Science.gov

Sample records for acoustic backscatter intensity

  1. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California

    USGS Publications Warehouse

    Gartner, J.W.

    2004-01-01

    The estimation of mass concentration of suspended solids is one of the properties needed to understand the characteristics of sediment transport in bays and estuaries. However, useful measurements or estimates of this property are often problematic when employing the usual methods of determination from collected water samples or optical sensors. Analysis of water samples tends to undersample the highly variable character of suspended solids, and optical sensors often become useless from biological fouling in highly productive regions. Acoustic sensors, such as acoustic Doppler current profilers that are now routinely used to measure water velocity, have been shown to hold promise as a means of quantitatively estimating suspended solids from acoustic backscatter intensity, a parameter used in velocity measurement. To further evaluate application of this technique using commercially available instruments, profiles of suspended solids concentrations are estimated from acoustic backscatter intensity recorded by 1200- and 2400-kHz broadband acoustic Doppler current profilers located at two sites in San Francisco Bay, California. ADCP backscatter intensity is calibrated using optical backscatterance data from an instrument located at a depth close to the ADCP transducers. In addition to losses from spherical spreading and water absorption, calculations of acoustic transmission losses account for attenuation from suspended sediment and correction for nonspherical spreading in the near field of the acoustic transducer. Acoustic estimates of suspended solids consisting of cohesive and noncohesive sediments are found to agree within about 8-10% (of the total range of concentration) to those values estimated by a second optical backscatterance sensor located at a depth further from the ADCP transducers. The success of this approach using commercially available Doppler profilers provides promise that this technique might be appropriate and useful under certain conditions in

  2. Fundamentals of Acoustic Backscatter Imagery

    DTIC Science & Technology

    2011-09-20

    pressure, I,, of 1 /iPa, corresponds to 0.67 x 10- 8 Wim2. Assuming spherical spreading, the one meter distance reference frame, and the definition of dB (Eq...then be approximated by an infinite series Fundamentals ofAcoustic Backscatter Imagery 11 W(r) = Wm (r) + X Fjsc (r) j=O where "tic(r) is the incident...f( x ,y, Z)Iz=h(xy) = 0 f( x , y, z)I z=h( x ,y)= f( x , y, Z) I z o + h di+ h 2 d2f +zz z= The function ftx,y,z) can represent, for example, the stress

  3. Bathymetry and acoustic backscatter: Estero Bay, California

    USGS Publications Warehouse

    Hartwell, Stephen R.; Finlayson, David P.; Dartnell, Peter; Johnson, Samuel Y.

    2013-01-01

    Between July 30 and August 9, 2012, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from Estero Bay, San Luis Obispo, California, under PCMSC Field Activity ID S-05-12-SC. The survey was done using the R/V Parke Snavely outfitted with a multibeam sonar for swath mapping and highly accurate position and orientation equipment for georeferencing. This report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  4. Modeling and Measuring Acoustic Backscatter from Fish Aggregations

    DTIC Science & Technology

    1999-09-30

    of the abundance, spatial distribution, schooling behaviour and acoustic backscatter of the Namibian pilchard. Cruise Report 99-4, Dr. Fridtjof ... Nansen . 103 pp. Rudstam, L, Horne, J., Fleischer, G. Report from the Great Lakes Acoustic Workshop III: Translation of acoustic data to fish abundance

  5. Acoustic backscatter by suspended cohesive sediments: Field observations, Seine Estuary, France

    NASA Astrophysics Data System (ADS)

    Sahin, Cihan; Verney, Romaric; Sheremet, Alexandru; Voulgaris, George

    2017-02-01

    Observations of suspended sediment size and concentration, flow and acoustic backscatter intensity collected on the Seine Estuary (France) are used to study the acoustic response in cohesive-sediment dominated environments. Estimates of suspended sediment concentration based on optical backscatter sensors and water samples are used to calibrate the acoustic backscatter intensity. The vertical structure of suspended sediment concentration is then estimated from acoustic backscatter information. To our knowledge, this is the first field application of the recently proposed model of acoustic scattering by flocculating suspensions based on the variation of particle density (floc-scattering model). The estimates of sediment concentration reproduce well the observations under different tidal (neap/spring) conditions, confirming the applicability of the new model in the field when detailed particle size measurements are available. When particle size measurements are not available, using estimated floc sizes based on the turbulence intensities may provide reasonable SSC profiles. During spring tide events (associated with strong currents, small flocs and large concentrations), the performances of the new floc-scattering model and the previous models given for solid particle-scattering are comparable. The floc-scattering model increases the quality of the SSC estimates especially during low-energy conditions characterized with larger flocs.

  6. Acoustic Coherent Backscatter Enhancement from Aggregations of Point Scatterers

    DTIC Science & Technology

    2014-09-30

    acoustic multiple scattering from two- and now three-dimensional aggregations of omni-directional point scatterers to determine the parametric realms in...given by the sum in (1), N is the number of scatterers , gn is the scattering coefficient of the nth scatterer , ψn(rn) is the field incident on the nth...SUBTITLE Acoustic Coherent Backscatter Enhancement from Aggregations of Point Scatterers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  7. Floc Growth and Changes in ADV Acoustic Backscatter Signal

    NASA Astrophysics Data System (ADS)

    Rouhnia, M.; Keyvani, A.; Strom, K.

    2013-12-01

    A series of experiments were conducted to examine the effect of mud floc growth on the acoustic back-scatter signal recorded by a Nortek Vector acoustic Doppler velocimeter (ADV). Several studies have shown that calibration equations can be developed to link the backscatter strength with average suspended sediment concentration (SSC) when the sediment particle size distribution remains constant. However, when mud is present, the process of flocculation can alter the suspended particle size distribution. Past studies have shown that it is still unclear as to the degree of dependence of the calibration equation on changes in floc size. Part of the ambiguity lies in the fact that flocs can be porous and rather loosely packed and therefore might not scatter to the same extent as a grain of sand. In addition, direct, detailed measurements of floc size have not accompanied experiments examining the dependence of ADV backscatter and suspended sediment concentration. In this research, a set of laboratory experiments is used to test how floc growth affects the backscatter strength. The laboratory data is examined in light of an analytic model that was developed based on scatter theory to account for changes in both SSC and the floc properties of size and density. For the experiments, a turbulent suspension was created in a tank with a rotating paddle. Fixed concentrations of a mixture of kaolinite and montmorillonite were added to the tank in a step-wise manner. For each step, the flocs were allowed to grow to their equilibrium size before breaking the flocs with high turbulent mixing, adding more sediment, and then returning the mixing rate to a range suitable for the re-growth of flocs. During each floc growth phase, data was simultaneously collected at the same elevation in the tank using a floc camera to capture the changes in floc size, a Nortek Vector ADV for the acoustic backscatter, and a Campbell Scientific OBS 3+ for optical backscatter. Physical samples of the

  8. Acoustic Coherent Backscatter Enhancement from Aggregations of Point Scatterers

    DTIC Science & Technology

    2013-09-30

    Figure 2 for a cubical aggregation with a five- wavelength edge, 256 to 1024 Monte - Carlo trials, = 3.5, and four different average scatterer spacings...ensemble average over Monte - Carlo trials. The central peak at ϕ = 0 for k0s = 3.2 and 2.5 is produced by coherent backscattering enhancement...were placed in a cubical aggregation with 5 wavelength edges. The ensemble average was computed from 256 to 1024 Monte - Carlo trials. The acoustic

  9. Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter

    SciTech Connect

    Strozzi, D J; Williams, E A; Langdon, A B; Bers, A

    2006-09-01

    1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73, 025401 (2006)]. For the first time, a low phase velocity electron acoustic wave (EAW) is seen developing from the self-consistent Raman physics. Backscatter of the pump laser off the EAW fluctuations is reported and referred to as electron acoustic Thomson scatter. This light is similar in wavelength to, although much lower in amplitude than, the reflected light between the pump and SRBS wavelengths observed in single hot spot experiments, and previously interpreted as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev. Lett. 87, 155001 (2001)]. The EAW observed in our simulations is strongest well below the phase-matched frequency for electron acoustic scatter, and therefore the EAW is not produced by it. The beating of different beam acoustic modes is proposed as the EAW excitation mechanism, and is called beam acoustic decay. Supporting evidence for this process, including bispectral analysis, is presented. The linear electrostatic modes, found by projecting the numerical distribution function onto a Gauss-Hermite basis, include beam acoustic modes (some of which are unstable even without parametric coupling to light waves) and a strongly-damped EAW similar to the observed one. This linear EAW results from non-Maxwellian features in the electron distribution, rather than nonlinearity due to electron trapping.

  10. Bathymetry and Acoustic Backscatter: Northern Santa Barbara Channel, Southern California

    USGS Publications Warehouse

    Dartnell, Pete; Finlayson, David; Conrad, Jamie; Cochrane, Guy; Johnson, Samuel

    2010-01-01

    In the summer of 2008, as part of the California Seafloor Mapping Program (CSMP) the U.S. Geological Survey, Coastal and Marine Geology mapped a nearshore region of the northern Santa Barbara Channel in Southern California (fig 1). The CSMP is a cooperative partnership between Federal and State agencies, Universities, and Industry to create a comprehensive coastal/marine geologic and habitat basemap series to support the Marine Life Protection Act (MLPA) inititive. The program is supported by the California Ocean Protection Council and the California Coastal Conservancy. The 2008 mapping collected high resolution bathymetry and acoustic backscatter data using a bathymetric side scan system within State waters from about the 10-m isobath out over 3-nautical miles. This Open-File Report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and FGDC metadata.

  11. Acoustic backscatter of the 1995 flood deposit on the Eel shelf

    USGS Publications Warehouse

    Borgeld, J.C.; Hughes-Clarke, John E.; Goff, John A.; Mayer, Larry A.; Curtis, Jennifer A.

    1999-01-01

    Acoustic swath mapping and sediment box coring conducted on the continental shelf near the mouth of the Eel River revealed regional variations in acoustic backscatter that can be related to the shelf sedimentology. The acoustic-backscatter variations observed on the shelf were unusually narrow compared to the response of similar sediment types documented in other areas. However, the acoustic data revealed four principal bottom types on the shelf that can be related to sedimentologic differences observed in cores. The four areas are: (1) low acoustic backscatter associated with the nearshore-sand facies and the prodelta terraces of the Eel and Mad rivers, composed of fine sands and coarse silts with low porosity; (2) high acoustic backscatter associated with fine silts characterized by high porosity and deposited by the 1995 flood of the Eel River; (3) intermediate acoustic backscatter in the outer-shelf muds, where clayey silts are accumulating and the 1995 flood apparently had limited direct effect; and (4) intermediate acoustic backscatter near the fringes of the 1995 flood deposits and in areas where the flood sediments were more disrupted by post-depositional processes. The highest acoustic backscatter was identified in areas where the 1995 flood sediments remained relatively intact and near the shelf surface into the summer of 1995. Cores collected from these areas contained wavy or lenticular bedding. The rapid deposition of the high-porosity muddy layers results in better preservation of incorporated ripple forms than in areas less directly impacted by the flood deposit. The high-porosity muddy layers allow acoustic penetration into the sediments and result in greater acoustic backscatter from incorporated roughness elements.

  12. Estimating sub-surface dispersed oil concentration using acoustic backscatter response.

    PubMed

    Fuller, Christopher B; Bonner, James S; Islam, Mohammad S; Page, Cheryl; Ojo, Temitope; Kirkey, William

    2013-05-15

    The recent Deepwater Horizon disaster resulted in a dispersed oil plume at an approximate depth of 1000 m. Several methods were used to characterize this plume with respect to concentration and spatial extent including surface supported sampling and autonomous underwater vehicles with in situ instrument payloads. Additionally, echo sounders were used to track the plume location, demonstrating the potential for remote detection using acoustic backscatter (ABS). This study evaluated use of an Acoustic Doppler Current Profiler (ADCP) to quantitatively detect oil-droplet suspensions from the ABS response in a controlled laboratory setting. Results from this study showed log-linear ABS responses to oil-droplet volume concentration. However, the inability to reproduce ABS response factors suggests the difficultly in developing meaningful calibration factors for quantitative field analysis. Evaluation of theoretical ABS intensity derived from the particle size distribution provided insight regarding method sensitivity in the presence of interfering ambient particles.

  13. Volumetric Acoustic Vector Intensity Probe

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2006-01-01

    A new measurement tool capable of imaging the acoustic intensity vector throughout a large volume is discussed. This tool consists of an array of fifty microphones that form a spherical surface of radius 0.2m. A simultaneous measurement of the pressure field across all the microphones provides time-domain near-field holograms. Near-field acoustical holography is used to convert the measured pressure into a volumetric vector intensity field as a function of frequency on a grid of points ranging from the center of the spherical surface to a radius of 0.4m. The volumetric intensity is displayed on three-dimensional plots that are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. The sphere is mobile and can be moved from location to location to hunt for unidentified noise sources. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate low-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decomposition. The frequency range of operation is 0 to 1400Hz. This device is ideal for the study of noise sources in commercial and military transportation vehicles in air, on land and underwater.

  14. The use of multibeam backscatter intensity data as a tool for mapping glacial deposits in the Central North Sea, UK

    NASA Astrophysics Data System (ADS)

    Stewart, Heather; Bradwell, Tom

    2014-05-01

    Multibeam backscatter intensity data acquired offshore eastern Scotland and north-eastern England have been used to map drumlin fields, large arcuate moraine ridges, smaller scale moraine ridges, and incised channels on the sea floor. The study area includes the catchments of the previously proposed, but only partly mapped, Strathmore, Forth-Tay, and Tweed palaeo-ice streams. The ice sheet glacial landsystem is extremely well preserved on the sea bed and comprehensive mapping of the seafloor geomorphology has been undertaken. The authors demonstrate the value in utilising not only digital terrain models (both NEXTMap and multibeam bathymetry derived) in undertaking geomorphological mapping, but also examining the backscatter intensity data that is often overlooked. Backscatter intensity maps were generated using FM Geocoder by the British Geological Survey. FM Geocoder corrects the backscatter intensities registered by the multibeam echosounder system, and then geometrically corrects and positions each acoustic sample in a backscatter mosaic. The backscatter intensity data were gridded at the best resolution per dataset (between 2 and 5 m). The strength of the backscattering is dependent upon sediment type, grain size, survey conditions, sea-bed roughness, compaction and slope. A combination of manual interpretation and semi-automated classification of the backscatter intensity data (a predictive method for mapping variations in surficial sea-bed sediments) has been undertaken in the study area. The combination of the two methodologies has produced a robust glacial geomorphological map for the study area. Four separate drumlin fields have been mapped in the study area indicative of fast-flowing and persistent ice-sheet flow configurations. A number of individual drumlins are also identified located outside the fields. The drumlins show as areas of high backscatter intensity compared to the surrounding sea bed, indicating the drumlins comprise mixed sediments of

  15. Diel vertical migration of zooplankton at the S1 biogeochemical mooring revealed from acoustic backscattering strength

    NASA Astrophysics Data System (ADS)

    Inoue, Ryuichiro; Kitamura, Minoru; Fujiki, Tetsuichi

    2016-02-01

    We examined the diel vertical migration of zooplankton by using the backscatter strength obtained from moored acoustic Doppler current profilers at mooring site S1 in the North Pacific subtropical gyre. There was seasonal variability in the vertical distribution and migration of the high-backscatter layers in that they became deeper than the euphotic zone (<100 m) in winter and were confined above this depth in other seasons. Seasonal changes in daylight hours also affected the timing of the diel migration. We found that lunar cycles affected vertical distributions of zooplankton near the surface by changing the light intensity. Physical events, such as mixed-layer deepening and restratification and the passage of a mesoscale eddy, also affected zooplankton behavior possibly by changing food environment in the euphotic zone. Since the comparison with net samples indicated that the backscatter likely represents the bulk biomass, the accuracy of biomass estimates based on net samples could be influenced by the high temporal variability of zooplankton distributions.

  16. Time-dependent seafloor acoustic backscatter (10-100 kHz).

    PubMed

    Sternlicht, Daniel D; de Moustier, Christian P

    2003-11-01

    A time-dependent model of the acoustic intensity backscattered by the seafloor is described and compared with data from a calibrated, vertically oriented, echo-sounder operating at 33 and 93 kHz. The model incorporates the characteristics of the echo-sounder and transmitted pulse, and the water column spreading and absorption losses. Scattering from the water-sediment interface is predicted using Helmholtz-Kirchhoff theory, parametrized by the mean grain size, the coherent reflection coefficient, and the strength and exponent of a power-law roughness spectrum. The composite roughness approach of Jackson et al. [J. Acoust. Soc. Am. 79, 1410-1422 (1986)], modified for the finite duration of the transmitted signal, is used to predict backscatter from subbottom inhomogeneities. It depends on the sediment's volume scattering and attenuation coefficients, as well as the interface characteristics governing sound transmission into the sediment. Estimation of model parameters (mean grain size, roughness spectrum strength and exponent, volume scattering coefficient) reveals ambiguous ranges for the two spectral components. Analyses of model outputs and of physical measurements reported in the literature yield practical constraints on roughness spectrum parameter settings appropriate for echo-envelope-based sediment classification procedures.

  17. Fluvial suspended sediment characteristics by high-resolution, surrogate metrics of turbidity, laser-diffraction, acoustic backscatter, and acoustic attenuation

    NASA Astrophysics Data System (ADS)

    Landers, Mark Newton

    Sedimentation is a primary and growing environmental, engineering, and agricultural issue around the world. However, collection of the data needed to develop solutions to sedimentation issues has declined by about three-fourths since 1983. Suspended-sediment surrogates have the potential to obtain sediment data using methods that are more accurate, of higher spatial and temporal resolution, and with less manually intensive, costly, and hazardous methods. The improved quality of sediment data from high-resolution surrogates may inform improved understanding and solutions to sedimentation problems. The field experiments for this research include physical samples of suspended sediment collected concurrently with surrogate metrics from instruments including 1.2, 1.5, and 3.0 megahertz frequency acoustic doppler current profilers, a nephelometric turbidity sensor, and a laser-diffraction particle size analyzer. This comprehensive data set was collected over five storms in 2009 and 2010 at Yellow River near Atlanta, Georgia. Fluvial suspended sediment characteristics in this study can be determined by high-resolution surrogate parameters of turbidity, laser-diffraction and acoustics with model errors 33% to 49% lower than traditional methods using streamflow alone. Hysteresis in sediment-turbidity relations for single storm events was observed and quantitatively related to PSD changes of less than 10 microns in the fine silt to clay size range. Suspended sediment particle size detection (PSD) is significantly correlated with ratios of measured acoustic attenuation at different frequencies; however the data do not fit the theoretical relations. Using both relative acoustic backscatter (RB) and acoustic attenuation as explanatory variables results in a significantly improved model of suspended sediment compared with traditional sonar equations using only RB. High resolution PSD data from laser diffraction provide uniquely valuable information; however the size detection

  18. Hydrodynamic influences on acoustical and optical backscatter in a fringing reef environment

    NASA Astrophysics Data System (ADS)

    Pawlak, Geno; Moline, Mark A.; Terrill, Eric J.; Colin, Patrick L.

    2017-01-01

    Observations of hydrodynamics along with optical and acoustical water characteristics in a tropical fringing reef environment reveal a distinct signature associated with flow characteristics and tidal conditions. Flow conditions are dominated by tidal forcing with an offshore component from the reef flat during ebb. Measurements span variable wave conditions enabling identification of wave effects on optical and acoustical water properties. High-frequency acoustic backscatter (6 MHz) is strongly correlated with tidal forcing increasing with offshore directed flow and modulated by wave height, indicating dominant hydrodynamic influence. Backscatter at 300 and 1200 kHz is predominantly diurnal suggesting a biological component. Optical backscatter is closely correlated with high-frequency acoustic backscatter across the range of study conditions. Acoustic backscatter frequency dependence is used along with changes in optical properties to interpret particle-size variations. Changes across wave heights suggest shifts in particle-size distributions with increases in relative concentrations of smaller particles for larger wave conditions. Establishing a connection between the physical processes of a fringing tropical reef and the resulting acoustical and optical signals allows for interpretation and forecasting of the remote sensing response of these phenomena over larger scales.

  19. Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice-covered Northeast Greenland fjord

    NASA Astrophysics Data System (ADS)

    Petrusevich, Vladislav; Dmitrenko, Igor; Kirillov, Sergey; Rysgaard, Søren; Falk-Petersen, Stig; Barber, David; Ehn, Jens

    2016-04-01

    Six and a half month time series of acoustic backscatter and velocity from three ice-tethered Acoustic Doppler Current Profilers deployed in the Young Sound fjord in Northeast Greenland were used to analyse the acoustic signal. During period of civil polar night below the land-fast ice, the acoustic data suggest a systematic diel vertical migration (DVM) of backscatters likely comprised of zooplankton. The acoustic backscatter and vertical velocity data were also arranged in a form of actograms. Results show that the acoustic signal pattern typical to DVM in Young Sound persists throughout the entire winter including the period of civil polar night. However, polynya-enhanced estuarine-like cell circulation that occurred during winter disrupted the DVM signal favouring zooplankton to occupy the near-surface water layer. This suggests that zooplankton avoided spending additional energy crossing the interface with a relatively strong velocity gradient comprised by fjord inflow in the intermediate layer and outflow in the subsurface layer. Instead the zooplankton tended to favour remaining in the upper 40 m layer where also the relatively warmer water temperatures associated with upward heat flux during enhanced estuarine-like circulation could be energetically favourable. Furthermore, our data show moonlight disruption of DVM in the subsurface layer and weaker intensity of vertical migration beneath snow covered land-fast ice during polar night. Using existing models for lunar illuminance and light transmission through sea ice and snow cover we estimated under ice illuminance and compared it with known light sensitivity for Arctic zooplankton species.

  20. Bathymetry and acoustic backscatter: Elwha River Delta, Washington

    USGS Publications Warehouse

    Finlayson, David P.; Miller, Ian M.; Warrick, Jonathan A.

    2011-01-01

    The surveys were conducted using the R/V Parke Snavely outfitted with an interferometric sidescan sonar for swath mapping and real-time kinematic navigation equipment for accurate shallow water operations. This report provides these data in a number of different formats, as well as a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  1. Characterising nuclear simulant suspensions in situ with an acoustic backscatter system

    SciTech Connect

    Bux, Jaiyana; Hunter, Timothy N.; Paul, Neepa; Biggs, Simon R.; Dodds, Jonathan M.; Peakall, Jeffrey

    2013-07-01

    In situ characterisation of radio-toxic sludges and slurries is critical to numerous operations including those involving their transport and retrieval. An inexpensive, flexible acoustic backscatter system has been employed for the first time here to a 4/10. scale active storage tank comprising of a nuclear simulant suspension, to verify its application. Intricate suspension characteristics and tank operation features emerged. (authors)

  2. Investigations into Ebb Tidal Fronts Using in Situ Acoustic Backscatter and Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Sun, D.; Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Graber, H. C.; Hargrove, J.; Williams, N. J.

    2014-12-01

    The Office of Naval Research sponsored the Riverine and Estuarine Transport (RIVET) experiment during May 2012 at New River Inlet, North Carolina, in an effort to better understand the complex wave-current-wind interactions typical of tidal inlets. Over the course of a month, this highly sheared zone was intensely sampled with an array of Eulerian and Lagrangian instruments, in part, as a means of creating a synoptic, three-dimensional data set for validating various satellite remote sensing platforms. A component of this project was to deploy the Surface Physics Experimental Catamaran (SPEC), which is a mobile vessel designed specifically for collecting detailed meteorological and oceanographic data in coastal waters. Among its suite of instruments, SPEC was outfitted with a pair of acoustic doppler velocimeters (ADV), an acoustic doppler current profiler (ADCP), and an optical backscatter sensor (OBS). This instrument package allowed for high resolution mapping of the acoustic signature of the ebb tidal plume and the sub-surface, two-dimensional flow field. On May 8th, at 18:40 UTC, a panchromatic satellite image with a 0.6 m resolution, covering 122 km2, was taken of the New River Inlet Estuary and the inner shelf waters just off-shore. Numerous interesting features are visible in the image, such as the river outflow plume, surface streaks and slicks, a complex wave-field, and a remnant frontal edge from the past ebb tide. Interpretation of the surface features in these types of optical images remains a significant challenge and we have used data collected by SPEC immediately after the image acquisition to help illuminate the processes underlying these signatures.

  3. Anisotropy in high-frequency broadband acoustic backscattering in the presence of turbulent microstructure and zooplankton.

    PubMed

    Leong, Doris; Ross, Tetjana; Lavery, Andone

    2012-08-01

    High-frequency broadband (120-600 kHz) acoustic backscattering measurements have been made in the vicinity of energetic internal waves. The transducers on the backscattering system could be adjusted so as to insonify the water-column either vertically or horizontally. The broadband capabilities of the system allowed spectral classification of the backscattering. The distribution of spectral shapes is significantly different for scattering measurements made with the transducers oriented horizontally versus vertically, indicating that scattering anisotropy is present. However, the scattering anisotropy could not be unequivocally explained by either turbulent microstructure or zooplankton, the two primary sources of scattering expected in internal waves. Daytime net samples indicate a predominance of short-aspect-ratio zooplankton. Using zooplankton acoustic scattering models, a preferential orientation of the observed zooplankton cannot explain the measured anisotropy. Yet model predictions of scattering from anisotropic turbulent microstructure, with inputs from coincident microstructure measurements, were not consistent with the observations. Possible explanations include bandwidth limitations that result in many spectra that cannot be unambiguously attributed to turbulence or zooplankton based on spectral shape. Extending the acoustic bandwidth to cover the range from 50 kHz to 2 MHz could help improve identification of the dominant sources of backscattering anisotropy.

  4. Acoustic Coherent Backscatter Enhancement from Aggregations of Point Scatterers

    DTIC Science & Technology

    2015-09-30

    an aggregation of omnidirectional point scatterers [1]. If ψ(r) is the harmonic acoustic pressure field at frequency ω at the point r and ψ0(r) is...the harmonic field incident on the aggregation of scatterers located at rn, then , (1) where ψ(r) is the

  5. Bathymetry and acoustic backscatter-outer mainland shelf, eastern Santa Barbara Channel, California

    USGS Publications Warehouse

    Dartnell, Peter; Finlayson, David P.; Ritchie, Andrew C.; Cochrane, Guy R.; Erdey, Mercedes D.

    2012-01-01

    In 2010 and 2011, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from the outer shelf region of the eastern Santa Barbara Channel, California. These surveys were conducted in cooperation with the Bureau of Ocean Energy Management (BOEM). BOEM is interested in maps of hard-bottom substrates, particularly natural outcrops that support reef communities in areas near oil and gas extraction activity. The surveys were conducted using the USGS R/V Parke Snavely, outfitted with an interferometric sidescan sonar for swath mapping and real-time kinematic navigation equipment. This report provides the bathymetry and backscatter data acquired during these surveys in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  6. Bathymetry and acoustic backscatter: outer mainland shelf and slope, Gulf of Santa Catalina, southern California

    USGS Publications Warehouse

    Dartnell, Peter; Conrad, James E.; Ryan, Holly F.; Finlayson, David P.

    2014-01-01

    In 2010 and 2011, scientists from the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, acquired bathymetry and acoustic-backscatter data from the outer shelf and slope region offshore of southern California. The surveys were conducted as part of the USGS Marine Geohazards Program. Assessment of the hazards posed by offshore faults, submarine landslides, and tsunamis are facilitated by accurate and detailed bathymetric data. The surveys were conducted using the USGS R/V Parke Snavely outfitted with a 100-kHz Reson 7111 multibeam-echosounder system. This report provides the bathymetry and backscatter data acquired during these surveys in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.

  7. Field Demonstration of a Broadband Acoustical Backscattering System Mounted on a REMUS-100 for Inferences of Zooplankton Size and Abundance

    DTIC Science & Technology

    2012-09-30

    Backscattering System Mounted on a REMUS-100 for Inferences of Zooplankton Size and Abundance Andone C. Lavery Department of Applied Ocean Physics and...SUBTITLE Field Demonstration of a Broadband Acoustical Backscattering System Mounted on a REMUS-100 for Inferences of Zooplankton Size and Abundance 5a...of this REMUS- mounted broadband backscattering system with regards to inferring fish and zooplankton distribution, size and abundance in comparison

  8. Bathymetry, acoustic backscatter, and seafloor character of Farallon Escarpment and Rittenburg Bank, northern California

    USGS Publications Warehouse

    Dartnell, Peter; Cochrane, Guy R.; Finlayson, David P.

    2014-01-01

    In 2011, scientists from the U.S. Geological Survey’s Coastal and Marine Geology Program acquired bathymetry and acoustic-backscatter data along the upper slope of the Farallon Escarpment and Rittenburg Bank within the Gulf of the Farallones National Marine Sanctuary offshore of the San Francisco Bay area. The surveys were funded by the National Oceanic and Atmospheric Administration’s Deep Sea Coral Research and Technology Program to identify potential deep sea coral habitat prior to planned sampling efforts. Bathymetry and acoustic-backscatter data can be used to map seafloor geology (rock, sand, mud), and slope of the sea floor, both of which are useful for the prediction of deep sea coral habitat. The data also can be used for the prediction of sediment and contaminant budgets and transport, and for the assessment of earthquake and tsunami hazards. The surveys were conducted aboard National Oceanic and Atmospheric Administration’s National Marine Sanctuary Program’s 67-foot-long research vessel Fulmar outfitted with a U.S. Geological Survey 100-kHz Reson 7111 multibeam-echosounder system. This report provides the bathymetry and backscatter data acquired during these surveys, interpretive seafloor character maps in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee metadata.

  9. Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice-covered Northeast Greenland fjord

    NASA Astrophysics Data System (ADS)

    Petrusevich, Vladislav; Dmitrenko, Igor A.; Kirillov, Sergey A.; Rysgaard, Søren; Falk-Petersen, Stig; Barber, David G.; Boone, Wieter; Ehn, Jens K.

    2016-07-01

    Six and a half month records from three ice-tethered Acoustic Doppler Current Profilers deployed in October 2013 in Young Sound fjord in Northeast Greenland are used to analyze the acoustic backscatter signal. The acoustic data suggest a systematic diel vertical migration (DVM) of scatters below the land-fast ice during polar night. The scatters were likely composed of zooplankton. The acoustic signal pattern typical to DVM persisted in Young Sound throughout the entire winter including the period of civil polar night. However, polynya-enhanced estuarine-like cell circulation that occurred during winter disrupted the DVM signal favoring zooplankton to occupy the near-surface water layer. This suggests that zooplankton avoided spending additional energy crossing the interface with a relatively strong velocity gradient comprised by fjord inflow in the intermediate layer and outflow in the subsurface layer. Instead, the zooplankton tended to remain in the upper 40 m layer where relatively warmer water temperatures associated with upward heat flux during enhanced estuarine-like circulation could be energetically favorable. Furthermore, our data show moonlight disruption of DVM in the subsurface layer and weaker intensity of vertical migration beneath snow covered land-fast ice during polar night. Finally, by using existing models for lunar illuminance and light transmission through sea ice and snow cover, we estimated under ice illuminance and compared it with known light sensitivity of Arctic zooplankton species.

  10. The effect of artificial rain on backscattered acoustic signal: first measurements

    NASA Astrophysics Data System (ADS)

    Titchenko, Yuriy; Karaev, Vladimir; Meshkov, Evgeny; Goldblat, Vladimir

    The problem of rain influencing on a characteristics of backscattered ultrasonic and microwave signal by water surface is considered. The rain influence on backscattering process of electromagnetic waves was investigated in laboratory and field experiments, for example [1-3]. Raindrops have a significant impact on backscattering of microwave and influence on wave spectrum measurement accuracy by string wave gauge. This occurs due to presence of raindrops in atmosphere and modification of the water surface. For measurements of water surface characteristics during precipitation we propose to use an acoustic system. This allows us obtaining of the water surface parameters independently on precipitation in atmosphere. The measurements of significant wave height of water surface using underwater acoustical systems are well known [4, 5]. Moreover, the variance of orbital velocity can be measure using these systems. However, these methods cannot be used for measurements of slope variance and the other second statistical moments of water surface that required for analyzing the radar backscatter signal. An original design Doppler underwater acoustic wave gauge allows directly measuring the surface roughness characteristics that affect on electromagnetic waves backscattering of the same wavelength [6]. Acoustic wave gauge is Doppler ultrasonic sonar which is fixed near the bottom on the floating disk. Measurements are carried out at vertically orientation of sonar antennas towards water surface. The first experiments were conducted with the first model of an acoustic wave gauge. The acoustic wave gauge (8 mm wavelength) is equipped with a transceiving antenna with a wide symmetrical antenna pattern. The gauge allows us to measure Doppler spectrum and cross section of backscattered signal. Variance of orbital velocity vertical component can be retrieved from Doppler spectrum with high accuracy. The result of laboratory and field experiments during artificial rain is presented

  11. Colored shaded-relief bathymetry, acoustic backscatter, and selected perspective views of the Inner Continental Borderland, southern California

    USGS Publications Warehouse

    Dartnell, Peter; Driscoll, Neal W.; Brothers, Daniel S.; Conrad, James E.; Kluesner, Jared; Kent, Graham; Andrews, Brian D.

    2015-01-01

    In late 2013, Scripps Institution of Oceanography collected multibeam bathymetry and acoustic-backscatter data of the Inner Continental Borderland Region, Southern California. The U.S. Geological Survey Pacific Coastal and Marine Science Center processed these data, and this report provides the data in a number of different formats in addition to a set of map sheets. The data catalog provides the new bathymetry and acoustic-backscatter data, collected mainly in the Gulf of Santa Catalina and San Diego Trough, as well as this new bathymetry data merged with other publically available bathymetry data from the region. Sheet 1 displays a colored shaded-relief bathymetry map of the Inner Continental Borderland generated from the merged bathymetry data. Sheet 2 displays the new acoustic-backscatter data along with other available backscatter data in the region. Sheet 3 displays selected perspective views of the bathymetry data highlighting submarine canyon and channel systems, knolls, and tectonic features.

  12. Seasonal dynamics of zooplankton in the southern Chukchi Sea revealed from acoustic backscattering strength

    NASA Astrophysics Data System (ADS)

    Kitamura, Minoru; Amakasu, Kazuo; Kikuchi, Takashi; Nishino, Shigeto

    2017-02-01

    To understand the seasonal dynamics of zooplankton in the southern Chukchi Sea, we use observations from a moored multi-frequency echo-sounder from July 2012 to July 2014. Zooplankton biomass, as indicated by area backscattering strength, was high during autumn and low in early spring; the seasonal peak in zooplankton biomass did not coincide with the spring phytoplankton bloom. This suggests that the seasonal zooplankton dynamics in the southern Chukchi Sea are less influenced by local growth of zooplankton during the spring phytoplankton bloom and more influenced by advection of zooplankton from the Bering Sea. The differences between volume backscattering strengths at 200 and 125 kHz suggest that the main acoustic scatterers are large zooplankton (euphausiids and Neocalanus cristatus) in late summer and autumn and small zooplankton (other copepods) in other seasons. The decrease in acoustic backscatter from large zooplankton from winter to early summer also suggests the unsuccessful overwintering of advected Pacific zooplankton. The temporal mismatch between zooplankton and phytoplankton production suggests that there is still tight pelagic-benthic coupling in the southern Chukchi Sea.

  13. Eigenfunction analysis of stochastic backscatter for characterization of acoustic aberration in medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varslot, Trond; Krogstad, