surface manipulations raised the surface affinity to water molecules and narrowed the bandwidths of CAV-induced MRA. Our results validate the viscoelastic transition of hydration shells.

  20. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  1. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    PubMed Central

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction. PMID:26781863

  2. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators.

    PubMed

    Romero-García, V; Theocharis, G; Richoux, O; Merkel, A; Tournat, V; Pagneux, V

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction. PMID:26781863

  3. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.

  4. Application of wavelet transforms to determine peak shape parameters for interference detection in graphite-furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Sadler, D. A.; Littlejohn, D.; Boulo, P. R.; Soraghan, J. S.

    1998-08-01

    A procedure to quantify the shape of the absorbance-time profile, obtained during graphite furnace atomic absorption spectrometry, has been used to detect interference effects caused by the presence of a concomitant salt. The quantification of the absorption profile is achieved through the use of the Lipschitz regularity, α0, obtained from the wavelet transform of the absorbance-time profile. The temporal position of certain features and their associated values of α0 provide a unique description of the shape of the absorbance-time profile. Changes to the position or values of α0 between standard and sample atomizations may be indicative of uncorrected interference effects. A weak, but linear, dependence was found of the value of α0 upon the analyte concentration for Cr and Cu. The ability of the Lipschitz regularity to detect interference effects was illustrated for Pb, Se and Cu. For Pb, the lowest concentration of NaCl added, 0.005% m/v, changed both the values of α0 and the peak height absorbance. For Se, no change in the peak height and peak area absorbance signals was detected up to a NaCl concentration of 0.25% m/v. The values of the associated Lipschitz regularities were found to be invariant to NaCl concentration up to this value. For Cu, a concentration of 0.05% m/v NaCl reduced the peak height and peak area absorbance signals by approximately 25% and significantly altered the values of α0.

  5. Analysis of acoustic damping in duct terminated by porous absorption materials based on analytical models and finite element simulations

    NASA Astrophysics Data System (ADS)

    Guan Qiming

    Acoustic absorption materials are widely used today to dampen and attenuate the noises which exist almost everywhere and have adverse impact upon daily life of human beings. In order to evaluate the absorption performance of such materials, it is necessary to experimentally determine acoustic properties of absorption materials. Two experimental methods, one is Standing Wave Ratio Method and the other is Transfer-Function Method, which also totally called as Impedance Tube Method, are based on two analytical models people have used to evaluate and validate the data obtained from acoustic impedance analyzers. This thesis first reviews the existing analytical models of previous two experimental methods in the literature by looking at their analytical models, respectively. Then a new analytical model is developed is developed based on One-Microphone Method and Three-Microphone Method, which are two novel experimental approaches. Comparisons are made among these analytical models, and their advantages and disadvantages are discussed.

  6. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations.

  7. Hydrogen Balmer beta: The separation between line peaks for plasma electron density diagnostics and self-absorption test

    NASA Astrophysics Data System (ADS)

    Ivković, Milivoje; Konjević, Nikola; Pavlović, Zoran

    2015-03-01

    We propose a diagnostic technique for the measurement of plasma electron number density, Ne, based on the wavelength separation between peaks, ΔλPS, of hydrogen Balmer beta line, Hβ. In favor of the proposed diagnostic technique we demonstrate high sensitivity of ΔλPS on Ne and low sensitivity on plasma elementary processes and plasma parameters that may distort the line profile. These properties of ΔλPS enable reliable Ne plasma diagnostics in the presence of considerable self-absorption. On the basis of available theoretical data tables for the Hβ line profiles, simple Ne=f(ΔλPS) formulas are proposed. Their validity is experimentally confirmed in a low initial pressure pulsed discharge for the Ne range of (0.2-7)*1023 m-3. The agreement of the proposed formulas with another diagnostic technique is well within 10%. In addition, the difference in Ne values obtained from peak separation and from the Hβ line width is successfully used as a self-absorption test for line profile.

  8. Glass Composition-Dependent Silicate Absorption Peaks in FTIR Spectroscopy: Implications for Measuring Sample Thickness and Molecular H2O

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Nichols, A. R.; Schipper, C. I.; Stewart, R. B.

    2015-12-01

    Fourier-transform infrared spectroscopy (FTIR) is often used to measure the H2O and CO2 contents of volcanic glasses. A key advantage of FTIR over other analytical techniques is that it can reveal not only total H2O concentration but also H2O speciation, i.e. how much H2O is present as molecular H2O (H2Om) and how much as hydroxyl groups (OH) bound to the silicate network. This H2O speciation data can be used to investigate cooling rate and glass transition temperature of volcanic glasses, and to interpret H2O contents of pyroclasts affected by partial bubble resorption during cooling or secondary hydration after deposition. FTIR in transmitted light requires sample wafers polished on both sides of known thickness. Thickness is commonly measured using a micrometer but this may damage fragile samples and in samples with non-uniform thickness, e.g. vesicular samples, it is difficult to position at the exact location of FTIR analysis. Furthermore, in FTIR images or maps of such samples it is impractical to determine the thickness across the whole of the analysed area, resulting either in only a selection of the collected data being processed quantitatively and the rest being unused, or results being presented in terms of absorbance, which does not account for variations in thickness.It is known that FTIR spectra contain absorption peaks related to the glass aluminosilicate network at wavenumbers of ~2000, ~1830 and ~1600 cm-1 [1]. These have been shown to be proportional to sample thickness at the analysis location for one obsidian composition with up to 0.66 wt% H2O [2]. We test whether this calibration can be applied more widely by analysing a range of synthetic and natural glasses (andesitic to rhyolitic) to examine how the position and relative intensities of the different silicate absorption peaks vary with composition and H2O content. Our data show that even minor differences in composition necessitate a unique calibration. Furthermore, importantly we show how

  9. The spectral variability of the GHZ-Peaked spectrum radio source PKS 1718-649 and a comparison of absorption models

    SciTech Connect

    Tingay, S. J.; Macquart, J.-P.; Wayth, R. B.; Trott, C. M.; Emrich, D.; Collier, J. D.; Wong, G. F.; Rees, G.; Stevens, J.; Carretti, E.; Callingham, J. R.; Gaensler, B. M.; McKinley, B.; Briggs, F.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Goeke, R.; and others

    2015-02-01

    Using the new wideband capabilities of the ATCA, we obtain spectra for PKS 1718-649, a well-known gigahertz-peaked spectrum radio source. The observations, between approximately 1 and 10 GHz over 3 epochs spanning approximately 21 months, reveal variability both above the spectral peak at ∼3 GHz and below the peak. The combination of the low- and high-frequency variability cannot be easily explained using a single absorption mechanism, such as free–free absorption or synchrotron self-absorption. We find that the PKS 1718-649 spectrum and its variability are best explained by variations in the free–free optical depth on our line of sight to the radio source at low frequencies (below the spectral peak) and the adiabatic expansion of the radio source itself at high frequencies (above the spectral peak). The optical depth variations are found to be plausible when X-ray continuum absorption variability seen in samples of active galactic nuclei is considered. We find that the cause of the peaked spectrum in PKS 1718-649 is most likely due to free–free absorption. In agreement with previous studies, we find that the spectrum at each epoch of observation is best fit by a free–free absorption model characterized by a power-law distribution of free–free absorbing clouds. This agreement is extended to frequencies below the 1 GHz lower limit of the ATCA by considering new observations with Parkes at 725 MHz and 199 MHz observations with the newly operational Murchison Widefield Array. These lower frequency observations argue against families of absorption models (both free–free and synchrotron self-absorption) that are based on simple homogenous structures.

  10. Dietary supplementation with sodium bicarbonate improves calcium absorption and eggshell quality of laying hens during peak production.

    PubMed

    Jiang, M J; Zhao, J P; Jiao, H C; Wang, X J; Zhang, Q; Lin, H

    2015-01-01

    The advantage of supplemental sodium bicarbonate (NaHCO3) on eggshell quality in laying hens changes with age. Besides increasing calcium (Ca) secretion in the eggshell gland, it may improve Ca absorption in the intestine or kidney. Hy-Line Brown layers (n = 384), 25 weeks of age, were allocated to two treatment groups in two experiments, each of which included 4 replicates of 24 hens. Hens were fed a basal diet (control) or the basal diet containing 3 g NaHCO3 g/kg for 50 or 20 weeks in Experiment 1 or 2, respectively. A 24-h continuous lighting regimen was used to allow hens to consume the dietary supplements during the period of active eggshell formation. In Experiment 1, particularly from 25 to 50 weeks of age, and in Experiment 2, NaHCO3 supplementation favoured hen-d egg production at the expense of lower egg weight. The increased eggshell thickness should have nothing to do with the additional eggshell formation, because of the unchanged egg mass and daily eggshell calcification. At 35 weeks of age in both experiments, NaHCO3 supplementation increased duodenal expression of calbindin-d28k (CaBP-D28k) protein, contributing to higher Ca retention and balance. From 50 to 75 weeks of age in Experiment 1, the hens had little response to NaHCO3 supplementation and showed a negative trend on eggshell thickness and strength. It is concluded that dietary supplementation with 3 g NaHCO3 g/kg improves Ca absorption and eggshell quality of laying hens during the peak but not late production period, with the introduction of continuous lighting.

  11. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 2. On the possibility of light absorption coefficient measurement in a turbid medium from the amplitude of the opto-acoustic signal

    SciTech Connect

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-09-30

    The second part of this work describes the experimental technique of measuring the local light absorption in turbid media. The technique is based on the measurement of the amplitude of an opto-acoustic (OA) signal excited in a turbid medium under the condition of one-sided access to the object under study. An OA transducer is developed to perform the proposed measurement procedure. Experiments are conducted for the turbid media with different optical properties (light absorption and reduced scattering coefficients) and for different diameters of the incident laser beam. It is found that the laser beam diameter can be chosen so that the dependences of the measured OA signal amplitude on the light absorption coefficient coincide upon varying the reduced scattering coefficient by more than twice. The obtained numerical and experimental results demonstrate that the OA method is applicable for measuring the local light absorption coefficient in turbid media, for example, in biological tissues. (measurement of parametrs of laser radiation)

  12. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  13. TU-A-9A-07: X-Ray Acoustic Computed Tomography (XACT): 100% Sensitivity to X-Ray Absorption

    SciTech Connect

    Xiang, L; Ahmad, M; Nikoozadeh, A; Pratx, G; Khuri-Yakub, B; Xing, L

    2014-06-15

    Purpose: To assess whether X-ray acoustic computed tomography (XACT) is more sensitive to X-ray absorption than that of the conventional X-ray imaging. Methods: First, a theoretical model was built to analyze the X-ray absorption sensitivity of XACT imaging and conventional X-ray imaging. Second, an XACT imaging system was developed to evaluate the X-ray induced acoustic signal generation as well as the sensitivity improvement over transmission x-ray imaging. Ultra-short x-ray pulses (60-nanosecond) were generated from an X-ray source operated at the energy of 150 kVp with a 10-Hz repetition rate. The X-ray pulse was synchronized with the acoustic detection via a x-ray scintillation triggering to acquire the X-ray induced acoustic signal. Results: Theoretical analysis shows that X-ray induced acoustic signal is sensitive only to the X-ray absorption, while completely insensitive to out the X-ray scattering and fluorescence. XACT has reduced background and increased contrast-to-noise ratio, and therefore has increased sensitivity compared to transmission x-ray imaging. For a 50-μm size, gadolinium insertion in tissue exposed to 40 keV X-rays; the sensitivity of XACT imaging is about 28.9 times higher than that of conventional X-ray imaging. Conclusion: X-ray acoustic computer tomography (XACT) as a new imaging modality combines X-ray absorption contrast and high ultrasonic resolution in a single modality. It is feasible to improve the imaging sensitivity with XACT imaging compared with conventional X-ray imaging. Taking advantage of the high ultrasonic resolution, it is possible to perform 3-D imaging with a single x-ray pulse with arrays of transducers without any mechanical motion of the imaging system. This single-shot capability offers the potential of reducing radiation dose by a factor of 1000, and imaging 100 times faster when compared to the conventional X-ray CT, and thus revolutionizing x-ray imaging applications in medicine and biology. The authors

  14. Theoretical Estimation of the Acoustic Energy Generation and Absorption Caused by Jet Oscillation

    NASA Astrophysics Data System (ADS)

    Takahashi, Kin'ya; Iwagami, Sho; Kobayashi, Taizo; Takami, Toshiya

    2016-04-01

    We investigate the energy transfer between the fluid field and acoustic field caused by a jet driven by an acoustic particle velocity field across it, which is the key to understanding the aerodynamic sound generation of flue instruments, such as the recorder, flute, and organ pipe. Howe's energy corollary allows us to estimate the energy transfer between these two fields. For simplicity, we consider the situation such that a free jet is driven by a uniform acoustic particle velocity field across it. We improve the semi-empirical model of the oscillating jet, i.e., exponentially growing jet model, which has been studied in the field of musical acoustics, and introduce a polynomially growing jet model so as to apply Howe's formula to it. It is found that the relative phase between the acoustic oscillation and jet oscillation, which changes with the distance from the flue exit, determines the quantity of the energy transfer between the two fields. The acoustic energy is mainly generated in the downstream area, but it is consumed in the upstream area near the flue exit in driving the jet. This theoretical examination well explains the numerical calculation of Howe's formula for the two-dimensional flue instrument model in our previous work [http://doi.org/10.1088/0169-5983/46/6/061411, Fluid Dyn. Res. 46, 061411 (2014)] as well as the experimental result of Yoshikawa et al. [http://doi.org/10.1016/j.jsv.2012.01.026, J. Sound Vib. 331, 2558 (2012)].

  15. Effects of core position of locally resonant scatterers on low-frequency acoustic absorption in viscoelastic panel

    NASA Astrophysics Data System (ADS)

    Zhong, Jie; Wen, Ji-Hong; Zhao, Hong-Gang; Yin, Jian-Fei; Yang, Hai-Bin

    2015-08-01

    Locally resonant sonic materials, due to their ability to control the propagation of low-frequency elastic waves, have become a promising option for underwater sound absorption materials. In this paper, the finite element method is used to investigate the absorption characteristics of a viscoelastic panel periodically embedded with a type of infinite-long non-coaxially cylindrical locally resonant scatterers (LRSs). The effect of the core position in the coating layer of the LRS on the low-frequency (500 Hz-3000 Hz) sound absorption property is investigated. With increasing the longitudinal core eccentricity e, there occur few changes in the absorptance at the frequencies below 1500 Hz, however, the absorptance above 1500 Hz becomes gradually better and the valid absorption (with absorptance above 0.8) frequency band (VAFB) of the viscoelastic panel becomes accordingly broader. The absorption mechanism is revealed by using the displacement field maps of the viscoelastic panel and the steel slab. The results show two typical resonance modes. One is the overall resonance mode (ORM) caused by steel backing, and the other is the core resonance mode (CRM) caused by LRS. The absorptance of the viscoelastic panel by ORM is induced mainly by the vibration of the steel slab and affected little by core position. On the contrary, with increasing the core eccentricity, the CRM shifts toward high frequency band and decouples with the ORM, leading to two separate absorption peaks and the broadened VAFB of the panel. Project supported by the National Natural Science Foundation of China (Grant No. 51275519).

  16. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  17. On-line spectrophotometric method for monitoring weak residual absorption of CaMoO{sub 4} single crystals near the intrinsic luminescence peak

    SciTech Connect

    Buzanov, O. A.; Kanevskii, V. M.; Kornoukhov, V. N.; Nabatov, B. V.; Nabatov, V. V.; Fedorov, V. A.

    2013-11-15

    The optical and spectral characteristics of isotopically enriched Czochralski-grown {sup 40}Ca{sup 100}MoO{sub 4} single crystals have been investigated. This material is promising for detecting double neutrinoless {beta} decay. The possibility and the technique of spectrophotometric monitoring of weak residual absorption near the intrinsic luminescence peak of this scintillation material, which is designed for developing new-generation detectors of elementary particles, are considered.

  18. Theoretical Estimation of the Acoustic Energy Generation and Absorption Caused by Jet Oscillation

    NASA Astrophysics Data System (ADS)

    Takahashi, Kin'ya; Iwagami, Sho; Kobayashi, Taizo; Takami, Toshiya

    2016-04-01

    We investigate the energy transfer between the fluid field and acoustic field caused by a jet driven by an acoustic particle velocity field across it, which is the key to understanding the aerodynamic sound generation of flue instruments, such as the recorder, flute, and organ pipe. Howe's energy corollary allows us to estimate the energy transfer between these two fields. For simplicity, we consider the situation such that a free jet is driven by a uniform acoustic particle velocity field across it. We improve the semi-empirical model of the oscillating jet, i.e., exponentially growing jet model, which has been studied in the field of musical acoustics, and introduce a polynomially growing jet model so as to apply Howe's formula to it. It is found that the relative phase between the acoustic oscillation and jet oscillation, which changes with the distance from the flue exit, determines the quantity of the energy transfer between the two fields. The acoustic energy is mainly generated in the downstream area, but it is consumed in the upstream area near the flue exit in driving the jet. This theoretical examination well explains the numerical calculation of Howe's formula for the two-dimensional flue instrument model in our previous work [Fluid Dyn. Res. 46, 061411 (2014)] as well as the experimental result of Yoshikawa et al. [J. Sound Vib. 331, 2558 (2012)].

  19. Acoustical study on the impact of sound absorptions, distances of workstations, and height of partitions in open plan offices

    NASA Astrophysics Data System (ADS)

    Utami, Sentagi Sesotya; Al Rochmadi, Nurwachid; Sarwono, R. Sugeng Joko

    2015-09-01

    Low partitions are commonly found in open-plan offices as the boundaries of workstation islands or groups of workstations. This room layout often cause excessive speech intelligibility, which creates work distraction and reduce the quality of speech privacy. Sound absorption, distance between workstations, and height of partitions are factors that were investigated on their impact to the room acoustics condition, referred to ISO 3382-3:2012. Observed room acoustics conditions were speech intelligibility, speech privacy, and distraction to concentrate in work using parameters of T30, C50, and RASTI. Parameters of T30, C50, and RASTI were used to evaluate the speech intelligibility. The level of speech privacy was indicated by parameter of privacy distance (rP). Distraction to concentrate in work was indicated by distraction distance (rD). The results from 2 experimental setups show that sound absorption, distance between workstations, and partitions influenced the level of speech intelligibility, speech privacy, and distraction to concentration at work. The value of C50 decline, by 76.9% and 77.4%, each for scenario A and B. RASTI decline, by 18.7% and 14.8%. Difference in percentage of speech privacy, by 6% and 11%. Difference in percentage of distraction to concentration at work, by 79% and 70%.

  20. Modeling the effects of wind tunnel wall absorption on the acoustic radiation characteristics of propellers

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.

    1986-01-01

    Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a "Gutin" propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.

  1. Concerning the sound insulation of building elements made up of light concretes. [acoustic absorption efficiency calculations

    NASA Technical Reports Server (NTRS)

    Giurgiu, I. I.

    1974-01-01

    The sound insulating capacity of building elements made up of light concretes is considered. Analyzing differentially the behavior of light concrete building elements under the influence of incident acoustic energy and on the basis of experimental measurements, coefficients of correction are introduced into the basic formulas for calculating the sound insulating capacity for the 100-3,2000 Hz frequency band.

  2. Analysis of the acoustic cut-off frequency and high-frequency peaks in six Kepler stars with stochastically excited pulsations

    NASA Astrophysics Data System (ADS)

    Jiménez, A.; García, R. A.; Pérez Hernández, F.; Mathur, S.

    2015-11-01

    Gravito-acoustic modes in the Sun and other stars propagate in resonant cavities with a frequency below a given limit known as the cut-off frequency. At higher frequencies, waves are no longer trapped in the stellar interior and become traveller waves. In this article, we study six pulsating solar-like stars at different evolutionary stages observed by the NASA Kepler mission. These high signal-to-noise targets show a peak structure that extends at very high frequencies and are good candidates for studying the transition region between the modes and interference peaks or pseudo-modes. Following the same methodology successfully applied on Sun-as-a-star measurements, we uncover the existence of pseudo-modes in these stars with one or two dominant interference patterns depending on the evolutionary stage of the star. We also infer their cut-off frequency as the midpoint between the last eigenmode and the first peak of the interference patterns. Using ray theory we show that, while the period of one of the interference patterns is very close to half the large separation, the period of the other interference pattern depends on the time phase of mixed waves, thus carrying additional information on the stellar structure and evolution. Appendix A is available in electronic form at http://www.aanda.org

  3. Measurement of the absorption coefficient of acoustical materials using the sound intensity method

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Crocker, Malcolm J.

    1987-01-01

    In this study the possibility of using the two-microphone sound intensity technique to measure the normal incidence and the random incidence sound absorption coefficient was investigated. The normal incidence absorption coefficient was determined by measuring the intensity incidence on the sample and the intensity reflected by the sample placed in an anechoic chamber. The random incidence absorption coefficient was determined by measuring the intensity incident on the sample and the intensity reflected by the sample placed in a reverberation chamber. Absorption coefficient results obtained by the sound intensity technique were compared with standard techniques, namely the reverberation chamber and the standing wave tube. The major advantages of using the sound intensity technique are that it permits 'in situ' measurements and the absorption coefficient for a large range of frequencies can be obtained from a single measurement.

  4. Acoustic wave absorption as a probe of dynamical geometrical response of fractional quantum Hall liquids

    NASA Astrophysics Data System (ADS)

    Yang, Kun

    2016-04-01

    We show that an acoustic crystalline wave gives rise to an effect similar to that of a gravitational wave to an electron gas. Applying this idea to a two-dimensional electron gas in the fractional quantum Hall regime, this allows for experimental study of its intra-Landau level dynamical response in the long-wavelength limit. To study such response we generalize Haldane's geometrical description of fractional quantum Hall states to situations where the external metric is time dependent. We show that such time-dependent metric (generated by acoustic wave) couples to collective modes of the system, including a quadrapolar mode at long wavelength, and magnetoroton at finite wavelength. Energies of these modes can be revealed in spectroscopic measurements, controlled by strain-induced Fermi velocity anisotropy. We argue that such geometrical probe provides a potentially highly useful alternative probe of quantum Hall liquids, in addition to the usual electromagnetic response.

  5. A method to determine the acoustic reflection and absorption coefficients of porous media by using modal dispersion in a waveguide.

    PubMed

    Prisutova, Jevgenija; Horoshenkov, Kirill; Groby, Jean-Philippe; Brouard, Bruno

    2014-12-01

    The measurement of acoustic material characteristics using a standard impedance tube method is generally limited to the plane wave regime below the tube cut-on frequency. This implies that the size of the tube and, consequently, the size of the material specimen must remain smaller than a half of the wavelength. This paper presents a method that enables the extension of the frequency range beyond the plane wave regime by at least a factor of 3, so that the size of the material specimen can be much larger than the wavelength. The proposed method is based on measuring of the sound pressure at different axial locations and applying the spatial Fourier transform. A normal mode decomposition approach is used together with an optimization algorithm to minimize the discrepancy between the measured and predicted sound pressure spectra. This allows the frequency and angle dependent reflection and absorption coefficients of the material specimen to be calculated in an extended frequency range. The method has been tested successfully on samples of melamine foam and wood fiber. The measured data are in close agreement with the predictions by the equivalent fluid model for the acoustical properties of porous media.

  6. The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum.

    PubMed

    Löhner, Alexander; Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Kelly, Sharon; Cogdell, Richard; Köhler, Jürgen

    2015-01-01

    The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment-protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below. PMID:25150556

  7. The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum.

    PubMed

    Löhner, Alexander; Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Kelly, Sharon; Cogdell, Richard; Köhler, Jürgen

    2015-01-01

    The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment-protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.

  8. Seismic scattering and absorption parameters in the W-Bohemia/Vogtland region from elastic and acoustic radiative transfer theory

    NASA Astrophysics Data System (ADS)

    Gaebler, Peter J.; Eulenfeld, Tom; Wegler, Ulrich

    2015-12-01

    In this study, frequency-dependent seismic scattering and intrinsic attenuation parameters for the crustal structure beneath the W-Bohemia/Vogtland swarm earthquake region close to the border of Czech Republic and Germany are estimated. Synthetic seismogram envelopes are modelled using elastic and acoustic radiative transfer theory. Scattering and absorption parameters are determined by fitting these synthetic envelopes to observed seismogram envelopes from 14 shallow local events from the October 2008 W-Bohemia/Vogtland earthquake swarm. The two different simulation approaches yield similar results for the estimated crustal parameters and show a comparable frequency dependence of both transport mean free path and intrinsic absorption path length. Both methods suggest that intrinsic attenuation is dominant over scattering attenuation in the W-Bohemia/Vogtland region for the investigated epicentral distance range and frequency bands from 3 to 24 Hz. Elastic simulations of seismogram envelopes suggest that forward scattering is required to explain the data, however, the degree of forward scattering is not resolvable. Errors in the parameter estimation are smaller in the elastic case compared to results from the acoustic simulations. The frequency decay of the transport mean free path suggests a random medium described by a nearly exponential autocorrelation function. The fluctuation strength and correlation length of the random medium cannot be estimated independently, but only a combination of the parameters related to the transport mean free path of the medium can be computed. Furthermore, our elastic simulations show, that using our numerical method, it is not possible to resolve the value of the mean free path of the random medium.

  9. Gaseous Absorption and Dispersion of Sound in a Resonant Cylindrical Cavity: AN Acoustic and Photoacoustic Study

    NASA Astrophysics Data System (ADS)

    Beckwith, Clyfe Gordon

    This research investigated the feasibility of accurately measuring Virial coefficients in an acoustically resonant cylindrical cavity. Gases studied were: Argon, Helium, Nitrogen, Carbon Dioxide, and Methane. Parameters considered were: resonant frequencies (f_ {rm r}- also a measure of speed of sound), quality factors (Q), and signal amplitudes. We studied the longitudinal modes smaller than 2000 Hz, at room temperature and at pressures of 200, 500, and 800 mm of Hg. The choice of the longitudinal modes was predetermined by our wish to compare acoustic and photoacoustic resonance techniques of the same mode. The acoustic excitation is limited to the longitudinal modes and is achieved by placing a loudspeaker close to one end of the cavity. Photoacoustically we excite a small concentration of molecular Iodine, mixed in with the buffer gases, by a periodically interrupted Xenon light beam. By increasing the length of the cavity we could decrease the space between the modes of frequency. Our observations focused on the behaviors that (a) f_{rm r} shifted with pressure, (b) the f_{rm r} deviated from the simple laws of harmonics, and (c) the amplitudes for the two techniques varied differently with frequency. Effect (a) is due to the fact that the gases are not "ideal", and due to the presence of boundary layers caused by thermal conduction and viscosity gradients. Effect (b) arises because of the f_{rm r}'s mode dependence, caused by the wave scattering due to imperfect geometrical symmetries. Effect (c) is governed by the coupling factors. All measurements could theoretically be justified to within instrumental error, the only noted discrepancy is the lack of a theoretical mode dependence. We conclude that it is feasible to study the accuracy of Virial coefficients of simple gases provided that the boundary layer loss effects and the mode dependent wave scattering can be quantified; in regions of high pressures and high frequencies the Virial effects dominate the

  10. Thin broadband noise absorption through acoustic reactance control by electro-mechanical coupling without sensor.

    PubMed

    Zhang, Yumin; Chan, Yum-Ji; Huang, Lixi

    2014-05-01

    Broadband noise with profound low-frequency profile is prevalent and difficult to be controlled mechanically. This study demonstrates effective broadband sound absorption by reducing the mechanical reactance of a loudspeaker using a shunt circuit through electro-mechanical coupling, which induces reactance with different signs from that of loudspeaker. An RLC shunt circuit is connected to the moving coil to provide an electrically induced mechanical impedance which counters the cavity stiffness at low frequencies and reduces the system inertia above the resonance frequency. A sound absorption coefficient well above 0.5 is demonstrated across frequencies between 150 and 1200 Hz. The performance of the proposed device is superior to existing passive absorbers of the same depth (60 mm), which has lower frequency limits of around 300 Hz. A passive noise absorber is further proposed by paralleling a micro-perforated panel with shunted loudspeaker which shows potentials in absorbing band-limit impulse noise.

  11. Nonlinear acoustic enhancement in photoacoustic imaging with wideband absorptive nanoemulsion beads

    NASA Astrophysics Data System (ADS)

    Wei, Chen-wei; Lombardo, Michael; Xia, Jinjun; Pelivanov, Ivan; Perez, Camilo; Larson-Smith, Kjersta; Matula, Thomas J.; Pozzo, Danilo; O'Donnell, Matthew

    2014-03-01

    A nanoemulsion contrast agent with a perfluorohexane core and optically absorptive gold nanospheres (GNSs) assembled on the surface, is presented to improve the specificity of photoacoustic (PA) molecular imaging in differentiating targeted cells or aberrant regions from heterogeneous background signals. Compared to distributed GNSs, clustered GNSs at the emulsion oil-water interface produce a red-shifted and broadened absorption spectrum, exhibiting fairly high absorption in the near-infrared region commonly used for deep tissue imaging. Above a certain laser irradiation fluence threshold, a phase transition creating a microbubble in the emulsion core leads to more than 10 times stronger PA signals compared with conventional thermal-expansion-induced PA signals. These signals are also strongly non-linear, as verified by a differential scheme using recorded PA images at different laser fluences. Assuming a linear relation between laser fluence and the PA signal amplitude, differential processing results in nearly perfect suppression of linear sources, but retains a significant residue for the non-linear nanoemulsion with more than 35 dB enhancement. This result demonstrates that contrast specificity can be improved using the nanoemulsion as a targeting agent in PA molecular imaging by suppressing all background signals related to a linear PA response. Furthermore, combined with a system providing simultaneous laser/ultrasound excitation, cavitation-generated bubbles have the potential to be a highly specific contrast agent for ultrasound molecular imaging and harmonic imaging, as well as a targeted means for noninvasive ultrasound-based therapies.

  12. Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO{sub 2}

    SciTech Connect

    Kajihara, Koichi; Skuja, Linards; Hosono, Hideo

    2014-10-21

    The peak parameters of radiation-induced 7.6 eV optical absorption band of oxygen vacancies (Si-Si bonds) were examined for high-purity synthetic α-quartz and amorphous SiO{sub 2} (a‐SiO{sub 2}) exposed to {sup 60}Co γ-rays. The peak shape is asymmetric with the steeper edge at the lower energy side both in α-quartz and a‐SiO{sub 2}, and the peak energy is larger for α-quartz than that for a‐SiO{sub 2}. The full width at half maximum for a‐SiO{sub 2} is larger by ∼40-60% than that for α-quartz, and it increases with an increase in the disorder of the a‐SiO{sub 2} network, which is enhanced by raising the temperature of preannealing before irradiation, i.e., fictive temperature. These data are interpreted from the viewpoint of the site-to-site distribution of the Si-Si bond length in a‐SiO{sub 2}.

  13. Acoustic Absorption Characteristics of an Orifice With a Mean Bias Flow

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.; Jones, Mike (Technical Monitor)

    2000-01-01

    The objective of the study reported here was to acquire acoustic and flow data for numerical validation of impedance models that simulate bias flow through perforates. The impedance model is being developed by researchers at High Technology Corporation. This report documents normal incidence impedance measurements a singular circular orifice with mean flow passing through it. All measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube. The mean flow is introduced upstream of the orifice (with the flow and incident sound wave travelling in the same direction) with an anechoic termination downstream of the orifice. Velocity profiles are obtained upstream of the orifice to characterize the inflow boundary conditions. Velocity in the center of the orifice is also obtained. All velocity measurements are made with a hot wire anemometer and subsequent checked with mass flow measurements made concurrently. All impedance measurements are made using the Two-Microphone Method. Although we have left the analysis of the data to the developers of the impedance models that simulate bias flow through perforate, our initial examination indicates that our results follow the trends consistent with published theory on impedance of perforates with a steady bias flow.

