Science.gov

Sample records for acoustic attenuation performance

  1. Acoustic attenuation design requirements established through EPNL parametric trades

    NASA Technical Reports Server (NTRS)

    Veldman, H. F.

    1972-01-01

    An optimization procedure for the provision of an acoustic lining configuration that is balanced with respect to engine performance losses and lining attenuation characteristics was established using a method which determined acoustic attenuation design requirements through parametric trade studies using the subjective noise unit of effective perceived noise level (EPNL).

  2. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  3. Sound attenuation using microelectromechanical systems fabricated acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Yunker, William N.; Stevens, Colin B.; Flowers, George T.; Dean, Robert N.

    2013-01-01

    Unlike traditional rotational gyroscopes, microelectromechanical systems (MEMS) gyroscopes use a vibrating proof mass rather than a rotational mass to sense changes in angular rate. They are also smaller and less expensive than traditional gyroscopes. MEMS gyroscopes are known to be susceptible to the effects of acoustic noise, in particular high frequency and high power acoustic noise. Most notably, this has been proven true in aerospace applications where the noise can reach levels in excess of 120 dB and the noise frequency can exceed 20 kHz. The typical resonant frequency for the proof mass of a MEMS gyroscope is between 3 and 20 kHz. High power, high frequency acoustic noise can disrupt the output signal of the gyroscope to the point that the output becomes unreliable. In recent years, considerable research has focused on the fascinating properties found in metamaterials. A metamaterial is an artificially fabricated device or structure that is engineered to produce desired material responses that can either mimic known behaviors or produce responses that do not occur naturally in materials found in nature. Acoustic metamaterials, in particular, have shown great promise in the field of sound attenuation. This paper proposes a method to mitigate the performance degradation of the MEMS gyroscope in the presence of high power, high frequency acoustic noise by using a new acoustic metamaterial in the form of a two-dimensional array of micromachined Helmholtz resonators. The Helmholtz resonators are fabricated in a silicon wafer using standard MEMS manufacturing techniques and are designed to attenuate sound at the resonant frequency of the gyroscope proof mass. The resonator arrays were diced from the silicon wafer in one inch squares and assembled into a box open on one end in a manner to attenuate sound on all sides of the gyroscope, and to seal the gyroscope inside the box. The resulting acoustic metamaterial device was evaluated in an acoustic chamber and was

  4. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  5. Acoustic attenuation analysis program for ducts with mean flow

    NASA Technical Reports Server (NTRS)

    Kunze, R. K., Jr.

    1972-01-01

    A computerized acoustic attenuation prediction procedure has been developed to evaluate acoustically lined ducts for various geometric and environmental parameters. The analysis procedure is based on solutions to the acoustic wave equation, assuming uniform airflow on a duct cross section, combined with appropriate mathematical lining impedance models. The impedance models included in the analysis procedure are representative of either perforated sheet or porous polyimide impregnated fiberglass facing sheet coupled with a cellular backing space. Advantages and limitations of the analysis procedure are reviewed.

  6. Broadband fractal acoustic metamaterials for low-frequency sound attenuation

    NASA Astrophysics Data System (ADS)

    Song, Gang Yong; Cheng, Qiang; Huang, Bei; Dong, Hui Yuan; Cui, Tie Jun

    2016-09-01

    We fabricate and experimentally characterize a broadband fractal acoustic metamaterial that can serve to attenuate the low-frequency sounds at selective frequencies ranging from 225 to 1175 Hz. The proposed metamaterials are constructed by the periodic Hilbert fractal elements made of photosensitive resin via 3D printing. In analogy to electromagnetic fractal structures, it is shown that multiple resonances can also be excited in the acoustic counterpart due to their self-similar properties, which help to attenuate the acoustic energy in a wide spectrum. The confinement of sound waves in such subwavelength element is evidenced by both numerical and experimental results. The proposed metamaterial may provide possible alternative for various applications such as the noise attenuation and the anechoic materials.

  7. Attenuation of 7 GHz surface acoustic waves on silicon

    NASA Astrophysics Data System (ADS)

    Li, Dongyao; Cahill, David G.

    2016-09-01

    We measured the attenuation of GHz frequency surface acoustic waves (SAWs) on the Si (001) surface using an optical pump-probe technique at temperatures between 300 and 600 K. SAWs are generated and detected by a 700 nm Al grating fabricated by nanoimprint lithography. The grating for SAW generation is separated from the grating for SAW detection by ≈150 μ m . The amplitude of SAWs is attenuated by coupling to bulk waves created by the Al grating, diffraction due to the finite size of the source, and the intrinsic relaxational Akhiezer damping of elastic waves in Si. Thermal phonon relaxation time and Grüneisen parameters are fitted using temperature-dependent measurement. The f Q product of a hypothetical micromechanical oscillator limited by Akhiezer damping at this frequency is ˜3 ×1013 Hz.

  8. Attenuation of sound in ducts with acoustic treatment: A generalized approximate equation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1975-01-01

    A generalized approximate equation for duct lining sound attenuation is presented. The specification of two parameters, the maximum possible attenuation and the optimum wall acoustic impedance is shown to completely determine the sound attenuation for any acoustic mode at any selected wall impedance. The equation is based on the nearly circular shape of the constant attenuation contours in the wall acoustic impedance plane. For impedances far from the optimum, the equation reduces to Morse's approximate expression. The equation can be used for initial acoustic liner design. Not least important is the illustrative nature of the solutions which provide an understanding of the duct propagation problem usually obscured in the exact calculations. Sample calculations using the approximate attenuation equation show that the peak and the bandwidth of the sound attenuation spectrum can be represented by quite simple functions of the ratio of actual wall acoustic resistance to optimum resistance.

  9. Active Attenuation of Acoustic Noise Using Adaptive Armax Control.

    NASA Astrophysics Data System (ADS)

    Swanson, David Carl

    An adaptive auxiliary input autoregressive moving average (ARMAX) control system using the recursive least -squares lattice for system identification is developed for active control of dynamic systems. The closed-loop adaptive ARMAX control system is applied to active acoustic noise reduction in three-dimensional spaces. The structure of the ARMAX system is compared to that for duct cancellation systems, model-reference control systems, and the general field solution and is seen as a reasonable approach for active field control in the general case. The ARMAX system is derived for multiple inputs and outputs where the measured outputs are to be driven to desired waveforms with least -squares error using a multi-channel ARMAX lattice for recursive system identification. A significant reduction in complexity is obtained by neglecting the ARMAX zeros for the special case of active attenuation of non-dispersive acoustic waves. It is shown that using the least-squares lattice requires fewer multiplies, divides, additions, and subtractions than the recursive least-squares algorithm which is based on the matrix inversion lemma. Computational complexity is seen as an important issue in the application of adaptive ARMAX systems to active field control because the system must control relatively higher numbers of modes and frequencies in real time than are seen in industrial process plants for which the adaptive ARMAX systems were first developed using recursive least squares. Convergence requirements using the lattice system identification algorithm are the same as that for the recursive least squares algorithm in adaptive ARMAX system and are verified in numerical simulations using known ARMAX parameters. A real-time simulation of active attenuation of acoustic noise is presented using the blade-excited harmonics from a small axial flow fan. The adaptive ARMAX controller provides active attenuation for correlated spectral peaks but not for uncorrelated noise from turbulence

  10. Determination of acoustic attenuation in the Hudson River Estuary by means of ship noise observations.

    PubMed

    Roh, Heui-Seol; Sutin, Alexander; Bunin, Barry

    2008-06-01

    Analysis of sound propagation in a complex urban estuary has application to underwater threat detection systems, underwater communication, and acoustic tomography. One of the most important acoustic parameters, sound attenuation, was analyzed in the Hudson River near Manhattan using measurements of acoustic noise generated by passing ships and recorded by a fixed hydrophone. Analysis of the ship noise level for varying distances allowed estimation of the sound attenuation in the frequency band of 10-80 kHz. The effective attenuation coefficient representing the attenuation loss above cylindrical spreading loss had only slight frequency dependence and can be estimated by the frequency independent value of 0.058 dBm.

  11. Structure of nanoparticles in transformer oil-based magnetic fluids, anisotropy of acoustic attenuation

    NASA Astrophysics Data System (ADS)

    Kúdelčík, Jozef; Bury, Peter; Kopčanský, Peter; Timko, Milan

    2015-08-01

    The anisotropy of acoustic attenuation in transformer oil-based magnetic fluids upon the external magnetic field was studied to discover the structure of nanoparticles. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles leads to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids and the concentration of nanoparticles also have very important influence on the structural changes. The measurement of the dependence of the acoustic attenuation on the angle between the magnetic field direction and acoustic wave vector (anisotropy) can give the useful information about the structure of magnetic nanoparticles formations. In the present, the results of anisotropy measurements of the transformer oil-based magnetic fluids are described and using appropriate theory the basic parameters of clusters are calculated. On the basis of the performed calculations, the proportion of the acoustic wave energy used for excitation of the translational and rotational degrees of freedom was also established.

  12. Acoustic attenuation logging using centroid frequency shift and amplitude ratio methods: A numerical study

    SciTech Connect

    Quan, Y.; Harris, J.M.; Chen, X.

    1994-12-31

    The centroid frequency shift method is proposed to estimate seismic attenuation from full waveform acoustic logs. This approach along with the amplitude ratio method is applied to investigate the attenuation properties of the P head wave in fluid-filled boreholes. The generalized reflection and transmission coefficients method is used to perform forward modeling. The authors suggest an empirical formula to describe the frequency-dependent geometrical spreading of the P-wave in a borehole. They simulate a more realistic borehole by including a mudcake and an invaded zone which are modeled by a large number of radially symmetric thin layers. The numerical tests show that this invaded zone exhibits very strong influence on the attenuation measurement.

  13. Frequency-space prediction filtering for acoustic clutter and random noise attenuation in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Shin, Junseob; Huang, Lianjie

    2016-04-01

    Frequency-space prediction filtering (FXPF), also known as FX deconvolution, is a technique originally developed for random noise attenuation in seismic imaging. FXPF attempts to reduce random noise in seismic data by modeling only real signals that appear as linear or quasilinear events in the aperture domain. In medical ultrasound imaging, channel radio frequency (RF) signals from the main lobe appear as horizontal events after receive delays are applied while acoustic clutter signals from off-axis scatterers and electronic noise do not. Therefore, FXPF is suitable for preserving only the main-lobe signals and attenuating the unwanted contributions from clutter and random noise in medical ultrasound imaging. We adapt FXPF to ultrasound imaging, and evaluate its performance using simulated data sets from a point target and an anechoic cyst. Our simulation results show that using only 5 iterations of FXPF achieves contrast-to-noise ratio (CNR) improvements of 67 % in a simulated noise-free anechoic cyst and 228 % in a simulated anechoic cyst contaminated with random noise of 15 dB signal-to-noise ratio (SNR). Our findings suggest that ultrasound imaging with FXPF attenuates contributions from both acoustic clutter and random noise and therefore, FXPF has great potential to improve ultrasound image contrast for better visualization of important anatomical structures and detection of diseased conditions.

  14. The Velocity and Attenuation of Acoustic Emission Waves in SiC/SiC Composites Loaded in Tension

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Gyekenyesi, Andrew L.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The behavior of acoustic waves produced by microfracture events and from pencil lead breaks was studied for two different silicon carbide fiber-reinforced silicon carbide matrix composites. The two composite systems both consisted of Hi-Nicalon (trademark) fibers and carbon interfaces but had different matrix compositions that led to considerable differences in damage accumulation and acoustic response. This behavior was primarily due to an order of magnitude difference in the interfacial shear stress for the two composite systems. Load/unload/reload tensile tests were performed and measurements were made over the entire stress range in order to determine the stress-dependence of acoustic activity for increasing damage states. It was found that using the extensional wave velocities from acoustic emission (AE) events produced from pencil lead breaks performed outside of the transducers enabled accurate measurements of the stiffness of the composite. The extensional wave velocities changed as a function of the damage state and the stress where the measurement was taken. Attenuation for AE waveforms from the pencil lead breaks occurred only for the composite possessing the lower interfacial shear stress and only at significantly high stresses. At zero stress after unloading from a peak stress, no attenuation occurred for this composite because of crack closure. For the high interfacial stress composite no attenuation was discernable at peak or zero stress over the entire stress-range of the composite. From these observations, it is believed that attenuation of AE waveforms is dependent on the magnitude of matrix crack opening.

  15. The acoustic attenuation and hydraulic roughness in a large section sewer pipe with periodical obstacles.

    PubMed

    Horoshenkov, K V; Yin, Y A; Schellart, A; Ashley, R M; Blanksby, J R

    2004-01-01

    The acoustic attenuation, relative sound pressure levels and the equivalent Nikuradse wall roughness under variable flow conditions in a 600 mm concrete sewer pipe are experimentally investigated. The values of the acoustic attenuation are obtained in the case of airborne sound propagation in the dry pipe. A range of values of the equivalent wall roughness is artificially generated by deploying a periodical array of engineering bricks. A novel method of rapid evaluation of the acoustic attenuation is proposed. The method relies upon sound reflections from the adjacent manholes. The results demonstrate that the acoustic attenuation depends strongly on the value of the equivalent wall roughness. This work can pave the way to the efficient methodology for the in-situ, physical evaluation of the equivalent hydraulic roughness of new and existing sewer networks.

  16. Studies of elasticity, sound propagation and attenuation of acoustic modes in granular media: final report

    SciTech Connect

    Makse, Hernan A.; Johnson, David L.

    2014-09-03

    This is the final report describing the results of DOE Grant # DE-FG02-03ER15458 with original termination date of April 31, 2013, which has been extended to April 31, 2014. The goal of this project is to develop a theoretical and experimental understanding of sound propagation, elasticity and dissipation in granular materials. The topic is relevant for the efficient production of hydrocarbon and for identifying and characterizing the underground formation for storage of either CO2 or nuclear waste material. Furthermore, understanding the basic properties of acoustic propagation in granular media is of importance not only to the energy industry, but also to the pharmaceutical, chemical and agricultural industries. We employ a set of experimental, theoretical and computational tools to develop a study of acoustics and dissipation in granular media. These include the concept effective mass of granular media, normal modes analysis, statistical mechanics frameworks and numerical simulations based on Discrete Element Methods. Effective mass measurements allow us to study the mechanisms of the elastic response and attenuation of acoustic modes in granular media. We perform experiments and simulations under varying conditions, including humidity and vacuum, and different interparticle force-laws to develop a fundamental understanding of the mechanisms of damping and acoustic propagation in granular media. A theoretical statistical approach studies the necessary phase space of configurations in pressure, volume fraction to classify granular materials.

  17. Determination of acoustic attenuation in the Hudson River Estuary by means of ship noise observations.

    PubMed

    Roh, Heui-Seol; Sutin, Alexander; Bunin, Barry

    2008-06-01

    Analysis of sound propagation in a complex urban estuary has application to underwater threat detection systems, underwater communication, and acoustic tomography. One of the most important acoustic parameters, sound attenuation, was analyzed in the Hudson River near Manhattan using measurements of acoustic noise generated by passing ships and recorded by a fixed hydrophone. Analysis of the ship noise level for varying distances allowed estimation of the sound attenuation in the frequency band of 10-80 kHz. The effective attenuation coefficient representing the attenuation loss above cylindrical spreading loss had only slight frequency dependence and can be estimated by the frequency independent value of 0.058 dBm. PMID:18537300

  18. Ultrasonic database development for the acoustic inspection device: the velocity-attenuation measurement system (VAMS)

    NASA Astrophysics Data System (ADS)

    Diaz, Aaron A.; Burghard, Brion J.; Valencia, Juan D.; Samuel, Todd J.

    2004-07-01

    The inspection of sealed containers is a critical task for personnel charged with enforcing government policies, maintaining public safety, and ensuring national security. The Pacific Northwest National Laboratory (PNNL) has developed a portable, handheld acoustic inspection device (AID) that provides non-invasive container interrogation and material identification capabilities. The AID technology has been deployed worldwide and user"s are providing feedback and requesting additional capabilities and functionality. Recently, PNNL has developed a laboratory-based system for automated, ultrasonic characterization of fluids to support database development for the AID. Using pulse-echo ultrasound, ultrasonic pulses are launched into a container or bulk-solid commodity. The return echoes from these pulses are analyzed in terms of time-of-flight and frequency content (as a function of temperature) to extract physical property measurements (acoustic velocity and attenuation) of the material under test. These measured values are then compared to a tailored database of materials and fluids property data acquired using the Velocity-Attenuation Measurement System (VAMS). This bench-top platform acquires key ultrasonic property measurements as a function of temperature and frequency. This paper describes the technical basis for operation of the VAMS, recent enhancements to the measurement algorithms for both the VAMS and AID technologies, and new measurement data from laboratory testing and performance demonstration activities. Applications for homeland security and counterterrorism, law enforcement, drug-interdiction and fuel transportation compliance activities will be discussed.

  19. A finite element model to predict the sound attenuation of earplugs in an acoustical test fixture.

    PubMed

    Viallet, Guilhem; Sgard, Franck; Laville, Frédéric; Boutin, Jérôme

    2014-09-01

    Acoustical test fixtures (ATFs) are currently used to measure the attenuation of the earplugs. Several authors pointed out that the presence of an artificial skin layer inside the cylindrical ear canal of the ATFs strongly influenced the attenuation measurements. In this paper, this role is investigated via a 2D axisymmetric finite element model of a silicon earplug coupled to an artificial skin. The model is solved using COMSOL Multiphysics (COMSOL(®), Sweden) and validated experimentally. The model is exploited thereafter to better understand the role of each part of the earplug/ear canal system and how the energy circulates within the domains. This is investigated by calculating power balances and by representing the mechanical and acoustical fluxes in the system. The important dissipative role of the artificial skin is underlined and its contribution as a sound transmission pathway is quantified. In addition, the influence of both the earplug and the artificial skin parameters is assessed via sensitivities analyses performed on the model. PMID:25190400

  20. Finite Difference Numerical Modeling of Gravito-Acoustic Wave Propagation in a Windy and Attenuating Atmosphere

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2015-12-01

    The acoustic and gravity waves propagating in the planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to the atmosphere dynamics. To get a better understanding of the physic behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground to the upper thermosphere. Thus, In order to provide an efficient numerical tool at the regional or the global scale a high order finite difference time domain (FDTD) approach is proposed that relies on the linearized compressible Navier-Stokes equations (Landau 1959) with non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). One significant benefit from this code is its versatility. Indeed, it handles both acoustic and gravity waves in the same simulation that enables one to observe correlations between the two. Simulations will also be performed on 2D/3D realistic cases such as tsunamis in a full MSISE-00 atmosphere and gravity-wave generation through atmospheric explosions. Computations are validated by comparison to well-known analytical solutions based on dispersion relations in specific benchmark cases (atmospheric explosion and bottom displacement forcing).

  1. Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels.

    PubMed

    Asamene, Kassahun; Hudson, Larry; Sundaresan, Mannur

    2015-05-01

    Influence of attenuation on acoustic emission (AE) signals in Carbon Fiber Reinforced Polymer (CFRP) crossply and quasi-isotropic panels is examined in this paper. Attenuation coefficients of the fundamental antisymmetric (A0) and symmetric (S0) wave modes were determined experimentally along different directions for the two types of CFRP panels. In the frequency range from 100 kHz to 500 kHz, the A0 mode undergoes significantly greater changes due to material related attenuation compared to the S0 mode. Moderate to strong changes in the attenuation levels were noted with propagation directions. Such mode and frequency dependent attenuation introduces major changes in the characteristics of AE signals depending on the position of the AE sensor relative to the source. Results from finite element simulations of a microscopic damage event in the composite laminates are used to illustrate attenuation related changes in modal and frequency components of AE signals.

  2. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    PubMed

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  3. Two-dimensional acoustic attenuation mapping of high-temperature interstitial ultrasound lesions

    NASA Astrophysics Data System (ADS)

    Tyréus, Per Daniel; Diederich, Chris

    2004-02-01

    Acoustic attenuation change in biological tissues with temperature and time is a critical parameter for interstitial ultrasound thermal therapy treatment planning and applicator design. Earlier studies have not fully explored the effects on attenuation of temperatures (75-95 °C) and times (5-15 min) common in interstitial ultrasound treatments. A scanning transmission ultrasound attenuation measurement system was devised and used to measure attenuation changes due to these types of thermal exposures. To validate the approach and to loosely define expected values, attenuation changes in degassed ex vivo bovine liver, bovine brain and chicken muscle were measured after 10 min exposures in a water bath to temperatures up to 90 °C. Maximum attenuation increases of approximately seven, four and two times the values at 37 °C were measured for the three tissue models at 5 MHz. By using the system to scan over lesions produced using interstitial ultrasound applicators, 2D contour maps of attenuation were produced. Attenuation profiles measured through the centrelines of lesions showed that attenuation was highest close to the applicator and decreased with radial distance, as expected with decreasing thermal exposure. Attenuation values measured in profiles through lesions were also shown to decrease with reduced power to the applicator. Attenuation increases in 2D maps of interstitial ultrasound lesions in ex vivo chicken breast, bovine liver and bovine brain were correlated with visible tissue coagulation. While regions of visible coagulation corresponded well to contours of attenuation increase in liver and chicken, no lesion was visible under the same experimental conditions in brain, due primarily to the heterogeneity of the tissue. Acoustic and biothermal simulations were employed to show that attenuation models taking into account these attenuation changes at higher temperatures and longer times were better able to fit experimental data than previous models. These

  4. Magnesium oxide doping reduces acoustic wave attenuation in lithium metatantalate and lithium metaniobate crystals

    NASA Technical Reports Server (NTRS)

    Croft, W.; Damon, R.; Kedzie, R.; Kestigian, M.; Smith, A.; Worley, J.

    1970-01-01

    Single crystals of lithium metatantalate and lithium metaniobate, grown from melts having different stoichiometries and different amounts of magnesium oxide, show that doping lowers temperature-independent portion of attenuation of acoustic waves. Doped crystals possess optical properties well suited for electro-optical and photoelastic applications.

  5. Imaging velocity and attenuation anomalies in mining environments using Acoustic Emissions

    NASA Astrophysics Data System (ADS)

    Cesca, S.; Monna, S.; Kaiser, D.; Dahm, T.

    2012-04-01

    Imaging structural properties and monitoring fracturing processes in mining environments is of importance for mining exploitation. It is also helpful to characterize damages induced by mining activities, thus it is of primary interest for mining engineering and civil protection. Additionally, the development of improved monitoring and imaging methods is of great importance for salt deposits as potential reservoirs for CO2 sequestration. The analysis of Acoustic Emission (AE) and microseismicity data, which are routinely used in mining survey, is typically limited to estimate location of induced microcracks and seismicity. AE data will be here further analysed to obtain images of the seismic structure. We focus on an AE dataset recorded at the Morsleben salt mine, in Germany; the dataset contains more than 1 million events, recorded during a period of two months, with AE magnitudes spanning 5 units. Arrival times of first P and S onsets, as well as maximal amplitudes recorded for both seismic phases, are used to assess the seismic velocities and attenuation properties of the mining environment. Given the large size of the considered dataset, a spatial clustering of the events is first performed and a spatial homogeneous catalog of averaged "pseudoevents" is built. This new catalog is then used to provide first averaged images of the attenuation and velocity anomalies at specific depths. Results points to clear velocity and attenuation anomalies, which are correlated with the main structural features and the geometry of the salt body. The potential of the dataset for tomographic applications is investigated, both including synthetic simulations and considering real data. This study is funded by the project MINE, which is part of the R&D-Programme GEOTECHNOLOGIEN. The project MINE is funded by the German Ministry of Education and Research (BMBF), Grant of project BMBF03G0737.

  6. Fluvial suspended sediment characteristics by high-resolution, surrogate metrics of turbidity, laser-diffraction, acoustic backscatter, and acoustic attenuation

    NASA Astrophysics Data System (ADS)

    Landers, Mark Newton

    Sedimentation is a primary and growing environmental, engineering, and agricultural issue around the world. However, collection of the data needed to develop solutions to sedimentation issues has declined by about three-fourths since 1983. Suspended-sediment surrogates have the potential to obtain sediment data using methods that are more accurate, of higher spatial and temporal resolution, and with less manually intensive, costly, and hazardous methods. The improved quality of sediment data from high-resolution surrogates may inform improved understanding and solutions to sedimentation problems. The field experiments for this research include physical samples of suspended sediment collected concurrently with surrogate metrics from instruments including 1.2, 1.5, and 3.0 megahertz frequency acoustic doppler current profilers, a nephelometric turbidity sensor, and a laser-diffraction particle size analyzer. This comprehensive data set was collected over five storms in 2009 and 2010 at Yellow River near Atlanta, Georgia. Fluvial suspended sediment characteristics in this study can be determined by high-resolution surrogate parameters of turbidity, laser-diffraction and acoustics with model errors 33% to 49% lower than traditional methods using streamflow alone. Hysteresis in sediment-turbidity relations for single storm events was observed and quantitatively related to PSD changes of less than 10 microns in the fine silt to clay size range. Suspended sediment particle size detection (PSD) is significantly correlated with ratios of measured acoustic attenuation at different frequencies; however the data do not fit the theoretical relations. Using both relative acoustic backscatter (RB) and acoustic attenuation as explanatory variables results in a significantly improved model of suspended sediment compared with traditional sonar equations using only RB. High resolution PSD data from laser diffraction provide uniquely valuable information; however the size detection

  7. Effects of signal attenuation in natural media on interpretation of acoustic emissions in the context early warning systems

    NASA Astrophysics Data System (ADS)

    Faillettaz, Jerome; Or, Dani

    2015-04-01

    Gravity driven instabilities in natural media such as rockfalls, landslides, snow avalanches or glacier break-offs represent a significant class of natural hazards. Reliable prediction of imminence of such events combined with timely evacuation remain a challenge because material failure is a non linear process involving inherent heterogeneities affecting the outcome. Nevertheless, such materials break gradually with the weakest parts breaking first, producing precursory "micro-cracks" and associated elastic waves traveling in the material. The monitoring of such acoustic/micro-seismic activity offers valuable information on the progression of damage and imminence of global failure. The main challenge is that acoustic waves are strongly attenuated during their travel through natural media thereby introducing ambiguity in the interpretation of the magnitude (severity) or leading to loss of detection for faraway events. For example, a micro-crack event would be measured as a large event if occurring close to the sensor, and as a small event if far from the sensor ( or may not be detected at all). A more complete picture of acoustic emissions or micro- seismic activity requires deployment of a dense network of sensors that enables localization of sources and thus the determination of initial energy released with each event. However, such networks are prohibitively costly difficult to analyze in real time over scales of interest. Is it possible to find a way to analyze directly in real time the measured micro-seismic activity to infer the slope mechanical status? Following a qualitative description of the observation problem and the processes leading to attenuation, a quantitative analysis is performed using a numerical model based on the classical Fiber Bundle Model. Introducing a basic attenuation law in such simple models enables to directly compare un-attenuated and attenuated acoustic activity (and also avalanche size-frequency distribution) at any location

  8. Acoustic Performance of 3D Printed Nanocomposite Earmuff

    PubMed Central

    Ahmadi, Saeid; Nassiri, Parvin; Ghasemi, Ismaeil; Monazzam Ep, Mohammad R.

    2016-01-01

    Introduction: Hearing protection devices are one of the primary noise reduction tools in developing countries. This study is intended to produce and apply acrylonitrile butadiene styrene (ABS)/clay nanocomposites to fabricate a laboratory single cup earmuffs and then compare it with double cup and single cup pure ABS earmuffs in terms of noise attenuation performance and comfort. In addition, the noise attenuation performance of single cup pure ABS earmuffs is compared with double cup pure ABS earmuffs. Methods: ABS/nanoclay filament was fabricated using a twin screw extruder. A three dimensional (3D) printing machine and a 3D model of earcup, designed by solid work software, were applied to print single and double cup earmuffs using ABS/nanoclay composite and pure ABS filaments. Finally, using an acoustic test fixture, objective noise attenuation test was performed on three different types of earmuffs, including with and without nano material and a secondary cup. Moreover, earmuffs weight was measured as a comfort component. Results: Insertion loss and calculated noise reduction rating (NRR) of single cup ABS/nanoclay earmuffs (NRR=19.4 dB) and double cup pure ABS earmuffs (NRR=18.93 dB) were improved in comparison with single cup pure ABS earmuffs (NRR=15.7 dB). Additionally, both single cup earmuffs were significantly lighter than double cup earmuffs. Although single cup nano and double cup earmuffs had nearly the same attenuation performance, single cup nano earmuffs were 74 gr lighter than double cup earmuffs, so with reference to comfort, single cup nano earmuffs will probably be more acceptable. Conclusions: From this survey it might be concluded that, even though single cup ABS/nanoclay earmuffs was lighter than double cup pure ABS earmuffs, it had approximately more attenuation performance in comparison with double cup pure ABS earmuffs. Consequently, users are probably more prone to wear light- weight single cup ABS/nanoclay earmuffs as a result of

  9. Simultaneous evaluation of acoustic nonlinearity parameter and attenuation coefficients using the finite amplitude method

    SciTech Connect

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo Cho, Sungjong

    2015-07-15

    A novel method to determine acoustic parameters involved in measuring the nonlinearity parameter of fluids or solids is proposed. The approach is based on the measurement of fundamental and second harmonic pressures with a calibrated receiver, and on a nonlinear least squares data-fitting to multi-Gaussian beam (MGB) equations which explicitly define the attenuation and diffraction effects in the quasilinear regime. Results obtained in water validate the proposed method. The choice of suitable source pressure is discussed with regard to the quasilinear approximation involved. The attenuation coefficients are also acquired in nonlinear regime and their relations are discussed.

  10. Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Abrahamson, A. Louis; Jones, Michael G.

    1988-01-01

    An experiment was performed to validate two analytical models for predicting low frequency attenuation of duct liner configurations built from an array of seven resonators that could be individually tuned via adjustable cavity depths. These analytical models had previously been developed for high frequency aero-engine inlet duct liner design. In the low frequency application, the liner surface impedance distribution is unavoidably spatially varying by virtue of available fabrication techniques. The characteristic length of this spatial variation may be a significant fraction of the acoustic wavelength. Comparison of measured and predicted attenuation rates and transmission losses for both modal decomposition and finite element propagation models were in good to excellent agreement for a test frequency range that included the first and second cavity resonance frequencies. This was true for either of two surface impedance distribution modeling procedures used to simplify the impedance boundary conditions. In the presence of mean flow, measurements revealed a fine scale structure of acoustic hot spots in the attenuation and phase profiles. These details were accurately predicted by the finite element model. Since no impedance changes due to mean flow were assumed, it is concluded that this fine scale structure was due to convective effects of the mean flow interacting with the surface impedance nonuniformities.

  11. The propagation and attenuation of complex acoustic waves in treated circular and annular ducts

    NASA Technical Reports Server (NTRS)

    Reethof, G.

    1976-01-01

    The propagation of plane waves and higher order acoustic modes in a circular multisectioned duct was studied. A unique source array consisting of two concentric rings of sources, providing phase and amplitude control in the radial, as well as circumferential direction, was developed to generate plane waves and both spinning and nonspinning higher order modes. Measurements of attenuation and radial mode shapes were taken with finite length liners between the hard wall sections of an anechoically terminated duct. Materials tested as liners included a glass fiber material and both sintered fiber metals and perforated sheet metals with a honeycomb backing. The fundamental acoustic properties of these materials were studied with emphasis on the attenuation of sound by the liners and the determination of local versus extended reaction behavior for the boundary condition. The experimental results were compared with a mathematical model for the multisectioned duct.

  12. Configuration Effects on Acoustic Performance of a Duct Liner

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Nark, Douglas; Howerton, Brian M.

    2008-01-01

    Continued success in aircraft engine noise reduction necessitates ever more complete understanding of the effect that flow path geometry has on sound propagation in the engine. The Curved Duct Test Rig (CDTR) has been developed at NASA Langley Research Center to investigate sound propagation through a duct of comparable size (approximately the gap of GE90) and physical characteristics to the aft bypass duct of typical aircraft engines. The liner test section is designed to mimic the outer/inner walls of an engine exhaust bypass duct that has been unrolled circumferentially. Experiments to investigate the effect of curvature along the flow path on the acoustic performance of a test liner are performed in the CDTR and reported in this paper. Flow paths investigated include both straight and curved with offsets from the inlet to the discharge plane of and 1 duct width, respectively. The test liners are installed on the side walls of the liner test section. The liner samples are perforate over honeycomb core, which design is typical of liners installed in aircraft nacelles. In addition to fully treated side walls, combinations of treated and acoustically rigid walls are investigated. While curvature in the hard wall duct is found not to reduce the incident sound significantly, it does cause mode scattering. It is found that asymmetry of liner treatment causes scattering of the incident mode into less attenuated modes, which degrades the overall liner attenuation. It is also found that symmetry of liner treatment enhances liner performance by eliminating scattering into less attenuated modes. Comparisons of measured liner attenuation with numerical results predicted by an analytic model based on the parabolic approximation (CDUCT-LaRC) have also been made and are reported in this paper. The effect of curvature in the rigid wall configuration estimated by CDUCT-LaRC is similar to the observed results, and the mode scattering seen in the measurements also occurs in the

  13. Modelling acoustic scattering, sound speed, and attenuation in gassy soft marine sediments.

    PubMed

    Mantouka, A; Dogan, H; White, P R; Leighton, T G

    2016-07-01

    A model for nonlinear gas bubble pulsation in marine sediments is presented. This model is then linearized to determine the resonance frequency and the damping terms for linear radial oscillations. The linear model is then used to predict the effects that such bubble pulsations will have on the sound speed and attenuation of acoustic waves propagating in gassy marine sediment. The results are compared for monodisperse populations against the predictions of a model of Anderson and Hampton and, furthermore, the additional abilities of the model introduced in this paper are discussed. These features include the removal of the sign ambiguities in the expressions, the straightforward implementation for acoustic propagation through polydisperse bubble populations, the capability to estimate bubble size distributions through a full acoustic inversion, and the capability to predict nonlinear effects. PMID:27475152

  14. Acoustic emission of offshore structures, attenuation - noise - crack monitoring

    SciTech Connect

    Lovaas, S.

    1985-01-01

    No NDT crack detection methods have up to now proved to be the method which can overrule the others. We shall probably in the future in the offshore industry see a combination of various structure monitoring systems, remotely operated vehicles (ROV) with NDT-equipment and also the use of divers. The author believes that in some 5 - 10 years ROVs will perform much of the routine inspection, and mobile monitoring instrumentation will be concentrated to some hot spot areas, already detected defects or any repairs. The main areas for AE are monitoring of pressure vessels and fibre reinforced plastics. For application on offshore structures some fullscale trials have been performed (with practical problems) as well as some laboratory studies. Norwegian institutions seem to have a leading role today in the research of offshore applications. Norsk Hydro participated in a signature analysis project at Sintef/Veritas some years ago.

  15. Acoustic transmitter and receiver performance in freshwater and estuarine environments

    EPA Science Inventory

    We report on the performance of passive acoustic receivers intended to detect the passage of 281 acoustically tagged migratory salmonids in two Oregon coastal watersheds. We found that ambient acoustic noise can vary considerably with location, and that “sync” pulses thought to ...

  16. Low acoustic attenuation silicone rubber lens for medical ultrasonic array probe.

    PubMed

    Itsumi, Kazuhiro; Hosono, Yasuharu; Yamamoto, Noriko; Yamashita, Yohachi John

    2009-04-01

    Effects of heavy density (rho = 9.2 x 10(3) kg/m(3)) Yb(2)O(3) fine dopant (16 nm in diameter) on the acoustic properties of a high-temperature-vulcanization (HTV) silicone rubber have been investigated, to develop a new acoustic lens material with a low acoustic attenuation (alpha) for the medical array probe application. The HTV silicone rubber has advantages in that it shows a lower alpha than that of a room-temperature-vulcanization (RTV) silicone rubber and it can be mixed by applying shear stress, using roll-milling equipment. Roll-milling time dependence of the HTV silicone rubber indicates that the alpha is closely affected by the dispersion of nanopowders in the rubber matrix. The 8 vol% Yb(2)O(3)-doped HTV silicone rubber mixed for 30 min showed the lowest alpha of 0.73 dB/mm MHz with an acoustic impedance [AI = sound speed (c) x density (rho)] of 1.43 x 10(6) kg/m(2)s at 37 degrees C. Moreover, simulation results reveal that a 5 MHz linear probe using the HTV silicone rubber doped with Yb(2)O(3) powder showed relative sensitivity around 2.6 to 3.0 dB higher than a probe using RTV silicone rubber doped with Yb(2)O(3) powder or SiO2-doped conventional silicone rubber for the ultrasonic medical application. PMID:19406717

  17. Attenuation of a hydrogen-air detonation by acoustic absorbing covering

    NASA Astrophysics Data System (ADS)

    Bivol, G. Yu; Golovastov, S. V.; Golub, V. V.; Ivanov, K. V.; Korobov, A. E.

    2015-11-01

    Using of sound-absorbing surfaces to weaken and decay of a detonation wave in hydrogen-air mixtures was investigated experimentally. Experiments were carried out in a cylindrical detonation tube open at one end. Initiation of the explosive mixture was carried out by a spark discharge, which is located at the closed end of the detonation tube. Acoustical sound absorbing foam element of a specific weight of 0.035 g/cm3 with open pores of 0.5 mm was used. The degree of attenuation of the intensity of the detonation wave front was determined.

  18. Reference Phantom Method for Acoustic Backscatter Coefficient and Attenuation Coefficient Measurements.

    NASA Astrophysics Data System (ADS)

    Yao, Linxin

    1990-08-01

    In previous work in our laboratory accurate backscatter coefficient measurements were obtained with a data reduction method that explicitly accounts for experimental factors involved in recording echo data. An alternative, relative processing method for determining the backscatter coefficient and the attenuation coefficient is presented here. This method involves comparison of echo data from a sample with data recorded from a reference phantom whose backscatter and attenuation coefficients are known. The ratio of the signals cancels depth-dependent instrumentation factors. This saves the efforts of beam profile computation and various calibrations. The attenuation coefficient and backscatter coefficient of the sample are found from these ratios and the known acoustic properties of the reference phantom. This method is tested using tissue-mimicking phantoms with known scattering and attenuation properties. Various experiments have been done using clinical scanners with different transducers to compute attenuation coefficients and backscatter coefficients, and to make quantitative images. This method has been found to be accurate for media containing Rayleigh scatterers, as well as samples containing intermediate-size scatterers. Accuracy was maintained over different frequency bands and for a wide range of transducer-to-ROI distances. Measurements were done in vivo for human livers, kidneys and dog myocardium. The results have shown that the reference phantom method simplifies the measurement procedure as well as keeps the accuracy, and therefore is practical clinically. Statistical uncertainties propagated in the data reduction have been analyzed in detail. Formulae are deduced to predict statistical errors in the attenuation and backscatter coefficients measured with the reference phantom method. Spatial correlations of the echo signals are also considered. A 2-dimensional lateral correlation matrix is introduced to compute the number of effective independent

  19. On the attenuation of sound by three-dimensionally segmented acoustic liners in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Koch, W.

    1979-01-01

    Axial segmentation of acoustically absorbing liners in rectangular, circular or annual duct configurations is a very useful concept for obtaining higher noise attenuation with respect to the bandwidth of absorption as well as the maximum attenuation. As a consequence, advanced liner concepts are proposed which induce a modal energy transfer in both cross-sectional directions to further reduce the noise radiated from turbofan engines. However, these advanced liner concepts require three-dimensional geometries which are difficult to treat theoretically. A very simple three-dimensional problem is investigated analytically. The results show a strong dependence on the positioning of the liner for some incident source modes while the effect of three-dimensional segmentation appears to be negligible over the frequency range considered.

  20. Measuring sea ice permeability as a function of the attenuation and phase velocity shift of an acoustic wave

    NASA Astrophysics Data System (ADS)

    Hudier, E. J.; Bahoura, M.

    2012-12-01

    Sea ice is a two-phase porous medium consisting of a solid matrix of pure ice and a salty liquid phase. At spring when ice permeability increases, it has been observed that pressure gradients induced at the ice-water interface upstream and downstream of pressure ridge keels can cause sea water and brine to be forced through the ice water boundary. It suggests that salt and heat fluxes through the bottom ice layers may be a major factor controlling the decay of an ice sheet. Knowing how water flows through the ice matrix is fundamental to a modeling of ocean-ice heat exchanges integrating the advective import/export of latent heat that result from melting/freezing within the ice. Permeability is the measurement of the ease with which fluids flow through a porous medium, however one of the most tricky to measure without altering the porosity of the sampled medium. To further complicate the challenge, horizontal and vertical permeability of the ice, referred as ice anisotropy, is significant. Acoustic wave propagation through porous media have been theorized to relate the acoustic velocity and attenuation to the physical properties of the tested material. It is a non-invasive technique, and as such could provide more reliable measurements of sea ice permeability than anything presently used. Simulations combining the Biot's and squirt flow mechanisms are performed to investigate the effect of permeability on the attenuation and phase velocity as a function of frequency. We first present the attenuation dispersion curves for an isotropic sea ice, then low-frequency and high-frequency limits are determined. Optimal frequency range and resolution requirements are evaluated for testing.

  1. Hierarchical Assembly of Tungsten Spheres and Epoxy Composites in Three-Dimensional Graphene Foam and Its Enhanced Acoustic Performance as a Backing Material.

    PubMed

    Qiu, Yunfeng; Liu, Jingjing; Lu, Yue; Zhang, Rui; Cao, Wenwu; Hu, PingAn

    2016-07-20

    Backing materials play important role in enhancing the acoustic performance of an ultrasonic transducer. Most backing materials prepared by conventional methods failed to show both high acoustic impedance and attenuation, which however determine the bandwidth and axial resolution of acoustic transducer, respectively. In the present work, taking advantage of the structural feature of 3D graphene foam as a confined space for dense packing of tungsten spheres with the assistance of centrifugal force, the desired structural requirement for high impedance is obtained. Meanwhile, superior thermal conductivity of graphene contributes to the acoustic attenuation via the conversion of acoustic waves to thermal energy. The tight contact between tungstate spheres, epoxy matrix, or graphene makes the acoustic wave depleted easily for the absence of air barrier. The as-prepared 3DG/W80 wt %/epoxy film in 1 mm, prepared using ∼41 μm W spheres in diameter, not only displays acoustic impedance of 13.05 ± 0.11 MRayl but also illustrates acoustic attenuation of 110.15 ± 1.23 dB/cm MHz. Additionally, the composite film exhibits a high acoustic absorption coefficient, which is 94.4% at 1 MHz and 100% at 3 MHz, respectively. Present composite film outperforms most of the reported backing materials consisting of metal fillers/polymer blending in terms of the acoustic impedance and attenuation. PMID:27352024

  2. Hierarchical Assembly of Tungsten Spheres and Epoxy Composites in Three-Dimensional Graphene Foam and Its Enhanced Acoustic Performance as a Backing Material.

    PubMed

    Qiu, Yunfeng; Liu, Jingjing; Lu, Yue; Zhang, Rui; Cao, Wenwu; Hu, PingAn

    2016-07-20

    Backing materials play important role in enhancing the acoustic performance of an ultrasonic transducer. Most backing materials prepared by conventional methods failed to show both high acoustic impedance and attenuation, which however determine the bandwidth and axial resolution of acoustic transducer, respectively. In the present work, taking advantage of the structural feature of 3D graphene foam as a confined space for dense packing of tungsten spheres with the assistance of centrifugal force, the desired structural requirement for high impedance is obtained. Meanwhile, superior thermal conductivity of graphene contributes to the acoustic attenuation via the conversion of acoustic waves to thermal energy. The tight contact between tungstate spheres, epoxy matrix, or graphene makes the acoustic wave depleted easily for the absence of air barrier. The as-prepared 3DG/W80 wt %/epoxy film in 1 mm, prepared using ∼41 μm W spheres in diameter, not only displays acoustic impedance of 13.05 ± 0.11 MRayl but also illustrates acoustic attenuation of 110.15 ± 1.23 dB/cm MHz. Additionally, the composite film exhibits a high acoustic absorption coefficient, which is 94.4% at 1 MHz and 100% at 3 MHz, respectively. Present composite film outperforms most of the reported backing materials consisting of metal fillers/polymer blending in terms of the acoustic impedance and attenuation.

  3. Leak detection by acoustic emissions monitoring: An experimental investigation of the acoustic properties of leaks and the attenuation characteristics of soil

    SciTech Connect

    Kilpatrick, J.F.; March, P.A.

    1994-05-27

    This study experimentally explored the conditions, equipment, and methodology necessary for the acoustic detection of small leaks of jet fuel (JP4) from underground storage tank (UST) systems. The study indicates that acoustic leak detection of very small leaks is feasible. In general, significant JP4 fuel leaks which occur across a 5 PSI (pounds per square inch) or greater pressure drop are acoustically active and can be detected with proper sensors and proper placement of sensors. The primary source of leak noise is turbulent flow through the leak orifice. At lower pressures, the leak flow becomes laminar, and the leak becomes virtually silent. With direct transducer contact on the pipe or tank wall and sufficient system pressure, leaks smaller than 0.1 GPH (gallons per hour) can be detected. Larger leaks can be detected through short distances in soil. However, sand, which is the most commonly used fill material for UST systems, provides significant acoustic attenuation. Consequently, waveguides must be used when monitoring distances exceeding about 1 foot of travel through sand. Sand acts to reduce background noise levels, providing an ideal environment for acoustic leak detection using sensors mounted directly on the pipe or tank wall. Leak detection, Acoustics, Underground storage tanks, Pipelines, Attenuation.

  4. Design and performance of duct acoustic treatment

    NASA Technical Reports Server (NTRS)

    Motsinger, R. E.; Kraft, R. E.

    1991-01-01

    The procedure for designing acoustic treatment panels used to line the walls of aircraft engine ducts and for estimating the resulting suppression of turbofan engine duct noise is discussed. This procedure is intended to be used for estimating noise suppression of existing designs or for designing new acoustic treatment panels and duct configurations to achieve desired suppression levels.

  5. Acoustic cavity technology for high performance injectors

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of damping more than one mode of rocket engine combustion instability by means of differently tuned acoustic cavities sharing a common entrance was shown. Analytical procedures and acoustic modeling techniques for predicting the stability behavior of acoustic cavity designs in hot firings were developed. Full scale testing of various common entrance, dual cavity configurations, and subscale testing for the purpose of obtaining motion pictures of the cavity entrance region, to aid in determining the mechanism of cavity damping were the two major aspects of the program.

  6. Producing acoustic 'Frozen Waves': simulated experiments with diffraction/attenuation resistant beams in lossy media.

    PubMed

    Prego-Borges, José L; Zamboni-Rached, Michel; Recami, Erasmo; Costa, Eduardo Tavares

    2014-08-01

    The so-called Localized Waves (LW), and the "Frozen Waves" (FW), have raised significant attention in the areas of Optics and Ultrasound, because of their surprising energy localization properties. The LWs resist the effects of diffraction for large distances, and possess an interesting self-reconstruction -self-healing- property (after obstacles with size smaller than the antenna's); while the FWs, a sub-class of LWs, offer the possibility of arbitrarily modeling the longitudinal field intensity pattern inside a prefixed interval, for instance 0⩽z⩽L, of the wave propagation axis. More specifically, the FWs are localized fields "at rest", that is, with a static envelope (within which only the carrier wave propagates), and can be endowed moreover with a high transverse localization. In this paper we investigate, by simulated experiments, various cases of generation of ultrasonic FW fields, with the frequency of f0=1 MHz in a water-like medium, taking account of the effects of attenuation. We present results of FWs for distances up to L=80 mm, in attenuating media with absorption coefficient α in the range 70⩽α⩽170 dB/m. Such simulated FW fields are constructed by using a procedure developed by us, via appropriate finite superpositions of monochromatic ultrasonic Bessel beams. We pay due attention to the selection of the FW parameters, constrained by the rather tight restrictions imposed by experimental Acoustics, as well as to some practical implications of the transducer design. The energy localization properties of the Frozen Waves can find application even in many medical apparatus, such as bistouries or acoustic tweezers, as well as for treatment of diseased tissues (in particular, for the destruction of tumor cells, without affecting the surrounding tissues; also for kidney stone shuttering, etc.).

  7. Sound isolation performance of interior acoustical sash

    NASA Astrophysics Data System (ADS)

    Tocci, Gregory

    2002-05-01

    In existing, as well as new buildings, an interior light of glass mounted on the inside of a prime window is used to improve the sound transmission loss otherwise obtained by the prime window alone. Interior acoustical sash is most often 1/4 in. (6 mm) monolithic or laminated glass, and is typically spaced 3 in. to 6 in. from the glass of the prime window. This paper presents TL data measured at Riverbank Acoustical Laboratories by Solutia (formerly Monsanto) for lightweight prime windows of various types, with and without interior acoustical sash glazed with 1/4 in. laminated glass. The TL data are used to estimate the A-weighted insertion loss of interior acoustical sash when applied to prime windows glazed with lightweight glass for four transportation noise source types-highway traffic, aircraft, electric rail, and diesel rail. The analysis also has been extended to determine the insertion loss expressed as a change in OITC. The data also exhibit the reductions in insertion loss that can result from short-circuiting the interior acoustical sash with the prime window. [Work supported by Solutia, Inc.

  8. Room Acoustic Conditions of Performers in AN Old Opera House

    NASA Astrophysics Data System (ADS)

    IANNACE, GINO; IANNIELLO, CARMINE; MAFFEI, LUIGI; ROMANO, ROSARIO

    2000-04-01

    Proposed objective criteria related to the acoustic conditions for instrumentalists and singers have not received a sufficiently wide consent yet. In spite of this situation, it is the opinion of the authors that the measurement of existing criteria is useful for analysis and comparison. This paper reports the results of various acoustic measurements carried out in the Teatro di San Carlo, Naples-Italy, with the aim of obtaining objective information about its acoustics for performers. A first set of measurements was carried out when the theater was fitted for a symphonic concert and a second one when it was fitted for an opera performance.

  9. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers.

    PubMed

    Moore, S A; Le Coz, J; Hurther, D; Paquier, A

    2013-04-01

    Multi-frequency acoustic backscatter profiles recorded with side-looking acoustic Doppler current profilers are used to monitor the concentration and size of sedimentary particles suspended in fluvial environments. Data at 300, 600, and 1200 kHz are presented from the Isère River in France where the dominant particles in suspension are silt and clay sizes. The contribution of suspended sediment to the through-water attenuation was determined for three high concentration (> 100 mg/L) events and compared to theoretical values for spherical particles having size distributions that were measured by laser diffraction in water samples. Agreement was good for the 300 kHz data, but it worsened with increasing frequency. A method for the determination of grain size using multi-frequency attenuation data is presented considering models for spherical and oblate spheroidal particles. When the resulting size estimates are used to convert sediment attenuation to concentration, the spheroidal model provides the best agreement with optical estimates of concentration, but the aspect ratio and grain size that provide the best fit differ between events. The acoustic estimates of size were one-third the values from laser grain sizing. This agreement is encouraging considering optical and acoustical instruments measure different parameters. PMID:23556566

  10. Causal determination of acoustic group velocity and frequency derivative of attenuation with finite-bandwidth Kramers-Kronig relations

    NASA Astrophysics Data System (ADS)

    Mobley, Joel; Waters, Kendall R.; Miller, James G.

    2005-07-01

    Kramers-Kronig (KK) analyses of experimental data are complicated by the extrapolation problem, that is, how the unexamined spectral bands impact KK calculations. This work demonstrates the causal linkages in resonant-type data provided by acoustic KK relations for the group velocity (cg) and the derivative of the attenuation coefficient (α') (components of the derivative of the acoustic complex wave number) without extrapolation or unmeasured parameters. These relations provide stricter tests of causal consistency relative to previously established KK relations for the phase velocity (cp) and attenuation coefficient (α) (components of the undifferentiated acoustic wave number) due to their shape invariance with respect to subtraction constants. For both the group velocity and attenuation derivative, three forms of the relations are derived. These relations are equivalent for bandwidths covering the entire infinite spectrum, but differ when restricted to bandlimited spectra. Using experimental data from suspensions of elastic spheres in saline, the accuracy of finite-bandwidth KK predictions for cg and α' is demonstrated. Of the multiple methods, the most accurate were found to be those whose integrals were expressed only in terms of the phase velocity and attenuation coefficient themselves, requiring no differentiated quantities.

  11. Causal determination of acoustic group velocity and frequency derivative of attenuation with finite-bandwidth Kramers-Kronig relations.

    PubMed

    Mobley, Joel; Waters, Kendall R; Miller, James G

    2005-07-01

    Kramers-Kronig (KK) analyses of experimental data are complicated by the extrapolation problem, that is, how the unexamined spectral bands impact KK calculations. This work demonstrates the causal linkages in resonant-type data provided by acoustic KK relations for the group velocity (c(g)) and the derivative of the attenuation coefficient (alpha') (components of the derivative of the acoustic complex wave number) without extrapolation or unmeasured parameters. These relations provide stricter tests of causal consistency relative to previously established KK relations for the phase velocity (c(p)) and attenuation coefficient (alpha) (components of the undifferentiated acoustic wave number) due to their shape invariance with respect to subtraction constants. For both the group velocity and attenuation derivative, three forms of the relations are derived. These relations are equivalent for bandwidths covering the entire infinite spectrum, but differ when restricted to bandlimited spectra. Using experimental data from suspensions of elastic spheres in saline, the accuracy of finite-bandwidth KK predictions for c(g) and alpha' is demonstrated. Of the multiple methods, the most accurate were found to be those whose integrals were expressed only in terms of the phase velocity and attenuation coefficient themselves, requiring no differentiated quantities.

  12. Effects of Ceramic Nanopowder Dopants on Acoustic Attenuation Properties of Silicone Rubber Lens for Medical Echo Probe

    NASA Astrophysics Data System (ADS)

    Yamashita, Yohachi (John); Hosono, Yasuharu; Itsumi, Kazuhiro

    2007-07-01

    The effects of fine ceramic powder dopants, namely, TiO2, Al2O3, BaSO4, Fe2O3, ZrO2, and Yb2O3 with primary particle sizes of 16-100 nm, on the acoustic properties of silicone rubber have been investigated, in order to develop an acoustic lens material for medical echo probes with a low acoustic attenuation (α). Silicone rubber doped with Yb2O3 powder having a high density (ρ) of 9.2× 103 kg/m3 and an average particle size of 16 nm showed a lower acoustic attenuation than silicone rubber doped with other powders. The materials showed ρ=1.54× 103 kg/m3, a sound velocity (c)=882 m/s, an acoustic impedance ρ\\cdot c (Z)=1.36× 106 kg m-2 s-1, and an acoustic attenuation α=0.93 dB mm-1 MHz-1 at 37 °C. Silicone rubber doped with Fe2O3 powder having ρ=5.2× 103 kg/m3 and an average particle size of 30 nm showed the highest α=2.36 dB mm-1 MHz-1 and Z=1.47× 106 kg m-2 s-1. Microstructure observation of the rubber by scanning microscopy revealed that the α of the powder-doped rubber is not only determined by the primary particle size of the powders but also by the dispersion and agglomeration of the secondary particles in the rubber matrix. The discovery of the process parameter required to reduce the α of the nanopowder-doped silicone rubber has an important practical consequence.

  13. Leak detection by acoustic emissions monitoring: An experimental investigation of the acoustic properties of leaks and the attenuation characteristics of soil

    NASA Astrophysics Data System (ADS)

    Kilpatrick, James F.; March, Patrick A.

    1994-05-01

    This study experimentally explored the conditions, equipment, and methodology necessary for the acoustic detection of small leaks of jet fuel (JP4) from underground storage tank (UST) systems. The study indicates that acoustic leak detection of very small leaks is feasible. In general, significant JP4 fuel leaks which occur across a 5 PSI (pounds per square inch) or greater pressure drop are acoustically active and can be detected with proper sensors and proper placement of sensors. The primary source of leak noise is turbulent flow through the leak orifice. At lower pressures, the leak flow becomes laminar, and the leak becomes virtually silent. With direct transducer contact on the pipe or tank wall and sufficient system pressure, leaks smaller than 0.1 GPH (gallons per hour) can be detected. Larger leaks can be detected through short distances in soil. However, sand, which is the most commonly used fill material for UST systems, provides significant acoustic attenuation. Consequently, waveguides must be used when monitoring distances exceeding about 1 foot of travel through sand. Sand acts to reduce background noise levels, providing an ideal environment for acoustic leak detection using sensors mounted directly on the pipe or tank wall.

  14. Improvement of Velocity Measurement Accuracy of Leaky Surface Acoustic Waves for Materials with Highly Attenuated Waveform of the V(z) curve by the Line-Focus-Beam Ultrasonic Material Characterization System

    NASA Astrophysics Data System (ADS)

    Ohashi, Yuji; Arakawa, Mototaka; Kushibiki, Jun‑ichi

    2006-05-01

    Measurement accuracies of leaky surface acoustic wave (LSAW) velocities for materials with highly attenuated waveforms of V(z) curves obtained by the line-focus-beam ultrasonic material characterization (LFB-UMC) system are investigated. Theoretical investigations were carried out and experiments were performed for TiO2-SiO2 glass (C-7972), Li2O-Al2O3-SiO2 glass ceramic (Zerodur\\textregistered), and (111) gadolinium gallium garnet (GGG) single crystal as specimens. Waveform attenuations of V(z) curves for C-7972 and Zerodur\\textregistered are greater than those for the (111) GGG single crystal. Frequency dependences of the waveform attenuations were calculated for each specimen by considering the propagation attenuation of LSAWs. The theoretical results revealed that the waveform attenuation dominantly depends upon the acoustic energy loss due to the water loading effect on the specimen surface, and that the waveform attenuation becomes smaller with decreasing frequency. Significant improvement of the measurement precision of LSAW velocities was demonstrated for each specimen using three LFB ultrasonic devices with different curvature radii R of the cylindrical acoustic lenses: R=2.0 mm at 75 MHz, R=1.5 mm at 110 MHz, and R=1.0 mm at 225 MHz; for C-7972, the precisions were improved from ± 0.0053% at 225 MHz to ± 0.0020% at 75 MHz.

  15. Ultrasound tomography for simultaneous reconstruction of acoustic density, attenuation, and compressibility profiles.

    PubMed

    Mojabi, Pedram; LoVetri, Joe

    2015-04-01

    A fast and efficient forward scattering solver is developed for use in ultrasound tomography. The solver is formulated so as to enable the calculation of scattering from large and relatively high-contrast objects with inhomogeneous physical properties that vary simultaneously in acoustic attenuation, compressibility, and density. It is based on the method of moments in conjunction with a novel implementation of the conjugate gradient algorithm which requires the use of the adjoints of the scattering operators. The solver takes advantage of the symmetric block Toeplitz matrix with symmetric Toeplitz blocks property of the Green's function matrix to increase efficiency and only stores the first row of this matrix to reduce memory requirements. This row is then used for the matrix-vector multiplication using the fast Fourier transform technique, thus, resulting in the computational complexity of O(n log n). The marching-on-source technique is also used to provide a good initial guess which allows the conjugate gradient technique to converge faster than initializing with an arbitrary guess. This feature is important in tomographic inversion algorithms which require that the object to be imaged be interrogated via several incident fields. Forward scattering and inversion examples, based on the Conjugate Gradient Least Squares regularized Born Iterative Method, are shown, in two-dimensions, for objects varying in all three physical properties. PMID:25920834

  16. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    SciTech Connect

    Nakagawa, S.

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  17. Tunable Acoustic Attenuation by Dilute Suspensions of Oblate-Spheroidal Ferromagnetic Particles Under an External Magnetic Field: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Yuan, Wuhan; Shan, Jerry; Liu, Liping

    2015-11-01

    The microstructure of suspensions of spheroidal ferromagnetic particles with subwavelength size can be controlled by an external field, making it possible to develop novel broadband acoustic materials with anisotropic and tunable acoustic properties. In this study we experimentally show that dilute suspensions of nickel microflakes exhibit a 20% to 30% change in attenuation coefficient at MHz frequencies upon changing the direction of an external magnetic field, at particle volume fractions of only 0.5%. Further investigations are conducted to study the mechanism behind this anisotropy. The effects of particle aligning and chaining are analyzed with the aid of optical transmission measurements. By making comparison to suspensions of spherical particles, we show that the ellipsoidal shape of the nickel microflakes plays an important role in tunable acoustic properties of these suspensions.

  18. Enhancement of acoustical performance of hollow tube sound absorber

    NASA Astrophysics Data System (ADS)

    Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd

    2016-03-01

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  19. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  20. Further measurements of the acoustic performance of a variant of the MK 4 helmet earmuff assembly

    NASA Astrophysics Data System (ADS)

    Cogger, M. K.; Wood, S. A.; Lucas, S. H.

    1981-11-01

    Acoustic tests of the attenuation, frequency response and total harmonic distortion of experimental earmuff assemblies intended as alternatives to the B2 production shells fitted to the Mk 4 flight helmet are reported. The experimental earmuff (melamine shells with flanges) dough molded compound without flanges (Mk 4 alternative assemblies) and B2 production shells (Mk 4 helmet) were tested. Attenuation was calculated from insertion loss, i.e., the difference in db between the unoccluded and occluded spectra. Objective tests, using an artificial ear, and semiobjective tests, using 15 short haired, clean shaven subjects were performed. The A-weighted level of the sound field was 99 db(A), lasting for 15 min, the equivalent of 84 db(A) for 8 hr. The experimental earmuff is superior to the other designs.

  1. Acoustic attenuation, phase and group velocities in liquid-filled pipes II: simulation for Spallation Neutron Sources and planetary exploration.

    PubMed

    Jiang, Jian; Baik, Kyungmin; Leighton, Timothy G

    2011-08-01

    This paper uses a finite element method (FEM) to compare predictions of the attenuation and sound speeds of acoustic modes in a fluid-filled pipe with those of the analytical model presented in the first paper in this series. It explains why, when the predictions of the earlier paper were compared with experimental data from a water-filled PMMA pipe, the uncertainties and agreement for attenuation data were worse than those for sound speed data. Having validated the FEM approach in this way, the versatility of FEM is thereafter demonstrated by modeling two practical applications which are beyond the analysis of the earlier paper. These applications model propagation in the mercury-filled steel pipework of the Spallation Neutron Source at the Oak Ridge National Laboratory (Tennessee), and in a long-standing design for acoustic sensors for use on planetary probes. The results show that strong coupling between the fluid and the solid walls means that erroneous interpretations are made of the data if they assume that the sound speed and attenuation in the fluid in the pipe are the same as those that would be measured in an infinite volume of identical fluid, assumptions which are common when such data have previously been interpreted. PMID:21877784

  2. In situ acoustic and laboratory ultrasonic sound speed and attenuation measured in heterogeneous soft seabed sediments: Eel River shelf, California

    USGS Publications Warehouse

    Gorgas, T.J.; Wilkens, R.H.; Fu, S.S.; Neil, Frazer L.; Richardson, M.D.; Briggs, K.B.; Lee, H.

    2002-01-01

    We compared in situ and laboratory velocity and attenuation values measured in seafloor sediments from the shallow water delta of the Eel River, California. This region receives a substantial volume of fluvial sediment that is discharged annually onto the shelf. Additionally, a high input of fluvial sediments during storms generates flood deposits that are characterized by thin beds of variable grain-sizes between the 40- and 90-m isobaths. The main objectives of this study were (1) to investigate signatures of seafloor processes on geoacoustic and physical properties, and (2) to evaluate differences between geoacoustic parameters measured in situ at acoustic (7.5 kHz) and in the laboratory at ultrasonic (400 kHz) frequencies. The in situ acoustic measurements were conducted between 60 and 100 m of water depth. Wet-bulk density and porosity profiles were obtained to 1.15 m below seafloor (m bsf) using gravity cores of the mostly cohesive fine-grained sediments across- and along-shelf. Physical and geoacoustic properties from six selected sites obtained on the Eel margin revealed the following. (1) Sound speed and wet-bulk density strongly correlated in most cases. (2) Sediment compaction with depth generally led to increased sound speed and density, while porosity and in situ attenuation values decreased. (3) Sound speed was higher in coarser- than in finer-grained sediments, on a maximum average by 80 m s-1. (4) In coarse-grained sediments sound speed was higher in the laboratory (1560 m s-1) than in situ (1520 m s-1). In contrast, average ultrasonic and in situ sound speed in fine-grained sediments showed only little differences (both approximately 1480 m s-1). (5) Greater attenuation was commonly measured in the laboratory (0.4 and 0.8 dB m-1 kHz-1) than in situ (0.02 and 0.65 dB m-1 kHz-1), and remained almost constant below 0.4 m bsf. We attributed discrepancies between laboratory ultrasonic and in situ acoustic measurements to a frequency dependence of

  3. Active damping performance of the KAGRA seismic attenuation system prototype

    NASA Astrophysics Data System (ADS)

    Fujii, Yoshinori; Sekiguchi, Takanori; Takahashi, Ryutaro; Aso, Yoichi; Barton, Mark; Erasmo Peña Arellano, Fabián; Shoda, Ayaka; Akutsu, Tomotada; Miyakawa, Osamu; Kamiizumi, Masahiro; Ishizaki, Hideharu; Tatsumi, Daisuke; Hirata, Naoatsu; Hayama, Kazuhiro; Okutomi, Koki; Miyamoto, Takahiro; Ishizuka, Hideki; DeSalvo, Riccardo; Flaminio, Raffaele

    2016-05-01

    The Large-scale Cryogenic Gravitational wave Telescope (formerly LCGT now KAGRA) is presently under construction in Japan. This May we assembled a prototype of the seismic attenuation system (SAS) for the beam splitter and the signal recycling mirrors of KAGRA, which we call Type-B SAS, and evaluated its performance at NAOJ (Mitaka, Toyko). We investigated its frequency response, active damping performance, vibration isolation performance and long-term stability both in and out of vacuum. From the frequency response test and the active damping performance test, we confirmed that the SAS worked as we designed and that all mechanical resonances which could disturb lock acquisition and observation are damped within 1 minute, which is required for KAGRA, by the active controls.

  4. Seismic moment tensors of acoustic emissions recorded during laboratory rock deformation experiments: sensitivity to attenuation and anisotropy

    NASA Astrophysics Data System (ADS)

    Stierle, Eva; Vavryčuk, Václav; Kwiatek, Grzegorz; Charalampidou, Elli-Maria; Bohnhoff, Marco

    2016-04-01

    Seismic moment tensors can provide information on the size and orientation of fractures producing acoustic emissions (AEs) and on the stress conditions in the sample. The moment tensor inversion of AEs is, however, a demanding procedure requiring carefully calibrated sensors and accurate knowledge of the velocity model. In field observations, the velocity model is usually isotropic and time independent. In laboratory experiments, the velocity is often anisotropic and time dependent and attenuation might be significant due to opening or closure of microcracks in the sample during loading. In this paper, we study the sensitivity of the moment tensor inversion to anisotropy of P-wave velocities and attenuation. We show that retrieved moment tensors critically depend on anisotropy and attenuation and their neglect can lead to misinterpretations of the source mechanisms. The accuracy of the inversion also depends on the fracturing mode of AEs: tensile events are more sensitive to P-wave anisotropy and attenuation than shear events. We show that geometry of faulting in anisotropic rocks should be studied using the source tensors, since the P- and T-axes of the moment tensors are affected by velocity anisotropy and deviate from the true orientation of faulting. The stronger the anisotropy is, the larger the deviations are. Finally, we prove that the moment tensor inversion applied to a large dataset of AEs can be utilized to provide information on the attenuation parameters of the rock sample. The method is capable of measuring anisotropic attenuation in the sample and allows for detection of dilatant cracking according to the stress regime.

  5. Low-frequency sound speed and attenuation in sandy seabottom from long-range broadband acoustic measurements.

    PubMed

    Wan, Lin; Zhou, Ji-Xun; Rogers, Peter H

    2010-08-01

    A joint China-U.S. underwater acoustics experiment was conducted in the Yellow Sea with a very flat bottom and a strong and sharp thermocline. Broadband explosive sources were deployed both above and below the thermocline along two radial lines up to 57.2 km and a quarter circle with a radius of 34 km. Two inversion schemes are used to obtain the seabottom sound speed. One is based on extracting normal mode depth functions from the cross-spectral density matrix. The other is based on the best match between the calculated and measured modal arrival times for different frequencies. The inverted seabottom sound speed is used as a constraint condition to extract the seabottom sound attenuation by three methods. The first method involves measuring the attenuation coefficients of normal modes. In the second method, the seabottom sound attenuation is estimated by minimizing the difference between the theoretical and measured modal amplitude ratios. The third method is based on finding the best match between the measured and modeled transmission losses (TLs). The resultant seabottom attenuation, averaged over three independent methods, can be expressed as alpha=(0.33+/-0.02)f(1.86+/-0.04)(dB/m kHz) over a frequency range of 80-1000 Hz.

  6. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  7. Study on laser and infrared attenuation performance of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-cui; Liu, Qing-hai; Dai, Meng-yan; Cheng, Xiang; Fang, Guo-feng; Zhang, Tong; Liu, Haifeng

    2014-11-01

    In recent years, the weapon systems of laser and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. However, military smoke, a rapid and effective passive jamming method, can effectively counteract the attack of precision-guided weapons by their scattering and absorbing effects. The traditional smoke has good visible light (0.4-0.76μm) obscurant performance, but hardly any effects to other electromagnetic wave bands while the weapon systems of laser and IR imaging guidance usually work in broad band, including the near-infrared (1-3μm), middle-infrared (3-5μm), far-infrared (8-14μm), and so on. Accordingly, exploiting new effective obscurant materials has attracted tremendous interest worldwide nowadays. As is known, the nano-structured materials have lots of unique properties comparing with the traditional materials suggesting that they might be the perfect alternatives to solve the problems above. Carbon nanotubes (CNTs) are well-ordered, all-carbon hollow graphitic nano-structured materials with a high aspect ratio, lengths from several hundred nanometers to several millimeters. CNTs possess many unique intrinsic physical-chemical properties and are investigated in many areas reported by the previous studies. However, no application research about CNTs in smoke technology field is reported yet. In this paper, the attenuation performances of CNTs smoke to laser and IR were assessed in 20m3 smoke chamber. The testing wavebands employed in experiments are 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. The main parameters were obtained included the attenuation rate, transmission rate, mass extinction coefficient, etc. The experimental results suggest that CNTs smoke exhibits excellent attenuation ability to the broadband IR radiation. Their mass extinction coefficients are all above 1m2·g-1. Nevertheless, the mass extinction coefficients vary with the sampling time

  8. Acoustic performance of reiterated hierarchical honeycomb structures

    NASA Astrophysics Data System (ADS)

    Nainar, Naveen

    Sandwich panels constructed from honeycomb structures have been found to reduce sound transmission and improve vibration isolation. In this work, reiterated hierarchical honeycomb structures have been modeled for the core in sandwich panels and studied for sound transmission properties using finite element analysis. Several honeycomb unit cell geometries are considered, including, regular hexagonal, auxetic with properties of negative Poisson's ratio, and different reiterated hierarchical structures. Previous studies have shown that auxetic honeycomb structures exhibit improved sound transmission loss compared to regular honeycomb sandwich panels. Two different orientations of the honeycomb unit cell geometry have been studied, namely, the zigzag and armchair configurations, which are, rotated 90 degrees. Both regular and auxetic honeycombs have been used in both these configurations. The finite element model of the panels are used to extract natural frequencies and mode shapes and to perform steady state frequency response dynamic analysis up to 1000 Hz. The transmitted sound pressure levels on the surface of each structure is extracted and compared to study the influence of the reiterated hierarchy on sound transmission characteristics. The influence of corner reinforcement constructed by subtracting interior high-level hierarchical structure except at the vertices of the underlying lower-level honeycomb unit cell was also studied. Furthermore, a study was conducted to quantify the effect of changing the ratio of cell-wall thickness between various levels of hierarchy. Special focus on the limiting case of level-1 hierarchy with zero level-0 thickness is also studied. In all cases, the total mass was kept constant in order to isolate only stiffness and mass distribution effects. The results show that introduction of reiterated hierarchy in level-1 structures reduced the sound transmission of honeycomb sandwich panels compared to parent level-0 geometry. Results

  9. Seismic attenuation parameters in the W-Bohemia/Vogtland region from elastic and acoustic radiative transfer theory

    NASA Astrophysics Data System (ADS)

    Gaebler, Peter; Eulenfeld, Tom; Wegler, Ulrich

    2016-04-01

    We estimate frequency-dependent seismic scattering and intrinsic attenuation parameters for the crustal structure beneath the W-Bohemia/Vogtland swarm earthquake region close to the border of Czech Republic and Germany. The parameter estimations are based on fitting synthetic envelopes modeled using elastic and acoustic radiative transfer theory to observed seismogram envelopes from 14 shallow local events from the October 2008 W-Bohemia/Vogtland earthquake swarm. The two different methods yield similar results for the estimated crustal parameters and show a comparable frequency dependence of both transport mean free path and intrinsic absorption path length. Results suggest, that intrinsic seismic attenuation is larger than attenuation due to scattering of seismic energy in the W-Bohemia/Vogtland region for the investigated epicentral distance range and frequency bands from 3 to 24 Hz. From the elastic simulations we conclude, that forward scattering is required to explain the data, however, the strength of forward scattering is not resolvable. The elastic approach shows smaller errors in the parameter estimation compared to the results of the acoustic simulations. The frequency dependence of the transport mean free path suggests a random medium described by a nearly exponential autocorrelation function. However the parameters describing this random medium, fluctuation strength and correlation length, cannot be estimated independently, but only a combination of the parameters related to the transport mean free path of the medium can be computed. We furthermore conclude from the results of the elastic simulations, that it is not possible to resolve the value of the mean free path of the random medium.

  10. Flow structure, performance and scaling of acoustic jets

    NASA Astrophysics Data System (ADS)

    Muller, Michael Oliver

    Acoustic jets are studied, with an emphasis on their flow structure, performance, and scaling. The ultimate goal is the development of a micromachined acoustic jet for propulsion of a micromachined airborne platform, as well as integrated cooling and pumping applications. Scaling suggests an increase in performance with decreasing size, motivating the use of micro-technology. Experimental studies are conducted at three different orders of magnitude in size, each closely following analytic expectations. The jet creates a periodic vortical structure, the details of which are a function of amplitude. At small actuation amplitude, but still well above the linear acoustic regime, the flow structure consists of individual vortex rings, propagating away from the nozzle, formed during the outstroke of the acoustic cavity. At large amplitude, a trail of vorticity forms between the periodic vortex rings. Approximately corresponding to these two flow regions are two performance regimes. At low amplitude, the jet thrust increases with the fourth power of the amplitude; and at large amplitude, the thrust equals the momentum flux ejected during the output stroke, and increases as the square of the amplitude. Resonance of the cavity, at Reynolds numbers greater than approximately 10, enhances the jet performance beyond the incompressible behavior. Gains of an order of magnitude in the jet velocity occur at Reynolds numbers of approximately 100, and the data suggest further gains with increasing Reynolds number. The smallest geometries tested are micromachined acoustic jets, manufactured using MEMS technology. The throat dimensions are 50 by 200 mum, and the overall device size is approximately 1 mm 2, with eight throats per device. Several jets are manufactured in an array, to suit any given application. The performance is very dependent on frequency, with a sharp peak at the system resonance, occurring at approximately 70 kHz (inaudible). The mean jet velocity of these devices

  11. Acoustic measurement of suspensions of clay and silt particles using single frequency attenuation and backscatter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of ultrasonic acoustic technology to measure the concentration of fine suspended sediments has the potential to greatly increase the temporal and spatial resolution of sediment measurements while reducing the need for personnel to be present at gauging stations during storm events. The conv...

  12. Design and performance of the South Pole Acoustic Test Setup

    NASA Astrophysics Data System (ADS)

    Abdou, Y.; Becker, K.-H.; Berdermann, J.; Bissok, M.; Bohm, C.; Böser, S.; Bothe, M.; Carson, M.; Descamps, F.; Fischer-Wolfarth, J.-H.; Gustafsson, L.; Hallgren, A.; Heinen, D.; Helbing, K.; Heller, R.; Hundertmark, S.; Karg, T.; Krieger, K.; Laihem, K.; Meures, T.; Nahnhauer, R.; Naumann, U.; Oberson, F.; Paul, L.; Pohl, M.; Price, B.; Ribordy, M.; Ryckbosch, D.; Schunck, M.; Semburg, B.; Stegmaier, J.; Sulanke, K.-H.; Tosi, D.; Vandenbroucke, J.; Wiebusch, C.

    2012-08-01

    The South Pole Acoustic Test Setup (SPATS) was built to evaluate the acoustic characteristics of the South Pole ice in the 10-100 kHz frequency range, for the purpose of assessing the feasibility of an acoustic neutrino detection array at the South Pole. The SPATS hardware consists of four vertical strings deployed in the upper 500 m of the South Pole ice cap. The strings form a trapezoidal array with a maximum baseline of 543 m. Each string has seven stages equipped with one transmitter and one sensor module (glaciophone). Sound is detected or generated by piezoelectric ceramic elements inside the modules. Analogue signals are sent to the surface on electric cables where they are digitized by a PC-based data acquisition system. The data from all strings are collected on a central computer in the IceCube Laboratory from where they are sent to a central data storage facility via a satellite link or stored locally on tape. A technical overview of SPATS and its performance is presented.

  13. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation.

    PubMed

    Chen, Jiangang; Hou, Gary Y; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n = 5) and in vitro canine livers (n = 3) were tested, as well as HIFU lesions in in vitro canine livers (n = 5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R² = 0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm(-1) MHz(-1), which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm(-1) MHz(-1)) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation.

  14. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation

    NASA Astrophysics Data System (ADS)

    Chen, Jiangang; Hou, Gary Y.; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n=5 ) and in vitro canine livers (n=3 ) were tested, as well as HIFU lesions in in vitro canine livers (n=5 ). Results demonstrated that attenuations obtained from the phantoms showed a good correlation ({{R}2}=0.976 ) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm-1 MHz-1, which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm-1 MHz-1) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation.

  15. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation.

    PubMed

    Chen, Jiangang; Hou, Gary Y; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-01

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n = 5) and in vitro canine livers (n = 3) were tested, as well as HIFU lesions in in vitro canine livers (n = 5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R² = 0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm(-1) MHz(-1), which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm(-1) MHz(-1)) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation. PMID:26371501

  16. Acoustic and non-acoustic factors in modeling listener-specific performance of sagittal-plane sound localization

    PubMed Central

    Majdak, Piotr; Baumgartner, Robert; Laback, Bernhard

    2014-01-01

    The ability of sound-source localization in sagittal planes (along the top-down and front-back dimension) varies considerably across listeners. The directional acoustic spectral features, described by head-related transfer functions (HRTFs), also vary considerably across listeners, a consequence of the listener-specific shape of the ears. It is not clear whether the differences in localization ability result from differences in the encoding of directional information provided by the HRTFs, i.e., an acoustic factor, or from differences in auditory processing of those cues (e.g., spectral-shape sensitivity), i.e., non-acoustic factors. We addressed this issue by analyzing the listener-specific localization ability in terms of localization performance. Directional responses to spatially distributed broadband stimuli from 18 listeners were used. A model of sagittal-plane localization was fit individually for each listener by considering the actual localization performance, the listener-specific HRTFs representing the acoustic factor, and an uncertainty parameter representing the non-acoustic factors. The model was configured to simulate the condition of complete calibration of the listener to the tested HRTFs. Listener-specifically calibrated model predictions yielded correlations of, on average, 0.93 with the actual localization performance. Then, the model parameters representing the acoustic and non-acoustic factors were systematically permuted across the listener group. While the permutation of HRTFs affected the localization performance, the permutation of listener-specific uncertainty had a substantially larger impact. Our findings suggest that across-listener variability in sagittal-plane localization ability is only marginally determined by the acoustic factor, i.e., the quality of directional cues found in typical human HRTFs. Rather, the non-acoustic factors, supposed to represent the listeners' efficiency in processing directional cues, appear to be

  17. Dispersion and Attenuation of Surface Acoustic Waves of Various Polarizations on a Stress-Free Randomly Rough Surface of Solid

    NASA Astrophysics Data System (ADS)

    Kosachev, V. V.; Shchegrov, A. V.

    1995-06-01

    An approach to obtaining the dispersion equation of surface acoustic waves (SAWs) on a stress-free, randomly rough surface of an anisotropic elastic medium is suggested. The problem is solved in the approximation of a weakly rough surface using Green's function technique. The dispersion and attenuation of sagittally and shear horizontally (SH) polarized SAWs are investigated both analytically and numerically for a three-dimensionally (3D) and a two-dimensionally (2D) rough surface of an isotropic medium. The results for 2D roughness are shown to be contained in the more general expressions for the 3D case, and the connection between the results for the 3D and the 2D cases is pointed out. Dispersion relations are derived for SAWs of both polarizations propagating in an arbitrary direction along a 2D rough surface. The SAW attenuation mechanisms are investigated at various incidence angles. It is concluded that all three mechanisms (viz. scattering into bulk transverse, longitudinal, and Rayleigh surface acoustic waves) are involved for the Rayleigh and SH polarized SAWs at certain incidence angles, whereas at the other angles only some of the mechanisms are. The criterion for the existence of SH polarized SAWs on a rough surface is considered. A possible increase of the SAW phase velocity on a rough surface compared with that for a flat boundary is discussed. In the limit λ ≫ a (where a is the roughness correlation length) simple explicit expressions for the phase velocities of Rayleigh and SH polarized SAWs are derived. A comparison of the results obtained herein with those of other workers is presented.

  18. Spatial Laplace transform for complex wavenumber recovery and its application to the analysis of attenuation in acoustic systems

    NASA Astrophysics Data System (ADS)

    Geslain, A.; Raetz, S.; Hiraiwa, M.; Abi Ghanem, M.; Wallen, S. P.; Khanolkar, A.; Boechler, N.; Laurent, J.; Prada, C.; Duclos, A.; Leclaire, P.; Groby, J.-P.

    2016-10-01

    We present a method for the recovery of complex wavenumber information via spatial Laplace transforms of spatiotemporal wave propagation measurements. The method aids in the analysis of acoustic attenuation phenomena and is applied in three different scenarios: (i) Lamb-like modes in air-saturated porous materials in the low kHz regime, where the method enables the recovery of viscoelastic parameters; (ii) Lamb modes in a Duralumin plate in the MHz regime, where the method demonstrates the effect of leakage on the splitting of the forward S1 and backward S2 modes around the Zero-Group Velocity point; and (iii) surface acoustic waves in a two-dimensional microscale granular crystal adhered to a substrate near 100 MHz, where the method reveals the complex wavenumbers for an out-of-plane translational and two in-plane translational-rotational resonances. This method provides physical insight into each system and serves as a unique tool for analyzing spatiotemporal measurements of propagating waves.

  19. Acoustic Performance of Drive Rig Mufflers for Model Scale Engine Testing

    NASA Technical Reports Server (NTRS)

    Stephens, David, B.

    2013-01-01

    Aircraft engine component testing at the NASA Glenn Research Center (GRC) includes acoustic testing of scale model fans and propellers in the 9- by15-Foot Low Speed Wind Tunnel (LSWT). This testing utilizes air driven turbines to deliver power to the article being studied. These air turbines exhaust directly downstream of the model in the wind tunnel test section and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the engine model being tested. This report describes an acoustic test of a muffler designed to mitigate the extraneous turbine noise. The muffler was found to provide acoustic attenuation of at least 8 dB between 700 Hz and 20 kHz which significantly improves the quality of acoustic measurements in the facility.

  20. Acoustic Attenuation Probe for Fermion Superfluidity in Ultracold-Atom Gases

    SciTech Connect

    Gaudio, Sergio; Mihaila, Bogdan; Blagoev, Krastan B.; Timmermans, Eddy; Bedell, Kevin S.

    2007-03-16

    Dilute gas Bose-Einstein condensates (BEC's), currently used to cool fermionic atoms in atom traps, can also probe the superfluidity of these fermions. The damping rate of BEC-acoustic excitations (phonon modes), measured in the middle of the trap as a function of the phonon momentum, yields an unambiguous signature of BCS-like superfluidity, provides a measurement of the superfluid gap parameter, and gives an estimate of the size of the Cooper pairs in the BEC-BCS crossover regime. We also predict kinks in the momentum dependence of the damping rate which can reveal detailed information about the fermion quasiparticle dispersion relation.

  1. PERFORMANCE MONITORING FOR NATURAL ATTENUATION REMEDIES IN GROUND WATER

    EPA Science Inventory

    Environmental monitoring is the major component of any remedy that relies on natural attenuation processes. The objective of this document is to identify data needs and evaluation methods useful for designing monitoring networks and determining remedy effectiveness. Effective mon...

  2. The Components of Good Acoustics in a High Performance School

    ERIC Educational Resources Information Center

    Stewart, William

    2009-01-01

    Acoustics has received greater importance in the learning environment in recent years. In August 2000, The Acoustical Society of America (ASA) published the study "Classroom Acoustics: A Resource for Creating Learning Environments with Desirable Listening Conditions" providing a framework for understanding the qualities, descriptors of the…

  3. Aerodynamic and directional acoustic performance of a scoop inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Dietrich, D. A.

    1977-01-01

    Aerodynamic and directional acoustic performances of a scoop inlet were studied. The scoop inlet is designed with a portion of the lower cowling extended forward to direct upward any noise that is propagating out the front of the engine toward the ground. The tests were conducted in an anechoic wind tunnel facility at free stream velocities of 0, 18, 41, and 61 m/sec and angles of attack from -10 deg to 120 deg. Inlet throat Mach number was varied from 0.30 to 0.75. Aerodynamically, at a free stream velocity of 41 m/sec, the design throat Mach number (0.63), and an angle of attack of 50 deg, the scoop inlet total pressure recovery was 0.989 and the total pressure distortion was 0.15. The angles of attack where flow separation occurred with the scoop inlet were higher than those for a conventional symmetric inlet. Acoustically, the scoop inlet provided a maximum noise reduction of 12 to 15 db below the inlet over the entire range of throat Mach number and angle of attack at a free-stream velocity of 41 m/sec.

  4. Operational Performance Analysis of Passive Acoustic Monitoring for Killer Whales

    SciTech Connect

    Matzner, Shari; Fu, Tao; Ren, Huiying; Deng, Zhiqun; Sun, Yannan; Carlson, Thomas J.

    2011-09-30

    For the planned tidal turbine site in Puget Sound, WA, the main concern is to protect Southern Resident Killer Whales (SRKW) due to their Endangered Species Act status. A passive acoustic monitoring system is proposed because the whales emit vocalizations that can be detected by a passive system. The algorithm for detection is implemented in two stages. The first stage is an energy detector designed to detect candidate signals. The second stage is a spectral classifier that is designed to reduce false alarms. The evaluation presented here of the detection algorithm incorporates behavioral models of the species of interest, environmental models of noise levels and potential false alarm sources to provide a realistic characterization of expected operational performance.

  5. Comment on "Attenuation and dispersion of sound in dilute suspensions of spherical particles" [J. Acoust. Soc. Am. 108(1), 126-146 (2000)].

    PubMed

    Shukla, Shiva Kant; Elvira, Luis

    2015-05-01

    Comment is made on an article by Temkin [J. Acoust. Soc. Am. 108(1), 126-146 (2000)]. This work illustrates the impact of particle size distribution on the dispersion and attenuation of sound waves propagating through particle suspensions. Temkin's propagation theory is extended for poly-disperse distributions of spherical particles, applicable to real suspensions. Significant changes in dispersion and attenuation appear near the particle resonance for both bubble and solid particle suspensions. Existing experimental data for bubble distributions also shows a good agreement with the poly-disperse modifications proposed. PMID:25994722

  6. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-09-01

    In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.

  7. Liquid Helium Acoustic Microscope.

    NASA Astrophysics Data System (ADS)

    Steer, Andrew Paul

    Available from UMI in association with The British Library. In an acoustic microscope, images are generated by monitoring the intensity of the ultrasonic reflection, or echo, from the surface of a sample. In order to achieve this a pulse of acoustic energy is produced by the excitation of a thin film transducer. The pulse thus generated propagates through a crystal and is incident upon the acoustic lens surface, which is the boundary between the crystal and an acoustic coupling liquid. The acoustic lens is a converging element, and brings the ultrasonic beam to a focus within the liquid. A sample, placed at the focus, can act as a reflector, and the returned pulse then contains information regarding the acoustic reflectivity of this specimen. Acoustic pulses are repeatedly launched and detected while the acoustic lens is scanned over the surface of the sample. In this manner an acoustic image is constructed. Acoustic losses in room temperature liquid coupling media represent a considerable source of difficulty in the recovery of acoustic echo signals. At the frequencies of operation required in a microscope which is capable of high resolution, the ultrasonic attenuation is not only large but increases with the square of frequency. In superfluid liquid helium at temperatures below 0.1 K, however, the ultrasonic attenuation becomes negligible. Furthermore, the low sound velocity in liquid helium results in an increase in resolution, since the acoustic wavelength is proportional to velocity. A liquid helium acoustic microscope has been designed and constructed. Details of the various possible detection methods are given, and comparisons are made between them. Measurements of the performance of the system that was adopted are reported. The development of a cooled preamplifier is also described. The variation of reflected signal with object distance has been measured and compared with theoretical predictions. This variation is important in the analysis of acoustic

  8. Passive acoustic monitoring of human physiology during activity indicates health and performance of soldiers and firefighters

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-04-01

    The Army Research Laboratory has developed a unique gel-coupled acoustic physiological monitoring sensor that has acoustic impedance properties similar to the skin. This facilitates the transmission of body sounds into the sensor pad, yet significantly repels ambient airborne noises due to an impedance mismatch. The sensor's sensitivity and bandwidth produce excellent signatures for detection and spectral analysis of diverse physiological events. Acoustic signal processing detects heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. Comfortable acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Noise-canceling sensor arrays help remove out-of-phase motion noise and enhance covariant physiology by using two acoustic sensors on the front sides of the neck and two additional acoustic sensors on each wrist. Pulse wave transit time between neck and wrist acoustic sensors will indicate systolic blood pressure. Larger torso-sized arrays can be used to acoustically inspect the lungs and heart, or built into beds for sleep monitoring. Acoustics is an excellent input for sensor fusion.

  9. Exploratory Study of the Acoustic Performance of Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    SantaMaria, O. S.; Thurlow, E. M.; Jones, M. G.

    1989-01-01

    The proposed ducted fan engine has prompted the need for increasingly lightweight and efficient noise control devices. Exploratory tests at the NASA Langley Research Center were conducted to evaluate three piezoelectric specimens as possible control transducers: a Polyvinylidene Flouride (PVDF) piezofilm sample and two composite samples of Lead Zirconate Titanate (PZT) rods embedded in fiberglass. The tests measured the acoustic output efficiency and evaluated the noise control characteristics when interacting with a primary sound source. The results showed that a PZT sample could diminish the reflected acoustic waves. However, the PZT acoustic output must increase by several orders of magnitude to qualify as a control transducer for the ducted fan engine.

  10. Effects of atmospheric variations on acoustic system performance

    NASA Technical Reports Server (NTRS)

    Nation, Robert; Lang, Stephen; Olsen, Robert; Chintawongvanich, Prasan

    1993-01-01

    Acoustic propagation over medium to long ranges in the atmosphere is subject to many complex, interacting effects. Of particular interest at this point is modeling low frequency (less than 500 Hz) propagation for the purpose of predicting ranges and bearing accuracies at which acoustic sources can be detected. A simple means of estimating how much of the received signal power propagated directly from the source to the receiver and how much was received by turbulent scattering was developed. The correlations between the propagation mechanism and detection thresholds, beamformer bearing estimation accuracies, and beamformer processing gain of passive acoustic signal detection systems were explored.

  11. Impact of attenuator models on computed traveling wave tube performances

    NASA Astrophysics Data System (ADS)

    Duan, Zhaoyun; Gong, Yubin; Wei, Yanyu; Wang, Wenxiang

    2007-09-01

    Radio frequency characteristics of helix traveling wave tubes are analyzed with a one-dimensional numerical model that includes a new, more rigorous, self-consistent attenuator model. The nonlinear properties of the beam-wave interaction, including gain, phase distortion, and intermodulation distortion, are analyzed and compared with simulations using a conventional one-dimensional model of the attenuator. The comparative results show that the small signal gain is about 2-5dB smaller with the new model than with the conventional and wave phase has a difference of 2°-6° between the new and conventional models in the intermediate and large signal regions. The amplitude modulation/phase modulation (AM/PM) conversion from the new model shows a slower reach to maximum than that from the conventional, and when the large input signal is applied, the conventional model's AM/PM conversion oscillates more quickly compared to the new. Under two-frequency excitation, the fundamental tones are about 5-7dB smaller with the new model than the conventional, while the intermodulation products are approximately 10dB smaller relative to the conventional model.

  12. Experimental performance and acoustic investigation of modern, counterrotating blade concepts

    NASA Technical Reports Server (NTRS)

    Hoff, G. E.

    1990-01-01

    The aerodynamic, acoustic, and aeromechanical performance of counterrotating blade concepts were evaluated both theoretically and experimentally. Analytical methods development and design are addressed. Utilizing the analytical methods which evolved during the conduct of this work, aerodynamic and aeroacoustic predictions were developed, which were compared to NASA and GE wind tunnel test results. The detailed mechanical design and fabrication of five different composite shell/titanium spar counterrotating blade set configurations are presented. Design philosophy, analyses methods, and material geometry are addressed, as well as the influence of aerodynamics, aeromechanics, and aeroacoustics on the design procedures. Blade fabrication and quality control procedures are detailed; bench testing procedures and results of blade integrity verification are presented; and instrumentation associated with the bench testing also is identified. Additional hardware to support specialized testing is described, as are operating blade instrumentation and the associated stress limits. The five counterrotating blade concepts were scaled to a tip diameter of 2 feet, so they could be incorporated into MPS (model propulsion simulators). Aerodynamic and aeroacoustic performance testing was conducted in the NASA Lewis 8 x 6 supersonic and 9 x 15 V/STOL (vertical or short takeoff and landing) wind tunnels and in the GE freejet anechoic test chamber (Cell 41) to generate an experimental data base for these counterrotating blade designs. Test facility and MPS vehicle matrices are provided, and test procedures are presented. Effects on performance of rotor-to-rotor spacing, angle-of-attack, pylon proximity, blade number, reduced-diameter aft blades, and mismatched rotor speeds are addressed. Counterrotating blade and specialized aeromechanical hub stability test results are also furnished.

  13. Acoustic performance of roadside barriers in urban environments

    NASA Astrophysics Data System (ADS)

    Li, Kai Ming; Tang, Siu Hong

    2002-11-01

    Extensive research has been conducted for assessing the acoustic performance of a barrier in a sub-urban area where the receivers are normally situated at a considerable distance from the barrier. However, in a typical urban community, a noise barrier is frequently erected in front of a tall building. It provides a shadow zone to listeners on the other side of the barrier. The size of this shadow zone depends on the height and position of the barrier away from the building facade. Sound waves are diffracted at the top edge of the barrier before they reach the receivers either directly, or on reflection from the ground and/or from the facade surface. Diffraction and multiple scattering play important roles in determining the sound pressure levels between the facade and barrier. Furthermore, the possibility of a direct wave between the source and the receivers higher up the building requires further evaluations when considering the total sound fields. In this paper, the theory behind the facade-barrier system is outlined. Indoor scale model experiments are conducted to validate theoretical predictions. [Work supported by Research Grants Council of the Hong Kong Special Administrative Region and The Hong Kong Polytechnic University.

  14. Field performance of an acoustic scour-depth monitoring system

    USGS Publications Warehouse

    Mason, Jr., Robert R.; Sheppard, D. Max

    1994-01-01

    The Herbert C. Bonner Bridge over Oregon Inlet serves as the only land link between Bodie and Hatteras Islands, part of the Outer Banks of North Carolina. Periodic soundings over the past 30 years have documented channel migration, local scour, and deposition at several pilings that support the bridge. In September 1992, a data-collection system was installed to permit the off-site monitoring of scour at 16 bridge pilings. The system records channel-bed elevations at 15-minute intervals and transmits the data to a satellite receiver. A cellular phone connection also permits downloading and reviewing of the data as they are being collected. A digitally recording, acoustic fathometer is the main component of the system. In November 1993, current velocity, water-surface elevation, wave characteristics, and water temperature measuring instruments were also deployed at the site. Several performance problems relating to the equipment and to the harsh marine environment have not been resolved, but the system has collected and transmitted reliable scour-depth and water-level data.

  15. Robust stabilization, robust performance, and disturbance attenuation for uncertain linear systems

    NASA Technical Reports Server (NTRS)

    Wang, Yeih J.; Shieh, Leang S.; Sunkel, John W.

    1992-01-01

    This paper presents a linear quadratic regulator approach to the robust stabilization, robust performance, and disturbance attenuation of uncertain linear systems. The state-feedback designed systems provide both the robust stability with optimal performance and the disturbance attenuation with H-infinity-norm bounds. The proposed approach can be applied to matched and/or mismatched uncertain linear systems. For a matched uncertain linear system, it is shown that the disturbance attenuation robust-stabilizing controllers with or without optimal performance always exist and can be easily determined without searching; whereas, for a mismatched uncertain linear system, the introduced tuning parameters greatly enhance the flexibility of finding the disturbance-attenuation robust-stabilizing controllers.

  16. Performance of the Aachen Acoustic Laboratory and results from comparative studies in water and ice

    NASA Astrophysics Data System (ADS)

    Heinen, Dirk; Paul, Larissa; Wiebusch, Christopher

    2013-05-01

    To investigate acoustic ice properties under laboratory conditions and to test the thermoacoustic model, the Aachen Acoustic Laboratory (AAL) was founded as a part of the activities of the acoustic working group (SPATS) within the IceCube collaboration. The goal of SPATS is to evaluate the possibility of acoustic detection of ultra high-energy neutrinos in the Antarctic ice. The AAL provides a test facility setup with a proper infrastructure to study acoustics and thermoacoustics in a large volume of water and ice. The control of the freezing process, the ice quality, the temperature monitoring at different phases of the medium and the laser-based thermoacoustic sound generation are the key features of the setup. The AAL setup provides the possibility for the characterization of a wide range of acoustic transducers, sensor/transmitter calibration, study of the thermoacoustic sound generation, study of the acoustic properties of the ice, water as well as the water/ice interfaces, and research and development of new types of acoustic transducers (PVDF-based) as an alternative to standard PZTs. In this document, the different parts of the AAL setup are described, results on the commissioning from the laser based thermoacoustic sound generation are presented and the performance of an absolute sensor calibration method in water and ice are discussed.

  17. Acoustic performance of inlet suppressors on an engine generating a single mode

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Rice, E. J.; Homyak, L.

    1981-01-01

    Three single degree of freedom liners with different open area ratio face sheets were designed for a single spinning mode in order to evaluate an inlet suppressor design method based on mode cutoff ratio. This mode was generated by placing 41 rods in front of the 28 blade fan of a JT15D turbofan engine. At the liner design this near cutoff mode has a theoretical maximum attenuation of nearly 200 dB per L/D. The data show even higher attenuations at the design condition than predicted by the theory for dissipation of a single mode within the liner. This additional attenuation is large for high open area ratios and should be accounted for in the theory. The data show the additional attenuation to be inversely proportional to acoustic resistance. It was thought that the additional attenuation could be caused by reflection and modal scattering at the hard to soft wall interface. A reflection model was developed, and then modified to fit the data. This model was checked against independent (multiple pure tone) data with good agreement.

  18. Acoustic performance of inlet suppressors on an engine generating a single mode

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Rice, E. J.; Homyak, L.

    1981-01-01

    As part of a program to evaluate an inlet suppressor design method based on mode cutoff ratio, three single degree of freedom liners with different open area ratio face sheets were designed for a single spinning mode. This mode was generated by placing 41 rods in front of the 28 blade fan of a JT15D turbofan engine. At the liner design this near cutoff mode has a theoretical maximum attenuation of nearly 200 dB per L/D. The data show even higher attenuations at the design condition than predicted by the theory for dissipation of a single mode within the liner. This additional attenuation is large for high open area ratios and should be accounted for in the theory. The data shows the additional attenuation to be inversely proportional to acoustic resistance. It was thought that the additional attenuation could be caused by reflection and modal scattering at the hard to soft wall interface. A reflection model was developed, and then modified to fit the data. This model was checked against independent (multiple pure tone) data with good agreement.

  19. Acoustic performance of inlet suppressors on an engine generating a single mode

    NASA Astrophysics Data System (ADS)

    Heidelberg, L. J.; Rice, E. J.; Homyak, L.

    1981-10-01

    As part of a program to evaluate an inlet suppressor design method based on mode cutoff ratio, three single degree of freedom liners with different open area ratio face sheets were designed for a single spinning mode. This mode was generated by placing 41 rods in front of the 28 blade fan of a JT15D turbofan engine. At the liner design this near cutoff mode has a theoretical maximum attenuation of nearly 200 dB per L/D. The data show even higher attenuations at the design condition than predicted by the theory for dissipation of a single mode within the liner. This additional attenuation is large for high open area ratios and should be accounted for in the theory. The data shows the additional attenuation to be inversely proportional to acoustic resistance. It was thought that the additional attenuation could be caused by reflection and modal scattering at the hard to soft wall interface. A reflection model was developed, and then modified to fit the data. This model was checked against independent (multiple pure tone) data with good agreement.

  20. Acoustic performance of inlet suppressors on an engine generating a single mode

    NASA Astrophysics Data System (ADS)

    Heidelberg, L. J.; Rice, E. J.; Homyak, L.

    Three single degree of freedom liners with different open area ratio face sheets were designed for a single spinning mode in order to evaluate an inlet suppressor design method based on mode cutoff ratio. This mode was generated by placing 41 rods in front of the 28 blade fan of a JT15D turbofan engine. At the liner design this near cutoff mode has a theoretical maximum attenuation of nearly 200 dB per L/D. The data show even higher attenuations at the design condition than predicted by the theory for dissipation of a single mode within the liner. This additional attenuation is large for high open area ratios and should be accounted for in the theory. The data show the additional attenuation to be inversely proportional to acoustic resistance. It was thought that the additional attenuation could be caused by reflection and modal scattering at the hard to soft wall interface. A reflection model was developed, and then modified to fit the data. This model was checked against independent (multiple pure tone) data with good agreement.

  1. Acoustical performance of an electrostrictive polymer film loudspeaker

    PubMed

    Heydt; Pelrine; Joseph; Eckerle; Kornbluh

    2000-02-01

    A new type of loudspeaker that generates sound by means of the electrostrictive response of a thin polymer film is described. Electrostrictive polymer film (EPF) loudspeakers are constructed with inexpensive, lightweight materials and have a very low profile. The films are typically silicone and are coated with compliant electrodes to allow large film deformations. Acoustical frequency response measurements from 5 x 5 cm (planar dimensions) prototype EPF loudspeakers are presented. Measurements of harmonic distortion are also shown, along with results demonstrating reduced harmonic distortion achieved with square-root wave shaping. Applications of EPF loudspeakers include active noise control and general-purpose flat-panel loudspeakers.

  2. Effect of Coversheet Materials on the Acoustic Performance of Melamine Foam

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Hughes, William O.

    2015-01-01

    Melamine foam is a highly absorptive material that is often used inside the payload fairing walls of a launch vehicle. This foam reduces the acoustic excitation environment that the spacecraft experiences during launch. Often, the melamine foam is enclosed by thin coversheet materials for contamination protection, thermal protection, and electrostatic discharge control. Previous limited acoustic testing by NASA Glenn Research Center has shown that the presence of a coversheet material on the melamine foam can have a significant impact on the absorption coefficient and the transmission loss. As a result of this preliminary finding a more extensive acoustic test program using several different coversheet materials on melamine foam was performed. Those test results are summarized in this paper. Additionally, a method is provided to use the acoustic absorption and transmission loss data obtained from panel level testing to predict their combined effect for the noise reduction of a launch vehicle payload fairing.

  3. Public Playground Equipment: Impact Attenuation Performance of Surfaces Installed Under Playground Equipment. Draft.

    ERIC Educational Resources Information Center

    Mahajan, Bal M.; Beine, William B.

    The objectives of this research effort were 1) to develop a methodology for assessing the impact attenuation performance of surfaces in relation to head injury, and 2) to test surfaces commonly installed under playground equipment to determine which surfacing materials, if any, are capable of providing protection against head injury that might…

  4. Simultaneously measuring thickness, density, velocity and attenuation of thin layers using V(z,t) data from time-resolved acoustic microscopy.

    PubMed

    Chen, Jian; Bai, Xiaolong; Yang, Keji; Ju, Bing-Feng

    2015-02-01

    To meet the need of efficient, comprehensive and automatic characterization of the properties of thin layers, a nondestructive method using ultrasonic testing to simultaneously measure thickness, density, sound velocity and attenuation through V(z,t) data, recorded by time-resolved acoustic microscopy is proposed. The theoretical reflection spectrum of the thin layer at normal incidence is established as a function of three dimensionless parameters. The measured reflection spectrum R(θ,ω) is obtained from V(z,t) data and the measured thickness is derived from the signals when the lens is focused on the front and back surface of the thin layer, which are picked up from the V(z,t) data. The density, sound velocity and attenuation are then determined by the measured thickness and inverse algorithm utilizing least squares method to fit the theoretical and measured reflection spectrum at normal incidence. It has the capability of simultaneously measuring thickness, density, sound velocity and attenuation of thin layer in a single V(z,t) acquisition. An example is given for a thin plate immersed in water and the results are satisfactory. The method greatly simplifies the measurement apparatus and procedures, which improves the efficiency and automation for simultaneous measurement of basic mechanical and geometrical properties of thin layers.

  5. Performance analysis of a LDPC coded OFDM communication system in shallow water acoustic channels

    NASA Astrophysics Data System (ADS)

    Liu, Shengxing; Xu, Xiaomei

    2012-11-01

    Time-varying significant multipath interference is the major obstacle to reliable data communication in shallow water acoustic channels. In this paper, the performance of a low density parity check (LDPC) coded orthogonal frequency division multiplexing (OFDM) communication system is investigated for these channels. The initial message for LDPC, decoded by using the belief propagation (BP) algorithm, is deduced for OFDM underwater acoustic channels; based on this deduction, the noise thresholds of regular LDPC codes with different code rates are obtained by using the density evolution algorithm. Furthermore, a communication system model, developed with LDPC code, OFDM and channel interleaver for shallow water acoustic channels, is introduced. The effect of modulation and coding schemes on the LDPC codes performance is investigated by simulation. The results show that the system can achieve remarkable performance in shallow water acoustic channels, and the performance improves with increasing code length and decreasing code rate. The bit error rate (BER) of the system, under conditions with QPSK modulation, 1280-code length and 1/2-code rate, is less than 10-5 when the signal to noise ratio (SNR) is greater than 6.8dB. These values are obtained for a five-path shallow water acoustic channel of Xiamen harbor.

  6. Prediction of the Aero-Acoustic Performance of Open Rotors

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Envia, Edmane

    2014-01-01

    The rising cost of jet fuel has renewed interest in contrarotating open rotor propulsion systems. Contemporary design methods offer the potential to maintain the inherently high aerodynamic efficiency of open rotors while greatly reducing their noise output, something that was not feasible in the 1980's designs. The primary source mechanisms of open rotor noise generation are thought to be the front rotor wake and tip vortex interacting with the aft rotor. In this paper, advanced measurement techniques and high-fidelity prediction tools are used to gain insight into the relative importance of the contributions to the open rotor noise signature of the front rotor wake and rotor tip vortex. The measurements include three-dimensional particle image velocimetry of the intra-rotor flowfield and the acoustic field of a model-scale open rotor. The predictions provide the unsteady flowfield and the associated acoustic field. The results suggest that while the front rotor tip vortex can have a significant influence on the blade passing tone noise produced by the aft rotor, the front rotor wake plays the decisive role in the generation of the interaction noise produced as a result of the unsteady aerodynamic interaction of the two rotors. At operating conditions typical of takeoff and landing operations, the interaction noise level is easily on par with that generated by the individual rotors, and in some cases is even higher. This suggests that a comprehensive approach to reducing open rotor noise should include techniques for mitigating the wake of the front rotor as well as eliminating the interaction of the front rotor tip vortex with the aft rotor blade tip.

  7. Acoustic attenuation, phase and group velocities in liquid-filled pipes III: nonaxisymmetric propagation and circumferential modes in lossless conditions.

    PubMed

    Baik, Kyungmin; Jiang, Jian; Leighton, Timothy G

    2013-03-01

    Equations for the nonaxisymmetric modes that are axially and circumferentially propagating in a liquid-filled tube with elastic walls surrounded by air/vacuum are presented using exact elasticity theory. Dispersion curves for the axially propagating modes are obtained and verified through comparison with measurements. The resulting theory is applied to the circumferential modes, and the pressures and the stresses in the liquid-filled pipe are calculated under external forced oscillation by an acoustic source. This provides the theoretical foundation for the narrow band acoustic bubble detector that was subsequently deployed at the Target Test Facility (TTF) of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL), TN.

  8. Test of acoustic tone source and propulsion performance of C8A Buffalo suppressor nozzle

    NASA Technical Reports Server (NTRS)

    Marrs, C. C.; Harkonen, D. L.; Okeefe, J. V.

    1974-01-01

    Results are presented for a static acoustic and propulsion performance ground test conducted at the Boeing hot nozzle facility on the C8A Buffalo noise suppressor nozzle. Various methods to remove a nozzle-associated 2000-Hz tone are evaluated. Results of testing this rectangular-array lobed nozzle for propulsion performance and acoustic directivity are reported. Recommendations for future nozzle modifications and further testing are included. Appendix A contains the test plan. Appendix B presents the test log. Appendix C contains plots of the one-third octave sound pressure levels recorded during the test. Appendix D describes the acoustic data recording and reduction systems. The performance data is tabulated in Appendix E.

  9. Acoustical Properties of Preferred Choral Performance Rooms in Illinois, Iowa, Minnesota, and Wisconsin.

    NASA Astrophysics Data System (ADS)

    Dupere, George Henry

    1993-01-01

    The purpose of the study was to provide simple architectural and acoustic principles which other professional musicians could employ when involved with the planning and building of rooms that were to be used for the performance of choral music. It was determined that accomplished and recognized choral conductors should be consulted for their choice of rooms. Eight choral performance rooms were selected by four esteemed choral conductors from a midwest region including the states of Illinois, Iowa, Minnesota, and Wisconsin. The conductors were selected by other choral conductors from the region who were members of the American Choral Directors Association and who were directing at the college/university level. With the technical assistance of an acoustician, the researcher visited each of the eight sites. Architectural features were investigated, such as room dimensions and shape, building materials, construction techniques, and any acoustical treatments. Acoustical measurements were conducted and reduced to reverberation curves. The acoustic qualities of the spaces were investigated through a variety of methods, drawing upon the researcher's experience and the acoustician's vast background in architectural acoustics. In the body of the paper photographs are provided for each of the rooms along with floor plans and longitudinal sections. Dimensions and specifications are listed and compared. It was found that the conductors preferred rooms with reverberation times greater than 2.0 seconds. They also preferred rooms that were greater in length than in width and rooms with a height greater than forty-three feet. Generalizations about construction materials and techniques were summarized along with their respective acoustic principles. The study concludes with a recommended plan for a choral performance room based on the principles ascertained from the research. This room is described, both acoustically and architecturally. A floor plan and longitudinal section are

  10. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    SciTech Connect

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonid Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7

  11. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine C

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor was evaluated. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penality. The NASA core suppressor without the spltter suppressed most of the core noise without any engine performance penalty.

  12. Laryngostroboscopic, acoustic, and environmental characteristics of high-risk vocal performers.

    PubMed

    Hoffman-Ruddy, B; Lehman, J; Crandell, C; Ingram, D; Sapienza, C

    2001-12-01

    Vocal performance often requires excessively high vocal demand. In particular "high-risk" performers, a group of individuals who use their voices at their maximum effort level, are often exposed to unique vocal abuse characteristics which include high environmental and performance demands and inconsistencies of cast performance. Three categories of high-risk performers were studied: musical theater, choral ensemble, and street theater. Musical theater performers produce a Broadway, West End "belting" style voice. Street theater performers use a high-energy pitch varying dialogue in order to imitate a desired character voice. Choral ensemble performance requires group cohesion and blending of four-part harmony. The melodies require sustained vocal durations within each of the respective registers. For each of these studied groups vocal tasks of sustained production of /i/ and /a/ were subjected to analysis. Acoustic measures included fundamental frequency, standard deviation of fundamental frequency, jitter percent, shimmer percent, and noise-to-harmonic ratio. Laryngostroboscopic parameters were assessed during sustained /i/. Environmental acoustic sound field measurements were made using an A weighting and linear weighting sound pressure level. These weightings were used to describe noise levels and vocal output, respectively, within the performance environments. Results of the analysis suggest that high-risk performers are a unique performance type defined by distinctive, acoustic, laryngostroboscopic, and environmental characteristics. PMID:11792030

  13. Acoustic monitoring of first responder's physiology for health and performance surveillance

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2002-08-01

    Acoustic sensors have been used to monitor firefighter and soldier physiology to assess health and performance. The Army Research Laboratory has developed a unique body-contacting acoustic sensor that can monitor the health and performance of firefighters and soldiers while they are doing their mission. A gel-coupled sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. This technology can monitor heartbeats, breaths, blood pressure, motion, voice, and other indicators that can provide vital feedback to the medics and unit commanders. Diverse physiological parameters can be continuously monitored with acoustic sensors and transmitted for remote surveillance of personnel status. Body-worn acoustic sensors located at the neck, breathing mask, and wrist do an excellent job at detecting heartbeats and activity. However, they have difficulty extracting physiology during rigorous exercise or movements due to the motion artifacts sensed. Rigorous activity often indicates that the person is healthy by virtue of being active, and injury often causes the subject to become less active or incapacitated making the detection of physiology easier. One important measure of performance, heart rate variability, is the measure of beat-to-beat timing fluctuations derived from the interval between two adjacent beats. The Lomb periodogram is optimized for non-uniformly sampled data, and can be applied to non-stationary acoustic heart rate features (such as 1st and 2nd heart sounds) to derive heart rate variability and help eliminate errors created by motion artifacts. Simple peak-detection above or below a certain threshold or waveform derivative parameters can produce the timing and amplitude features necessary for the Lomb periodogram and cross-correlation techniques. High-amplitude motion artifacts may contribute to a different

  14. Hover and forward flight acoustics and performance of a small-scale helicopter rotor system

    NASA Technical Reports Server (NTRS)

    Kitaplioglu, C.; Shinoda, P.

    1985-01-01

    A 2.1-m diam., 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80- Foot Wind Tunnel. Subsequently, it was tested in forward flight in the Ames 7- by 10-Foot Wind Tunnel. The primary objective of the tests was to obtain performance and noise data on a small-scale rotor at various thrust coefficients, tip Mach numbers, and, in the later case, various advance ratios, for comparisons with similar existing data on full-scale helicopter rotors. This comparison yielded a preliminary evaluation of the scaling of helicopter rotor performance and acoustic radiation in hover and in forward flight. Correlation between model-scale and full-scale performance and acoustics was quite good in hover. In forward flight, however, there were significant differences in both performance and acoustic characteristics. A secondary objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing.

  15. Model building codes and acoustical performance: Where are we in 2003?

    NASA Astrophysics Data System (ADS)

    Tinianov, Brandon

    2003-10-01

    The proper acoustical design for multi-family dwellings is an important factor in occupant comfort. Key acoustical design practices are often not mandated by the builder or architect, but by the applicable building codes. In early 2003, the three regional/national building codes agreed to join into a single, unified national building code for residential and commercial construction. The scope and governance of these three codes: the Uniform Building Code (ICBO), the National Building Code (BOCA), the Southern Building Code (SBCCI) are reflected in the International Residential Code (IRC) and the International Building Code (IBC) which was developed by the International Code Council (ICC). With the move to a single code body, those concerned with building acoustical performance welcome the benefit of a single minimum standard. Unfortunately, this new minimum performance requirement does not reflect the state of the science for occupant satisfaction. The acoustical requirements of each of these building codes, the timeline of their development and an overview of the state of the science will be presented. Suggestions for revised performance minimums will also be offered for discussion.

  16. Towards quantifying cochlear implant localization performance in complex acoustic environments.

    PubMed

    Kerber, S; Seeber, B U

    2011-08-01

    Cochlear implant (CI) users frequently report listening difficulties in reverberant and noisy spaces. While it is common to assess speech understanding with implants in background noise, binaural hearing performance has rarely been quantified in the presence of other sources, although the binaural system is a major contributor to the robustness of speech understanding in noisy situations with normal hearing. Here, a pointing task was used to measure horizontal localization ability of a bilateral CI user in quiet and in a continuous diffuse noise interferer at a signal-to-noise ratio of 0 dB. Results were compared to localization performance of six normal hearing listeners. The average localization error of the normal hearing listeners was within normal ranges reported previously and only increased by 1.8° when the interfering noise was introduced. In contrast, the bilateral CI user showed a localization error of 22° in quiet which rose to 31° in noise. This increase was partly due to target sounds being inaudible when presented from frontal locations between -20° and +20°. With the noise present, the implant user was only able to reliably hear target sounds presented from locations well off the median plane. The results give support to the informal complaints raised by CI users and can help to define targets for the design of, e.g., noise reduction algorithms for implant processors.

  17. Acoustic performance of industrial mufflers with CAE modeling and simulation

    NASA Astrophysics Data System (ADS)

    Jeon, Soohong; Kim, Daehwan; Hong, Chinsuk; Jeong, Weuibong

    2014-12-01

    This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM) is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/ SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.

  18. AlScN thin film based surface acoustic wave devices with enhanced microfluidic performance

    NASA Astrophysics Data System (ADS)

    Wang, W. B.; Fu, Y. Q.; Chen, J. J.; Xuan, W. P.; Chen, J. K.; Wang, X. Z.; Mayrhofer, P.; Duan, P. F.; Bittner, A.; Schmid, U.; Luo, J. K.

    2016-07-01

    This paper reports the characterization of scandium aluminum nitride (Al1-x Sc x N, x  =  27%) films and discusses surface acoustic wave (SAW) devices based on them. Both AlScN and AlN films were deposited on silicon by sputtering and possessed columnar microstructures with (0 0 0 2) crystal orientation. The AlScN/Si SAW devices showed improved electromechanical coupling coefficients (K 2, ~2%) compared with pure AlN films (<0.5%). The performance of the two types of devices was also investigated and compared, using acoustofluidics as an example. The AlScN/Si SAW devices achieved much lower threshold powers for the acoustic streaming and pumping of liquid droplets, and the acoustic streaming and pumping velocities were 2  ×  and 3  ×  those of the AlN/Si SAW devices, respectively. Mechanical characterization showed that the Young’s modulus and hardness of the AlN film decreased significantly when Sc was doped, and this was responsible for the decreased acoustic velocity and resonant frequency, and the increased temperature coefficient of frequency, of the AlScN SAW devices.

  19. Assessment of impact of acoustic and nonacoustic parameters on performance and well-being

    NASA Astrophysics Data System (ADS)

    Mellert, Volker; Weber, Reinhard; Nocke, Christian

    2001-05-01

    It is of interest to estimate the influence of the environment in a specific work place area on the performance and well-being of people. Investigations have been carried out for the cabin environment of an airplane and for class rooms. Acoustics is only one issue of a variety of environmental factors, therefore the combined impact of temperature, humidity, air quality, lighting, vibration, etc. on human perception is the subject of psychophysical research. Methods for the objective assessment of subjective impressions have been developed for applications in acoustics for a long time, e.g., for concert hall acoustics, noise evaluation, and sound design. The methodology relies on questionnaires, measurement of acoustic parameters, ear-related signal processing and analysis, and on correlation of the physical input with subjective output. Methodology and results are presented from measurements of noise and vibration, temperature and humidity in aircraft simulators, and of reverberation, coloring, and lighting in a primary school, and of the environmental perception. [The work includes research with M. Klatte, A. Schick from the Psychology Department of Oldenburg University, and M. Meis from Hoerzentrum Oldenburg GmbH and with the European Project HEACE (for partners see www.heace.org).

  20. AlScN thin film based surface acoustic wave devices with enhanced microfluidic performance

    NASA Astrophysics Data System (ADS)

    Wang, W. B.; Fu, Y. Q.; Chen, J. J.; Xuan, W. P.; Chen, J. K.; Wang, X. Z.; Mayrhofer, P.; Duan, P. F.; Bittner, A.; Schmid, U.; Luo, J. K.

    2016-07-01

    This paper reports the characterization of scandium aluminum nitride (Al1‑x Sc x N, x  =  27%) films and discusses surface acoustic wave (SAW) devices based on them. Both AlScN and AlN films were deposited on silicon by sputtering and possessed columnar microstructures with (0 0 0 2) crystal orientation. The AlScN/Si SAW devices showed improved electromechanical coupling coefficients (K 2, ~2%) compared with pure AlN films (<0.5%). The performance of the two types of devices was also investigated and compared, using acoustofluidics as an example. The AlScN/Si SAW devices achieved much lower threshold powers for the acoustic streaming and pumping of liquid droplets, and the acoustic streaming and pumping velocities were 2  ×  and 3  ×  those of the AlN/Si SAW devices, respectively. Mechanical characterization showed that the Young’s modulus and hardness of the AlN film decreased significantly when Sc was doped, and this was responsible for the decreased acoustic velocity and resonant frequency, and the increased temperature coefficient of frequency, of the AlScN SAW devices.

  1. Effects of Acoustic Transmitters on the Swimming Performance and Predator Avoidance of Juvenile Chinook Salmon

    SciTech Connect

    Anglea, Steven M.; Geist, David R.; Brown, Richard S.; Deters, Katherine A.; Mcdonald, Robert D.

    2004-03-01

    The objective of this study was to determine if juvenile chinook salmon (Oncorhynchus tshawytscha) were negatively influenced by the implantation of acoustic transmitters. The critical swimming speed (Ucrit) of tagged fish, sham (surgery but no tag), and control fish was measured in a respirometer to determine tag effects on swimming performance. Predator avoidance was evaluated by comparing the proportion of each treatment group eaten: active tag, inactive tag, sham, and control after being exposed to piscivorous adult rainbow trout (O. mykiss). Results from this study demonstrated that the surgical implantation of acoustic tags in juvenile fall chinook salmon does not significantly affect swimming performance. Swimming performance was similar between treatment groups (control, sham, and inactive tag) at 1- and 21-day post-surgery intervals. Critical swimming speeds for all treatment groups were similar to values reported in the literature. Implantation of acoustic transmitters (active and inactive) did not result in tagged fish being more susceptible to predation over untagged fish. Percentages of each prey group consumed in each of the four trials were highly variable and demonstrated no obvious selection preference by adult rainbow trout. In summary, measurable differences were not found between tagged and un-tagged fish, however, trends were consistent in the two experiments with tagged fish consistently performing slightly worse than un-tagged fish. We conclude that based on the current body of knowledge and findings of the present study, fish implanted with an acoustic tag perform and/or behave similarly to the population-at-large recognizing that subtle differences exist in the behavior of tagged fish.

  2. Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannular plug nozzle

    NASA Technical Reports Server (NTRS)

    Vdoviak, J. W.; Knott, P. R.; Ebacker, J. J.

    1981-01-01

    Results of a forward Variable Area Bypass Injector test and a Coannular Nozzle test performed on a YJ101 Double Bypass Variable Cycle Engine are reported. These components are intended for use on a Variable Cycle Engine. The forward Variable Area Bypass Injector test demonstrated the mode shifting capability between single and double bypass operation with less than predicted aerodynamic losses in the bypass duct. The acoustic nozzle test demonstrated that coannular noise suppression was between 4 and 6 PNdB in the aft quadrant. The YJ101 VCE equipped with the forward VABI and the coannular exhaust nozzle performed as predicted with exhaust system aerodynamic losses lower than predicted both in single and double bypass modes. Extensive acoustic data were collected including far field, near field, sound separation/ internal probe measurements as Laser Velocimeter traverses.

  3. Engaging spaces: Intimate electro-acoustic display in alternative performance venues

    NASA Astrophysics Data System (ADS)

    Bahn, Curtis; Moore, Stephan

    2001-05-01

    In past presentations to the ASA, we have described the design and construction of four generations of unique spherical speakers (multichannel, outward-radiating geodesic speaker arrays) and Sensor-Speaker-Arrays, (SenSAs: combinations of various sensor devices with outward-radiating multichannel speaker arrays). This presentation will detail the ways in which arrays of these speakers have been employed in alternative performance venues-providing presence and intimacy in the performance of electro-acoustic chamber music and sound installation, while engaging natural and unique acoustical qualities of various locations. We will present documentation of the use of multichannel sonic diffusion arrays in small clubs, ``black-box'' theaters, planetariums, and art galleries.

  4. Investigation on the reproduction performance versus acoustic contrast control in sound field synthesis.

    PubMed

    Bai, Mingsian R; Wen, Jheng-Ciang; Hsu, Hoshen; Hua, Yi-Hsin; Hsieh, Yu-Hao

    2014-10-01

    A sound reconstruction system is proposed for audio reproduction with extended sweet spot and reduced reflections. An equivalent source method (ESM)-based sound field synthesis (SFS) approach, with the aid of dark zone minimization is adopted in the study. Conventional SFS that is based on the free-field assumption suffers from synthesis error due to boundary reflections. To tackle the problem, the proposed system utilizes convex optimization in designing array filters with both reproduction performance and acoustic contrast taken into consideration. Control points are deployed in the dark zone to minimize the reflections from the walls. Two approaches are employed to constrain the pressure and velocity in the dark zone. Pressure matching error (PME) and acoustic contrast (AC) are used as performance measures in simulations and experiments for a rectangular loudspeaker array. Perceptual Evaluation of Audio Quality (PEAQ) is also used to assess the audio reproduction quality. The results show that the pressure-constrained (PC) method yields better acoustic contrast, but poorer reproduction performance than the pressure-velocity constrained (PVC) method. A subjective listening test also indicates that the PVC method is the preferred method in a live room.

  5. Cytotoxic lesion of the medial prefrontal cortex abolishes the partial reinforcement extinction effect, attenuates prepulse inhibition of the acoustic startle reflex and induces transient hyperlocomotion, while sparing spontaneous object recognition memory in the rat.

    PubMed

    Yee, B K

    2000-01-01

    The partial reinforcement extinction effect refers to the increase in resistance to extinction of an operant response acquired under partial reinforcement relative to that acquired under continuous reinforcement. Prepulse inhibition of the acoustic startle response refers to the reduction in startle reactivity towards an intense acoustic pulse stimulus when it is shortly preceded by a weak prepulse stimulus. These two behavioural phenomena appear to be related to different forms of attentional processes. While the prepulse inhibition effect reflects an inherent early attentional gating mechanism, the partial reinforcement extinction effect is believed to involve the development of acquired inattention, i.e. the latter requires the animals to learn about what to and what not to attend. Impairments in prepulse inhibition and the partial reinforcement extinction effect have been independently linked to the neuropsychology of attentional dysfunctions seen in schizophrenia. The proposed neural substrates underlying these behaviourial phenomena also appear to overlap considerably: both focus on the nucleus accumbens and emphasize the functional importance of its limbic afferents, including that originating from the medial prefrontal cortex, on accumbal output/activity. The present study demonstrated that cytotoxic medial prefrontal cortex lesions which typically damaged the prelimbic, the infralimbic and the dorsal anterior cingulate areas could lead to the abolition of the partial reinforcement extinction effect and the attenuation of prepulse inhibition. The lesions also resulted in a transient elevation of spontaneous locomotor activity. In contrast, the same lesions spared performance in a spontaneous object recognition memory test, in which the lesioned animals displayed normal preference for a novel object when the novel object was presented in conjunction with a familiar object seen 10 min earlier within an open field arena. The present results lend support to the

  6. Imaging performance of attenuated phase-shift mask using coherent scattering microscope

    NASA Astrophysics Data System (ADS)

    Lee, Jae Uk; Jeong, SeeJun; Hong, Seong Chul; Lee, Seung Min; Ahn, Jinho

    2014-03-01

    The half-tone phase shift mask (PSM) has been suggested for better imaging performances like image contrast, NILS and H-V bias compared to the binary mask (BIM) in EUV lithography. In this paper, we measured imaging performance of a fabricated half-tone attenuated PSM with Coherent Scattering Microscopy (CSM) and the results were compared with simulation data obtained by EM-suite tool. We prepared a half-tone attenuated PSM which has 12.7% reflectivity and 180° phase shift with absorber stack of 16.5mn-thick TaN absorber and 24nm-thick Mo phase shifter. With CSM, an actinic inspection tool, we measured the imaging properties of PSM. The diffraction efficiencies of BIM were measured as 31%, 36%, and 44% for 88 nm, 100 nm, and 128 nm mask CD, respectively, while those of PSM were measured as 45%, 62%, and 81%. Also the aerial image at wafer level obtained by CSM with high volume manufacturing tool's (HVM) illumination condition (NA=0.33, σ=0.9) showed higher image contrast and NILS with phase shift effect. And the measured data were consistent with the simulation data.

  7. A novel aerosol-mediated drug delivery system for inner ear therapy: intratympanic aerosol methylprednisolone can attenuate acoustic trauma.

    PubMed

    Li, Ming-Lung; Lee, Lung-Cheng; Cheng, Yuh-Ren; Kuo, Ching-Hua; Chou, Yuan-Fang; Chen, Yuh-Shyang; Yao, Chih-Min; Chen, Peir-Rong; Hsu, Chuan-Jen; Song, Yu-Lin; Lee, Chia-Fone

    2013-09-01

    We developed a novel aerosol-mediated drug delivery system for inner ear therapy by using a silicon-based multiple-Fourier horn nozzle. Intratympanic aerosol (ITA) methylprednisolone (MP) delivery can protect hearing after acoustic trauma. The highest concentration of MP (38.9 ± 5.47 ppm) appeared at 2 h and declined rapidly within 10 h. The concentrations of MP remained at a relatively low level for more than 10 h. Compared to the baseline, the auditory brainstem response (ABR) thresholds shifted markedly at 1 h after noise exposure in all groups (p < 0.05). From the cochleograms, it can be noted that the main lesions encompassed the 2-20 kHz frequency range. Significant differences ( ) were observed for the range between 5 and 8 kHz in the cell loss of outer hair cells (OHCs). The losses for IHCs were lower than for OHCs. The MP movement in the middle ear was simulated by a convection diffusion equation with a relaxation time. The relaxation time was 0.5 h, and the concentration threshold of MP on the round window membrane (RWM) in the middle ear (C T) was 8900 ppm. Using the unit hydrograph (UH) method, we obtained a proper boundary concentration on the RWM at the cochlea, which resulted in a well-fit concentration. Finally, a linking mechanism between the middle ear and the cochlea was established by the RWM. The adjustable permeability and concentration threshold provide the flexibility to match the peak times and peak values of the concentration on the RWM in the middle ear and the cochlea.

  8. Performance evaluation of an acoustic indoor localization system based on a fingerprinting technique

    NASA Astrophysics Data System (ADS)

    Aloui, Nadia; Raoof, Kosai; Bouallegue, Ammar; Letourneur, Stephane; Zaibi, Sonia

    2014-12-01

    We present an acoustic location system that adopts the time of arrival of the path of maximum amplitude as a signature and estimates the target position through nonparametric kernel regression. The system was evaluated in experiments for two main configurations: a privacy-oriented configuration with code division multiple access operation and a centralized configuration with time division multiple access operation. The effects of the number and positions of sources on the performance of the privacy-oriented system was studied. Moreover, the effect of the number of fingerprint positions on the performance of both systems was investigated. Results showed that our privacy-oriented scheme provides an accuracy of 8.5 cm with 87% precision, whereas our centralized system provides an accuracy of 2.7 cm for 93% of measurements. A comparison between our privacy-oriented system and another acoustic location system based on code division multiple access operation and lateration was conducted on our test bench and revealed that the cumulative error distribution function of the fingerprint-based system is better than that of the lateration-based system. This result is similar to that found for Wi-Fi radio-based localization. However, our experiments are the first to demonstrate the detrimental effect that reverberation has on naive acoustic localization approaches.

  9. Performance analysis of approximate Affine Projection Algorithm in acoustic feedback cancellation.

    PubMed

    Nikjoo S, Mohammad; Seyedi, Amir; Tehrani, Arash Saber

    2008-01-01

    Acoustic feedback is an annoying problem in several audio applications and especially in hearing aids. Adaptive feedback cancellation techniques have attracted recent attention and show great promise in reducing the deleterious effects of feedback. In this paper, we investigated the performance of a class of adaptive feedback cancellation algorithms viz. the approximated Affine Projection Algorithms (APA). Mixed results were obtained with the natural speech and music data collected from five different commercial hearing aids in a variety of sub-oscillatory and oscillatory feedback conditions. The performance of the approximated APA was significantly better with music stimuli than natural speech stimuli. PMID:19162642

  10. Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array

    NASA Astrophysics Data System (ADS)

    Cranch, G. A.; Crickmore, R.; Kirkendall, C. K.; Bautista, A.; Daley, K.; Motley, S.; Salzano, J.; Latchem, J.; Nash, P. J.

    2004-06-01

    A large-aperture, seabed mounted, fiber-optic hydrophone array has been constructed and characterized. The system is designed for use as a large area surveillance array for deployment in shallow water regions. The underwater portion comprises two arrays of 48 hydrophones separated by a 3 km fiber-optic link, which are connected to a shore station by 40 km of single-mode optical fiber. The hydrophone is based on a fiber-optic Michelson interferometer and the acoustic transduction mechanism is a fiber-wrapped mandrel design. No electrical power is required in the underwater portion. The performance of the system is described, characterized during laboratory measurements and during a recent sea trial. Specifically, measurements of the acoustic resolution, array shape, beam patterns, array gain, and target tracking capability of this array. The system demonstrates self-noise levels up to 20 dB (typically 10 dB) lower than the ambient acoustic noise experienced in the sea trial and array gains close to the theoretical maximum. The system telemetry and electronics have been designed to be expandable to accommodate several hundred hydrophones.

  11. Performance of an underwater acoustic volume array using time-reversal focusing.

    PubMed

    Root, Joseph A; Rogers, Peter H

    2002-11-01

    Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3x3x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications.

  12. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    NASA Technical Reports Server (NTRS)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  13. Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets

    NASA Technical Reports Server (NTRS)

    Miller, B. A.

    1978-01-01

    An experimental investigation was conducted to determine the effect of design changes on the aerodynamic and acoustic performance of translating centerbody sonic inlets. Scale model inlets were tested in the Lewis Research Center's V/STOL wind tunnel. The effects of centerbody position, entry lip contraction ratio, diffuser length, and diffuser area ratio on inlet total pressure recovery, distortion, and noise suppression were investigated at static conditions and at forward velocity and angle of attack. With the centerbody in the takeoff position (retracted), good aerodynamic and acoustic performance was attained at static conditions and at forward velocity. At 0 deg incidence angle with a sound pressure level reduction of 20 dB, the total pressure recovery was 0.986. Pressure recovery at 50 deg was 0.981. With the centerbody in the approach position (extended), diffuser flow separation occurred at an incidence angle of approximately 20 deg. However, good performance was attained at lower angles. With the centerbody in the takeoff position the ability of the inlet to tolerate high incidence angles was improved by increasing the lip contraction ratio. However, at static conditions with the centerbody in the approach position, an optimum lip contraction ratio appears to exist, with both thinner and thicker lips yielding reduced performance.

  14. Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Blozy, J. T.; Staid, P. S.

    1981-01-01

    The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

  15. Analysis and experimental study on the effect of a resonant tube on the performance of acoustic levitation devices

    NASA Astrophysics Data System (ADS)

    Jiang, Hai; Liu, Jianfang; Lv, Qingqing; Gu, Shoudong; Jiao, Xiaoyang; Li, Minjiao; Zhang, Shasha

    2016-09-01

    The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter) is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radii. Specifically, the levitation force is improved to a maximum degree when the resonance tube radius is slightly larger than the size of the reflector end face. Furthermore, the stability of acoustic levitation device is improved to a maximum degree by introducing a resonance tube of R=1.023λ. The experimental platform and levitation force measurement system of the acoustic levitation device with concave-end-face-type emitter and reflector are developed, and the test of suspended matters and liquid drops is conducted. Results show that the Φ6.5-mm steel ball is suspended easily when the resonance tube radius is 1.023λ, and the Φ5.5-mm steel ball cannot be suspended when the resonance tube radius is 1.251λ. The levitation capability of the original acoustic levitation device without a resonance tube is weakened when a resonance tube of R=1.251λ is applied. These results are consistent with the ANSYS simulation results. The levitation time of the liquid droplet with a resonance tube of R=1.023λ is longer than without a resonance tube. This result is also supported by the MATLAB simulation results. Therefore, the performance of acoustic levitation device can be improved by introducing a resonant tube with an appropriate radius.

  16. Repeated familiarisation with hypohydration attenuates the performance decrement caused by hypohydration during treadmill running.

    PubMed

    Fleming, Joseph; James, Lewis J

    2014-02-01

    This study examined the effect of repeated familiarisation to hypohydration on hypohydrated exercise performance. After familiarisation with the exercise protocol, 10 recreationally active males completed a euhydrated (EU-pre) and hypohydrated (HYPO-pre) trial, which involved a 45-min steady state run at 75% peak oxygen uptake (45SS) followed by a 5-km time trial (TT). Euhydration and hypohydration were induced by manipulating fluid intake in the 24-h pre-exercise and during the 45SS. Subjects then completed 4 habituation sessions that involved replication of the HYPO-pre trial, except they completed 60 min of running at 75% peak oxygen uptake and no TT. Subjects then replicated the euhydrated (EU-post) and hypohydrated (HYPO-post) trials. Body mass loss pre-TT was 0.2 (0.2)% (EU-pre), 2.4 (0.3)% (HYPO-pre), 0.1 (0.1)% (EU-post), and 2.4 (0.3)% (HYPO-post). TT performance was 5.8 (2.4)% slower during the HYPO-pre trial (1459 (250) s) than during the EU-pre trial (1381 (237) s) (p < 0.01), but only 1.2 (1.6)% slower during the HYPO-post trial (1381 (200) s) than during the EU-post trial (1366 (211) s) (p = 0.064). TT performance was not different between EU-pre and EU-post trials, but was 5.1 (2.3)% faster during the HYPO-post trial than the HYPO-pre trial (p < 0.01). Heart rate was greater during HYPO trials than EU trials (p < 0.001), whilst rating of perceived exertion (RPE) response was similar to TT time and was lower in the HYPO-post trial than the HYPO-pre trial (p < 0.01). In conclusion, hypohydration impaired 5-km running performance in subjects unfamiliar with the hypohydration protocol, but 4 familiarisation sessions designed to habituate subjects with the hypohydration protocol attenuated the performance decrement, seemingly via an attenuation of RPE during hypohydrated exercise.

  17. Acoustic Optimization of Automotive Exhaust Heat Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Ye, B. Q.; Guo, X.; Hui, P.

    2012-06-01

    The potential for thermoelectric exhaust heat recovery in vehicles has been increasing with recent advances in the efficiency of thermoelectric generators (TEGs). This study analyzes the acoustic attenuation performance of exhaust-based TEGs. The acoustic characteristics of two different thermal designs of exhaust gas heat exchanger in TEGs are discussed in terms of transmission loss and acoustic insertion loss. GT-Power simulations and bench tests on a dynamometer with a high-performance production engine are carried out. Results indicate that the acoustic attenuation of TEGs could be determined and optimized. In addition, the feasibility of integration of exhaust-based TEGs and engine mufflers into the exhaust line is tested, which can help to reduce space and improve vehicle integration.

  18. High-performance modeling acoustic and elastic waves using the parallel Dichotomy Algorithm

    SciTech Connect

    Fatyanov, Alexey G.; Terekhov, Andrew V.

    2011-03-01

    A high-performance parallel algorithm is proposed for modeling the propagation of acoustic and elastic waves in inhomogeneous media. An initial boundary-value problem is replaced by a series of boundary-value problems for a constant elliptic operator and different right-hand sides via the integral Laguerre transform. It is proposed to solve difference equations by the conjugate gradient method for acoustic equations and by the GMRES(k) method for modeling elastic waves. A preconditioning operator was the Laplace operator that is inverted using the variable separation method. The novelty of the proposed algorithm is using the Dichotomy Algorithm , which was designed for solving a series of tridiagonal systems of linear equations, in the context of the preconditioning operator inversion. Via considering analytical solutions, it is shown that modeling wave processes for long instants of time requires high-resolution meshes. The proposed parallel fine-mesh algorithm enabled to solve real application seismic problems in acceptable time and with high accuracy. By solving model problems, it is demonstrated that the considered parallel algorithm possesses high performance and efficiency over a wide range of the number of processors (from 2 to 8192).

  19. Design and expected performance of a fast neutron attenuation probe for light element density measurements

    NASA Astrophysics Data System (ADS)

    Sweany, M.; Marleau, P.

    2016-10-01

    We present the design and expected performance of a proof-of-concept 32 channel material identification system. Our system is based on the energy-dependent attenuation of fast neutrons for four elements: hydrogen, carbon, nitrogen and oxygen. We describe a new approach to obtaining a broad range of neutron energies to probe a sample, as well as our technique for reconstructing the molar densities within a sample. The system's performance as a function of time-of-flight energy resolution is explored using a Geant4-based Monte Carlo. Our results indicate that, with the expected detector response of our system, we will be able to determine the molar density of all four elements to within a 20-30% accuracy in a two hour scan time. In many cases this error is systematically low, thus the ratio between elements is more accurate. This degree of accuracy is enough to distinguish, for example, a sample of water from a sample of pure hydrogen peroxide: the ratio of oxygen to hydrogen is reconstructed to within 8±0.5% of the true value. Finally, with future algorithm development that accounts for backgrounds caused by scattering within the sample itself, the accuracy of molar densities, not ratios, may improve to the 5-10% level for a two hour scan time.

  20. Design and expected performance of a fast neutron attenuation probe for light element density measurements

    DOE PAGES

    Sweany, M.; Marleau, P.

    2016-07-08

    In this paper, we present the design and expected performance of a proof-of-concept 32 channel material identification system. Our system is based on the energy-dependent attenuation of fast neutrons for four elements: hydrogen, carbon, nitrogen and oxygen. We describe a new approach to obtaining a broad range of neutron energies to probe a sample, as well as our technique for reconstructing the molar densities within a sample. The system's performance as a function of time-of-flight energy resolution is explored using a Geant4-based Monte Carlo. Our results indicate that, with the expected detector response of our system, we will be ablemore » to determine the molar density of all four elements to within a 20–30% accuracy in a two hour scan time. In many cases this error is systematically low, thus the ratio between elements is more accurate. This degree of accuracy is enough to distinguish, for example, a sample of water from a sample of pure hydrogen peroxide: the ratio of oxygen to hydrogen is reconstructed to within 8±0.5% of the true value. Lastly, with future algorithm development that accounts for backgrounds caused by scattering within the sample itself, the accuracy of molar densities, not ratios, may improve to the 5–10% level for a two hour scan time.« less

  1. Characterization and optimization of acoustic filter performance by experimental design methodology.

    PubMed

    Gorenflo, Volker M; Ritter, Joachim B; Aeschliman, Dana S; Drouin, Hans; Bowen, Bruce D; Piret, James M

    2005-06-20

    Acoustic cell filters operate at high separation efficiencies with minimal fouling and have provided a practical alternative for up to 200 L/d perfusion cultures. However, the operation of cell retention systems depends on several settings that should be adjusted depending on the cell concentration and perfusion rate. The impact of operating variables on the separation efficiency performance of a 10-L acoustic separator was characterized using a factorial design of experiments. For the recirculation mode of separator operation, bioreactor cell concentration, perfusion rate, power input, stop time and recirculation ratio were studied using a fractional factorial 2(5-1) design, augmented with axial and center point runs. One complete replicate of the experiment was carried out, consisting of 32 more runs, at 8 runs per day. Separation efficiency was the primary response and it was fitted by a second-order model using restricted maximum likelihood estimation. By backward elimination, the model equation for both experiments was reduced to 14 significant terms. The response surface model for the separation efficiency was tested using additional independent data to check the accuracy of its predictions, to explore robust operation ranges and to optimize separator performance. A recirculation ratio of 1.5 and a stop time of 2 s improved the separator performance over a wide range of separator operation. At power input of 5 W the broad range of robust high SE performance (95% or higher) was raised to over 8 L/d. The reproducible model testing results over a total period of 3 months illustrate both the stable separator performance and the applicability of the model developed to long-term perfusion cultures.

  2. Speed of sound and acoustic attenuation of compounds affected during optoacoustic monitoring of thermal therapies measured in the temperature range from 5°C to 60°C

    NASA Astrophysics Data System (ADS)

    Oruganti, Tanmayi; Petrova, Elena; Oraevsky, Alexander A.; Ermilov, Sergey A.

    2015-03-01

    Optoacoustic (photoacoustic) imaging is being adopted for monitoring tissue temperature during hypothermic and hyperthermic cancer treatments. The technique's accuracy benefits from the knowledge of speed of sound (SoS) and acoustic coefficient of attenuation (AcA) as they change with temperature in biological tissues, blood, and acoustic lens of an ultrasound probe. In these studies we measured SoS and AcA of different ex vivo tissues and blood components (plasma and erythrocyte concentrates) in the temperature range from 5°C to 60°C. We used the technique based on measurements of time-delay and spectral amplitude of pressure pulses generated by wideband planar acoustic waves propagating through the interrogated medium. Water was used as a reference medium with known acoustic properties. In order to validate our experimental technique, we measured the temperature dependence of SoS and AcA for aqueous NaCl solution of known concentration and obtained the results in agreement with published data. Similar to NaCl solution and pure water, SoS in blood and plasma was monotonously increasing with temperature. However, SoS of erythrocyte concentrates displayed abnormalities at temperatures above 45°C, suggesting potential effects from hemoglobin denaturation and/or hemolysis of erythrocytes. On the contrary to aqueous solutions, the SoS in polyvinyl-chloride (plastisol) - a material frequently used for mimicking optical and acoustic properties of tissues - decreased with temperature. We also measured SoS and AcA in silicon material of an acoustic lens and did not observe temperature-related changes of SoS.

  3. Investigation of Thrust Augmentation and Acoustic Performance by Ejectors on PDE

    NASA Astrophysics Data System (ADS)

    Xu, Gui-yang; Weng, Chun-sheng; Li, Ning; Huang, Xiao-long

    2016-04-01

    Thrust augmentation and acoustic performance of a Pulse Detonation Engine (PDE) with ejector system is experimentally investigated. For these tests the LEjector/DEjector is varied from 1.18 to 4 and the axial placement of the ejector relative to the PDE exhaust is varied from an x/DPDE of -3 to 3. Results from the tests show that the optimum LEjector/DEjector based on thrust augmentation and Overall Sound Pressure Level (OASPL) is found to be 2.61. The divergent ejector performed the best based on thrust augmentation, while the reduction effect for OASPL and Peak Sound Pressure Level (PSPL) at 60° is most prominent for the convergent ejector. The optimum axial position based on thrust augmentation is determined to be x/DPDE = 2, while, x/DPDE = 0 based on OASPL and PSPL.

  4. The South Pole Acoustic Test Setup (SPATS)

    NASA Astrophysics Data System (ADS)

    Laihem, Karim; IceCube Collaboration

    2012-11-01

    New detection techniques for (GZK) neutrinos are required for instrumenting a large detector volume needed to observe the low neutrino fluxes at the EeV energy range. Studies on a larger IceCube Neutrino Observatory at the South Pole have been intensively investigated in the last decade. A larger effective volume at a reasonable cost is possible if an acoustic array is a part of a large hybrid detector which includes radio and the existing optical array. The feasibility and the physics capabilities of an acoustic array at the South Pole depend on the knowledge of the acoustic properties of the ice such as the sound speed, the attenuation length, the background noise level and the transient rate. To investigate the ice properties, the first three acoustic strings of the South Pole Acoustic Test Setup (SPATS) have been deployed in the austral summer 2006/2007, then completed with an additional string in 2007/2008. With its four strings SPATS was able to evaluate in situ the acoustic properties of the South Pole ice in the 10-100 kHz frequency range. In this paper the performance of SPATS is described, results on the acoustic ice properties are presented and a new drilling method to deploy acoustic strings in ice is introduced.

  5. The Impact of System Latency on Dynamic Performance In Virtual Acoustic Environments

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Ahumada, Albert (Technical Monitor)

    1998-01-01

    Engineering constraints that may be encountered when implementing interactive virtual acoustic displays are examined In particular, system parameters such as the update rate and total system latency are defined and the impact they may have on perception is discussed. For example, examination of the head motions that listeners used to aid localization in a previous study suggests that some head motions may be as fast as about 400 degrees/sec for short time periods. Analysis of latencies in virtual acoustic environments (VAEs) suggests that: (1) commonly-specified parameters such as the audio update rate determine only the "best-case" latency possible in a VAE, (2) total system latency and individual latencies of system components, including head-trackers, are frequently not measured by VAE developers, and (3) typical system latencies may result in under-sampling of relative listener-source motion of 400 degrees/sec as well as positional "jitter" in the simulated source. To clearly specify the dynamic performance of a particular VAE, users and developers need to make measurements of average system latency, update rate, and their variability using standardized rendering scenarios. a parameters such as the minimum audible movement angle can then be used as target guidelines to assess whether a given system meets perceptual requirements.

  6. The acoustic performance of double-skin facades: A design support tool for architects

    NASA Astrophysics Data System (ADS)

    Batungbakal, Aireen

    This study assesses and validates the influence of measuring sound in the urban environment and the influence of glass facade components in reducing sound transmission to the indoor environment. Among the most reported issues affecting workspaces, increased awareness to minimize noise led building designers to reconsider the design of building envelopes and its site environment. Outdoor sound conditions, such as traffic noise, challenge designers to accurately estimate the capability of glass facades in acquiring an appropriate indoor sound quality. Indicating the density of the urban environment, field-tests acquired existing sound levels in areas of high commercial development, employment, and traffic activity, establishing a baseline for sound levels common in urban work areas. Composed from the direct sound transmission loss of glass facades simulated through INSUL, a sound insulation software, data is utilized as an informative tool correlating the response of glass facade components towards existing outdoor sound levels of a project site in order to achieve desired indoor sound levels. This study progresses to link the disconnection in validating the acoustic performance of glass facades early in a project's design, from conditioned settings such as field-testing and simulations to project completion. Results obtained from the study's facade simulations and facade comparison supports that acoustic comfort is not limited to a singular solution, but multiple design options responsive to its environment.

  7. [Similarity of monozygotic twins regarding vocal performance and acoustic markers and possible clinical significance].

    PubMed

    Fuchs, M; Oeken, J; Hotopp, T; Täschner, R; Hentschel, B; Behrendt, W

    2000-06-01

    Auditory similarities in voices of monozygotic twins have already been described in the literature. However, is there a clinical relevance? Thus, the present study was designed to identify parameters of vocal performance and acoustic features which are significantly more similar in monozygotic twins than in non-related persons. In our hypothesis, comparable prerequisites for an increased vocal load in a profession or in an artistic education of the voice could be due to these similarities. We compared intra-pair differences with data from a control group. Moreover, we examined the correlation of intra-pair differences with the age of the monozygotic twins. A greater difference in older twin pairs than in younger pairs could show the effect of an exogene influence. In addition to the few phoniatric studies in twins in the literature, we used current methods for acoustic analysis. We examined seven parameters of vocal performance and three acoustic features in 31 monozygotic twin pairs (median age 36 years, range 18-75 years) and compared them with 30 control group pairs, which consisted of non-related persons of the same age and sex, newly combined from the group of monozygotic twins ("statistical twins"). We found significant differences in seven of ten parameters (vocal range, highest and lowest vocal fundamental frequency, fundamental speaking frequency, maximum voice intensity, number of partials, vibrato of intensity; U-test by Mann-Whitney). No correlation of the differences of the identical twins with age was found in the examined parameters. The voices of identical twins are significantly more similar than those of non-related persons regarding the above mentioned features. Thus, the suitability of the voices of monozygotic twins for professions with a high demand on voice is comparable. Results of the group comparison correlate largely with the literature. The missing correlation with age could be due to the fact that the environmental effects were not

  8. Contactless ultrasonic energy transfer for wireless systems: acoustic-piezoelectric structure interaction modeling and performance enhancement

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Erturk, A.

    2014-12-01

    There are several applications of wireless electronic components with little or no ambient energy available to harvest, yet wireless battery charging for such systems is still of great interest. Example applications range from biomedical implants to sensors located in hazardous environments. Energy transfer based on the propagation of acoustic waves at ultrasonic frequencies is a recently explored alternative that offers increased transmitter-receiver distance, reduced loss and the elimination of electromagnetic fields. As this research area receives growing attention, there is an increased need for fully coupled model development to quantify the energy transfer characteristics, with a focus on the transmitter, receiver, medium, geometric and material parameters. We present multiphysics modeling and case studies of the contactless ultrasonic energy transfer for wireless electronic components submerged in fluid. The source is a pulsating sphere, and the receiver is a piezoelectric bar operating in the 33-mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Both the analytical and finite element models have been developed for the resulting acoustic-piezoelectric structure interaction problem. Resistive and resistive-inductive electrical loading cases are presented, and optimality conditions are discussed. Broadband power transfer is achieved by optimal resistive-reactive load tuning for performance enhancement and frequency-wise robustness. Significant enhancement of the power output is reported due to the use of a hard piezoelectric receiver (PZT-8) instead of a soft counterpart (PZT-5H) as a result of reduced material damping. The analytical multiphysics modeling approach given in this work can be used to predict and optimize the coupled system dynamics with very good accuracy and dramatically

  9. Effects of Classroom Acoustics on Performance and Well-Being in Elementary School Children: A Field Study

    ERIC Educational Resources Information Center

    Klatte, Maria; Hellbruck, Jurgen; Seidel, Jochen; Leistner, Philip

    2010-01-01

    Children are more impaired than adults by unfavorable listening conditions such as reverberation and noise. Nevertheless, the acoustical conditions in classrooms often do not fit the specific needs of young listeners. This field study aimed to analyze the effects of classroom reverberation on children's performance and well-being at school.…

  10. Programming the cochlear implant based on electrical acoustic reflex thresholds: patient performance.

    PubMed

    Spivak, L G; Chute, P M; Popp, A L; Parisier, S C

    1994-10-01

    The electrical acoustic reflex threshold (EART) has been shown to be a reliable estimate of behavioral comfort levels in both child and adult cochlear implant patients. The purpose of this study was to investigate the potential for using EARTs for programming the Nucleus cochlear implant. EARTs and behavioral comfort levels were obtained from 7 adult implant patients. Two programs or "maps" were made for each patient, one based on behavioral comfort levels and one based on EARTs. Performance on open set tests of speech recognition was measured with each map. Mean data suggest that speech perception is similar with both maps. Analysis of individual data revealed that, whereas 2 subjects performed better with the C-level maps, the remaining 5 subjects tended to perform either better with the EART map or equally well with both maps. These results suggest that EARTs may be an adequate substitute for comfort levels when programming the implant for patients who are unable to make reliable psychophysical judgments.

  11. Packaging of an iron-gallium (Galfenol) nanowire acoustic sensor

    NASA Astrophysics Data System (ADS)

    Jain, Rupal; McCluskey, F. Patrick; Flatau, Alison B.; Stadler, Bethanie J. H.

    2007-04-01

    Packaging is a key issue for the effective working of an iron-gallium (Galfenol) nanowire acoustic sensor for underwater applications. The nanowire acoustic sensor incorporates cilia-like nanowires made of galfenol, a magnetostrictive material, which responds by changing magnetic flux flowing through it due to bending stress induced by the incoming acoustic waves. This stress induced change in the magnetic flux density is detected by a GMR sensor. An effective package should provide a suitably protective environment to these nanowires, while allowing sound waves to reach the nanowires with a minimum level of attenuation. A bio-inspired MEMS package has been designed, analogous to a human-ear cochlea for the nanowire acoustic sensor. In this paper, the process sequence for fabrication of the package is presented. Unlike other microphones, the nanoacoustic sensor has been enclosed in a cavity to allow free movement of the nanowires in a fluid medium. The package also ensures resisting ingression of sea water and salt ions to prevent the corrosion of sensor components. The effect of package material on sensor performance was investigated by conducting experiments on acoustic impedance and attenuation characteristics, and salt water absorption properties. The package filled with silicone oil and molded with polydimethylsiloxane (PDMS) is observed to outperform other packages at all frequencies by minimizing attenuation of the acoustic waves.

  12. Relating the performance of time-reversal-based underwater acoustic communications in different shallow water environments.

    PubMed

    Yang, T C

    2011-10-01

    The performance of underwater acoustic communications, such as the output signal-to-noise ratio (OSNR), is generally dependent on the channel specifics, hence a channel model is normally required as the performance of the channel equalizer depends on the number of tap coefficients used (e.g., a sparse equalizer) which are different for different oceans having different multipath arrivals. This letter presents theoretical arguments, and experimental data from different oceans that suggest that the increase of OSNR with the number of diverse receivers (in terms of the effective number of receivers) and the decrease of OSNR with the channel-estimation error follow a universal relationship using the time-reversal or correlation-based equalizer, despite the fact that the channels have very different properties. The reason is due to the fact that the OSNR is a function of the q function, the auto-correlation of the received impulse responses summed over all receiver channels, and the q function is approximately the same for all shallow waters given a sufficient (≥4-6) number of receivers.

  13. GPU performance analysis of a nodal discontinuous Galerkin method for acoustic and elastic models

    NASA Astrophysics Data System (ADS)

    Modave, A.; St-Cyr, A.; Warburton, T.

    2016-06-01

    Finite element schemes based on discontinuous Galerkin methods possess features amenable to massively parallel computing accelerated with general purpose graphics processing units (GPUs). However, the computational performance of such schemes strongly depends on their implementation. In the past, several implementation strategies have been proposed. They are based exclusively on specialized compute kernels tuned for each operation, or they can leverage BLAS libraries that provide optimized routines for basic linear algebra operations. In this paper, we present and analyze up-to-date performance results for different implementations, tested in a unified framework on a single NVIDIA GTX980 GPU. We show that specialized kernels written with a one-node-per-thread strategy are competitive for polynomial bases up to the fifth and seventh degrees for acoustic and elastic models, respectively. For higher degrees, a strategy that makes use of the NVIDIA cuBLAS library provides better results, able to reach a net arithmetic throughput 35.7% of the theoretical peak value.

  14. Acoustic/magnetic fusion system architecture variants and their classification performance

    NASA Astrophysics Data System (ADS)

    Bello, Martin G.

    1997-07-01

    Research in FY-95 first addressed the problem of combining high-frequency (HF) side-scan sonar imagery, low-frequency (LF) side-scan Sonar imagery, and magnetic gradiometer data in order to detect/classify undersea mines. The first approach developed, termed the "Blob-Pair" based acoustic/magnetic (AM) Fusion system architecture, implicitly assumed that a target manifests itself in both HF,LF imagery, and was based on the fusion of single-sensor derived neural network classifier discriminants at a collection of three "decision" nodes, identified with magnetic (M), HF/LF, and HF/LF/M - data fusion cases, respectively. In order, to remove the restrictive assumption of a target manifesting in both }IF,LF data, the "Generalized" AM Fusion Architecture was developed, with a total of 7 "decision" nodes, identified with M, HF, HF/LF, LF, HF/M, HF/LFIM, and LF/M data fusion cases, respectively. However, the "Generalized" AM-Fusion architecture was found empirically to have significantly increased number of false alarms, relative to the "Blob-Pair" based system. Hence, through two-additional AM-Fusion architecture varaints, involving first the use of Classification Token "Post-Processing", and then both Token "Post-Processing" and decision node statistic modification, the performance "gap" between "Blob-Pair" and "Generalized" AM-Fusion Architecture performance was closed.

  15. Neural network predictions of acoustical parameters in multi-purpose performance halls.

    PubMed

    Cheung, L Y; Tang, S K

    2013-09-01

    A detailed binaural sound measurement was carried out in two multi-purpose performance halls of different seating capacities and designs in Hong Kong in the present study. The effectiveness of using neural network in the predictions of the acoustical properties using a limited number of measurement points was examined. The root-mean-square deviation from measurements, statistical parameter distribution matching, and the results of a t-test for vanishing mean difference between simulations and measurements were adopted as the evaluation criteria for the neural network performance. The audience locations relative to the sound source were used as the inputs to the neural network. Results show that the neural network training scheme using nine uniformly located measurement points in each specific hall area is the best choice regardless of the hall setting and design. It is also found that the neural network prediction of hall spaciousness does not require a large amount of training data, but the accuracy of the reverberance related parameter predictions increases with increasing volume of training data.

  16. Performance analysis of MISO multi-hop FSO links over log-normal channels with fog and beam divergence attenuations

    NASA Astrophysics Data System (ADS)

    Abaza, Mohamed; Mesleh, Raed; Mansour, Ali; Aggoune, el-Hadi

    2015-01-01

    The performance analysis of a multi-hop decode and forward relaying free-space optical (FSO) communication system is presented in this paper. The considered FSO system uses intensity modulation and direct detection as means of transmission and reception. Atmospheric turbulence impacts are modeled as a log-normal channel, and different weather attenuation effects and geometric losses are taken into account. It is shown that multi-hop is an efficient technique to mitigate such effects in FSO communication systems. A comparison with direct link and multiple-input single-output (MISO) systems considering correlation effects at the transmitter is provided. Results show that MISO multi-hop FSO systems are superior than their counterparts over links exhibiting high attenuation. Monte Carlo simulation results are provided to validate the bit error rate (BER) analyses and conclusions.

  17. BAG: A code for predicting the performance of a gas bag impact attenuation system for the PATHFINDER lander

    SciTech Connect

    Cole, J.K.; Waye, D.E.

    1993-11-01

    The National Aeronautics and Space Administration (NASA) is planning to launch a network of scientific probes to Mars beginning in late 1996. The precursor to this network will be PATHFINDER. Decelerating PATHFINDER from the high speed of its approach to Mars will require the use of several deceleration techniques working in series. The Jet Propulsion Laboratory (JPL) has proposed that gas bags be used to cushion the payload`s ground impact on Mars. This report presents the computer code, BAG, which has been developed to calculate the pneumatic performance of gas bag impact attenuators and the one-dimensional rigid-body dynamic performance of a payload during ground impact.

  18. The effects of acoustic orientation cues on instrument flight performance in a flight simulator.

    PubMed

    Lyons, T J; Gillingham, K K; Teas, D C; Ercoline, W R; Oakley, C

    1990-08-01

    An initial version of an acoustic orientation instrument (AOI), in which airspeed was displayed as sound frequency, vertical velocity as amplitude modulation rate, and bank angle as right-left lateralization, was evaluated in a T-40 (Link GAT-3) motion-based simulator. In this study, 15 pilots and 3 non-pilots were taught to use the AOI and flew simulated flight profiles under conditions of neither visual nor auditory instrumentation (NO INPUT), AOI signals only (AOI), T-40 simulator instrumentation only (VISUAL), and T-40 simulator instrumentation with AOI signals (BOTH). Bank control under AOI conditions was significantly better than under the NO INPUT condition for all flying tasks. Bank control under VISUAL conditions was significantly better than under the AOI condition only during turning and when performing certain complex secondary tasks. The pilots' ability to use the AOI to control vertical velocity and airspeed was less apparent. However, during straight-and-level flight, turns, and descents the AOI provided the pilots with sufficient information to maintain controlled flight. Factors of potential importance in using sound to convey aircraft attitude and motion information are discussed.

  19. High-performance surface acoustic wave immunosensing system on a PEG/aptamer hybridized surface.

    PubMed

    Horiguchi, Yukichi; Miyachi, Seigo; Nagasaki, Yukio

    2013-06-18

    Label-free immunoassay systems have the advantages of procedural simplicity and a low construction cost of surfaces for immunosensing. When label-free immunoassay systems are considered, the nonspecific adsorption of unwanted materials should be eliminated unless it aids in the detection of error. PEG is well-known as a blocking agent for the prevention of the adsorption of nonspecific binding materials when coimmobilized with ligands for targets such as antibodies and oligonucleotides. The construction strategy for PEG/ligand coimmobilized surfaces is an important point in the preparation of a high-performance assays because the physiological condition of the ligand depends strongly on its interaction with the PEG chain. In this report, we investigate the interaction between thrombin and a thrombin-binding aptamer (TBA) on a PEG/TBA coimmobilized surface by using a shear horizontal surface acoustic wave (SAW) sensor. The thrombin-TBA binding property shows remarkable differences with changes in the PEG density and the distance from the gold surface to the aptamer.

  20. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  1. Underwater Wireless Sensor Networks: how do acoustic propagation models impact the performance of higher-level protocols?

    PubMed

    Llor, Jesús; Malumbres, Manuel P

    2012-01-01

    Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios.

  2. An Approximate Model for the Performance and Acoustic Predictions of Counterrotating Propeller Configurations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Denner, Brett William

    1989-01-01

    An approximate method was developed to analyze and predict the acoustics of a counterrotating propeller configuration. The method employs the analytical techniques of Lock and Theodorsen as described by Davidson to predict the steady performance of a counterrotating configuration. Then, a modification of the method of Lesieutre is used to predict the unsteady forces on the blades. Finally, the steady and unsteady loads are used in the numerical method of Succi to predict the unsteady acoustics of the propeller. The numerical results are compared with experimental acoustic measurements of a counterrotating propeller configuration by Gazzaniga operating under several combinations of advance ratio, blade pitch, and number of blades. In addition, a constant-speed commuter-class propeller configuration was designed with the Davidson method and the acoustics analyzed at three advance ratios. Noise levels and frequency spectra were calculated at a number of locations around the configuration. The directivity patterns of the harmonics in both the horizontal and vertical planes were examined, with the conclusion that the noise levels of the even harmonics are relatively independent of direction whereas the noise levels of the odd harmonics are extremely dependent on azimuthal direction in the horizontal plane. The equations of Succi are examined to explain this behavior.

  3. The effective acoustic environment of helicopter crewmen

    NASA Technical Reports Server (NTRS)

    Camp, R. T., Jr.; Mozo, B. T.

    1978-01-01

    Methods of measuring the composite acoustic environment of helicopters in order to quantify the effective acoustic environment of the crewmen and to assess the real acoustic hazards of the personnel are examined. It is indicated that the attenuation characteristics of the helmets and hearing protectors and the variables of the physiology of the human ear be accounted for in determining the effective acoustic environment of Army helicopter crewmen as well as the acoustic hazards of voice communications systems noise.

  4. Tuning the performance of a natural treatment process using metagenomics for improved trace organic chemical attenuation.

    PubMed

    Drewes, J E; Li, D; Regnery, J; Alidina, M; Wing, A; Hoppe-Jones, C

    2014-01-01

    By utilizing high-throughput sequencing and metagenomics, this study revealed how the microbial community characteristics including composition, diversity, as well as functional genes in managed aquifer recharge (MAR) systems can be tuned to enhance removal of trace organic chemicals of emerging concern (CECs). Increasing the humic content of the primary substrate resulted in higher microbial diversity. Lower concentrations and a higher humic content of the primary substrate promoted the attenuation of biodegradable CECs in laboratory and field MAR systems. Metagenomic results indicated that the metabolic capabilities of xenobiotic biodegradation were significantly promoted for the microbiome under carbon-starving conditions.

  5. Controllable attenuators

    NASA Astrophysics Data System (ADS)

    Krylov, G. M.; Khoniak, E. I.; Tynynyka, A. N.; Iliushenko, V. N.; Sikolenko, S. F.

    Methods for the synthesis of controllable attenuators and their implementations are examined. In particular, attention is given to the general properties of controllable attenuators, control elements, types of controllable attenuators and methods of their analysis, and synthesis of the control characteristic of attenuators. The discussion also covers the efficiency of attenuator control, the use of transmission line segments in wide-band controllable attenuators, and attenuators with a discretely controlled transmission coefficient.

  6. Performance, Thermal, and Vibration Qualification Testing of Zetec Acoustic Transducers, Model Z0002659-2, Sondicator Probes

    SciTech Connect

    Jacobson, G; Gemberling, S; Lavietes, A

    2006-03-10

    This report is a result of Qualification Test Plan No.001 prepared by Anthony Lavietes. The Qualification Test Plan outlines a list of requirements for thermal and vibrational testing of Zetac's Z0002659-2 Sondicator Probe acoustic transducers (hereafter called ''transducers''). The Zetec transducers are used in a system that employs an array of 7 acoustic transducers. Qualification testing of these transducers was required since they are a modified version of a standard catalog item from the manufacturer. This report documents the thermal, vibrational, and performance testing that was performed on a sampling of these transducers in order to qualify them for flight. A total of 14 transducers were tested. All 14 passed qualification testing with no failures.

  7. Acoustic Resonator Optimisation for Airborne Particle Manipulation

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Billson, Duncan R.; Hutchins, David A.; Alan, Tuncay; Neild, Adrian

    Advances in micro-electromechanical systems (MEMS) technology and biomedical research necessitate micro-machined manipulators to capture, handle and position delicate micron-sized particles. To this end, a parallel plate acoustic resonator system has been investigated for the purposes of manipulation and entrapment of micron sized particles in air. Numerical and finite element modelling was performed to optimise the design of the layered acoustic resonator. To obtain an optimised resonator design, careful considerations of the effect of thickness and material properties are required. Furthermore, the effect of acoustic attenuation which is dependent on frequency is also considered within this study, leading to an optimum operational frequency range. Finally, experimental results demonstrated good particle levitation and capture of various particle properties and sizes ranging to as small as 14.8 μm.

  8. Performance Assessment of Suture Type in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters

    SciTech Connect

    Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.; Boyd, James W.

    2009-02-27

    The objective of this study was to determine the best overall suture material to close incisions from the surgical implantation of Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic microtransmitters in subyearling Chinook salmon Oncorhynchus tshawytscha. The effects of seven suture materials, four surgeons, and two water temperatures on suture retention, incision openness, tag retention, tissue inflammation, and tissue ulceration were quantified. The laboratory study, conducted by researchers at the Pacific Northwest National Laboratory, supports a larger effort under way for the U.S. Army Corps of Engineers, Portland District, aimed at determining the suitability of acoustic telemetry for estimating short- and longer-term (30-60 days) juvenile-salmonid survival at Columbia and Snake River dams and through the lower Columbia River.

  9. Breaking the acoustic diffraction limit in photoacoustic imaging with multiple speckle illumination

    NASA Astrophysics Data System (ADS)

    Chaigne, Thomas; Gateau, Jérôme; Allain, Marc; Katz, Ori; Gigan, Sylvain; Sentenac, Anne; Bossy, Emmanuel

    2016-03-01

    In deep photoacoustic imaging, resolution is inherently limited by acoustic diffraction, and ultrasonic frequencies cannot be arbitrarily increased because of attenuation in tissue. Here we report on the use of multiple speckle illumination to perform super resolution photoacoustic imaging. We show that the analysis of speckle-induced second-order fluctuations of the photoacoustic signal combined with deconvolution enables to resolve optically absorbing structures below the acoustic diffraction limit.

  10. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  11. Acoustic Performance of Novel Fan Noise Reduction Technologies for a High Bypass Model Turbofan at Simulated Flights Conditions

    NASA Technical Reports Server (NTRS)

    Elliott, David M.; Woodward, Richard P.; Podboy, Gary G.

    2010-01-01

    Two novel fan noise reduction technologies, over the rotor acoustic treatment and soft stator vane technologies, were tested in an ultra-high bypass ratio turbofan model in the NASA Glenn Research Center s 9- by 15-Foot Low-Speed Wind Tunnel. The performance of these technologies was compared to that of the baseline fan configuration, which did not have these technologies. Sideline acoustic data and hot film flow data were acquired and are used to determine the effectiveness of the various treatments. The material used for the over the rotor treatment was foam metal and two different types were used. The soft stator vanes had several internal cavities tuned to target certain frequencies. In order to accommodate the cavities it was necessary to use a cut-on stator to demonstrate the soft vane concept.

  12. Influence of resonators on the acoustic and propulsion performance characteristics of a ramjet ejector chamber under conditions with vibration hydrogen combustion

    NASA Astrophysics Data System (ADS)

    Potapkin, A. V.; Moskvichev, D. Yu.

    2008-09-01

    The influence of acoustic resonators on the acoustic and propulsion performance characteristics of a ramjet ejector chamber under conditions with vibration hydrogen combustion was experimentally examined. In the study, resonators having identical throats and different cavity diameters were used. For fixed-volume resonators the best propulsion performance characteristics were achieved in the case in which the cavity diameter differed little from the resonator throat diameter.

  13. Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world

    NASA Astrophysics Data System (ADS)

    Wen, B.; Wang, X. X.; Cao, W. Q.; Shi, H. L.; Lu, M. M.; Wang, G.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S.

    2014-05-01

    In this work, reduced graphene oxide (r-GO) and graphite nanosheet (GN) were obtained via the chemical approach. Furthermore, r-GO composites and GN composites were prepared with a paraffin wax host. r-GO composites show high dielectric properties and electromagnetic interference shielding efficiency (EMI SE). Compared with the GN composites, the loss tangent and EMI SE of the r-GO composites with the same mass ratio are enhanced ~5 to 10 times and ~3 to 10 times, respectively. The enhanced attenuation capacity arises from higher specific surface area, clustered defects and residual bonds of the r-GOs, which increase the polarization loss, scattering and conductivity of the composite. Moreover, the higher conductivity of r-GO composites leads to higher EMI SE compared with that of GN composites. These results suggest that r-GOs are highly promising fillers for microwave attenuation in the carbon family and that r-GO composites are high-performance EMI shielding materials with application anticipated to many fields.In this work, reduced graphene oxide (r-GO) and graphite nanosheet (GN) were obtained via the chemical approach. Furthermore, r-GO composites and GN composites were prepared with a paraffin wax host. r-GO composites show high dielectric properties and electromagnetic interference shielding efficiency (EMI SE). Compared with the GN composites, the loss tangent and EMI SE of the r-GO composites with the same mass ratio are enhanced ~5 to 10 times and ~3 to 10 times, respectively. The enhanced attenuation capacity arises from higher specific surface area, clustered defects and residual bonds of the r-GOs, which increase the polarization loss, scattering and conductivity of the composite. Moreover, the higher conductivity of r-GO composites leads to higher EMI SE compared with that of GN composites. These results suggest that r-GOs are highly promising fillers for microwave attenuation in the carbon family and that r-GO composites are high-performance EMI

  14. Influence of surrounding structures upon the aerodynamic and acoustic performance of the outdoor unit of a split air-conditioner

    NASA Astrophysics Data System (ADS)

    Wu, Chengjun; Liu, Jiang; Pan, Jie

    2014-07-01

    DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h-1) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.

  15. A new acoustic lens material for large area detectors in photoacoustic breast tomography☆

    PubMed Central

    Xia, Wenfeng; Piras, Daniele; van Hespen, Johan C.G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Objectives We introduce a new acoustic lens material for photoacoustic tomography (PAT) to improve lateral resolution while possessing excellent acoustic acoustic impedance matching with tissue to minimize lens induced image artifacts. Background A large surface area detector due to its high sensitivity is preferable to detect weak signals in photoacoustic mammography. The lateral resolution is then limited by the narrow acceptance angle of such detectors. Acoustic lenses made of acrylic plastic (PMMA) have been used to enlarge the acceptance angle of such detectors and improve lateral resolution. However, such PMMA lenses introduce image artifacts due to internal reflections of ultrasound within the lenses, the result of acoustic impedance mismatch with the coupling medium or tissue. Methods A new lens is proposed based on the 2-component resin Stycast 1090SI. We characterized the acoustic properties of the proposed lens material in comparison with commonly used PMMA, inspecting the speed of sound, acoustic attenuation and density. We fabricated acoustic lenses based on the new material and PMMA, and studied the effect of the acoustic lenses on detector performance comparing finite element (FEM) simulations and measurements of directional sensitivity, pulse-echo response and frequency response. We further investigated the effect of using the acoustic lenses on the image quality of a photoacoustic breast tomography system using k-Wave simulations and experiments. Results Our acoustic characterization shows that Stycast 1090SI has tissue-like acoustic impedance, high speed of sound and low acoustic attenuation. These acoustic properties ensure an excellent acoustic lens material to minimize the acoustic insertion loss. Both acoustic lenses show significant enlargement of detector acceptance angle and lateral resolution improvement from modeling and experiments. However, the image artifacts induced by the presence of an acoustic lens are reduced using the proposed

  16. Characterization of Transducer Performance and Narrowband Transient Ultrasonic Fields in Metals by Rayleigh-Sommerfeld Backpropagation of Compression Acoustic Waves Measured with Double-Pulsed Tv Holography

    NASA Astrophysics Data System (ADS)

    Trillo, Cristina; Doval, Ángel F.; Fernández, José L.; Rodríguez-Gómez, Pablo; López-Vázquez, J. Carlos

    2014-10-01

    This article presents a method aimed at the characterization of the narrowband transient acoustic field radiated by an ultrasonic plane transducer into a homogeneous, isotropic and optically opaque prismatic solid, and the assessment of the performance of the acoustic source. The method relies on a previous technique based on the full-field optical measurement of an acoustic wavepacket at the surface of a solid and its subsequent numerical backpropagation within the material. The experimental results show that quantitative transversal and axial profiles of the complex amplitude of the beam can be obtained at any plane between the measurement and excitation surfaces. The reconstruction of the acoustic field at the transducer face, carried out on a defective transducer model, shows that the method could also be suitable for the nondestructive testing of the performance of ultrasonic sources. In all cases, the measurements were performed with the transducer working under realistic loading conditions.

  17. Tropospheric IWV profiles estimation through multifrequency signal attenuation measurements between two counter-rotating LEO satellites: performance analysis

    NASA Astrophysics Data System (ADS)

    Facheris, Luca; Cuccoli, Fabrizio; Martini, Enrica

    2013-10-01

    The exploitation of multifrequency differential attenuation measurements at microwaves made between two LEO satellites in limb mode is the ground of the NDSA (Normalized Differential Spectral Attenuation) approach for estimating integrated tropospheric water vapor profiles through multifrequency measurements at 17, 19, 21, 179 and 182 GHz, plus 32 GHz for liquid water detection and correction (whenever possible). Such measurements are affected by two kinds of impairments, the first generated by thermal noise at the receiver, the second generated by the signals' fluctuations due to the variations of the tropospheric refraction index and referred to as scintillation disturbance. Characterizing scintillation for simulating its effects to evaluate NDSA performance is not easy in general: in particular, it is quite hard (and also rather questionable so some extent) to relate the scintillation parameters to a given simulated atmospheric situation. For this reason, in the past years we limited ourselves to evaluate the NDSA performance by accounting for scintillation in a parametric way, independently of the atmospheric context in which simulations were carried out. In this paper, instead, we show the first results of the NDSA performance analysis based on a completely different approach, where the scintillation profiles and parameters are directly derived from the simulated atmospheric context, based on a procedure that starts from high resolution radiosonde data. A brief critical analysis of such an approach is proposed, evidencing some aspects related to the current knowledge of the scintillation spectra and parameters. The NDSA performance analysis based on certain hypotheses for the scintillation characteristics is then shown for some selected simulated atmospheric conditions.

  18. The electrical properties of a planar coil electromagnetic acoustic transducer and their implications for noise performance

    NASA Astrophysics Data System (ADS)

    Seher, Matthias; Challis, Richard

    2016-02-01

    This paper is concerned with the electrical properties of an electromagnetic acoustic transducer (EMAT) formed of a flat spiral coil coupled to steel sheet components and operating over a narrow band of frequencies around 50 kHz, well below significant resonances. The electromagnetic skin effect is a significant contributor to the terminal impedance of the EMAT and hence to signal sensitivity, Johnson noise generation and the achievable signal-to-noise ratios (SNR). A transformer model is developed to simulate these effects and to assist in the optimization of the SNR. In this analysis Johnson noise in the system is compared to the unknown emf generated in the eddy current path by an incident acoustic wave to yield a fundamental SNR. The attainable SNR of the whole system is normalized to this in the form of a noise figure.

  19. Acoustic and vibration performance evaluations of a velocity sensing hull array

    NASA Astrophysics Data System (ADS)

    Cray, Benjamin A.; Christman, Russell A.

    1996-04-01

    Acoustic and vibration measurements were conducted at the Naval Undersea Warfare Center's Seneca Lake Facility to investigate the in situ signal response of a linear array of velocity sensors (sensors that measure either acoustic particle acceleration, velocity, or displacement have generically been denoted as velocity sensors) on a coating. The coating used at Seneca Lake consisted of air-voided elastomeric tiles with an overall coating thickness of approximately 3 inches. The accelerometer array and coating were mounted on the Seneca Lake Hull Fixture, which measures 33 feet lengthwise with an arc length of 20 feet. The fixture weighs approximately 30 tons. Specifically, measurements of in situ sensitivity, velocity reduction, reflection gain, array beam response, and equivalent planewave self-noise levels are presented.

  20. Stretch-Induced Reductions in Throwing Performance Are Attenuated by Warm-up Before Exercise.

    PubMed

    Mascarin, Naryana C; Vancini, Rodrigo L; Lira, Claudio A B; Andrade, Marilia S

    2015-05-01

    Recent investigations have suggested that static stretching (SS) performed before exercise reduces muscular performance. However, it is yet unknown whether dynamic warm-up exercises performed together with SS may actually minimize the detrimental acute effects of stretching on muscular performance. This study aimed to assess the effects of static shoulder stretching exercises, dynamic warm-up exercises, or both together, on muscular performance evaluated by ball throwing. Twenty-one female handball players (age: 16.2 ± 1.0 years [range: 14-18 years], height: 167.0 ± 10.0 cm [range: 158-179 cm], and body mass: 63.3 ± 7.6 kg [range: 50.4-77.4 kg]) performed SS, dynamic warm-up exercises or both, targeting the muscles of the upper limbs. Thereafter, medicine ball throwing distance and handball ball throwing speed tests were performed. Static stretching performed before the medicine ball throwing test reduced performance when compared with the warm-up exercises (95% confidence interval [CI] = 0.02-0.17, p ≤ 0.05, effect size [ES] = 0.34). When a warm-up exercise routine was added to SS, the detrimental effects of SS were abolished (95% CI = -0.01 to 0.18, p > 0.05, ES = 0.31). The throwing speed was the same over the 3 conditions. In conclusion, warm-up exercises performed together with SS abolished the impairment in medicine ball throwing distance. We recommend that athletes perform warm-up exercises together with SS before activity to avoid detrimental effects on muscle strength. PMID:25426509

  1. Acoustic Performance of an Advanced Model Turbofan in Three Aeroacoustic Test Facilities

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    2012-01-01

    A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot-Low-Speed Wind Tunnel (LSWT), and in two other aeroacoustic facilities. The Universal Propulsion Simulator (UPS) fan was designed and manufactured by the General Electric Aircraft Engines (GEAE) Company, and featured active core, as well as bypass, flow paths. The reference test configurations were with the metal, M4, rotor with hardwall and treated bypass flow ducts. The UPS fan was tested within an airflow at a Mach number of 0.20 (limited flow data were also acquired at a Mach number of 0.25) which is representative of aircraft takeoff and approach conditions. Comparisons were made between data acquired within the airflow (9x15 LSWT and German-Dutch Wind Tunnel (DNW)) and outside of a free jet (Boeing Low Speed Aero acoustic Facility (LSAF) and DNW). Sideline data were acquired on an 89-in. (nominal 4 fan diameters) sideline using the same microphone assembly and holder in the 9x15 LSWT and DNW facilities. These data showed good agreement for similar UPS operating conditions and configurations. Distortion of fan spectra tonal content through a free jet shear layer was documented, suggesting that in-flow acoustic measurements are required for comprehensive fan noise diagnostics. However, there was good agreement for overall sound power level (PWL) fan noise measurements made both within and outside of the test facility airflow.

  2. Effect of growth conditions on microstructure of BiFeO{sub 3}-0.33BaTiO{sub 3} films and performance of bulk acoustic wave resonators

    SciTech Connect

    Vorobiev, A. Gevorgian, S.; Löffler, M.; Olsson, E.

    2014-02-28

    The effect of growth conditions on the microstructure of BiFeO{sub 3}-0.33BaTiO{sub 3} (BF-BT) films and the performance of bulk acoustic wave (BAW) resonators is analyzed using test structures with the BF-BT films grown at different positions relative to the plume axis in the pulsed laser deposition system. The BF-BT film grain size and surface roughness reveal a strong asymmetric surface distribution and decrease significantly in the film region facing the laser beam-plume interaction area. The (100) BF-BT texturing is enhanced in this film region. The variations in the BF-BT film microstructure result in corresponding variations of the BAW resonator performance. Their correlations are established using the model of the roughness induced attenuation of the reflected acoustic waves and theory of the dc field induced piezoelectric effect. The BAW resonators with the highest parameters are obtained in the BF-BT film region facing the laser beam-plume interaction area. The BAW resonators located in this film region reveal a mechanical Q-factor of 200 at 4.2 GHz, an effective electromechanical coupling coefficient of 10% and a tunability of the series resonance frequency of 4.5%.

  3. Tuned Chamber Core Panel Acoustic Test Results

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  4. Competitive Game Play Attenuates Self-Other Integration during Joint Task Performance

    PubMed Central

    Ruissen, Margit I.; de Bruijn, Ellen R. A.

    2016-01-01

    Joint task performance is facilitated by sharing and integrating each other’s action representations. Research has shown that the amount of this so-called self-other integration depends on situational aspects related to the social context, including differences in the social relationship between co-acting individuals. There are indications that a cooperative relationship facilitates self-other integration while a competitive relationship results in more individualistic task performance. However, findings from previous studies in which the cooperative or competitive element was manipulated during task performance are inconsistent. Therefore, the present study aimed to manipulate the social relationship between two individuals prior to performing a social Simon task. This task is frequently used to measure self-other integration and distinction processes. A mixed-within-and-between-subjects design was used in which three groups of participants performed both a standard Simon task and a social Simon task after having played a Tetris game either individually, in cooperation with a co-actor, or in competition against another participant. Performance on the standard Simon task was not affected by the Tetris manipulation. However, a sustained effect of the induced cooperative versus competitive relationship was found on the social Simon Task. Less self-other integration was found in participants who had first played a competitive Tetris game compared to participants who had played a cooperative or solo version of the game. The current study thus demonstrates that an established cooperative or competitive relationship is sufficient to modulate the degree of self-other integration on subsequent joint task performance. Importantly, by using Tetris, attention to others’ actions was beneficial both during cooperative and competitive game play and can thus not explain the competition-induced reduction of self-other integration. PMID:26973571

  5. Competitive Game Play Attenuates Self-Other Integration during Joint Task Performance.

    PubMed

    Ruissen, Margit I; de Bruijn, Ellen R A

    2016-01-01

    Joint task performance is facilitated by sharing and integrating each other's action representations. Research has shown that the amount of this so-called self-other integration depends on situational aspects related to the social context, including differences in the social relationship between co-acting individuals. There are indications that a cooperative relationship facilitates self-other integration while a competitive relationship results in more individualistic task performance. However, findings from previous studies in which the cooperative or competitive element was manipulated during task performance are inconsistent. Therefore, the present study aimed to manipulate the social relationship between two individuals prior to performing a social Simon task. This task is frequently used to measure self-other integration and distinction processes. A mixed-within-and-between-subjects design was used in which three groups of participants performed both a standard Simon task and a social Simon task after having played a Tetris game either individually, in cooperation with a co-actor, or in competition against another participant. Performance on the standard Simon task was not affected by the Tetris manipulation. However, a sustained effect of the induced cooperative versus competitive relationship was found on the social Simon Task. Less self-other integration was found in participants who had first played a competitive Tetris game compared to participants who had played a cooperative or solo version of the game. The current study thus demonstrates that an established cooperative or competitive relationship is sufficient to modulate the degree of self-other integration on subsequent joint task performance. Importantly, by using Tetris, attention to others' actions was beneficial both during cooperative and competitive game play and can thus not explain the competition-induced reduction of self-other integration. PMID:26973571

  6. Effect of flow on the acoustic performance of extended reaction lined ducts

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Walker, B.

    1983-01-01

    A model is developed for the effects of uniform and boundary-layer mean flow on the attenuation and propagation of harmonically excited sound waves in an extended reaction lined cylindrical duct. A duct geometry consisting of an annular outer region of bulk material surrounding an inner cylinder of air is utilized. A numerical solution is obtained for the coupled wave equations governing the motion of the sound in both the inner and annular regions. It is found that the numerically predicted attenuation and propagations constants are in excellent agreement with measured values using Kevlar as the liner material for plane-wave mode (O,O) excitation over a wide range of mean flows and sound frequency. The boundary-layer effects are determined to be unimportant, at least for plane-wave sound. In addition, numerical studies indicate small differences between the use of either the radial velocity or the radial displacement boundary conditions.

  7. The influence of basketball shoes with increased ankle support on shock attenuation and performance in running and jumping.

    PubMed

    Brizuela, G; Llana, S; Ferrandis, R; García-Belenguer, A C

    1997-10-01

    The aim of this study was to assess the influence of footwear with increased ankle support on ankle kinematics and on impact loads during landing from a vertical jump using high-speed cinematography, dynamometry and accelerometry in a series of tests in which a rebound action was simulated. To analyse the effect of this increased support on motor performance, two performance tests were designed: a vertical jump test and an obstacle course running test. Two prototype shoes with identical soles but different uppers were used. The first was designed to provide greater ankle support, with such features as a high top, heel counters and a rearfoot lacing system. The second prototype was a less supporting shoe, with low top and no heel counter or any other feature for support. In the shock attenuation test, the use of high-support shoes resulted in higher forefoot impact forces and higher shock transmission to the head, but showed lower shock transmission to the tibia. The use of high support shoes resulted in lower ranges of eversion and higher ranges of inversion of the ankle on landing. In the motor performance tests, the high-support shoes reduced the height jumped and increased the time to complete the running course relative to the low-support shoes. We conclude that increased ankle support reduces ankle eversion range but increases shock transmission, and reduces both jumping and running performance.

  8. Role of nicotinic receptors in the lateral habenula in the attenuation of amphetamine-induced prepulse inhibition deficits of the acoustic startle response in rats

    PubMed Central

    Larrauri, José A.; Burke, Dennis A.; Hall, Brandon J.; Levin, Edward D.

    2015-01-01

    Rationale Prepulse inhibition (PPI) refers to the reduction of the startle response magnitude when a startling stimulus is closely preceded by a weak stimulus. PPI is commonly used to measure sensorimotor gating. In rats, the PPI reduction induced by the dopamine-agonist apomorphine can be reversed by systemic administration of nicotine. A high concentration of nicotinic receptors is found in the lateral habenula (LHb), an epithalamic structure with efferent projections to brain regions involved in the modulation of PPI, which has been shown to regulate the activity of midbrain dopamine neurons. Objectives The prospective role of nicotinic receptors in the LHb in the regulation of PPI was assessed in this study, using different pharmacological models of sensorimotor gating deficits. Methods Interactions between systemic amphetamine and haloperidol and intra-LHb infusions of mecamylamine (10 µg/side) or nicotine (30 µg/side) on PPI were analyzed in Experiments 1 and 2. Intra-LHb infusions of different nicotine doses (25, and 50 µg/side) and their interactions with systemic administration of amphetamine or dizocilpine on PPI were examined in Experiments 3 and 4. Results Infusions of nicotine into the LHb dose-dependently attenuated amphetamine-induced PPI deficits, but had no effect on PPI disruptions caused by dizocilpine. Intra-LHb mecamylamine infusions did not affect PPI nor interact with dopaminergic manipulations. Conclusions These results are congruent with previous reports of systemic nicotine effects on PPI, suggesting a role of the LHb in the attenuation of sensorimotor gating deficits caused by the hyperactivity of dopamine systems. PMID:25912180

  9. Design and analysis of the trapeziform and flat acoustic cloaks with controllable invisibility performance in a quasi-space

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping

    2015-07-01

    We present the design, implementation and detailed performance analysis for a class of trapeziform and flat acoustic cloaks. An effective large invisible area is obtained compared with the traditional carpet cloak. The cloaks are realized with homogeneous metamaterials which are made of periodic arrangements of subwavelength unit cells composed of steel embedded in air. The microstructures and its effective parameters of the cloaks are determined quickly and precisely in a broadband frequency range by using the effective medium theory and the proposed parameters optimization method. The invisibility capability of the cloaks can be controlled by the variation of the key design parameters and scale factor which are proved to have more influence on the performance in the near field than that in the far field. Different designs are suitable for different application situations. Good cloaking performance demonstrates that such a device can be physically realized with natural materials which will greatly promote the real applications of invisibility cloak.

  10. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    NASA Astrophysics Data System (ADS)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  11. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    SciTech Connect

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  12. Performance Assessment of Suture Type, Water Temperature, and Surgeon Skill in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters

    SciTech Connect

    Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.; Boyd, James W.; Eppard, M. B.; Seaburg, Adam

    2010-05-01

    This study assessed performance of seven suture types in subyearling Chinook salmon Oncorhynchus tshawytscha implanted with acoustic microtransmitters. Nonabsorbable (Ethilon) and absorbable (Monocryl) monofilament and nonabsorbable (Nurolon, silk) and absorbable (Vicryl, Vicryl Plus, Vicryl Rapide) braided sutures were used to close incisions in Chinook salmon. Monocryl exhibited greater suture retention than all other suture types 7 d after surgery. Both monofilament suture types were retained better than all braided suture types at 14 d. Incision openness and tag retention did not differ among suture types. Wound inflammation was similar for Ethilon, Monocryl, and Nurolon at 7 d. Wound ulceration was lower for Ethilon, Monocryl, and Nurolon than for all other suture types at 14 d post-surgery. Fish held in 12°C water had more desirable post-surgery healing characteristics (i.e., higher suture and tag retention and lower incision openness, wound inflammation, and ulceration) at 7 and 14 d after surgery than those held in 17°C water. The effect of surgeon was a significant predictor for all response variables at 7 d. This result emphasizes the importance of including surgeon as a variable in telemetry study analyses when multiple surgeons are used. Monocryl performed better with regard to post-surgery healing characteristics in the study fish. The overall results support the conclusion that Monocryl is the best suture material to close incisions created during surgical implantation of acoustic microtransmitters in subyearling Chinook salmon.

  13. Propagation characteristics of acoustic waves in snow

    NASA Astrophysics Data System (ADS)

    Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani

    2015-04-01

    Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.

  14. [Quantification and improvement of speech transmission performance using headphones in acoustic stimulated functional magnetic resonance imaging].

    PubMed

    Yamamura, Ken ichiro; Takatsu, Yasuo; Miyati, Tosiaki; Kimura, Tetsuya

    2014-10-01

    Functional magnetic resonance imaging (fMRI) has made a major contribution to the understanding of higher brain function, but fMRI with auditory stimulation, used in the planning of brain tumor surgery, is often inaccurate because there is a risk that the sounds used in the trial may not be correctly transmitted to the subjects due to acoustic noise. This prompted us to devise a method of digitizing sound transmission ability from the accuracy rate of 67 syllables, classified into three types. We evaluated this with and without acoustic noise during imaging. We also improved the structure of the headphones and compared their sound transmission ability with that of conventional headphones attached to an MRI device (a GE Signa HDxt 3.0 T). We calculated and compared the sound transmission ability of the conventional headphones with that of the improved model. The 95 percent upper confidence limit (UCL) was used as the threshold for accuracy rate of hearing for both headphone models. There was a statistically significant difference between the conventional model and the improved model during imaging (p < 0.01). The rate of accuracy of the improved model was 16 percent higher. 29 and 22 syllables were accurate at a 95% UCL in the improved model and the conventional model, respectively. This study revealed the evaluation system used in this study to be useful for correctly identifying syllables during fMRI.

  15. Performance Optimization of a Rotor Alone Nacelle for Acoustic Fan Testing

    NASA Technical Reports Server (NTRS)

    Cunningham, C. C.; Thompson, W. K.; Hughes, C. E.

    2000-01-01

    This paper describes the techniques, equipment, and results from the optimization of a two-axis traverse actuation system used to maintain concentricity between a sting-mounted fan and a wall-mounted nacelle in the 9 x 15 (9 Foot by 15 Foot Test Section) Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center (GRC). The Rotor Alone Nacelle (RAN) system, developed at GRC by the Engineering Design and Analysis Division (EDAD) and the Acoustics Branch, used nacelle-mounted lasers and an automated control system to maintain concentricity as thermal and thrust operating loads displace the fan relative to the nacelle. This effort was critical to ensuring rig/facility safety and experimental consistency of the acoustic data from a statorless, externally supported nacelle configuration. Although the tip clearances were originally predicted to be about 0.020 in. at maximum rotor (fan) operating speed, proximity probe measurements showed that the nominal clearance was less than 0.004 in. As a result, the system was optimized through control-loop modifications, active laser cooling, data filtering and averaging, and the development of strict operational procedures. The resultant concentricity error of RAN was reduced to +/- 0.0031 in. in the Y-direction (horizontal) and +0.0035 in./-0.001 3 in. in the Z-direction (vertical), as determined by error analysis and experimental results. Based on the success of this project, the RAN system will be transitioned to other wind tunnel research programs at NASA GRC.

  16. Clinical Studies of Real-Time Monitoring of Lithotripter Performance Using Passive Acoustic Sensors

    NASA Astrophysics Data System (ADS)

    Leighton, T. G.; Fedele, F.; Coleman, A. J.; McCarthy, C.; Ryves, S.; Hurrell, A. M.; De Stefano, A.; White, P. R.

    2008-09-01

    This paper describes the development and clinical testing of a passive device which monitors the passive acoustic emissions generated within the patient's body during Extracorporeal Shock Wave Lithotripsy (ESWL). Designed and clinically tested so that it can be operated by a nurse, the device analyses the echoes generated in the body in response to each ESWL shock, and so gives real time shock-by-shock feedback on whether the stone was at the focus of the lithotripter, and if so whether the previous shock contributed to stone fragmentation when that shock reached the focus. A shock is defined as being `effective' if these two conditions are satisfied. Not only can the device provide real-time feedback to the operator, but the trends in shock `effectiveness' can inform treatment. In particular, at any time during the treatment (once a statistically significant number of shocks have been delivered), the percentage of shocks which were `effective' provides a treatment score TS(t) which reflects the effectiveness of the treatment up to that point. The TS(t) figure is automatically delivered by the device without user intervention. Two clinical studies of the device were conducted, the ethics guidelines permitting only use of the value of TS(t) obtained at the end of treatment (this value is termed the treatment score TS0). The acoustically-derived treatment score was compared with the treatment score CTS2 given by the consultant urologist at the three-week patient's follow-up appointment. In the first clinical study (phase 1), records could be compared for 30 out of the 118 patients originally recruited, and the results of phase 1 were used to refine the parameter values (the `rules') with which the acoustic device provides its treatment score. These rules were tested in phase 2, for which records were compared for 49 of the 85 patients recruited. Considering just the phase 2 results (since the phase 1 data were used to draw up the `rules' under which phase 2 operated

  17. Scaling and dimensional analysis of acoustic streaming jets

    SciTech Connect

    Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.

    2014-09-15

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.

  18. Postoperative environmental enrichment attenuates fimbria-fornix lesion-induced impairments in Morris maze performance.

    PubMed

    van Rijzingen, I M; Gispen, W H; Spruijt, B M

    1997-01-01

    Male Wistar rats were given a bilateral or a unilateral transection of the fimbria-fornix; subsequently they were kept in standard laboratory housing conditions or in enriched environments for 6 weeks, after which they were tested in the Morris maze. In the acquisition phase of the experiment rats with a bilateral lesion of the fimbria-fornix were markedly impaired in their ability to locate the hidden platform, while rats with unilateral lesions displayed no such impairment. However, rats with a bilateral lesion displayed a less severe deficit when they had been housed postoperatively in the enriched environment. In the retention phase of the experiment rats with a bilateral lesion swam markedly less time in the platform zone only when they had been housed in standard conditions. They also spent more time in the edge zone than the other groups. Rats with a bilateral lesion that were housed enriched did not swim more in the edge zone. Despite their good performance during acquisition they did not display a clear preference for the platform zone. Thus, it was speculated that enriched rats with a bilateral lesion had learned to leave the side of the pool to search for the platform and with the aid of this different strategy improved their performance.

  19. Progesterone improves cognitive performance and attenuates smoking urges in abstinent smokers

    PubMed Central

    Sofuoglu, Mehmet; Mouratidis, Maria; Mooney, Marc

    2010-01-01

    Summary Background Progesterone, a steroid hormone, has been implicated in many CNS functions including reward, cognition, and neuroprotection. The goal of this study was to examine the dose-dependent effects of progesterone on cognitive performance, smoking urges, and smoking behavior in smokers. Methods Thirty female and thirty-four male smokers participated in a double-blind, placebo-controlled study. Female smokers were in the early follicular phase of their menstrual cycle during study participation. Smokers were randomly assigned to either 200 or 400 mg/day of progesterone or placebo, given in two separate doses, during clinic visit. The first 3 days of the treatment period, smokers abstained from smoking, which was verified with breath CO levels. Smokers attended an experimental session on day 4 where the number of cigarettes smoked were recorded starting two hours after the medication treatment. Results Progesterone treatment, 200 mg/day, significantly improved cognitive performance in the Stroop and the Digit Symbol Substitution Test. Progesterone at 400 mg/day was associated with reduced urges for smoking but did not change ad lib smoking behavior. Conclusions These findings suggest a potential therapeutic value of progesterone for smoking cessation. PMID:20675057

  20. SKF 83566 attenuates the effects of ghrelin on performance in the object location memory task.

    PubMed

    Jacoby, Sarah M; Currie, Paul J

    2011-10-31

    Increasing research implicates ghrelin, a metabolic signaling peptide, in memory processes including acquisition, consolidation, and retention. The present study investigated the effects of ghrelin on spatial memory acquisition by utilizing the object location memory task paradigm. Given the co-expression of ghrelin and dopamine D(1) receptors within hippocampal neurons, we examined a potential interaction between these two systems on memory performance. When injected into the dorsal third ventricle (D3V) of male Sprague-Dawley rats, proximal to hippocampal tissue, ghrelin (500 pmol) increased the amount of time spent with objects in novel locations. This effect was completely reversed by the D(1) antagonist SKF 83566 (100 μg/kg IP), although when administered alone, the antagonist had no effect on task performance (10-100 μg/kg). We also examined the feeding effects of D3V ghrelin and found that the peptide reliably increased food intake (500 pmol) but that this effect was not blocked by SKF 83566 (100 μg/kg). When given alone, SKF 83566 did not alter food intake (10-100 μg/kg). Our findings indicate that, in addition to an orexigenic effect, ghrelin improves acquisition of spatial location memories. Furthermore, D(1) receptor activation is necessary for ghrelin to improve the encoding of spatial memories but does not impact the increase in food intake elicited by the peptide.

  1. Acoustic performance of a 50.8-cm (20-inch) diameter variable-pitch fan and inlet. Volume 2: Acoustic data

    NASA Technical Reports Server (NTRS)

    Bilwakesh, K. R.; Clemons, A.; Stimpert, D. L.

    1979-01-01

    Results from acoustic tests on a 50.8 cm (20 inch) QCSEE Under-the-Wing (UTW) engine, variable pitch fan and inlet simulator are tabulated. Tests were run in both forward and reverse thrust mdoes with a bellmouth inlet, five accelerating inlets (one hardwall and four treated), and four low Mach number inlets (one hardwall and three treated). The 1/3 octave-band acoustic data are presented for the model size on the measured 5.2 m (17.0 ft) arc and also data scaled to full QCSEE size 71:20 on a 152.4 m (500 ft) sideline.

  2. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  3. Numerical investigation on buffer performance based on acoustic excitation by stimulated Brillouin scattering in an As 2Se 3 fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyao; Zhou, Xiaojun; Liang, Rui; Qin, Zujun; Liu, Yong

    2009-07-01

    Buffer performance of a 2.5 Gb/s bit stream with non-return-to-zero format is investigated based on acoustic excitation by stimulated Brillouin scattering in an As 2Se 3 fiber. The storage process and the retrieval process of the bit stream are separately controlled by a "Write" pulse and a "Read" pulse. The research results show that the output signal-to-noise ratio and the readout efficiency of the buffer are agreeable, and the pulse distortion is low, if both the "Write" and the "Read" pulses are with high enough peak power and spectrum wider than that of the signal pulse. Buffering of a consecutive 10-bit-long 2.5 Gb/s NRZ bit stream has also been demonstrated in the As 2Se 3 fiber with length of only 0.5 m. The storage of a long bit stream, such as the data packet containing about 1000 bits in the telecommunications, is limited by the high loss in the As 2Se 3 fiber. However, the development of the special optical fiber with high Brillouin gain coefficient, long acoustic lifetime and low loss can make this technology applicable for all-optical buffering in high speed optical networks.

  4. Performance of double three-dimensional rigid barriers used to create an acoustic space—A normal derivative integral equationapproach

    NASA Astrophysics Data System (ADS)

    António, J.; Tadeu, A.; Castro, I.

    2013-06-01

    This paper simulates the propagation of sound generated by point pressure sources in the vicinity of double three-dimensional (3D) barriers, placed so as to create an indoor acoustic space. The barriers are assumed to be very thin rigid elements. The problem is solved by developing and implementing a 3D Boundary Element Method formulation using a normal derivative integral equation (TBEM), thereby allowing the definition of models in which only the discretization of the barriers as single open surfaces is required. The TBEM is formulated in the frequency domain and the resulting hypersingular terms are computed analytically. After the verification of the model against two-and-a-half-dimensional (2.5D) BEM solutions, several numerical applications are described to illustrate the applicability and usefulness of the proposed approaches. Different barrier shape geometries and their relative position with respect to a lateral wall are analyzed to evaluate the performance of double 3D rigid barriers in the creation of an acoustic space.

  5. Evaluation of Vibration and Shock Attenuation Performance of a Suspension Seat with a Semi-Active Magnetorheological Fluid Damper

    NASA Astrophysics Data System (ADS)

    MCMANUS, S. J.; ST. CLAIR, K. A.; BOILEAU, P. É.; BOUTIN, J.; RAKHEJA, S.

    2002-05-01

    The potential benefits of a semi-active magnetorheological (MR) damper in reducing the incidence and severity of end-stop impacts of a low natural frequency suspension seat are investigated. The MR damper considered is a commercially developed product, referred to as “Motion Master semi-active damping system” and manufactured by Lord Corporation. The end-stop impact and vibration attenuation performance of a seat equipped with such a damper are evaluated and compared with those of the same seat incorporating a conventional damper. The evaluation is performed on a servo-hydraulic vibration exciter by subjecting the seat-damper combinations to a transient excitation with dominant frequency close to that of the seat and continuous random excitation class EM1 applicable to earth-moving machinery, and a more severe excitation realized by amplifying the EM1 excitation by 150%. Tests are performed for medium and firm settings of the MR damper and for seat height positions corresponding to mid-ride and ±2·54 and ±5·08 cm relative to mid-ride. The results indicate that significantly higher levels of transient excitation are necessary to induce end-stop impacts for the seat equipped with the MR damper, particularly when set for firm damping, the difference with the conventional damper being more pronounced for seat positions closer to the end-stops. Under the EM1 excitation, the results indicate that under conditions which would otherwise favour the occurrence of end-stop impacts for a seat equipped with a conventional damper, the use of the MR damper can result in considerably less severe impacts and correspondingly lower vibration exposure levels, particularly when positioned closer to its compression or rebound limit stop.

  6. Models of weather effects on noise temperature and attenuation for Ka- and X-band telemetry performance analysis

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.

    1987-01-01

    Models that show the effects of weather on noise temperature and attenuation of deep space telemetry signals received by the Deep Space Network (DSN) at Ka- and X-band (32 and 8.5 GHz) are developed. These models were used to compare the performance of telemetry links at these two frequencies. The models build on an earlier 1982 model that used three months of water vapor radiometer measurements (31.4 GHz) at Goldstone, augmented with one year of radiosonde measurements made at Edwards Air Force Base. This 1986 model accounts for annual variations of rainfall and extends to a model for Canberra, Australia, and Madrid, Spain. The results show, for example, that at Ka-band, 30 degrees elevation angle, Goldstone weather adds less than 23 + or - 2 K to the system temperature 80% of the time, while Canberra or Madrid weather adds less than 32 + or - 5 K 80% of the time. At X-band, the comparable numbers are 5.1 + or - 0.2 K and 5.7 + or - 0.4 K. A simple analysis shows a substantial telemetry system signal-to-noise ratio advantage when operating at Ka-band compared to X-band.

  7. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-11-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell’s law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  8. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  9. Acoustic metamaterial for subwavelength edge detection

    PubMed Central

    Molerón, Miguel; Daraio, Chiara

    2015-01-01

    Metamaterials have demonstrated the possibility to produce super-resolved images by restoring propagative and evanescent waves. However, for efficient information transfer, for example, in compressed sensing, it is often desirable to visualize only the fast spatial variations of the wave field (carried by evanescent waves), as the one created by edges or small details. Image processing edge detection algorithms perform such operation, but they add time and complexity to the imaging process. Here we present an acoustic metamaterial that transmits only components of the acoustic field that are approximately equal to or smaller than the operating wavelength. The metamaterial converts evanescent waves into propagative waves exciting trapped resonances, and it uses periodicity to attenuate the propagative components. This approach achieves resolutions ∼5 times smaller than the operating wavelength and makes it possible to visualize independently edges aligned along different directions. PMID:26304739

  10. Acoustic-emission monitoring of steam turbines

    NASA Astrophysics Data System (ADS)

    Graham, L. J.; Randall, R. L.; Hong, C.

    1982-04-01

    A method for the on-line detection of crack growth in steam turbine rotors based on acoustic emission (AE) monitoring is discussed. A systematic study involving a number of tasks was performed to evaluate the potential for the detection and correct identification of crack growth AE signals during various turbine operating conditions. These included acoustic wave propagation and attenuation measurements, background noise characterization, laboratory rotor material tests, monitoring equipment optimization, dynamic stress analysis of the rotor under transient operation and on-line source location and signal characterization. No crack growth was detected during the monitoring periods but there was sufficient information from the combined tasks to estimate the flaw growth detectability during different operating conditions if it occurs. The experience also suggests that AE monitoring can be useful for diagnosis of other turbine problems such as blade rubbing, out-of-balance condition, bearing deterioration, lubricating oil contamination and perhaps boiler exfoliation and blade erosion.

  11. Acoustic characterization of monodisperse lipid-coated microbubbles: relationship between size and shell viscoelastic properties.

    PubMed

    Parrales, Miguel A; Fernandez, Juan M; Perez-Saborid, Miguel; Kopechek, Jonathan A; Porter, Tyrone M

    2014-09-01

    The acoustic attenuation spectrum of lipid-coated microbubble suspensions was measured in order to characterize the linear acoustic behavior of ultrasound contrast agents. For that purpose, microbubbles samples were generated with a very narrow size distribution by using microfluidics techniques. A performance as good as optical characterization techniques of single microbubbles was achieved using this method. Compared to polydispersions (i.e., contrast agents used clinically), monodisperse contrast agents have a narrower attenuation spectrum, which presents a maximum peak at a frequency value corresponding to the average single bubble resonance frequency. The low polydispersity index of the samples made the estimation of the lipid viscoelastic properties more accurate since, as previously reported, the shell linear parameters may change with the equilibrium bubble radius. The results showed the great advantage of dealing with monodisperse populations rather than polydisperse populations for the acoustic characterization of ultrasound contrast agents. PMID:25190383

  12. Acoustic and Perceptual Measures of SATB Choir Performances on Two Types of Portable Choral Riser Units in Three Singer-Spacing Conditions

    ERIC Educational Resources Information Center

    Daugherty, James F.; Manternach, Jeremy N.; Brunkan, Melissa C.

    2013-01-01

    Under controlled conditions, we assessed acoustically (long-term average spectra) and perceptually (singer survey, listener survey) six performances of an soprano, alto, tenor, and bass (SATB) choir ("N" = 27) as it sang the same musical excerpt on two portable riser units (standard riser step height, taller riser step height) with…

  13. [Radiometers performance attenuation and data correction in long-term observation of total radiation and photosynthetically active radiation in typical forest ecosystems in China].

    PubMed

    Zhu, Zhi-Lin; Sun, Xiao-Min; Yu, Gui-Rui; Wen, Xue-Fa; Zhang, Yi-Ping; Han, Shi-Jie; Yan, Jun-Hua; Wang, Hui-Min

    2011-11-01

    Based on the total radiation and photosynthetically active radiation (PAR) observations with net radiometer (CNR1) and quantum sensor (Li-190SB) in 4 ChinaFLUX forest sites (Changbaishan, Qianyanzhou, Dinghushan, and Xishuangbanna) in 2003-2008, this paper analyzed the uncertainties and the radiometers performance changes in long-term and continuous field observation. The results showed that the 98% accuracy of the total radiation measured with CNR1 (Q(cNR1)) could satisfy the technical criterion for the sites except Xishuangbanna where the Q(CNR1) was averagely about 7% lower than Q(CM11), the radiation measured with high accuracy pyranometer CM11. For most sites, though the temperature had definite effects on the performance of CNR1, the effects were still within the allowable range of the accuracy of the instrument. Besides temperature, the seasonal fog often occurred in tropical rain forests in Xishuangbanna also had effects on the performance of CNR1. Based on the long-term variations of PAR, especially its ratio to total radiation in the 4 sites, it was found that quantum sensor (Li-190SB) had obvious performance attenuation, with the mean annual attenuation rate being about 4%. To correct the observation error caused by Li-190SB, an attempt was made to give a post-correction of the PAR observations, which could basically eliminate the quantum sensor's performance attenuation due to long-term field measurement.

  14. Acoustic and aerodynamic performance of a 1.83 meter (6 foot) diameter 1.2 pressure ratio fan (QF-6). [for short takeoff aircraft

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.; Stakolich, E. G.

    1974-01-01

    A 1.2-pressure-ratio, 1.83-meter-(6-ft-) diameter experimental fan stage with characteristics suitable for use in STOL aircraft engines was tested for acoustic and aerodynamic performance. The design incorporated features for low noise, including absence of inlet guide vanes, low rotor-blade-tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator rows. The stage was run with four nozzles of different area. The perceived noise along a 152.4 meter (500-ft) sideline was rear-quadrant dominated with a maximum design-point level of 103.9 PNdb. The acoustic 1/3-octave results were analytically separated into broadband and pure-tone components. It was found that the stage noise levels generally increase with a decrease in nozzle area, with this increase observed primarily in the broadband noise component. A stall condition was documented acoustically with a 90-percent-of-design-area nozzle.

  15. Performance investigation of a novel pseudoelastic SMA mesh washer gear wheel with micro-jitter attenuation capability

    NASA Astrophysics Data System (ADS)

    Kwon, Seong-Cheol; Jeon, Su-Hyeon; Oh, Hyun-Ung

    2016-05-01

    A stepper-actuated mechanism, such as a gimbal type antenna, is a major source of micro-jitters that affect the image quality of a high-resolution observation satellite. Attenuating micro-jitter disturbances induced by a stepper motor activation is one method of enhancing image quality of an observation satellite. In this study, we propose a novel gear with micro-jitter attenuation capability for stepper-actuated mechanism. This can be achieved by implementing a pseudoelastic shape memory alloy mesh washer on the gear wheel. This application makes it possible to achieve the gear with lower torsional stiffness and higher damping in the torsional direction of the gear, whose characteristics will assist in resolving the micro-jitter attenuation issues of a gear. The effectiveness of the gear proposed in this study was demonstrated by numerical simulation and jitter measurement tests using the gimbal type antenna mechanism actuated by the stepper motor.

  16. Design of a digital beam attenuation system for computed tomography. Part II. Performance study and initial results

    SciTech Connect

    Szczykutowicz, Timothy P.; Mistretta, Charles A.

    2013-02-15

    Purpose: The purpose of this work is to present a performance study of the digital beam attenuator (DBA) for implementing fluence field modulated CT (FFMCT) using a simulation framework developed to model the incorporation of the DBA into an existing CT system. Additionally, initial results will be presented using a prototype DBA and the realization of the prototype will be described. To our knowledge, this study represents the first experimental use of a device capable of modulating x-ray fluence as a function of fan angle using a CT geometry. Methods: To realize FFMCT, the authors propose to use a wedge design in which one wedge is held stationary and another wedge is moved over the stationary wedge. Due to the wedge shape, the composite thickness of the two wedges changes as a function of the amount of overlap between the wedges. This design allows for the wedges to modulate the photon fluence incident onto a patient. Using a simulation environment, the effect of changing the number of wedges has on dose, scatter, detector dynamic range, and noise uniformity is explored. Experimental results are presented using a prototype DBA having ten Fe wedges and a c-arm CT system geometry. The experimental DBA results are compared to non-DBA scans using scatter and detector dynamic range as metrics. Both flat field and bowtie filtered CT acquisitions were simulated for comparison with the DBA. Results: Numerical results suggest that substantial gains in noise uniformity and scatter-to-primary ratio (SPR) can be obtained using only seven wedges. After seven wedges, the decrease in noise ununiformity and SPR falls off at a lower rate. Simulations comparing CT acquisitions between flat field, bowtie enabled, and DBA CT acquisitions suggest DBA-FFMCT can reduce dose relative to flat field CT by Almost-Equal-To 3 times. A bowtie filter under the same imaging conditions was shown to only allow a dose reduction of 1.65 times. Experimentally, a 10 wedge DBA prototype result showed

  17. Acoustic Radiation Force Beam Sequence Performance for Detection and Material Characterization of Atherosclerotic Plaques: Preclinical, Ex Vivo Results

    PubMed Central

    Behler, Russell H.; Czernuszewicz, Tomasz J.; Wu, Chih-Da; Nichols, Timothy C.; Zhu, Hongtu; Homeister, Jonathon W.; Merricks, Elizabeth P.; Caughey, Melissa C.; Gallippi, Caterina M.

    2014-01-01

    This work presents preclinical data demonstrating performance of acoustic radiation force (ARF) based elasticity imaging with five different beam sequences for atherosclerotic plaque detection and material characterization. Twelve trained, blinded readers evaluated parametric images taken ex vivo under simulated in vivo conditions of 22 porcine femoral arterial segments. Receiver operating characteristic (ROC) curve analysis was carried out to quantify reader performance using spatially-matched immunohistochemistry for validation. The beam sequences employed had high sensitivity and specificity for detecting Type III+ plaques (Sens: 85%, Spec: 79%), lipid pools (Sens: 80%, Spec: 86%), fibrous caps (Sens: 86%, spec: 82%), calcium (Sens: 96%, Spec: 85%), collagen (Sens: 78%, Spec: 77%), and disrupted internal elastic lamina (Sens: 92%, Spec: 75%). 1:1 single-receive tracking yielded the highest median areas under the ROC curve (AUC), but was not statistically significantly higher than 4:1 parallel-receive tracking. Excitation focal configuration did not result in statistically different AUCs. Overall, these results suggest ARF-based imaging is relevant to detecting and characterizing plaques and support its use for diagnosing and monitoring atherosclerosis. PMID:24297014

  18. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2001-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  19. Combined acoustical and visual performance of noise barriers in mitigating the environmental impact of motorways.

    PubMed

    Jiang, Like; Kang, Jian

    2016-02-01

    This study investigated the overall performance of noise barriers in mitigating environmental impact of motorways, taking into consideration their effects on reducing noise and visual intrusions of moving traffic, but also potentially inducing visual impact themselves. A laboratory experiment was carried out, using computer-visualised video scenes and motorway traffic noise recordings to present experimental scenarios covering two traffic levels, two distances of receiver to road, two types of background landscape, and five barrier conditions including motorway only, motorway with tree belt, motorways with 3 m timber barrier, 5m timber barrier, and 5m transparent barrier. Responses from 30 participants of university students were gathered and perceived barrier performance analysed. The results show that noise barriers were always beneficial in mitigating environmental impact of motorways, or made no significant changes in environmental quality when the impact of motorways was low. Overall, barriers only offered similar mitigation effect as compared to tree belt, but showed some potential to be more advantageous when traffic level went high. 5m timber barrier tended to perform better than the 3m one at the distance of 300 m but not at 100 m possibly due to its negative visual effect when getting closer. The transparent barrier did not perform much differently from the timber barriers but tended to be the least effective in most scenarios. Some low positive correlations were found between aesthetic preference for barriers and environmental impact reduction by the barriers.

  20. Fuselage panel noise attenuation by piezoelectric switching control

    NASA Astrophysics Data System (ADS)

    Makihara, Kanjuro; Miyakawa, Takeya; Onoda, Junjiro; Minesugi, Kenji

    2010-08-01

    This paper describes a problem that we encountered in our noise attenuation project and our solution for it. We intend to attenuate low-frequency noise that transmits through aircraft fuselage panels. Our method of noise attenuation is implemented with a piezoelectric semi-active system having a selective switch instead of an active energy-supply system. The semi-active controller is based on the predicted sound pressure distribution obtained from acoustic emission analysis. Experiments and numerical simulations demonstrate that the semi-active method attenuates acoustic levels of not only the simple monochromatic noise but also of broadband noise. We reveal that tuning the electrical parameters in the circuit is the key to effective noise attenuation, to overcome the acoustic excitation problem due to sharp switching actions, as well as to control chattering problems. The results obtained from this investigation provide meaningful insights into designing noise attenuation systems for comfortable aircraft cabin environments.

  1. Field-scale model for the natural attenuation of uranium at the Hanford 300 area using high performance computing

    SciTech Connect

    Lichtner, Peter C; Hammond, Glenn E

    2009-01-01

    Three-dimensional reactive flow and transport simulations are carried out to better understand the persistence of uranium [U(VI)] at the Hanford 300 Area bordering the Columbia River. The massively parallel code PFLOTRAN developed under a DOE SciDAC-2 project is employed in the simulations. The calculations were carried out on 4096 processor cores on ORNL's Jaguar XT4 & 5 Cray supercomputers with run times on the order of 6 hours, equivalent to several years if performed on a single processor with sufficient memory. A new conceptual model is presented for understanding present-day and future attenuation rates of U(VI) at the 300 Area site. Unique to the conceptual model is the recognition of three distinct phases in the evolution of the site corresponding to: (I) initial emplacement of waste; (II) present-day conditions of slow leaching of U(VI) from the Hanford sediments; and (III) the complete removal of non-labile U(VI) from the source region. This work focuses on Phase II. Both labile and non-labile forms of U(VI) are included in the model as sorbed and mineralized forms of U(VI), respectively. The non-labile form plays an important role in providing a long-term source of U(VI) as it slowly leaches out of the Hanford sediment. Rapid fluctuations in the Columbia River stage on hourly, weekly and seasonal time scales are found to' playa major role in determining the migration behavior of U(VI). The calculations demonstrate that U(VI) is released into the Columbia River at a highly fluctuating rate in a ratchet-like behavior with nonzero U(VI) flux occurring only during flow from contaminated sediment into the river. The cumulative flux, however, is found to increase approximately linearly with time. The flow rate and U(VI) flux into the Columbia River predicted by the model is highly sensitive to the value used in the conductance boundary condition at the river-sediment interface. By fitting the conductance to the measured piezometric head at well 399-2-1, good

  2. Acoustic Characterization and Impact Sensing for Ceramic Thermal Protection Systems (TPS)

    SciTech Connect

    Kuhr, S. J.; Reibel, R.; Sathish, S.; Jata, K. V.

    2006-03-06

    A study was conducted to understand acoustic wave propagation characteristics in a ceramic matrix composite (CMC) wrapped tile thermal protection system (CMC+ Foam+ RTV+ SIP+ RTV+ Al) and ceramic foam. Sound velocities were measured in three orthogonal directions on the above material. The attenuation coefficients were also determined for a uncoated ceramic foam. Commercially available standard acoustic emission transducers, piezo-wafers and polymer based PVDF (polyvinylidiene fluoride) film were employed in the experiments to acquire the acoustic data. The performance characteristics of these sensors will be discussed in light of impact detection. Variation in the wave propagation characteristics along different directions and the role of processing in causing anisotropic acoustic properties in thermal protection systems will be discussed.

  3. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  4. Mid frequency shallow water fine-grained sediment attenuation measurements.

    PubMed

    Holland, Charles W; Dosso, Stan E

    2013-07-01

    Attenuation is perhaps the most difficult sediment acoustic property to measure, but arguably one of the most important for predicting passive and active sonar performance. Measurement techniques can be separated into "direct" measurements (e.g., via sediment probes, sediment cores, and laboratory studies on "ideal" sediments) which are typically at high frequencies, O(10(4)-10(5)) Hz, and "indirect" measurements where attenuation is inferred from long-range propagation or reflection data, generally O(10(2)-10(3)) Hz. A frequency gap in measurements exists in the 600-4000 Hz band and also a general acknowledgement that much of the historical measurements on fine-grained sediments have been biased due to a non-negligible silt and sand component. A shallow water measurement technique using long range reverberation is critically explored. An approximate solution derived using energy flux theory shows that the reverberation is very sensitive to depth-integrated attenuation in a fine-grained sediment layer and separable from most other unknown geoacoustic parameters. Simulation using Bayesian methods confirms the theory. Reverberation measurements across a 10 m fine-grained sediment layer yield an attenuation of 0.009 dB/m/kHz with 95% confidence bounds of 0.006-0.013 dB/m/kHz. This is among the lowest values for sediment attenuation reported in shallow water.

  5. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  6. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  7. Low-speed wind-tunnel investigation of the aerodynamic and acoustic performance of a translating grid choked flow inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Miller, B. A.; Golladay, R. L.

    1974-01-01

    The aerodynamic and acoustic performance of a translating grid choked-flow inlet was determined in a low-speed wind tunnel at free-stream velocities of 24, 32, and 45 m/sec and incidence angles of 0, 10, 20, 30, 35, 40, 45, and 50 deg. The inlet was sized to fit a 13.97- centimeter-diameter fan with a design weight flow of 2.49 kg/sec. Measurements were made to determine inlet total pressure recovery, flow distortion, and sound pressure level for both choked and unchoked geometries over a range of inlet weight flows. For the unchoked geometry, inlet total pressure recovery ranged from 0.983 to 0.989 at incidence angles less than 40 deg. At 40 deg incidence angle, inlet cowl separation was encountered which resulted in lower values of pressure recovery and higher levels of fan broadband noise. For the choked geometry, increasing total pressure losses occurred with increasing inlet weight flow that prevented the inlet from reaching full choked conditions with the particular fan used. These losses were attributed to the high Mach number drag rise characteristics of airfoil grid. At maximum attainable inlet weight flow, the total pressure recovery at static conditions was 0.935. The fan blade passing frequency and other fan generated pure tones were eliminated from the noise spectrum, but the broadband level was increased.

  8. Cool and Quiet: Partnering to Enhance the Aerodynamic and Acoustic Performance of Installed Electronics Cooling Fans: A White Paper

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; VanZante, Dale E.

    2006-01-01

    Breathtaking images of distant planets. Spacewalks to repair a telescope in orbit. Footprints on the moon. The awesome is made possible by the mundane. Every achievement in space exploration has relied on solid, methodical advances in engineering. Space exploration fuels economic development like no other endeavor can. But which advances will make their way into our homes and businesses? And how long will it take? Answers to these questions are dependent upon industrial involvement in government sponsored research initiatives, market demands, and timing. Recognizing an opportunity is half the battle. This proposal describes the framework for a collaborative research program aimed at improving the aerodynamic and acoustic performance of electronics cooling fans. At its best, the program would involve NASA and academic researchers, as well as corporate researchers representing the Information Technology (IT) and fan manufacturing industries. The momentum of space exploration, the expertise resultant from the nation's substantial investment in turbofan noise reduction research, and the competitiveness of the IT industry are intended to be catalysts of innovation.

  9. Performance assessment of bi-directional knotless tissue-closure devices in juvenile Chinook salmon surgically implanted with acoustic transmitters

    SciTech Connect

    Woodley, Christa M.; Wagner, Katie A.; Bryson, Amanda J.; Eppard, Matthew B.

    2013-07-02

    Acoustic transmitters used in survival and telemetry studies are often surgically implanted in fish. While this is a well-established method, it has the potential to affect health, behavior, and survival, thus affecting study results. Much research has been done to try to minimize the harmful effects caused by the transmitter and tagging process. In 2009, we first investigated the use of a bi-directional knotless (barbed) suture material in juvenile Chinook salmon (Oncorhynchus tshawytscha). We found that it resulted in higher tag retention than the simple interrupted suture pattern; however, the occurrence of ulceration and redness increased. The objective of this study was to refine the suturing patterns of the bi-directional knotless suture and retest suture performance in juvenile Chinook salmon. We tested the bi-directional suture using 3 different suture patterns and two needle types: 6-Point (12-mm needle circumference), Wide “N” (12-mm needle circumference), Wide “N” Knot 12 (12-mm needle circumference), and Wide “N” Knot 18 (18-mm needle circumference).

  10. Large-scale Advanced Propfan (LAP) performance, acoustic and weight estimation, January, 1984

    NASA Technical Reports Server (NTRS)

    Parzych, D.; Shenkman, A.; Cohen, S.

    1985-01-01

    In comparison to turbo-prop applications, the Prop-Fan is designed to operate in a significantly higher range of aircraft flight speeds. Two concerns arise regarding operation at very high speeds: aerodynamic performance and noise generation. This data package covers both topics over a broad range of operating conditions for the eight (8) bladed SR-7L Prop-Fan. Operating conditions covered are: Flight Mach Number 0 - 0.85; blade tip speed 600-800 ft/sec; and cruise power loading 20-40 SHP/D2. Prop-Fan weight and weight scaling estimates are also included.

  11. A three dimensional investigation into the acoustic performance of dissipative splitter silencers.

    PubMed

    Kirby, Ray; Williams, Paul T; Hill, James

    2014-05-01

    Splitter silencers are found in ventilation and gas turbine systems and consist of parallel baffles of porous material placed within a duct so that they split the mean gas flow. Theoretical investigations into dissipative splitter silencers have generally been limited to two dimensions and this limits the analysis to finding the silencer eigenmodes or, for a finite length silencer, to rectangular baffles only. In this article a numerical point collocation approach is used to extend theoretical predictions to three dimensions. This facilitates the analysis of more complex silencer designs such as "bar" silencers and theoretical predictions are validated by comparison with experimental measurements. The insertion loss of different silencer designs is evaluated and the performance of a bar silencer is compared to traditional designs for rectangular and circular ducts. It is shown that a bar silencer with a volume of material identical to an equivalent parallel baffle design delivers a significant improvement in insertion loss at higher frequencies, although this is at the expense of a small reduction in performance at low frequencies. It is also shown that under most circumstances it is possible to get good agreement between prediction and experiment even for relatively large Helmholtz numbers. PMID:24815256

  12. Solventless, curable fluid oligomeric systems for high performance microwave, acoustical and mechanical applications

    NASA Technical Reports Server (NTRS)

    Lefave, G. M.; Stanton, Leo; Foreman, Jim

    1994-01-01

    While establishing the basis for a 'Technology 2000' product plan several years ago we plugged in the usual factors contributing toward product success: price/performance justifiable; profitable, warranting high quality maintenance, enhancement, and specific property improvement; narrow inventory requirements; and raw material integrable backwards with easily variable properties (molecular weight, functionality, and isomer control). We resolved this by selecting radical functional, low molecular weight polybutadiene liquid polymers. Encouraged by the need for solid rocket binders, several companies embarked on various perceptions of binder performance requirements over four decades ago. Initially dominated by progress of liquid polysulfides, soon a few settled primarily upon polybutadiene based binders. Such an approach in a few instances was exploited quite viably with a series of functional group terminated liquid polybutadienes: hydroxyl, mercaptan, carboxyl, vinyl, and amine. Good results are obtained for oligomers, liquid polymers, and their hybrids. The only significant limits on compounded products has been solvent resistance and oxidative sensitivity, unless sufficient proportion of sulfide or nitrile moiety is incorporated. For convenience, they have been grouped under the trademarks Nylane, Seamax, Oligomax, and Castomax.

  13. Understanding police and expert performance: when training attenuates (vs. exacerbates) stereotypic bias in the decision to shoot.

    PubMed

    Sim, Jessica J; Correll, Joshua; Sadler, Melody S

    2013-03-01

    In three studies, we examined how training may attenuate (or exacerbate) racial bias in the decision to shoot. In Experiment 1, when novices read a newspaper article about Black criminals, they showed pronounced racial bias in a first-person-shooter task (FPST); when they read about White criminals, bias was eliminated. Experts (who practiced the FPST) and police officers were unaffected by the same stereotype-accessibility manipulation. However, when training itself (base rates of armed vs. unarmed targets in the FPST, Experiment 2a; or special unit officers who routinely deal with minority gang members, Experiment 2b) reinforced the association between Blacks and danger, training did not attenuate bias. When race is unrelated to the presence/absence of a weapon, training may eliminate bias as participants learn to focus on diagnostic object information (gun vs. no gun). But when training actually promotes the utility of racial cues, it may sustain the heuristic use of stereotypes.

  14. Understanding police and expert performance: when training attenuates (vs. exacerbates) stereotypic bias in the decision to shoot.

    PubMed

    Sim, Jessica J; Correll, Joshua; Sadler, Melody S

    2013-03-01

    In three studies, we examined how training may attenuate (or exacerbate) racial bias in the decision to shoot. In Experiment 1, when novices read a newspaper article about Black criminals, they showed pronounced racial bias in a first-person-shooter task (FPST); when they read about White criminals, bias was eliminated. Experts (who practiced the FPST) and police officers were unaffected by the same stereotype-accessibility manipulation. However, when training itself (base rates of armed vs. unarmed targets in the FPST, Experiment 2a; or special unit officers who routinely deal with minority gang members, Experiment 2b) reinforced the association between Blacks and danger, training did not attenuate bias. When race is unrelated to the presence/absence of a weapon, training may eliminate bias as participants learn to focus on diagnostic object information (gun vs. no gun). But when training actually promotes the utility of racial cues, it may sustain the heuristic use of stereotypes. PMID:23401478

  15. Detailed analysis of petroleum hydrocarbon attenuation in biopiles by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography.

    PubMed

    Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Van Look, Dirk; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo

    2009-02-27

    Enhanced bioremediation of petroleum hydrocarbons in two biopiles was quantified by high-performance liquid chromatography (HPLC) followed by comprehensive two-dimensional gas chromatography (GCXGC). The attenuation of 34 defined hydrocarbon classes was calculated by HPLC-GCXGC analysis of representative biopile samples at start-up and after 18 weeks of biopile operation. In general, a-cyclic alkanes were most efficiently removed from the biopiles, followed by monoaromatic hydrocarbons. Cycloalkanes and polycyclic aromatic hydrocarbons (PAHs) were more resistant to degradation. A-cyclic biomarkers farnesane, trimethyl-C13, norpristane, pristane and phytane dropped to only about 10% of their initial concentrations. On the other hand, C29-C31 hopane concentrations remained almost unaltered after 18 weeks of biopile operation, confirming their resistance to biodegradation. They are thus reliable indicators to estimate attenuation potential of petroleum hydrocarbons in biopile processed soils.

  16. Forward acoustic performance of a shock-swallowing high-tip-speed fan (QF-13)

    NASA Technical Reports Server (NTRS)

    Lucas, J. G.; Woodward, R. P.; Mackinnon, M. J.

    1980-01-01

    Forward noise and overall aerodynamic performance data are presented for a high-tip-speed fan having rotor blade airfoils designed to alter the conventional leading-edge bow shocks to weak, oblique shocks which are swallowed within the interblade channels. It was anticipated that the swallowed shocks would minimize the generation of multiple-pure-tone noise. In the speed range where the shocks presumably were swallowed, the multiple-tone noise was lowered only about 3 decibels. Comparison with several high-speed fans on a thrust-corrected basis indicates that the present fan was the quietest in total forward noise at low speeds but offered no advantage at high speeds.

  17. The acoustic characteristics of professional opera singers performing in chorus versus solo mode.

    PubMed

    Reid, Katherine L P; Davis, Pamela; Oates, Jennifer; Cabrera, Densil; Ternström, Sten; Black, Michael; Chapman, Janice

    2007-01-01

    In this study, members of a professional opera chorus were recorded using close microphones, while singing in both choral and solo modes. The analysis included computation of long-term average spectra (LTAS) for the two song sections performed and calculation of singing power ratio (SPR) and energy ratio (ER), which provide an indication of the relative energy in the singer's formant region. Vibrato rate and extent were determined from two matched vowels, and SPR and ER were calculated for these vowels. Subjects sung with equal or more power in the singer's formant region in choral versus solo mode in the context of the piece as a whole and in individual vowels. There was no difference in vibrato rate and extent between the two modes. Singing in choral mode, therefore, required the ability to use a similar vocal timbre to that required for solo opera singing. PMID:16427767

  18. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  19. High Performance Flexible Actuator of Urchin-Like ZnO Nanostructure/Polyvinylenefluoride Hybrid Thin Film with Graphene Electrodes for Acoustic Generator and Analyzer.

    PubMed

    Cheong, Oug Jae; Lee, James S; Kim, Jae Hyun; Jang, Jyongsik

    2016-05-01

    A bass frequency response enhanced flexible polyvinylidene fluoride (PVDF) based thin film acoustic actuator is successfully fabricated. High concentrations of various zinc oxide (ZnO) is embedded in PVDF matrix, enhancing the β phase content and the dielectric property of the composite thin film. ZnO acts as a nucleation agent for the crystallization of PVDF. A chemical vapor deposition grown graphene is used as electrodes, enabling high electron mobility for the distortion free acoustic signals. The frequency response of the fabricated acoustic actuator is studied as a function of the film thickness and filler content. The optimized film has a thickness of 80 μm with 30 wt% filler content and shows 72% and 42% frequency response enhancement in bass and midrange compared to the commercial PVDF, respectively. Also, the total harmonic distortion decreases to 82% and 74% in the bass and midrange regions, respectively. Furthermore, the composite film shows a promising potential for microphone applications. Most of all, it is demonstrated that acoustic actuator performance is strongly influenced by degree of PVDF crystalline.

  20. High Performance Flexible Actuator of Urchin-Like ZnO Nanostructure/Polyvinylenefluoride Hybrid Thin Film with Graphene Electrodes for Acoustic Generator and Analyzer.

    PubMed

    Cheong, Oug Jae; Lee, James S; Kim, Jae Hyun; Jang, Jyongsik

    2016-05-01

    A bass frequency response enhanced flexible polyvinylidene fluoride (PVDF) based thin film acoustic actuator is successfully fabricated. High concentrations of various zinc oxide (ZnO) is embedded in PVDF matrix, enhancing the β phase content and the dielectric property of the composite thin film. ZnO acts as a nucleation agent for the crystallization of PVDF. A chemical vapor deposition grown graphene is used as electrodes, enabling high electron mobility for the distortion free acoustic signals. The frequency response of the fabricated acoustic actuator is studied as a function of the film thickness and filler content. The optimized film has a thickness of 80 μm with 30 wt% filler content and shows 72% and 42% frequency response enhancement in bass and midrange compared to the commercial PVDF, respectively. Also, the total harmonic distortion decreases to 82% and 74% in the bass and midrange regions, respectively. Furthermore, the composite film shows a promising potential for microphone applications. Most of all, it is demonstrated that acoustic actuator performance is strongly influenced by degree of PVDF crystalline. PMID:27028524

  1. Results of Tests Performed on the Acoustic Quiet Flow Facility Three-Dimensional Model Tunnel

    NASA Technical Reports Server (NTRS)

    Barna, P. S.

    1995-01-01

    The test results briefly described in this report were obtained on the three-dimensional 1:48 scale tunnel modeled on the design proposed by Messrs. D.S.M.A. Corporation. More particularly, while the test chamber dimensions were indeed scaled down in the ration of 1:48, including the contraction and the collector as well, the duct system itself leading to and from the chamber was adapted to suit laboratory conditions and space limitations. Earlier tests with the two-dimensional model showed that blowing mode was preferred as against the suction mode, hence all tests were performed with blowing only. At the exit of the contraction the maximum airspeed attained with the 1 HP blower unit was about 200 ft/sec. This airspeed may be increased in future if desired. The test results show that pressure recovery in the diffuser was about 34 percent due to the large blockage at its entrance. Velocity traverses taken across the diffuser entrance explain the reason for this blockage. Recirculation, studied with both, hot-wire anemometry and flow-visualization techniques, was largely affected by the design of the test chamber itself and the amount of vent-air admitted to the chamber. Vent-air helped to decrease the level of turbulence.

  2. A High Performance Pocket-Size System for Evaluations in Acoustic Signal Processing

    NASA Astrophysics Data System (ADS)

    Rass, Uwe; Steeger, Gerhard H.

    2001-12-01

    Custom-made hardware is attractive for sophisticated signal processing in wearable electroacoustic devices, but has a high initial cost overhead. Thus, signal processing algorithms should be tested thoroughly in real application environments by potential end users prior to the hardware implementation. In addition, the algorithms should be easily alterable during this test phase. A wearable system which meets these requirements has been developed and built. The system is based on the high performance signal processor Motorola DSP56309. This device also includes high quality stereo analog-to-digital-(ADC)- and digital-to-analog-(DAC)-converters with 20 bit word length each. The available dynamic range exceeds 88 dB. The input and output gains can be adjusted by digitally controlled potentiometers. The housing of the unit is small enough to carry it in a pocket (dimensions 150 × 80 × 25 mm). Software tools have been developed to ease the development of new algorithms. A set of configurable Assembler code modules implements all hardware dependent software routines and gives easy access to the peripherals and interfaces. A comfortable fitting interface allows easy control of the signal processing unit from a PC, even by assistant personnel. The device has proven to be a helpful means for development and field evaluations of advanced new hearing aid algorithms, within interdisciplinary research projects. Now it is offered to the scientific community.

  3. Acoustic emission monitoring of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Van Dam, Jeremy; Bond, Leonard J.

    2015-03-01

    Damage to wind turbine blades can, if left uncorrected, evolve into catastrophic failures resulting in high costs and significant losses for the operator. Detection of damage, especially in real time, has the potential to mitigate the losses associated with such catastrophic failure. To address this need various forms of online monitoring are being investigated, including acoustic emission detection. In this paper, pencil lead breaks are used as a standard reference source and tests are performed on unidirectional glass-fiber-reinforced-polymer plates. The mechanical pencil break is used to simulate an acoustic emission (AE) that generates elastic waves in the plate. Piezoelectric sensors and a data acquisition system are used to detect and record the signals. The expected dispersion curves generated for Lamb waves in plates are calculated, and the Gabor wavelet transform is used to provide dispersion curves based on experimental data. AE sources using an aluminum plate are used as a reference case for the experimental system and data processing validation. The analysis of the composite material provides information concerning the wave speed, modes, and attenuation of the waveform, which can be used to estimate maximum AE event - receiver separation, in a particular geometry and materials combination. The foundational data provided in this paper help to guide improvements in online structural health monitoring of wind turbine blades using acoustic emission.

  4. Kramers-Kronig relationship between ultrasonic attenuation and phase velocity

    NASA Technical Reports Server (NTRS)

    Odonnell, M.; Jaynes, E. T.; Miller, J. G.

    1981-01-01

    Kramers-Kronig relations linking the attenuation and dispersion are presented for a linear acoustic system. These expressions are used as a starting point to derive approximate, nearly local expressions relating the ultrasonic attenuation at a specific frequency to the local frequency derivative of the phase velocity (i.e., dispersion). The validity of these approximate relationships is demonstrated in several acoustic systems exhibiting substantially different physical properties.

  5. Control algorithms for dynamic attenuators

    SciTech Connect

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-15

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  6. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  7. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  8. Acoustic sniper localization system

    NASA Astrophysics Data System (ADS)

    Prado, Gervasio; Dhaliwal, Hardave; Martel, Philip O.

    1997-02-01

    Technologies for sniper localization have received increased attention in recent months as American forces have been deployed to various trouble spots around the world. Among the technologies considered for this task acoustics is a natural choice for various reasons. The acoustic signatures of gunshots are loud and distinctive, making them easy to detect even in high noise background environments. Acoustics provides a passive sensing technology with excellent range and non line of sight capabilities. Last but not least, an acoustic sniper location system can be built at a low cost with off the shelf components. Despite its many advantages, the performance of acoustic sensors can degrade under adverse propagation conditions. Localization accuracy, although good, is usually not accurate enough to pinpoint a sniper's location in some scenarios (for example which widow in a building or behind which tree in a grove). For these more demanding missions, the acoustic sensor can be used in conjunction with an infra red imaging system that detects the muzzle blast of the gun. The acoustic system can be used to cue the pointing system of the IR camera in the direction of the shot's source.

  9. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  10. Acoustic and aerodynamic performance of a 1.83-meter (6-ft) diameter 1.25-pressure-ratio fan (QF-8)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.

    1976-01-01

    A 1.25-pressure-ratio 1.83-meter (6-ft) tip diameter experimental fan stage with characteristics suitable for engine application on STOL aircraft was tested for acoustic and aerodynamic performance. The design incorporated proven features for low noise, including absence of inlet guide vanes, low rotor blade tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator blade rows. The fan was operated with five exhaust nozzle areas. The stage noise levels generally increased with a decrease in nozzle area. Separation of the acoustic one-third octave results into broadband and pure-tone components showed the broadband noise to be greater than the corresponding pure-tone components. The sideline perceived noise was highest in the rear quadrants. The acoustic results of QF-8 were compared with those of two similar STOL application fans in the test series. The QF-8 had somewhat higher relative noise levels than those of the other two fans. The aerodynamic results of QF-8 and the other two fans were compared with corresponding results from 50.8-cm (20-in.) diam scale models of these fans and design values. Although the results for the full-scale and scale models of the other two fans were in reasonable agreement for each design, the full-scale fan QF-8 results showed poor performance compared with corresponding model results and design expectations. Facility effects of the full-scale fan QF-8 installation were considered in analyzing this discrepancy.

  11. Attenuation of FJ44 Turbofan Engine Noise with a Foam-Metal Liner Installed Over-the-Rotor

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Elliott, Dave M.; Jones, Michael G.; Hartley, Thomas C.

    2009-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was used as a demonstrator for a Foam-Metal Liner (FML) installed in close proximity to the fan. Two FML designs were tested and compared to the hardwall baseline. Traditional single degree-of-freedom liner designs were also evaluated to provide a comparison. Farfield acoustic levels and limited engine performance results are presented in this paper. The results show that the FML achieved up to 5 dB Acoustic Power Level (PWL) overall attenuation in the forward quadrant, equivalent to the traditional liner design. An earlier report presented the test set-up and conditions.

  12. Acoustic systems for the measurement of streamflow

    USGS Publications Warehouse

    Laenen, Antonius; Smith, Winchell

    1982-01-01

    Very little information is available concerning acoustic velocity meter (AVM) operation, performance, and limitations. This report provides a better understanding about the application of AVM instrumentation to streamflow measurment. Operational U.S. Geological Survey systems have proven that AVM equipment is accurate and dependable. AVM equipment has no practical upper limit of measureable velocity if sonic transducers are securely placed and adequately protected, and will measure velocitites as low as 0.1 meter per second which is normally less than the threshold level for mechanical or head-loss meters. In some situations the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Smaller, less-expensive, more conveniently operable microprocessor equipment is now available which should increase use of AVM systems in streamflow applications. (USGS)

  13. Results of tests performed on the Acoustic Quiet Flow Facility Three-Dimensional Model Tunnel: Report on the Modified D.S.M.A. Design

    NASA Technical Reports Server (NTRS)

    Barna, P. S.

    1996-01-01

    Numerous tests were performed on the original Acoustic Quiet Flow Facility Three-Dimensional Model Tunnel, scaled down from the full-scale plans. Results of tests performed on the original scale model tunnel were reported in April 1995, which clearly showed that this model was lacking in performance. Subsequently this scale model was modified to attempt to possibly improve the tunnel performance. The modifications included: (a) redesigned diffuser; (b) addition of a collector; (c) addition of a Nozzle-Diffuser; (d) changes in location of vent-air. Tests performed on the modified tunnel showed a marked improvement in performance amounting to a nominal increase of pressure recovery in the diffuser from 34 percent to 54 percent. Results obtained in the tests have wider application. They may also be applied to other tunnels operating with an open test section not necessarily having similar geometry as the model under consideration.

  14. Computer method for design of acoustic liners for turbofan engines

    NASA Technical Reports Server (NTRS)

    Minner, G. L.; Rice, E. J.

    1976-01-01

    A design package is presented for the specification of acoustic liners for turbofans. An estimate of the noise generation was made based on modifications of existing noise correlations, for which the inputs are basic fan aerodynamic design variables. The method does not predict multiple pure tones. A target attenuation spectrum was calculated which was the difference between the estimated generation spectrum and a flat annoyance-weighted goal attenuated spectrum. The target spectrum was combined with a knowledge of acoustic liner performance as a function of the liner design variables to specify the acoustic design. The liner design method at present is limited to annular duct configurations. The detailed structure of the liner was specified by combining the required impedance (which is a result of the previous step) with a mathematical model relating impedance to the detailed structure. The design procedure was developed for a liner constructed of perforated sheet placed over honeycomb backing cavities. A sample calculation was carried through in order to demonstrate the design procedure, and experimental results presented show good agreement with the calculated results of the method.

  15. Optimization and Control of Acoustic Liner Impedance with Bias Flow

    NASA Technical Reports Server (NTRS)

    Wood, Houston; Follet, Jesse

    2000-01-01

    Because communities are impacted by steady increases in aircraft traffic, aircraft noise continues to be a growing problem for the growth of commercial aviation. Research has focused on improving the design of specific high noise source areas of aircraft and on noise control measures to alleviate noise radiated from aircraft to the surrounding environment. Engine duct liners have long been a principal means of attenuating engine noise. The ability to control in-situ the acoustic impedance of a liner would provide a valuable tool to improve the performance of liners. The acoustic impedance of a liner is directly related to the sound absorption qualities of that liner. Increased attenuation rates, the ability to change liner acoustic impedance to match various operating conditions, or the ability to tune a liner to more precisely match design impedance represent some ways that in-situ impedance control could be useful. With this in mind, the research to be investigated will focus on improvements in the ability to control liner impedance using a mean flow through the liner which is referred to as bias flow.

  16. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  17. Acoustic Performance of the GEAE UPS Research Fan in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    2012-01-01

    A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel in 1994. The Universal Propulsion Simulator fan was designed and manufactured by General Electric Aircraft Engines, and included an active core, as well as bypass, flow paths. The fan was tested with several rotors featuring unswept, forward-swept and aft-swept designs of both metal and composite construction. Sideline acoustic data were taken with both hard and acoustically treated walls in the flow passages. The fan was tested within an airflow at a Mach number of 0.20, which is representative of aircraft takeoff/approach conditions. All rotors showed similar aerodynamic performance. However, the composite rotors typically showed higher noise levels than did corresponding metal rotors. Aft and forward rotor sweep showed at most modest reductions of transonic multiple pure tone levels. However, rotor sweep often introduced increased rotor-stator interaction tone levels. Broadband noise was typically higher for the composite rotors and also for the aft-swept metal rotor. Transonic MPT generation was reduced with increasing fan axis angle of attack (AOA); however, higher downstream noise levels did increase with AOA resulting in higher overall Effective Perceived Noise Level.

  18. Acoustic metafluids.

    PubMed

    Norris, Andrew N

    2009-02-01

    Acoustic metafluids are defined as the class of fluids that allow one domain of fluid to acoustically mimic another, as exemplified by acoustic cloaks. It is shown that the most general class of acoustic metafluids are materials with anisotropic inertia and the elastic properties of what are known as pentamode materials. The derivation uses the notion of finite deformation to define the transformation of one region to another. The main result is found by considering energy density in the original and transformed regions. Properties of acoustic metafluids are discussed, and general conditions are found which ensure that the mapped fluid has isotropic inertia, which potentially opens up the possibility of achieving broadband cloaking. PMID:19206861

  19. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  20. Comparative acoustic performance and mechanical properties of silk membranes for the repair of chronic tympanic membrane perforations.

    PubMed

    Allardyce, Benjamin J; Rajkhowa, Rangam; Dilley, Rodney J; Xie, Zhigang; Campbell, Luke; Keating, Adrian; Atlas, Marcus D; von Unge, Magnus; Wang, Xungai

    2016-12-01

    The acoustic and mechanical properties of silk membranes of different thicknesses were tested to determine their suitability as a repair material for tympanic membrane perforations. Membranes of different thickness (10-100μm) were tested to determine their frequency response and their resistance to pressure loads in a simulated ear canal model. Their mechanical rigidity to pressure loads was confirmed by tensile testing. These membranes were tested alongside animal cartilage, currently the strongest available myringoplasty graft as well as paper, which is commonly used for simpler procedures. Silk membranes showed resonant frequencies within the human hearing range and a higher vibrational amplitude than cartilage, suggesting that silk may offer good acoustic energy transfer characteristics. Silk membranes were also highly resistant to simulated pressure changes in the middle ear, suggesting they can resist retraction, a common cause of graft failure resulting from chronic negative pressures in the middle ear. Part of this strength can be explained by the substantially higher modulus of silk films compared with cartilage. This allows for the production of films that are much thinner than cartilage, with superior acoustic properties, but that still provide the same level of mechanical support as thicker cartilage. Together, these in vitro results suggest that silk membranes may provide good hearing outcomes while offering similar levels of mechanical support to the reconstructed middle ear. PMID:27479895

  1. Performance Assessment of Suture Type, Water Temperature, and Surgeon Skill in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters

    SciTech Connect

    Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.; Boyd, James W.; Eppard, M. B.; Seaburg, Adam

    2010-08-01

    Size reductions of acoustic transmitters implanted in migrating juvenile salmonids have resulted in the use of a shorter incision - one that may warrant only one suture for closure. However, it is not known if a single suture will sufficiently hold the incision closed when fish are decompressed and outward pressure is placed on the surgical site during passage of hydroelectric dams. The objectives of this study were to evaluate five response variables in juvenile Chinook salmon subjected to simulated turbine passage. Fish were implanted with an acoustic transmitter (0.43 g in air) and a passive integrated transponder tag (0.10 g in air); incisions (6 mm) were closed with either one or two sutures. Following exposure, no transmitters were expelled. In addition, suture and incision tearing and mortal injury did not differ between treatment and control fish. Viscera expulsion was higher in treatment (12%) than control (1%) fish. The higher incidence of viscera expulsion through single-suture incisions warrants concern. Consequently, the authors do not recommend using one suture to close 6-mm incisions associated with acoustic transmitter implantation when juvenile salmonids may be exposed to turbine passage.

  2. Enriched environment attenuates changes in water-maze performance and BDNF level caused by prenatal alcohol exposure.

    PubMed

    Tipyasang, Rungpiyada; Kunwittaya, Sarun; Mukda, Sujira; Kotchabhakdi, Nittaya J; Kotchabhakdi, Naiphinich

    2014-01-01

    Prenatal exposure to alcohol can result in fetal alcohol syndrome (FAS), characterized by significant changes in the physiology, structural plasticity of hippocampal function, including long-term deficits in learning and memory. Environmental enrichment has long been known to improve motor and cognitive function levels, causes several neurochemical and morphological alterations in the brain. Therefore, the effects of environmental enrichment on the neurobehavioral and neurotrophic changes in mice exposed prenatally to alcohol were investigated in this study. The pregnant dams were given 25 % ethanol (w/v) or isocaloric sucrose by liquid diet from gestation day 7 to 20. After weaning on postnatal day 28, offspring were exposed to standard cage (CC, CFAS) or enriched living conditions (CE, EFAS) for 8 weeks. Neurobehavioral studies both on hippocampus-dependent spatial learning and place and cue learning strategy, a striatum-dependent test, were measured by the Morris water maze task. Moreover, the reverse-transcriptase polymerase chain reaction (RT-PCR) technique was also used in order to study the expression of brain-derived neurotrophic factor (BDNF) level in both the hippocampus and striatum of mice. Neurobehavioral studies show that animals exposed prenatally to alcohol were impaired as shown in both hippocampal-dependent spatial/place and striatal-dependent response/cue learning tests. Moreover, the levels of BDNF expression both in the hippocampus and striatum of mice were also decreased. Interestingly, environmental enrichment can ameliorate the effects of prenatal alcohol exposure both on the neurobehavioral and neurotrophic levels. These observations indicated that enriched environment attenuated memory impairment of prenatal alcohol exposure both in hippocampal and striatal circuitry.

  3. An SU-8 liquid cell for surface acoustic wave biosensors

    NASA Astrophysics Data System (ADS)

    Francis, Laurent A.; Friedt, Jean-Michel; Bartic, Carmen; Campitelli, Andrew

    2004-08-01

    One significant challenge facing biosensor development is packaging. For surface acoustic wave based biosensors, packaging influences the general sensing performance. The acoustic wave is generated and received thanks to interdigital transducers and the separation between the transducers defines the sensing area. Liquids used in biosensing experiments lead to an attenuation of the acoustic signal while in contact with the transducers. We have developed a liquid cell based on photodefinable epoxy SU-8 that prevents the presence of liquid on the transducers, has a small disturbance effect on the propagation of the acoustic wave, does not interfere with the biochemical sensing event, and leads to an integrated sensor system with reproducible properties. The liquid cell is achieved in two steps. In a first step, the SU-8 is precisely patterned around the transducers to define 120 μm thick walls. In a second step and after the dicing of the sensors, a glass capping is placed manually and glued on top of the SU-8 walls. This design approach is an improvement compared to the more classical solution consisting of a pre-molded cell that must be pressed against the device in order to avoid leaks, with negative consequences on the reproducibility of the experimental results. We demonstrate the effectiveness of our approach by protein adsorption monitoring. The packaging materials do not interfere with the biomolecules and have a high chemical resistance. For future developments, wafer level bonding of the quartz capping onto the SU-8 walls is envisioned.

  4. Locating groundwater flow in karst by acoustic emission surveys

    SciTech Connect

    Stokowski, S.J. Jr.; Clark, D.A.

    1985-01-01

    An acoustic emission survey of Newala Fm. (primarily dolomite) karst has helped to locate subsurface water flow. This survey was performed on the Rock Quarry Dome, Sevier County, Tennessee. A Dresser RS-4 recording seismograph, adjusted to provide a gain of 1000, collected acoustic emission data using Mark Products CN368 vertical geophones with 3-inch spikes. Data was collected for 5-15 second intervals. The geophones were laid out along traverses with 10, 20, or 30-ft spacing and covered with sand bags in locations of high ambient noise. Traverses were laid out: along and across lineaments known to correspond with groundwater flow in natural subsurface channels; across and along a joint-controlled sink suspected of directing groundwater flow; and across a shallow sinkhole located tangentially to the Little Pigeon River and suspected of capturing river water for the groundwater system. Acoustic emissions of channelized flowing groundwater have a characteristic erratic spiked spectral signature. These acoustic emission signatures increase in amplitude and number in the immediate vicinity of the vertical projection of channelized groundwater flow if it occurs within approximately 30 feet of the surface. If the groundwater flow occurs at greater depths the emissions may be offset from the projection of the actual flow, due to propagation of the signal along rock pinnacles or attenuation by residual soils.

  5. New Research on MEMS Acoustic Vector Sensors Used in Pipeline Ground Markers

    PubMed Central

    Song, Xiaopeng; Jian, Zeming; Zhang, Guojun; Liu, Mengran; Guo, Nan; Zhang, Wendong

    2015-01-01

    According to the demands of current pipeline detection systems, the above-ground marker (AGM) system based on sound detection principle has been a major development trend in pipeline technology. A novel MEMS acoustic vector sensor for AGM systems which has advantages of high sensitivity, high signal-to-noise ratio (SNR), and good low frequency performance has been put forward. Firstly, it is presented that the frequency of the detected sound signal is concentrated in a lower frequency range, and the sound attenuation is relatively low in soil. Secondly, the MEMS acoustic vector sensor structure and basic principles are introduced. Finally, experimental tests are conducted and the results show that in the range of 0°∼90°, when r = 5 m, the proposed MEMS acoustic vector sensor can effectively detect sound signals in soil. The measurement errors of all angles are less than 5°. PMID:25609046

  6. New research on MEMS acoustic vector sensors used in pipeline ground markers.

    PubMed

    Song, Xiaopeng; Jian, Zeming; Zhang, Guojun; Liu, Mengran; Guo, Nan; Zhang, Wendong

    2015-01-01

    According to the demands of current pipeline detection systems, the above-ground marker (AGM) system based on sound detection principle has been a major development trend in pipeline technology. A novel MEMS acoustic vector sensor for AGM systems which has advantages of high sensitivity, high signal-to-noise ratio (SNR), and good low frequency performance has been put forward. Firstly, it is presented that the frequency of the detected sound signal is concentrated in a lower frequency range, and the sound attenuation is relatively low in soil. Secondly, the MEMS acoustic vector sensor structure and basic principles are introduced. Finally, experimental tests are conducted and the results show that in the range of 0°~90°, when r = 5 m, the proposed MEMS acoustic vector sensor can effectively detect sound signals in soil. The measurement errors of all angles are less than 5°.

  7. Four weeks of optimal load ballistic resistance training at the end of season attenuates declining jump performance of women volleyball players.

    PubMed

    Newton, Robert U; Rogers, Ryan A; Volek, Jeff S; Häkkinen, Keijo; Kraemer, William J

    2006-11-01

    Anecdotal and research evidence is that vertical jump performance declines over the competitive volleyball season. The purpose of this study was to evaluate whether a short period of ballistic resistance training would attenuate this loss. Fourteen collegiate women volleyball players were trained for 11 weeks with periodized traditional and ballistic resistance training. There was a 5.4% decrease (p < 0.05) in approach jump and reach height during the traditional training period (start of season to midseason), and a 5.3% increase (p < 0.05) during the ballistic training period (midseason to end of season), but values were not different from start to end of season. These changes in overall jump performance were reflective of changes in underlying neuromuscular performance variables: in particular, power output and peak velocity during loaded jump squats, countermovement jumps, and drop jumps. During the first 7 weeks of traditional heavy resistance training, it appears that the neuromuscular system is depressed, perhaps by the combination of training, game play, and skills practice precluding adequate recovery. Introduction of a novel training stimulus in the form of ballistic jump squats and reduction of heavy resistance training of the leg extensors stimulated a rebound in performance, in some cases to exceed the athlete's ability at the start of the season. Periodization of in-season training programs similar to that used in this study may provide volleyball players with good vertical jump performance for the crucial end-of-season games.

  8. Acoustic trauma

    MedlinePlus

    Acoustic trauma is a common cause of sensory hearing loss . Damage to the hearing mechanisms within the inner ... Symptoms include: Partial hearing loss that most often involves ... The hearing loss may slowly get worse. Noises, ringing in ...

  9. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  10. Underwater Acoustics.

    ERIC Educational Resources Information Center

    Creasey, D. J.

    1981-01-01

    Summarizes the history of underwater acoustics and describes related research studies and teaching activities at the University of Birmingham (England). Also includes research studies on transducer design and mathematical techniques. (SK)

  11. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  12. Integrating fluorescent dye flow-curve testing and acoustic Doppler velocimetry profiling for in situ hydraulic evaluation and improvement of clarifier performance.

    PubMed

    Tarud, F; Aybar, M; Pizarro, G; Cienfuegos, R; Pastén, P

    2010-08-01

    Enhancing the performance of clarifiers requires a thorough understanding of their hydraulics. Fluorescence spectroscopy and acoustic doppler velocimeter (ADV) profiling generally have been used separately to evaluate secondary settlers. We propose that simultaneous use of these techniques is needed to obtain a more reliable and useful evaluation. Experiments were performed on laboratory- and full-scale clarifiers. Factors affecting Fluorescein and Rhodamine 6G properties were identified. Underestimations up to 500% in fluorescence intensities may be derived from differential fluorescence quenching by oxygen. A careful control and interpretation of fluorescent dye experiments is needed to minimize artifacts in real settings. While flow-curve tests constructed under controlled conditions provided a more accurate overall quantitative estimation of the hydraulic performance, ADV velocity and turbulence profiling provided a detailed spatial understanding of flow patterns that was used to troubleshoot and fix the causes of hydraulic short-circuits.

  13. Integrating fluorescent dye flow-curve testing and acoustic Doppler velocimetry profiling for in situ hydraulic evaluation and improvement of clarifier performance.

    PubMed

    Tarud, F; Aybar, M; Pizarro, G; Cienfuegos, R; Pastén, P

    2010-08-01

    Enhancing the performance of clarifiers requires a thorough understanding of their hydraulics. Fluorescence spectroscopy and acoustic doppler velocimeter (ADV) profiling generally have been used separately to evaluate secondary settlers. We propose that simultaneous use of these techniques is needed to obtain a more reliable and useful evaluation. Experiments were performed on laboratory- and full-scale clarifiers. Factors affecting Fluorescein and Rhodamine 6G properties were identified. Underestimations up to 500% in fluorescence intensities may be derived from differential fluorescence quenching by oxygen. A careful control and interpretation of fluorescent dye experiments is needed to minimize artifacts in real settings. While flow-curve tests constructed under controlled conditions provided a more accurate overall quantitative estimation of the hydraulic performance, ADV velocity and turbulence profiling provided a detailed spatial understanding of flow patterns that was used to troubleshoot and fix the causes of hydraulic short-circuits. PMID:20853746

  14. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01

    In this report we will show some new Q related seismic attributes on the Burlington-Seitel data set. One example will be called Energy Absorption Attribute (EAA) and is based on a spectral analysis. The EAA algorithm is designed to detect a sudden increase in the rate of exponential decay in the relatively higher frequency portion of the spectrum. In addition we will show results from a hybrid attribute that combines attenuation with relative acoustic impedance to give a better indication of commercial gas saturation.

  15. Acoustic and Seismic Modalities for Unattended Ground Sensors

    SciTech Connect

    Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.

    1999-03-31

    In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.

  16. Acoustic field and array response uncertainties in stratified ocean media.

    PubMed

    Hayward, Thomas J; Dhakal, Sagar

    2012-07-01

    The change-of-variables theorem of probability theory is applied to compute acoustic field and array beam power probability density functions (pdfs) in uncertain ocean environments represented by stratified, attenuating ocean waveguide models. Computational studies for one and two-layer waveguides investigate the functional properties of the acoustic field and array beam power pdfs. For the studies, the acoustic parameter uncertainties are represented by parametric pdfs. The field and beam response pdfs are computed directly from the parameter pdfs using the normal-mode representation and the change-of-variables theorem. For two-dimensional acoustic parameter uncertainties of sound speed and attenuation, the field and beam power pdfs exhibit irregular functional behavior and singularities associated with stationary points of the mapping, defined by acoustic propagation, from the parameter space to the field or beam power space. Implications for the assessment of orthogonal polynomial expansion and other methods for computing acoustic field pdfs are discussed.

  17. Acoustic Liner for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Sutliff, Daniel L.; Jones, Michael G.; Hebsur, Mohan G.

    2010-01-01

    The purpose of this innovation is to reduce aircraft noise in the communities surrounding airports by significantly attenuating the noise generated by the turbomachinery, and enhancing safety by providing a containment barrier for a blade failure. Acoustic liners are used in today's turbofan engines to reduce noise. The amount of noise reduction from an acoustic liner is a function of the treatment area, the liner design, and the material properties, and limited by the constraints of the nacelle or casement design. It is desirable to increase the effective area of the acoustic treatment to increase noise suppression. Modern turbofan engines use wide-chord rotor blades, which means there is considerable treatment area available over the rotor tip. Turbofan engines require containment over the rotors for protection from blade failure. Traditional methods use a material wrap such as Kevlar integrated with rub strips and sometimes metal layers (sandwiches). It is possible to substitute the soft rub-strip material with an open-cell metallic foam that provides noise-reduction benefits and a sacrificial material in the first layer of the containment system. An open-cell foam was evaluated that behaves like a bulk acoustic liner, serves as a tip rub strip, and can be integrated with a rotor containment system. Foams can be integrated with the fan-containment system to provide sufficient safety margins and increased noise attenuation. The major innovation is the integration of the foam with the containment.

  18. Experimental verification of the Kramers-Kronig relationship for acoustic waves.

    PubMed

    Lee, C C; Lahham, M; Martin, B G

    1990-01-01

    A spectral technique for effectively and accurately measuring acoustic attenuation over a wide frequency range is reported. The spectral technique for phase measurement developed by W. Sachse and Y.H. Pao (1978) was used to determine the acoustic dispersion. For acoustic waves, a very simple and useful Kramers-Kronig relationship was previously derived by M. O'Donnell, E.T. Jaynes, and J.G. Miller (1981). The attenuation was calculated, using this relationship, from the measured dispersion and then compared with the attenuation that was measured independently. Dispersion was deduced from the measured attenuation and compared with the measured dispersion. The results of two highly attenuative specimens are presented. The agreement between the calculated attenuation and measured attenuation is excellent. The deduced dispersion also agrees well with the measured one. This agreement verifies the simple Kramers-Kronig relationship used. It further shows the accuracy of the spectral techniques for attenuation and dispersion measurements over a wide frequency range.

  19. Acoustic Faraday rotation in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Donghao; Shi, Junren

    We investigate the phonon problems in Weyl semimetals, from which both the phonon Berry curvature and the phonon Damping could be obtained. We show that even without a magnetic field, the degenerate transverse acoustic modes could also be split due to the adiabatic curvature. In three dimensional case, acoustic Faraday rotation shows up. And furthermore, since the attenuation procedure could distinguish the polarized mode, single circularly polarized acoustic wave could be realized. We study the mechanism in the novel time reversal symmetry broken Weyl semimetal. New effects rise because of the linear dispersion, which give enlightenment in the measurement of this new kind of three-dimensional material.

  20. Quenching of acoustic bandgaps by flow noise

    NASA Astrophysics Data System (ADS)

    Elnady, T.; Elsabbagh, A.; Akl, W.; Mohamady, O.; Garcia-Chocano, V. M.; Torrent, D.; Cervera, F.; Sánchez-Dehesa, J.

    2009-03-01

    We report an experimental study of acoustic effects produced by wind impinging on noise barriers based on two-dimensional sonic crystals with square symmetry. We found that the attenuation strength of sonic-crystal bandgaps decreases for increasing values of flow speed. A quenching of the acoustic bandgap appears at a certain speed value that depends of the barrier filling ratio. For increasing values of flow speed, the data indicate that the barrier becomes a sound source because of its interaction with the wind. We conclude that flow noise should be taken into account in designing acoustic barriers based on sonic crystals.

  1. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  2. The attenuating effect of role overload on relationships linking self-efficacy and goal level to work performance.

    PubMed

    Brown, Steven P; Jones, Eli; Leigh, Thomas W

    2005-09-01

    The reported research examines the moderating effects of role overload on the antecedents and consequences of self-efficacy and personal goal level in a longitudinal study conducted in an industrial selling context. The results indicate that role overload moderates the antecedent effect of perceived organizational resources on self-efficacy beliefs. They also show that role overload moderates the direct effects of both self-efficacy and goal level on performance, such that these relationships are positive when role overload is low but not significant when role overload is high. Further, the results reveal a pattern of moderated mediation, in which goal level mediates the indirect effect of self-efficacy on performance when role overload is low but not when it is high. Implications for theory and managerial practice are discussed.

  3. Using FLUKA to Study Concrete Square Shield Performance in Attenuation of Neutron Radiation Produced by APF Plasma Focus Neutron Source

    NASA Astrophysics Data System (ADS)

    Nemati, M. J.; Habibi, M.; Amrollahi, R.

    2013-04-01

    In 2010, representatives from the Nuclear Engineering and physics Department of Amirkabir University of Technology (AUT) requested development of a project with the objective of determining the performance of a concrete shield for their Plasma Focus as neutron source. The project team in Laboratory of Nuclear Engineering and physics department of Amirkabir University of Technology choose some shape of shield to study on their performance with Monte Carlo code. In the present work, the capability of Monte Carlo code FLUKA will be explored to model the APF Plasma Focus, and investigating the neutron fluence on the square concrete shield in each region of problem. The physical models embedded in FLUKA are mentioned, as well as examples of benchmarking against future experimental data. As a result of this study suitable thickness of concrete for shielding APF will be considered.

  4. Attenuation of the disruptive effects of (+/-)3,4-methylenedioxymethamphetamine and cocaine on delayed matching-to-sample performance with D1 versus D2 antagonists.

    PubMed

    Harper, David N

    2013-11-01

    Evidence suggests that acute exposure to (+/-)3,4-methylenedioxymethamphetamine (MDMA) produces qualitatively similar effects on recognition task performance as other stimulant-type drugs. The current study examined whether there was a similar neurochemical basis to these memory effects by examining the effects of a D1 receptor antagonist (SCH23390) and D2 antagonist (eticlopride) on MDMA- or cocaine-induced impairments in delayed matching-to-sample performance in rats. At low doses it was shown that eticlopride was ineffective in antagonizing either MDMA or cocaine's effects, and at higher doses exacerbated their effects. In contrast, the D1 receptor antagonist SCH23390 was only able to significantly attenuate the disruption caused by MDMA, but not cocaine's effects. Therefore, although present evidence suggests that the effect of acute MDMA on memory-task performance may be related to its effects at D1 receptor sites, there may be differences between MDMA and cocaine in the precise neurochemical pathways involved despite their having similar cognitive effects.

  5. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  6. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  7. The increased potassium intake improves cognitive performance and attenuates histopathological markers in a model of Alzheimer's disease.

    PubMed

    Cisternas, Pedro; Lindsay, Carolina B; Salazar, Paulina; Silva-Alvarez, Carmen; Retamales, Rocio M; Serrano, Felipe G; Vio, Carlos P; Inestrosa, Nibaldo C

    2015-12-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by hallmarks that include an accumulation of amyloid-β peptide (Aβ), inflammation, oxidative stress and synaptic dysfunction, which lead to a decrease in cognitive function. To date, the onset and progression of AD have been associated with pathologies such as hypertension and diabetes. Hypertension, a disease with a high incidence worldwide, is characterized by a chronic increase in blood pressure. Interestingly, this disease has a close relationship to the eating behavior of patients because high Na(+) intake is a significant risk factor for hypertension. In fact, a decrease in Na(+) consumption, along with an increase in K(+) intake, is a primary non-pharmacological approach to preventing hypertension. In the present work, we examined whether an increase in K(+) intake affects the expression of certain neuropathological markers or the cognitive performance of a murine model of AD. We observed that an increase in K(+) intake leads to a change in the aggregation pattern of the Aβ peptide, a partial decrease in some epitopes of tau phosphorylation and improvement in the cognitive performance. The recovery in cognitive performance was correlated with a significant improvement in the generation of long-term potentiation. We also observed a decrease in markers related to inflammation and oxidative stress such as glial fibrillary acidic protein (GFAP), interleukin 6 (IL-6) and 4-hydroxynonenal (4-HNE). Together, our data support the idea that changes in diet, such as an increase in K(+) intake, may be important in the prevention of AD onset as a non-pharmacological therapy. PMID:26391254

  8. High-Intensity Interval Training with Vibration as Rest Intervals Attenuates Fiber Atrophy and Prevents Decreases in Anaerobic Performance

    PubMed Central

    Mueller, Sandro Manuel; Aguayo, David; Zuercher, Matthias; Fleischmann, Oliver; Boutellier, Urs; Auer, Maria; Jung, Hans H.; Toigo, Marco

    2015-01-01

    Aerobic high-intensity interval training (HIT) improves cardiovascular capacity but may reduce the finite work capacity above critical power (W′) and lead to atrophy of myosin heavy chain (MyHC)-2 fibers. Since whole-body vibration may enhance indices of anaerobic performance, we examined whether side-alternating whole-body vibration as a replacement for the active rest intervals during a 4x4 min HIT prevents decreases in anaerobic performance and capacity without compromising gains in aerobic function. Thirty-three young recreationally active men were randomly assigned to conduct either conventional 4x4 min HIT, HIT with 3 min of WBV at 18 Hz (HIT+VIB18) or 30 Hz (HIT+VIB30) in lieu of conventional rest intervals, or WBV at 30 Hz (VIB30). Pre and post training, critical power (CP), W′, cellular muscle characteristics, as well as cardiovascular and neuromuscular variables were determined. W′ (−14.3%, P = 0.013), maximal voluntary torque (−8.6%, P = 0.001), rate of force development (−10.5%, P = 0.018), maximal jumping power (−6.3%, P = 0.007) and cross-sectional areas of MyHC-2A fibers (−6.4%, P = 0.044) were reduced only after conventional HIT. CP, V̇O2peak, peak cardiac output, and overall capillary-to-fiber ratio were increased after HIT, HIT+VIB18, and HIT+VIB30 without differences between groups. HIT-specific reductions in anaerobic performance and capacity were prevented by replacing active rest intervals with side-alternating whole-body vibration, notably without compromising aerobic adaptations. Therefore, competitive cyclists (and potentially other endurance-oriented athletes) may benefit from replacing the active rest intervals during aerobic HIT with side-alternating whole-body vibration. Trial Registration ClinicalTrials.gov Identifier: NCT01875146 PMID:25679998

  9. The increased potassium intake improves cognitive performance and attenuates histopathological markers in a model of Alzheimer's disease.

    PubMed

    Cisternas, Pedro; Lindsay, Carolina B; Salazar, Paulina; Silva-Alvarez, Carmen; Retamales, Rocio M; Serrano, Felipe G; Vio, Carlos P; Inestrosa, Nibaldo C

    2015-12-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by hallmarks that include an accumulation of amyloid-β peptide (Aβ), inflammation, oxidative stress and synaptic dysfunction, which lead to a decrease in cognitive function. To date, the onset and progression of AD have been associated with pathologies such as hypertension and diabetes. Hypertension, a disease with a high incidence worldwide, is characterized by a chronic increase in blood pressure. Interestingly, this disease has a close relationship to the eating behavior of patients because high Na(+) intake is a significant risk factor for hypertension. In fact, a decrease in Na(+) consumption, along with an increase in K(+) intake, is a primary non-pharmacological approach to preventing hypertension. In the present work, we examined whether an increase in K(+) intake affects the expression of certain neuropathological markers or the cognitive performance of a murine model of AD. We observed that an increase in K(+) intake leads to a change in the aggregation pattern of the Aβ peptide, a partial decrease in some epitopes of tau phosphorylation and improvement in the cognitive performance. The recovery in cognitive performance was correlated with a significant improvement in the generation of long-term potentiation. We also observed a decrease in markers related to inflammation and oxidative stress such as glial fibrillary acidic protein (GFAP), interleukin 6 (IL-6) and 4-hydroxynonenal (4-HNE). Together, our data support the idea that changes in diet, such as an increase in K(+) intake, may be important in the prevention of AD onset as a non-pharmacological therapy.

  10. Latticed pentamode acoustic cloak.

    PubMed

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  11. Latticed pentamode acoustic cloak

    PubMed Central

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  12. Acoustic network event classification using swarm optimization

    NASA Astrophysics Data System (ADS)

    Burman, Jerry

    2013-05-01

    Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.

  13. Influence of panel fastening on the acoustic performance of light-weight building elements: Study by sound transmission and laser scanning vibrometry

    NASA Astrophysics Data System (ADS)

    Roozen, N. B.; Muellner, H.; Labelle, L.; Rychtáriková, M.; Glorieux, C.

    2015-06-01

    Structural details and workmanship can cause considerable differences in sound insulation properties of timber frame partitions. In this study, the influence of panel fastening is investigated experimentally by means of standardized sound reduction index measurements, supported by detailed scanning laser Doppler vibrometry. In particular the effect of the number of screws used to fasten the panels to the studs, and the tightness of the screws, is studied using seven different configurations of lightweight timber frame building elements. In the frequency range from 300 to 4000 Hz, differences in the weighted sound reduction index RW as large as 10 dB were measured, suggesting that the method of fastening can have a large impact on the acoustic performance of building elements. Using the measured vibrational responses of the element, its acoustic radiation efficiency was computed numerically by means of a Rayleigh integral. The increased radiation efficiency partly explains the reduced sound reduction index. Loosening the screws, or reducing the number of screws, lowers the radiation efficiency, and significantly increases the sound reduction index of the partition.

  14. Performance comparison of an all-fiber-based laser Doppler vibrometer for remote acoustical signal detection using short and long coherence length lasers.

    PubMed

    Li, Rui; Madampoulos, Nicholas; Zhu, Zhigang; Xie, Liangping

    2012-07-20

    All-fiber laser Doppler vibrometer systems have great potential in the application of remote acoustic detection. However, due to the requirement for a long operating distance, a long coherence length laser is required, which can drive the system cost high. In this paper, a system using a short coherence length laser is proposed and demonstrated. Experimental analysis indicates that the multi-longitudinal modes of the laser cause detection noise and that the unequal length between two paths (local oscillator path and transmission path) increases the intensity and the frequency components of the noise. In order to reduce the noise, the optical length of the two paths needs to be balanced, within the coherence length of the source. We demonstrate that adopting a tunable optical delay to compensate the unequal length significantly reduces the noise. In a comparison of the detection results by using a short coherence laser and a long coherence laser, our developed system gives a good performance on the acoustic signal detection from three meters away.

  15. The design of an active-adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance

    NASA Astrophysics Data System (ADS)

    Liao, G. J.; Gong, X. L.; Kang, C. J.; Xuan, S. H.

    2011-07-01

    This paper presents an active-adaptive tuned vibration absorber (AATVA) which is based on magnetorheological elastomer (MRE). A voice coil motor is attached to a conventional MRE adaptive tuned vibration absorber (ATVA) to improve its performance. In this study, two feedback types of the activation force were analyzed and the stability condition was obtained. In order to eliminate the time delay effect during the signal processing, a phase-lead compensator was incorporated. Based on the analysis, an MRE AATVA prototype was designed and its dynamic properties were experimentally investigated. The experimental results demonstrated that its resonant frequency could vary from 11 to 18 Hz and its damping ratio decreased to roughly 0.05 from 0.19 by adding the activation force. Besides, its vibration reduction abilities at the first two resonant frequencies of the experimental platform could reach 5.9 dB and 7.9 dB respectively.

  16. Acoustic boundary control for quieter aircraft

    NASA Astrophysics Data System (ADS)

    Hirsch, Scott Michael

    1999-08-01

    There is a strong interest in reducing the volume of low- frequency noise in aircraft cabins. Active noise control (ANC), in which loudspeakers placed in the cabin are used to generate a sound field which will cancel these disturbances, is now a commercially available solution. A second control approach is active structural acoustic control (ASAC), which uses structural control forces to reduce sound transmitted into the cabin through the fuselage. Some of the goals of current research are to reduce the cost, weight, and bulk of these control systems, along with improving global control performance. This thesis introduces an acoustic boundary control (ABC) concept for active noise control in aircraft. This control strategy uses distributed actuator arrays along enclosure boundaries to reduce noise transmitted into the enclosure through the boundaries and to reduce global noise levels due to other disturbances. The motivation is to provide global pressure attenuation with small, lightweight control actuators. Analytical studies are conducted of acoustic boundary in two-dimensional and three-dimensional rectangular enclosures and in a finite cylindrical enclosure. The simulations provide insight into the control mechanisms of ABC and demonstrate potential advantages of ABC over traditional ANC and ASAC implementations. A key component of acoustic boundary control is the ``smart'' trim panel, a structurally modified aircraft trim panel for use as an acoustic control source. A prototype smart trim panel is built and tested. The smart trim panel is used as the control source in a real-time active noise control system in a laboratory- scale fuselage model. It is shown that the smart trim panel works as well as traditional loudspeakers for this application. A control signal scheduling approach is proposed which allows for a reduction in the computational burden of the real-time controller used in active noise control applications. This approach uses off-line system

  17. Tool-specific performance of vibration-reducing gloves for attenuating palm-transmitted vibrations in three orthogonal directions

    PubMed Central

    Dong, Ren G.; Welcome, Daniel E.; Peterson, Donald R.; Xu, Xueyan S.; McDowell, Thomas W.; Warren, Christopher; Asaki, Takafumi; Kudernatsch, Simon; Brammer, Antony

    2015-01-01

    Vibration-reducing (VR) gloves have been increasingly used to help reduce vibration exposure, but it remains unclear how effective these gloves are. The purpose of this study was to estimate tool-specific performances of VR gloves for reducing the vibrations transmitted to the palm of the hand in three orthogonal directions (3-D) in an attempt to assess glove effectiveness and aid in the appropriate selection of these gloves. Four typical VR gloves were considered in this study, two of which can be classified as anti-vibration (AV) gloves according to the current AV glove test standard. The average transmissibility spectrum of each glove in each direction was synthesized based on spectra measured in this study and other spectra collected from reported studies. More than seventy vibration spectra of various tools or machines were considered in the estimations, which were also measured in this study or collected from reported studies. The glove performance assessments were based on the percent reduction of frequency-weighted acceleration as is required in the current standard for assessing the risk of vibration exposures. The estimated tool-specific vibration reductions of the gloves indicate that the VR gloves could slightly reduce (<5%) or marginally amplify (<10%) the vibrations generated from low-frequency (<25 Hz) tools or those vibrating primarily along the axis of the tool handle. With other tools, the VR gloves could reduce palm-transmitted vibrations in the range of 5%–58%, primarily depending on the specific tool and its vibration spectra in the three directions. The two AV gloves were not more effective than the other gloves with some of the tools considered in this study. The implications of the results are discussed. Relevance to industry Hand-transmitted vibration exposure may cause hand-arm vibration syndrome. Vibration-reducing gloves are considered as an alternative approach to reduce the vibration exposure. This study provides useful information

  18. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  19. Configuration Effects on Liner Performance

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.

    2012-01-01

    The acoustic performance of a duct liner depends not only on the intrinsic properties of the liner but also on the configuration of the duct in which it is used. A series of experiments is performed in the NASA Langley Research Center Curved Duct Test Rig (at Mach 0.275) to evaluate the effect of duct configuration on the acoustic performance of single degree of freedom perforate-over-honeycomb liners. The liners form the sidewalls of the duct's test section. Variations of duct configuration include: asymmetric (liner on one side and hard wall opposite) and symmetric (liner on both sides) wall treatment; inlet and exhaust orientation, in which the sound propagates either against or with the flow; and straight and curved flow path. The effect that duct configuration has on the overall acoustic performance, particularly the shift in frequency and magnitude of peak attenuation, is quantified. The redistribution of incident mode content is shown. The liners constitute the side walls of the liner test section and the scatter of incident horizontal order 1 mode by the asymmetric treatment and order 2 mode by the symmetric treatment into order 0 mode is shown. Scatter of order 0 incident modes into higher order modes is also shown. This redistribution of mode content is significant because it indicates that the liner design can be manipulated such that energy is scattered into more highly attenuated modes, thus enhancing liner performance.

  20. Measurements of frequency dependent shear wave attenuation in sedimentary basins using induced earthquakes

    NASA Astrophysics Data System (ADS)

    Richter, Tom; Wegler, Ulrich

    2015-04-01

    Modeling of peak ground velocity caused by induced earthquakes requires detailed knowledge about seismic attenuation properties of the subsurface. Especially shear wave attenuation is important, because shear waves usually show the largest amplitude in high frequency seismograms. We report intrinsic and scattering attenuation coefficients of shear waves near three geothermal reservoirs in Germany for frequencies between 2 Hz and 50 Hz. The geothermal plants are located in the sedimentary basins of the upper Rhine graben (Insheim and Landau) and the Molasse basin (Unterhaching). The method optimizes the fit between Green's functions for the acoustic, isotropic radiative transfer theory and observed energy densities of induced earthquakes. The inversion allows the determination of scattering and intrinsic attenuation, site corrections, and spectral source energies for the investigated frequency bands. We performed the inversion at the three sites for events with a magnitude between 0.7 and 2. We determined a transport mean free path of 70 km for Unterhaching. For Landau and Insheim the transport mean free path depends on frequency. It ranges from 2 km (at 2 Hz) to 30 km (at 40 Hz) for Landau and from 9 km to 50 km for Insheim. The quality factor for intrinsic attenuation is constant for frequencies smaller than 10 Hz at all three sites. It is around 100 for Unterhaching and 200 for Landau and Insheim with higher values above 10 Hz.

  1. Attenuation Properties of Fontainebleau Sandstone During True-Triaxial Deformation using Active and Passive Ultrasonics

    NASA Astrophysics Data System (ADS)

    Goodfellow, S. D.; Tisato, N.; Ghofranitabari, M.; Nasseri, M. H. B.; Young, R. P.

    2015-11-01

    Active and passive ultrasonic methods were used to study the evolution of attenuation properties in a sample of Fontainebleau sandstone during true-triaxial deformation. A cubic sample of Fontainebleau sandstone (80 mm × 80 mm × 80 mm) was deformed under true-triaxial stresses until failure. From the stress state: σ _3 = 5 MPa and σ _1 = σ _2 = 35 MPa, σ _1 was increased at a constant displacement rate until the specimen failed. Acoustic emission (AE) activity was monitored by 18 piezoelectric sensors and bandpass filtered between 100 kHz and 1 MHz. A source location analysis was performed on discrete AE data harvested from the continuous record where 48,502 events were locatable inside the sample volume. AE sensors were sequentially pulsed during periodic P-wave surveys among 135 raypaths. Analytical solutions for Biot, squirt flow, viscous shear, and scattering attenuation were used to discuss to observed attenuation at various stages of the experiment. We concluded that initial attenuation anisotropy was stress induced and resulted from friction and squirt flow. Later attenuation of the high-frequency spectrum was attributed to scattering as a result of the formation of large macroscopic vertical fractures. Passive (AE) ultrasonic data produced similar information to that from active data but with enhanced temporal and spacial resolution.

  2. Fluid dynamic bowtie attenuators

    NASA Astrophysics Data System (ADS)

    Szczykutowicz, Timothy P.; Hermus, James

    2015-03-01

    Fluence field modulated CT allows for improvements in image quality and dose reduction. To date, only 1-D modulators have been proposed, the extension to 2-D modulation is difficult with solid-metal attenuation-based modulators. This work proposes to use liquids and gas to attenuate the x-ray beam which can be arrayed allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Gaseous Xenon and liquid Iodine, Zinc Chloride, and Cerium Chloride were studied. Additionally, we performed some proof-of-concept experiments in which (1) a single cell of liquid was connected to a reservoir which allowed the liquid thickness to be modulated and (2) a 96 cell array was constructed in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with Zinc Chloride allowing for the smallest thickness; 1.8, 2.25, 3, and 3.6 cm compensated for 30 cm of soft tissue at 80, 100, 120, and 140 kV respectively. The 96 cell Iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter to primary ratio. Successful modulation of a single cell was performed at 0, 90, and 130 degrees using a simple piston/actuator. The thickness of liquids and the Xenon gas pressure seem logistically implementable within the constraints of CBCT and diagnostic CT systems.

  3. Parvulescu Revisited: Small Tank Acoustics for Bioacousticians.

    PubMed

    Rogers, Peter H; Hawkins, Anthony D; Popper, Arthur N; Fay, Richard R; Gray, Michael D

    2016-01-01

    Researchers often perform hearing studies on fish in small tanks. The acoustic field in such a tank is considerably different from the acoustic field that occurs in the animal's natural environment. The significance of these differences is magnified by the nature of the fish's auditory system where either acoustic pressure (a scalar), acoustic particle velocity (a vector), or both may serve as the stimulus. It is essential for the underwater acoustician to understand the acoustics of small tanks to be able to carry out valid auditory research in the laboratory and to properly compare and interpret the results of others. PMID:26611052

  4. Parvulescu Revisited: Small Tank Acoustics for Bioacousticians.

    PubMed

    Rogers, Peter H; Hawkins, Anthony D; Popper, Arthur N; Fay, Richard R; Gray, Michael D

    2016-01-01

    Researchers often perform hearing studies on fish in small tanks. The acoustic field in such a tank is considerably different from the acoustic field that occurs in the animal's natural environment. The significance of these differences is magnified by the nature of the fish's auditory system where either acoustic pressure (a scalar), acoustic particle velocity (a vector), or both may serve as the stimulus. It is essential for the underwater acoustician to understand the acoustics of small tanks to be able to carry out valid auditory research in the laboratory and to properly compare and interpret the results of others.

  5. Empirical mode decomposition for analyzing acoustical signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2005-01-01

    The present invention discloses a computer implemented signal analysis method through the Hilbert-Huang Transformation (HHT) for analyzing acoustical signals, which are assumed to be nonlinear and nonstationary. The Empirical Decomposition Method (EMD) and the Hilbert Spectral Analysis (HSA) are used to obtain the HHT. Essentially, the acoustical signal will be decomposed into the Intrinsic Mode Function Components (IMFs). Once the invention decomposes the acoustic signal into its constituting components, all operations such as analyzing, identifying, and removing unwanted signals can be performed on these components. Upon transforming the IMFs into Hilbert spectrum, the acoustical signal may be compared with other acoustical signals.

  6. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  7. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    SciTech Connect

    Wang, Wenbo; He, Xingli; Ye, Zhi E-mail: jl2@bolton.ac.uk; Wang, Xiaozhi; Mayrhofer, Patrick M.; Gillinger, Manuel; Bittner, Achim; Schmid, Ulrich

    2014-09-29

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.

  8. On the acoustic analysis and optimization of ducted ventilation systems using a sub-structuring approach.

    PubMed

    Yu, X; Cui, F S; Cheng, L

    2016-01-01

    This paper presents a general sub-structuring approach to predict the acoustic performance of ducted ventilation systems. The modeling principle is to determine the subsystem characteristics by calculating the transfer functions at their coupling interfaces, and the assembly is enabled by using a patch-based interface matching technique. For a particular example of a bended ventilation duct connecting an inlet and an outlet acoustic domain, a numerical model is developed to predict its sound attenuation performance. The prediction accuracy is thoroughly validated against finite element models. Through numerical examples, the rigid-walled duct is shown to provide relatively weak transmission loss (TL) across the frequency range of interest, and exhibit only the reactive behavior for sound reflection. By integrating sound absorbing treatment such as micro-perforated absorbers into the system, the TL can be significantly improved, and the system is seen to exhibit hybrid mechanisms for sound attenuation. The dissipative effect dominates at frequencies where the absorber is designed to be effective, and the reactive effect provides compensations at the absorption valleys attributed to the resonant behavior of the absorber. This ultimately maintains the system TL at a relatively high level across the entire frequency of interest. The TL of the system can be tuned or optimized in a very efficient way using the proposed approach due to its modular nature. It is shown that a balance of the hybrid mechanism is important to achieve an overall broadband attenuation performance in the design frequency range. PMID:26827024

  9. Theory for a gas composition sensor based on acoustic properties.

    PubMed

    Phillips, Scott; Dain, Yefim; Lueptow, Richard M

    2003-01-01

    Sound travelling through a gas propagates at different speeds and its intensity attenuates to different degrees depending upon the composition of the gas. Theoretically, a real-time gaseous composition sensor could be based on measuring the sound speed and the acoustic attenuation. To this end, the speed of sound was modelled using standard relations, and the acoustic attenuation was modelled using the theory for vibrational relaxation of gas molecules. The concept for a gas composition sensor is demonstrated theoretically for nitrogen-methane-water and hydrogen-oxygen-water mixtures. For a three-component gas mixture, the measured sound speed and acoustic attenuation each define separate lines in the composition plane of two of the gases. The intersection of the two lines defines the gas composition. It should also be possible to use the concept for mixtures of more than three components, if the nature of the gas composition is known to some extent. PMID:14552356

  10. Modal structural acoustic sensing with minimum number of optimally placed piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Loghmani, Ali; Danesh, Mohammad; Keshmiri, Mehdi

    2016-02-01

    Structural acoustic sensing is a method of obtaining radiated sound pressure from a vibrating structure using vibration information. Structural acoustic sensing is used in active structural acoustic control for attenuating the sound radiated from a structure. In this paper, a new approach called Modal Structural Acoustic Sensing (MSAS) is proposed for estimating the pressure radiated from a vibrating cylindrical shell using piezoelectric sensors. The motion equations of a cylindrical shell in conjunction with piezoelectric patches are derived based on the Donnel-Mushtari shell theory. The locations of the piezoelectric sensors are optimized by the Genetic Algorithm based on maximizing the observability gramian matrix. The Kirchhoff-Helmholtz integral is used for estimating the sound pressure radiated from the cylindrical shell. Numerical simulations are performed to demonstrate the advantages of the proposed approach in comparison with previous methods such as discrete structural acoustic sensing and distributed modal sensors. Results show that the MSAS can increase the estimation accuracy and decrease the controller dimensionality and the number of required sensors.

  11. THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures.

    PubMed

    Mante, Pierre-Adrien; Huang, Yu-Ru; Yang, Szu-Chi; Liu, Tzu-Ming; Maznev, Alexei A; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2015-02-01

    Thanks to ultrafast acoustics, a better understanding of acoustic dynamics on a short time scale has been obtained and new characterization methods at the nanoscale have been developed. Among the materials that were studied during the development of ultrafast acoustics, nitride based heterostructures play a particular role due to their piezoelectric properties and the possibility to generate phonons with over-THz frequency and bandwidth. Here, we review some of the work performed using this type of structure, with a focus on THz phonon spectroscopy and nanoscopy. First, we present a brief description of the theory of coherent acoustic phonon generation by piezoelectric heterostructure. Then the first experimental observation of coherent acoustic phonon generated by the absorption of ultrashort light pulses in piezoelectric heterostructures is presented. From this starting point, we then present some methods developed to realize customizable phonon generation. Finally we review some more recent applications of these structures, including imaging with a nanometer resolution, broadband attenuation measurements with a frequency up to 1THz and phononic bandgap characterization.

  12. THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures.

    PubMed

    Mante, Pierre-Adrien; Huang, Yu-Ru; Yang, Szu-Chi; Liu, Tzu-Ming; Maznev, Alexei A; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2015-02-01

    Thanks to ultrafast acoustics, a better understanding of acoustic dynamics on a short time scale has been obtained and new characterization methods at the nanoscale have been developed. Among the materials that were studied during the development of ultrafast acoustics, nitride based heterostructures play a particular role due to their piezoelectric properties and the possibility to generate phonons with over-THz frequency and bandwidth. Here, we review some of the work performed using this type of structure, with a focus on THz phonon spectroscopy and nanoscopy. First, we present a brief description of the theory of coherent acoustic phonon generation by piezoelectric heterostructure. Then the first experimental observation of coherent acoustic phonon generated by the absorption of ultrashort light pulses in piezoelectric heterostructures is presented. From this starting point, we then present some methods developed to realize customizable phonon generation. Finally we review some more recent applications of these structures, including imaging with a nanometer resolution, broadband attenuation measurements with a frequency up to 1THz and phononic bandgap characterization. PMID:25455189

  13. Simulations of acoustic waves in channels and phonation in glottal ducts

    NASA Astrophysics Data System (ADS)

    Yang, Jubiao; Krane, Michael; Zhang, Lucy

    2014-11-01

    Numerical simulations of acoustic wave propagation were performed by solving compressible Navier-Stokes equations using finite element method. To avoid numerical contamination of acoustic field induced by non-physical reflections at computational boundaries, a Perfectly Matched Layer (PML) scheme was implemented to attenuate the acoustic waves and their reflections near these boundaries. The acoustic simulation was further combined with the simulation of interaction of vocal fold vibration and glottal flow, using our fully-coupled Immersed Finite Element Method (IFEM) approach, to study phonation in the glottal channel. In order to decouple the aeroelastic and aeroacoustic aspects of phonation, the airway duct used has a uniform cross section with PML properly applied. The dynamics of phonation were then studied by computing the terms of the equations of motion for a control volume comprised of the fluid in the vicinity of the vocal folds. It is shown that the principal dynamics is comprised of the near cancellation of the pressure force driving the flow through the glottis, and the aerodynamic drag on the vocal folds. Aeroacoustic source strengths are also presented, estimated from integral quantities computed in the source region, as well as from the radiated acoustic field.

  14. High frequency ultrasound measurements of the attenuation and backscatter from biological tissues

    NASA Astrophysics Data System (ADS)

    Maruvada, Subha

    There are now diagnostic ultrasonic imaging devices that operate at very high frequencies (VHF) of 20 MHz and beyond for clinical applications in ophthalmology, dermatology, and vascular surgery. To be able to better interpret these images and to further the development of these devices, knowledge of ultrasonic attenuation and scattering of biological tissues in this high frequency range is crucial. Though currently VHF ultrasound is applied mostly to the eye and skin tissue, in this thesis, VHF experiments were performed on porcine red blood cell suspensions and bovine myocardium, liver, and kidney because these tissues are easy to obtain, are similar in structure to their human counterparts and have been used in ultrasound experiments by many investigators but in a lower frequency range. Attenuation and backscatter coefficients of porcine blood and bovine tissues were measured, respectively, using substitution methods. Unfocused and focused transducers were employed in the experiments and corresponding results were compared. This dissertation presents the results of measurements of acoustic attenuation and backscatter from various biological materials (bovine myocardium, liver, and kidney, and porcine blood) in a wide frequency range (10 to 90 MHz) and compares them to previous lower frequency results. Based on the methods used to calculate the acoustic parameters, the frequency limits of the measurements are also defined.

  15. Acoustic Experiment to Measure the Bulk Viscosity of Near-Critical Xenon in Microgravity

    NASA Technical Reports Server (NTRS)

    Gillis, K. A.; Shinder, I.; Moldover, M. R.; Zimmerli, G. A.

    2002-01-01

    We plan a rigorous test of the theory of dynamic scaling by accurately measuring the bulk viscosity of xenon in microgravity 50 times closer to the critical temperature T(sub c) than previous experiments. The bulk viscosity zeta (or "second viscosity" or "dilational viscosity") will be determined by measuring the attenuation length of sound alpha lambda and also measuring the frequency-dependence of the speed of sound. For these measurements, we developed a unique Helmholtz resonator and specialized electro-acoustic transducers. We describe the resonator, the transducers, their performance on Earth, and their expected performance in microgravity.

  16. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  17. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  18. Attenuation of intense sinusoidal waves in air-saturated, bulk porous materials

    NASA Technical Reports Server (NTRS)

    Kuntz, Herbert L.; Blackstock, David T.

    1987-01-01

    As intense, initially sinusoidal waves propagate in fluids, shocks form and excess attenuation of the wave occurs. Data are presented indicating that shock formation is not necessary for the occurrence of excess attenuation in nonlinear, lossy media, i.e., air-saturated, porous materials. An empirical equation is used to describe the excess attenuation of intense sinusoids in porous materials. The acoustic nonlinearity of and the excess attenuation in porous materials may be predicted directly from dc flow resistivity data. An empirical relationship is used to relate an acoustic nonlinearity parameter to the fundamental frequency and relative dc nonlinearity of two structurally different materials.

  19. Analysis of acoustic damping in duct terminated by porous absorption materials based on analytical models and finite element simulations

    NASA Astrophysics Data System (ADS)

    Guan Qiming

    Acoustic absorption materials are widely used today to dampen and attenuate the noises which exist almost everywhere and have adverse impact upon daily life of human beings. In order to evaluate the absorption performance of such materials, it is necessary to experimentally determine acoustic properties of absorption materials. Two experimental methods, one is Standing Wave Ratio Method and the other is Transfer-Function Method, which also totally called as Impedance Tube Method, are based on two analytical models people have used to evaluate and validate the data obtained from acoustic impedance analyzers. This thesis first reviews the existing analytical models of previous two experimental methods in the literature by looking at their analytical models, respectively. Then a new analytical model is developed is developed based on One-Microphone Method and Three-Microphone Method, which are two novel experimental approaches. Comparisons are made among these analytical models, and their advantages and disadvantages are discussed.

  20. Reverberant Acoustic Testing and Direct Field Acoustic Testing Acoustic Standing Waves and their Impact on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    The aerospace industry has been using two methods of acoustic testing to qualify flight hardware: (1) Reverberant Acoustic Test (RAT), (2) Direct Field Acoustic Test (DFAT). The acoustic field obtained by RAT is generally understood and assumed to be diffuse, expect below Schroeder cut-of frequencies. DFAT method of testing has some distinct advantages over RAT, however the acoustic field characteristics can be strongly affected by test setup such as the speaker layouts, number and location of control microphones and control schemes. In this paper the following are discussed based on DEMO tests performed at APL and JPL: (1) Acoustic wave interference patterns and acoustic standing waves, (2) The structural responses in RAT and DFAT.

  1. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  2. Acoustic Issues in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Clark, Jonathan B.

    2001-01-01

    NASA is concerned about acute effect of sound on crew performance on International Space Station (ISS), and is developing strategies to assess and reduce acute, chronic, and delayed effects of sound. High noise levels can cause headaches, irritation, fatigue, impaired sleep, headache, and tinnitus and have resulted in an inability to hear alarms. Speech intelligibility may be more impaired for crew understanding non-native language in a noisy environment. No hearing loss occurred, but significant effects on crew performance and communication occurred. Permanent Threshold Shifts (PTS) have not been observed in the US shuttle program. Russian specification for noise in spacecraft is 60 dBA (awake) and 50 dBA (asleep) while the U.S. noise specification on ISS is NC 50 (awake) and NC 40 (asleep) with a 85 dBA hazard limit. Background noise levels of ISS modules have measured 56-69 dBA. Treadmill exercise operations measure 77 dBA. Alarms are required to be 20 dBA above ambient. Hearing protection is recommended when noise exceeds 60 dB 24 hour Leq. Countermeasures include hearing protection and design/ engineering controls. Advanced composite materials with excellent low frequency attenuation properties could be applied as a barrier protection around noisy equipment, or used on personal protective equipment worn by the crew. Hearing protection countermeasures include foam ear inserts, passive muff headsets, and active noise reduction headsets. Oto-acoustic emissions (OAE) could be used to monitor effectiveness of hearing protection countermeasures and tailor hearing protection countermeasures to individual crewmembers. Micro-gravity, vibration, toxic fumes, air quality/composition, stress, temperature, physical exertion or some combination of the above factors may have interacted with moderate long-term noise exposure to cause significant hearing loss. Longitudinal studies will need to address what co-morbidity factors, such as radiation, toxicology, microgravity

  3. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  4. Electrochemical Processes Enhanced by Acoustic Liquid Manipulation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2004-01-01

    Acoustic liquid manipulation is a family of techniques that employ the nonlinear acoustic effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. Researchers at the NASA Glenn Research Center are exploring new methods of manipulating liquids for a variety of space applications, and we have found that acoustic techniques may also be used in the normal Earth gravity environment to enhance the performance of existing fluid processes. Working in concert with the NASA Commercial Technology Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation (Elgin, IL), researchers at Glenn have applied nonlinear acoustic principles to industrial applications. Collaborating with Alchemitron Corporation, we have adapted the devices to create acoustic streaming in a conventional electroplating process.

  5. Granular acoustic switches and logic elements

    NASA Astrophysics Data System (ADS)

    Li, Feng; Anzel, Paul; Yang, Jinkyu; Kevrekidis, Panayotis G.; Daraio, Chiara

    2014-10-01

    Electrical flow control devices are fundamental components in electrical appliances and computers; similarly, optical switches are essential in a number of communication, computation and quantum information-processing applications. An acoustic counterpart would use an acoustic (mechanical) signal to control the mechanical energy flow through a solid material. Although earlier research has demonstrated acoustic diodes or circulators, no acoustic switches with wide operational frequency ranges and controllability have been realized. Here we propose and demonstrate an acoustic switch based on a driven chain of spherical particles with a nonlinear contact force. We experimentally and numerically verify that this switching mechanism stems from a combination of nonlinearity and bandgap effects. We also realize the OR and AND acoustic logic elements by exploiting the nonlinear dynamical effects of the granular chain. We anticipate these results to enable the creation of novel acoustic devices for the control of mechanical energy flow in high-performance ultrasonic devices.

  6. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  7. Acoustically-driven microfluidic systems

    SciTech Connect

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  8. Low-Speed Fan Noise Attenuation from a Foam-Metal Liner

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Jones, Michael G.

    2011-01-01

    A foam-metal liner for attenuation of fan noise was developed for and tested on a low-speed fan. This type of liner represents a significant advance over traditional liners, due to the possibility of placement in close proximity to the rotor. An advantage of placing treatment in this region is that the acoustic near field is modified, thereby inhibiting the noise-generation mechanism. This can result in higher attenuation levels than could be achieved by liners located in the nacelle inlet. In addition, foam-metal liners could potentially replace the fan rub strip and containment components, ultimately reducing engine components and thus weight, which can result in a systematic increase in noise reduction and engine performance. Foam-metal liners have the potential to reduce fan noise by 4 dB based on this study.

  9. Foam-Metal Liner Attenuation of Low-Speed Fan Noise

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel R.; Jones, Michael G.

    2008-01-01

    A foam-metal liner for attenuation of fan noise was developed for and tested on a low speed fan. This type of liner represents a significant advance over traditional liners due to the possibility for placement in close proximity to the rotor. An advantage of placing treatment in this region is the modification of the acoustic near field, thereby inhibiting noise generation mechanisms. This can result in higher attenuation levels than can be achieved by liners located in the nacelle inlet. In addition, foam-metal liners could potentially replace the fan rub-strip and containment components, ultimately reducing engine components and thus weight, which can result in a systematic increase in noise reduction and engine performance. Foam-metal liners have the potential to reduce fan noise by 4 dB based on this study.

  10. Performance assessment and calibration of a profiling lab-scale acoustic Doppler velocimeter for application over mixed sand-gravel beds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic Doppler velocimetry has made high-resolution turbulence measurements in sediment-laden flows possible. Recent developments have resulted in a commercially available lab-scale acoustic Doppler profiling device, a Nortek Vectrino II, that allows for three-dimensional velocity data to be colle...

  11. Far-Field Acoustic Power Level and Performance Analyses of F31/A31 Open Rotor Model at Simulated Scaled Takeoff, Nominal Takeoff, and Approach Conditions: Technical Report I

    NASA Technical Reports Server (NTRS)

    Sree, Dave

    2015-01-01

    Far-field acoustic power level and performance analyses of open rotor model F31/A31 have been performed to determine its noise characteristics at simulated scaled takeoff, nominal takeoff, and approach flight conditions. The nonproprietary parts of the data obtained from experiments in 9- by 15-Foot Low-Speed Wind Tunnel (9?15 LSWT) tests were provided by NASA Glenn Research Center to perform the analyses. The tone and broadband noise components have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, angle of attack, thrust, and input shaft power have been presented and discussed. The effect of an upstream pylon on the noise levels of the model has been addressed. Empirical equations relating model's acoustic power level, thrust, and input shaft power have been developed. The far-field acoustic efficiency of the model is also determined for various simulated flight conditions. It is intended that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.

  12. An overview of acoustic telemetry

    SciTech Connect

    Drumheller, D.S.

    1992-01-01

    Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quire low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested; existing field test data need to be analyzed for transmission bandwidth and attenuation; and the new and less expensive methods of collecting data on transmission path quality need to be incorporated into this effort. 11 refs.

  13. Probiotic Streptococcus thermophilus FP4 and Bifidobacterium breve BR03 Supplementation Attenuates Performance and Range-of-Motion Decrements Following Muscle Damaging Exercise

    PubMed Central

    Jäger, Ralf; Purpura, Martin; Stone, Jason D.; Turner, Stephanie M.; Anzalone, Anthony J.; Eimerbrink, Micah J.; Pane, Marco; Amoruso, Angela; Rowlands, David S.; Oliver, Jonathan M.

    2016-01-01

    Probiotics have immunomodulatory effects. However, little is known about the potential benefit of probiotics on the inflammation subsequent to strenuous exercise. In a double-blind, randomized, placebo controlled, crossover design separated by a 21-day washout, 15 healthy resistance-trained men ingested an encapsulated probiotic Streptococcus (S.) thermophilus FP4 and Bifidobacterium (B.) breve BR03 at 5 bn live cells (AFU) concentration each, or a placebo, daily for 3 weeks prior to muscle-damaging exercise (ClinicalTrials.gov NCT02520583). Isometric strength, muscle soreness, range of motion and girth, and blood interleukin-6 (IL-6) and creatine kinase (CK) concentrations were measured from pre- to 72 h post-exercise. Statistical analysis was via mixed models and magnitude-based inference to the standardized difference. Probiotic supplementation resulted in an overall decrease in circulating IL-6, which was sustained to 48 h post-exercise. In addition, probiotic supplementation likely enhanced isometric average peak torque production at 24 to 72 h into the recovery period following exercise (probiotic–placebo point effect ±90% CI: 24 h, 11% ± 7%; 48 h, 12% ± 18%; 72 h, 8% ± 8%). Probiotics also likely moderately increased resting arm angle at 24 h (2.4% ± 2.0%) and 48 h (1.9% ± 1.9%) following exercise, but effects on soreness and flexed arm angle and CK were unclear. These data suggest that dietary supplementation with probiotic strains S. thermophilus FP4 and B. breve BR03 attenuates performance decrements and muscle tension in the days following muscle-damaging exercise. PMID:27754427

  14. Acoustic systems for the measurement of streamflow

    USGS Publications Warehouse

    Laenen, Antonius; Smith, Winchell

    1983-01-01

    The acoustic velocity meter (AVM), also referred to as an ultrasonic flowmeter, has been an operational tool for the measurement of streamflow since 1965. Very little information is available concerning AVM operation, performance, and limitations. The purpose of this report is to consolidate information in such a manner as to provide a better understanding about the application of this instrumentation to streamflow measurement. AVM instrumentation is highly accurate and nonmechanical. Most commercial AVM systems that measure streamflow use the time-of-travel method to determine a velocity between two points. The systems operate on the principle that point-to-point upstream travel-time of sound is longer than the downstream travel-time, and this difference can be monitored and measured accurately by electronics. AVM equipment has no practical upper limit of measurable velocity if sonic transducers are securely placed and adequately protected. AVM systems used in streamflow measurement generally operate with a resolution of ?0.01 meter per second but this is dependent on system frequency, path length, and signal attenuation. In some applications the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Presently used minicomputer systems, although expensive to purchase and maintain, perform well. Increased use of AVM systems probably will be realized as smaller, less expensive, and more conveniently operable microprocessor-based systems become readily available. Available AVM equipment should be capable of flow measurement in a wide variety of situations heretofore untried. New signal-detection techniques and communication linkages can provide additional flexibility to the systems so that operation is possible in more river and estuary situations.

  15. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  16. Low-speed wind tunnel investigation of the aerodynamic and acoustic performance of a translating-centerbody choked-flow inlet

    NASA Technical Reports Server (NTRS)

    Miller, B. A.; Abbott, J. M.

    1973-01-01

    Low-speed wind-tunnel tests were conducted to determine the effects of free-stream velocity and incidence angle on the aerodynamic and acoustic performance of a translating centerbody choked-flow inlet. The inlet was sized to fit a 13.97 cm diameter fan with a design weight flow of 2.49 kg/sec. Performance was determined at free-stream velocities to 45 meters per second and incidence angles of 0 deg to 50 deg. The inlet was operated in both the choked and unchoked modes over a range of weight flows. Measurements were made of inlet total pressure recovery, flow distortion, surface static pressure distribution, and fan noise suppression. In the choked mode, increasing incidence angle tended to reduce the amount of inlet noise suppression for a given amount of inlet suction. This tendency was overcome by applying sufficient inlet suction to increase the flow Mach number. At 45 meters per second free-stream velocity, at least 22 decibels of suppression were measured at 35 deg incidence angle with a total pressure recovery of 0.985.

  17. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy.

    PubMed

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-01-01

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction. PMID:27346494

  18. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-06-01

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction.

  19. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy

    PubMed Central

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-01-01

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction. PMID:27346494

  20. In vitro measurement of attenuation and nonlinear scattering from Echogenic liposomes

    PubMed Central

    Paul, Shirshendu; Russakow, Daniel; Nahire, Rahul; Nandy, Tapas; Ambre, Avinash H.; Katti, Kalpana; Mallik, Sanku; Sarkar, Kausik

    2013-01-01

    Echogenic liposomes (ELIP) are an excellent candidate for concurrent imaging and drug delivery applications. They combine the advantages of liposomes—biocompatibility and ability to encapsulate both hydrophobic and hydrophilic drugs—with strong reflections of ultrasound. The objective of this study is to perform a detailed in vitro acoustic characterization—including nonlinear scattering that has not been studied before—along with an investigation of the primary mechanism of echogenicity. Both components are critical for developing viable clinical applications of ELIP. Mannitol, a cryoprotectant, added during the preparation of ELIP is commonly believed to be critical in making them echogenic. Accordingly, here ELIP prepared with varying amount of mannitol concentration are investigated for their pressure dependent linear and non-linear scattered responses. The average diameter of these liposomes is measured to be 125–185 nm. But they have a broad size distribution including liposomes with diameters over a micro-meter as observed by TEM and AEM. These larger liposomes are critical for the overall echogenicity. Attenuation through liposomal solution is measured with four different transducers (central frequencies 2.25, 3.5, 5, 10 MHz). Measured attenuation increases linearly with liposome concentration indicating absence of acoustic interactions between liposomes. Due to the broad size distribution, the attenuation shows a flat response without a distinct peak in the range of frequencies (1–12 MHz) investigated. A 15–20 dB enhancement is observed both for the scattered fundamental and the second harmonic responses at 3.5 MHz excitation frequency and 50–800 kPa amplitude. It demonstrates the efficacy of ELIP for fundamental as well as harmonic ultrasound imaging. The scattered response however does not show any distinct subharmonic peak for the acoustic excitation parameters studied. Small amount of mannitol proves critical for echogenicity. However

  1. Photoacoustic imaging taking into account thermodynamic attenuation

    NASA Astrophysics Data System (ADS)

    Acosta, Sebastián; Montalto, Carlos

    2016-11-01

    In this paper we consider a mathematical model for photoacoustic imaging which takes into account attenuation due to thermodynamic dissipation. The propagation of acoustic (compressional) waves is governed by a scalar wave equation coupled to the heat equation for the excess temperature. We seek to recover the initial acoustic profile from knowledge of acoustic measurements at the boundary. We recognize that this inverse problem is a special case of boundary observability for a thermoelastic system. This leads to the use of control/observability tools to prove the unique and stable recovery of the initial acoustic profile in the weak thermoelastic coupling regime. This approach is constructive, yielding a solvable equation for the unknown acoustic profile. Moreover, the solution to this reconstruction equation can be approximated numerically using the conjugate gradient method. If certain geometrical conditions for the wave speed are satisfied, this approach is well-suited for variable media and for measurements on a subset of the boundary. We also present a numerical implementation of the proposed reconstruction algorithm.

  2. Acoustic Characterization of Mesoscale Objects

    SciTech Connect

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  3. The Aerodynamic Performance of an Over-the-Rotor Liner With Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.; Hughes, Christopher E.; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1 percent which is within the repeatability of this experiment.

  4. The Aerodynamic Performance of an Over-The-Rotor Liner with Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Hughes, Christopher; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1% which is within the repeatability of this experiment.

  5. Acoustics, computers and measurements

    NASA Astrophysics Data System (ADS)

    Truchard, James J.

    2003-10-01

    The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.

  6. Radiosurgery of acoustic neurinomas

    SciTech Connect

    Flickinger, J.C.; Lunsford, L.D.; Coffey, R.J.; Linskey, M.E.; Bissonette, D.J.; Maitz, A.H.; Kondziolka, D. )

    1991-01-15

    Eighty-five patients with acoustic neurinomas underwent stereotactic radiosurgery with the gamma unit at the University of Pittsburgh (Pittsburgh, PA) during its first 30 months of operation. Neuroimaging studies performed in 40 patients with more than 1 year follow-up showed that tumors were smaller in 22 (55%), unchanged in 17 (43%), and larger in one (2%). The 2-year actuarial rates for preservation of useful hearing and any hearing were 46% and 62%, respectively. Previously undetected neuropathies of the trigeminal (n = 12) and facial nerves (n = 14) occurred 1 week to 1 year after radiosurgery (median, 7 and 6 months, respectively), and improved at median intervals of 13 and 8 months, respectively, after onset. Hearing loss was significantly associated with increasing average tumor diameter (P = 0.04). No deterioration of any cranial nerve function has yet developed in seven patients with average tumor diameters less than 10 mm. Radiosurgery is an important treatment alternative for selected acoustic neurinoma patients.

  7. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  8. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  9. Pressure surge attenuator

    DOEpatents

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  10. Isentropic acoustic propagation in a viscous fluid with uniform circular pipeline flow.

    PubMed

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-10-01

    Isentropic wave propagation in a viscous fluid with a uniform mean flow confined by a rigid-walled circular pipeline is considered. A method based on the Fourier-Bessel theory, which is complete and orthogonal in Lebesgue space, is introduced to solve the convected acoustic equations. After validating the method's convergence, the cut-off frequency of wave modes is addressed. Furthermore, the effect of flow profile on wave attenuation is analyzed. Meanwhile, measurement performance of an ultrasonic flow meter based on wave propagation is numerically accounted.

  11. Isentropic acoustic propagation in a viscous fluid with uniform circular pipeline flow.

    PubMed

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-10-01

    Isentropic wave propagation in a viscous fluid with a uniform mean flow confined by a rigid-walled circular pipeline is considered. A method based on the Fourier-Bessel theory, which is complete and orthogonal in Lebesgue space, is introduced to solve the convected acoustic equations. After validating the method's convergence, the cut-off frequency of wave modes is addressed. Furthermore, the effect of flow profile on wave attenuation is analyzed. Meanwhile, measurement performance of an ultrasonic flow meter based on wave propagation is numerically accounted. PMID:24116397

  12. Ultrasonic attenuation spectroscopy of emulsions with droplet sizes greater than 10 microm.

    PubMed

    Richter, Andreas; Voigt, Tino; Ripperger, Siegfried

    2007-11-15

    Ultrasonic attenuation measurement is a frequently used tool for non-destructive determination of dispersion characteristics. Useful information like particle or droplet size and their concentration can be obtained, if the relation between size and attenuation of the dispersion is known. In this work, the theoretical model by Faran for the intermediate sound wave regime (IWR) is presented in combination with experimental data. In the IWR, the acoustic behavior is governed by elastic scattering rather than by dissipative effects. Experiments with emulsion of droplet sizes greater than 10 mum were carried out. Silicone oil, sunflower oil and olive oil were selected for the disperse phase of the oil-in-water emulsions. First, emulsions having droplets in the micrometer range were created. Afterwords, attenuation measurements of different concentrated emulsion were carried out. Some adjustments reflecting concentration influence were performed to outline the agreement between calculations and measurements. The validity of the model can be confirmed, if the volume fraction of the disperse phase is considered as a variable. Finally, droplet size distributions from theoretical attenuation spectra could be calculated based on a log-normal distribution.

  13. Effects of surgically implanted acoustic transmitters >2% of body mass on the swimming performance, survival, and growth of juvenile sockeye and Chinook salmon

    SciTech Connect

    Brown, Richard S.; Geist, David R.; Deters, Katherine A.; Grassel, Mark A.

    2006-12-01

    This study examined the influence of surgical implantation of an acoustic transmitter on the swimming performance, growth, and survival of juvenile sockeye salmon (Oncorhynchus nerka) and fall Chinook salmon (O. tshawytscha). The transmitter weighed 0.72g in air and the fish weighed 6 to 23 g. Mean critical swimming speeds for fall Chinook salmon ranged from 47.5 to 51.2 cm s-1 (4.34 to 4.69 body lengths [BL] s-1) and did not differ among tagged, untagged and sham-tagged groups. Tagged sockeye salmon, however, did have lower Ucrit than control or sham fish. The mean Ucrit for tagged sockeye salmon was 46.1 cm s-1 (4.1 BL s-1) which was approximately 5% less than the mean Ucrit for control and sham fish (both groups were 48.6 cm s-1 or 4.3 BL s-1). There was no difference in length or weight among treatments (control, sham, tag) either at the start or the end of the test period suggesting that implantation did not negatively influence the growth of either species. None of the sockeye salmon died from the influence of surgical implantation of transmitters. In contrast, we did find that the 21-d survival differed between tagged and control groups of fall Chinook salmon although this result was confounded by the poor health of fall Chinook salmon treatment groups.

  14. Acoustic and aerodynamic performance of a variable-pitch 1.83-meter-(6-ft) diameter 1.20-pressure-ratio fan stage (QF-9)

    NASA Technical Reports Server (NTRS)

    Glaser, F. W.; Woodward, R. P.; Lucas, J. G.

    1977-01-01

    Far field noise data and related aerodynamic performance are presented for a variable pitch fan stage having characteristics suitable for low noise, STOL engine application. However, no acoustic suppression material was used in the flow passages. The fan was externally driven by an electric motor. Tests were made at several forward thrust rotor blade pitch angles and one for reverse thrust. Fan speed was varied from 60 to 120 percent of takeoff (design) speed, and exhaust nozzles having areas 92 to 105 percent of design were tested. The fan noise level was at a minimum at the design rotor blade pitch angles of 64 deg for takeoff thrust and at 57 deg for approach (50 percent takeoff thrust). Perceived noise along a 152.4-m sideline reached 100.1 PNdb for the takeoff (design) configuration for a stage pressure ratio of 1.17 and thrust of 57,600 N. For reverse thrust the PNL values were 4 to 5 PNdb above the takeoff values at comparable fan speeds.

  15. Performance assessment of two whole-lake acoustic positional telemetry systems--is reality mining of free-ranging aquatic animals technologically possible?

    PubMed

    Baktoft, Henrik; Zajicek, Petr; Klefoth, Thomas; Svendsen, Jon C; Jacobsen, Lene; Pedersen, Martin Wæver; March Morla, David; Skov, Christian; Nakayama, Shinnosuke; Arlinghaus, Robert

    2015-01-01

    Acoustic positional telemetry systems (APTs) represent a novel approach to study the behaviour of free ranging aquatic animals in the wild at unprecedented detail. System manufactures promise remarkably high temporal and spatial resolution. However, the performance of APTs has rarely been rigorously tested at the level of entire ecosystems. Moreover, the effect of habitat structure on system performance has only been poorly documented. Two APTs were deployed to cover two small lakes and a series of standardized stationary tests were conducted to assess system performance. Furthermore, a number of tow tests were conducted to simulate moving fish. Based on these data, we quantified system performance in terms of data yield, accuracy and precision as a function of structural complexity in relation to vegetation. Mean data yield of the two systems was 40% (Lake1) and 60% (Lake2). Average system accuracy (acc) and precision (prec) were Lake1: acc = 3.1 m, prec = 1.1 m; Lake2: acc = 1.0 m, prec = 0.2 m. System performance was negatively affected by structural complexity, i.e., open water habitats yielded far better performance than structurally complex vegetated habitats. Post-processing greatly improved data quality, and sub-meter accuracy and precision were, on average, regularly achieved in Lake2 but remained the exception in the larger and structurally more complex Lake1. Moving transmitters were tracked well by both systems. Whereas overestimation of moved distance is inevitable for stationary transmitters due to accumulation of small tracking errors, moving transmitters can result in both over- and underestimation of distances depending on circumstances. Both deployed APTs were capable of providing high resolution positional data at the scale of entire lakes and are suitable systems to mine the reality of free ranging fish in their natural environment. This opens important opportunities to advance several fields of study such as movement ecology and animal social

  16. Performance Assessment of Two Whole-Lake Acoustic Positional Telemetry Systems - Is Reality Mining of Free-Ranging Aquatic Animals Technologically Possible?

    PubMed Central

    Baktoft, Henrik; Zajicek, Petr; Klefoth, Thomas; Svendsen, Jon C.; Jacobsen, Lene; Pedersen, Martin Wæver; March Morla, David; Skov, Christian; Nakayama, Shinnosuke; Arlinghaus, Robert

    2015-01-01

    Acoustic positional telemetry systems (APTs) represent a novel approach to study the behaviour of free ranging aquatic animals in the wild at unprecedented detail. System manufactures promise remarkably high temporal and spatial resolution. However, the performance of APTs has rarely been rigorously tested at the level of entire ecosystems. Moreover, the effect of habitat structure on system performance has only been poorly documented. Two APTs were deployed to cover two small lakes and a series of standardized stationary tests were conducted to assess system performance. Furthermore, a number of tow tests were conducted to simulate moving fish. Based on these data, we quantified system performance in terms of data yield, accuracy and precision as a function of structural complexity in relation to vegetation. Mean data yield of the two systems was 40 % (Lake1) and 60 % (Lake2). Average system accuracy (acc) and precision (prec) were Lake1: acc = 3.1 m, prec = 1.1 m; Lake2: acc = 1.0 m, prec = 0.2 m. System performance was negatively affected by structural complexity, i.e., open water habitats yielded far better performance than structurally complex vegetated habitats. Post-processing greatly improved data quality, and sub-meter accuracy and precision were, on average, regularly achieved in Lake2 but remained the exception in the larger and structurally more complex Lake1. Moving transmitters were tracked well by both systems. Whereas overestimation of moved distance is inevitable for stationary transmitters due to accumulation of small tracking errors, moving transmitters can result in both over- and underestimation of distances depending on circumstances. Both deployed APTs were capable of providing high resolution positional data at the scale of entire lakes and are suitable systems to mine the reality of free ranging fish in their natural environment. This opens important opportunities to advance several fields of study such as movement ecology and animal social

  17. Time delay and Doppler estimation for wideband acoustic signals in multipath environments.

    PubMed

    Jiang, Xue; Zeng, Wen-Jun; Li, Xi-Lin

    2011-08-01

    Estimation of the parameters of a multipath underwater acoustic channel is of great interest for a variety of applications. This paper proposes a high-resolution method for jointly estimating the multipath time delays, Doppler scales, and attenuation amplitudes of a time-varying acoustical channel. The proposed method formulates the estimation of channel parameters into a sparse representation problem. With the [script-l](1)-norm as the measure of sparsity, the proposed method makes use of the basis pursuit (BP) criterion to find the sparse solution. The ill-conditioning can be effectively reduced by the [script-l](1)-norm regularization. Unlike many existing methods that are only applicable to narrowband signals, the proposed method can handle both narrowband and wideband signals. Simulation results are provided to verify the performance and effectiveness of the proposed algorithm, indicating that it has a super-resolution in both delay and Doppler domain, and it is robust to noise.

  18. INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION

    EPA Science Inventory

    The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...

  19. Characterizing tissue with acoustic parameters derived from ultrasound data

    NASA Astrophysics Data System (ADS)

    Littrup, Peter J.; Duric, Nebojsa; Leach, Richard, Jr.; Azevedo, Steve G.; Candy, James V.; Moore, Thomas; Chambers, David H.; Mast, Jeffrey E.; Holsapple, Earle

    2002-04-01

    In contrast to standard reflection ultrasound (US), transmission US holds the promise of more thorough tissue characterization by generating quantitative acoustic parameters. We compare results from a conventional US scanner with data acquired using an experimental circular scanner operating at frequencies of 0.3 - 1.5 MHz. Data were obtained on phantoms and a normal, formalin-fixed, excised breast. Both reflection and transmission-based algorithms were used to generate images of reflectivity, sound speed and attenuation.. Images of the phantoms demonstrate the ability to detect sub-mm features and quantify acoustic properties such as sound speed and attenuation. The human breast specimen showed full field evaluation, improved penetration and tissue definition. Comparison with conventional US indicates the potential for better margin definition and acoustic characterization of masses, particularly in the complex scattering environments of human breast tissue. The use of morphology, in the context of reflectivity, sound speed and attenuation, for characterizing tissue, is discussed.

  20. Characterizing Tissue with Acoustic Parameters Derived from Ultrasound Data

    SciTech Connect

    Littrup, P; Duric, N; Leach, R R; Azevedo, S G; Candy, J V; Moore, T; Chambers, D H; Mast, J E; Johnson, S A; Holsapple, E

    2002-01-23

    In contrast to standard reflection ultrasound (US), transmission US holds the promise of more thorough tissue characterization by generating quantitative acoustic parameters. We compare results from a conventional US scanner with data acquired using an experimental circular scanner operating at frequencies of 0.3 - 1.5 MHz. Data were obtained on phantoms and a normal, formalin-fixed, excised breast. Both reflection and transmission-based algorithms were used to generate images of reflectivity, sound speed and attenuation.. Images of the phantoms demonstrate the ability to detect sub-mm features and quantify acoustic properties such as sound speed and attenuation. The human breast specimen showed full field evaluation, improved penetration and tissue definition. Comparison with conventional US indicates the potential for better margin definition and acoustic characterization of masses, particularly in the complex scattering environments of human breast tissue. The use of morphology, in the context of reflectivity, sound speed and attenuation, for characterizing tissue, is discussed.

  1. Navy Applications of High-Frequency Acoustics

    NASA Astrophysics Data System (ADS)

    Cox, Henry

    2004-11-01

    Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high spatial resolution, wide bandwidth, small size and relatively low cost must be balanced against the severe range limitation imposed by attenuation that increases approximately as frequency-squared. Many commercial applications of acoustics are ideally served by high-frequency active systems. The small size and low cost, coupled with the revolution in small powerful signal processing hardware has led to the consideration of more sophisticated systems. Driven by commercial applications, there are currently available several commercial-off-the-shelf products including acoustic modems for underwater communication, multi-beam fathometers, side scan sonars for bottom mapping, and even synthetic aperture side scan sonar. Much of the work in high frequency sonar today continues to be focused on specialized applications in which the application is emphasized over the underlying acoustics. Today's vision for the Navy of the future involves Autonomous Undersea Vehicles (AUVs) and off-board ASW sensors. High-frequency acoustics will play a central role in the fulfillment of this vision as a means of communication and as a sensor. The acoustic communication problems for moving AUVs and deep sensors are discussed. Explicit relationships are derived between the communication theoretic description of channel parameters in terms of time and Doppler spreads and ocean acoustic parameters, group velocities, phase velocities and horizontal wavenumbers. Finally the application of synthetic aperture sonar to the mine hunting problems is described.

  2. Coupled resonator filter with single-layer acoustic coupler.

    PubMed

    Jamneala, Tiberiu; Small, Martha; Ruby, Rich; Larson, John D

    2008-10-01

    We discuss the operation of novel coupled-resonator filters with single-layer acoustic couplers. Our analysis employs the physical Mason model for acoustic resonators. Their simpler fabrication process is counterbalanced by the high acoustic attenuation of suitable coupler materials. At high levels of attenuation, both the phase and the acoustic impedance must be treated as complex quantities to accurately predict the filter insertion loss. We demonstrate that the typically poor near-band rejection of coupled resonator filters can be improved at the die level by connecting a small capacitance between the input and output of the filter to produce a pair of tunable transmission minima. We make use of these theoretical findings to fabricate coupled resonators filters operating at 2.45 GHz. PMID:18986880

  3. Visco-elastic effects on wave dispersion in three-phase acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Krushynska, A. O.; Kouznetsova, V. G.; Geers, M. G. D.

    2016-11-01

    This paper studies the wave attenuation performance of dissipative solid acoustic metamaterials (AMMs) with local resonators possessing subwavelength band gaps. The metamaterial is composed of dense rubber-coated inclusions of a circular shape embedded periodically in a matrix medium. Visco-elastic material losses present in a matrix and/or resonator coating are introduced by either the Kelvin-Voigt or generalized Maxwell models. Numerical solutions are obtained in the frequency domain by means of k(ω)-approach combined with the finite element method. Spatially attenuating waves are described by real frequencies ω and complex-valued wave vectors k. Complete 3D band structure diagrams including complex-valued pass bands are evaluated for the undamped linear elastic and several visco-elastic AMM cases. The changes in the band diagrams due to the visco-elasticity are discussed in detail; the comparison between the two visco-elastic models representing artificial (Kelvin-Voigt model) and experimentally characterized (generalized Maxwell model) damping is performed. The interpretation of the results is facilitated by using attenuation and transmission spectra. Two mechanisms of the energy absorption, i.e. due to the resonance of the inclusions and dissipative effects in the materials, are discussed separately. It is found that the visco-elastic damping of the matrix material decreases the attenuation performance of AMMs within band gaps; however, if the matrix material is slightly damped, it can be modeled as linear elastic without the loss of accuracy given the resonator coating is dissipative. This study also demonstrates that visco-elastic losses properly introduced in the resonator coating improve the attenuation bandwidth of AMMs although the attenuation on the resonance peaks is reduced.

  4. Acoustic emission descriptors

    NASA Astrophysics Data System (ADS)

    Witos, Franciszek; Malecki, Ignacy

    The authors present selected problems associated with acoustic emission interpreted as a physical phenomenon and as a measurement technique. The authors examine point sources of acoustic emission in isotropic, homogeneous linearly elastic media of different shapes. In the case of an unbounded medium the authors give the analytical form of the stress field and the wave shift field of the acoustic emission. In the case of a medium which is unbounded plate the authors give a form for the equations which is suitable for numerical calculation of the changes over time of selected acoustic emission values. For acoustic emission as a measurement technique, the authors represent the output signal as the resultant of a mechanical input value which describes the source, the transient function of the medium, and the transient function of specific components of the measurement loop. As an effect of this notation, the authors introduce the distinction between an acoustic measurement signal and an acoustic measurement impulse. The authors define the basic parameters of an arbitrary impulse. The authors extensively discuss the signal functions of acoustic emission impulses and acoustic emission signals defined in this article as acoustic emission descriptors (or signal functions of acoustic emission impulses) and advanced acoustic emission descriptors (which are either descriptors associated with acoustic emission applications or the signal functions of acoustic emission signals). The article also contains the results of experimental research on three different problems in which acoustic emission descriptors associated with acoustic emission pulses, acoustic emission applications, and acoustic emission signals are used. These problems are respectively: a problem of the amplitude-load characteristics of acoustic emission pulses in carbon samples subjected to compound uniaxial compression, the use of acoustic emission to predict the durability characteristics of conveyor belts, and

  5. Coupling between plate vibration and acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  6. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  7. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  8. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  9. Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Kumar, A.; Xu, S.; Zou, J.

    2016-10-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  10. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  11. Precision of Four Acoustic Bone Measurement Devices

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Feiveson, Alan H.; Shackelford, Linda; Rianon, Nahida; LeBlanc, Adrian

    2000-01-01

    Though many studies have quantified the precision of various acoustic bone measurement devices, it is difficult to directly compare the results among the studies, because they used disparate subject pools, did not specify the estimation methodology, or did not use consistent definitions for various precision characteristics. In this study, we used a repeated measures design protocol to directly determine the precision characteristics of four acoustic bone measurement devices: the Mechanical Response Tissue Analyzer (MRTA), the UBA-575+, the SoundScan 2000 (S2000), and the Sahara Ultrasound Done Analyzer. Ten men and ten women were scanned on all four devices by two different operators at five discrete time points: Week 1, Week 2, Week 3, Month 3 and Month 6. The percent coefficient of variation (%CV) and standardized coefficient of variation were computed for the following precision characteristics: interoperator effect, operator-subject interaction, short-term error variance, and long-term drift, The MRTA had high interoperator errors for its ulnar and tibial stiffness measures and a large long-term drift in its tibial stiffness measurement. The UBA-575+ exhibited large short-term error variances and long-term drift for all three of its measurements. The S2000's tibial speed of sound measurement showed a high short-term error variance and a significant operator-subject interaction but very good values ( < 1%) for the other precision characteristics. The Sahara seemed to have the best overall performance, but was hampered by a large %CV for short-term error variance in its broadband ultrasound attenuation measure.

  12. Use of acoustic backscatter to estimate continuous suspended sediment and phosphorus concentrations in the Barton River, northern Vermont, 2010-2013

    USGS Publications Warehouse

    Medalie, Laura; Chalmers, Ann T.; Kiah, Richard G.; Copans, Benjamin

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Vermont Department of Environmental Conservation, investigated the use of acoustic backscatter to estimate concentrations of suspended sediment and total phosphorus at the Barton River near Coventry, Vermont. The hypothesis was that acoustic backscatter—the reflection of sound waves off objects back to the source from which they came—measured by an acoustic Doppler profiler (ADP) and recorded as ancillary data for the calculation of discharge, also could be used to generate a continuous concentration record of suspended sediment and phosphorus at the streamgage, thereby deriving added value from the instrument. Suspended-sediment and phosphorus concentrations are of particular interest in Vermont, where impairment of surface waters by suspended sediments and phosphorus is a major concern. Regression models for estimating suspended-sediment concentrations (SSCs) and total phosphorus concentrations evaluated several independent variables: measured backscatter (MB), water-corrected backscatter (WCB), sediment-corrected backscatter (SCB), discharge, fluid-absorption coefficient, sediment-driven acoustic attenuation coefficient, and discharge hysteresis. The best regression equations for estimating SSC used backscatter as the predictor, reflecting the direct relation between acoustic backscatter and SSC. Backscatter was a better predictor of SSC than discharge in part because hysteresis between SSC and backscatter was less than for SSC and discharge. All three backscatter variables—MB, WCB, and SCB—performed equally as predictors of SSC and phosphorus concentrations at the Barton River site. The similar abilities to predict SSC among backscatter terms may partially be attributed to the low values and narrow range of the sediment-driven acoustic attenuation in the Barton River. The regression based on SCB was selected for estimating SSC because it removes potential bias caused by attenuation and temperature

  13. A Fusion Model of Seismic and Hydro-Acoustic Propagation for Treaty Monitoring

    NASA Astrophysics Data System (ADS)

    Arora, Nimar; Prior, Mark

    2014-05-01

    We present an extension to NET-VISA (Network Processing Vertically Integrated Seismic Analysis), which is a probabilistic generative model of the propagation of seismic waves and their detection on a global scale, to incorporate hydro-acoustic data from the IMS (International Monitoring System) network. The new model includes the coupling of seismic waves into the ocean's SOFAR channel, as well as the propagation of hydro-acoustic waves from underwater explosions. The generative model is described in terms of multiple possible hypotheses -- seismic-to-hydro-acoustic, under-water explosion, other noise sources such as whales singing or icebergs breaking up -- that could lead to signal detections. We decompose each hypothesis into conditional probability distributions that are carefully analyzed and calibrated. These distributions include ones for detection probabilities, blockage in the SOFAR channel (including diffraction, refraction, and reflection around obstacles), energy attenuation, and other features of the resulting waveforms. We present a study of the various features that are extracted from the hydro-acoustic waveforms, and their correlations with each other as well the source of the energy. Additionally, an inference algorithm is presented that concurrently infers the seismic and under-water events, and associates all arrivals (aka triggers), both from seismic and hydro-acoustic stations, to the appropriate event, and labels the path taken by the wave. Finally, our results demonstrate that this fusion of seismic and hydro-acoustic data leads to very good performance. A majority of the under-water events that IDC (International Data Center) analysts built in 2010 are correctly located, and the arrivals that correspond to seismic-to-hydroacoustic coupling, the T phases, are mostly correctly identified. There is no loss in the accuracy of seismic events, in fact, there is a slight overall improvement.

  14. Monitoring Microbe-Induced Physical Property Changes Using High-Frequency Acoustic Waveform Data

    NASA Astrophysics Data System (ADS)

    Williams, K. H.; Brockman, F. J.; Johnson, L. R.

    2002-12-01

    A laboratory investigation was undertaken to determine the effect of microbially generated gas in controlled, saturated sediment columns utilizing a novel technique involving acoustic wave propagation. Specifically, the effect of N2 gas production and the resulting hypothesized plugging of pore throats by gas bubbles was evaluated during denitrification by Pseudomonas stutzeri in pre-sterilized sediment columns. The propagation of high frequency acoustic waves through the sediment columns was used to locate those regions in the column where gas accumulation occurred. Over a period of six weeks, regions of gas accumulation resulted in the attenuation of acoustic wave energies with the decreases in amplitude typically greater than one order of magnitude. The temporal production of N2 gas was evaluated quantitatively using the stable isotope 15N in the form of added Na15NO3. This was done to ascertain the origin (biotic or abiotic) of any produced gas with the results showing a dramatic increase in microbe-respired 15N2. Hydraulic conductivity (Ks) measurements made over the experimental period establish the rate and degree of pore throat blocking with the result being a reduction in Ks by more than 70 percent. The results were compared to a nutrient-amended but non-inoculated control column which showed neither a decrease in acoustic wave amplitudes nor hydraulic conductivity over the same time-period. Final destructive analysis of one column was performed in order to assess the cell density of denitrifying microbes throughout the column. Cell densities were found to be in close agreement with the stoichiometric predictions made prior to initiation of the experiment. Evaluation of the multiple data sets suggests that microbial gas production is both directly detectable using the high frequency acoustic wave approach and capable of significantly altering saturated flow conditions. The acoustic approach may be useful for time-course monitoring of locations of high

  15. Acoustic Treatment Design Scaling Methods. Volume 3; Test Plans, Hardware, Results, and Evaluation

    NASA Technical Reports Server (NTRS)

    Yu, J.; Kwan, H. W.; Echternach, D. K.; Kraft, R. E.; Syed, A. A.

    1999-01-01

    The ability to design, build, and test miniaturized acoustic treatment panels on scale-model fan rigs representative of the full-scale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. To be able to use scale model treatment as a full-scale design tool, it is necessary that the designer be able to reliably translate the scale model design and performance to an equivalent full-scale design. The primary objective of the study presented in this volume of the final report was to conduct laboratory tests to evaluate liner acoustic properties and validate advanced treatment impedance models. These laboratory tests include DC flow resistance measurements, normal incidence impedance measurements, DC flow and impedance measurements in the presence of grazing flow, and in-duct liner attenuation as well as modal measurements. Test panels were fabricated at three different scale factors (i.e., full-scale, half-scale, and one-fifth scale) to support laboratory acoustic testing. The panel configurations include single-degree-of-freedom (SDOF) perforated sandwich panels, SDOF linear (wire mesh) liners, and double-degree-of-freedom (DDOF) linear acoustic panels.

  16. Evaluation of several non-reflecting computational boundary conditions for duct acoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Zorumski, William E.; Hodge, Steve L.

    1994-01-01

    Several non-reflecting computational boundary conditions that meet certain criteria and have potential applications to duct acoustics are evaluated for their effectiveness. The same interior solution scheme, grid, and order of approximation are used to evaluate each condition. Sparse matrix solution techniques are applied to solve the matrix equation resulting from the discretization. Modal series solutions for the sound attenuation in an infinite duct are used to evaluate the accuracy of each non-reflecting boundary conditions. The evaluations are performed for sound propagation in a softwall duct, for several sources, sound frequencies, and duct lengths. It is shown that a recently developed nonlocal boundary condition leads to sound attenuation predictions considerably more accurate for short ducts. This leads to a substantial reduction in the number of grid points when compared to other non-reflecting conditions.

  17. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  18. Thermal/acoustical aircraft insulation material

    NASA Technical Reports Server (NTRS)

    Struzik, E. A.; Kunz, R.; Lin, R.

    1975-01-01

    Attempts made to improve the acoustical properties of low density Fiberfrax foam, an aircraft insulation material, are reported. Characterizations were also made of the physical and thermal properties. Two methods, optimization of fiber blend composition and modification of the foam fabrication process, were examined as possible means of improving foam acoustics. Flame impingement tests were also made; results show performance was satisfactory.

  19. Towards aberration correction of transcranial ultrasound using acoustic droplet vaporization.

    PubMed

    Haworth, Kevin J; Fowlkes, J Brian; Carson, Paul L; Kripfgans, Oliver D

    2008-03-01

    We report on the first experiments demonstrating the transcranial acoustic formation of stable gas bubbles that can be used for transcranial ultrasound aberration correction. It is demonstrated that the gas bubbles can be formed transcranially by phase-transitioning single, superheated, micron-size, liquid dodecafluoropentane droplets with ultrasound, a process known as acoustic droplet vaporization (ADV). ADV was performed at 550 kHz, where the skull is less attenuating and aberrating, allowing for higher-amplitudes to be reached at the focus. Additionally, it is demonstrated that time-reversal focusing at 1 MHz can be used to correct for transcranial aberrations with a single gas bubble acting as a point beacon. Aberration correction was performed using a synthetic aperture approach and verified by the realignment of the scattered waveforms. Under the conditions described below, time-reversal aberration correction using gas bubbles resulted in a gain of 1.9 +/- 0.3 in an introduced focusing factor. This is a small fraction of the gain anticipated from complete transmit-receive of a fully-populated two-dimensional array with sub-wavelength elements. (E-mail: khaworth@umich.edu).

  20. Effect of duct shape, Mach number, and lining construction on measured suppressor attenuation and comparison with theory

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Krejsa, E. A.; Coats, J. W.

    1972-01-01

    Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.

  1. Theory and modeling of cylindrical thermo-acoustic transduction

    NASA Astrophysics Data System (ADS)

    Tong, Lihong; Lim, C. W.; Zhao, Xiushao; Geng, Daxing

    2016-06-01

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media.

  2. Enhanced Capabilities of the NASA Langley Thermal Acoustic Fatigue Apparatus

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Turner, Travis L.

    2004-01-01

    This paper presents newly enhanced acoustic capabilities of the Thermal Acoustic Fatigue Apparatus at the NASA Langley Research Center. The facility is a progressive wave tube used for sonic fatigue testing of aerospace structures. Acoustic measurements for each of the six facility configurations are shown and comparisons with projected performance are made.

  3. Interaction of surface acoustic waves with moving vortex structures in superconducting films

    SciTech Connect

    Gutlyansky, E. D.

    2007-07-15

    A method is proposed for describing a moving film vortex structure and its interaction with surface acoustic waves. It is shown that the moving vortex structure can amplify (generate) surface acoustic waves. In contrast to a similar effect in semiconductor films, this effect can appear when the velocity of the vortex structure is much lower than the velocity of the surface acoustic waves. A unidirectional collective mode is shown to exist in the moving vortex structure. This mode gives rise to an acoustic analogue of the diode effect that is resonant in the velocity of the vortex structure. This acoustic effect is manifested as an anomalous attenuation of the surface acoustic waves in the direction of the vortex-structure motion and as the absence of this attenuation for the propagation in the opposite direction.

  4. Laser-speckle-visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-01-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.

  5. Linking multiple relaxation, power-law attenuation, and fractional wave equations.

    PubMed

    Näsholm, Sven Peter; Holm, Sverre

    2011-11-01

    The acoustic wave attenuation is described by an experimentally established frequency power law in a variety of complex media, e.g., biological tissue, polymers, rocks, and rubber. Recent papers present a variety of acoustical fractional derivative wave equations that have the ability to model power-law attenuation. On the other hand, a multiple relaxation model is widely recognized as a physically based description of the acoustic loss mechanisms as developed by Nachman et al. [J. Acoust. Soc. Am. 88, 1584-1595 (1990)]. Through assumption of a continuum of relaxation mechanisms, each with an effective compressibility described by a distribution related to the Mittag-Leffler function, this paper shows that the wave equation corresponding to the multiple relaxation approach is identical to a given fractional derivative wave equation. This work therefore provides a physically based motivation for use of fractional wave equations in acoustic modeling.

  6. The evolution of sediment acoustic models

    NASA Astrophysics Data System (ADS)

    Chotiros, Nicholas P.; Isakson, Marcia J.

    2012-11-01

    Sediment acoustic models contain two connected components, the geo-physical description of the sediment and the model of acoustic processes. Geo-physical descriptors are used in the classification of sediments, and they are based on grain size, density and other physical descriptors. Acoustic sediment models were initially fluid approximations that were simple to implement. As the need for accuracy increased, the fluid model was extended to stratified fluid and visco-elastic models. The latter, with five frequency-independent parameters, appeared to be consistent with sediment acoustic data up to the 1980s. More recent experimental data have revealed discrepancies in the frequency-dependence of attenuation and sound speed, particularly in the case of sandy sediments, which cover a large fraction of the continental shelves. Broad-band acoustic measurements of wave speeds and attenuations are more consistent with a poro-elastic model, consisting of Biot's theory with extensions to account for the physics of granular media. Aside from terminology, there is a fundamental difference between visco-elastic and poro-elastic theories. The former is based on two types of waves, a compressional wave and a shear wave, while the latter has an additional compressional wave, often called the Biot wave. There are currently two approaches to the development of sediment acoustic models: (a) visco-elastic models with frequency dependent parameters that mimic the observed behavior, and (b) poro-elastic models that reflect the physical processes. It is shown that (a) would be a significant improvement over existing models, but (b) is the preferred solution.

  7. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Beach, Kirk; Carter, Stephen; Chandler, Wayne; Curra, Francesco; Kaczkowski, Peter; Keilman, George; Khokhlova, Vera; Martin, Roy; Mourad, Pierre; Vaezy, Shahram

    2000-07-01

    In cases of severe injury, physicians speak of a "golden hour"—a brief grace period in which quickly applied, proper therapy can save the life of the patient. Much of this mortality results from exsanguination, i.e., bleeding to death—often from internal hemorrhage. The inability of a paramedic to treat breaches in the vascular system deep within the body or to stem the loss of blood from internal organs is a major reason for the high level of mortality associated with blunt trauma. We have undertaken an extensive research program to treat the problem of internal bleeding. Our approach is as follows: (a) We use scanning ultrasound to identify internal bleeding and hemorrhage, (b) we use ultrasound imaging to locate specific breaches in the vascular system, both from damaged vessels and gross damage to the capillary bed, and (c) we use High Intensity Focused Ultrasound (HIFU) to treat the damaged region and to induce hemostasis. We present a general review of this research with some emphasis on the role of nonlinear acoustics.

  8. Acoustical components of the Orpheum Theatre renovation

    NASA Astrophysics Data System (ADS)

    Conant, David A.

    2002-05-01

    The before and after acoustically-important listening conditions and measurements are described for a $14.2 million restoration and renovation of this 1,400-seat grand 1929 Movie Palace-at one time the tallest building in Phoenix. Great care was taken to restore all the acoustically good parts of the original design and to subtly modify the acoustically-troublesome parts (including severely focusing dome and sidewalls) so they looked the same but performed properly. A beautiful playhouse was achieved in 1997 with fine, fixed acoustics and conventional audio reinforcement, a surrounding Italian village, plenty of gilt, moving clouds and sunsets overhead. Today, the venue successfully hosts shows from performance art to ballet to jazz. It was not intended (acoustically) to serve classical music but does so on occasion.

  9. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  10. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  11. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  12. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  13. Acoustic velocity measurements in materials using a regenerative method

    DOEpatents

    Laine, Edwin F.

    1986-01-01

    Acoustic energy is propagated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  14. Acoustic-velocity measurements in materials using a regenerative method

    DOEpatents

    Laine, E.F.

    1982-09-30

    Acoustic energy is propatated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  15. ACOUSTIC LINERS FOR TURBOFAN ENGINES

    NASA Technical Reports Server (NTRS)

    Minner, G. L.

    1994-01-01

    This program was developed to design acoustic liners for turbofan engines. This program combines results from theoretical models of wave alternation in acoustically treated passages with experimental data from full-scale fan noise suppressors. By including experimentally obtained information, the program accounts for real effects such as wall boundary layers, duct terminations, and sound modal structure. The program has its greatest use in generating a number of design specifications to be used for evaluation of trade-offs. The program combines theoretical and empirical data in designing annular acoustic liners. First an estimate of the noise output of the fan is made based on basic fan aerodynamic design variables. Then, using a target noise spectrum after alternation and the estimated fan noise spectrum, a design spectrum is calculated as their difference. Next, the design spectrum is combined with knowledge of acoustic liner performance and the liner design variables to specify the acoustic design. Details of the liner design are calculated by combining the required acoustic impedance with a mathematical model relating acoustic impedance to the physical structure of the liner. Input to the noise prediction part of the program consists of basic fan operating parameters, distance that the target spectrum is to be measured and the target spectrum. The liner design portion of the program requires the required alternation spectrum, desired values of length to height and several option selection parameters. Output from the noise prediction portion is a noise spectrum consisting of discrete tones and broadband noise. This may be used as input to the liner design portion of the program. The liner design portion of the program produces backing depths, open area ratios, and face plate thicknesses. This program is written in FORTRAN V and has been implemented in batch mode on a UNIVAC 1100 series computer with a central memory requirement of 12K (decimal) of 36 bit words.

  16. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  17. Measuring Acoustic Nonlinearity by Collinear Mixing Waves

    NASA Astrophysics Data System (ADS)

    Liu, M.; Tang, G.; Jacobs, L. J.; Qu, J.

    2011-06-01

    It is well known that the acoustic nonlinearity parameter β is correlated to fatigue damage in metallic materials. Various methods have been developed to measure β. One of the most often used methods is the harmonic generation technique, in which β is obtained by measuring the magnitude of the second order harmonic waves. An inherent weakness of this method is the difficulty in distinguishing material nonlinearity from the nonlinearity of the measurement system. In this paper, we demonstrate the possibility of using collinear mixing waves to measure β. The wave mixing method is based on the interaction between two incident waves in a nonlinear medium. Under certain conditions, such interactions generate a third wave of different frequency. This generated third wave is also called resonant wave, because its amplitude is unbounded if the medium has no attenuation. Such resonant waves are less sensitive to the nonlinearity of the measurement system, and have the potential to identify the source location of the nonlinearity. In this work, we used a longitudinal wave and a shear wave as the incident waves. The resonant shear wave is measured experimentally on samples made of aluminum and steel, respectively. Numerical simulations of the tests were also performed using a finite difference method.

  18. Advanced Nacelle Acoustic Lining Concepts Development

    NASA Technical Reports Server (NTRS)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; Parrott, Tony L. (Technical Monitor)

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  19. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  20. Sound Attenuation by Glow Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Stepaniuk, Vadim; Sheverev, Valery; Otugen, Volkan; Raman, Ganesh; Soukhomlinov, Vladimir

    2003-11-01

    Interaction of sound waves with glow discharge plasma was studied experimentally, as a continuation of the work reported earlier [1]. The main thrust of this investigation was to determine the effectiveness of using glow discharge plasma as a sound barrier in aerospace applications. The present study focused on the determination of the angular dependence of the attenuation of sound passing through a glow discharge. Experiments were conducted in an anechoic chamber where the intensity of a single frequency acoustic wave reflected from a plasma sheet was measured at various angles of incidence. The experiments established the strong influence of the incident angle on the reflected sound intensity, which agrees well with the theoretical estimates. 1 Stepaniuk, V., Tarau, C., Otugen, V., Sheverev V., Soukhomlinov V., Raman G., Sound Attenuation by Glow Discharge Plasma, AIAA Paper 2003-0371.

  1. Acoustic constituents of prosodic typology

    NASA Astrophysics Data System (ADS)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The

  2. Finite-difference numerical modelling of gravitoacoustic wave propagation in a windy and attenuating atmosphere

    NASA Astrophysics Data System (ADS)

    Brissaud, Quentin; Martin, Roland; Garcia, Raphaël F.; Komatitsch, Dimitri

    2016-07-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3-D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale, we introduce a finite difference in the time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with a background flow (wind). One significant benefit of such a method is its versatility because it handles both acoustic and gravity waves in the same simulation, which enables one to observe interactions between them. Simulations can be performed for 2-D or 3-D realistic cases such as tsunamis in a full MSISE-00 atmosphere or gravity-wave generation by atmospheric explosions. We validate the computations by comparing them to analytical solutions based on dispersion relations in specific benchmark cases: an atmospheric explosion, and a ground displacement forcing.

  3. Poor Marks for Classroom Acoustics.

    ERIC Educational Resources Information Center

    Herbert, R. Kring

    1999-01-01

    Discusses the problem of low acoustical performance in many of today's K-12 classrooms and its impact on student learning. The following three primary types of classroom noise and their control are explored: reverberation; climate control system noise; and noise from outside the classroom. (GR)

  4. Joint Acoustic Propagation Experiment (JAPE)

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Olsen, Robert O.; Kennedy, Bruce W.

    1993-01-01

    The Joint Acoustic Propagation Experiment (JAPE), performed under the auspices of NATO and the Acoustics Working Group, was conducted at White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of 220 trials using various acoustic sources including speakers, propane cannon, various types of military vehicles, helicopters, a 155mm howitzer, and static high explosives. Of primary importance to the performance of these tests was the intensive characterization of the atmosphere before and during the trials. Because of the wide range of interests on the part of the participants, JAPE was organized in such a manner to provide a broad cross section of test configurations. These included short and long range propagation from fixed and moving vehicles, terrain masking, and vehicle detection. A number of independent trials were also performed by individual participating agencies using the assets available during JAPE. These tests, while not documented in this report, provided substantial and important data to those groups. Perhaps the most significant feature of JAPE is the establishment of a permanent data base which can be used by not only the participants but by others interested in acoustics. A follow-on test was performed by NASA LaRC during the period 19-29 Aug. 1991 at the same location. These trials consisted of 59 overflights of supersonic aircraft in order to establish the relationship between atmospheric turbulence and the received sonic boom energy at the surface.

  5. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  6. What Is an Acoustic Neuroma

    MedlinePlus

    ... Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, is a rare benign tumor of the ... Acoustic Neuroma? An acoustic neuroma, known as a vestibular schwannoma, is a benign (non-cancerous) growth that ...

  7. Acoustic metamaterials for sound mitigation

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2016-05-01

    We provide theoretical and numerical analyses of the behavior of a plate-type acoustic metamaterial considered in an air-borne sound environment in view of sound mitigation application. Two configurations of plate are studied, a spring-mass one and a pillar system-based one. The acoustic performances of the considered systems are investigated with different approaches and show that a high sound transmission loss (STL) up to 82 dB is reached with a metamaterial plate with a thickness of 0.5 mm. The physical understanding of the acoustic behavior of the metamaterial partition is discussed based on both air-borne and structure-borne approaches. Confrontation between the STL, the band structure, the displacement fields and the effective mass density of the plate metamaterial is made to have a complete physical understanding of the different mechanisms involved. xml:lang="fr"

  8. Classroom acoustics: Three pilot studies

    NASA Astrophysics Data System (ADS)

    Smaldino, Joseph J.

    2005-04-01

    This paper summarizes three related pilot projects designed to focus on the possible effects of classroom acoustics on fine auditory discrimination as it relates to language acquisition, especially English as a second language. The first study investigated the influence of improving the signal-to-noise ratio on the differentiation of English phonemes. The results showed better differentiation with better signal-to-noise ratio. The second studied speech perception in noise by young adults for whom English was a second language. The outcome indicated that the second language learners required a better signal-to-noise ratio to perform equally to the native language participants. The last study surveyed the acoustic conditions of preschool and day care classrooms, wherein first and second language learning occurs. The survey suggested an unfavorable acoustic environment for language learning.

  9. Simulation of detection and beamforming with acoustical ground sensors

    NASA Astrophysics Data System (ADS)

    Wilson, D. Keith; Sadler, Brian M.; Pham, Tien

    2002-08-01

    An interactive platform has been developed for simulating the detection and direction-finding performance of battlefield acoustic ground sensors. The simulations use the Acoustic Battlefield Aid (ABFA) as a computational engine to determine the signal propagation and resulting frequency-domain signal characteristics at the receiving sensor array. There are three components to the propagation predictions: the transmission loss (signal attenuation from target to sensor), signal saturation (degree of signal randomization), and signal coherence across the beamforming array. The transmission loss is predicted with a parabolic solution to the wave equation that accounts for sound refraction and ground interactions; signal saturation and coherence are predicted from the theory for line-of-sight wave propagation through turbulence. Based on these calculations, random frequency-domain signal samples are generated. The signal samples are then mixed with noise and fed to the selected detection or beamforming algorithm. After averaging over a number of trials, results are overlaid on a terrain map to show the sensor coverage. Currently available algorithms include the Neyman-Pearson criterion and Bayes risk minimization for detection, and the conventional, MVDR, and MUSIC beamformers. Users can readily add their own algorithms through a 'plug-in' interface. The interface requires only a text file listing the algorithm parameters and defaults, and a Matlab routine or Windows dynamic link library that implements the algorithm.

  10. An Overview of Acoustic Telemetry

    SciTech Connect

    Drumheller, D.S.

    1992-03-24

    Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The oil and gas industry has led in most of the attempts to develop this type of telemetry system; however, very substantial efforts have also been made through government sponsored work in the geothermal industry. None of these previous attempts have lead to a commercial telemetry system. Conceptually, the problem looks easy. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quite low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal Waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested

  11. Symptoms of Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  12. Acoustic Neuroma Educational Video

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  13. Two-dimensional acoustic cloaks of arbitrary shape with layered structure based on transformation acoustics

    NASA Astrophysics Data System (ADS)

    Li, Qi; Vipperman, Jeffrey S.

    2014-09-01

    Acoustic metamaterials have attracted much attention in recent years. Acoustic cloaks, which make objects invisible to acoustic waves, are the most common use for acoustic metamaterials. In this paper, acoustic cloaks with arbitrary shapes are presented based on transformation acoustics. This method interprets the compression and dilation of space as appropriate properties of materials. The derived properties of the cloak with irregular shapes are highly inhomogeneous and anisotropic, much more complex than the annulus cloaks. The materials for this kind of cloak are impossible to find in nature, and difficult to fabricate with artificial materials. In order to overcome this difficulty, layered structure with isotropic materials is adopted to approximate the required properties of the cloak. Numerical simulations of cloaks of arbitrary shape are performed to validate the design.

  14. Anisotropic physical properties of myocardium characterized by ultrasonic measurements of backscatter, attenuation, and velocity

    NASA Astrophysics Data System (ADS)

    Baldwin, Steven L.

    The goal of elucidating the physical mechanisms underlying the propagation of ultrasonic waves in anisotropic soft tissue such as myocardium has posed an interesting and largely unsolved problem in the field of physics for the past 30 years. In part because of the vast complexity of the system being studied, progress towards understanding and modeling the mechanisms that underlie observed acoustic parameters may first require the guidance of careful experiment. Knowledge of the causes of observed ultrasonic properties in soft tissue including attenuation, speed of sound, and backscatter, and how those properties are altered with specific pathophysiologies, may lead to new noninvasive approaches to the diagnosis of disease. The primary aim of this Dissertation is to contribute to an understanding of the physics that underlies the mechanisms responsible for the observed interaction of ultrasound with myocardium. To this end, through-transmission and backscatter measurements were performed by varying acoustic properties as a function of angle of insonification relative to the predominant myofiber direction and by altering the material properties of myocardium by increased protein cross-linking induced by chemical fixation as an extreme form of changes that may occur in certain pathologies such as diabetes. Techniques to estimate acoustic parameters from backscatter were broadened and challenges to implementing these techniques in vivo were addressed. Provided that specific challenges identified in this Dissertation can be overcome, techniques to estimate attenuation from ultrasonic backscatter show promise as a means to investigate the physical interaction of ultrasound with anisotropic biological media in vivo. This Dissertation represents a step towards understanding the physics of the interaction of ultrasonic waves with anisotropic biological media.

  15. Acoustically based fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Baker, Donald A.; Zuckerwar, Allan J.

    1991-01-01

    The acoustically based fetal heart rate monitor permits an expectant mother to perform the fetal Non-Stress Test in her home. The potential market would include the one million U.S. pregnancies per year requiring this type of prenatal surveillance. The monitor uses polyvinylidene fluoride (PVF2) piezoelectric polymer film for the acoustic sensors, which are mounted in a seven-element array on a cummerbund. Evaluation of the sensor ouput signals utilizes a digital signal processor, which performs a linear prediction routine in real time. Clinical tests reveal that the acoustically based monitor provides Non-Stress Test records which are comparable to those obtained with a commercial ultrasonic transducer.

  16. Introduction to Acoustical Energy. Learning Activity.

    ERIC Educational Resources Information Center

    Shackelford, Ray; Johnson, Steve

    1998-01-01

    This technology education activity will allow the students to observe acoustical energy and will put them in a problem-solving situation where they must use the movement of a sound-activated diaphragm to perform another activity. (Author)

  17. Baffling or Baffled: Improve Your Acoustics.

    ERIC Educational Resources Information Center

    Abdoo, Frank B.

    1981-01-01

    Presents techniques for evaluating the acoustics (reverberation time, and standing waves and resonance phenomena) of a band performance room. Gives instructions for building and placing inexpensive baffles (free-standing, portable sound barriers) to correct room defects. (SJL)

  18. Sonification of acoustic emission data

    NASA Astrophysics Data System (ADS)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  19. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  20. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  1. Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach

    NASA Astrophysics Data System (ADS)

    Pontecorvo, Emanuele; Ortolani, Michele; Polli, Dario; Ferretti, Marco; Ruocco, Giancarlo; Cerullo, Giulio; Scopigno, Tullio

    2011-01-01

    Building on a 1 kHz amplified Ti:sapphire laser source, we developed a novel pump-probe setup for broadband picosecond acoustics using a white-light continuum probe coupled to an optical multichannel analyzer. The system allows one to access, in a single measurement, acoustic parameters such as sound velocity and attenuation all over the bandwidth of the acoustic wave-packet launched by the pump pulse. We use the setup to measure the sound attenuation in fused silica and observe a dynamic crossover occurring at ≈170 GHz.

  2. Frequency steerable acoustic transducers

    NASA Astrophysics Data System (ADS)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  3. Noninvasive Ultrasonic Examination Technology in Support of Counter-Terrorism and Drug Interdiction Activities: the Acoustic Inspection Device (AID)

    SciTech Connect

    Diaz, Aaron A.; Burghard, Brion J.; Skorpik, James R.; Shepard, Chester L.; Samuel, Todd J.; Pappas, Richard A.

    2003-07-16

    The Pacific Northwest National Laboratory (PNNL) has developed a portable, battery-operated handheld ultrasonic device that provides non-invasive container interrogation and material identification capabilities. The Acoustic Inspection Device (AID) performs an automated analysis of the return echoes to identify the material, and detect contraband in the form of submerged packages and concealed compartments in liquid filled containers and solid-form commodities. This device utilizes a database consisting of material property measurements acquired from an automated ultrasonic fluid characterization system called the Velocity-Attenuation Measurement System (VAMS).

  4. Ducted fan acoustic radiation including the effects of nonuniform mean flow and acoustic treatment

    NASA Technical Reports Server (NTRS)

    Eversman, Walter; Roy, Indranil Danda

    1993-01-01

    Forward and aft acoustic propagation and radiation from a ducted fan is modeled using a finite element discretization of the acoustic field equations. The fan noise source is introduced as equivalent body forces representing distributed blade loading. The flow in and around the nacelle is assumed to be nonuniform, reflecting the effects of forward flight and flow into the inlet. Refraction due to the fan exit jet shear layer is not represented. Acoustic treatment on the inlet and exhaust duct surfaces provides a mechanism for attenuation. In a region enclosing the fan a pressure formulation is used with the assumption of locally uniform flow. Away from the fan a velocity potential formulation is used and the flow is assumed nonuniform but irrotational. A procedure is developed for matching the two regions by making use of local duct modal amplitudes as transition state variables and determining the amplitudes by enforcing natural boundary conditions at the interface between adjacent regions in which pressure and velocity potential are used. Simple models of rotor alone and rotor/exit guide vane generated noise are used to demonstrate the calculation of the radiated acoustic field and to show the effect of acoustic treatment. The model has been used to assess the success of four techniques for acoustic lining optimization in reducing far field noise.

  5. Acoustic characterization in whole blood and plasma of site-targeted nanoparticle ultrasound contrast agent for molecular imaging.

    PubMed

    Hughes, Michael S; Marsh, Jon N; Hall, Christopher S; Fuhrhop, Ralph W; Lacy, Elizabeth K; Lanza, Gregory M; Wickline, Samuel A

    2005-02-01

    The ability to enhance specific molecular markers of pathology with ultrasound has been previously demonstrated by our group employing a nanoparticle contrast agent [Lanza et al., Invest. Radiol. 35, 227-234 (2000); Ultrasound Med. Biol. 23, 863-870 (1997)]. One of the advantages of this agent is very low echogenicity in the blood pool that allows increased contrast between the blood pool and the bound, site-targeted agent. We measured acoustic backscatter and attenuation coefficient as a function of the contrast agent concentration, ambient pressure, peak acoustic pressure, and as an effect of duty cycle and wave form shape. Measurements were performed while the nanoparticles were suspended in either whole porcine blood or plasma. The nanoparticles were only detectable when insonified within plasma devoid of red blood cells and were shown to exhibit backscatter levels more than 30 dB below the backscatter from whole blood. Attenuation of nanoparticles in whole porcine blood was not measurably different from that of whole blood alone over a range of concentrations up to eight times the maximum in vivo dose. The resulting data provide upper bounds on blood pool attenuation coefficient and backscatter and will be needed to more precisely define levels of molecular contrast enhancement that may be obtained in vivo.

  6. Retrieval of Sea-Bed Parameters by the Method of Matching Acoustic Fields on the Basis of Vertical Angular Spectra

    NASA Astrophysics Data System (ADS)

    Kerzhakov, B. V.; Kulinich, V. V.

    2016-08-01

    We use the field matching method to solve the inverse problem of estimating the geoacoustic parameters of a stratified sea bed using the objective function based on the norm of difference between the experimental and simulated vertical angular spectra of the acoustic field and combination of the rapid-annealing method with direct search methods for localization of the global minimum of the objective function. To reduce the influence of the ravine effects of the objective function, we use regularization on the basis of mutual correlations of the experimental and simulated vertical angular spectra of the acoustic field. The numerical experiment has been performed to retrieve the parameters of the model waveguide, e.g., the thickness of the water layer and the layer of sediments, the velocity and attenuation coefficients of longitudinal waves, and the density of the sediment layer and the subjacent half-space in the presence of noise interference of different intensity levels.

  7. A multiple case study for calibrating acoustic backscatter to total suspended material in a large river system

    NASA Astrophysics Data System (ADS)

    Gunkel, Brittany Lynne

    Sediment transport measurements are determined using techniques such as bed-material and suspended-sediment sampling, and more recently the conversion of acoustic backscatter (ABS). Acoustic waves scatter and attenuate while passing through a water-sediment mixture and the backscatter is converted to sediment concentration, size, and shape. A multiple case study performed using data from West Bay, Old River, and Mississippi River at Vicksburg show the variability of a large river system TSM flux during assorted hydrographs and two methods (CHL and moving boat) capture the events. After processing and applying the two methods the results showed that the methods are typically within 8% to 41% of each other when computing sediment flux. The conversion of total suspended material (TSM) from ABS was an average of 0.2% to 69% from the sample TSM. Peak part of the hydrograph had the highest average suspended sediment concentration (SSC) and descending had the lowest average SSC.

  8. The acoustics of snoring.

    PubMed

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline

    2010-04-01

    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (<500 Hz) and corresponds to a fundamental frequency with associated harmonics. The pitch of snoring is determined by vibration of the soft palate, while nonpalatal snoring is more 'noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as

  9. Acoustic, Flow Related, and Performance Related Experimental Results for Generation 1.5 High Speed Civil Transport (HSCT) 2-Dimensional Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Wisler, S.; Majjigi, R.

    2004-01-01

    The principle objectives of the current program were to experimentally investigate the repeatability of acoustic and aerodynamic characteristics of 2D-CD mixer-ejector nozzles and the effects on the acoustic and aerodynamic characteristics of 2D mixer-ejectors due to (1) the configurational variations, which include mixers with aligned CD chutes, aligned convergent chutes, and staggered CD chutes and aerodynamic cycle variables, (2) treatment variations by using different treatment materials, treating the ejector with varying area, location, and treatment thickness for a mixer-ejector configuration, and (3) secondary inlet shape (i.e., a more realistic inlet) and the blockage across the inlet (a possible fin-like structure needed for installation purpose) by modifying one of the inlet of a mixer-ejector configuration. The objectives also included the measurement dynamic pressures internal to the ejector for a few selected configuration to examine the internal noise characteristics.

  10. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Holmes, M. J.; Parker, N. G.; Povey, M. J. W.

    2011-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50°C. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  11. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  12. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  13. Acoustic counter-sniper system

    NASA Astrophysics Data System (ADS)

    Duckworth, Gregory L.; Gilbert, Douglas C.; Barger, James E.

    1997-02-01

    BBN has developed, tested, and fielded pre-production versions of a versatile acoustics-based counter-sniper system. This system was developed by BBN for the DARPA Tactical Technology Office to provide a low cost and accurate sniper detection and localization system. The system uses observations of the shock wave from supersonic bullets to estimate the bullet trajectory, Mach number, and caliber. If muzzle blast observations are also available from unsilenced weapons, the exact sniper location along the trajectory is also estimated. A newly developed and very accurate model of the bullet ballistics and acoustic radiation is used which includes bullet deceleration. This allows the use of very flexible acoustic sensor types and placements, since the system can model the bullet's flight, and hence the acoustic observations, over a wide area very accurately. System sensor configurations can be as simple as two small four element tetrahedral microphone arrays on either side of the area to be protected, or six omnidirectional microphones spread over the area to be monitored. Increased performance can be obtained by expanding the sensor field in size or density, and the system software is easily reconfigured to accommodate this at deployment time. Sensor nodes can be added using wireless network telemetry or hardwired cables to the command node processing and display computer. The system has been field tested in three government sponsored tests in both rural and simulated urban environments at the Camp Pendleton MOUT facility. Performance was characterized during these tests for various shot geometries and bullet speeds and calibers.

  14. Generation of Acoustic Signals from Buried Explosions

    NASA Astrophysics Data System (ADS)

    Bonner, J. L.; Reinke, R.; Waxler, R.; Lenox, E. A.

    2012-12-01

    Buried explosions generate both seismic and acoustic signals. The mechanism for the acoustic generation is generally assumed to be large ground motions above the source region that cause atmospheric pressure disturbances which can propagate locally or regionally depending on source size and weather conditions. In order to better understand the factors that control acoustic generation from buried explosions, we conducted a series of 200 lb explosions detonated in and above the dry alluvium and limestones of Kirtland AFB, New Mexico. In this experiment, nicknamed HUMBLE REDWOOD III, we detonated charges at heights of burst of 2 m (no crater) and depths of burst of 7 m (fully confined). The seismic and acoustic signals were recorded on a network of near-source (< 90 m) co-located accelerometer and overpressure sensors, circular rings of acoustic sensors at 0.3 and 1 km, and multiple seismic and infrasound sensors at local-to-regional distances. Near-source acoustic signals for the 200 lb buried explosion in limestone show an impulsive, short-duration (0.04 s) initial peak, followed by a broad duration (0.3 s) negative pressure trough, and finally a second positive pulse (0.18 s duration). The entire width of the acoustic signal generated by this small buried explosion is 0.5 s and results in a 2 Hz peak in spectral energy. High-velocity wind conditions quickly attenuate the signal with few observations beyond 1 km. We have attempted to model these acoustic waveforms by estimating near-source ground motion using synthetic spall seismograms. Spall seismograms have similar characteristics as the observed acoustics and usually include an initial positive motion P wave, followed by -1 g acceleration due to the ballistic free fall of the near surface rock units, and ends with positive accelerations due to "slapdown" of the material. Spall seismograms were synthesized using emplacement media parameters and high-speed video observations of the surface movements. We present a

  15. Design and Analysis of Underwater Acoustic Networks with Reflected Links

    NASA Astrophysics Data System (ADS)

    Emokpae, Lloyd

    Underwater acoustic networks (UWANs) have applications in environmental state monitoring, oceanic profile measurements, leak detection in oil fields, distributed surveillance, and navigation. For these applications, sets of nodes are employed to collaboratively monitor an area of interest and track certain events or phenomena. In addition, it is common to find autonomous underwater vehicles (AUVs) acting as mobile sensor nodes that perform search-and-rescue missions, reconnaissance in combat zones, and coastal patrol. These AUVs are to work cooperatively to achieve a desired goal and thus need to be able to, in an ad-hoc manner, establish and sustain communication links in order to ensure some desired level of quality of service. Therefore, each node is required to adapt to environmental changes and be able to overcome broken communication links caused by external noise affecting the communication channel due to node mobility. In addition, since radio waves are quickly absorbed in the water medium, it is common for most underwater applications to rely on acoustic (or sound) rather than radio channels for mid-to-long range communications. However, acoustic channels pose multiple challenging issues, most notably the high transmission delay due to slow signal propagation and the limited channel bandwidth due to high frequency attenuation. Moreover, the inhomogeneous property of the water medium affects the sound speed profile while the signal surface and bottom reflections leads to multipath effects. In this dissertation, we address these networking challenges by developing protocols that take into consideration the underwater physical layer dynamics. We begin by introducing a novel surface-based reflection scheme (SBR), which takes advantage of the multipath effects of the acoustic channel. SBR works by using reflections from the water surface, and bottom, to establish non-line-of-sight (NLOS) communication links. SBR makes it possible to incorporate both line

  16. Pressure wave attenuation and dispersion in two-phase flow

    SciTech Connect

    Kovarik, F.S.; Bankoff, S.G.

    1987-01-01

    The pressure shock wave propagation behavior in three vapor-liquid systems, steam-water, ethanol-ethanol, and Freon-Freon, has been investigated over a void fraction, ..cap alpha.., range from zero to 30%. Attenuation and dispersion behavior seems relatively insensitive (no order-of-magnitude deviations) to differences in system physical properties. The attenuation coefficient of water, BETA/sub H/2/sub O/ ranged from 0.021 cm/sup -1/ at 5% void to 0.072 cm/sup -1/ at 30% void fraction. BETA/sub F113/ was as much as 40% lower than BETA/sub ETOH/ or BETA/sub H/2/sub O/ for void fractions less than 20% where the initial wave amplitude, ..delta..P/sub o/ was 2.90 bar. Larger amplitude waves (4.14 bar) demonstrated a greater rate of attenuation throughout the void fraction range, more pronounced in the lower regions: 80% greater for 5% steam-water and 120% greater for 5% Freon-113. The attenuation data from the present investigation tend to lie between one- and two-component acoustic attenuation theories and data. However, near the resonant bubble frequency, the two component results approach the one-component region. As the void fraction is decreased, the one- and two-component acoustic theories and data (small and finite amplitude, including the present experimentation) smoothly converge.

  17. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  18. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  19. ACOUSTICAL STANDARDS NEWS.

    PubMed

    Stremmel, Neil; Struck, Christopher J

    2016-07-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Neil Stremmel.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27475185

  20. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2015-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.

  1. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Denham, Samuel A.

    2011-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.

  2. Developing a Framework for Performance Monitoring to Assess the use of Monitored Natural Attenuation for Remediation of Inorganic Contaminants in Ground Water

    NASA Astrophysics Data System (ADS)

    Ford, R.; Wilkin, R.; Puls, R.; Wilhelm, R.; Lovelace, K.

    2005-05-01

    The USEPA is leading an effort to develop technical documentation that provides the policy, scientific and technical framework for assessing the viability of MNA for inorganic contaminants in ground water (hereafter referred to as the Inorganics Framework Document). Development of the Inorganics Framework Document is being carried out in conjunction with site-specific assessments of the viability of MNA at sites with ground water contamination. For one of these field sites, researchers at the National Risk Management Research Laboratory are assessing the potential for natural attenuation of arsenic within a contaminated ground-water aquifer. Based on the current state of knowledge, arsenic is considered to be a contaminant for which application of MNA may be of marginal success. The mobility of arsenic in ground water is strongly dependent on partitioning to immobile aquifer solids. However, arsenic is susceptible to changes in chemical speciation due to shifts in redox chemistry resulting from abiotic and biotic processes. These potential changes in chemical speciation require that detailed information for assessing the stability of immobilized arsenic be collected in space and time. This observation has been confirmed as part of the field study, where it has been established that partitioning to sediments results in significant removal of arsenic from the aqueous phase. However, the partitioning process is readily reversible under reducing conditions, indicating that MNA cannot be used as a sole remedy for site cleanup. Notice: This is an abstract of a proposed presentation and does not necessarily reflect EPA policy.

  3. Acoustic Inversion in Optoacoustic Tomography: A Review

    PubMed Central

    Rosenthal, Amir; Ntziachristos, Vasilis; Razansky, Daniel

    2013-01-01

    Optoacoustic tomography enables volumetric imaging with optical contrast in biological tissue at depths beyond the optical mean free path by the use of optical excitation and acoustic detection. The hybrid nature of optoacoustic tomography gives rise to two distinct inverse problems: The optical inverse problem, related to the propagation of the excitation light in tissue, and the acoustic inverse problem, which deals with the propagation and detection of the generated acoustic waves. Since the two inverse problems have different physical underpinnings and are governed by different types of equations, they are often treated independently as unrelated problems. From an imaging standpoint, the acoustic inverse problem relates to forming an image from the measured acoustic data, whereas the optical inverse problem relates to quantifying the formed image. This review focuses on the acoustic aspects of optoacoustic tomography, specifically acoustic reconstruction algorithms and imaging-system practicalities. As these two aspects are intimately linked, and no silver bullet exists in the path towards high-performance imaging, we adopt a holistic approach in our review and discuss the many links between the two aspects. Four classes of reconstruction algorithms are reviewed: time-domain (so called back-projection) formulae, frequency-domain formulae, time-reversal algorithms, and model-based algorithms. These algorithms are discussed in the context of the various acoustic detectors and detection surfaces which are commonly used in experimental studies. We further discuss the effects of non-ideal imaging scenarios on the quality of reconstruction and review methods that can mitigate these effects. Namely, we consider the cases of finite detector aperture, limited-view tomography, spatial under-sampling of the acoustic signals, and acoustic heterogeneities and losses. PMID:24772060

  4. Advanced fiber-optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Teixeira, João G. V.; Leite, Ivo T.; Silva, Susana; Frazão, Orlando

    2014-09-01

    Acoustic sensing is nowadays a very demanding field which plays an important role in modern society, with applications spanning from structural health monitoring to medical imaging. Fiber-optics can bring many advantages to this field, and fiber-optic acoustic sensors show already performance levels capable of competing with the standard sensors based on piezoelectric transducers. This review presents the recent advances in the field of fiber-optic dynamic strain sensing, particularly for acoustic detection. Three dominant technologies are identified — fiber Bragg gratings, interferometric Mach-Zehnder, and Fabry-Pérot configurations — and their recent developments are summarized.

  5. Observation of cavitation bubbles and acoustic streaming in high intensity ultrasound fields

    NASA Astrophysics Data System (ADS)

    Uemura, Yuuki; Sasaki, Kazuma; Minami, Kyohei; Sato, Toshio; Choi, Pak-Kon; Takeuchi, Shinichi

    2015-07-01

    We observed the behavior of acoustic cavitation by sonochemical luminescence and ultrasound B-mode imaging with ultrasound diagnostic equipment in a standing-wave ultrasound field and focused ultrasound field. Furthermore, in order to investigate the influence of acoustic streaming on acoustic cavitation bubbles, we performed flow analysis of the sound field using particle image velocimetry. We found that acoustic cavitation bubbles are stirred by circulating acoustic streaming and local vortexes occurring in the water tank of the standing-wave ultrasound exposure system. We considered that the acoustic cavitation bubbles are carried away by acoustic streaming due to the high ultrasound pressure in the focused ultrasound field.

  6. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  7. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  8. Contribution of Consonant Landmarks to Speech Recognition in Simulated Acoustic-Electric Hearing

    PubMed Central

    Chen, Fei; Loizou, Philipos C.

    2009-01-01

    Objectives The purpose of this study is to assess the contribution of information provided by obstruent consonants (e.g. stops, fricatives) to speech intelligibility in simulated acoustic-electric hearing. As a secondary objective, this study examines the performance of an objective measure that can potentially be used for predicting the intelligibility of vocoded speech. Design Noise-corrupted sentences are used in Exp. 1 in which the noise-corrupted obstruent consonants are replaced with clean obstruent consonants, while leaving the sonorant sounds (vowels, semivowels and nasals) corrupted. In one condition, listeners have only access to the low-frequency (<600 Hz) acoustic portion of the clean consonant spectra, in another condition listeners have only access to the higher frequency (>600 Hz) portion (vocoded) of the clean consonant spectra, and in the third condition they have access to both. In Exp. 2, we investigate a speech-coding strategy that selectively attenuates the low-frequency portion of the consonant spectra while leaving the vocoded portion corrupted by noise. Finally, using the data collected from Exp. 1 and 2, we evaluate the performance of an objective measure in terms of predicting intelligibility of vocoded speech. This measure was originally designed to predict speech quality and has never been evaluated with vocoded speech. Results Significant improvements (about 30 percentage points) in intelligibility were noted in Exp. 1 in steady and two-talker masker conditions when the listeners had access to the clean obstruent consonants in both the acoustic and vocoded portions of the spectrum. The improvement was more evident in the low SNR levels (−5 and 0 dB). Further analysis indicated that it was access to the vocoded portion of the consonant spectra, rather than access to the low-frequency acoustic portion of the consonant spectra that contributed the most to the large improvements in performance. In Exp. 2, a small (14 percentage points

  9. Weapons bay acoustic environment

    NASA Astrophysics Data System (ADS)

    Shaw, L. L.; Shimovetz, R. M.

    1994-09-01

    An aircraft weapons bay exposed to freestream flow experiences an intense aeroacoustic environment in and around the bay. Experience has taught that the intensity of this environment can be severe enough to result in damage to a store, its internal equipment, or the structure of the weapons bay itself. To ensure that stores and sensitive internal equipment can withstand this hazardous environment and successfully complete the mission, they must be qualified to the most severe sound pressure levels anticipated for the mission. If the qualification test levels are too high, the store and its internal equipment will be over designed, resulting in unnecessary costs and possible performance penalties. If the qualification levels are below those experienced in flight, the store or its internal equipment may catastrophically fail during performance of the mission. Thus, it is desirable that the expected levels in weapons bays be accurately predicted. A large number of research efforts have been directed toward understanding flow-induced cavity oscillations. However, the phenomena are still not adequately understood to allow one to predict the fluctuating pressure levels for various configurations and flow conditions. This is especially true at supersonic flow speeds, where only a small amount of data are available. This paper will give a background of flow induced cavity oscillations and discuss predictions, control and suppression, and the future of weapons bay acoustic environments. A large number of research efforts have been directed toward understanding flow-induced cavity oscillations. However, the phenomena are still not adequately understood to allow one to predict the fluctuating pressure levels for various configurations and flow conditions. This is especially true at supersonic flow speeds, where only a small amount of data are available. This paper will give a background of flow induced cavity oscillations and discuss predictions, control and suppression, and

  10. Flow visualization of acoustic levitation experiment

    NASA Technical Reports Server (NTRS)

    Baroth, ED

    1987-01-01

    Acoustic levitation experiments for space applications were performed. Holographic interferometry is being used to study the heat transfer rates on a heated rod enclosed in a 6 cu in chamber. Acoustic waves at levels up to 150 db increased the heating rates to the rod by factors of three to four. High speed real time holographic interferometry was used to measure the boundary layer on the heated rod. Data reduction and digitization of the interferograms are being implemented.

  11. Correlation reception of thermal acoustic radiation

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Barabanenkov, Yu. N.; Sel'Skii, A. G.

    2003-11-01

    Correlated signals of thermal acoustic radiation from heated sources extending in the transverse direction (a pair of narrow plasticine plates and a wide plasticine strip) are measured. The measurements are performed by multiplying together the signals that are shifted in time with respect to each other and detected by two piezoelectric transducers. The values of the correlated signals of thermal acoustic radiation are determined by the spatial variation of temperature in the medium under study.

  12. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  13. Quantitative measurement of acoustic pressure in the focal zone of acoustic lens-line focusing using the Schlieren method.

    PubMed

    Jiang, Xueping; Cheng, Qian; Xu, Zheng; Qian, Menglu; Han, Qingbang

    2016-04-01

    This paper proposes a theory and method for quantitative measurement of the acoustic lens-line focusing ultrasonic (ALLFU) field in its focal spot size and acoustic pressure using the Schlieren imaging technique. Using Fourier transformation, the relationship between the brightness of the Schlieren image and the acoustic pressure was introduced. The ALLFU field was simulated using finite element method and compared with the Schlieren acoustic field image. The measurement of the focal spot size was performed using the Schlieren method. The acoustic pressure in the focal zone of the ALLFU field and the transducer-transmitting voltage response were quantitatively determined by measuring the diffraction light fringe intensity. The results show that the brightness of the Schlieren image is a linear function of the acoustic intensity when the acousto-optic interaction length remains constant and the acoustic field is weak. PMID:27139646

  14. Real-time virtual room acoustic simulation

    NASA Astrophysics Data System (ADS)

    Carneal, James P.; Johnson, Jan; Johnson, Troge; Johnson, Marty

    2003-10-01

    A realistic virtual room acoustic simulation has been implemented on a PC-based computer in near real-time. Room acoustics are calculated by the image source method using realistic absorption coefficients for a variety of realistic surfaces and programmed in MATLAB. The resulting impulse response filters are then applied in near real-time using fast convolution DSP techniques using data being read from a CD-ROM. The system was implemented in a virtual acoustic room facility. Optimizations have been performed to retain the realistic virtual room effect while minimizing computations through limited psycho-acoustic testing. In general, realistic anechoic to reverberant virtual rooms have been re-created with six 8192 coefficient filters. To provide realistic simulations, special care must be taken to accurately reproduce the low frequency acoustics. Since the virtual room acoustic facility was not totally anechoic (as are most anechoic chambers), inverse filters were applied to compensate for over-amplified acoustics at frequencies below 350 Hz.

  15. Listening to the acoustics in concert halls

    NASA Astrophysics Data System (ADS)

    Beranek, Leo L.; Griesinger, David

    2001-05-01

    How does acoustics affect the symphonic music performed in a concert hall? The lecture begins with an illustrated discussion of the architectural features that influence the acoustics. Boston Symphony Hall, which was built in 1900 when only one facet of architectural design was known, now rates as one of the world's great halls. How this occurred will be presented. Music is composed with some acoustical environment in mind and this varies with time from the Baroque to the Romantic to the Modern musical period. Conductors vary their interpretation according to the hall they are in. Well-traveled listeners and music critics have favorite halls. The lecture then presents a list of 58 halls rank ordered according to their acoustical quality based on interviews of music critics and conductors. Modern acoustical measurements made in these halls are compared with their rankings. Music recordings will be presented that demonstrate how halls sound that have different measured acoustical parameters. Photographs of a number of recently built halls are shown as examples of how these known acoustical factors have been incorporated into architectural design.

  16. Performance of electroacoustic hearing protectors

    NASA Astrophysics Data System (ADS)

    Murphy, William; Little, Mark

    2002-05-01

    The spectral and temporal response characteristics of five models of electroacoustic earmuffs (Bilsom 707 Impact II, Peltor Tactical 6s, Howard Leight Lightning and Thunder w/ProEars, and Silencio Electronic Low Pro hearing protectors) were measured with noise created by small arms fire from a 0.223 caliber rifle and a 9 mm handgun. Each hearing protector was tested in the fully-amplified (active) and no amplification (passive) conditions. The protectors were measured on an acoustic test fixture designed for high-level noise measurements. The protected and unprotected signals were recorded to digital audio tape and analyzed off-line. The reduction of peak sound pressure levels ranged between 16 and 32 dB for both the active and passive conditions. The time-averaged acoustic waveforms underneath the protectors exhibited little difference between active and passive conditions. The active electroacoustic performance approaches the passive attenuation performance. Auditory damage units were calculated for the unprotected and protected responses using the AHAAH cochlear model [Price and Kalb, J. Acoust. Soc. Am. 90, 219-227 (1991)].

  17. Acoustic Levitator Maintains Resonance

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.

    1986-01-01

    Transducer loading characteristics allow resonance tracked at high temperature. Acoustic-levitation chamber length automatically adjusted to maintain resonance at constant acoustic frequency as temperature changes. Developed for containerless processing of materials at high temperatures, system does not rely on microphones as resonance sensors, since microphones are difficult to fabricate for use at temperatures above 500 degrees C. Instead, system uses acoustic transducer itself as sensor.

  18. Modeling the Tohoku, 2011, ionospheric acoustic-gravity waves with the Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Khelfi, K.; Lognonne, P. H.; Komatitsch, D.; Astafyeva, E.

    2013-12-01

    After the Tohoku earthquake (Japan March 2011), several types of waves have been observed in the ionosphere. These waves are generated from different sources located at the Earth surface, either associated to the rupture and co-seismic ground uplift or to remote uplift associated to waves internal to the ocean-ground system, e.g. tsunami and seismic body and surface waves. These waves were densely observed by the Japanese GEONET network but also in several locations of the Pacific ocean e.g., Hawaii, Chile, California, etc..., enabling in depth studies and requesting therefore modeling integrating all the complexity and tri-dimensional structure of the atmosphere-ionosphere system. In this work, we present preliminary results obtained by the spectral element method, in order to perform 3D modeling of the propagation of the gravito-acoustic waves in the neutral atmosphere, by taking not only into account the coupling between the ionosphere and the neutral atmosphere which generate an anisotropic attenuation associated to the magnetic field, in addition to the isotropic attenuation due to viscosity, but also the complexity of the acoustic waves, which are originating from a complex structure with variable depth ocean. We first present the typical lateral variation of the propagation parameters, e.g . acoustic velocities and densities and local wave damping with respect to atmospheric viscosity, heat transfer and magnetic field used from the IGRF model, and we use also the IRI model for the ionospheric parameters We then show first results of wave simulations in 2D and 3D geometries. In this first step, the interaction between the neutral and ionosphere is assumed to be instantaneous, due to the large gyro frequency of ions and electrons as compared to the typical frequency of waves, but take into account the interaction with magnetic field and further diffusion. As this first steps focus on the propagation, results are illustrated for simple sources. The

  19. Pressure distribution based optimization of phase-coded acoustical vortices

    SciTech Connect

    Zheng, Haixiang; Gao, Lu; Dai, Yafei; Ma, Qingyu; Zhang, Dong

    2014-02-28

    Based on the acoustic radiation of point source, the physical mechanism of phase-coded acoustical vortices is investigated with formulae derivations of acoustic pressure and vibration velocity. Various factors that affect the optimization of acoustical vortices are analyzed. Numerical simulations of the axial, radial, and circular pressure distributions are performed with different source numbers, frequencies, and axial distances. The results prove that the acoustic pressure of acoustical vortices is linearly proportional to the source number, and lower fluctuations of circular pressure distributions can be produced for more sources. With the increase of source frequency, the acoustic pressure of acoustical vortices increases accordingly with decreased vortex radius. Meanwhile, increased vortex radius with reduced acoustic pressure is also achieved for longer axial distance. With the 6-source experimental system, circular and radial pressure distributions at various frequencies and axial distances have been measured, which have good agreements with the results of numerical simulations. The favorable results of acoustic pressure distributions provide theoretical basis for further studies of acoustical vortices.

  20. A method to determine the acoustical properties of locally and nonlocally reacting duct liners in grazing flow

    NASA Technical Reports Server (NTRS)

    Succi, G.

    1982-01-01

    The acoustical properties of locally and nonlocally reacting acoustical liners in grazing flow are described. The effect of mean flow and shear flow are considered as well as the application to rigid and limp bulk reacting materials. The axial wavenumber of the least attenuated mode in a flow duct is measured. The acoustical properties of duct liners is then deduced from the measured axial wavenumber and known flow profile and boundary conditions. This method is a natural extension of impedance-like measurements.

  1. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  2. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  3. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  4. Planetary Ices Attenuation Properties

    NASA Astrophysics Data System (ADS)

    McCarthy, Christine; Castillo-Rogez, Julie C.

    In this chapter, we review the topic of energy dissipation in the context of icy satellites experiencing tidal forcing. We describe the physics of mechanical dissipation, also known as attenuation, in polycrystalline ice and discuss the history of laboratory methods used to measure and understand it. Because many factors - such as microstructure, composition and defect state - can influence rheological behavior, we review what is known about the mechanisms responsible for attenuation in ice and what can be inferred from the properties of rocks, metals and ceramics. Since attenuation measured in the laboratory must be carefully scaled to geologic time and to planetary conditions in order to provide realistic extrapolation, we discuss various mechanical models that have been used, with varying degrees of success, to describe attenuation as a function of forcing frequency and temperature. We review the literature in which these models have been used to describe dissipation in the moons of Jupiter and Saturn. Finally, we address gaps in our present knowledge of planetary ice attenuation and provide suggestions for future inquiry.

  5. The effect of microstructural variation on the mechanical and acoustic properties of silicon carbide

    NASA Astrophysics Data System (ADS)

    Slusark, Douglas Michael

    Silicon carbide ceramic materials have many beneficial properties which have led to their adoption in various industrial uses, including its application as an armor material. This is due to the high hardness and stiffness of these materials, as well as a low relative density. The homogeneity of the final properties depends upon the processing history of the material. Factors which affect this include the need for high temperatures and sintering additives to achieve densification, as well as the presence of additive agglomerates and pressing artifacts within the green compact. This dissertation seeks to determine the effect which microstructural variability has on the acoustic and mechanical properties of sintered silicon carbide materials. Sample sets examined included commercially produced, pressurelessly sintered tiles, as well as additional, targeted tiles which were specifically produced for evaluation in this study. Production of these targeted samples was carried out such that particular aspects of the microstructure were emphasized. These included tiles which were fired with an excess of boron sintering aid as well as tiles which had been pressed to a reduced green body density and then fired. The sample evaluation procedure which was developed incorporated non destructive evaluation methods, mechanical testing, and both fractographic and image analysis of fractured and polished sections. Non destructive evaluation of the tiles was carried out by Archimedes density and ultrasound scanning at 20 MHz to determine the acoustic attenuation coefficient. Selected samples were chosen for machining into ASTM B-type bend bars on which 4-pt flexure testing was performed. Strength limiting features were designated for each sample set. The correlation between acoustic attenuation coefficient and quasi-static strength was examined both qualitatively and quantitatively. This was done by comparing the primary fracture location of flexure bars to features within the

  6. Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number

    NASA Astrophysics Data System (ADS)

    Ye, Peng-Cheng; Pan, Guang

    2015-06-01

    Due to the high speed of underwater vehicles, cavitation is generated inevitably along with the sound attenuation when the sound signal traverses through the cavity region around the underwater vehicle. The linear wave propagation is studied to obtain the influence of bubbly liquid on the acoustic wave propagation in the cavity region. The sound attenuation coefficient and the sound speed formula of the bubbly liquid are presented. Based on the sound attenuation coefficients with various vapor volume fractions, the attenuation of sound intensity is calculated under large cavitation number conditions. The result shows that the sound intensity attenuation is fairly small in a certain condition. Consequently, the intensity attenuation can be neglected in engineering. Project supported by the National Natural Science Foundation of China (Grant Nos. 51279165 and 51479170) and the National Defense Basic Scientific Research Program of China (Grant No. B2720133014).

  7. Frequency effects on the scale and behavior of acoustic streaming.

    PubMed

    Dentry, Michael B; Yeo, Leslie Y; Friend, James R

    2014-01-01

    Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the critically problematic acoustic source singularity present in Lighthill's model, replacing it with a finite emission area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half power dependence (U∼P1/2∼ ReJ) similar to the turbulent jet model. However, the laminar model may also be applied to jets produced at low powers-and hence low jet Reynolds numbers ReJ-where a linear relationship between the beam power and streaming velocity exists: U∼P∼ReJ2. The ability of the laminar jet model to predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show that the choice of frequency is a vitally important consideration in the design of small-scale devices employing acoustic streaming

  8. Acoustic Levitation With Less Equipment

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  9. Measurements of Antarctic ice properties for acoustic neutrino detection

    NASA Astrophysics Data System (ADS)

    Nahnhauer, R.; Ice Cube Acoustic Neutrino Detection Group

    2008-11-01

    Detection of the faint flux of neutrinos from interactions of the highest energy charged cosmic particles with microwave background photons with a reasonable number of events would contribute to answering interesting questions of particle physics as well as astro-particle physics and cosmology. This needs however detector volumes 100 times larger than the biggest optical neutrino telescopes presently under construction. The use of at least two technologies with different systematics would help to fight the large background expected to hide the small signal. A hybrid optical-radio-acoustic array suggested around the IceCube observatory at the South Pole seems to be a promising option for such an experiment. This is the reason for an extensive evaluation of the acoustic properties of the ice at the Pole with the help of the South Pole Acoustic Test Setup SPATS. SPATS consists of four strings with seven acoustic stations each, deployed in the upper part of IceCube bore-holes down to 400 m to 500 m depth. Each acoustic station has an acoustic transmitter and three acoustic receivers. Data have been taken with since early 2007. During the last Austral summer in addition a movable transmitter was used in several water filled bore-holes aiming in particular for a relative calibration of the setup. Preliminary results are presented on speed of sound versus depth, noise behavior and attenuation length measurements

  10. Vortex attenuation flight experiments

    NASA Technical Reports Server (NTRS)

    Barber, M. R.; Hastings, E. C., Jr.; Champine, R. A.; Tymczyszyn, J. J.

    1977-01-01

    Flight tests evaluating the effects of altered span loading, turbulence ingestion, combinations of mass and turbulence ingestion, and combinations of altered span loading turbulance ingestion on trailed wake vortex attenuation were conducted. Span loadings were altered in flight by varying the deflections of the inboard and outboard flaps on a B-747 aircraft. Turbulence ingestion was achieved in flight by mounting splines on a C-54G aircraft. Mass and turbulence ingestion was achieved in flight by varying the thrust on the B-747 aircraft. Combinations of altered span loading and turbulence ingestion were achieved in flight by installing a spoiler on a CV-990 aircraft and by deflecting the existing spoilers on a B-747 aircraft. The characteristics of the attenuated and unattenuated vortexes were determined by probing them with smaller aircraft. Acceptable separation distances for encounters with the attenuated and unattenuated vortexes are presented.

  11. Radiofrequency attenuator and method

    SciTech Connect

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  12. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-11-10

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  13. Effect of attenuation models on communication system design

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Fred I.

    1995-01-01

    The atmosphere has a significant impact on the design of a global communication system operating at 20 GHz. The system under consideration has a total atmospheric link attenuation budget that is less than 6 dB. For this relatively small link margin, rain, cloud, and molecular attenuation have to be taken into account. For an assessment of system performance on a global basis, attenuation models are utilized. There is concern whether current models can adequately describe the atmospheric effects such that a system planner can properly allocate his resources for superior overall system performance. The atmospheric attenuation as predicted by models will be examined.

  14. Acoustic aspects of a radial diffuser

    NASA Astrophysics Data System (ADS)

    de Krasinski, J.; Sun, S.; Wawszczak, W.

    This paper describes experimental research on the acoustical aspects of an axially-symmetrical radial diffuser. Tests were made at high subsonic and supersonic speeds at the diffuser entry, using compressed air. The results are analyzed from the point of view of the internal flow and Lighthill's theory of sound generated aerodynamically. The outstanding features of this diffuser are a high efficiency in subsonic and supersonic ranges and extreme shortness and powerful sound attenuating capacity. The noise level of a supersonic nozzle at Mach 4.0 was reduced from about 110 dB to 80 dB.

  15. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams.

    PubMed

    Lugli, M; Fine, M L

    2003-07-01

    Noise is an important theoretical constraint on the evolution of signal form and sensory performance. In order to determine environmental constraints on the communication of two freshwater gobies Padogobius martensii and Gobius nigricans, numerous noise spectra were measured from quiet areas and ones adjacent to waterfalls and rapids in two shallow stony streams. Propagation of goby sounds and waterfall noise was also measured. A quiet window around 100 Hz is present in many noise spectra from noisy locations. The window lies between two noise sources, a low-frequency one attributed to turbulence, and a high-frequency one (200-500 Hz) attributed to bubble noise from water breaking the surface. Ambient noise from a waterfall (frequencies below 1 kHz) attenuates as much as 30 dB between 1 and 2 m, after which values are variable without further attenuation (i.e., buried in the noise floor). Similarly, courtship sounds of P. martensii attenuate as much as 30 dB between 5 and 50 cm. Since gobies are known to court in noisy as well as quiet locations in these streams, their acoustic communication system (sounds and auditory system) must be able to cope with short-range propagation dictated by shallow depths and ambient noise in noisy locations. PMID:12880062

  16. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams.

    PubMed

    Lugli, M; Fine, M L

    2003-07-01

    Noise is an important theoretical constraint on the evolution of signal form and sensory performance. In order to determine environmental constraints on the communication of two freshwater gobies Padogobius martensii and Gobius nigricans, numerous noise spectra were measured from quiet areas and ones adjacent to waterfalls and rapids in two shallow stony streams. Propagation of goby sounds and waterfall noise was also measured. A quiet window around 100 Hz is present in many noise spectra from noisy locations. The window lies between two noise sources, a low-frequency one attributed to turbulence, and a high-frequency one (200-500 Hz) attributed to bubble noise from water breaking the surface. Ambient noise from a waterfall (frequencies below 1 kHz) attenuates as much as 30 dB between 1 and 2 m, after which values are variable without further attenuation (i.e., buried in the noise floor). Similarly, courtship sounds of P. martensii attenuate as much as 30 dB between 5 and 50 cm. Since gobies are known to court in noisy as well as quiet locations in these streams, their acoustic communication system (sounds and auditory system) must be able to cope with short-range propagation dictated by shallow depths and ambient noise in noisy locations.

  17. NOTE: Acoustical properties of selected tissue phantom materials for ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Zell, K.; Sperl, J. I.; Vogel, M. W.; Niessner, R.; Haisch, C.

    2007-10-01

    This note summarizes the characterization of the acoustic properties of four materials intended for the development of tissue, and especially breast tissue, phantoms for the use in photoacoustic and ultrasound imaging. The materials are agar, silicone, polyvinyl alcohol gel (PVA) and polyacrylamide gel (PAA). The acoustical properties, i.e., the speed of sound, impedance and acoustic attenuation, are determined by transmission measurements of sound waves at room temperature under controlled conditions. Although the materials are tested for application such as photoacoustic phantoms, we focus here on the acoustic properties, while the optical properties will be discussed elsewhere. To obtain the acoustic attenuation in a frequency range from 4 MHz to 14 MHz, two ultrasound sources of 5 MHz and 10 MHz core frequencies are used. For preparation, each sample is cast into blocks of three different thicknesses. Agar, PVA and PAA show similar acoustic properties as water. Within silicone polymer, a significantly lower speed of sound and higher acoustical attenuation than in water and human tissue were found. All materials can be cast into arbitrary shapes and are suitable for tissue-mimicking phantoms. Due to its lower speed of sound, silicone is generally less suitable than the other presented materials.

  18. Vibro-acoustic analysis of composite plates

    NASA Astrophysics Data System (ADS)

    Sarigül, A. S.; Karagözlü, E.

    2014-03-01

    Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed.

  19. On observing acoustic backscattering from salinity turbulence.

    PubMed

    Goodman, Louis; Sastre-Cordova, Marcos M

    2011-08-01

    It has been hypothesized that at sufficiently high levels of oceanic salinity turbulence it should be possible to observe acoustic backscattering. However, there have been limited in situ measurements to confirm this hypothesis. Using an autonomous underwater vehicle equipped with upward and downward looking 1.2 MHz acoustic Doppler current profilers and with turbulence and fine scale sensors, measurements were performed in a region of intense turbulence and a strong salinity gradient. The approach taken was to correlate variations in the backscattered acoustic intensity, I, with a theoretical acoustic backscattering cross section per volume for salinity turbulence, σ(s), to obtain an estimated scattering cross section per volume, σ(e). Results indicated that of order 50% of the observed region was characterized by salinity turbulence induced backscattering. PMID:21877785

  20. On observing acoustic backscattering from salinity turbulence.

    PubMed

    Goodman, Louis; Sastre-Cordova, Marcos M

    2011-08-01

    It has been hypothesized that at sufficiently high levels of oceanic salinity turbulence it should be possible to observe acoustic backscattering. However, there have been limited in situ measurements to confirm this hypothesis. Using an autonomous underwater vehicle equipped with upward and downward looking 1.2 MHz acoustic Doppler current profilers and with turbulence and fine scale sensors, measurements were performed in a region of intense turbulence and a strong salinity gradient. The approach taken was to correlate variations in the backscattered acoustic intensity, I, with a theoretical acoustic backscattering cross section per volume for salinity turbulence, σ(s), to obtain an estimated scattering cross section per volume, σ(e). Results indicated that of order 50% of the observed region was characterized by salinity turbulence induced backscattering.

  1. Nonlinear acoustic impedance of thermoacoustic stack

    NASA Astrophysics Data System (ADS)

    Ge, Huan; Fan, Li; Xiao, Shu-yu; Tao, Sha; Qiu, Mei-chen; Zhang, Shu-yi; Zhang, Hui

    2012-09-01

    In order to optimize the performances of the thermoacoustic refrigerator working with the high sound pressure level, the nonlinear acoustic characteristics of the thermoacoustic stack in the resonant pipe are studied. The acoustic fluid impedance of the stack made of copper mesh and set up in a resonant pipe is measured in the acoustic fields with different intensities. It is found that when the sound pressure level in the pipe increases to a critical value, the resistance of the stack increases nonlinearly with the sound pressure, while the reactance of the stack keeps constant. Based on the experimental results, a theory model is set up to describe the acoustic characteristics of the stack, according to the rigid frame theory and Forchheimmer equation. Furthermore, the influences of the sound pressure level, operating frequency, volume porosity, and length of the stack on the nonlinear impedance of the stack are evaluated.

  2. Acoustics class at Berklee College of Music

    NASA Astrophysics Data System (ADS)

    Hoover, Anthony K.

    2003-04-01

    Berklee College of Music (in Boston) was developing its outstanding Music Technologies Division, and understood the need for a comprehensive class on acoustics. The result was a three-credit-hour class, offered twice per year, covering the fundamentals, architectural acoustics (outdoors, indoors, and transmission), vibration isolation, hearing and psychoacoustics, and more. One outgrowth was the Acoustical Society at Berklee, with presentations by local and visiting ASA members, yearly visits to an anechoic chamber, special studio sessions, tours, and joint meetings with professional societies. Over 2000 students have completed and performed well in the class. The author's favorite measure of success is the growing number of students who have chosen a career in acoustics. This paper will summarize and discuss this class.

  3. Finite Difference Simulations of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Applications to INSIGHT NASA Mission and Mars Microphone Experiments

    NASA Astrophysics Data System (ADS)

    Garcia, R.; Brissaud, Q.; Martin, R.; Rolland, L. M.; Komatitsch, D.

    2015-12-01

    A simulation tool of acoustic and gravity wave propagation through finite differences is applied to the case of Mars atmosphere.The details of the code and its validation for Earth atmosphere are presented in session SA003.The simulations include the modeling of both acoustic and gravity waves in the same run, an effects of exponential density decrease, winds and attenuation.The application to Mars requires the inclusion of a specific attenuation effect related to the relaxation induced by vibrational modes of carbon dioxide molecules.Two different applications are presented demonstrating the ability of the simulation tool to work at very different scale length and frequencies.First the propagation of acoustic and gravity waves due to a bolide explosion in the atmosphere of Mars are simulated.This case has a direct application to the atmospheric pressure and seismic measurements that will be performed by INSIGHT NASA discovery mission next year.Then, we also present simulations of sound wave propagation on a scale of meters that can be used to infer the feasability microphone measurements for future Mars missions.

  4. Enhanced vibration based energy harvesting using embedded acoustic black holes

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Semperlotti, F.; Conlon, S. C.

    2014-03-01

    In this paper, we investigate the use of dynamic structural tailoring via the concept of an Acoustic Black Hole (ABH) to enhance the performance of piezoelectric based energy harvesting from operational mechanical vibrations. The ABH is a variable thickness structural feature that can be embedded in the host structure allowing a smooth reduction of the phase velocity while minimizing the amplitude of reflected waves. The ABH thickness variation is typically designed according to power-law profiles. As a propagating wave enters the ABH, it is progressively slowed down while its wavelength is compressed. This effect results in structural areas with high energy density that can be exploited effectively for energy harvesting. The potential of ABH for energy harvesting is shown via a numerical study based on fully coupled finite element electromechanical models of an ABH tapered plate with surface mounted piezo-transducers. The performances of the novel design are evaluated by direct comparison with a non-tapered structure in terms of energy ratios and attenuation indices. Results show that the tailored structural design allows a drastic increase in the harvested energy both for steady state and transient excitation. Performance dependencies of key design parameters are also investigated.

  5. Review of Combustion-acoustic Instabilities

    NASA Technical Reports Server (NTRS)

    Oyediran, Ayo; Darling, Douglas; Radhakrishnan, Krishnan

    1995-01-01

    Combustion-acoustic instabilities occur when the acoustic energy increase due to the unsteady heat release of the flame is greater than the losses of acoustic energy from the system. The problem of combustion-acoustic instability is a concern in many devices for various reasons, as each device may have a unique mechanism causing unsteady heat release rates and many have unique boundary conditions. To accurately predict and quantify combustion-acoustic stabilities, the unsteady heat release rate and boundary conditions need to be accurately determined. The present review brings together work performed on a variety of practical combustion devices. Many theoretical and experimental investigations of the unsteady heat release rate have been performed, some based on perturbations in the fuel delivery system particularly for rocket instabilities, while others are based on hydrodynamic processes as in ramjet dump combustors. The boundary conditions for rocket engines have been analyzed and measured extensively. However, less work has been done to measure acoustic boundary conditions in many other combustion systems.

  6. Quiet Clean Short-haul Experimental Engine (QCSEE) Over-The-Wing (OTW) propulsion systems test report. Volume 4: Acoustic performance

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.

    1979-01-01

    A series of acoustic tests were conducted on the over the wing engine. These tests evaluated the fully suppressed noise levels in forward and reverse thrust operation and provided insight into the component noise sources of the engine plus the suppression achieved by various components. System noise levels using the contract specified calculation procedure indicate that the in-flight noise level on a 152 m sideline at takeoff and approach are 97.2 and 94.6 EPNdB, respectively, compared to a goal of 95.0 EPNdB. In reverse thrust, the system noise level was 106.1 PNdB compared to a goal of 100 PNdB. Baseline source noise levels agreed very well with pretest predictions. Inlet-radiated noise suppression of 14 PNdB was demonstrated with the high throat Mach number inlet at 0.79 throat Mach number.

  7. Evidence for a response preparation bottleneck during dual-task performance: effect of a startling acoustic stimulus on the psychological refractory period.

    PubMed

    Maslovat, Dana; Chua, Romeo; Spencer, Hunter C; Forgaard, Christopher J; Carlsen, Anthony N; Franks, Ian M

    2013-11-01

    The present study was designed to investigate the mechanism associated with dual-task interference in a psychological refractory period (PRP) paradigm. We used a simple reaction time paradigm consisting of a vocal response (R1) and key-lift task (R2) with a stimulus onset asynchrony (SOA) between 100ms and 1500ms. On selected trials we implemented a startling acoustic stimulus concurrent with the second stimulus to determine if we could involuntarily trigger the second response. Our results indicated that the PRP delay in the second response was present for both control and startle trials at short SOAs, suggesting the second response was not prepared in advance. These results support a response preparation bottleneck and can be explained via a neural activation model of preparation. In addition, we found that the reflexive startle activation was reduced in the dual-task condition for all SOAs, a result we attribute to prepulse inhibition associated with dual-task processing.

  8. Performance Assessment of Bi-Directional Knotless Tissue-Closure Device in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters, 2010 - Final Report

    SciTech Connect

    Woodley, Christa M.; Bryson, Amanda J.; Carpenter, Scott M.; Knox, Kasey M.; Gay, Marybeth E.; Wagner, Katie A.

    2012-09-10

    In 2010, researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) conducted a compliance monitoring study—the Lower Columbia River Acoustic Transmitter Investigations of Dam Passage Survival and Associated Metrics 2010 (Carlson et al. in preparation)—for the U.S. Army Corps of Engineers (USACE), Portland District. The purpose of the compliance study was to evaluate juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) passage routes and survival through the lower three Columbia River hydroelectric facilities as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp; NOAA Fisheries 2008) and the Columbia Basin Fish Accords (Fish Accords; 3 Treaty Tribes and Action Agencies 2008).

  9. Short-term supplementation with alpha-ketoglutaric acid and 5-hydroxymethylfurfural does not prevent the hypoxia induced decrease of exercise performance despite attenuation of oxidative stress.

    PubMed

    Gatterer, H; Greilberger, J; Philippe, M; Faulhaber, M; Djukic, R; Burtscher, M

    2013-01-01

    Reactive oxygen species are thought to partly be responsible for the hypoxia induced performance decrease. The present study evaluated the effects of a broad based antioxidant supplementation or the combined intake of alpha-ketoglutaric acid (α-KG) and 5-hydroxymethylfurfural (5-HMF) on the performance decrease at altitude. 18 healthy, well-trained males (age: 25±3 years; height: 179±6 cm; weight: 76.4±6.8 kg) were randomly assigned in a double-blind fashion to a placebo group (PL), a α-KG and 5-HMF supplementation group (AO1) or a broad based antioxidant supplementation group (AO2). Participants performed 2 incremental exercise tests to exhaustion on a cycle ergometer; the first test under normoxia and the second under hypoxia conditions (simulated altitude, FiO2=13% ~ 4 300 m). Supplementation started 48 h before the hypoxia test. Maximal oxygen uptake, maximal power output, power output at the ventilatory and lactate threshold and the tissue oxygenation index (NIRS) were measured under both conditions. Oxidative stress markers were measured before the supplementation and after the hypoxia test. Under hypoxia conditions all performance parameters decreased in the range of 19-39% with no differences between groups. A significant change from normoxia to hypoxia (p<0.001) and between groups (p=0.038) were found for the tissue oxygenation index. Post hoc test revealed significant differences between the PL and both, the AO1 and the AO2 group. The oxidative stress parameter carbonyl protein changed from normoxia to hypoxia in all participants and 4-hydroxynonenal decreased in the AO1 group only. In conclusion the results suggest that short-term supplementation with an antioxidant does not prevent the performance decrease at altitude. However, positive effects on muscle oxygen extraction, as indicated by the tissue oxygenation index, might indicate that mitochondrial functioning was actually influenced by the supplementation. PMID:22893323

  10. Low-Frequency Acoustic Signals Propagation in Buried Pipelines

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, A. L.; Lapshin, B. M.

    2016-01-01

    The article deals with the issues concerning acoustic signals propagation in the large-diameter oil pipelines caused by mechanical action on the pipe body. Various mechanisms of signals attenuation are discussed. It is shown that the calculation of the attenuation caused only by internal energy loss, i.e, the presence of viscosity, thermal conductivity and liquid pipeline wall friction lead to low results. The results of experimental studies, carried out using the existing pipeline with a diameter of 1200 mm. are shown. It is experimentally proved that the main mechanism of signal attenuation is the energy emission into the environment. The numerical values of attenuation coefficients that are 0,14- 0.18 dB/m for the pipeline of 1200 mm in diameter, in the frequency range from 50 Hz to 500 Hz, are determined.

  11. Acoustics Critical Readiness Review

    NASA Technical Reports Server (NTRS)

    Ballard, Kenny

    2010-01-01

    This presentation reviews the status of the acoustic equipment from the medical operations perspective. Included is information about the acoustic dosimeters, sound level meter, and headphones that are planned for use while on orbit. Finally there is information about on-orbit hearing assessments.

  12. Introduction to acoustic emission

    NASA Technical Reports Server (NTRS)

    Possa, G.

    1983-01-01

    Typical acoustic emission signal characteristics are described and techniques which localize the signal source by processing the acoustic delay data from multiple sensors are discussed. The instrumentation, which includes sensors, amplifiers, pulse counters, a minicomputer and output devices is examined. Applications are reviewed.

  13. Noise suppression by an acoustically treated three-ring inlet on a TF-34 engine

    NASA Technical Reports Server (NTRS)

    Minner, G. L.; Goldman, R. G.; Heidelberg, L. J.

    1976-01-01

    Acoustic performance tests were conducted with a three-ring inlet noise suppressor designed for a TF-34 engine. For all tests the aft noise sources were highly suppressed. The measured inlet suppression was large, reaching levels greater than 30 db at the peak. Comparisons of the data and the performance predictions were in reasonably good agreement. The frequency of peak attenuation was well predicted; the magnitude and spectral shape were reasonably well predicted. Agreement was best when the distribution of sound energy across the inlet was taken into account in the performance predictions. Tests in which the length of treatment was varied showed an orderly progression of attenuation with length; performance predictions for the different lengths also showed an orderly progression with length. At the highest speed of the engine, multiple pure tones were present throughout the spectrum in the source noise signature. These tones were effectively suppressed by the inlet liner, even at low frequencies, although the liner was designed to work best at the blade-passing frequency.

  14. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  15. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  16. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  17. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques.

  18. Cochlear bionic acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  19. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  20. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.