  14. Measurement of tropospheric OH by long-path laser absorption at Fritz Peak Observatory, Colorado, during the OH Photochemistry Experiment, fall 1993

    NASA Astrophysics Data System (ADS)

    Mount, George H.; Brault, James W.; Johnston, Paul V.; Marovich, Edward; Jakoubek, Roger O.; Volpe, Cassandra J.; Harder, Jerald; Olson, Jane

    1997-03-01

    The determination of the concentration of hydroxyl (OH) in the Earth's troposphere is of fundamental importance to an understanding of the chemistry of the lower atmosphere. This paper describes the results from the laser long-path spectroscopic OH experiment used in the Tropospheric OH Photochemistry Experiment (TOHPE) held at Fritz Peak, Colorado, in fall 1993. A primary goal of TOHPE was to compare the OH concentrations measured using a variety of different techniques: a long-path spectroscopic instrument [Mount, 1992], an in situ ion-assisted chemical conversion instrument (Eisele and Tanner, 1991, 1993), a laser resonance fluorescence instrument [Stevens et al., 1994), and a liquid scrubber instrument (X. Chen and K. Mopper, unpublished data,; 1996), all with sensitivities at or below 1×106 molecules cm-3. In addition to the OH measurements, a nearly complete suite of trace gas species that affect the OH concentration were measured simultaneously, using both in situ and/or long-path techniques, to provide the information necessary to understand the OH variation and concentration differences observed. Measurements of OH, NO2, CH2O, SO2, H2O, and O3 were made using long-path spectroscopic absorption of white light or laser light and OH, NO, NO2, NOy, O3, CO, SO2, CH2O, j(O3), j(NO2), RO2/HO2, HO2, H2O, SO2, PAN, PPN, HNO3, and aerosols (size and composition) and ozone and nitrogen dioxide j-values were measured using in situ instruments. Meteorological parameters at each end of the long path and at the Idaho Hill in situ site were also measured. The comparison of the long-path and in situ species from this set of complementary measurements provides an effective way of interpreting air masses over the long path with those at the in situ site; this is a critical issue since the long-path spectroscopic OH determinations provide a nonchemical and well-calibrated measurement of OH which must be compared in a meaningful manner with the in situ determinations. Over

  15. A New Wave of Acoustics.

    ERIC Educational Resources Information Center

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  16. Acoustic phonon assisted free-carrier optical absorption in an n-type monolayer MoS{sub 2} and other transition-metal dichalcogenides

    SciTech Connect

    Bhargavi, K. S.; Patil, Sukanya; Kubakaddi, S. S.

    2015-07-28

    The theory of free-carrier absorption (FCA) is given for monolayers of transition-metal dichalcogenides, particularly for molybdenum disulphide (MoS{sub 2}), when carriers are scattered by phonons. Explicit expressions for the absorption coefficient α are obtained and discussed for acoustic phonon scattering via screened deformation potential and piezoelectric coupling taking polarization of the radiation in the plane of the layer. It is found that α monotonously decreases with the increasing photon frequency Ω, increases with the increasing temperature T, and linearly depends on two-dimensional electron concentration n{sub s}. Effect of screening, which is ignored in all the earlier FCA studies, is found to reduce α significantly, attributing to the larger effective mass of the electrons. Results are also obtained in the classical and quantum limit giving the power laws α ∼ Ω{sup −2} and T. Comparison of the results is made with those in bulk semiconductors and semiconductor quantum wells.

  17. Acoustic and relaxation behaviors of polydimethylsiloxane studied by using brillouin and dielectric spectroscopies

    NASA Astrophysics Data System (ADS)

    Lee, Byoung Wan; Ko, Jae-Hyeon; Park, Jaehoon; Shin, Dong-Myeong; Hwang, Yoon-Hwae

    2016-04-01

    The temperature dependences of the acoustic properties and the dielectric relaxation times of polydimethylsiloxane were investigated by using high-resolution Brillouin and broadband dielectric spectroscopies. The longitudinal sound velocity showed a large increase upon approaching the glass transition temperature while the acoustic absorption coefficient exhibited a maximum at ~263 K. Comparison of these results with previous ultrasonic data revealed a substantial frequency dispersion of the acoustic properties of this silicone-based elastomer. The relaxation times derived from the acoustic absorption peaks were consistent with the temperature dependence of the dielectric relaxation time of the structural a process, indicating a strong coupling between the acoustic waves and the segmental motions of the main chains.

  18. Communication: Systematic shifts of the lowest unoccupied molecular orbital peak in x-ray absorption for a series of 3d metal porphyrins.

    PubMed

    García-Lastra, J M; Cook, P L; Himpsel, F J; Rubio, A

    2010-10-21

    Porphyrins are widely used as dye molecules in solar cells. Knowing the energies of their frontier orbitals is crucial for optimizing the energy level structure of solar cells. We use near edge x-ray absorption fine structure (NEXAFS) spectroscopy to obtain the energy of the lowest unoccupied molecular orbital (LUMO) with respect to the N(1s) core level of the molecule. A systematic energy shift of the N(1s) to LUMO transition is found along a series of 3d metal octaethylporphyrins and explained by density functional theory. It is mainly due to a shift of the N(1s) level rather than a shift of the LUMO or a change in the electron-hole interaction of the core exciton.

  19. A practical method for determining γ-ray full-energy peak efficiency considering coincidence-summing and self-absorption corrections for the measurement of environmental samples after the Fukushima reactor accident

    NASA Astrophysics Data System (ADS)

    Shizuma, Kiyoshi; Oba, Yurika; Takada, Momo

    2016-09-01

    A method for determining the γ-ray full-energy peak efficiency at positions close to three Ge detectors and at the well port of a well-type detector was developed for measuring environmental volume samples containing 137Cs, 134Cs and 40K. The efficiency was estimated by considering two correction factors: coincidence-summing and self-absorption corrections. The coincidence-summing correction for a cascade transition nuclide was estimated by an experimental method involving measuring a sample at the far and close positions of a detector. The derived coincidence-summing correction factors were compared with those of analytical and Monte Carlo simulation methods and good agreements were obtained. Differences in the matrix of the calibration source and the environmental sample resulted in an increase or decrease of the full-energy peak counts due to the self-absorption of γ-rays in the sample. The correction factor was derived as a function of the densities of several matrix materials. The present method was applied to the measurement of environmental samples and also low-level radioactivity measurements of water samples using the well-type detector.

  20. Calibration of acoustic transients.

    PubMed

    Burkard, Robert

    2006-05-26

    This article reviews the appropriate stimulus parameters (click duration, toneburst envelope) that should be used when eliciting auditory brainstem responses from mice. Equipment specifications required to calibrate these acoustic transients are discussed. Several methods of calibrating the level of acoustic transients are presented, including the measurement of peak equivalent sound pressure level (peSPL) and peak sound pressure level (pSPL). It is hoped that those who collect auditory brainstem response thresholds in mice will begin to use standardized methods of acoustic calibration, so that hearing thresholds across mouse strains obtained in different laboratories can more readily be compared.

  1. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 1. Monte-Carlo simulation of laser fluence distribution at the beam axis beneath the surface of a turbid medium

    SciTech Connect

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-09-30

    A new method for measuring the local light absorption coefficient in turbid media, for example, biological tissues, is proposed. The method is based on the fact that the amplitude of the excited opto-acoustic (OA) signal is proportional to the absorbed laser power density (the product of the light absorption coefficient and the laser fluence) at the medium interface. In the first part of the paper, the influence of the laser beam diameter, the light absorption and reduced scattering coefficients on the maximal amplitude of the laser fluence at the laser beam axis in the near-surface layer of the turbid medium is studied by using the Monte-Carlo simulation. The conditions are predicted under which the amplitude of the OA signal detected in a transparent medium in contact with the scattering medium should remain proportional to the light absorption coefficient of the medium under study, when the scattering coefficient in it changes more than twice. The results of the numerical simulation are used for the theoretical substantiation of the OA method being proposed. (measurement of parametrs of laser radiation)

  2. Acoustic Imaging in Helioseismology

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Chang, Hsiang-Kuang; Sun, Ming-Tsung; LaBonte, Barry; Chen, Huei-Ru; Yeh, Sheng-Jen; Team, The TON

    1999-04-01

    The time-variant acoustic signal at a point in the solar interior can be constructed from observations at the surface, based on the knowledge of how acoustic waves travel in the Sun: the time-distance relation of the p-modes. The basic principle and properties of this imaging technique are discussed in detail. The helioseismic data used in this study were taken with the Taiwan Oscillation Network (TON). The time series of observed acoustic signals on the solar surface is treated as a phased array. The time-distance relation provides the phase information among the phased array elements. The signal at any location at any time can be reconstructed by summing the observed signal at array elements in phase and with a proper normalization. The time series of the constructed acoustic signal contains information on frequency, phase, and intensity. We use the constructed intensity to obtain three-dimensional acoustic absorption images. The features in the absorption images correlate with the magnetic field in the active region. The vertical extension of absorption features in the active region is smaller in images constructed with shorter wavelengths. This indicates that the vertical resolution of the three-dimensional images depends on the range of modes used in constructing the signal. The actual depths of the absorption features in the active region may be smaller than those shown in the three-dimensional images.

  3. Three-axis acoustic device for levitation of droplets in an open gas stream and its application to examine sulfur dioxide absorption by water droplets.

    PubMed

    Stephens, Terrance L; Budwig, Ralph S

    2007-01-01

    Two acoustic devices to stabilize a droplet in an open gas stream (single-axis and three-axis levitators) have been designed and tested. The gas stream was provided by a jet apparatus with a 64 mm exit diameter and a uniform velocity profile. The acoustic source used was a Langevin vibrator with a concave reflector. The single-axis levitator relied primarily on the radial force from the acoustic field and was shown to be limited because of significant droplet wandering. The three-axis levitator relied on a combination of the axial and radial forces. The three-axis levitator was applied to examine droplet deformation and circulation and to investigate the uptake of SO(2) from the gas stream to the droplet. Droplets ranging in diameters from 2 to 5 mm were levitated in gas streams with velocities up to 9 ms. Droplet wandering was on the order of a half droplet diameter for a 3 mm diameter droplet. Droplet circulation ranged from the predicted Hadamard-Rybczynski pattern to a rotating droplet pattern. Droplet pH over a central volume of the droplet was measured by planar laser induced fluorescence. The results for the decay of droplet pH versus time are in general agreement with published theory and experiments. PMID:17503939

  4. [Acoustic characteristics of classrooms].

    PubMed

    Koszarny, Zbigniew; Chyla, Andrzej

    2003-01-01

    Quality and usefulness of school rooms for transmission of verbal information depends on the two basic parameters: form and quantity of the reverberation time, and profitable line measurements of school rooms from the acoustic point of view. An analysis of the above-mentioned parameters in 48 class rooms and two gymnasiums in schools, which were built in different periods, shows that the most important problem is connected with too long reverberation time and inappropriate acoustic proportions. In schools built in the 1970s, the length of reverberation time is mostly within a low frequency band, while in schools built contemporarily, the maximum length of disappearance time takes place in a quite wide band of 250-2000 Hz. This exceeds optimal values for that kind of rooms at least twice, and five times in the newly built school. A long reverberation time is connected with a low acoustic absorption of school rooms. Moreover, school rooms are characterised by inappropriate acoustic proportions. The classrooms, in their relation to the height, are too long and too wide. It is connected with deterioration of the transmission of verbal information. The data show that this transmission is unequal. Automatically, it leads to a speech disturbance and difficulties with understanding. There is the need for adaptation of school rooms through increase of an acoustic absorption.

  5. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  6. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  7. Portable peak flow meters.

    PubMed

    McNaughton, J P

    1997-02-01

    There are several portable peak flow meters available. These instruments vary in construction and performance. Guidelines are recommended for minimum performance and testing of portable peak flow meters, with the aim of establishing a procedure for standardizing all peak flow meters. Future studies to clarify the usefulness of mechanical test apparatus and clinical trials of peak flow meters are also recommended. PMID:9098706

  8. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  9. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2001-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  10. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  11. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  12. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  13. Acoustical evaluation of preschool classrooms

    NASA Astrophysics Data System (ADS)

    Yang, Wonyoung; Hodgson, Murray

    2003-10-01

    An investigation was made of the acoustical environments in the Berwick Preschool, Vancouver, in response to complaints by the teachers. Reverberation times (RT), background noise levels (BNL), and in-class sound levels (Leq) were measured for acoustical evaluation in the classrooms. With respect to the measured RT and BNL, none of the classrooms in the preschool were acceptable according to the criteria relevant to this study. A questionnaire was administered to the teachers to assess their subjective responses to the acoustical and nonacoustical environments of the classrooms. Teachers agreed that the nonacoustical environments in the classrooms were fair, but that the acoustical environments had problems. Eight different classroom configurations were simulated to improve the acoustical environments, using the CATT room acoustical simulation program. When the surface absorption was increased, both the RT and speech levels decreased. RASTI was dependent on the volumes of the classrooms when the background noise levels were high; however, it depended on the total absorption of the classrooms when the background noise levels were low. Ceiling heights are critical as well. It is recommended that decreasing the volume of the classrooms is effective. Sound absorptive materials should be added to the walls or ceiling.

  14. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  15. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  16. Dust-Acoustic Waves: Visible Sound Waves

    SciTech Connect

    Merlino, Robert L.

    2009-11-10

    A historical overview of some of the early theoretical and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some of the theoretical refinements that have been made, including the effects of collisions, plasma absorption, dust charge fluctuations, particle drifts and strong coupling effects are discussed. Some recent experimental findings and outstanding problems are also presented.

  17. Peak Experience Project

    ERIC Educational Resources Information Center

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  18. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  19. Acoustic metafluids.

    PubMed

    Norris, Andrew N

    2009-02-01

    Acoustic metafluids are defined as the class of fluids that allow one domain of fluid to acoustically mimic another, as exemplified by acoustic cloaks. It is shown that the most general class of acoustic metafluids are materials with anisotropic inertia and the elastic properties of what are known as pentamode materials. The derivation uses the notion of finite deformation to define the transformation of one region to another. The main result is found by considering energy density in the original and transformed regions. Properties of acoustic metafluids are discussed, and general conditions are found which ensure that the mapped fluid has isotropic inertia, which potentially opens up the possibility of achieving broadband cloaking. PMID:19206861

  20. Pikes Peak, Colorado

    USGS Publications Warehouse

    Brunstein, Craig; Quesenberry, Carol; Davis, John; Jackson, Gene; Scott, Glenn R.; D'Erchia, Terry D.; Swibas, Ed; Carter, Lorna; McKinney, Kevin; Cole, Jim

    2006-01-01

    For 200 years, Pikes Peak has been a symbol of America's Western Frontier--a beacon that drew prospectors during the great 1859-60 Gold Rush to the 'Pikes Peak country,' the scenic destination for hundreds of thousands of visitors each year, and an enduring source of pride for cities in the region, the State of Colorado, and the Nation. November 2006 marks the 200th anniversary of the Zebulon M. Pike expedition's first sighting of what has become one of the world's most famous mountains--Pikes Peak. In the decades following that sighting, Pikes Peak became symbolic of America's Western Frontier, embodying the spirit of Native Americans, early explorers, trappers, and traders who traversed the vast uncharted wilderness of the Western Great Plains and the Southern Rocky Mountains. High-quality printed paper copies of this poster are available at no cost from Information Services, U.S. Geological Survey (1-888-ASK-USGS).

  1. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  2. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  3. Peak Oil, Peak Coal and Climate Change

    NASA Astrophysics Data System (ADS)

    Murray, J. W.

    2009-05-01

    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  4. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.

  5. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment. PMID:27441427

  6. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: plate model.

    PubMed

    Chen, Yangyang; Huang, Guoliang; Zhou, Xiaoming; Hu, Gengkai; Sun, Chin-Teh

    2014-12-01

    By considering the elastic membrane's dissipation, the membrane-type acoustic metamaterial (MAM) has been demonstrated to be a super absorber for low-frequency sound. In the paper, a theoretical vibroacoustic plate model is developed to reveal the sound energy absorption mechanism within the MAM under a plane normal incidence. Based on the plate model in conjunction with the point matching method, the in-plane strain energy of the membrane due to the resonant and antiresonant motion of the attached masses can be accurately captured by solving the coupled vibroacoustic integrodifferential equation. The sound absorption ability of the MAM is quantitatively determined, which is also in good agreement with the prediction from the finite element method. In particular, microstructure effects including eccentricity of the attached masses, the depth, thickness, and loss factor of the membrane on sound absorption peak values are discussed. PMID:25480041

  7. Acoustic trauma

    MedlinePlus

    Acoustic trauma is a common cause of sensory hearing loss . Damage to the hearing mechanisms within the inner ... Symptoms include: Partial hearing loss that most often involves ... The hearing loss may slowly get worse. Noises, ringing in ...

  8. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  9. Underwater Acoustics.

    ERIC Educational Resources Information Center

    Creasey, D. J.

    1981-01-01

    Summarizes the history of underwater acoustics and describes related research studies and teaching activities at the University of Birmingham (England). Also includes research studies on transducer design and mathematical techniques. (SK)

  10. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  11. Correlation-Peak Imaging

    NASA Astrophysics Data System (ADS)

    Ziegler, A.; Metzler, A.; Köckenberger, W.; Izquierdo, M.; Komor, E.; Haase, A.; Décorps, M.; von Kienlin, M.

    1996-08-01

    Identification and quantitation in conventional1H spectroscopic imagingin vivois often hampered by the small chemical-shift range. To improve the spectral resolution of spectroscopic imaging, homonuclear two-dimensional correlation spectroscopy has been combined with phase encoding of the spatial dimensions. From the theoretical description of the coherence-transfer signal in the Fourier-transform domain, a comprehensive acquisition and processing strategy is presented that includes optimization of the width and the position of the acquisition windows, matched filtering of the signal envelope, and graphical presentation of the cross peak of interest. The procedure has been applied to image the spatial distribution of the correlation peaks from specific spin systems in the hypocotyl of castor bean (Ricinus communis) seedlings. Despite the overlap of many resonances, correlation-peak imaging made it possible to observe a number of proton resonances, such as those of sucrose, β-glucose, glutamine/glutamate, lysine, and arginine.

  12. Make peak flow a habit!

    MedlinePlus

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  13. Standoff photo acoustic spectroscopy

    SciTech Connect

    Van Neste, Charles W; Senesac, Larry R; Thundat, Thomas George

    2008-01-01

    Here, we demonstrate a variation of photoacoustic spectroscopy that can be used for obtaining spectroscopic information of surface adsorbed chemicals in a standoff fashion. Pulsed light scattered from a target excites an acoustic resonator and the variation of the resonance amplitude as a function of illumination wavelength yields a representation of the absorption spectrum of the target. We report sensitive and selective detection of surface adsorbed compounds such as tributyl phosphate and residues of explosives such as trinitrotoluene at standoff distances ranging from 0.5-20 m, with a detection limit on the order of 100 ng/cm{sup 2}.

  14. Impact Crater with Peak

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one

  15. Real-time observation of coherent acoustic phonons generated by an acoustically mismatched optoacoustic transducer using x-ray diffraction

    SciTech Connect

    Persson, A. I. H.; Andreasson, B. P.; Enquist, H.; Jurgilaitis, A.; Larsson, J.

    2015-11-14

    The spectrum of laser-generated acoustic phonons in indium antimonide coated with a thin nickel film has been studied using time-resolved x-ray diffraction. Strain pulses that can be considered to be built up from coherent phonons were generated in the nickel film by absorption of short laser pulses. Acoustic reflections at the Ni–InSb interface leads to interference that strongly modifies the resulting phonon spectrum. The study was performed with high momentum transfer resolution together with high time resolution. This was achieved by using a third-generation synchrotron radiation source that provided a high-brightness beam and an ultrafast x-ray streak camera to obtain a temporal resolution of 10 ps. We also carried out simulations, using commercial finite element software packages and on-line dynamic diffraction tools. Using these tools, it is possible to calculate the time-resolved x-ray reflectivity from these complicated strain shapes. The acoustic pulses have a peak strain amplitude close to 1%, and we investigated the possibility to use this device as an x-ray switch. At a bright source optimized for hard x-ray generation, the low reflectivity may be an acceptable trade-off to obtain a pulse duration that is more than an order of magnitude shorter.

  16. Analytical modeling of the acoustic field during a direct field acoustic test.

    SciTech Connect

    Stasiunas, Eric Carl; Rouse, Jerry W.; Mesh, Mikhail

    2010-12-01

    The acoustic field generated during a Direct Field Acoustic Test (DFAT) has been analytically modeled in two space dimensions using a properly phased distribution of propagating plane waves. Both the pure-tone and broadband acoustic field were qualitatively and quantitatively compared to a diffuse acoustic field. The modeling indicates significant non-uniformity of sound pressure level for an empty (no test article) DFAT, specifically a center peak and concentric maxima/minima rings. This spatial variation is due to the equivalent phase among all propagating plane waves at each frequency. The excitation of a simply supported slender beam immersed within the acoustic fields was also analytically modeled. Results indicate that mid-span response is dependent upon location and orientation of the beam relative to the center of the DFAT acoustic field. For a diffuse acoustic field, due to its spatial uniformity, mid-span response sensitivity to location and orientation is nonexistent.

  17. Semi-active control of piezoelectric coating's underwater sound absorption by combining design of the shunt impedances

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Li, Zhaohui; Huang, Aigen; Li, Qihu

    2015-10-01

    Piezoelectric shunt damping technology has been applied in the field of underwater sound absorption in recent years. In order to achieve broadband echo reduction, semi-active control of sound absorption of multi-layered piezoelectric coating by shunt damping is significant. In this paper, a practical method is proposed to control the underwater sound absorption coefficients of piezoelectric coating layers by combining design of the shunt impedance that allows certain sound absorption coefficients at setting frequencies. A one-dimensional electro-acoustic model of the piezoelectric coating and the backing is established based on the Mason equivalent circuit theory. First, the shunt impedance of the coating is derived under the constraint of sound absorption coefficient at one frequency. Then, taking the 1-3 piezoelectric composite coating as an example, the sound absorption properties of the coating shunted to the designed shunt impedance are investigated. Next, on the basis of that, an iterative method for two constrained frequencies and an optimizing algorithm for multiple constrained frequencies are provided for combining design of the shunt impedances. At last, an experimental sample with four piezoelectric material layers is manufactured, of which the sound absorption coefficients are measured in an impedance tube. The experimental results show good agreement with the finite element simulation results. It is proved that a serial R-L circuit can control the peak frequency, maximum and bandwidth of the sound absorption coefficient and the combining R-L circuits shunted to multiple layers can control the sound absorption coefficients at multiple frequencies.

  18. PEAK READING VOLTMETER

    DOEpatents

    Dyer, A.L.

    1958-07-29

    An improvement in peak reading voltmeters is described, which provides for storing an electrical charge representative of the magnitude of a transient voltage pulse and thereafter measuring the stored charge, drawing oniy negligible energy from the storage element. The incoming voltage is rectified and stored in a condenser. The voltage of the capacitor is applied across a piezoelectric crystal between two parallel plates. Amy change in the voltage of the capacitor is reflected in a change in the dielectric constant of the crystal and the capacitance between a second pair of plates affixed to the crystal is altered. The latter capacitor forms part of the frequency determlning circuit of an oscillator and means is provided for indicating the frequency deviation which is a measure of the peak voltage applied to the voltmeter.

  19. Peak of Desire

    PubMed Central

    Huang, Julie Y.; Bargh, John A.

    2008-01-01

    In three studies, we explore the existence of an evolved sensitivity to the peak as consistent with the evolutionary origins of many of our basic preferences. Activating the evolved motive of mating activates related adaptive mechanisms, including a general sensitivity to cues of growth and decay associated with determining mate value in human courtship. We establish that priming the mating goal also activates as well an evaluative bias that influences how people evaluate cues of growth. Specifically, living kinds that are immature or past their prime are devalued, whereas living kinds at their peak become increasingly valued. Study 1 establishes this goal-driven effect for human stimuli indirectly related to the mating goal. Studies 2 and 3 establish that the evaluative bias produced by the active mating goal extends to living kinds but not artifacts. PMID:18578847

  20. PEAK LIMITING AMPLIFIER

    DOEpatents

    Goldsworthy, W.W.; Robinson, J.B.

    1959-03-31

    A peak voltage amplitude limiting system adapted for use with a cascade type amplifier is described. In its detailed aspects, the invention includes an amplifier having at least a first triode tube and a second triode tube, the cathode of the second tube being connected to the anode of the first tube. A peak limiter triode tube has its control grid coupled to thc anode of the second tube and its anode connected to the cathode of the second tube. The operation of the limiter is controlled by a bias voltage source connected to the control grid of the limiter tube and the output of the system is taken from the anode of the second tube.

  1. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  2. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  3. A Peak of Interest

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true-color rendering of an image taken by the panoramic camera on NASA's Mars Exploration Rover Spirit shows a view of the peak-like outcrop atop 'West Spur.' Spirit will attempt to drive up the north slope of the 'Columbia Hills' to reach similar rock outcrops and investigate the composition of the hills. The image was taken on sol 178 (July 4, 2004) using the camera's 750-, 530- and 430-nanometer filters.

  4. DIAMOND PEAK WILDERNESS, OREGON.

    USGS Publications Warehouse

    Sherrod, David R.; Moyle, Phillip R.

    1984-01-01

    No metallic mineral resources were identified during a mineral survey of the Diamond Peak Wilderness in Oregon. Cinder cones within the wilderness contain substantial cinder resources, but similar deposits that are more accessible occur outside the wilderness. The area could have geothermal resources, but available data are insufficient to evaluate their potential. Several deep holes could be drilled in areas of the High Cascades outside the wilderness, from which extrapolations of the geothermal potential of the several Cascade wilderness could be made.

  5. Acoustical model of small calibre ballistic shock waves in air for automatic sniper localization applications

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan R.; Salinas, Renato A.; Abidi, Mongi A.

    2007-04-01

    The phenomenon of ballistic shock wave emission by a small calibre projectile at supersonic speed is quite relevant in automatic sniper localization applications. When available, ballistic shock wave analysis makes possible the estimation of the main ballistic features of a gunfire event. The propagation of ballistic shock waves in air is a process which mainly involves nonlinear distortion, or steepening, and atmospheric absorption. Current ballistic shock waves propagation models used in automatic sniper localization systems only consider nonlinear distortion effects. This means that only the rates of change of shock peak pressure and the N-wave duration with distance are considered in the determination of the miss distance. In the present paper we present an improved acoustical model of small calibre ballistic shock wave propagation in air, intended to be used in acoustics-based automatic sniper localization applications. In our approach, we have considered nonlinear distortion, but additionally we have also introduced the effects of atmospheric sound absorption. Atmospheric absorption is implemented in the time domain in order to get faster calculation times than those computed in frequency domain. Furthermore, we take advantage of the fact that atmospheric absorption plays a fundamental role in the rise times of the shocks, and introduce the rate of change of the rise time with distance as a third parameter to be used in the determination of the miss distance. This lead us to a more accurate and robust estimation of the miss distance, and consequently of the projectile trajectory, and the spatial coordinates of the gunshot origin.

  6. Opto-acoustic cell permeation

    SciTech Connect

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  7. Kitt Peak speckle camera

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Mcalister, H. A.; Robinson, W. G.

    1979-01-01

    The speckle camera in regular use at Kitt Peak National Observatory since 1974 is described in detail. The design of the atmospheric dispersion compensation prisms, the use of film as a recording medium, the accuracy of double star measurements, and the next generation speckle camera are discussed. Photographs of double star speckle patterns with separations from 1.4 sec of arc to 4.7 sec of arc are shown to illustrate the quality of image formation with this camera, the effects of seeing on the patterns, and to illustrate the isoplanatic patch of the atmosphere.

  8. Sonic crystal acoustic switch device.

    PubMed

    Alagoz, Serkan; Alagoz, Baris Baykant

    2013-06-01

    This study reports a wave-controlled sonic crystal switch device that exhibits a destructive interference-based wave to wave reverse switching effect. By applying control waves, this acoustic device, composed of a two-dimensional square lattice sonic crystal block, reduces acoustic wave transmission from input to output. The finite difference time domain simulation and experimental results confirm the wave-to-wave reverse switching effect at the peak frequencies of the second band. The proposed sonic crystal switch prototype provides a contrast rate of 86% at 11.3 kHz frequency. This wave-to-wave switching effect is useful for controlling wave propagation for smart structure applications.

  9. First images of thunder: Acoustic imaging of triggered lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.

    2015-07-01

    An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.

  10. Absorption of oblique incidence sound by a finite micro-perforated panel absorber.

    PubMed

    Yang, Cheng; Cheng, Li; Pan, Jie

    2013-01-01

    In this paper, a theoretical model of a micro-perforated panel (MPP) backed by a finite cavity and flush-mounted in an infinite baffle is developed and its performance in terms of sound absorption is analyzed. The model allows an oblique incidence sound impinging upon the MPP absorber. The simplified Rayleigh integral method, thin plate theory and the acoustical impedance of the MPP are used to calculate the sound energy absorbed by the MPP's surface. Results show that the absorption coefficient of the absorber is a function of angle and frequency of the incident sound, and is controlled by the coupling between the MPP and the acoustical modes in the back cavity. In particular, grazing modes can be induced in the cavity by sound with an oblique angle of incidence, which may result in peak sound absorptions at the natural frequencies of the modes. The mechanism involved is used to explain the absorption properties of the MPP absorber for a diffuse incidence of sound.

  11. Acoustic characteristics of the medium with gradient change of impedance

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, Desen; Sun, Yu; Shi, Jie; Shi, Shengguo; Zhang, Haoyang

    2015-10-01

    The medium with gradient change of acoustic impedance is a new acoustic structure which developed from multiple layer structures. In this paper, the inclusion is introduced and a new set of equations is developed. It can obtain better acoustic properties based on the medium with gradient change of acoustic impedance. Theoretical formulation has been systematically addressed which demonstrates how the idea of utilizing this method. The sound reflection and absorption coefficients were obtained. At last, the validity and the correctness of this method are assessed by simulations. The results show that appropriate design of parameters of the medium can improve underwater acoustic properties.

  12. Absorption of planar waves in a draining bathtub

    SciTech Connect

    Oliveira, Ednilton S.; Dolan, Sam R.; Crispino, Luis C. B.

    2010-06-15

    We present an analysis of the absorption of acoustic waves by a black hole analogue in (2+1) dimensions generated by a fluid flow in a draining bathtub. We show that the low-frequency absorption length is equal to the acoustic hole circumference and that the high-frequency absorption length is 4 times the ergoregion radius. For intermediate values of the wave frequency, we compute the absorption length numerically and show that our results are in excellent agreement with the low- and high-frequency limits. We analyze the occurrence of superradiance, manifested as negative partial absorption lengths for corotating modes at low frequencies.

  13. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  14. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  15. Modular total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Karny, M.; Rykaczewski, K. P.; Fijałkowska, A.; Rasco, B. C.; Wolińska-Cichocka, M.; Grzywacz, R. K.; Goetz, K. C.; Miller, D.; Zganjar, E. F.

    2016-11-01

    The design and performance of the Modular Total Absorption Spectrometer built and commissioned at the Oak Ridge National Laboratory is presented. The active volume of the detector is approximately one ton of NaI(Tl), which results in very high full γ energy peak efficiency of 71% at 6 MeV and nearly flat efficiency of around 81.5% for low energy γ-rays between 300 keV and 1 MeV. In addition to the high peak efficiency, the modular construction of the detector permits the use of a γ-coincidence technique in data analysis as well as β-delayed neutron observation.

  16. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  17. Sunset over Twin Peaks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image was taken by the Imager for Mars Pathfinder (IMP) about one minute after sunset on Mars on Sol 21. The prominent hills dubbed 'Twin Peaks' form a dark silhouette at the horizon, while the setting sun casts a pink glow over the darkening sky. The image was taken as part of a twilight study which indicates how the brightness of the sky fades with time after sunset. Scientists found that the sky stays bright for up to two hours after sunset, indicating that Martian dust extends very high into the atmosphere.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  18. Properties of acoustic sources in the Sun

    NASA Technical Reports Server (NTRS)

    Kumar, Pawan

    1994-01-01

    The power spectrum of solar acoustic oscillations shows peaks extending out to frequencies much greater than the acoustic cutoff frequency of approximately 5.3 mHz, where waves are no longer trapped. Kumar & Lu (1991) proposed that these peaks arise from the interference of traveling waves which are generated by turbulent convection. According to this model, the frequencies of the peaks in the power spectrum depend on the static structure of the Sun as well as the radial location of the sources. Kumar & Lu used this idea to determine the depth of the acoustic sources. However, they ignored dissipative effects and found that the theoretically computed power spectrum was falling off much more rapidly than the observed spectrum. In this paper, we include the interaction of radiation with acoustic waves in the computation of the power spectrum. We find that the theoretically calculated power spectra, when radiative damping is included are in excellent agreement with the observed power spectra over the entire observed frequency range of 5.3 to 7.5 mHz above the acoustic cutoff frequency. Moreover, by matching the peak frequencies in the observed and theoretical spectra we find the mean depth of acoustic sources to be 140 +/- 60 km below the photosphere. We show that the spectrum of solar turbulence near the top of the solar convection zone is consistent with the Kolmogorov spectrum, and that the observed high frequency power spectrum provides strong evidence that the acoustic sources in the Sun are quadrupolar. The data, in fact, rules out dipole sources as significant contributors to acoustic wave generation in the Sun. The radial extent of the sources is poorly determined and is estimated to be less than about 550 km.

  19. Documentation of the space station/aircraft acoustic apparatus

    NASA Technical Reports Server (NTRS)

    Clevenson, Sherman A.

    1987-01-01

    This paper documents the design and construction of the Space Station/Aircraft Acoustic Apparatus (SS/AAA). Its capabilities both as a space station acoustic simulator and as an aircraft acoustic simulator are described. Also indicated are the considerations which ultimately resulted in man-rating the SS/AAA. In addition, the results of noise surveys and reverberation time and absorption coefficient measurements are included.

  20. Proton beam characterization by proton-induced acoustic emission: simulation studies.

    PubMed

    Jones, K C; Witztum, A; Sehgal, C M; Avery, S

    2014-11-01

    Due to their Bragg peak, proton beams are capable of delivering a targeted dose of radiation to a narrow volume, but range uncertainties currently limit their accuracy. One promising beam characterization technique, protoacoustic range verification, measures the acoustic emission generated by the proton beam. We simulated the pressure waves generated by proton radiation passing through water. We observed that the proton-induced acoustic signal consists of two peaks, labeled α and γ, with two originating sources. The α acoustic peak is generated by the pre-Bragg peak heated region whereas the source of the γ acoustic peak is the proton Bragg peak. The arrival time of the α and γ peaks at a transducer reveals the distance from the beam propagation axis and Bragg peak center, respectively. The maximum pressure is not observed directly above the Bragg peak due to interference of the acoustic signals. Range verification based on the arrival times is shown to be more effective than determining the Bragg peak position based on pressure amplitudes. The temporal width of the α and γ peaks are linearly proportional to the beam diameter and Bragg peak width, respectively. The temporal separation between compression and rarefaction peaks is proportional to the spill time width. The pressure wave expected from a spread out Bragg peak dose is characterized. The simulations also show that acoustic monitoring can verify the proton beam dose distribution and range by characterizing the Bragg peak position to within ~1 mm.

  1. A simple pharmacokinetics subroutine for modeling double peak phenomenon.

    PubMed

    Mirfazaelian, Ahmad; Mahmoudian, Massoud

    2006-04-01

    Double peak absorption has been described with several orally administered drugs. Numerous reasons have been implicated in causing the double peak. DRUG-KNT--a pharmacokinetic software developed previously for fitting one and two compartment kinetics using the iterative curve stripping method--was modified and a revised subroutine was incorporated to solve double-peak models. This subroutine considers the double peak as two hypothetical doses administered with a time gap. The fitting capability of the presented model was verified using four sets of data showing double peak profiles extracted from the literature (piroxicam, ranitidine, phenazopyridine and talinolol). Visual inspection and statistical diagnostics showed that the present algorithm provided adequate curve fit disregarding the mechanism involved in the emergence of the secondary peaks. Statistical diagnostic parameters (RSS, AIC and R2) generally showed good fitness in the plasma profile prediction by this model. It was concluded that the algorithm presented herein provides adequate predicted curves in cases of the double peak phenomenon.

  2. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  3. Numerical and experimental study of the effect of microslits on the normal absorption of structural metamaterials

    NASA Astrophysics Data System (ADS)

    Ruiz, H.; Claeys, C. C.; Deckers, E.; Desmet, W.

    2016-03-01

    Resonant metamaterials are emerging as novel concepts to reduce noise levels in targeted frequency zones, so-called stop bands. The metamaterial concept improves acoustic behaviour through an increase of the insertion loss. This paper concerns a first investigation on the absorption capabilities of a resonant metamaterial when thermo-viscous effects are incorporated via the addition of microslits. In a previous work, a resonant metamaterial was obtained through the inclusion of resonating structures into cavities of an open honeycomb assembly. In this study, the air gap of the honeycomb structure is reduced so as to provide viscous losses for the travelling waves. Considering that the created resonant structures with open cavities are rigid, an equivalent fluid model is used to calculate the acoustical properties of a so called microslit metamaterial. It is demonstrated that the unit cell structure can be divided into parallel elements for which the acoustic impedance can be computed via the transfer matrix approach TMM in parallel and series. Likewise, it is shown that the structural response can be predicted by FEM models allowing studying the structural effects separately from the viscous-thermal effects predicted by the equivalent fluid model. Moreover, the combined effect of both approaches is shown experimentally where it is observed that: (i) The absorption of the resonant metamaterial is increased by the addition of microslits, (ii) the modes of the test sample appear as small peaks on the absorption curve of the microslit metamaterial, (iii) the structural modes are grouped below and above the stop band and, (iv) the resonant structures do not lead to additional absorption in the stop band region. Analytical models are compared to experimental measurements to validate the models and to show the potential of this material assembly.

  4. Airy acoustical-sheet spinner tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  5. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  6. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure

    NASA Astrophysics Data System (ADS)

    Wang, Tian; Ke, Manzhu; Li, Weiping; Yang, Qian; Qiu, Chunyin; Liu, Zhengyou

    2016-09-01

    In this work, we give direct demonstration of acoustic radiation force and acoustic torque on particles exerted by an acoustic vortex beam, which is realized by an acoustic artificial structure plate instead of traditional transducer arrays. First, the first order acoustic vortex beam, which has the distinctive features of a linear and continuous phase variation from -π to π around its propagation axis and a magnitude null at its core, is obtained through one single acoustic source incident upon a structured brass plate with Archimedean spiral grating engraved on the back surface. Second, annular self-patterning of polystyrene particles with a radius of 90 μm is realized in the gradient field of this acoustic vortex beam. In addition, we further exhibit acoustic angular momentum transfer to an acoustic absorptive matter, which is verified by a millimeter-sized polylactic acid disk self-rotating in water in the acoustic field of the generated vortex beam.

  7. Enhancement of acoustical performance of hollow tube sound absorber

    NASA Astrophysics Data System (ADS)

    Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd

    2016-03-01

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  8. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  9. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  10. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators. PMID:22481769

  11. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  12. Decoupling approximation design using the peak to peak gain

    NASA Astrophysics Data System (ADS)

    Sultan, Cornel

    2013-04-01

    Linear system design for accurate decoupling approximation is examined using the peak to peak gain of the error system. The design problem consists in finding values of system parameters to ensure that this gain is small. For this purpose a computationally inexpensive upper bound on the peak to peak gain, namely the star norm, is minimized using a stochastic method. Examples of the methodology's application to tensegrity structures design are presented. Connections between the accuracy of the approximation, the damping matrix, and the natural frequencies of the system are examined, as well as decoupling in the context of open and closed loop control.

  13. Acoustics of Fluid-Structure Interactions

    NASA Astrophysics Data System (ADS)

    Howe, M. S.

    1998-08-01

    Acoustics of Fluid-Structure Interactions addresses an increasingly important branch of fluid mechanics--the absorption of noise and vibration by fluid flow. This subject, which offers numerous challenges to conventional areas of acoustics, is of growing concern in places where the environment is adversely affected by sound. Howe presents useful background material on fluid mechanics and the elementary concepts of classical acoustics and structural vibrations. Using examples, many of which include complete worked solutions, he vividly illustrates the theoretical concepts involved. He provides the basis for all calculations necessary for the determination of sound generation by aircraft, ships, general ventilation and combustion systems, as well as musical instruments. Both a graduate textbook and a reference for researchers, Acoustics of Fluid-Structure Interactions is an important synthesis of information in this field. It will also aid engineers in the theory and practice of noise control.

  14. Acoustic energy in ducts - Further observations

    NASA Technical Reports Server (NTRS)

    Eversman, W.

    1979-01-01

    The transmission of acoustic energy in uniform ducts carrying uniform flow is investigated with the purpose of clarifying two points of interest. The two commonly used definitions of acoustic 'energy' flux are shown to be related by a Legendre transformation of the Lagrangian density exactly as in deriving the Hamiltonian density in mechanics. In the acoustic case the total energy density and the Hamiltonian density are not the same which accounts for two different 'energy' fluxes. When the duct has acoustically absorptive walls neither of the two flux expressions gives correct results. A reevaluation of the basis of derivation of the energy density and energy flux provides forms which yield consistent results for soft walled ducts.

  15. Acoustic emission descriptors

    NASA Astrophysics Data System (ADS)

    Witos, Franciszek; Malecki, Ignacy

    The authors present selected problems associated with acoustic emission interpreted as a physical phenomenon and as a measurement technique. The authors examine point sources of acoustic emission in isotropic, homogeneous linearly elastic media of different shapes. In the case of an unbounded medium the authors give the analytical form of the stress field and the wave shift field of the acoustic emission. In the case of a medium which is unbounded plate the authors give a form for the equations which is suitable for numerical calculation of the changes over time of selected acoustic emission values. For acoustic emission as a measurement technique, the authors represent the output signal as the resultant of a mechanical input value which describes the source, the transient function of the medium, and the transient function of specific components of the measurement loop. As an effect of this notation, the authors introduce the distinction between an acoustic measurement signal and an acoustic measurement impulse. The authors define the basic parameters of an arbitrary impulse. The authors extensively discuss the signal functions of acoustic emission impulses and acoustic emission signals defined in this article as acoustic emission descriptors (or signal functions of acoustic emission impulses) and advanced acoustic emission descriptors (which are either descriptors associated with acoustic emission applications or the signal functions of acoustic emission signals). The article also contains the results of experimental research on three different problems in which acoustic emission descriptors associated with acoustic emission pulses, acoustic emission applications, and acoustic emission signals are used. These problems are respectively: a problem of the amplitude-load characteristics of acoustic emission pulses in carbon samples subjected to compound uniaxial compression, the use of acoustic emission to predict the durability characteristics of conveyor belts, and

  16. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  17. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  18. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  19. Optimizing acoustical conditions for speech intelligibility in classrooms

    NASA Astrophysics Data System (ADS)

    Yang, Wonyoung

    High speech intelligibility is imperative in classrooms where verbal communication is critical. However, the optimal acoustical conditions to achieve a high degree of speech intelligibility have previously been investigated with inconsistent results, and practical room-acoustical solutions to optimize the acoustical conditions for speech intelligibility have not been developed. This experimental study validated auralization for speech-intelligibility testing, investigated the optimal reverberation for speech intelligibility for both normal and hearing-impaired listeners using more realistic room-acoustical models, and proposed an optimal sound-control design for speech intelligibility based on the findings. The auralization technique was used to perform subjective speech-intelligibility tests. The validation study, comparing auralization results with those of real classroom speech-intelligibility tests, found that if the room to be auralized is not very absorptive or noisy, speech-intelligibility tests using auralization are valid. The speech-intelligibility tests were done in two different auralized sound fields---approximately diffuse and non-diffuse---using the Modified Rhyme Test and both normal and hearing-impaired listeners. A hybrid room-acoustical prediction program was used throughout the work, and it and a 1/8 scale-model classroom were used to evaluate the effects of ceiling barriers and reflectors. For both subject groups, in approximately diffuse sound fields, when the speech source was closer to the listener than the noise source, the optimal reverberation time was zero. When the noise source was closer to the listener than the speech source, the optimal reverberation time was 0.4 s (with another peak at 0.0 s) with relative output power levels of the speech and noise sources SNS = 5 dB, and 0.8 s with SNS = 0 dB. In non-diffuse sound fields, when the noise source was between the speaker and the listener, the optimal reverberation time was 0.6 s with

  20. Real-time virtual room acoustic simulation

    NASA Astrophysics Data System (ADS)

    Carneal, James P.; Johnson, Jan; Johnson, Troge; Johnson, Marty

    2003-10-01

    A realistic virtual room acoustic simulation has been implemented on a PC-based computer in near real-time. Room acoustics are calculated by the image source method using realistic absorption coefficients for a variety of realistic surfaces and programmed in MATLAB. The resulting impulse response filters are then applied in near real-time using fast convolution DSP techniques using data being read from a CD-ROM. The system was implemented in a virtual acoustic room facility. Optimizations have been performed to retain the realistic virtual room effect while minimizing computations through limited psycho-acoustic testing. In general, realistic anechoic to reverberant virtual rooms have been re-created with six 8192 coefficient filters. To provide realistic simulations, special care must be taken to accurately reproduce the low frequency acoustics. Since the virtual room acoustic facility was not totally anechoic (as are most anechoic chambers), inverse filters were applied to compensate for over-amplified acoustics at frequencies below 350 Hz.

  1. Optical absorption of silicon nanowires

    SciTech Connect

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stievenard, D.; Leveque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2012-08-01

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  2. An acoustic emission study of plastic deformation in polycrystalline aluminium

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  3. Development of the seafloor acoustic ranging system

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Fujimoto, H.

    2007-12-01

    We have developed a seafloor acoustic ranging system, which simulates an operation with the DONET (Development of Dense Ocean-floor Network System for Earthquake and Tsunami) cable, to monitor seafloor crustal movement. The seafloor acoustic ranging system was based on the precise acoustic transponder (PXP). We have a few problems for the improvement of the resolution. One thing is the variation of sound speed. Another is the bending of ray path. A PXP measures horizontal distances on the seafloor from the round trip travel times of acoustic pulses between pairs of PXP. The PXP was equipped with the pressure, temperature gauge and tilt-meter. The variation of sound speed in seawater has a direct effect on the measurement. Therefore we collect the data of temperature and pressure. But we don't collect the data of salinity because of less influence than temperature and pressure. Accordingly a ray path of acoustic wave tends to be bent upward in the deep sea due to the Snell's law. As the acoustic transducer of each PXPs held about 3.0m above the seafloor, the baseline is too long for altitude from the seafloor. In this year we carried out the experiment for the seafloor acoustic ranging system. We deployed two PXPs at about 750m spacing on Kumano-nada. The water depth is about 2050m. We collected the 660 data in this experiment during one day. The round trip travel time show the variation with peak-to-peak amplitude of about 0.03msec. It was confirmed to explain the majority in this change by the change in sound speed according to the temperature and pressure. This results shows the resolution of acoustic measurements is +/-2mm. Acknowledgement This study is supported by 'DONET' of Ministry of Education, Culture, Sports, Science and Technology.

  4. Resonant interaction of acoustic waves with subaqueous bedforms: Sand dunes in the South China Sea.

    PubMed

    Chiu, Linus Y S; Chang, Andrea Y Y; Reeder, D Benjamin

    2015-12-01

    The large subaqueous sand dunes in the South China Sea are expected to produce the coupling of energy between acoustic normal modes. In this letter, resonant interaction between acoustic propagating modes and subaqueous bedforms are numerically investigated as a function of bedform wavelength, acoustic frequency and bedform packet length. The results demonstrate that bedform wavelength impacts acoustic mode coupling behavior, with the principal transfer of energy occurring between acoustic modes whose eigenvalue difference is equal to the peak value in the bedform wavenumber spectrum. The observed effect of wavelength is greater than that of acoustic frequency and bedform packet length.

  5. Cloaking of an acoustic sensor using scattering cancellation

    NASA Astrophysics Data System (ADS)

    Guild, Matthew D.; Alù, Andrea; Haberman, Michael R.

    2014-07-01

    In this Letter, a bilaminate acoustic cloak designed using scattering cancellation methods is applied to the case of an acoustic sensor consisting of a hollow piezoelectric shell with mechanical absorption. The bilaminate cloak provides 20-50 dB reduction in scattering strength relative to the uncloaked configuration over the typical range of operation for an acoustic sensor, retains its ability to sensing acoustic pressure signals, and remains within the physical bounds of a passive absorber. Further, the cloak is shown to increase the range of frequencies over which there is nearly perfect phase fidelity between the acoustic signal and the voltage generated by the sensor. The feasibility of achieving the necessary fluid layer properties is demonstrated using sonic crystals with the use of readily available acoustic materials.

  6. How to use your peak flow meter

    MedlinePlus

    Peak flow meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak flow meter ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  7. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Beach, Kirk; Carter, Stephen; Chandler, Wayne; Curra, Francesco; Kaczkowski, Peter; Keilman, George; Khokhlova, Vera; Martin, Roy; Mourad, Pierre; Vaezy, Shahram

    2000-07-01

    In cases of severe injury, physicians speak of a "golden hour"—a brief grace period in which quickly applied, proper therapy can save the life of the patient. Much of this mortality results from exsanguination, i.e., bleeding to death—often from internal hemorrhage. The inability of a paramedic to treat breaches in the vascular system deep within the body or to stem the loss of blood from internal organs is a major reason for the high level of mortality associated with blunt trauma. We have undertaken an extensive research program to treat the problem of internal bleeding. Our approach is as follows: (a) We use scanning ultrasound to identify internal bleeding and hemorrhage, (b) we use ultrasound imaging to locate specific breaches in the vascular system, both from damaged vessels and gross damage to the capillary bed, and (c) we use High Intensity Focused Ultrasound (HIFU) to treat the damaged region and to induce hemostasis. We present a general review of this research with some emphasis on the role of nonlinear acoustics.

  8. Two density peaks in low magnetic field helicon plasma

    SciTech Connect

    Wang, Y.; Zhao, G.; Ouyang, J. T. E-mail: lppmchenqiang@hotmail.com; Liu, Z. W.; Chen, Q. E-mail: lppmchenqiang@hotmail.com

    2015-09-15

    In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge of the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion.

  9. Effective absorption in cladding-pumped fibers

    NASA Astrophysics Data System (ADS)

    Zervas, Michalis N.; Marshall, Andy; Kim, Jaesun

    2011-02-01

    We investigate experimentally and theoretically the wavelength dependence of the pump absorption along Yb3+-doped fibers, for cladding-pumped single as well as coupled multimode (GTWaveTM) fibers. We show that significant spectral absorption distortions occur along the length with the 976nm absorption peak affected the most. We have developed a novel theoretical approach, based on coupled mode theory, to explain the observed effects. We have also investigated the mode mixing requirements in order to improve the absorption spectral distribution along the increase the overall absorption efficiency and discuss the implications on fiber laser performance.

  10. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  11. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy

    SciTech Connect

    Assmann, W. Reinhardt, S.; Lehrack, S.; Edlich, A.; Thirolf, P. G.; Parodi, K.; Kellnberger, S.; Omar, M.; Ntziachristos, V.; Moser, M.; Dollinger, G.

    2015-02-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measured by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound

  12. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  13. What Is an Acoustic Neuroma

    MedlinePlus

    ... Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, is a rare benign tumor of the ... Acoustic Neuroma? An acoustic neuroma, known as a vestibular schwannoma, is a benign (non-cancerous) growth that ...

  14. Symptoms of Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  15. Acoustic Neuroma Educational Video

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  16. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  17. Absorption spectra of graphene nanoribbons in a composite magnetic field

    NASA Astrophysics Data System (ADS)

    Li, T. S.; Wu, M. F.; Hsieh, C. T.

    2015-10-01

    The low-frequency optical absorption properties of graphene nanoribbons in a composite magnetic field are investigated by using the gradient approximation. The spectral function exhibits symmetric delta-function like prominent peaks structure in a uniform magnetic field, and changes to asymmetric square-root divergent peaks structure when subjecting to a composite field. These asymmetric divergent peaks can be further classified into principal and secondary peaks. The spectral intensity and frequency of the absorption peaks depend sensitively on the strength and modulation period of the composite field. The transition channels of the absorption peaks are also analyzed. There exists an optical selection rule which is caused by the orthogonal properties of the sublattice wave functions. The evolution of the spectral frequency of the absorption peaks with the field strength is explored.

  18. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  19. Resonant absorption of p-modes by sunspots

    NASA Technical Reports Server (NTRS)

    Chitre, S. M.; Davila, Joseph M.

    1990-01-01

    Explanations for the observed p-mode absorption in sunspots are examined. It is demonstrated that any dissipative process like radiative, viscous, or resistive dissipation leads to the resonant absorption of acoustic waves incident on the sunspot tube, and that the resultant heating rate can be shown to be consistent with the observed absorption of the p-mode power impinging on an isolated inhomogeneously structured sunspot.

  20. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    Data were obtained which will provide a test of the accuracy of the differential absorption method for trace contaminant detection in many-component gas mixtures. The necessary accurate absorption coefficient determinations were carried out for several gases; acetonitrile, 1,2-dichloroethane, Freon-113, furan, methyl ethyl ketone, and t-butyl alcohol. The absorption coefficients are displayed graphically. An opto-acoustic method was tested for measuring absorbance, similar to the system described by Dewey.

  1. Hubbert's Peak: A Physicist's View

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2011-11-01

    Oil and its by-products, as used in manufacturing, agriculture, and transportation, are the lifeblood of today's 7 billion-person population and our 65T world economy. Despite this importance, estimates of future oil production seem dominated by wishful thinking rather than quantitative analysis. Better studies are needed. In 1956, Dr. M.King Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Thus, the peak of oil production is referred to as ``Hubbert's Peak.'' Prof. Al Bartlett extended this work in publications and lectures on population and oil. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. This paper extends this line of work to include analyses of individual countries, inclusion of multiple Gaussian peaks, and analysis of reserves data. While this is not strictly a predictive theory, we will demonstrate a ``closed'' story connecting production, oil-in-place, and reserves. This gives us the ``most likely'' estimate of future oil availability. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  2. Two classes of speculative peaks

    NASA Astrophysics Data System (ADS)

    Roehner, Bertrand M.

    2001-10-01

    Speculation not only occurs in financial markets but also in numerous other markets, e.g. commodities, real estate, collectibles, and so on. Such speculative movements result in price peaks which share many common characteristics: same order of magnitude of duration with respect to amplitude, same shape (the so-called sharp-peak pattern). Such similarities suggest (at least as a first approximation) a common speculative behavior. However, a closer examination shows that in fact there are (at least) two distinct classes of speculative peaks. For the first, referred to as class U, (i) the amplitude of the peak is negatively correlated with the price at the start of the peak (ii) the ensemble coefficient of variation exhibits a trough. Opposite results are observed for the second class that we refer to as class S. Once these empirical observations have been made we try to understand how they should be interpreted. First, we show that the two properties are in fact related in the sense that the second is a consequence of the first. Secondly, by listing a number of cases belonging to each class we observe that the markets in the S-class offer collection of items from which investors can select those they prefer. On the contrary, U-markets consist of undifferentiated products for which a selection cannot be made in the same way. All prices considered in the paper are real (i.e., deflated) prices.

  3. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Chu, Shao-Sheng R.; Allen Christopher S.

    2010-01-01

    Acoustic modeling can be used to identify key noise sources, determine/analyze sub-allocated requirements, keep track of the accumulation of minor noise sources, and to predict vehicle noise levels at various stages in vehicle development, first with estimates of noise sources, later with experimental data. This paper describes the implementation of acoustic modeling for design purposes by incrementally increasing model fidelity and validating the accuracy of the model while predicting the noise of sources under various conditions. During FY 07, a simple-geometry Statistical Energy Analysis (SEA) model was developed and validated using a physical mockup and acoustic measurements. A process for modeling the effects of absorptive wall treatments and the resulting reverberation environment were developed. During FY 08, a model with more complex and representative geometry of the Orion Crew Module (CM) interior was built, and noise predictions based on input noise sources were made. A corresponding physical mockup was also built. Measurements were made inside this mockup, and comparisons were made with the model and showed excellent agreement. During FY 09, the fidelity of the mockup and corresponding model were increased incrementally by including a simple ventilation system. The airborne noise contribution of the fans was measured using a sound intensity technique, since the sound power levels were not known beforehand. This is opposed to earlier studies where Reference Sound Sources (RSS) with known sound power level were used. Comparisons of the modeling result with the measurements in the mockup showed excellent results. During FY 10, the fidelity of the mockup and the model were further increased by including an ECLSS (Environmental Control and Life Support System) wall, associated closeout panels, and the gap between ECLSS wall and mockup wall. The effect of sealing the gap and adding sound absorptive treatment to ECLSS wall were also modeled and validated.

  4. Computation of instantaneous and time-averaged active acoustic intensity field around rotating source

    NASA Astrophysics Data System (ADS)

    Mao, Yijun; Xu, Chen; Qi, Datong

    2015-02-01

    A vector aeroacoustics method is developed to analyze the acoustic energy flow path from the rotating source. In this method, the instantaneous and time-averaged active acoustic intensity vectors are evaluated from the time-domain and frequency-domain acoustic pressure and acoustic velocity formulations, respectively. With the above method, the acoustic intensity vectors and the acoustic energy streamlines are visualized to investigate the propagation feature of the noise radiated from the monopole and dipole point sources and the rotor in subsonic rotation. The result reveals that a portion of the acoustic energy spirals many circles before moving towards the far field, and another portion of the acoustic energy firstly flows inward along the radial direction and then propagates along the axial direction. Further, an acoustic black hole exists in the plane of source rotation, from which the acoustic energy cannot escape once the acoustic energy flows into it. Moreover, by visualizing the acoustic intensity field around the rotating sources, the acoustic-absorption performance of the acoustic liner built in the casing and centerbody is discussed.

  5. Generation of Acoustic Signals from Buried Explosions

    NASA Astrophysics Data System (ADS)

    Bonner, J. L.; Reinke, R.; Waxler, R.; Lenox, E. A.

    2012-12-01

    Buried explosions generate both seismic and acoustic signals. The mechanism for the acoustic generation is generally assumed to be large ground motions above the source region that cause atmospheric pressure disturbances which can propagate locally or regionally depending on source size and weather conditions. In order to better understand the factors that control acoustic generation from buried explosions, we conducted a series of 200 lb explosions detonated in and above the dry alluvium and limestones of Kirtland AFB, New Mexico. In this experiment, nicknamed HUMBLE REDWOOD III, we detonated charges at heights of burst of 2 m (no crater) and depths of burst of 7 m (fully confined). The seismic and acoustic signals were recorded on a network of near-source (< 90 m) co-located accelerometer and overpressure sensors, circular rings of acoustic sensors at 0.3 and 1 km, and multiple seismic and infrasound sensors at local-to-regional distances. Near-source acoustic signals for the 200 lb buried explosion in limestone show an impulsive, short-duration (0.04 s) initial peak, followed by a broad duration (0.3 s) negative pressure trough, and finally a second positive pulse (0.18 s duration). The entire width of the acoustic signal generated by this small buried explosion is 0.5 s and results in a 2 Hz peak in spectral energy. High-velocity wind conditions quickly attenuate the signal with few observations beyond 1 km. We have attempted to model these acoustic waveforms by estimating near-source ground motion using synthetic spall seismograms. Spall seismograms have similar characteristics as the observed acoustics and usually include an initial positive motion P wave, followed by -1 g acceleration due to the ballistic free fall of the near surface rock units, and ends with positive accelerations due to "slapdown" of the material. Spall seismograms were synthesized using emplacement media parameters and high-speed video observations of the surface movements. We present a

  6. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  7. Peak finding using biorthogonal wavelets

    SciTech Connect

    Tan, C.Y.

    2000-02-01

    The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform much better than the FBI wavelets.

  8. ACOUSTICAL STANDARDS NEWS.

    PubMed

    Stremmel, Neil; Struck, Christopher J

    2016-07-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Neil Stremmel.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27475185

  9. Acoustical properties of highly porous fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1979-01-01

    Highly porous, fibrous bulk sound absorbing materials are studied with a view toward understanding their acoustical properties and performance in a wide variety of applications including liners of flow ducts. The basis and criteria for decoupling of acoustic waves in the pores of the frame and compressional waves in the frame structure are established. The equations of motion are recast in a form that elucidates the coupling mechanisms. The normal incidence surface impedance and absorption coefficient of two types of Kevlar 29 and an open celled foam material are studied. Experimental values and theoretical results are brought into agreement when the structure factor is selected to provide a fit to the experimental data. A parametric procedure for achieving that fit is established. Both a bulk material quality factor and a high frequency impedance level are required to characterize the real and imaginary part of the surface impedance and absorption coefficient. A derivation of the concepts of equivalent density and dynamic resistance is presented.

  10. Potential of solar cooling systems for peak demand reduction

    SciTech Connect

    Pesaran, A A; Neymark, J

    1994-11-01

    We investigated the technical feasibility of solar cooling for peak demand reduction using a building energy simulation program (DOE2.1D). The system studied was an absorption cooling system with a thermal coefficient of performance of 0.8 driven by a solar collector system with an efficiency of 50% with no thermal storage. The analysis for three different climates showed that, on the day with peak cooling load, about 17% of the peak load could be met satisfactorily with the solar-assisted cooling system without any thermal storage. A performance availability analysis indicated that the solar cooling system should be designed for lower amounts of available solar resources that coincide with the hours during which peak demand reduction is required. The analysis indicated that in dry climates, direct-normal concentrating collectors work well for solar cooling; however, in humid climates, collectors that absorb diffuse radiation work better.

  11. Hubbert's Peak -- A Physicist's View

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2011-04-01

    Oil, as used in agriculture and transportation, is the lifeblood of modern society. It is finite in quantity and will someday be exhausted. In 1956, Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Bartlett extended this work in publications and lectures on the finite nature of oil and its production peak and depletion. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. Central to these analyses are estimates of total ``oil in place'' obtained from engineering studies of oil reservoirs as this quantity determines the area under the Hubbert's Peak. Knowing the production history and the total oil in place allows us to make estimates of reserves, and therefore future oil availability. We will then examine reserves data for various countries, in particular OPEC countries, and see if these data tell us anything about the future availability of oil. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  12. Peak Stress Testing Protocol Framework

    EPA Science Inventory

    Treatment of peak flows during wet weather is a common challenge across the country for municipal wastewater utilities with separate and/or combined sewer systems. Increases in wastewater flow resulting from infiltration and inflow (I/I) during wet weather events can result in op...

  13. Measuring Your Peak Flow Rate

    MedlinePlus

    ... meter. Proper cleaning with mild detergent in hot water will keep your peak flow meter working accurately and may keep you healthier. Related Content News: American Lung Association Applauds EPA’s Update to Cross-State Air Pollution Rule News: American Lung Association Invests More Than $ ...

  14. Sound absorption of low-temperature reusable surface insulation candidate materials

    NASA Technical Reports Server (NTRS)

    Johnston, J. D.

    1974-01-01

    Sound absorption data from tests of four candidate low-temperature reusable surface insulation materials are presented. Limitations on the use of the data are discussed, conclusions concerning the effective absorption of the materials are drawn, and the relative significance to Vibration and Acoustic Test Facility test planning of the absorption of each material is assessed.

  15. Estimating surface acoustic impedance with the inverse method.

    PubMed

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics. PMID:21939599

  16. Design, characterization and modeling of biobased acoustic foams

    NASA Astrophysics Data System (ADS)

    Ghaffari Mosanenzadeh, Shahrzad

    Polymeric open cell foams are widely used as sound absorbers in sectors such as automobile, aerospace, transportation and building industries, yet there is a need to improve sound absorption of these foams through understanding the relation between cell morphology and acoustic properties of porous material. Due to complicated microscopic structure of open cell foams, investigating the relation between foam morphology and acoustic properties is rather intricate and still an open problem in the field. The focus of this research is to design and develop biobased open cell foams for acoustic applications to replace conventional petrochemical based foams as well as investigating the link between cell morphology and macroscopic properties of open cell porous structures. To achieve these objectives, two industrially produced biomaterials, polylactide (PLA) and polyhydroxyalkanoate (PHA) and their composites were examined and highly porous biobased foams were fabricated by particulate leaching and compression molding. Acoustic absorption capability of these foams was enhanced utilizing the effect of co-continuous blends to form a bimodal porous structure. To tailor mechanical and acoustic properties of biobased foams, blends of PLA and PHA were studied to reach the desired mechanical and viscoelastic properties. To enhance acoustic properties of porous medium for having a broad band absorption effect, cell structure must be appropriately graded. Such porous structures with microstructural gradation are called Functionally Graded Materials (FGM). A novel graded foam structure was designed with superior sound absorption to demonstrate the effect of cell arrangement on performance of acoustic fixtures. Acoustic measurements were performed in a two microphone impedance tube and acoustic theory of Johnson-Champoux-Allard was applied to the fabricated foams to determine micro cellular properties such as tortuosity, viscous and thermal lengths from sound absorption impedance tube

  17. Acoustic agglomeration of power plant fly ash. Final report

    SciTech Connect

    Reethof, G.; McDaniel, O.H.

    1982-01-01

    The work has shown that acoustic agglomeration at practical acoustic intensities and frequencies is technically and most likely economically viable. The following studies were performed with the listed results: The physics of acoustic agglomeration is complex particularly at the needed high acoustic intensities in the range of 150 to 160 dB and frequencies in the 2500 Hz range. The analytical model which we developed, although not including nonlinear acoustic efforts, agreed with the trends observed. We concentrated our efforts on clarifying the impact of high acoustic intensities on the generation of turbulence. Results from a special set of tests show that although some acoustically generated turbulence of sorts exists in the 150 to 170 dB range with acoustic streaming present, such turbulence will not be a significant factor in acoustic agglomeration compared to the dominant effect of the acoustic velocities at the fundamental frequency and its harmonics. Studies of the robustness of the agglomerated particles using the Anderson Mark III impactor as the source of the shear stresses on the particles show that the agglomerates should be able to withstand the rigors of flow through commercial cyclones without significant break-up. We designed and developed a 700/sup 0/F tubular agglomerator of 8'' internal diameter. The electrically heated system functioned well and provided very encouraging agglomeration results at acoustic levels in the 150 to 160 dB and 2000 to 3000 Hz ranges. We confirmed earlier results that an optimum frequency exists at about 2500 Hz and that larger dust loadings will give better results. Studies of the absorption of acoustic energy by various common gases as a function of temperature and humidity showed the need to pursue such an investigation for flue gas constituents in order to provide necessary data for the design of agglomerators. 65 references, 56 figures, 4 tables.

  18. Acoustic properties of low growing plants.

    PubMed

    Horoshenkov, Kirill V; Khan, Amir; Benkreira, Hadj

    2013-05-01

    The plane wave normal incidence acoustic absorption coefficient of five types of low growing plants is measured in the presence and absence of soil. These plants are generally used in green living walls and flower beds. Two types of soil are considered in this work: a light-density, man-made soil and a heavy-density natural clay base soil. The absorption coefficient data are obtained in the frequency range of 50-1600 Hz using a standard impedance tube of diameter 100 mm. The equivalent fluid model for sound propagation in rigid frame porous media proposed by Miki [J. Acoust. Soc. Jpn. (E) 11, 25-28 (1990)] is used to predict the experimentally observed behavior of the absorption coefficient spectra of soils, plants, and their combinations. Optimization analysis is employed to deduce the effective flow resistivity and tortuosity of plants which are assumed to behave acoustically as an equivalent fluid in a rigid frame porous medium. It is shown that the leaf area density and dominant angle of leaf orientation are two key morphological characteristics which can be used to predict accurately the effective flow resistivity and tortuosity of plants.

  19. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  20. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  1. Tuned Chamber Core Panel Acoustic Test Results

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  2. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  3. METHOD OF PEAK CURRENT MEASUREMENT

    DOEpatents

    Baker, G.E.

    1959-01-20

    The measurement and recording of peak electrical currents are described, and a method for utilizing the magnetic field of the current to erase a portion of an alternating constant frequency and amplitude signal from a magnetic mediums such as a magnetic tapes is presented. A portion of the flux from the current carrying conductor is concentrated into a magnetic path of defined area on the tape. After the current has been recorded, the tape is played back. The amplitude of the signal from the portion of the tape immediately adjacent the defined flux area and the amplitude of the signal from the portion of the tape within the area are compared with the amplitude of the signal from an unerased portion of the tape to determine the percentage of signal erasure, and thereby obtain the peak value of currents flowing in the conductor.

  4. SPANISH PEAKS PRIMITIVE AREA, MONTANA.

    USGS Publications Warehouse

    Calkins, James A.; Pattee, Eldon C.

    1984-01-01

    A mineral survey of the Spanish Peaks Primitive Area, Montana, disclosed a small low-grade deposit of demonstrated chromite and asbestos resources. The chances for discovery of additional chrome resources are uncertain and the area has little promise for the occurrence of other mineral or energy resources. A reevaluation, sampling at depth, and testing for possible extensions of the Table Mountain asbestos and chromium deposit should be undertaken in the light of recent interpretations regarding its geologic setting.

  5. Acoustic signal characteristics during IR laser ablation and their consequences for acoustic tissue discrimination

    NASA Astrophysics Data System (ADS)

    Nahen, Kester; Vogel, Alfred

    2000-06-01

    IR laser ablation of skin is accompanied by acoustic signals the characteristics of which are closely linked to the ablation dynamics. A discrimination between different tissue layers, for example necrotic and vital tissue during laser burn debridement, is therefore possible by an analysis of the acoustic signal. We were able to discriminate tissue layers by evaluating the acoustic energy. To get a better understanding of the tissue specificity of the ablation noise, we investigated the correlation between sample water content, ablation dynamics, and characteristics of the acoustic signal. A free running Er:YAG laser with a maximum pulse energy of 2 J and a spot diameter of 5 mm was used to ablate gelatin samples with different water content. The ablation noise in air was detected using a piezoelectric transducer with a bandwidth of 1 MHz, and the acoustic signal generated inside the ablated sample was measured simultaneously ba a piezoelectric transducer in contact with the sample. Laser flash Schlieren photography was used to investigate the expansion velocity of the vapor plume and the velocity of the ejected material. We observed large differences between the ablation dynamics and material ejection velocity for gelatin samples with 70% and 90% water content. These differences cannot be explained by the small change of the gelatin absorption coefficient, but are largely related to differences of the mechanical properties of the sample. The different ablation dynamics are responsible for an increase of the acoustic energy by a factor of 10 for the sample with the higher water content.

  6. Liquid Helium Acoustic Microscope.

    NASA Astrophysics Data System (ADS)

    Steer, Andrew Paul

    Available from UMI in association with The British Library. In an acoustic microscope, images are generated by monitoring the intensity of the ultrasonic reflection, or echo, from the surface of a sample. In order to achieve this a pulse of acoustic energy is produced by the excitation of a thin film transducer. The pulse thus generated propagates through a crystal and is incident upon the acoustic lens surface, which is the boundary between the crystal and an acoustic coupling liquid. The acoustic lens is a converging element, and brings the ultrasonic beam to a focus within the liquid. A sample, placed at the focus, can act as a reflector, and the returned pulse then contains information regarding the acoustic reflectivity of this specimen. Acoustic pulses are repeatedly launched and detected while the acoustic lens is scanned over the surface of the sample. In this manner an acoustic image is constructed. Acoustic losses in room temperature liquid coupling media represent a considerable source of difficulty in the recovery of acoustic echo signals. At the frequencies of operation required in a microscope which is capable of high resolution, the ultrasonic attenuation is not only large but increases with the square of frequency. In superfluid liquid helium at temperatures below 0.1 K, however, the ultrasonic attenuation becomes negligible. Furthermore, the low sound velocity in liquid helium results in an increase in resolution, since the acoustic wavelength is proportional to velocity. A liquid helium acoustic microscope has been designed and constructed. Details of the various possible detection methods are given, and comparisons are made between them. Measurements of the performance of the system that was adopted are reported. The development of a cooled preamplifier is also described. The variation of reflected signal with object distance has been measured and compared with theoretical predictions. This variation is important in the analysis of acoustic

  7. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    NASA Astrophysics Data System (ADS)

    Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.

    2016-03-01

    The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman's approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  8. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  9. Dual-peak dose measurement for radiochromic films by a newly developed spectral microdensitometer

    SciTech Connect

    Lee, K.Y.; Fung, K.K.L.; Kwok, C.S.

    2005-06-15

    Radiochromic film (RCF) dosimetry is usually based on densitometric methods which use an analyzing light source of a fixed or a broad spectrum of wavelengths. These methods have not exploited the sensitivity of the dose response of the RCF otherwise attainable by using a light source with wavelengths peaked at the two absorption peaks in the absorption spectrum of the RCF. A new algorithm of dual-peak dose measurement for the RCF has been proposed in this paper to make use of these dual absorption peaks to achieve the maximum attainable sensitivity. This technique relies on the measurement of the transmittance of the RCF at the wavelength of the major and minor absorption peaks, respectively. The dual-peak dose measurement is accomplished with the aid of a novel spectral microdensitometer developed in our Institute. The microdensitometer utilizes a monochromator to provide a light source of which the wavelength can be matched precisely to the wavelength of the absorption peaks of the RCF. The doses obtained at these wavelengths are fed into a weighted objective function and an optimum dose is searched by minimizing the objective function to give the best estimate of the dose deposited on the film. An initial test shows that there is a good agreement between the estimated and actual dose deposited; and the maximum discrepancy was found to be less than 1%.

  10. Acoustic Levitator Maintains Resonance

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.

    1986-01-01

    Transducer loading characteristics allow resonance tracked at high temperature. Acoustic-levitation chamber length automatically adjusted to maintain resonance at constant acoustic frequency as temperature changes. Developed for containerless processing of materials at high temperatures, system does not rely on microphones as resonance sensors, since microphones are difficult to fabricate for use at temperatures above 500 degrees C. Instead, system uses acoustic transducer itself as sensor.

  11. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  12. THE USE OF ARCHITECTURAL ACOUSTICAL MATERIALS, THEORY AND PRACTICE. SECOND EDITION.

    ERIC Educational Resources Information Center

    Acoustical Materials Association, New York, NY.

    THIS DISCUSSION OF THE BASIC FUNCTION OF ACOUSTICAL MATERIALS--THE CONTROL OF SOUND BY SOUND ABSORPTION--IS BASED ON THE WAVE AND ENERGY PROPERTIES OF SOUND. IT IS STATED THAT, IN GENERAL, A MUCH LARGER VOLUME OF ACOUSTICAL MATERIALS IS NEEDED TO REMOVE DISTRACTING NOISE FROM CLASSROOMS AND OFFICES, FOR EXAMPLE, THAN FROM AUDITORIUMS, WHERE A…

  13. Acoustically-observable properties of adult gait.

    PubMed

    Bradley, Marshall; Sabatier, James M

    2012-03-01

    An approach has been developed for extracting human gait parameters from micro Doppler sonar grams. Key parameters include average speed of walking, torso velocity, walk cycle time, and peak leg velocity. The approach is a modification of a technique previously used in radar data analysis. It has been adapted because of differences between sonar and radar micro Doppler grams. The approach has been applied to an acoustic data set of 16 female and 60 male walkers. Statistics have been tabulated that illustrate the similarities and dissimilarities between female and male gait. Males tend to walk with larger walk cycle times and peak leg velocities than females.

  14. Acoustically-observable properties of adult gait.

    PubMed

    Bradley, Marshall; Sabatier, James M

    2012-03-01

    An approach has been developed for extracting human gait parameters from micro Doppler sonar grams. Key parameters include average speed of walking, torso velocity, walk cycle time, and peak leg velocity. The approach is a modification of a technique previously used in radar data analysis. It has been adapted because of differences between sonar and radar micro Doppler grams. The approach has been applied to an acoustic data set of 16 female and 60 male walkers. Statistics have been tabulated that illustrate the similarities and dissimilarities between female and male gait. Males tend to walk with larger walk cycle times and peak leg velocities than females. PMID:22423810

  15. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  16. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  17. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  18. Coherent acoustic phonon oscillation accompanied with backward acoustic pulse below exciton resonance in a ZnO epifilm on oxide-buffered Si(1 1 1)

    NASA Astrophysics Data System (ADS)

    Lin, Ja-Hon; Shen, Yu-Kai; Liu, Wei-Rein; Lu, Chia-Hui; Chen, Yao-Hui; Chang, Chun-peng; Lee, Wei-Chin; Hong, Minghwei; Kwo, Jueinai-Raynien; Hsu, Chia-Hung; Hsieh, Wen-Feng

    2016-08-01

    Unlike coherent acoustic phonons (CAPs) generated from heat induced thermal stress by the coated Au film, we demonstrated the oscillation from c-ZnO epitaxial film on oxide buffered Si through a degenerate pump-probe technique. As the excited photon energy was set below the exciton resonance, the electronic stress that resulted from defect resonance was used to induce acoustic wave. The damped oscillation revealed a superposition of a high frequency and long decay CAP signal with a backward propagating acoustic pulse which was generated by the absorption of the penetrated pump beam at the Si surface and selected by the ZnO layer as the acoustic resonator.

  19. Coherent acoustic phonon oscillation accompanied with backward acoustic pulse below exciton resonance in a ZnO epifilm on oxide-buffered Si(1 1 1)

    NASA Astrophysics Data System (ADS)

    Lin, Ja-Hon; Shen, Yu-Kai; Liu, Wei-Rein; Lu, Chia-Hui; Chen, Yao-Hui; Chang, Chun-peng; Lee, Wei-Chin; Hong, Minghwei; Kwo, Jueinai-Raynien; Hsu, Chia-Hung; Hsieh, Wen-Feng

    2016-08-01

    Unlike coherent acoustic phonons (CAPs) generated from heat induced thermal stress by the coated Au film, we demonstrated the oscillation from c-ZnO epitaxial film on oxide buffered Si through a degenerate pump–probe technique. As the excited photon energy was set below the exciton resonance, the electronic stress that resulted from defect resonance was used to induce acoustic wave. The damped oscillation revealed a superposition of a high frequency and long decay CAP signal with a backward propagating acoustic pulse which was generated by the absorption of the penetrated pump beam at the Si surface and selected by the ZnO layer as the acoustic resonator.

  20. GRANITE PEAK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Huber, Donald F.; Thurber, Horace K.

    1984-01-01

    The Granite Peak Roadless Area occupies an area of about 5 sq mi in the southern part of the Trinity Alps of the Klamath Mountains, about 12 mi north-northeast of Weaverville, California. Rock and stream-sediment samples were analyzed. All streams draining the roadless area were sampled and representative samples of the rock types in the area were collected. Background values were established for each element and anomalous values were examined within their geologic settings and evaluated for their significance. On the basis of mineral surveys there seems little likelihood for the occurrence of mineral or energy resources.

  1. Maxometers (peak wind speed anemometers)

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W.; Camp, D. W.; Turner, R. E. (Inventor)

    1973-01-01

    An instrument for measuring peak wind speeds under severe environmental conditions is described, comprising an elongated cylinder housed in an outer casing. The cylinder contains a piston attached to a longitudinally movable guided rod having a pressure disk mounted on one projecting end. Wind pressure against the pressure disk depresses the movable rod. When the wind reaches its maximum speed, the rod is locked by a ball clutch mechanism in the position of maximum inward movement. Thereafter maximum wind speed or pressure readings may be taken from calibrated indexing means.

  2. Coupled vibro-acoustic model updating using frequency response functions

    NASA Astrophysics Data System (ADS)

    Nehete, D. V.; Modak, S. V.; Gupta, K.

    2016-03-01

    Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.

  3. Acoustic Levitation With Less Equipment

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  4. Post Test Evaluation of HSCT Nozzle Acoustic Liner Subcomponents Subjected to a Hot Acoustic Durability Test

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Lee, Kuan

    2008-01-01

    The acoustic liner system designed for use in the High Speed Civil Transport (HSCT) was tested in a thermal-acoustic environment. Five ceramic matrix composite (CMC) acoustic tile configurations, five bulk acoustic absorbers, and one thermal protection system design were tested. The CMC acoustic tiles were subjected to two 2 3/4 hr ambient temperature acoustic exposures to measure their dynamic response. One exposure was conducted on the tiles alone and the second exposure included the tiles and the T-foam bulk absorber. The measured tile RMS strains were small. With or without the T-foam absorber, the dynamic strains were below strain levels that would cause damage during fatigue loading. After the ambient exposure, a 75-hr durability test of the entire acoustic liner system was conducted using a thermal-acoustic cycle that approximated the anticipated service cycle. Acoustic loads up to 139 dB/Hz and temperatures up to 1670 F (910 C) were employed during this 60 cycle test. During the durability test, the CMC tiles were exposed to temperatures up to 1780 F and a transient through thickness gradient up to 490 F. The TPS peak temperatures on the hot side of the panels ranged from 750 to 1000 F during the 60 cycles. The through thickness delta T ranged from 450 to 650 F, varying with TPS location and cycle number. No damage, such as cracks or chipping, was observed in the CMC tiles after completion of the testing. However, on tile warped during the durability test and was replaced after 43 or 60 cycles. No externally observed damage was found in this tile. No failure of the CMC fasteners occurred, but damage was observed. Cracks and missing material occurred, only in the fastener head region. No indication of damage was observed in the T-foam acoustic absorbers. The SiC foam acoustic absorber experienced damage after about 43 cycles. Cracking in the TPS occurred around the attachment holes and under a vent. In spite of the development of damage, the TPS maintained

  5. [Peak sound pressure levels of gunshots from starter's pistols].

    PubMed

    Rothschild, M A; Dieker, L; Prante, H; Maschke, C

    1998-12-01

    Starter's pistols are often bought for self-defense, but can also be used for criminal activities (e.g. assaults, etc.). When a starter's pistol is loaded with blank cartridges and is fired, a powerful shooting noise results. The level of the noise produced is high enough to cause acoustic trauma. For legal examinations and giving an expert opinion further information is needed about the power of such noise. We examined how high peak sound pressure levels were of the gunshots of blank cartridges and whether there existed any directional characteristics from the noise emissions. In all, 15 different models of starter's pistols of 8 different calibres were examined. In addition to blank cartridges, 8 mm tear gas cartridges were also examined. Four transducers were situated in the horizontal plane around the muzzle: 0 degree (shooting direction), 45 degrees, 90 degrees, and 180 degrees (towards the firer). The distances between the transducers and the muzzle were 25 cm, 50 cm, 100 cm, and 200 cm. At a distance of 1 m and in the 0 degree shooting direction the peak sound pressure levels of nearly all weapons tested exceeded 160 dB. At a shooting distance of 25 cm the peak sound pressure levels reached 181 dB. In addition, we observed a directional characteristic concerning the emission of noise: pistols produced higher peak sound pressure levels to the front than backwards towards the firer. PMID:10023593

  6. The acoustic signature of bubbles fragmenting in sheared flow.

    PubMed

    Deane, Grant B; Stokes, M Dale

    2006-12-01

    Measurements of the sound of bubbles fragmenting in fluid shear are presented and analyzed. The frequency, amplitude, and decay rate of the acoustic emissions from 1.8-mm-radius bubbles fragmenting between opposed fluid jets have been determined. A broad band of frequencies (1.8 to 30 kHz) is observed with peak pressure amplitudes in the range of 0.03 to 2 Pa. While the peak pressure amplitudes show no significant scaling with frequency, the frequency dependence of the decay rates is consistent with the sum of thermal and acoustic radiation losses.

  7. Acoustics Critical Readiness Review

    NASA Technical Reports Server (NTRS)

    Ballard, Kenny

    2010-01-01

    This presentation reviews the status of the acoustic equipment from the medical operations perspective. Included is information about the acoustic dosimeters, sound level meter, and headphones that are planned for use while on orbit. Finally there is information about on-orbit hearing assessments.

  8. Introduction to acoustic emission

    NASA Technical Reports Server (NTRS)

    Possa, G.

    1983-01-01

    Typical acoustic emission signal characteristics are described and techniques which localize the signal source by processing the acoustic delay data from multiple sensors are discussed. The instrumentation, which includes sensors, amplifiers, pulse counters, a minicomputer and output devices is examined. Applications are reviewed.

  9. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  10. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  11. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  12. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques.

  13. Cochlear bionic acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  14. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  15. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  16. Acoustic integrated extinction

    PubMed Central

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency. PMID:27547100

  17. Issues Related to Large Flight Hardware Acoustic Qualification Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Perry, Douglas C.; Kern, Dennis L.

    2011-01-01

    The characteristics of acoustical testing volumes generated by reverberant chambers or a circle of loudspeakers with and without large flight hardware within the testing volume are significantly different. The parameters attributing to these differences are normally not accounted for through analysis or acoustic tests prior to the qualification testing without the test hardware present. In most cases the control microphones are kept at least 2-ft away from hardware surfaces, chamber walls, and speaker surfaces to minimize the impact of the hardware in controlling the sound field. However, the acoustic absorption and radiation of sound by hardware surfaces may significantly alter the sound pressure field controlled within the chamber/speaker volume to a given specification. These parameters often result in an acoustic field that may provide under/over testing scenarios for flight hardware. In this paper the acoustic absorption by hardware surfaces will be discussed in some detail. A simple model is provided to account for some of the observations made from Mars Science Laboratory spacecraft that recently underwent acoustic qualification tests in a reverberant chamber.

  18. Acoustic trapping of active matter.

    PubMed

    Takatori, Sho C; De Dier, Raf; Vermant, Jan; Brady, John F

    2016-01-01

    Confinement of living microorganisms and self-propelled particles by an external trap provides a means of analysing the motion and behaviour of active systems. Developing a tweezer with a trapping radius large compared with the swimmers' size and run length has been an experimental challenge, as standard optical traps are too weak. Here we report the novel use of an acoustic tweezer to confine self-propelled particles in two dimensions over distances large compared with the swimmers' run length. We develop a near-harmonic trap to demonstrate the crossover from weak confinement, where the probability density is Boltzmann-like, to strong confinement, where the density is peaked along the perimeter. At high concentrations the swimmers crystallize into a close-packed structure, which subsequently 'explodes' as a travelling wave when the tweezer is turned off. The swimmers' confined motion provides a measurement of the swim pressure, a unique mechanical pressure exerted by self-propelled bodies. PMID:26961816

  19. THE ACOUSTIC CUTOFF FREQUENCY OF THE SUN AND THE SOLAR MAGNETIC ACTIVITY CYCLE

    SciTech Connect

    Jimenez, A.; Palle, P. L.; Garcia, R. A.

    2011-12-20

    The acoustic cutoff frequency-the highest frequency for acoustic solar eigenmodes-is an important parameter of the solar atmosphere as it determines the upper boundary of the p-mode resonant cavities. At frequencies beyond this value, acoustic disturbances are no longer trapped but are traveling waves. Interference among them gives rise to higher-frequency peaks-the pseudomodes-in the solar acoustic spectrum. The pseudomodes are shifted slightly in frequency with respect to p-modes, making possible the use of pseudomodes to determine the acoustic cutoff frequency. Using data from the GOLF and VIRGO instruments on board the Solar and Heliospheric Observatory spacecraft, we calculate the acoustic cutoff frequency using the coherence function between both the velocity and intensity sets of data. By using data gathered by these instruments during the entire lifetime of the mission (1996 until the present), a variation in the acoustic cutoff frequency with the solar magnetic activity cycle is found.

  20. Broadband acoustic omnidirectional absorber based on temperature gradients

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Zhao, Ping; Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2014-08-01

    Previous research into acoustic omnidirectional absorber (AOA) has shown the feasibility of forming acoustic black hole to guide the incident wave into the central absorptive cavity. However, major restrictions to practical applications exist due to complexity of designing metamaterials and unchangeable working states. Here, we propose two cylindrical, two-dimensional AOA schemes based on temperature gradients for airborne applications. One scheme with accurately designed temperature gradients has a better absorption performance which can almost completely absorb the incident wave, while the other one with a simplified configuration has low complexity which makes it much easier to realize. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Both schemes are temperature-tuned with broad working bandwidth.

  1. High Resolution X-ray-Induced Acoustic Tomography

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-05-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray.

  2. High Resolution X-ray-Induced Acoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  3. Low-frequency tunable acoustic absorber based on split tube resonators

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoxiao; Fu, Caixing; Li, Xin; Meng, Yan; Gao, Yibo; Tian, Jingxuan; Wang, Li; Huang, Yingzhou; Yang, Zhiyu; Wen, Weijia

    2016-07-01

    We demonstrate a high-efficiency tunable acoustic absorber for low frequencies (<500 Hz) with subwavelength thickness. The acoustic absorber is based on split tube resonators and could reach high-efficiency absorption at tunable resonance frequency with wavelength in air at least 30 times larger than its total thickness in simulations and experiments. The resonance frequency and high-efficiency absorption of the absorber are robust under oblique incidence even at large angles. The absorber could have potential applications for acoustic engineering due to its high structural stability, ease of fabrication, subwavelength thickness, and robust high-efficiency.

  4. Making sense of peak load cost allocations

    SciTech Connect

    Power, T.M.

    1995-03-15

    When it comes to cost allocation, common wisdom assigns costs in proportion to class contributions to peak loads, The justification is simple: Since the equipment had to be sized to meet peak day loads, those costs should be allocated on the same basis. Many different peak allocators have been developed on this assumption: single coincident peak contribution, sum of coincident peaks, noncoincident peak, average and excess demand, peak and average demand, base and extra capacity, and so on. Such pure peak-load allocators may not be politically acceptable, but conceptually, at least, they appear to offer the only defensible approach. Nevertheless, where capacity can be added with significant economies of scale, making cost allocations in proportion to peak loads violates well-known relationships between economics and engineering. What is missing is any tracing of the way in which the peak-load design criteria actually influence the cost incurred.

  5. Broadband acoustic properties of a murine skull

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-01

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  6. Broadband acoustic properties of a murine skull.

    PubMed

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-01

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  7. Acoustic simulations of Mudejar-Gothic churches.

    PubMed

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2009-09-01

    In this paper, an iterative process is used in order to estimate the values of absorption coefficients of those materials of which little is known in the literature, so that an acoustic simulation can be carried out in Mudejar-Gothic churches. The estimation of the scattering coefficients, which is even less developed, is based on the size of the irregularities. This methodology implemented is applied to six Mudejar-Gothic churches of Seville (southern Spain). The simulated monophonic acoustic parameters, both in the frequency domain and as a function of source-receiver distance (spatial distribution), are analyzed and compared with the in situ measures. Good agreement has been found between these sets of values, whereby each parameter is discussed in terms of the just noticeable difference. This procedure for existing buildings, especially for those which are rich in heritage, enables a reliable evaluation of the effect on the maintenance, restoration, and conditioning for new uses, as well as the recreation of the acoustic environment of ancient times. Along these lines, the acoustic influence of the timber roof and the presence of the public in these churches have also been studied.

  8. Home studio acoustic treatments on a budget

    NASA Astrophysics Data System (ADS)

    Haverstick, Gavin A.

    2003-04-01

    Digital technology in the recording industry has evolved and expanded, allowing it to be widely available to the public at a significantly lower cost than in previous years. Due to this fact, numerous home studios are either being built inside or converted from bedrooms, dens, and basements. Hobbyists and part-time musicians that typically do not have the advantage of a large recording budget operate the majority of these home studios. Along with digital equipment, acoustic treatment has become more affordable over the years giving many musicians the ability to write, record, and produce an entire album in the comfort of their own home without having to sacrifice acoustical quality along the way. Three separate case studies were conducted on rooms with various sizes, applications, and budgets. Acoustical treatment such as absorption, diffusion, and bass trapping were implemented to reduce the effects of issues such as flutter echo, excessive reverberation, and bass build-up among others. Reactions and subjective comments from each individual studio owner were gathered and assessed to determine how effective home studios can be on a personal and professional level if accurately treated acoustically.

  9. Acoustic simulations of Mudejar-Gothic churches.

    PubMed

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2009-09-01

    In this paper, an iterative process is used in order to estimate the values of absorption coefficients of those materials of which little is known in the literature, so that an acoustic simulation can be carried out in Mudejar-Gothic churches. The estimation of the scattering coefficients, which is even less developed, is based on the size of the irregularities. This methodology implemented is applied to six Mudejar-Gothic churches of Seville (southern Spain). The simulated monophonic acoustic parameters, both in the frequency domain and as a function of source-receiver distance (spatial distribution), are analyzed and compared with the in situ measures. Good agreement has been found between these sets of values, whereby each parameter is discussed in terms of the just noticeable difference. This procedure for existing buildings, especially for those which are rich in heritage, enables a reliable evaluation of the effect on the maintenance, restoration, and conditioning for new uses, as well as the recreation of the acoustic environment of ancient times. Along these lines, the acoustic influence of the timber roof and the presence of the public in these churches have also been studied. PMID:19739734

  10. Lattice Boltzmann formulation for flows with acoustic porous media

    NASA Astrophysics Data System (ADS)

    Sun, Chenghai; Pérot, Franck; Zhang, Raoyang; Lew, Phoi-Tack; Mann, Adrien; Gupta, Vinit; Freed, David M.; Staroselsky, Ilya; Chen, Hudong

    2015-10-01

    Porous materials are commonly used in various industrial systems such as ducts, HVAC, hoods, mufflers, in order to introduce acoustic absorption and to reduce the radiated acoustics levels. For problems involving flow-induced noise mechanisms and explicit interactions between turbulent source regions, numerical approaches remain a challenging task involving, on the one hand, the coupling between unsteady flow calculations and acoustics simulations and, on the other hand, the development of advanced and sensitive numerical schemes. In this paper, acoustic materials are explicitly modeled in lattice Boltzmann simulations using equivalent fluid regions having arbitrary porosity and resistivity. Numerical simulations are compared to analytical derivations as well as experiments and semi-empirical models to validate the approach.

  11. Acoustic sniper localization system

    NASA Astrophysics Data System (ADS)

    Prado, Gervasio; Dhaliwal, Hardave; Martel, Philip O.

    1997-02-01

    Technologies for sniper localization have received increased attention in recent months as American forces have been deployed to various trouble spots around the world. Among the technologies considered for this task acoustics is a natural choice for various reasons. The acoustic signatures of gunshots are loud and distinctive, making them easy to detect even in high noise background environments. Acoustics provides a passive sensing technology with excellent range and non line of sight capabilities. Last but not least, an acoustic sniper location system can be built at a low cost with off the shelf components. Despite its many advantages, the performance of acoustic sensors can degrade under adverse propagation conditions. Localization accuracy, although good, is usually not accurate enough to pinpoint a sniper's location in some scenarios (for example which widow in a building or behind which tree in a grove). For these more demanding missions, the acoustic sensor can be used in conjunction with an infra red imaging system that detects the muzzle blast of the gun. The acoustic system can be used to cue the pointing system of the IR camera in the direction of the shot's source.

  12. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  13. Acoustic mapping velocimetry

    NASA Astrophysics Data System (ADS)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  14. Peak load management: Potential options

    SciTech Connect

    Englin, J.E.; De Steese, J.G.; Schultz, R.W.; Kellogg, M.A.

    1989-10-01

    This report reviews options that may be alternatives to transmission construction (ATT) applicable both generally and at specific locations in the service area of the Bonneville Power Administration (BPA). Some of these options have potential as specific alternatives to the Shelton-Fairmount 230-kV Reinforcement Project, which is the focus of this study. A listing of 31 peak load management (PLM) options is included. Estimated costs and normalized hourly load shapes, corresponding to the respective base load and controlled load cases, are considered for 15 of the above options. A summary page is presented for each of these options, grouped with respect to its applicability in the residential, commercial, industrial, and agricultural sectors. The report contains comments on PLM measures for which load shape management characteristics are not yet available. These comments address the potential relevance of the options and the possible difficulty that may be encountered in characterizing their value should be of interest in this investigation. The report also identifies options that could improve the efficiency of the three customer utility distribution systems supplied by the Shelton-Fairmount Reinforcement Project. Potential cogeneration options in the Olympic Peninsula are also discussed. These discussions focus on the options that appear to be most promising on the Olympic Peninsula. Finally, a short list of options is recommended for investigation in the next phase of this study. 9 refs., 24 tabs.

  15. Establishment of peak bone mass.

    PubMed

    Mora, Stefano; Gilsanz, Vicente

    2003-03-01

    Among the main areas of progress in osteoporosis research during the last decade or so are the general recognition that this condition, which is the cause of so much pain in the elderly population, has its antecedents in childhood and the identification of the structural basis accounting for much of the differences in bone strength among humans. Nevertheless, current understanding of the bone mineral accrual process is far from complete. The search for genes that regulate bone mass acquisition is ongoing, and current results are not sufficient to identify subjects at risk. However, there is solid evidence that BMD measurements can be helpful for the selection of subjects that presumably would benefit from preventive interventions. The questions regarding the type of preventive interventions, their magnitude, and duration remain unanswered. Carefully designed controlled trials are needed. Nevertheless, previous experience indicates that weight-bearing activity and possibly calcium supplements are beneficial if they are begun during childhood and preferably before the onset of puberty. Modification of unhealthy lifestyles and increments in exercise or calcium assumption are logical interventions that should be implemented to improve bone mass gains in all children and adolescents who are at risk of failing to achieve an optimal peak bone mass. PMID:12699292

  16. An acoustic dual filter in the audio frequencies with two local resonant systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhao-qun; Zhang, Hui; Zhang, Shu-yi; Fan, Li

    2014-08-01

    We report an acoustic dual filter to realize the sound regulation in the audio frequency range, in which resonant vibrations of two membrane-air and metal-elastomer systems generate two sound transmission peaks and a sound blocking below 3000 Hz. The local vibrational profiles manifest that the transmission peak at lower frequency is mainly dependent on the resonant vibration of the membrane-air system, and the coupling vibrations of two systems generate the blocking frequency and transmission peak at higher frequency. Importantly, two transmission peaks can be controlled independently. It is feasible to realize the acoustic device in sound shield and dual filters.

  17. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies.

    PubMed

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-09-16

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.

  18. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies

    PubMed Central

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-01-01

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids. PMID:27633351

  19. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies.

    PubMed

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-01-01

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids. PMID:27633351

  20. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies

    NASA Astrophysics Data System (ADS)

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-09-01

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.

  1. Electric modulation of optical absorption in nanowires

    NASA Astrophysics Data System (ADS)

    Sakr, M. R.

    2016-11-01

    We have calculated the effect of an external electric field on the intersubband optical absorption of a nanowire subjected to a perpendicular magnetic field and Rashba effect. The absorption peaks due to optical transitions that are forbidden in the absence of the intersubband coupling experience strong amplitude modulation. This effect is quadratic in electric fields applied along the direction of quantum confinement or perpendicularly to tune the Rashba parameter. The electric field also induces frequency modulation in the associated spectrum. On the other hand, transitions that are normally allowed show, to a large extent, a parallel band effect, and accordingly they are responsible for strong optical absorption.

  2. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  3. PRSEUS Acoustic Panel Fabrication

    NASA Technical Reports Server (NTRS)

    Nicolette, Velicki; Yovanof, Nicolette P.; Baraja, Jaime; Mathur, Gopal; Thrash, Patrick; Pickell, Robert

    2011-01-01

    This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration with regards to acoustic response. A PRSEUS panel was designed and fabricated and provided to NASA-LaRC for acoustic response testing in the Structural Acoustics Loads and Transmission (SALT) facility). Preliminary assessments of the sound transmission characteristics of a PRSEUS panel subjected to a representative Hybrid Wing Body (HWB) operating environment were completed for the NASA Environmentally Responsible Aviation (ERA) Program.

  4. Acoustic rotation control

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Croonquist, A. P.; Wang, T. G. (Inventor)

    1983-01-01

    A system is described for acoustically controlled rotation of a levitated object, which avoids deformation of a levitated liquid object. Acoustic waves of the same wavelength are directed along perpendicular directions across the object, and with the relative phases of the acoustic waves repeatedly switched so that one wave alternately leads and lags the other by 90 deg. The amount of torque for rotating the object, and the direction of rotation, are controlled by controlling the proportion of time one wave leads the other and selecting which wave leads the other most of the time.

  5. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  6. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  7. Underwater acoustic omnidirectional absorber

    NASA Astrophysics Data System (ADS)

    Naify, Christina J.; Martin, Theodore P.; Layman, Christopher N.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2014-02-01

    Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.

  8. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Chu, SShao-sheng R.; Allen, Christopher S.

    2009-01-01

    Acoustic modeling can be used to identify key noise sources, determine/analyze sub-allocated requirements, keep track of the accumulation of minor noise sources, and to predict vehicle noise levels at various stages in vehicle development, first with estimates of noise sources, later with experimental data. In FY09, the physical mockup developed in FY08, with interior geometric shape similar to Orion CM (Crew Module) IML (Interior Mode Line), was used to validate SEA (Statistical Energy Analysis) acoustic model development with realistic ventilation fan sources. The sound power levels of these sources were unknown a priori, as opposed to previous studies that RSS (Reference Sound Source) with known sound power level was used. The modeling results were evaluated based on comparisons to measurements of sound pressure levels over a wide frequency range, including the frequency range where SEA gives good results. Sound intensity measurement was performed over a rectangular-shaped grid system enclosing the ventilation fan source. Sound intensities were measured at the top, front, back, right, and left surfaces of the and system. Sound intensity at the bottom surface was not measured, but sound blocking material was placed tinder the bottom surface to reflect most of the incident sound energy back to the remaining measured surfaces. Integrating measured sound intensities over measured surfaces renders estimated sound power of the source. The reverberation time T6o of the mockup interior had been modified to match reverberation levels of ISS US Lab interior for speech frequency bands, i.e., 0.5k, 1k, 2k, 4 kHz, by attaching appropriately sized Thinsulate sound absorption material to the interior wall of the mockup. Sound absorption of Thinsulate was modeled in three methods: Sabine equation with measured mockup interior reverberation time T60, layup model based on past impedance tube testing, and layup model plus air absorption correction. The evaluation/validation was

  9. Effect of Coversheet Materials on the Acoustic Performance of Melamine Foam

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Hughes, William O.

    2015-01-01

    Melamine foam is a highly absorptive material that is often used inside the payload fairing walls of a launch vehicle. This foam reduces the acoustic excitation environment that the spacecraft experiences during launch. Often, the melamine foam is enclosed by thin coversheet materials for contamination protection, thermal protection, and electrostatic discharge control. Previous limited acoustic testing by NASA Glenn Research Center has shown that the presence of a coversheet material on the melamine foam can have a significant impact on the absorption coefficient and the transmission loss. As a result of this preliminary finding a more extensive acoustic test program using several different coversheet materials on melamine foam was performed. Those test results are summarized in this paper. Additionally, a method is provided to use the acoustic absorption and transmission loss data obtained from panel level testing to predict their combined effect for the noise reduction of a launch vehicle payload fairing.

  10. Acoustics of contrastive prosody in children

    NASA Astrophysics Data System (ADS)

    Patel, Rupal; Piel, Jordan; Grigos, Maria

    2005-04-01

    Empirical data on the acoustics of prosodic control in children is limited, particularly for linguistically contrastive tasks. Twelve children aged 4, 7, and 11 years were asked to produce two utterances ``Show Bob a bot'' (voiced consonants) and ``Show Pop a pot'' (voiceless consonants) 10 times each with emphasis placed on the second word (Bob/Pop) and 10 times with emphasis placed on the last word (bot/pot). A total of 40 utterances were analyzed per child. The following acoustic measures were obtained for each word within each utterance: average fundamental frequency (f0), peak f0, average intensity, peak intensity, and duration. Preliminary results suggest that 4 year olds are unable to modulate prosodic cues to signal the linguistic contrast. The 7 year olds, however, not only signaled the appropriate stress location, but did so with the most contrastive differences in f0, intensity, and duration, of all age groups. Prosodic differences between stressed and unstressed words were more pronounced for the utterance with voiced consonants. These findings suggest that the acoustics of linguistic prosody begin to differentiate between age 4 and 7 and may be highly influenced by changes in physiological control and flexibility that may also affect segmental features.

  11. Effects of selected anticholinergics on acoustic startle response in rats.

    PubMed

    Sipos, M L; Burchnell, V; Galbicka, G

    2001-12-01

    The present study compared the effects of the anticholinergics aprophen hydrochloride, atropine sulfate, azaprophen hydrochloride, benactyzine hydrochloride, biperiden hydrochloride, diazepam, procyclidine hydrochloride, scopolamine hydrobromide and trihexyphenidyl hydrochloride on acoustic startle response in rats. Peak startle amplitude, latency to peak startle amplitude and prepulse inhibition following 100- and 120-dB tones were recorded 15 min following drug administration in food-restricted rats. Aprophen, atropine, azaprophen, benactyzine, biperiden and scopolamine significantly increased peak startle amplitude and decreased latency to peak startle amplitude following 100-dB pulses. In contrast, only biperiden increased peak startle amplitude following 120-dB pulses, whereas atropine and trihexyphenidyl decreased latency to peak startle amplitude following 120-dB pulses. Benactyzine decreased prepulse inhibition following both 100- and 120-dB pulses, whereas both biperiden and scopolamine decreased prepulse inhibition following 120-dB pulses. Acoustic startle response measures were effective in differentiating the effects of anticholinergic compounds. The comparison of drug effects on the acoustic startle response may be useful in selecting efficacious anticholinergic drug therapies with a minimal range of side-effects. In addition, these data may be useful in down-selecting the number of anticholinergic drugs that need to be tested in comparison studies involving more complex behavioral tests. PMID:11920928

  12. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  13. Acoustics lecturing in Mexico

    NASA Astrophysics Data System (ADS)

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  14. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  15. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  16. Acoustic Neuroma Association

    MedlinePlus

    ... Platinum Sponsors More from this sponsor... Platinum Sponsor Gold Sponsor University of Colorado Acoustic Neuroma Program Rocky Mountain Gamma Knife Center Gold Sponsor NYU Langone Medical Center Departments of Neurosurgery ...

  17. Acoustic-Levitation Chamber

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  18. Multimode Acoustic Research

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1985-01-01

    There is a need for high temperature containerless processing facilities that can efficiently position and manipulate molten samples in the reduced gravity environment of space. The goal of the research is to develop sophisticated high temperature manipulation capabilities such as selection of arbitrary axes rotation and rapid sample cooling. This program will investigate new classes of acoustic levitation in rectangular, cylindrical and spherical geometries. The program tasks include calculating theoretical expressions of the acoustic forces in these geometries for the excitation of up to three acoustic modes (multimodes). These calculations are used to: (1) determine those acoustic modes that produce stable levitation, (2) isolate the levitation and rotation capabilities to produce more than one axis of rotation, and (3) develop methods to translate samples down long tube cylindrical chambers. Experimental levitators will then be constructed to verify the stable levitation and rotation predictions of the models.

  19. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  20. Design for prevention of acoustic fatigue. [of aircraft structures

    NASA Technical Reports Server (NTRS)

    Smith, H. W.

    1983-01-01

    It is pointed out that new noise prediction methods and acoustic life estimation methods have matured to the point where they can be combined into a unified engineering procedure. "Life derivatives" can be extracted from parametric charts to furnish design data for preventing acoustic fatigue. The acoustic fatigue life is shown to be sensitive to the damping ratio through the use of life derivatives. The localized nature of propeller noise can be quantified with an "isodecibel" contour diagram.Even though the peak sound pressure level may be high, the directional derivatives show the noise decay rates with distance. Acoustic fatigue design is discussed from the overall design methodology and is shown to be similar to other structural design problems. While nonlinearities present a formidable design engineering problem, they are manageable by proven semi-empirical techniques. For new design problems, it is imperative to determine whether the data base completely spans the design variables.

  1. Numerical Techniques in Acoustics

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J. (Compiler)

    1985-01-01

    This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.

  2. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-11-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell’s law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  3. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  4. Middle Ear Resonance and Acoustic Immittance Measures in Children.

    ERIC Educational Resources Information Center

    Hanks, Wendy D.; Rose, Katie J.

    1993-01-01

    This study established a normal middle ear resonance estimated from sweep frequency tympanometry, established normal equivalent ear canal volume, static acoustic admittance, and tympanometric peak pressure at 226 hertz in 90 children with normal hearing and 68 children with deafness, ages 6-15. No significant intergroup or age differences were…

  5. Acoustic detection of pneumothorax

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (<2000 Hz) acoustic methods for medical diagnosis. Several candidate methods of pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (p<0.0001). The ratio of acoustic energy between low (<220 Hz) and mid (550-770 Hz) frequency bands was significantly different in the control (healthy) and pneumothorax states (p<0.0001). The second approach measured breath sounds in the absence of an external acoustic input. Pneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (p<0.01 for each). Finally, chest percussion was implemented. Pneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  6. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  7. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  8. A compact acoustic recorder

    NASA Astrophysics Data System (ADS)

    Stein, Ronald

    1989-09-01

    The design and operation of a portable compact acoustic recorder is discussed. Designed to be used in arctic conditions for applications that require portable equipment, the device is configured to fit into a lightweight briefcase. It will operate for eight hours at -40 F with heat provided by a hot water bottle. It has proven to be an effective scientific tool in the measurement of underwater acoustic signals in arctic experiments. It has also been used successfully in warmer climates, e.g., in recording acoustic signals from small boats with no ac power. The acoustic recorder's cost is moderate since it is based on a Sony Walkman Professional (WM-D6C) tape recorder playback unit. A speaker and battery assembly and a hydrophone interface electronic assembly complete the system electronics. The interface assembly supplies a number of functions, including a calibration tone generator, an audio amplifier, and a hydrophone interface. Calibrated acoustic recordings can be made by comparing the calibration tone amplitude with the acoustic signal amplitude. The distortion of the recording is minimized by using a high quality, consumer tape recorder.

  9. Acoustic communication by ants

    NASA Astrophysics Data System (ADS)

    Hickling, Robert

    2002-05-01

    Many ant species communicate acoustically by stridulating, i.e., running a scraper over a washboard-like set of ridges. Ants appear to be insensitive to airborne sound. Consequently, myrmecologists have concluded that the stridulatory signals are transmitted through the substrate. This has tended to diminish the importance of acoustic communication, and it is currently believed that ant communication is based almost exclusively on pheromones, with acoustic communication assigned an almost nonexistent role. However, it can be shown that acoustic communication between ants is effective only if the medium is air and not the substrate. How, then, is it possible for ants to appear deaf to airborne sound and yet communicate through the air? An explanation is provided in a paper [R. Hickling and R. L. Brown, ``Analysis of acoustic communication by ants,'' J. Acoust. Soc. Am. 108, 1920-1929 (2000)]. Ants are small relative to the wavelengths they generate. Hence, they create a near field, which is characterized by a major increase in sound velocity (particle velocity of sound) in the vicinity of the source. Hair sensilla on the ants' antennae respond to sound velocity. Thus, ants are able to detect near-field sound from other ants and to exclude extraneous airborne sound.

  10. Influence of acoustic anisotropy of paratellurite crystal on the double acousto-optic Bragg light scattering

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.; Voloshinov, V. B.

    2016-09-01

    Influence of acoustic anisotropy on acousto-optic interaction in optically and acoustically anisotropic media is theoretically and experimentally studied. A specific type of acousto-optic diffraction is analyzed with allowance for the phase-matching conditions for two diffraction maxima. Analytical expressions for the phase-mismatch parameters versus the angle between the phase and group velocities of acoustic wave are derived. Light intensity in the diffraction peaks is numerically calculated, and experimental data on the diffraction in the paratellurite crystal at an acoustic walk-off angle of 54° are presented.

  11. A wideband acoustic energy harvester using a three degree-of-freedom architecture

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Wen, Yumei; Li, Ping; Yang, Aichao; Bai, Xiaoling

    2013-10-01

    In this study, an acoustic energy harvester consisting of a perforated brass plate sandwiched between two cavities is designed and fabricated for scavenging energy from wide-spectrum acoustic sources. The multi-mode resonances of the device are adjusted closely spaced over a wide range of frequencies by properly tuned acoustic coupling of the vibrating plate and the two cavities. The experimental results show that the proximity of the multiple peaks enables the harvester operating in the frequency range of 1100-1400 Hz, which provides useful leads for the realization of acoustic energy generators of practical interest.

  12. The HI absorption "Zoo"

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.

    2015-03-01

    We present an analysis of the H I 21 cm absorption in a sample of 101 flux-selected radio AGN (S1.4 GHz> 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). We detect H I absorption in 32 objects (30% of the sample). In a previous paper, we performed a spectral stacking analysis on the radio sources, while here we characterize the absorption spectra of the individual detections using the recently presented busy function. The H I absorption spectra show a broad variety of widths, shapes, and kinematical properties. The full width half maximum (FWHM) of the busy function fits of the detected H I lines lies in the range 32 km s-1peak absorption (FW20) lies in the range 63 km s-1 200 km s-1). We study the kinematical and radio source properties of each group, with the goal of identifying different morphological structures of H I. Narrow lines mostly lie at the systemic velocity and are likely produced by regularly rotating H I disks or gas clouds. More H I disks can be present among galaxies with lines of intermediate widths; however, the H I in these sources is more unsettled. We study the asymmetry parameter and blueshift/redshift distribution of the lines as a function of their width. We find a trend for which narrow profiles are also symmetric, while broad lines are the most asymmetric. Among the broadest lines, more lines appear blueshifted than redshifted, similarly to what was found by previous studies. Interestingly, symmetric broad lines are absent from the sample. We argue that if a profile is broad, it is also asymmetric and shifted relative to the systemic velocity because it is tracing unsettled H I gas. In particular, besides three of the broadest (up to FW20 = 825 km s-1

  13. Use of Acoustic Emission During Scratch Testing for Understanding Adhesion Behavior of Aluminum Nitride Coatings

    NASA Astrophysics Data System (ADS)

    Choudhary, R. K.; Mishra, P.

    2016-06-01

    In this work, acoustic emission during scratch testing of the aluminum nitride coatings formed on stainless steel substrate by reactive magnetron sputtering was analyzed to assess the coating failure. The AlN coatings were formed under the variation of substrate temperature, substrate bias potential, and discharge power. The coatings deposited in the temperature range of 100 to 400 °C showed peak acoustic emission less than 1.5%, indicating ductile nature of the coating. However, for coatings formed with substrate negative bias potential of 20 to 50 V, numerous sharp acoustic bursts with maximum emission approaching 80% were observed, indicating brittle nature of the coatings with large number of defects present. The shift in the intensity of the first major acoustic peak toward higher load, with the increasing bias potential, confirmed improved adhesion of the coating. Also, the higher discharge power resulted in increased acoustic emission.

  14. Discourse Peak as Zone of Turbulence.

    ERIC Educational Resources Information Center

    Longacre, Robert E.

    Defining peak as the climax of discourse, this paper argues that it is important to identify peak in order to get at the overall grammar of a given discourse. The paper presents case studies in which four instances of peak in narrative discourses occur in languages from four different parts of the world. It also illustrates the occurrence of a…

  15. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  16. 27 CFR 9.140 - Atlas Peak.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Atlas Peak. 9.140 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.140 Atlas Peak. (a) Name. The name of the viticultural area described in this section is “Atlas Peak.”...

  17. Acoustic black holes: recent developments in the theory and applications.

    PubMed

    Krylov, Victor

    2014-08-01

    Acoustic black holes are relatively new physical objects that have been introduced and investigated mainly during the last decade. They can absorb almost 100% of the incident wave energy, and this makes them very attractive for such traditional engineering applications as vibration damping in different engineering structures and sound absorption in gases and liquids. They also could be useful for some ultrasonic devices using Lamb wave propagation to provide anechoic termination for such waves. So far, acoustic black holes have been investigated mainly for flexural waves in thin plates, for which the required gradual changes in local wave velocity with distance can be easily achieved by changing the plates' local thickness. The present paper provides a brief review of the theory of acoustic black holes, including their comparison with optic black holes introduced about five years ago. Review is also given of the recent experimental work carried out at Loughborough University on damping structural vibrations using the acoustic black hole effect. This is followed by the discussion on potential applications of the acoustic black hole effect for sound absorption in air.

  18. Acoustic assessment of speech privacy curtains in two nursing units

    PubMed Central

    Pope, Diana S.; Miller-Klein, Erik T.

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s’ standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered. PMID:26780959

  19. Acoustic assessment of speech privacy curtains in two nursing units.

    PubMed

    Pope, Diana S; Miller-Klein, Erik T

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s' standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered. PMID:26780959

  20. Acoustic black holes: recent developments in the theory and applications.

    PubMed

    Krylov, Victor

    2014-08-01

    Acoustic black holes are relatively new physical objects that have been introduced and investigated mainly during the last decade. They can absorb almost 100% of the incident wave energy, and this makes them very attractive for such traditional engineering applications as vibration damping in different engineering structures and sound absorption in gases and liquids. They also could be useful for some ultrasonic devices using Lamb wave propagation to provide anechoic termination for such waves. So far, acoustic black holes have been investigated mainly for flexural waves in thin plates, for which the required gradual changes in local wave velocity with distance can be easily achieved by changing the plates' local thickness. The present paper provides a brief review of the theory of acoustic black holes, including their comparison with optic black holes introduced about five years ago. Review is also given of the recent experimental work carried out at Loughborough University on damping structural vibrations using the acoustic black hole effect. This is followed by the discussion on potential applications of the acoustic black hole effect for sound absorption in air. PMID:25073137

  1. Acoustic assessment of speech privacy curtains in two nursing units.

    PubMed

    Pope, Diana S; Miller-Klein, Erik T

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s' standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered.

  2. Acoustic Aspects of Photoacoustic Signal Generation and Detection in Gases

    NASA Astrophysics Data System (ADS)

    Miklós, A.

    2015-09-01

    In this paper photoacoustic signal generation and detection in gases is investigated and discussed from the standpoint of acoustics. Four topics are considered: the effect of the absorption-desorption process of modulated and pulsed light on the heat power density released in the gas; the generation of the primary sound by the released heat in an unbounded medium; the excitation of an acoustic resonator by the primary sound; and finally, the generation of the measurable PA signal by a microphone. When light is absorbed by a molecule and the excess energy is relaxed by collisions with the surrounding molecules, the average kinetic energy, thus also the temperature of an ensemble of molecules (called "particle" in acoustics) will increase. In other words heat energy is added to the energy of the particle. The rate of the energy transfer is characterized by the heat power density. A simple two-level model of absorption-desorption is applied for describing the heat power generation process for modulated and pulsed illumination. Sound generation by a laser beam in an unbounded medium is discussed by means of the Green's function technique. It is shown that the duration of the generated sound pulse depends mostly on beam geometry. A photoacoustic signal is mostly detected in a photoacoustic cell composed of acoustic resonators, buffers, filters, etc. It is not easy to interpret the measured PA signal in such a complicated acoustic system. The acoustic response of a PA detector to different kinds of excitations (modulated cw, pulsed, periodic pulse train) is discussed. It is shown that acoustic resonators respond very differently to modulated cw excitation and to excitation by a pulse train. The microphone for detecting the PA signal is also a part of the acoustic system; its properties have to be taken into account by the design of a PA detector. The moving membrane of the microphone absorbs acoustic energy; thus, it may influence the resonance frequency and

  3. Super-Resonant Intracavity Coherent Absorption

    PubMed Central

    Malara, P.; Campanella, C. E.; Giorgini, A.; Avino, S.; De Natale, P.; Gagliardi, G.

    2016-01-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator’s quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes. PMID:27364475

  4. Super-Resonant Intracavity Coherent Absorption.

    PubMed

    Malara, P; Campanella, C E; Giorgini, A; Avino, S; De Natale, P; Gagliardi, G

    2016-01-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator's quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes. PMID:27364475

  5. Super-Resonant Intracavity Coherent Absorption

    NASA Astrophysics Data System (ADS)

    Malara, P.; Campanella, C. E.; Giorgini, A.; Avino, S.; de Natale, P.; Gagliardi, G.

    2016-07-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator’s quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes.

  6. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  7. Sixteen-Year Change in Acoustic-Admittance Measures among Older Adults: Data from a Population-Based Study

    ERIC Educational Resources Information Center

    Nondahl, David M.; Cruickshanks, Karen J.; Wiley, Terry L.; Tweed, Ted S.; Dalton, Dayna S.

    2013-01-01

    Purpose: The primary purpose of this study was to measure the 16-year change in peak compensated static acoustic admittance (Peak Y[subscript tm]) in a population-based cohort of older adults, and to determine whether age was associated with any observed change in Peak Y[subscript tm]. Other tympanometric measures also were taken and analyzed.…

  8. Acoustic Analysis of a Mechanical Circulatory Support

    PubMed Central

    Hubbert, Laila; Sundbom, Per; Loebe, Matthias; Peterzén, Bengt; Granfeldt, Hans; Ahn, Henrik

    2014-01-01

    Mechanical circulatory support technology is continually improving. However, adverse complications do occur with devastating consequences, for example, pump thrombosis that may develop in several parts of the pump system. The aim of this study was to design an experimental clot/thrombosis model to register and analyze acoustic signals from the left ventricular assist device (LVAD) HeartMate II (HMII) (Thoratec Corporation, Inc., Pleasanton, CA, USA) and detect changes in sound signals correlating to clots in the inflow, outflow, and pump housing. Using modern telecom techniques, it was possible to register and analyze the HMII pump-specific acoustic fingerprint in an experimental model of LVAD support using a mock loop. Increase in pump speed significantly (P < 0.005) changed the acoustic fingerprint at certain frequency (0–23 000 Hz) intervals (regions: R1–3 and peaks: P1,3–4). When the ball valves connected to the tubing were narrowed sequentially by ∼50% of the inner diameter (to mimic clot in the out- and inflow tubing), the frequency spectrum changed significantly (P < 0.005) in P1 and P2 and R1 when the outflow tubing was narrowed. This change was not seen to the same extent when the lumen of the ball valve connected to the inflow tube was narrowed by ∼50%. More significant (P < 0.005) acoustic changes were detected in P1 and P2 and R1 and R3, with the largest dB figs. in the lower frequency ranges in R1 and P2, when artificial clots and blood clots passed through the pump system. At higher frequencies, a significant change in dB figs. in R3 and P4 was detected when clots passed through the pump system. Acoustic monitoring of pump sounds may become a valuable tool in LVAD surveillance. PMID:24372095

  9. A new method to measure the acoustic surface impedance outdoors.

    PubMed

    Carpinello, S; L'Hermite, Ph; Bérengier, M; Licitra, G

    2004-01-01

    In the European countries noise pollution is considered to be one of the most important environmental problems. With respect to traffic noise, different researchers are working on the reduction of noise at the source, on the modelling of the acoustic absorption of the road structure and on the effects of the pavement on the propagation. The aim of this paper is to propose a new method to measure the acoustic impedance of surfaces located outdoors, which allows us to further noise propagation models, in order to evaluate exactly the noise exposure.

  10. A consideration on physical tuning for acoustical coloration in recording studio

    NASA Astrophysics Data System (ADS)

    Shimizu, Yasushi

    2003-04-01

    Coloration due to particular architectural shapes and dimension or less surface absorption has been mentioned as an acoustical defect in recording studio. Generally interference among early reflected sounds arriving within 10 ms in delay after the direct sound produces coloration by comb filter effect over mid- and high-frequency sounds. In addition, less absorbed room resonance modes also have been well known as a major component for coloration in low-frequency sounds. Small size in dimension with recording studio, however, creates difficulty in characterization associated with wave acoustics behavior, that make acoustical optimization more difficult than that of concert hall acoustics. There still remains difficulty in evaluating amount of coloration as well as predicting its acoustical characteristics in acoustical modeling and in other words acoustical tuning technique during construction is regarded as important to optimize acoustics appropriately to the function of recording studio. This paper presents a example of coloration by comb filtering effect and less damped room modes in typical post-processing recording studio. And acoustical design and measurement technique will be presented for adjusting timbre due to coloration based on psycho-acoustical performance with binaural hearing and room resonance control with line array resonator adjusted to the particular room modes considered.

  11. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  12. On the trail of double peak hydrographs

    NASA Astrophysics Data System (ADS)

    Martínez-Carreras, Núria; Hissler, Christophe; Gourdol, Laurent; Klaus, Julian; Juilleret, Jérôme; François Iffly, Jean; McDonnell, Jeffrey J.; Pfister, Laurent

    2016-04-01

    A double peak hydrograph features two peaks as a response to a unique rainfall pulse. The first peak occurs at the same time or shortly after the precipitation has started and it corresponds to a fast catchment response to precipitation. The delayed peak normally starts during the recession of the first peak, when the precipitation has already ceased. Double peak hydrographs may occur for various reasons. They can occur (i) in large catchments when lag times in tributary responses are large, (ii) in urban catchments where the first peak is often caused by direct surface runoff on impervious land cover, and the delayed peak to slower subsurface flow, and (iii) in non-urban catchments, where the first and the delayed discharge peaks are explained by different runoff mechanisms (e.g. overland flow, subsurface flow and/or deep groundwater flow) that have different response times. Here we focus on the third case, as a formal description of the different hydrological mechanisms explaining these complex hydrological dynamics across catchments with diverse physiographic characteristics is still needed. Based on a review of studies documenting double peak events we have established a formal classification of catchments presenting double peak events based on their regolith structure (geological substratum and/or its weathered products). We describe the different hydrological mechanisms that trigger these complex hydrological dynamics across each catchment type. We then use hydrometric time series of precipitation, runoff, soil moisture and groundwater levels collected in the Weierbach (0.46 km2) headwater catchment (Luxembourg) to better understand double peak hydrograph generation. Specifically, we aim to find out (1) if the generation of a double peak hydrograph is a threshold process, (2) if the hysteretic relationships between storage and discharge are consistent during single and double peak hydrographs, and (3) if different functional landscape units (the hillslopes

  13. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  14. Absorption of ultraviolet radiation by antarctic phytoplankton

    SciTech Connect

    Vernet, M.; Mitchell, B.G. )

    1990-01-09

    Antarctic phytoplankton contain UV-absorbing compounds that may block damaging radiation. Compounds that absorb from 320-340 nm were observed in spectral absorption of both particulates and in methanol extracts of the particulates. The decrease in the total concentration of these UV compounds with respect to chlorophyll a, as measured by the ratio of in vitro absorption at 335 nm to absorption at 665 nm is variable and decreases with depth. We observed up to 5-fold decrease in this ratio for samples within the physically mixes surface layer. The absorption of UV radiation in methanol extracts, which peaks from 320 to 340 nm, may be composed of several compounds. Shifts in peak absorption with depth (for example, from 331 nm at surface to 321 nm at 75 m), may be interpreted as a change in composition. Ratios of protective yellow xanthophylls (diadinoxanthin + diatoxanthin) to photosynthetic fucoxanthin-like pigments have highest values in surface waters. As these pigments also absorb in the near UV, their function might extend to protection as well as utilization of UV radiation for photosynthesis. We document strong absorption in the UV from 320-330 nm for Antarctic marine particulates. Below this region of the solar energy spectrum, absolute energy levels of incident radiation drop off dramatically. Only wavelengths shorter than about 320 nm will be significantly enhanced due to ozone depletion. If the absorption we observed serves a protective role for phytoplankton photosynthesis, it appears the peak band is in the region where solar energy increases rapidly, and not in the region where depletion would cause significant variations in absolute flux.

  15. Packaging of an iron-gallium (Galfenol) nanowire acoustic sensor

    NASA Astrophysics Data System (ADS)

    Jain, Rupal; McCluskey, F. Patrick; Flatau, Alison B.; Stadler, Bethanie J. H.

    2007-04-01

    Packaging is a key issue for the effective working of an iron-gallium (Galfenol) nanowire acoustic sensor for underwater applications. The nanowire acoustic sensor incorporates cilia-like nanowires made of galfenol, a magnetostrictive material, which responds by changing magnetic flux flowing through it due to bending stress induced by the incoming acoustic waves. This stress induced change in the magnetic flux density is detected by a GMR sensor. An effective package should provide a suitably protective environment to these nanowires, while allowing sound waves to reach the nanowires with a minimum level of attenuation. A bio-inspired MEMS package has been designed, analogous to a human-ear cochlea for the nanowire acoustic sensor. In this paper, the process sequence for fabrication of the package is presented. Unlike other microphones, the nanoacoustic sensor has been enclosed in a cavity to allow free movement of the nanowires in a fluid medium. The package also ensures resisting ingression of sea water and salt ions to prevent the corrosion of sensor components. The effect of package material on sensor performance was investigated by conducting experiments on acoustic impedance and attenuation characteristics, and salt water absorption properties. The package filled with silicone oil and molded with polydimethylsiloxane (PDMS) is observed to outperform other packages at all frequencies by minimizing attenuation of the acoustic waves.

  16. Taking advantage of acoustic inhomogeneities in photoacoustic measurements

    NASA Astrophysics Data System (ADS)

    Da Silva, Anabela; Handschin, Charles; Riedinger, Christophe; Piasecki, Julien; Mensah, Serge; Litman, Amélie; Akhouayri, Hassan

    2016-03-01

    Photoacoustic offers promising perspectives in probing and imaging subsurface optically absorbing structures in biological tissues. The optical uence absorbed is partly dissipated into heat accompanied with microdilatations that generate acoustic pressure waves, the intensity which is related to the amount of fluuence absorbed. Hence the photoacoustic signal measured offers access, at least potentially, to a local monitoring of the absorption coefficient, in 3D if tomographic measurements are considered. However, due to both the diffusing and absorbing nature of the surrounding tissues, the major part of the uence is deposited locally at the periphery of the tissue, generating an intense acoustic pressure wave that may hide relevant photoacoustic signals. Experimental strategies have been developed in order to measure exclusively the photoacoustic waves generated by the structure of interest (orthogonal illumination and detection). Temporal or more sophisticated filters (wavelets) can also be applied. However, the measurement of this primary acoustic wave carries a lot of information about the acoustically inhomogeneous nature of the medium. We propose a protocol that includes the processing of this primary intense acoustic wave, leading to the quantification of the surrounding medium sound speed, and, if appropriate to an acoustical parametric image of the heterogeneities. This information is then included as prior knowledge in the photoacoustic reconstruction scheme to improve the localization and quantification.

  17. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    ERIC Educational Resources Information Center

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  18. REPORTING PEAK EXPIRATORY FLOW IN OLDER PERSONS

    PubMed Central

    Vaz Fragoso, Carlos A.; Gahbauer, Evelyne A.; Van Ness, Peter H.; Gill, Thomas M.

    2009-01-01

    Background Peak expiratory flow (“peak flow”) predicts important outcomes in older persons. Nevertheless, its clinical application is uncertain because prior strategies for reporting peak flow may not be valid. We thus determined the frequency distribution of peak flow by the conventional strategy of percent predicted (%predicted) and by an alternative method termed standardized residual (SR) percentile, and evaluated how these two metrics relate to health status in older persons. Methods Participants included 754 community-living persons aged ≥ 70 years. Data included chronic conditions, frailty indicators, and peak flow. Results Mean age was 78.4 years, with 63.7% reporting a smoking history, 17.4% chronic lung disease, and 77.1% having one or more frailty indicators. Peak flow ≥ 80 %predicted was recorded in 67.5% of participants, whereas peak flow ≥ 80th SR-percentile was only noted in 15.9%. A graded relationship was observed between peak flow and health status, but %predicted yielded health risk at peak flows currently considered normal (80–100 %predicted), whereas SR-percentile conferred health risk only at severely reduced peak flows (< 50th SR-percentile). Conclusions Peak flow expressed as SR-percentile attains a frequency distribution more consistent with the characteristics of our elderly cohort, and establishes health risk at more appropriate levels of reduced peak flow. These findings establish the need for longitudinal studies based on SR-percentile to further evaluate the use of peak flow as a risk assessment tool in older persons, and to determine if pulmonary function, in general, is better reported in older persons as SR-percentile, rather than as %predicted. PMID:17921429

  19. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  20. Acoustic particle separation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. (Inventor)

    1985-01-01

    A method is described which uses acoustic energy to separate particles of different sizes, densities, or the like. The method includes applying acoustic energy resonant to a chamber containing a liquid of gaseous medium to set up a standing wave pattern that includes a force potential well wherein particles within the well are urged towards the center, or position of minimum force potential. A group of particles to be separated is placed in the chamber, while a non-acoustic force such as gravity is applied, so that the particles separate with the larger or denser particles moving away from the center of the well to a position near its edge and progressively smaller lighter particles moving progressively closer to the center of the well. Particles are removed from different positions within the well, so that particles are separated according to the positions they occupy in the well.

  1. Acoustic Levitation Containerless Processing

    NASA Technical Reports Server (NTRS)

    Whymark, R. R.; Rey, C. A.

    1985-01-01

    This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.

  2. Acoustic energy shaping

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Elleman, D. D. (Inventor)

    1977-01-01

    A suspended mass is shaped by melting all or a selected portion of the mass and applying acoustic energy in varying amounts to different portions of the mass. In one technique for forming an optical waveguide slug, a mass of oval section is suspended and only a portion along the middle of the cross-section is heated to a largely fluid consistency. Acoustic energy is applied to opposite edges of the oval mass to press the unheated opposite edge portions together so as to form bulges at the middle of the mass. In another technique for forming a ribbon of silicon for constructing solar cells, a cylindrical thread of silicon is drawn from a molten mass of silicon, and acoustic energy is applied to opposite sides of the molten thread to flatten it into a ribbon.

  3. Passive broadband acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  4. Latticed pentamode acoustic cloak.

    PubMed

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  5. Latticed pentamode acoustic cloak

    PubMed Central

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  6. Electromagnetically induced absorption via incoherent collisions

    SciTech Connect

    Yang Xihua; Sheng Jiteng; Xiao Min

    2011-10-15

    We conduct theoretical studies on electromagnetically induced absorption via incoherent collisions in an inhomogeneously broadened ladder-type three-level system with the density-matrix approach. The effects of the collision-induced coherence decay rates as well as the probe laser field intensity on the probe field absorption are examined. It is shown that with the increase of the collisional decay rates in a moderate range, a narrow dip due to electromagnetically induced transparency superimposed on the Doppler-broadened absorption background can be turned into a narrow peak under the conditions that the probe field intensity is not very weak as compared to the pump field, which results from the enhancement of constructive interference and suppression of destructive interference between one-photon and multiphoton transition pathways. The physical origin of the collision-assisted electromagnetically induced absorption is analyzed with a power-series solution of the density-matrix equations.

  7. External Cavity Quantum Cascade Laser for Quartz Tuning Fork Photoacoustic Spectroscopy of Broad Absorption Features

    SciTech Connect

    Phillips, Mark C.; Myers, Tanya L.; Wojcik, Michael D.; Cannon, Bret D.

    2007-05-01

    We demonstrate mid-infrared spectroscopy of large molecules with broad absorption features using a tunable external cavity quantum cascade laser. Absorption spectra for two different Freons are measured over the range 1130-1185 cm-1 with 0.2 cm-1 resolution via laser photoacoustic spectroscopy with quartz tuning forks as acoustic transducers. The measured spectra are in excellent agreement with published reference absorption spectra.

  8. Acetaminophen overdose associated with double serum concentration peaks.

    PubMed

    Papazoglu, Cristian; Ang, Jonathan R; Mandel, Michael; Basak, Prasanta; Jesmajian, Stephen

    2015-01-01

    Acetaminophen is the most commonly used analgesic-antipyretic medication in the United States. Acetaminophen overdose, a frequent cause of drug toxicity, has been recognized as the leading cause of fatal and non-fatal hepatic necrosis. N-Acetylcysteine is the recommended antidote for acetaminophen poisoning. Despite evidence on the efficacy of N-acetylcysteine for prevention of hepatic injury, controversy persists about the optimal duration of the therapy. Here, we describe the case of a 65-year-old male with acetaminophen overdose and opioid co-ingestion who developed a second peak in acetaminophen serum levels after completing the recommended 21-hour intravenous N-acetylcysteine protocol and when the standard criteria for monitoring drug levels was achieved. Prolongation of N-acetylcysteine infusion beyond the standard protocol, despite a significant gap in treatment, was critical for successful avoidance of hepatotoxicity. Delay in acetaminophen absorption may be associated with a second peak in serum concentration following an initial declining trend, especially in cases of concomitant ingestion of opioids. In patients with acetaminophen toxicity who co-ingest other medications that may potentially delay gastric emptying or in those with risk factors for delayed absorption of acetaminophen, we recommend close monitoring of aminotransferase enzyme levels, as well as trending acetaminophen concentrations until undetectable before discontinuing the antidote therapy. PMID:26653695

  9. Acetaminophen overdose associated with double serum concentration peaks

    PubMed Central

    Papazoglu, Cristian; Ang, Jonathan R.; Mandel, Michael; Basak, Prasanta; Jesmajian, Stephen

    2015-01-01

    Acetaminophen is the most commonly used analgesic–antipyretic medication in the United States. Acetaminophen overdose, a frequent cause of drug toxicity, has been recognized as the leading cause of fatal and non-fatal hepatic necrosis. N-Acetylcysteine is the recommended antidote for acetaminophen poisoning. Despite evidence on the efficacy of N-acetylcysteine for prevention of hepatic injury, controversy persists about the optimal duration of the therapy. Here, we describe the case of a 65-year-old male with acetaminophen overdose and opioid co-ingestion who developed a second peak in acetaminophen serum levels after completing the recommended 21-hour intravenous N-acetylcysteine protocol and when the standard criteria for monitoring drug levels was achieved. Prolongation of N-acetylcysteine infusion beyond the standard protocol, despite a significant gap in treatment, was critical for successful avoidance of hepatotoxicity. Delay in acetaminophen absorption may be associated with a second peak in serum concentration following an initial declining trend, especially in cases of concomitant ingestion of opioids. In patients with acetaminophen toxicity who co-ingest other medications that may potentially delay gastric emptying or in those with risk factors for delayed absorption of acetaminophen, we recommend close monitoring of aminotransferase enzyme levels, as well as trending acetaminophen concentrations until undetectable before discontinuing the antidote therapy. PMID:26653695

  10. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  11. Electromechanical acoustic liner

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)

    2007-01-01

    A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.

  12. Acoustic tooth cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1982-01-01

    An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.

  13. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  14. Acoustical model of a Shoddy fibre absorber

    NASA Astrophysics Data System (ADS)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  15. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  16. Passive radio frequency peak power multiplier

    DOEpatents

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  17. Post Treatment of Acoustic Neuroma

    MedlinePlus

    Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video Pre-Treatment Treatment Options Summary Treatment Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions ...

  18. Variable-Position Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  19. A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Netterfield, C. B.; Ade, P. A. R.; Bock, J. J.; Bond, J. R.; Borrill, J.; Boscaleri, A.; Coble, K.; Contaldi, C. R.; Crill, B. P.; Bernardis, P. de; Farese, P.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V. V.; Iacoangeli, A.; Jaffe, A. H.; Jones, W. C.; Lange, A. E.; Martinis, L.; Masi, S.; Mason, P.; Mauskopf, P.; Melchiorri, A.; Montroy, T.

    2001-01-01

    This paper presents a measurement of the angular power spectrum of the Cosmic Microwave Background from l = 75 to l = 1025 (10' to 5 degrees) from a combined analysis of four 150 GHz channels in the BOOMERANG experiment. The spectrum contains multiple peaks and minima, as predicted by standard adiabatic-inflationary models in which the primordial plasma undergoes acoustic oscillations.

  20. Lightweight acoustic treatments for aerospace applications

    NASA Astrophysics Data System (ADS)

    Naify, Christina Jeanne

    2011-12-01

    acoustic response. Acoustic metamaterials with negative dynamic mass density have been shown to demonstrate a significant (5x) increase in TL over mass law predictions for a narrow band (100Hz) at low frequencies (100--1000Hz). The peak TL frequency can be tuned to specific values by varying the membrane and mass properties. TL magnitude as a function of frequency was measured for variations of the mass magnitude and membrane tension using an impedance tube setup. The dynamic properties of membranes constructed from different materials and thicknesses were measured and compared to the results of coupled field acoustic-structural finite element analysis (FEA) modeling to understand the role of tension and element quality factor. To better comprehend the mechanism(s) responsible for the TL peak, a laser vibrometer was used to map the out-of-plane dynamic response of the structure under acoustic loading at discrete frequencies. Negative dynamic mass was experimentally demonstrated at the peak TL frequency. The scale-up of the acoustic metamaterial structure was explored by examining the behavior of multiple elements arranged in arrays. Single membranes were stretched over rigid frame supports and masses were attached to the center of each divided cell. TL behavior was measured for multiple configurations with different magnitudes of mass distributed across each of the cell membranes in the array resulting in a multi-peak TL profile. To better understand scale-up issues, the effect of the frame structure compliance was evaluated, and more compliant frames resulted in a reduction in TL peak frequency bandwidth. In addition, displacement measurements of frames and membranes were performed using a laser vibrometer. The measured TL of the multi-celled structure was compared with TL behavior predicted by FEA to understand the role of non-uniform mass distribution and frame compliance. TL of membrane-type LRAM with added ring masses was analyzed using both finite element analysis

  1. Origin of weak lensing convergence peaks

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Haiman, Zoltán

    2016-08-01

    Weak lensing convergence peaks are a promising tool to probe nonlinear structure evolution at late times, providing additional cosmological information beyond second-order statistics. Previous theoretical and observational studies have shown that the cosmological constraints on Ωm and σ8 are improved by a factor of up to ≈2 when peak counts and second-order statistics are combined, compared to using the latter alone. We study the origin of lensing peaks using observational data from the 154 deg2 Canada-France-Hawaii Telescope Lensing Survey. We found that while high peaks (with height κ >3.5 σκ , where σκ is the rms of the convergence κ ) are typically due to one single massive halo of ≈1 015M⊙ , low peaks (κ ≲σκ ) are associated with constellations of 2-8 smaller halos (≲1 013M⊙ ). In addition, halos responsible for forming low peaks are found to be significantly offset from the line of sight towards the peak center (impact parameter ≳ their virial radii), compared with ≈0.25 virial radii for halos linked with high peaks, hinting that low peaks are more immune to baryonic processes whose impact is confined to the inner regions of the dark matter halos. Our findings are in good agreement with results from the simulation work by Yang et al. [Phys. Rev. D 84, 043529 (2011)].

  2. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  3. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    SciTech Connect

    Cheng, Ying; Liu, XiaoJun; Zhou, Chen; Wei, Qi; Wu, DaJian

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  4. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion.

    PubMed

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  5. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion.

    PubMed

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester. PMID:26931884

  6. Gas-absorption process

    DOEpatents

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  7. Acoustics in Schools.

    ERIC Educational Resources Information Center

    Singer, Miriam J.

    This paper explores the issues associated with poor acoustics within schools. Additionally, it suggests remedies for existing buildings and those under renovation, as well as concerns for new construction. The paper discusses the effects of unwanted noise on students in terms of physiological, motivational, and cognitive influences. Issues are…

  8. Improved acoustic levitation apparatus

    NASA Technical Reports Server (NTRS)

    Berge, L. H.; Johnson, J. L.; Oran, W. A.; Reiss, D. A.

    1980-01-01

    Concave driver and reflector enhance and shape levitation forces in acoustic resonance system. Single-mode standing-wave pattern is focused by ring element situated between driver and reflector. Concave surfaces increase levitating forces up to factor of 6 as opposed to conventional flat surfaces, making it possible to suspend heavier objects.

  9. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  10. Acoustic leak detection system

    SciTech Connect

    Peacock, M.J.

    1993-08-03

    An acoustic leak detection system is described for determining the location of leaks in storage tanks, comprising: (a) sensor means for detecting a leak signal; (b) data acquisition means for digitizing and storing leak signals meeting preset criterion; and (c) analysis means for analyzing the digitized signals and computing the location of the source of the leak signals.

  11. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  12. Teaching acoustics online

    NASA Astrophysics Data System (ADS)

    Morrison, Andrew; Rossing, Thomas D.

    2003-10-01

    We teach an introductory course in musical acoustics using a Blackboard. Students in this course can access audio and video materials as well as printed materials on our course website. All homework is submitted online, as are tests and examinations. The students also have the opportunity to use synchronous and asynchronous chat rooms to discuss the course with each other or with the instructors.

  13. Acoustics- Version 1.0

    2012-09-13

    This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, themore » sounds are removed, as a character forgets what it has heard.« less

  14. Acoustics- Version 1.0

    SciTech Connect

    2012-09-13

    This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, the sounds are removed, as a character forgets what it has heard.

  15. Training Lessons Learned from Peak Performance Episodes.

    ERIC Educational Resources Information Center

    Fobes, James L.

    A major challenge confronting the United States Army is to obtain optimal performance from both its human and machine resources. This study examines episodes of peak performance in soldiers and athletes. Three cognitive components were found to enable episodes of peak performance: psychological readiness (activating optimal arousal and emotion…

  16. Do dark matter halos explain lensing peaks?

    NASA Astrophysics Data System (ADS)

    Zorrilla Matilla, José Manuel; Haiman, Zoltán; Hsu, Daniel; Gupta, Arushi; Petri, Andrea

    2016-10-01

    We have investigated a recently proposed halo-based model, Camelus, for predicting weak-lensing peak counts, and compared its results over a collection of 162 cosmologies with those from N-body simulations. While counts from both models agree for peaks with S /N >1 (where S /N is the ratio of the peak height to the r.m.s. shape noise), we find ≈50 % fewer counts for peaks near S /N =0 and significantly higher counts in the negative S /N tail. Adding shape noise reduces the differences to within 20% for all cosmologies. We also found larger covariances that are more sensitive to cosmological parameters. As a result, credibility regions in the {Ωm,σ8} are ≈30 % larger. Even though the credible contours are commensurate, each model draws its predictive power from different types of peaks. Low peaks, especially those with 2 peaks (S /N >3 ). Our results confirm the importance of using a cosmology-dependent covariance with at least a 14% improvement in parameter constraints. We identified the covariance estimation as the main driver behind differences in inference, and suggest possible ways to make Camelus even more useful as a highly accurate peak count emulator.

  17. Holograms for acoustics.

    PubMed

    Melde, Kai; Mark, Andrew G; Qiu, Tian; Fischer, Peer

    2016-01-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound. PMID:27652563

  18. Holograms for acoustics

    NASA Astrophysics Data System (ADS)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  19. The role of nutrition on optimizing peak bone mass.

    PubMed

    Weaver, Connie M

    2008-01-01

    The growth years provide an important window of opportunity for building peak bone mass. More than one-fourth of adult bone mass is acquired between the ages of 12 to 14 years in girls and 13 to 15 years in boys. Although genetics determine 60-80% of peak bone mass, lifestyle choices including diet and physical activity are also predictors of bone accrual during growth. Calcium and vitamin D are two nutrients that are most likely to be deficient. Dietary calcium predicts 10-15% of skeletal calcium retention during adolescence with race and sexual maturity in the models. Boys retain more calcium than girls and black girls retain more calcium than whites girls. The role of Vitamin D status on peak bone mass is not well understood. Results of randomized, controlled trials are mixed and the effects of vitamin D supplementation on calcium absorption in children has not been studied. Dietary salt increases urinary calcium excretion. Exercise can enhance the effect of dietary calcium through enhanced bone geometry.

  20. Laser generation of acoustic waves in liquids and gases

    NASA Astrophysics Data System (ADS)

    Sigrist, Markus W.

    1986-10-01

    The laser generation of sound in liquids and gases is reviewed. The sound-generating mechanisms of laser interaction with matter are discussed with emphasis on the thermoelastic process. The studies on strongly absorbing liquids include detailed theoretical considerations of the thermoelastic sound generation with pulsed lasers. Acoustic waveforms for H2O and D2O are calculated analytically on the basis of a model laser-pulse shape. Both free and rigid boundaries on the surface of the liquid are considered. Good agreement between theory and experiments with respect to waveforms and amplitudes is obtained. The experiments are performed with a hybrid CO2 laser and piezoelectric or optical detection of the acoustic transients. In view of a present controversy, special emphasis is put on the temperature dependence of the acoustic amplitudes in H2O, D2O, and in aqueous MgSO4 solutions. Good agreement is found between experimental data and a new, pure thermal model which takes heat conduction into account. The distortion of the acoustic waveform during the propagation through the liquid is treated in terms of sound absorption, diffraction, and nonlinear acoustics. A simple experimental method for the determination of Beyer's nonlinearity parameter B/A is presented. In the last section some characteristics of photoacoustic spectroscopy (PAS) in gaseous media are reviewed. This method has been demonstrated to be highly sensitive. The measurement of absorption coefficients as low as 10-8 cm-1 is possible. PA studies on H2O vapor are discussed with new results on line and continuum absorption in the 9-11-μm wavelength range. Finally, the impact of PAS on trace gas analysis is demonstrated. With PAS the detection of gas concentrations in the ppb range is feasible. The operational characteristics of a stationary CO laser and a mobile CO2 laser-PAS system are presented, including first results on continuous in situ air pollution monitoring.

  1. Weld peaking on heavy aluminum structures

    NASA Technical Reports Server (NTRS)

    Bayless, E.; Poorman, R.; Sexton, J.

    1978-01-01

    Weld peaking is usually undesirable in any welded structure. In heavy structures, the forces involved in the welding process become very large and difficult to handle. With the shuttle's solid rocket booster, the weld peaking resulted in two major problems: (1) reduced mechanical properties across the weld joint, and (2) fit-up difficulties in subsequent assembly operation. Peaking from the weld shrinkage forces can be fairly well predicted in simple structures; however, in welding complicated assemblies, the amount of peaking is unpredictable because of unknown stresses from machining and forming, stresses induced by the fixturing, and stresses from welds in other parts of the assembly. When excessive peaking is encountered, it can be corrected using the shrinkage forces resulting from the welding process. Application of these forces is discussed in this report.

  2. Multiscale peak detection in wavelet space.

    PubMed

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-01

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  3. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    PubMed

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  4. Acoustic trapping of active matter

    PubMed Central

    Takatori, Sho C.; De Dier, Raf; Vermant, Jan; Brady, John F.

    2016-01-01

    Confinement of living microorganisms and self-propelled particles by an external trap provides a means of analysing the motion and behaviour of active systems. Developing a tweezer with a trapping radius large compared with the swimmers' size and run length has been an experimental challenge, as standard optical traps are too weak. Here we report the novel use of an acoustic tweezer to confine self-propelled particles in two dimensions over distances large compared with the swimmers' run length. We develop a near-harmonic trap to demonstrate the crossover from weak confinement, where the probability density is Boltzmann-like, to strong confinement, where the density is peaked along the perimeter. At high concentrations the swimmers crystallize into a close-packed structure, which subsequently ‘explodes' as a travelling wave when the tweezer is turned off. The swimmers' confined motion provides a measurement of the swim pressure, a unique mechanical pressure exerted by self-propelled bodies. PMID:26961816

  5. Ion Acoustic Modes in Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Hartley, Nicholas; Monaco, Guilio; White, Thomas; Gregori, Gianluca; Graham, Peter; Fletcher, Luke; Appel, Karen; Tschentscher, Thomas; Lee, Hae Ja; Nagler, Bob; Galtier, Eric; Granados, Eduardo; Heimann, Philip; Zastrau, Ulf; Doeppner, Tilo; Gericke, Dirk; Lepape, Sebastien; Ma, Tammy; Pak, Art; Schropp, Andreas; Glenzer, Siegfried; Hastings, Jerry

    2015-06-01

    We present results that, for the first time, show scattering from ion acoustic modes in warm dense matter, representing an unprecedented level of energy resolution in the study of dense plasmas. The experiment was carried out at the LCLS facility in California on an aluminum sample at 7 g/cc and 5 eV. Using an X-ray probe at 8 keV, shifted peaks at +/-150 meV were observed. Although the energy shifts from interactions with the acoustic waves agree with predicted values from DFT-MD models, a central (elastic) peak was also observed, which did not appear in modelled spectra and may be due to the finite timescale of the simulation. Data fitting with a hydrodynamic form has proved able to match the observed spectrum, and provide measurements of some thermodynamic properties of the system, which mostly agree with predicted values. Suggest for further experiments to determine the cause of the disparity are also given.

  6. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2014-01-01

    present study employs the COMSOL Multphysics framework to solve the coupled eigenvalue problem using the finite element approach. The study requires one way coupling of the CFD High Mach Number Flow (HMNF) and mathematics module. The HMNF module evaluated the gas flow inside of a solid rocket motor using St. Robert's law modeling solid propellant burn rate, slip boundary conditions, and the supersonic outflow condition. Results from the HMNF model are used by the coefficient form of the mathematics module to determine the eigenvalues of the AVPE. The mathematics model is truncated at the nozzle sonic line, where a zero flux boundary condition is self-satisfying. The remaining boundaries are modeled with a zero flux boundary condition, assuming zero acoustic absorption on all surfaces. Pertinent results from these analyses are the complex valued eigenvalue and eigenvectors. Comparisons are made to the French results to evaluate the modeling approach. A comparison of the French results with that of the present analysis is displayed in figures 1 and 2, respectively. The graphic shows the first tangential eigenvector's real (a) and imaginary (b) values.

  7. Variation in acoustic overstimulation changes tinnitus characteristics.

    PubMed

    Kiefer, L; Schauen, A; Abendroth, S; Gaese, B H; Nowotny, M

    2015-12-01

    Tinnitus often occurs after exposure to loud noise. This raises the question of whether repeated exposure to noise increases the risk of developing tinnitus. We thus studied tinnitus development after repeated acoustic overstimulation using startle and auditory brainstem-response techniques applied to Mongolian gerbils. Noise with bandwidths ranging from 0.25 up to 0.5 oct were used for repeated acoustic overstimulation. Auditory brainstem response measurements revealed similar threshold shifts in both groups of up to about 30 dB directly after the acoustic overstimulation. We identified an upper limit in threshold values, which was independent of the baseline values before the noise exposure. Several weeks after the acoustic overstimulation, animals with the noise bandwidth of 0.25 oct showed a permanent threshold shift, while animals of the group with the 0.5-oct noise band featured only a temporary threshold shift. We thus conclude that the threshold shift directly after noise exposure cannot be used as an indicator for the upcoming threshold level several weeks later. By using behavioral measurements, we investigated the frequency-dependent development of tinnitus-related changes in both groups and one group with 1-oct noise bandwidth. The number of animals that show tinnitus-related changes was highest in animals that received noise with the bandwidth 0.5 oct. This number was, in contrast to the number of animals in the 0.25-oct bandwidth, not significantly increased after repeated overstimulation. The frequency distribution of tinnitus-related changes ranged from 4 to 20 kHz. In the group with the narrow-band noise (0.25 oct) changes center at one frequency range from 10 to 12 kHz. In the group with the broader noise band (0.5 oct), however, two peaks at 8-10 kHz and at 16-18 kHz were found, which suggests that different mechanisms underlie the tinnitus development.

  8. Acoustic radiation from weakly wrinkled premixed flames

    SciTech Connect

    Lieuwen, Tim; Mohan, Sripathi; Rajaram, Rajesh; Preetham,

    2006-01-01

    This paper describes a theoretical analysis of acoustic radiation from weakly wrinkled (i.e., u'/S{sub L}<1) premixed flames. Specifically, it determines the transfer function relating the spectrum of the acoustic pressure oscillations, P'({omega}), to that of the turbulent velocity fluctuations in the approach flow, U'({omega}). In the weakly wrinkled limit, this transfer function is local in frequency space; i.e., velocity fluctuations at a frequency {omega} distort the flame and generate sound at the same frequency. This transfer function primarily depends upon the flame Strouhal number St (based on mean flow velocity and flame length) and the correlation length, {lambda}, of the flow fluctuations. For cases where the ratio of the correlation length and duct radius {lambda}/a>>1, the acoustic pressure and turbulent velocity power spectra are related by P'({omega})-{omega}{sup 2}U'({omega}) and P'({omega})-U'({omega}) for St<<1 and St>>1, respectively. For cases where {lambda}/a<<1, the transfer functions take the form P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}U'({omega}) and P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}({psi}-{delta}ln({lambda}/a))U'({omega}) for St<<1 and St>>1, respectively, where (PS) and {delta} are constants. The latter result demonstrates that this transfer function does not exhibit a simple power law relationship in the high frequency region of the spectra. The simultaneous dependence of this pressure-velocity transfer function upon the Strouhal number and correlation length suggests a mechanism for the experimentally observed maximum in acoustic spectra and provides some insight into the controversy in the literature over how this peak should scale with the flame Strouhal number.

  9. Propagation characteristics of acoustic waves in snow

    NASA Astrophysics Data System (ADS)

    Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani

    2015-04-01

    Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.

  10. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  11. Normal swallowing acoustics across age, gender, bolus viscosity, and bolus volume.

    PubMed

    Youmans, Scott R; Stierwalt, Julie A G

    2011-12-01

    Cervical auscultation has been proposed as an augmentative procedure for the subjective clinical swallowing examination due to the tangible differences between normal and dysphagic swallowing sounds. However, the research is incomplete regarding cervical auscultation and swallowing acoustics in that the differences between the sounds of normal versus dysphagic swallowing have yet to be fully understood or quantified. The swallows of 96 reportedly healthy adults, balanced for gender and divided into younger, middle, and older age groups, were audio-recorded while ingesting several boluses of varying viscosity and volume. The audio signals were then analyzed to determine their temporal and acoustic characteristics. Results indicated increasing pharyngeal swallowing duration with increasing age, bolus viscosity, and bolus volume. In addition, an increased duration to peak intensity with increasing age was found in one of our two analyses, as well as with some of the more viscous versus less viscous boluses. Men and older persons produced higher peak intensities and peak frequencies than women and younger persons. Thin liquids were produced with more intensity than honey or more viscous boluses, and with greater frequency than mechanical soft solids. Larger volumes resulted in greater peak frequency values. Some of the acoustic measurements appear to be more useful than others, including the duration of the acoustic swallowing signal and the within-subjects peak intensity variable. We noted that differences in swallowing acoustics were more related to changes in viscosity rather than volume. Finally, within-participant observations were more useful than between-participant observations.

  12. Dust-on-snow and the timing of peak streamflow in the upper Rio Grande

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dust radiative forcing on high elevation snowpack is well-documented in the southern Rockies. Various field studies show that dust deposits decrease snow albedo and increase absorption of solar radiation, leading to earlier snowmelt and peak stream flows. These findings have implications for the use...

  13. Transient absorption and laser output of YAG : Nd

    NASA Astrophysics Data System (ADS)

    Kvapil, Jiří; Kvapil, Jos; Kubelka, J.; Kubeček, V.

    1981-06-01

    YAG : Nd grown under 98% Ar 2% H2 protective atmosphere free of nitrogen or hydrocarbons showed after UV irradiation broad absorption peaked at ˜1·9×104 cm-1 which disappeared relatively slowly at room temperature. It was more intensive in oxygen treated samples than in those annealed in hydrogsn. Transient absorption suppresses laser output by the increase of absorption at 0·94×104 cm-1 (1064 nm) and, particularly in CW mode, by the anomalous rod deformation. YAG : Nd containing Fe ions (≲2·10-4 wt%) showed no transient absorption.

  14. Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Sánchez-Pérez, J. V.; Garcia-Raffi, L. M.

    2011-07-01

    The physical properties of a periodic distribution of absorbent resonators is used in this work to design a tunable wideband bandstop acoustic filter. Analytical and numerical simulations as well as experimental validations show that the control of the resonances and the absorption of the scatterers along with their periodic arrangement in air introduce high technological possibilities to control noise. Sound manipulation is perhaps the most obvious application of the structures presented in this work. We apply this methodology to develop a device as an alternative to the conventional acoustic barriers with several properties from the acoustical point of view but also with additional esthetic and constructive characteristics.

  15. Holographically formed, acoustically switchable gratings based on polymer-dispersed liquid crystals.

    PubMed

    Liu, Yan Jun; Lu, Mengqian; Ding, Xiaoyun; Leong, Eunice S P; Lin, Sz-Chin Steven; Shi, Jinjie; Teng, Jing Hua; Wang, Lin; Bunning, Timothy J; Huang, Tony Jun

    2013-08-01

    We report holographic polymer-dispersed liquid crystal (H-PDLC) gratings driven by surface acoustic waves (SAWs). Our experiments show that upon applying SAWs, the H-PDLC grating exhibited switchable properties: The diffraction of the H-PDLC grating decreased, whereas the transmission increased. This acoustically switchable behavior is due to the acoustic streaming-induced realignment of liquid crystals as well as absorption-resulted thermal diffusion. Such SAW-driven H-PDLC gratings are potentially useful in many photonic applications, such as optical switches, spatial light modulators, and switchable add/drop filters. PMID:22909448

  16. Scaling of membrane-type locally resonant acoustic metamaterial arrays.

    PubMed

    Naify, Christina J; Chang, Chia-Ming; McKnight, Geoffrey; Nutt, Steven R

    2012-10-01

    Metamaterials have emerged as promising solutions for manipulation of sound waves in a variety of applications. Locally resonant acoustic materials (LRAM) decrease sound transmission by 500% over acoustic mass law predictions at peak transmission loss (TL) frequencies with minimal added mass, making them appealing for weight-critical applications such as aerospace structures. In this study, potential issues associated with scale-up of the structure are addressed. TL of single-celled and multi-celled LRAM was measured using an impedance tube setup with systematic variation in geometric parameters to understand the effects of each parameter on acoustic response. Finite element analysis was performed to predict TL as a function of frequency for structures with varying complexity, including stacked structures and multi-celled arrays. Dynamic response of the array structures under discrete frequency excitation was investigated using laser vibrometry to verify negative dynamic mass behavior. PMID:23039544

  17. Acoustic Quality of the 40- by 80- Foot Wind Tunnel Test Section After Installation of a Deep Acoustic Lining

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Jaeger, Stephen M.; Hayes, Julie A.; Allen, Christopher S.

    2002-01-01

    A recessed, 42-inch deep acoustic lining has been designed and installed in the 40- by 80- Foot Wind Tunnel (40x80) test section to greatly improve the acoustic quality of the facility. This report describes the test section acoustic performance as determined by a detailed static calibration-all data were acquired without wind. Global measurements of sound decay from steady noise sources showed that the facility is suitable for acoustic studies of jet noise or similar randomly generated sound. The wall sound absorption, size of the facility, and averaging effects of wide band random noise all tend to minimize interference effects from wall reflections. The decay of white noise with distance was close to free field above 250 Hz. However, tonal sound data from propellers and fans, for example, will have an error band to be described that is caused by the sensitivity of tones to even weak interference. That error band could be minimized by use of directional instruments such as phased microphone arrays. Above 10 kHz, air absorption began to dominate the sound field in the large test section, reflections became weaker, and the test section tended toward an anechoic environment as frequency increased.

  18. Fibre lasers for photo-acoustic gas spectroscopy

    NASA Astrophysics Data System (ADS)

    Arsad, Norhana; Stewart, George

    2011-05-01

    We report here on the use of fiber lasers for recovery of gas absorption line shapes by photo-acoustic spectroscopy. We demonstrate the principle of operation using an erbium-doped fiber, stabilized using a length of un-pumped doped fibre as a saturable absorber. Intensity modulation of the laser output for phase sensitive detection is performed by modulation of the pump current while the wavelength is scanned through the absorption line by a PZT on a fibre Bragg grating. This avoids the distortions that arise in recovered signals due to simultaneous wavelength and intensity modulation, as is the case with conventional DFB diode lasers. Furthermore, the near zero off-line signals with photo-acoustic spectroscopy means that high modulation indices can be used with simple intensity modulation of the fiber laser output. The modulation frequency is set to the acoustic resonance frequency of the gas cell and measurements are made on the P17 absorption line of acetylene at 1535.39nm showing good agreement with the theoretical line-shape profile.

  19. Education in acoustics in Argentina

    NASA Astrophysics Data System (ADS)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  20. Infrared laboratory absorbance spectra of olivine: using classical dispersion analysis to extract peak parameters

    NASA Astrophysics Data System (ADS)

    Pitman, K. M.; Dijkstra, C.; Hofmeister, A. M.; Speck, A. K.

    2010-07-01

    Laboratory measurements quantifying the effect of Fe substituting for Mg in olivine are needed to distinguish compositional from temperature, grain size and grain shape effects in observational data. To address this need, we study room temperature absorption spectra of a large suite of olivines evenly spaced across Mg and Fe compositions. We apply the principle that classical dispersion theory may be used to determine peak positions as well as peak widths, strengths and possibly optical function (n(λ) and k(λ)) estimates from absorption spectra of thin film samples of these olivines and two additional isotropic and anisotropic minerals with varying hardness and numbers of spectral bands. For olivine, we find that this method provides good estimates of peak position and that accounting for asymmetric peak shapes in this way increases the error on full width at half-maximum and oscillator strengths. Values from classical dispersion fits better match published n and k derived from reflectivity of single crystals when the dust proxy is soft and the thickness of the sample is independently constrained. Electronic data and peak parameter trends for the laboratory olivine absorption spectra and the viability of the extracted n and k are discussed with regard to astronomy.

  1. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  2. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  3. Acoustic Coupling Effects in ST Paul's Cathedral, London

    NASA Astrophysics Data System (ADS)

    ANDERSON, J. S.; BRATOS-ANDERSON, M.

    2000-09-01

    In St Paul's Cathedral there are many arches, columns and cornices which enable the internal space to be divided into subspaces. The subspaces may be considered to be acoustically coupled via areas which connect the rooms. Two of the most acoustically important subspaces in the Cathedral are the choir and the space under the dome. The choir, the space within the wooden choir stalls, has more sound absorption than the rest of the building, which is mostly marble and Portland stone. In the model of coupled subspaces an acoustic energy balance equation, applied to a diffuse field, is derived for each subspace. In St Paul's Cathedral the internal space is divided into 70 acoustical subspaces. The initial-value problem which is formulated by the system of 70 acoustic energy balance equations with initial conditions has been reduced to the eigenvalue problem. The decay of sound energy density has been obtained for different locations in the Cathedral and for different positions of the sound source. Experimentally obtained sound decay curves are in good agreement with numerical results. Both the experimental and numerical results demonstrate the fine structure of reverberation.

  4. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  5. Radiosurgery of acoustic neurinomas

    SciTech Connect

    Flickinger, J.C.; Lunsford, L.D.; Coffey, R.J.; Linskey, M.E.; Bissonette, D.J.; Maitz, A.H.; Kondziolka, D. )

    1991-01-15

    Eighty-five patients with acoustic neurinomas underwent stereotactic radiosurgery with the gamma unit at the University of Pittsburgh (Pittsburgh, PA) during its first 30 months of operation. Neuroimaging studies performed in 40 patients with more than 1 year follow-up showed that tumors were smaller in 22 (55%), unchanged in 17 (43%), and larger in one (2%). The 2-year actuarial rates for preservation of useful hearing and any hearing were 46% and 62%, respectively. Previously undetected neuropathies of the trigeminal (n = 12) and facial nerves (n = 14) occurred 1 week to 1 year after radiosurgery (median, 7 and 6 months, respectively), and improved at median intervals of 13 and 8 months, respectively, after onset. Hearing loss was significantly associated with increasing average tumor diameter (P = 0.04). No deterioration of any cranial nerve function has yet developed in seven patients with average tumor diameters less than 10 mm. Radiosurgery is an important treatment alternative for selected acoustic neurinoma patients.

  6. A Martian acoustic anemometer.

    PubMed

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W

    2016-08-01

    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions. PMID:27586767

  7. Acoustic tractor beam.

    PubMed

    Démoré, Christine E M; Dahl, Patrick M; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P; Spalding, Gabriel C

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system. PMID:24836252

  8. Acoustic Tractor Beam

    NASA Astrophysics Data System (ADS)

    Démoré, Christine E. M.; Dahl, Patrick M.; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P.; Spalding, Gabriel C.

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system.

  9. Acoustics Discipline Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    As part of the Fundamental Aeronautics Program Annual Review, a summary of the progress made in 2007 in acoustics research under the Subsonic Fixed Wing project is given. The presentation describes highlights from in-house and external activities including partnerships and NRA-funded research with industry and academia. Brief progress reports from all acoustics Phase 1 NRAs are also included as are outlines of the planned activities for 2008 and all Phase 2 NRAs. N+1 and N+2 technology paths outlined for Subsonic Fixed Wing noise targets. NRA Round 1 progressing with focus on prediction method advancement. NRA Round 2 initiating work focused on N+2 technology, prediction methods, and validation. Excellent partnerships in progress supporting N+1 technology targets and providing key data sets.

  10. Acoustic methodology review

    NASA Technical Reports Server (NTRS)

    Schlegel, R. G.

    1982-01-01

    It is important for industry and NASA to assess the status of acoustic design technology for predicting and controlling helicopter external noise in order for a meaningful research program to be formulated which will address this problem. The prediction methodologies available to the designer and the acoustic engineer are three-fold. First is what has been described as a first principle analysis. This analysis approach attempts to remove any empiricism from the analysis process and deals with a theoretical mechanism approach to predicting the noise. The second approach attempts to combine first principle methodology (when available) with empirical data to formulate source predictors which can be combined to predict vehicle levels. The third is an empirical analysis, which attempts to generalize measured trends into a vehicle noise prediction method. This paper will briefly address each.

  11. Distinct effects of moisture and air contents on acoustic properties of sandy soil.

    PubMed

    Oshima, Takuya; Hiraguri, Yasuhiro; Okuzono, Takeshi

    2015-09-01

    Knowledge of distinct effects of moisture content and air volume on acoustic properties of soil is sought to predict the influence of human activities such as cultivation on acoustic propagation outdoors. This work used an impedance tube with the two-thickness method to investigate such effects. For a constant moisture weight percentage, the magnitude of the characteristic impedance became smaller and the absorption coefficient became higher with increase of the air space ratio. For a constant air space ratio, the absorption coefficient became larger and the magnitude of the propagation constant became smaller with increasing moisture weight percentage. PMID:26428823

  12. Optical Generation And Spatially Distinct Interferometric Detection Of Ultrahigh Frequency Surface Acoustic Waves

    SciTech Connect

    David H. Hurley

    2006-05-01

    Generation and interferometric detection of 22 GHz surface acoustic waves (SAWs) using two laterally separated absorption gratings on a Si substrate are presented. Optical phase sensitive detection of SAWs is demonstrated using a modified Sagnac interferometer. The reflection characteristics of the suboptical wavelength grating necessitate the use of only linear polarization. This is accomplished by employing a Faraday rotator to ensure path reversal of the reference and signal pulses. The enhanced sensitivity of the interferometer is exploited to measure the acoustic disturbance on an identical absorption grating at a distance of ~4.5 µm from the generation site.

  13. Tectonics, Climate and Earth's highest peaks

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Prasicek, Günther; Hergarten, Stefan

    2016-04-01

    Prominent peaks characterized by high relief and steep slopes are among the most spectacular morphological features on Earth. In collisional orogens they result from the interplay of tectonically driven crustal thickening and climatically induced destruction of overthickened crust by erosional surface processes. The glacial buzz-saw hypothesis proposes a superior status of climate in limiting mountain relief and peak altitude due to glacial erosion. It implies that peak altitude declines with duration of glacial occupation, i.e., towards high latitudes. This is in strong contrast with high peaks existing in high latitude mountain ranges (e.g. Mt. St. Elias range) and the idea of peak uplift due to isostatic compensation of spatially variable erosional unloading an over-thickened orogenic crust. In this study we investigate landscape dissection, crustal thickness and vertical strain rates in tectonically active mountain ranges to evaluate the influence of erosion on (latitudinal) variations in peak altitude. We analyze the spatial distribution of serval thousand prominent peaks on Earth extracted from the global ETOPO1 digital elevation model with a novel numerical tool. We compare this dataset to crustal thickness, thickening rate (vertical strain rate) and mean elevation. We use the ratios of mean elevation to peak elevation (landscape dissection) and peak elevation to crustal thickness (long-term impact of erosion on crustal thickness) as indicators for the influence of erosional surface processes on peak uplift and the vertical strain rate as a proxy for the mechanical state of the orogen. Our analysis reveals that crustal thickness and peak elevation correlate well in orogens that have reached a mechanically limited state (vertical strain rate near zero) where plate convergence is already balanced by lateral extrusion and gravitational collapse and plateaus are formed. On the Tibetan Plateau crustal thickness serves to predict peak elevation up to an altitude

  14. Helping System Engineers Bridge the Peaks

    NASA Technical Reports Server (NTRS)

    Rungta, Neha; Tkachuk, Oksana; Person, Suzette; Biatek, Jason; Whalen, Michael W.; Castle, Joseph; Castle, JosephGundy-Burlet, Karen

    2014-01-01

    In our experience at NASA, system engineers generally follow the Twin Peaks approach when developing safety-critical systems. However, iterations between the peaks require considerable manual, and in some cases duplicate, effort. A significant part of the manual effort stems from the fact that requirements are written in English natural language rather than a formal notation. In this work, we propose an approach that enables system engineers to leverage formal requirements and automated test generation to streamline iterations, effectively "bridging the peaks". The key to the approach is a formal language notation that a) system engineers are comfortable with, b) is supported by a family of automated V&V tools, and c) is semantically rich enough to describe the requirements of interest. We believe the combination of formalizing requirements and providing tool support to automate the iterations will lead to a more efficient Twin Peaks implementation at NASA.

  15. Reducing Peak Demand by Time Zone Divisions

    NASA Astrophysics Data System (ADS)

    Chakrabarti, A.

    2014-09-01

    For a large country like India, the electrical power demand is also large and the infrastructure cost for power is the largest among all the core sectors of economy. India has an emerging economy which requires high rate of growth of infrastructure in the power generation, transmission and distribution. The current peak demand in the country is approximately 1,50,000 MW which shall have a planned growth of at least 50 % over the next five years (Seventeenth Electric Power Survey of India, Central Electricity Authority, Government of India, March 2007). By implementing the time zone divisions each comprising of an integral number of contiguous states based on their total peak demand and geographical location, the total peak demand of the nation can be significantly cut down by spreading the peak demand of various states over time. The projected reduction in capital expenditure over a plan period of 5 years is substantial. Also, the estimated reduction in operations expenditure cannot be ignored.

  16. LNG production for peak shaving operations

    SciTech Connect

    Price, B.C.

    1999-07-01

    LNG production facilities are being developed as an alternative or in addition to underground storage throughout the US to provide gas supply during peak gas demand periods. These facilities typically involved a small liquefaction unit with a large LNG storage tank and gas sendout facilities capable of responding to peak loads during the winter. Black and Veatch is active in the development of LNG peak shaving projects for clients using a patented mixed refrigerant technology for efficient production of LNG at a low installed cost. The mixed refrigerant technology has been applied in a range of project sizes both with gas turbine and electric motor driven compression systems. This paper will cover peak shaving concepts as well as specific designs and projects which have been completed to meet this market need.

  17. Amplification of postwildfire peak flow by debris

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.

    2016-08-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  18. Observing at Kitt Peak National Observatory.

    ERIC Educational Resources Information Center

    Cohen, Martin

    1981-01-01

    Presents an abridged version of a chapter from the author's book "In Quest of Telescopes." Includes personal experiences at Kitt Peak National Observatory, and comments on telescopes, photographs, and making observations. (SK)

  19. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  20. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    1999-01-01

    The Structures and Acoustics Division of NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported are a synopsis of the work and accomplishments reported by the Division during the 1996 calendar year. A bibliography containing 42 citations is provided.

  1. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    2001-01-01

    The Structures and Acoustics Division of the NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included in this report are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported is a synopsis of the work and accomplishments completed by the Division during the 1997, 1998, and 1999 calendar years. A bibliography containing 93 citations is provided.

  2. Electroacoustic absorbers: bridging the gap between shunt loudspeakers and active sound absorption.

    PubMed

    Lissek, Hervé; Boulandet, Romain; Fleury, Romain

    2011-05-01

    The acoustic impedance at the diaphragm of an electroacoustic transducer can be varied using a range of basic electrical control strategies, amongst which are electrical shunt circuits. These passive shunt techniques are compared to active acoustic feedback techniques for controlling the acoustic impedance of an electroacoustic transducer. The formulation of feedback-based acoustic impedance control reveals formal analogies with shunt strategies, and highlights an original method for synthesizing electric networks ("shunts") with positive or negative components, bridging the gap between passive and active acoustic impedance control. This paper describes the theory unifying all these passive and active acoustic impedance control strategies, introducing the concept of electroacoustic absorbers. The equivalence between shunts and active control is first formalized through the introduction of a one-degree-of-freedom acoustic resonator accounting for both electric shunts and acoustic feedbacks. Conversely, electric networks mimicking the performances of active feedback techniques are introduced, identifying shunts with active impedance control. Simulated acoustic performances are presented, with an emphasis on formal analogies between the different control techniques. Examples of electric shunts are proposed for active sound absorption. Experimental assessments are then presented, and the paper concludes with a general discussion on the concept and potential improvements.

  3. Electroacoustic absorbers: bridging the gap between shunt loudspeakers and active sound absorption.

    PubMed

    Lissek, Hervé; Boulandet, Romain; Fleury, Romain

    2011-05-01

    The acoustic impedance at the diaphragm of an electroacoustic transducer can be varied using a range of basic electrical control strategies, amongst which are electrical shunt circuits. These passive shunt techniques are compared to active acoustic feedback techniques for controlling the acoustic impedance of an electroacoustic transducer. The formulation of feedback-based acoustic impedance control reveals formal analogies with shunt strategies, and highlights an original method for synthesizing electric networks ("shunts") with positive or negative components, bridging the gap between passive and active acoustic impedance control. This paper describes the theory unifying all these passive and active acoustic impedance control strategies, introducing the concept of electroacoustic absorbers. The equivalence between shunts and active control is first formalized through the introduction of a one-degree-of-freedom acoustic resonator accounting for both electric shunts and acoustic feedbacks. Conversely, electric networks mimicking the performances of active feedback techniques are introduced, identifying shunts with active impedance control. Simulated acoustic performances are presented, with an emphasis on formal analogies between the different control techniques. Examples of electric shunts are proposed for active sound absorption. Experimental assessments are then presented, and the paper concludes with a general discussion on the concept and potential improvements. PMID:21568400

  4. Acoustic paramagnetic logging tool

    DOEpatents

    Vail, III, William B.

    1988-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  5. Fast wideband acoustical holography.

    PubMed

    Hald, Jørgen

    2016-04-01

    Patch near-field acoustical holography methods like statistically optimized near-field acoustical holography and equivalent source method are limited to relatively low frequencies, where the average array-element spacing is less than half of the acoustic wavelength, while beamforming provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods can be used with the same array. But for holography to provide good low-frequency resolution, a small measurement distance is needed, whereas beamforming requires a larger distance to limit sidelobe issues. The wideband holography method of the present paper was developed to overcome that practical conflict. Only a single measurement is needed at a relatively short distance and a single result is obtained covering the full frequency range. The method uses the principles of compressed sensing: A sparse sound field representation is assumed with a chosen set of basis functions, a measurement is taken with an irregular array, and the inverse problem is solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes sparsity. The iterative method is shown to provide very similar results in most cases and to be computationally much more efficient. PMID:27106299

  6. Virtual acoustic prototyping

    NASA Astrophysics Data System (ADS)

    Johnson, Marty

    2003-10-01

    In this paper the re-creation of 3-D sound fields so the full psycho-acoustic impact of sound sources can be assessed before the manufacture of a product or environment is examined. Using head related transfer functions (HRTFs) coupled with a head tracked set of headphones the sound field at the left and right ears of a listener can be re-created for a set of sound sources. However, the HRTFs require that sources have a defined location and this is not the typical output from numerical codes which describe the sound field as a set of distributed modes. In this paper a method of creating a set of equivalent sources is described such that the standard set of HRTFs can be applied in real time. A structural-acoustic model of a cylinder driving an enclosed acoustic field will be used as an example. It will be shown that equivalent sources can be used to recreate all of the reverberation of the enclosed space. An efficient singular value decomposition technique allows the large number of sources required to be simulated in real time. An introduction to the requirements necessary for 3-D virtual prototyping using high frequency Statistical Energy Analysis models will be presented. [Work supported by AuSim and NASA.

  7. Acoustics, computers and measurements

    NASA Astrophysics Data System (ADS)

    Truchard, James J.

    2003-10-01

    The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.

  8. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip. PMID:27661695

  9. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  10. Peak Effect in High-Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Ling, Xinsheng

    1996-03-01

    Like many low-Tc superconductors, high-quality YBCO single crystals are found(X.S. Ling and J.I. Budnick, in Magnetic Susceptibility of Superconductors and Other Spin Systems), edited by R.A. Hein, T.L. Francavilla, and D.H. Liebenberg (Plenum Press, New York, 1991), p.377. to exhibit a striking peak effect. In a magnetic field, the temperature dependence of the critical current has a pronounced peak below T_c(H). Pippard(A.B. Pippard, Phil. Mag. 19), 217 (1969)., and subsequently Larkin and Ovchinnikov(A.I. Larkin and Yu.N. Ovchinnikov, J. Low Temp. Phys. 34), 409 (1979)., attributed the onset of the peak effect to a softening of the vortex lattice. In this talk, the experimental discovery^1 of the peak effect in high-Tc superconductors will be described, followed by a brief historical perspective of the understanding of this phenomenon and a discussion of a new model(X.S. Ling, C. Tang, S. Bhattacharya, and P.M. Chaikin, cond-mat/9504109, (NEC Preprint 1995).) for the peak effect. In this model, the peak effect is an interesting manifestation of the vortex-lattice melting in the presence of weak random pinning potentials. The rise of critical current with increasing temperature is a signature of the ``melting'' of the Larkin domains. This work is done in collaboration with Joe Budnick, Chao Tang, Shobo Bhattacharya, Paul Chaikin, and Boyd Veal.

  11. Double peak sensory responses: effects of capsaicin.

    PubMed

    Aprile, I; Tonali, P; Stalberg, E; Di Stasio, E; Caliandro, P; Foschini, M; Vergili, G; Padua, L

    2007-10-01

    The aim of this study is to verify whether degeneration of skin receptors or intradermal nerve endings by topical application of capsaicin modifies the double peak response obtained by submaximal anodal stimulation. Five healthy volunteers topically applied capsaicin to the finger-tip of digit III (on the distal phalanx) four times daily for 4-5 weeks. Before and after local capsaicin applications, we studied the following electrophysiological findings: compound sensory action potential (CSAP), double peak response, sensory threshold and double peak stimulus intensity. Local capsaicin application causes disappearance or decrease of the second component of the double peak, which gradually increases after the suspension of capsaicin. Conversely, no significant differences were observed for CSAP, sensory threshold and double peak stimulus intensity. This study suggests that the second component of the double peak may be a diagnostic tool suitable to show an impairment of the extreme segments of sensory nerve fibres in distal sensory axonopathy in the early stages of damage, when receptors or skin nerve endings are impaired but undetectable by standard nerve conduction studies.

  12. Attenuation of sound in ducts with acoustic treatment: A generalized approximate equation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1975-01-01

    A generalized approximate equation for duct lining sound attenuation is presented. The specification of two parameters, the maximum possible attenuation and the optimum wall acoustic impedance is shown to completely determine the sound attenuation for any acoustic mode at any selected wall impedance. The equation is based on the nearly circular shape of the constant attenuation contours in the wall acoustic impedance plane. For impedances far from the optimum, the equation reduces to Morse's approximate expression. The equation can be used for initial acoustic liner design. Not least important is the illustrative nature of the solutions which provide an understanding of the duct propagation problem usually obscured in the exact calculations. Sample calculations using the approximate attenuation equation show that the peak and the bandwidth of the sound attenuation spectrum can be represented by quite simple functions of the ratio of actual wall acoustic resistance to optimum resistance.

  13. Acoustic and behavioral repertoires of the hippopotamus (Hippopotamus amphibius).

    PubMed

    Maust-Mohl, Maria; Soltis, Joseph; Reiss, Diana

    2015-08-01

    This study describes the acoustic and behavioral repertoires of the common hippopotamus (Hippopotamus amphibius). Simultaneous audio and video recordings were collected of male and female hippos at Disney's Animal Kingdom(®). Visual inspection of spectrograms resulted in classifying signals into three main categories (burst of air, tonal, and pulsed) produced in-air, underwater, or simultaneously in both mediums. Of the total acoustic signals, most were produced underwater (80%), and the majority of the total signals were tonal (54%). Using multivariate analysis of the acoustic parameters, 11 signal types were described and differentiated. In the burst of air category, chuffs and snorts were distinguished by minimum and peak frequency, and bubble displays were described. In the tonal category, grunts, groans, screams, and whines were distinguished by several frequency measures (e.g., minimum, maximum, fundamental, peak frequency). Wheeze honks were tonal signals that often involved a chorus of overlapping calls. In the pulsed category, click trains, croaks, and growls were distinguished by frequency and duration. Video analysis demonstrated that chuffs, groans, and whines were associated with submissive contexts, while snorts, grunts, and growls were associated with dominance contexts. These results provide further information about the acoustic signals and concurrent behavior of hippos.

  14. Acoustic and behavioral repertoires of the hippopotamus (Hippopotamus amphibius).

    PubMed

    Maust-Mohl, Maria; Soltis, Joseph; Reiss, Diana

    2015-08-01

    This study describes the acoustic and behavioral repertoires of the common hippopotamus (Hippopotamus amphibius). Simultaneous audio and video recordings were collected of male and female hippos at Disney's Animal Kingdom(®). Visual inspection of spectrograms resulted in classifying signals into three main categories (burst of air, tonal, and pulsed) produced in-air, underwater, or simultaneously in both mediums. Of the total acoustic signals, most were produced underwater (80%), and the majority of the total signals were tonal (54%). Using multivariate analysis of the acoustic parameters, 11 signal types were described and differentiated. In the burst of air category, chuffs and snorts were distinguished by minimum and peak frequency, and bubble displays were described. In the tonal category, grunts, groans, screams, and whines were distinguished by several frequency measures (e.g., minimum, maximum, fundamental, peak frequency). Wheeze honks were tonal signals that often involved a chorus of overlapping calls. In the pulsed category, click trains, croaks, and growls were distinguished by frequency and duration. Video analysis demonstrated that chuffs, groans, and whines were associated with submissive contexts, while snorts, grunts, and growls were associated with dominance contexts. These results provide further information about the acoustic signals and concurrent behavior of hippos. PMID:26328671

  15. Modeling Nonlinear Acoustic Standing Waves in Resonators: Theory and Experiments

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Li, Xiaofan; Finkbeiner, Joshua

    2004-01-01

    The overall goal of the cooperative research with NASA Glenn is to fundamentally understand, computationally model, and experimentally validate non-linear acoustic waves in enclosures with the ultimate goal of developing a non-contact acoustic seal. The longer term goal is to transition the Glenn acoustic seal innovation to a prototype sealing device. Lucas and coworkers are credited with pioneering work in Resonant Macrosonic Synthesis (RMS). Several Patents and publications have successfully illustrated the concept of Resonant Macrosonic Synthesis. To utilize this concept in practical application one needs to have an understanding of the details of the phenomenon and a predictive tool that can examine the waveforms produced within resonators of complex shapes. With appropriately shaped resonators one can produce un-shocked waveforms of high amplitude that would result in very high pressures in certain regions. Our goal is to control the waveforms and exploit the high pressures to produce an acoustic seal. Note that shock formation critically limits peak-to-peak pressure amplitudes and also causes excessive energy dissipation. Proper shaping of the resonator is thus critical to the use of this innovation.

  16. Membrane-constrained acoustic metamaterials for low frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaole; Zhao, Hui; Luo, Xudong; Huang, Zhenyu

    2016-01-01

    We present a constrained membrane-type acoustic metamaterial (CMAM) that employs constraint sticks to add out-of-plane dimensions in the design space of MAM. A CMAM sample, which adopts constraint sticks to suppress vibrations at the membrane center, was fabricated to achieve a sound transmission loss (STL) peak of 26 dB at 140 Hz, with the static areal density of 6.0 kg/m2. The working mechanism of the CMAM as an acoustic metamaterial is elucidated by calculating the averaged normal displacement, the equivalent areal density, and the effective dynamic mass of a unit cell through finite element simulations. Furthermore, the vibration modes of the CMAM indicate that the eigenmodes related to STL dips are shifted into high frequencies, thus broadening its effective bandwidth significantly. Three samples possessing the same geometry and material but different constraint areas were fabricated to illustrate the tunability of STL peaks at low frequencies.

  17. A high absorption coefficient DL-MPP imitating owl skin

    NASA Astrophysics Data System (ADS)

    Guo, Lijun; Zhao, Zhan; Kong, Deyi; Wu, Shaohua; Du, Lidong; Fang, Zhen

    2012-11-01

    This paper proposes a high absorption coefficient micro-perforated panel (MPP) imitating owl skin structure for acoustic noise reduction. Compared to the traditional micro-perforated panel, this device has two unique characteristics-simulating the owl skin structure, its radius of perforated apertures even can be as small as 55μ, and its material is silicon and fabricated by micro-electrical mechanical system (MEMS) technology; So that its absorption coefficients of acoustic noise for normal incidence sound wave whose frequencies arrange from 1.5 kHz to 6.0 kHz are all above 0.8 which is the owl's hunts sensitivity frequency band. Double leaf MPP fabricated by MEMS technology is an absolutely bionic success in functional-imitation.

  18. Soft X-Ray Absorption Spectroscopy of High-Abrasion-Furnace Carbon Black

    SciTech Connect

    Muramatsu, Yasuji; Harada, Ryusuke; Gullikson, Eric M.

    2007-02-02

    The soft x-ray absorption spectra of high-abrasion-furnace carbon black were measured to obtain local-structure/chemical-states information of the primary particles and/or crystallites. The soft x-ray absorption spectral features of carbon black represent broader {pi}* and {sigma}* peak structures compared to highly oriented pyrolytic graphite (HOPG). The subtracted spectra between the carbon black and HOPG, (carbon black) - (HOPG), show double-peak structures on both sides of the {pi}* peak. The lower-energy peak, denoted as the 'pre-peak', in the subtracted spectra and the {pi}*/{sigma}* peak intensity ratio in the absorption spectra clearly depend on the specific surface area by nitrogen adsorption (NSA). Therefore, it is concluded that the pre-peak intensity and the {pi}*/{sigma}* ratio reflect the local graphitic structure of carbon black.

  19. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  20. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  1. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Chu, S. Reynold; Allen, Chris

    2009-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.

  2. Optimization of input parameters of acoustic-transfection for the intracellular delivery of macromolecules using FRET-based biosensors

    NASA Astrophysics Data System (ADS)

    Yoon, Sangpil; Wang, Yingxiao; Shung, K. K.

    2016-03-01

    Acoustic-transfection technique has been developed for the first time. We have developed acoustic-transfection by integrating a high frequency ultrasonic transducer and a fluorescence microscope. High frequency ultrasound with the center frequency over 150 MHz can focus acoustic sound field into a confined area with the diameter of 10 μm or less. This focusing capability was used to perturb lipid bilayer of cell membrane to induce intracellular delivery of macromolecules. Single cell level imaging was performed to investigate the behavior of a targeted single-cell after acoustic-transfection. FRET-based Ca2+ biosensor was used to monitor intracellular concentration of Ca2+ after acoustic-transfection and the fluorescence intensity of propidium iodide (PI) was used to observe influx of PI molecules. We changed peak-to-peak voltages and pulse duration to optimize the input parameters of an acoustic pulse. Input parameters that can induce strong perturbations on cell membrane were found and size dependent intracellular delivery of macromolecules was explored. To increase the amount of delivered molecules by acoustic-transfection, we applied several acoustic pulses and the intensity of PI fluorescence increased step wise. Finally, optimized input parameters of acoustic-transfection system were used to deliver pMax-E2F1 plasmid and GFP expression 24 hours after the intracellular delivery was confirmed using HeLa cells.

  3. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  4. Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy.

    PubMed

    Coleman, A J; Choi, M J; Saunders, J E

    1996-01-01

    A 1-MHz focused hydrophone has been used to search for acoustic emission expected to arise from cavitation occurring in tissue during clinical extracorporeal shock-wave lithotripsy (ESWL). The hydrophone is acoustically coupled to the patient's skin and the focus directed at depth in tissue under ultrasound guidance. The measured amplitude-time variation of the acoustic emission from tissue near the shock-wave focus of the Storz Modulith SL20 lithotripter has been examined in four patients. There is evidence of increased amplitude acoustic emission at 1 MHz from regions within tissue that also appear hyperechoic in simultaneously acquired ultrasound images. The acoustic emission from these regions decays from an initial peak to the noise level in about 500 microseconds following each shock-wave pulse. Within this period, a second peak, often of higher amplitude than the first, is typically observed about 100 microseconds after the shockwave. The time between the initial and second peaks is found to increase with increasing shock-wave amplitude. The results are similar to those previously observed from cavitation induced by shock-wave exposure in water and indicate that the 1-MHz acoustic emission arises from inertial cavitation in tissue during clinical ESWL.

  5. Thermally induced acoustic emissions in thermal barrier coatings

    SciTech Connect

    Voyer, J.; Gitzhofer, F.; Boulos, M.I.; Durham, S.

    1995-12-31

    In this study, acoustic emission signals are used to monitor the degradation of plasma sprayed Thermal Barrier Coatings (TBC) under thermal cycling conditions. Signal analysis both in time and frequency domains is carried out in order to identify the key parameters which can be used to classify the acoustic emission signals as a function of the damage mechanisms. This classification offers a means of prediction of the long-term behavior of the thermal barrier coating based on the acoustic emission signal signature at the early stages of bench testing. The tests were carried out using an experimental rig that was developed to reproduce thermal conditions encountered inside a combustion chamber. Twelve infrared lamps, each with a power rating of 1,200 W, are used as a heat source. The samples consist of an alloy blade coated with a duplex TBC made of a 150 {micro}m thick bond coat covered with a 300 {micro}m thick partially-stabilized zirconia coating. The maximum surface temperature of the sample was measured to be around 1,000 C. Two broadband transducers are used for acquisition of acoustic emission signals. Measuring the time between signal detection by each of the two transducers provides a means of determination of the location of the source of the acoustic signals. A classification of the signals based on their energy and their maximum peak frequency is presented.

  6. Acoustic results of the Boeing model 360 whirl tower test

    NASA Technical Reports Server (NTRS)

    Watts, Michael E.; Jordan, David

    1990-01-01

    An evaluation is presented for whirl tower test results of the Model 360 helicopter's advanced, high-performance four-bladed composite rotor system intended to facilitate over-200-knot flight. During these performance measurements, acoustic data were acquired by seven microphones. A comparison of whirl-tower tests with theory indicate that theoretical prediction accuracies vary with both microphone position and the inclusion of ground reflection. Prediction errors varied from 0 to 40 percent of the measured signal-to-peak amplitude.

  7. Surface-acoustic-wave-driven luminescence from a lateral p-n junction

    NASA Astrophysics Data System (ADS)

    Gell, J. R.; Atkinson, P.; Bremner, S. P.; Sfigakis, F.; Kataoka, M.; Anderson, D.; Jones, G. A. C.; Barnes, C. H. W.; Ritchie, D. A.; Ward, M. B.; Norman, C. E.; Shields, A. J.

    2006-12-01

    The authors report surface-acoustic-wave-driven luminescence from a lateral p-n junction formed by molecular beam epitaxy regrowth of a modulation doped GaAs /AlGaAs quantum well on a patterned GaAs substrate. Surface-acoustic-wave-driven transport is demonstrated by peaks in the electrical current and light emission from the GaAs quantum well at the resonant frequency of the transducer. This type of junction offers high carrier mobility and scalability. The demonstration of surface-acoustic-wave luminescence is a significant step towards single-photon applications in quantum computation and quantum cryptography.

  8. Terahertz absorption spectra of oxidized polyethylene and their analysis by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Komatsu, Marina; Hosobuchi, Masashi; Xie, Xiaojun; Cheng, Yonghong; Furukawa, Yukio; Mizuno, Maya; Fukunaga, Kaori; Ohki, Yoshimichi

    2014-09-01

    Low-density polyethylene, either cross-linked or not, was oxidized and its absorption spectra were measured in the terahertz (THz) range and infrared range. The absorption was increased by the oxidation in the whole THz range. In accord with this, infrared absorption due to carbonyl groups appears. Although these results indicate that the increase in absorption is induced by oxidation, its attribution to resonance or relaxation is unclear. To clarify this point, the vibrational frequencies of three-dimensional polyethylene models with and without carbonyl groups were quantum chemically calculated. As a result, it was clarified that optically inactive skeletal vibrations in polyethylene become active upon oxidation. Furthermore, several absorption peaks due to vibrational resonances are induced by oxidation at wavenumbers from 20 to 100 cm-1. If these absorption peaks are broadened and are superimposed on each other, the absorption spectrum observed experimentally can be reproduced. Therefore, the absorption is ascribable to resonance.

  9. Predicting Peak Flows following Forest Fires

    NASA Astrophysics Data System (ADS)

    Elliot, William J.; Miller, Mary Ellen; Dobre, Mariana

    2016-04-01

    Following forest fires, peak flows in perennial and ephemeral streams often increase by a factor of 10 or more. This increase in peak flow rate may overwhelm existing downstream structures, such as road culverts, causing serious damage to road fills at stream crossings. In order to predict peak flow rates following wildfires, we have applied two different tools. One is based on the U.S.D.A Natural Resource Conservation Service Curve Number Method (CN), and the other is by applying the Water Erosion Prediction Project (WEPP) to the watershed. In our presentation, we will describe the science behind the two methods, and present the main variables for each model. We will then provide an example of a comparison of the two methods to a fire-prone watershed upstream of the City of Flagstaff, Arizona, USA, where a fire spread model was applied for current fuel loads, and for likely fuel loads following a fuel reduction treatment. When applying the curve number method, determining the time to peak flow can be problematic for low severity fires because the runoff flow paths are both surface and through shallow lateral flow. The WEPP watershed version incorporates shallow lateral flow into stream channels. However, the version of the WEPP model that was used for this study did not have channel routing capabilities, but rather relied on regression relationships to estimate peak flows from individual hillslope polygon peak runoff rates. We found that the two methods gave similar results if applied correctly, with the WEPP predictions somewhat greater than the CN predictions. Later releases of the WEPP model have incorporated alternative methods for routing peak flows that need to be evaluated.

  10. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  11. Transition section for acoustic waveguides

    DOEpatents

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  12. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  13. Energy absorption of composite materials

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1983-01-01

    Results of a study on the energy absorption characteristics of selected composite material systems are presented and the results compared with aluminum. Composite compression tube specimens were fabricated with both tape and woven fabric prepreg using graphite/epoxy (Gr/E), Kevlar (TM)/epoxy (K/E) and glass/epoxy (Gl/E). Chamfering and notching one end of the composite tube specimen reduced the peak load at initial failure without altering the sustained crushing load, and prevented catastrophic failure. Static compression and vertical impact tests were performed on 128 tubes. The results varied significantly as a function of material type and ply orientation. In general, the Gr/E tubes absorbed more energy than the Gl/E or K/E tubes for the same ply orientation. The 0/ + or - 15 Gr/E tubes absorbed more energy than the aluminum tubes. Gr/E and Gl/E tubes failed in a brittle mode and had negligible post crushing integrity, whereas the K/E tubes failed in an accordian buckling mode similar to the aluminum tubes. The energy absorption and post crushing integrity of hybrid composite tubes were not significantly better than that of the single material tubes.

  14. Flow Field and Acoustic Predictions for Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  15. Biot theory and acoustical properties of high porosity fibrous materials and plastic foams

    NASA Technical Reports Server (NTRS)

    Allard, J.; Aknine, A.

    1987-01-01

    Experimental values of acoustic wave propagation constant and characteristic impedance in fibrous materials, and normal absorption for two plastic foams, were compared to theoretical predictions obtained with Biot's theory. The best agreement was observed for fibrous materials between Biot's theory and Delany and Bazley experiments for a nearly zero mass coupling parameter. For foams, the lambda/4 structure resonance effect on absorption was calculated by using four-pole modelling of the medium. A significant mass coupling parameter is then necessary for obtaining agreement between the behavior of the measured absorption coefficients and the theoretical predictions. It is shown how the formalism used for predicting foams absorption coefficients may be used for studying the acoustic behavior of multi-layered media.

  16. The acoustics of Japanese wooden drums called ``mokugyo''

    NASA Astrophysics Data System (ADS)

    Sunohara, Masahiro; Furihata, Kenji; Asano, David K.; Yanagisawa, Takesaburo; Yuasa, Atsuyoshi

    2005-04-01

    A drumlike traditional Japanese instrument, the mokugyo, is experimentally discussed. First, the acoustic characteristics of 176 mokugyos with diameters ranging from 7.5 to 120 cm and three drumsticks were measured. Results show that (a) the sound spectra consist of two common peaks [F1 (Hz): first peak frequency, F2 (Hz): second peak frequency] close together, with an average ratio (F2/F1) of 1.15, and (b) a drumstick beating the mokugyo is translated into an impact force applied over a period of time from 1 to 6 ms related to the mass and stiffness of the material wrapped around the tip of the drumstick. Second, to evaluate the acoustic response of a mokugyo in the final tuning process, the mechanical and acoustical analogy between the mokugyo and a bass reflex loudspeaker is theoretically and experimentally discussed. Results show that the model can be estimated within a relative error of 0.52% from the mass of wood chips. Finally, from a psychological experiment, the timbre of the mokugyo shows higher scores on psychological scales when the ratio (F2/F1) becomes 1.15. .

  17. The peaks and geometry of fitness landscapes.

    PubMed

    Crona, Kristina; Greene, Devin; Barlow, Miriam

    2013-01-21

    Fitness landscapes are central in the theory of adaptation. Recent work compares global and local properties of fitness landscapes. It has been shown that multi-peaked fitness landscapes have a local property called reciprocal sign epistasis interactions. The converse is not true. We show that no condition phrased in terms of reciprocal sign epistasis interactions only, implies multiple peaks. We give a sufficient condition for multiple peaks phrased in terms of two-way interactions. This result is surprising since it has been claimed that no sufficient local condition for multiple peaks exist. We show that our result cannot be generalized to sufficient conditions for three or more peaks. Our proof depends on fitness graphs, where nodes represent genotypes and where arrows point toward more fit genotypes. We also use fitness graphs in order to give a new brief proof of the equivalent characterizations of fitness landscapes lacking genetic constraints on accessible mutational trajectories. We compare a recent geometric classification of fitness landscape based on triangulations of polytopes with qualitative aspects of gene interactions. One observation is that fitness graphs provide information that are not contained in the geometric classification. We argue that a qualitative perspective may help relating theory of fitness landscapes and empirical observations.

  18. Using acoustic cavitation to enhance chemotherapy of DOX liposomes: experiment in vitro and in vivo.

    PubMed

    Zhao, Ying-Zheng; Dai, Dan-Dan; Lu, Cui-Tao; Lv, Hai-Feng; Zhang, Yan; Li, Xing; Li, Wen-Feng; Wu, Yan; Jiang, Lei; Li, Xiao-Kun; Huang, Pin-Tong; Chen, Li-Juan; Lin, Min

    2012-09-01

    Experiments in vitro and in vivo were designed to investigate tumor growth inhibition of chemotherapeutics-loaded liposomes enhanced by acoustic cavitation. Doxorubicin-loaded liposomes (DOX liposomes) were used in experiments to investigate acoustic cavitation mediated effects on cell viability and chemotherapeutic function. The influence of lingering sensitive period after acoustic cavitation on tumor inhibition was also investigated. Animal experiment was carried out to verify the practicability of this technique in vivo. From experiment results, blank phospholipid-based microbubbles (PBM) combined with ultrasound (US) at intensity below 0.3 W/cm² could produce acoustic cavitation which maintained cell viability at high level. Compared with DOX solution, DOX liposomes combined with acoustic cavitation exerted effective tumor inhibition in vitro and in vivo. The lingering sensitive period after acoustic cavitation could also enhance the susceptibility of tumor to chemotherapeutic drugs. DOX liposomes could also exert certain tumor inhibition under preliminary acoustic cavitation. Acoustic cavitation could enhance the absorption efficiency of DOX liposomes, which could be used to reduce DOX adverse effect on normal organs in clinical chemotherapy.

  19. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  20. Absorption characteristics of glass fiber materials at normal and oblique incidence. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wyerman, B. R.

    1974-01-01

    The absorption characteristics of several fibrous materials of the Owens Corning 700 Fiberglas Series were measured to determine the variation in impedance as a function of incident angle of the sound wave. The results, indicate that the fibrous absorbents behave as extended reacting materials. The poor agreement between measurement and theory for sound absorption based on the parameters of flow resistance and porosity indicates that this theory does not adequately predict the acoustic behavior of fibrous materials. A much better agreement with measured results is obtained for values calculated from the bulk acoustic parameters of the material.

  1. Ares I Scale Model Acoustic Test Lift-Off Acoustics

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janie D.

    2011-01-01

    The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.

  2. Simultaneous multipoint acoustic emission sensing using fibre acoustic wave grating sensors with identical spectrum

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ryul; Lee, Seung-Seok; Yoon, Dong-Jin

    2008-08-01

    This paper introduces the development of a simultaneous multipoint acoustic emission (AE) sensing system using a narrowband tuneable laser with high power and fibre acoustic wave grating sensors (FAWGSs). The demodulation technique is the same as that used in existing methods where the narrowband laser peak is tuned to one mid-reflection point in the main lobe of a fibre Bragg grating (FBG) spectrum. However, the sensor head is changed to an FAWGS for which a FBG is installed in a strain-free configuration so that it can detect AE waves in a structure not directly but in the form of a fibre-guided acoustic wave. Therefore since the structural strain cannot make the Bragg wavelength change, multiple FBGs with identical spectrum can be connected with multiple optical paths realized by equal light intensity dividers. The possible temperature difference between the multiple FAWGSs is passively resolved by using short FBGs which provide a wider operating temperature region. Consequently, we can resolve the problem that the FBG spectrum is easily deviated from the lasing wavelength because of the strain. In addition, the simultaneous multipoint sensing capability based on a single laser improves the cost-performance ratio of the optical system as well as reducing the structural inspection time, and enabling in situ health monitoring of real structures exposed to large and dynamic strains. The feasibility of the system is demonstrated in typical applications of in situ structural health monitoring based on AE techniques.

  3. SPANISH PEAKS WILDERNESS STUDY AREA, COLORADO.

    USGS Publications Warehouse

    Budding, Karin E.; Kluender, Steven E.

    1984-01-01

    A geologic and geochemical investigation and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas Counties, in south-central Colorado. Anomalous gold, silver, copper, lead, and zinc concentrations in rocks and in stream sediments from drainage basins in the vicinity of the old mines and prospects on West Spanish Peak indicate a substantiated mineral-resource potential for base and precious metals in the area surrounding this peak; however, the mineralized veins are sparse, small in size, and generally low in grade. There is a possibility that coal may underlie the study area, but it would be at great depth and it is unlikely that it would have survived the intense igneous activity in the area. There is little likelihood for the occurrence of oil and gas because of the lack of structural traps and the igneous activity.

  4. The PEAK experience in South Carolina

    SciTech Connect

    1998-11-01

    The PEAK Institute was developed to provide a linkage for formal (schoolteachers) and nonformal educators (extension agents) with agricultural scientists of Clemson University`s South Carolina Agricultural Experiment Station System. The goal of the Institute was to enable teams of educators and researchers to develop and provide PEAK science and math learning experiences related to relevant agricultural and environmental issues of local communities for both classroom and 4-H Club experiences. The Peak Institute was conducted through a twenty day residential Institute held in June for middle school and high school teachers who were teamed with an Extension agent from their community. These educators participated in hands-on, minds-on sessions conducted by agricultural researchers and Clemson University Cooperative Extension specialists. Participants were given the opportunity to see frontier science being conducted by scientists from a variety of agricultural laboratories.

  5. Boson Peaks in Crystals and Glasses

    NASA Astrophysics Data System (ADS)

    Krumhansl, James

    2004-03-01

    In spite of the impression that phonon physics had been well understood by the mid 1900's, particularly with the advent of inelastic neutron scattering, when a number of workers in the later 1900's measured the low temperature heat capacity of some glasses they found, on comparing with Debye theory, a large peaked excess density of states in the energy region 0.1-0.5 Tdeb. The states obeyed boson statistics with variation of T, thus the "boson peak". Over the period after Born, so many measurements of heat capacity on crystals followed Debye theory so well, "within a few percent", that these newer results on glasses were then presented with great excitement to indicate the presence of very complex non-phonon states due to the loss of long range order. For several decades, even until the present, the boson peak has been assumed to hold answers to the physics of the glassy state. I have attempted to understand this phenomenon over the past several years, by careful quantitative analysis of data on materials which can be prepared in either crystalline or amorphous form, e.g. Ge. To my surprise; first, purely from experimental data, many good crystalline materials also have boson peaks essentially identical to those in their amorphous form; loss of long range order certainly does not occur there nor is relevant!! Second, in fact, given the neutron data for Ge, a semi-quantitative thermodynamic Green's function can produce the crystalline boson peak. In short, the boson peaks are not special physical excitations associated with glassy materials, but rather are artifacts of questionable data interpretation approximations. Many experimental data will be cited, as well as the quartz anomaly.

  6. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  7. Acoustic Mechanical Feedthroughs

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  8. Frequency steerable acoustic transducers

    NASA Astrophysics Data System (ADS)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  9. Compact program resolves overlapping voltammetric peaks.

    PubMed

    Dimitrov, Jordan D

    2004-05-01

    A simple self-contained program designed to separate overlapping peaks from electrochemical analyses is presented. Combining an original interactive way to define initial parameter estimates with nonlinear curve fitting based on the simplex method of optimization, it allows the user to resolve voltammograms consisting of 2 to 5 analytical peaks raised on a straight base line. The program provides highly intuitive interface, easy operation, and straightforward result documentation. A free package including the program, three data files and user instructions is available on request.

  10. Separating Peaks in X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Nicolas, David; Taylor, Clayborne; Wade, Thomas

    1987-01-01

    Deconvolution algorithm assists in analysis of x-ray spectra from scanning electron microscopes, electron microprobe analyzers, x-ray fluorescence spectrometers, and like. New algorithm automatically deconvolves x-ray spectrum, identifies locations of spectral peaks, and selects chemical elements most likely producing peaks. Technique based on similarities between zero- and second-order terms of Taylor-series expansions of Gaussian distribution and of damped sinusoid. Principal advantage of algorithm: no requirement to adjust weighting factors or other parameters when analyzing general x-ray spectra.

  11. The acoustics of snoring.

    PubMed

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline

    2010-04-01

    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (<500 Hz) and corresponds to a fundamental frequency with associated harmonics. The pitch of snoring is determined by vibration of the soft palate, while nonpalatal snoring is more 'noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as

  12. Dynamic acoustic tractor beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-03-01

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  13. Coffee roasting acoustics.

    PubMed

    Wilson, Preston S

    2014-06-01

    Cracking sounds emitted by coffee beans during the roasting process were recorded and analyzed to investigate the potential of using the sounds as the basis for an automated roast monitoring technique. Three parameters were found that could be exploited. Near the end of the roasting process, sounds known as "first crack" exhibit a higher acoustic amplitude than sounds emitted later, known as "second crack." First crack emits more low frequency energy than second crack. Finally, the rate of cracks appearing in the second crack chorus is higher than the rate in the first crack chorus.

  14. Numerical predictions in acoustics

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.

    1992-01-01

    Computational Aeroacoustics (CAA) involves the calculation of the sound produced by a flow as well as the underlying flowfield itself from first principles. This paper describes the numerical challenges of CAA and recent research efforts to overcome these challenges. In addition, it includes the benefits of CAA in removing restrictions of linearity, single frequency, constant parameters, low Mach numbers, etc. found in standard acoustic analyses as well as means for evaluating the validity of these numerical approaches. Finally, numerous applications of CAA to both classical as well as modern problems of concern to the aerospace industry are presented.

  15. Wind turbine acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  16. Quantum positron acoustic waves

    SciTech Connect

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  17. Dynamic acoustic tractor beams

    SciTech Connect

    Mitri, F. G.

    2015-03-07

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  18. Numerical predictions in acoustics

    NASA Astrophysics Data System (ADS)

    Hardin, Jay C.

    Computational Aeroacoustics (CAA) involves the calculation of the sound produced by a flow as well as the underlying flowfield itself from first principles. This paper describes the numerical challenges of CAA and recent research efforts to overcome these challenges. In addition, it includes the benefits of CAA in removing restrictions of linearity, single frequency, constant parameters, low Mach numbers, etc. found in standard acoustic analyses as well as means for evaluating the validity of these numerical approaches. Finally, numerous applications of CAA to both classical as well as modern problems of concern to the aerospace industry are presented.

  19. CMB observations in LTB universes: Part I. Matching peak positions in the CMB spectrum

    SciTech Connect

    Yoo, Chul-Moon; Sasaki, Misao; Nakao, Ken-ichi E-mail: knakao@sci.osaka-cu.ac.jp

    2010-07-01

    Acoustic peaks in the spectrum of the cosmic microwave background in spherically symmetric inhomogeneous cosmological models are studied. At the photon-baryon decoupling epoch, the universe may be assumed to be dominated by non-relativistic matter, and thus we may treat radiation as a test field in the universe filled with dust which is described by the Lemaitre-Tolman-Bondi (LTB) solution. First, we give an LTB model whose distance-redshift relation agrees with that of the concordance ΛCDM model in the whole redshift domain and which is well approximated by the Einstein-de Sitter universe at and before decoupling. We determine the decoupling epoch in this LTB universe by Gamow's criterion and then calculate the positions of acoustic peaks. Thus obtained results are not consistent with the WMAP data. However, we find that one can fit the peak positions by appropriately modifying the LTB model, namely, by allowing the deviation of the distance-redshift relation from that of the concordance ΛCDM model at z > 2 where no observational data are available at present. Thus there is still a possibility of explaining the apparent accelerated expansion of the universe by inhomogeneity without resorting to dark energy if we abandon the Copernican principle. Even if we do not take this extreme attitude, it also suggests that local, isotropic inhomogeneities around us may seriously affect the determination of the density contents of the universe unless the possible existence of such inhomogeneities is properly taken into account.

  20. CMB observations in LTB universes: Part I. Matching peak positions in the CMB spectrum

    NASA Astrophysics Data System (ADS)

    Yoo, Chul-Moon; Nakao, Ken-ichi; Sasaki, Misao

    2010-07-01

    Acoustic peaks in the spectrum of the cosmic microwave background in spherically symmetric inhomogeneous cosmological models are studied. At the photon-baryon decoupling epoch, the universe may be assumed to be dominated by non-relativistic matter, and thus we may treat radiation as a test field in the universe filled with dust which is described by the Lemaître-Tolman-Bondi (LTB) solution. First, we give an LTB model whose distance-redshift relation agrees with that of the concordance ΛCDM model in the whole redshift domain and which is well approximated by the Einstein-de Sitter universe at and before decoupling. We determine the decoupling epoch in this LTB universe by Gamow's criterion and then calculate the positions of acoustic peaks. Thus obtained results are not consistent with the WMAP data. However, we find that one can fit the peak positions by appropriately modifying the LTB model, namely, by allowing the deviation of the distance-redshift relation from that of the concordance ΛCDM model at z > 2 where no observational data are available at present. Thus there is still a possibility of explaining the apparent accelerated expansion of the universe by inhomogeneity without resorting to dark energy if we abandon the Copernican principle. Even if we do not take this extreme attitude, it also suggests that local, isotropic inhomogeneities around us may seriously affect the determination of the density contents of the universe unless the possible existence of such inhomogeneities is properly taken into account.

  1. Spectral properties of microwave graphs with local absorption.

    PubMed

    Allgaier, Markus; Gehler, Stefan; Barkhofen, Sonja; Stöckmann, H-J; Kuhl, Ulrich

    2014-02-01

    The influence of absorption on the spectra of microwave graphs has been studied experimentally. The microwave networks were made up of coaxial cables and T junctions. First, absorption was introduced by attaching a 50Ω load to an additional vertex for graphs with and without time-reversal symmetry. The resulting level-spacing distributions were compared with a generalization of the Wigner surmise in the presence of open channels proposed recently by Poli et al. [Phys. Rev. Lett. 108, 174101 (2012)]. Good agreement was found using an effective coupling parameter. Second, absorption was introduced along one individual bond via a variable microwave attenuator, and the influence of absorption on the length spectrum was studied. The peak heights in the length spectra corresponding to orbits avoiding the absorber were found to be independent of the attenuation, whereas, the heights of the peaks belonging to orbits passing the absorber once or twice showed the expected decrease with increasing attenuation.

  2. Time Reversal Acoustic in a flowing medium

    NASA Astrophysics Data System (ADS)

    Luong, Trung Dung; Arora, Manish; Hies, Thomas; Ohl, Claus-Dieter; Claus-Dieter Ohl grou Team; DHI Water; Environment (S) Pte. Ltd. Collaboration

    2013-11-01

    We explore the effect of flow on time reversal acoustics (TRA). Traditionally, TRA has been studied in static conditions, while a motion of the medium is expected to degrade the spatio-temporal focussing of the sound pulse. Here, we study the effect of the flow with a TRA system at 1MHz. A controlled flow is added between the emitter and receiver. Additional, a metallic plate is utilized to increases the numerical aperture of the emitting transducer. The impulse response of the non-flowing system, is recorded and time reversed. Then, the response of the hydrophone is recorded in presence and absence of the flow. It is found that the time reversed signal focuses on at the hydrophone in both the cases. In the absence of flow, the focus signal is observed to be shifted in the time domain. Furthermore, there is a drop in the peak-to-peak value of the focus signal in the presence of flow. For a flow rate of 3 cm/s (Re ~ 1000), a distinct shift in the time domain and a reduction of the peak is obtained. The results will be discussed and compared with numerical simulation of TRA under flow conditions.

  3. Acoustical study of classical Peking Opera singing.

    PubMed

    Sundberg, Johan; Gu, Lide; Huang, Qiang; Huang, Ping

    2012-03-01

    Acoustic characteristics of classical opera singing differ considerably between the Western and the Chinese cultures. Singers in the classical Peking opera tradition specialize on one out of a limited number of standard roles. Audio and electroglottograph signals were recorded for four performers of the Old Man role and three performers of the Colorful Face role. Recordings were made of the singers' speech and when they sang recitatives and songs from their roles. Sound pressure level, fundamental frequency, and spectrum characteristics were analyzed. Histograms showing the distribution of fundamental frequency showed marked peaks for the songs, suggesting a scale tone structure. Some of the intervals between these peaks were similar to those used in Western music. Vibrato rate was about 3.5Hz, that is, considerably slower than in Western classical singing. Spectra of vibrato-free tones contained unbroken series of harmonic partials sometimes reaching up to 17 000Hz. Long-term-average spectrum (LTAS) curves showed no trace of a singer's formant cluster. However, the Colorful Face role singers' LTAS showed a marked peak near 3300Hz, somewhat similar to that found in Western pop music singers. The mean LTAS spectrum slope between 700 and 6000Hz decreased by about 0.2dB/octave per dB of equivalent sound level. PMID:21621380

  4. Acoustical study of classical Peking Opera singing.

    PubMed

    Sundberg, Johan; Gu, Lide; Huang, Qiang; Huang, Ping

    2012-03-01

    Acoustic characteristics of classical opera singing differ considerably between the Western and the Chinese cultures. Singers in the classical Peking opera tradition specialize on one out of a limited number of standard roles. Audio and electroglottograph signals were recorded for four performers of the Old Man role and three performers of the Colorful Face role. Recordings were made of the singers' speech and when they sang recitatives and songs from their roles. Sound pressure level, fundamental frequency, and spectrum characteristics were analyzed. Histograms showing the distribution of fundamental frequency showed marked peaks for the songs, suggesting a scale tone structure. Some of the intervals between these peaks were similar to those used in Western music. Vibrato rate was about 3.5Hz, that is, considerably slower than in Western classical singing. Spectra of vibrato-free tones contained unbroken series of harmonic partials sometimes reaching up to 17 000Hz. Long-term-average spectrum (LTAS) curves showed no trace of a singer's formant cluster. However, the Colorful Face role singers' LTAS showed a marked peak near 3300Hz, somewhat similar to that found in Western pop music singers. The mean LTAS spectrum slope between 700 and 6000Hz decreased by about 0.2dB/octave per dB of equivalent sound level.

  5. Tunable absorption in heterostructures composed of a highly absorptive metallic film and Fibonacci fractal photonic crystals

    NASA Astrophysics Data System (ADS)

    Qiao, Wei; Sun, Jie; Du, Gui-Qiang

    2016-03-01

    We have theoretically investigated the anomalous optical properties of heterostructures composed of a highly absorptive metal film and a truncated Fibonacci fractal photonic crystal. It is found that one or multiple highly reflected peaks, even enhanced transmission narrowband, can be realized in the near-complete absorption broadband, where the photonic crystals are selected with various Fibonacci sequences or a given sequence as the basic unit. These properties are significant to design important reflection or transmission optical devices in the visible and near-infrared ranges.

  6. Relationships between peak ground acceleration, peak ground velocity, and modified mercalli intensity in California

    USGS Publications Warehouse

    Wald, D.J.; Quitoriano, V.; Heaton, T.H.; Kanamori, H.

    1999-01-01

    We have developed regression relationships between Modified Mercalli Intensity (Imm) and peak ground acceleration (PGA) and velocity (PGV) by comparing horizontal peak ground motions to observed intensities for eight significant California earthquakes. For the limited range of Modified Mercalli intensities (Imm), we find that for peak acceleration with V ??? Imm ??? VIII, Imm = 3.66 log(PGA) - 1.66, and for peak velocity with V ??? Imm ??? IX, Imm = 3.47 log(PGV) + 2.35. From comparison with observed intensity maps, we find that a combined regression based on peak velocity for intensity > VII and on peak acceleration for intensity < VII is most suitable for reproducing observed Imm patterns, consistent with high intensities being related to damage (proportional to ground velocity) and with lower intensities determined by felt accounts (most sensitive to higher-frequency ground acceleration). These new Imm relationships are significantly different from the Trifunac and Brady (1975) correlations, which have been used extensively in loss estimation.

  7. Using Classical Dispersion Analysis to Extract Peak Parameters, Optical Constants from IR Lab Absorbance Spectra: Olivine

    NASA Astrophysics Data System (ADS)

    Pitman, Karly M.; Dijkstra, C. R.; Hofmeister, A. M.; Speck, A. K.

    2009-05-01

    Laboratory measurements quantifying the effect of Fe substituting for Mg in olivine are needed to distinguish compositional from temperature effects in observational data. Because most olivine samples are too small to acquire reflectivity data used to obtain the optical functions n(λ) and k(λ) needed for radiative transfer models, we apply the principle that classical dispersion theory may be used to determine peak positions, widths, strengths, and n and k estimates from absorption spectra of thin film samples. We study room temperature absorption spectra of a large suite of olivines evenly spaced across Mg and Fe compositions, and isotropic and anisotropic minerals with varying hardness and numbers of spectral bands. For olivine, adding accounting for asymmetric peak shapes does not substantially alter estimates of peak position but increases the error on FWHM and oscillator strengths. Values from classical dispersion fits match published n and k derived from reflectivity (better agreement in k) when the dust proxy is soft and the thickness of the sample is independently constrained. Electronic data and peak parameter trends for the laboratory olivine absorption spectra and the viability of the extracted n and k are discussed with regard to astronomy.

  8. Seismic peak amplitude as a predictor of TOC content in shallow marine sediments

    NASA Astrophysics Data System (ADS)

    Neto, Arthur Ayres; Mota, Bruno Bourguignon; Belem, André Luiz; Albuquerque, Ana Luiza; Capilla, Ramsés

    2016-10-01

    Acoustic remote sensing is a highly effective tool for exploring the seafloor of both deep and shallow marine settings. Indeed, the acoustic response depends on several physicochemical factors such as sediment grain size, bulk density, water content, and mineralogy. The objective of the present study is to assess the suitability of seismic peak amplitude as a predictor of total organic carbon (TOC) content in shallow marine sediments, based on data collected in the Cabo Frio mud belt in an upwelling zone off southeastern Brazil. These comprise records of P-wave velocity ( V P) along 680 km of high-resolution single-channel seismic surveys, combined with analyses of grain size, wet bulk density, absolute water content and TOC content for four piston-cores. TOC contents of sediments from 13 box-cores served to validate the methodology. The results show well-defined positive correlations between TOC content and mean grain size (phi scale) as well as absolute water content, and negative correlations with V P, wet bulk density, and acoustic impedance. These relationships yield a regression equation by which TOC content can be satisfactorily predicted on the basis of acoustic impedance for this region: y = - 4.84 ln( x) + 40.04. Indeed, the derived TOC contents differ by only 5% from those determined by geochemical analysis. After appropriate calibration, acoustic impedance can thus be conveniently used as a predictor of large-scale spatial distributions of organic carbon enrichment in marine sediments. This not only contributes to optimizing scientific project objectives, but also enhances the cost-effectiveness of marine surveys by greatly reducing the ship time commonly required for grid sampling.

  9. Seismic peak amplitude as a predictor of TOC content in shallow marine sediments

    NASA Astrophysics Data System (ADS)

    Neto, Arthur Ayres; Mota, Bruno Bourguignon; Belem, André Luiz; Albuquerque, Ana Luiza; Capilla, Ramsés

    2016-04-01

    Acoustic remote sensing is a highly effective tool for exploring the seafloor of both deep and shallow marine settings. Indeed, the acoustic response depends on several physicochemical factors such as sediment grain size, bulk density, water content, and mineralogy. The objective of the present study is to assess the suitability of seismic peak amplitude as a predictor of total organic carbon (TOC) content in shallow marine sediments, based on data collected in the Cabo Frio mud belt in an upwelling zone off southeastern Brazil. These comprise records of P-wave velocity (V P) along 680 km of high-resolution single-channel seismic surveys, combined with analyses of grain size, wet bulk density, absolute water content and TOC content for four piston-cores. TOC contents of sediments from 13 box-cores served to validate the methodology. The results show well-defined positive correlations between TOC content and mean grain size (phi scale) as well as absolute water content, and negative correlations with V P, wet bulk density, and acoustic impedance. These relationships yield a regression equation by which TOC content can be satisfactorily predicted on the basis of acoustic impedance for this region: y = - 4.84 ln(x) + 40.04. Indeed, the derived TOC contents differ by only 5% from those determined by geochemical analysis. After appropriate calibration, acoustic impedance can thus be conveniently used as a predictor of large-scale spatial distributions of organic carbon enrichment in marine sediments. This not only contributes to optimizing scientific project objectives, but also enhances the cost-effectiveness of marine surveys by greatly reducing the ship time commonly required for grid sampling.

  10. Possible temperature effects computed for acoustic microscopy used for living cells.

    PubMed

    Kujawska, T; Wójcik, J; Filipczyński, L

    2004-01-01

    Imaging of living cells or tissues at a microscopic resolution, where GHz frequencies are used, provides a foundation for many new biological applications. The possible temperature increase causing a destructive influence on the living cells should be then avoided. However, there is no information on possible local temperature increases at these very high frequencies where, due to strongly focused ultrasonic beams, nonlinear propagation effects occur. Acoustic parameters of living cells were assumed to be close to those of water; therefore, the power density of heat sources in a water medium was determined as a basic quantity. Hence, the numerical solution of temperature distributions at the frequency of 1 GHz was computed for high and low powers generated by the transducer equal to 0.32 W and 0.002 W. In the first case, typical nonlinear propagation effects were demonstrated and, in the second one, propagation was almost linear. The focal temperature increase obtained in water equaled 14 degrees C for the highest possible theoretical repetition frequency of fr = 10 MHz and for the thermal insulation at the sapphire lens-water boundary. Simultaneously, the scanning velocity of the tested object was assumed to be incomparably low in respect to the acoustic beam velocity. The maximum temperature increase in water occurred exactly at this boundary, being equal there to 20 degrees C. It was shown that, first of all, the very high absorption of water was significant for the temperature distribution in the investigated region, suppressing the focal temperature peaks. Because the temperature increases are proportional to the repetition frequency, so for example, at its practical value of fr = 0.1 MHz, all temperature increases will be 100 times lower than listed above. For the low transducer power of 0.002 W, the corresponding temperature increases were about 140 times lower than those for the high power of 0.32 W. The presented solutions are devoted mainly to the

  11. Absorption mode FTICR mass spectrometry imaging.

    PubMed

    Smith, Donald F; Kilgour, David P A; Konijnenburg, Marco; O'Connor, Peter B; Heeren, Ron M A

    2013-12-01

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here, we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image, and then, these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode "Datacubes" for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  12. Acoustical Environment for Academic Buildings.

    ERIC Educational Resources Information Center

    Lortie, L.J.

    Discussion of the parameters governing noise control and room acoustics are followed by a demonstration on how to achieve a good acoustical environment. Topics emphasized include--(1) design and control objectives, (2) noise sources and propagation, (3) reverberation parameters, (4) noise control factors and parameters, and (5) sound systems. Also…

  13. Improving Acoustics in American Schools.

    ERIC Educational Resources Information Center

    Nelson, Peggy B.

    2000-01-01

    This introductory article to a clinical forum describes the following seven articles that discuss the problem of noisy classrooms and resulting reduction in learning, basic principles of noise and reverberation measurements in classrooms, solutions to the problem of poor classroom acoustics, and the development of a classroom acoustics standard.…

  14. Piano acoustics-A review

    NASA Astrophysics Data System (ADS)

    Askenfelt, Anders

    2003-10-01

    The design of the piano as we know it today dates back to the second half of the 19th century. The history of studies of the acoustics of the piano begins during the same period. In this talk, known facts and unanswered questions about the acoustics of the piano are reviewed.

  15. Digital Controller For Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  16. The electron geodesic acoustic mode

    SciTech Connect

    Chakrabarti, N.; Kaw, P. K.

    2012-09-15

    In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

  17. Acoustic Emissions Reveal Combustion Conditions

    NASA Technical Reports Server (NTRS)

    Ramohalli, D. N. R.; Seshan, P. K.

    1983-01-01

    Turbulent-flame acoustic emissions change with air/fuel ratio variations. Acoustic emissions sensed and processed to detect inefficient operation; control system responds by adjusting fuel/air mixture for greater efficiency. Useful for diagnosis of combustion processes and fuel/air control.

  18. Acoustic Levitation With One Driver

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Rudnick, I.; Elleman, D. D.; Stoneburner, J. D.

    1985-01-01

    Report discusses acoustic levitation in rectangular chamber using one driver mounted at corner. Placement of driver at corner enables it to couple effectively to acoustic modes along all three axes. Use of single driver reduces cost, complexity and weight of levitation system below those of three driver system.

  19. Acoustic Levitation With One Transducer

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.

    1987-01-01

    Higher resonator modes enables simplification of equipment. Experimental acoustic levitator for high-temperature containerless processing has round cylindrical levitation chamber and only one acoustic transducer. Stable levitation of solid particle or liquid drop achieved by exciting sound in chamber to higher-order resonant mode that makes potential well for levitated particle or drop at some point within chamber.

  20. Acoustic Similarity and Dichotic Listening.

    ERIC Educational Resources Information Center

    Benson, Peter

    1978-01-01

    An experiment tests conjectures that right ear advantage (REA) has an auditory origin in competition or interference between acoustically similar stimuli and that feature-sharing effect (FSE) has its origin in assignment of features of phonetically similar stimuli. No effect on the REA for acoustic similarity, and a clear effect of acoustic…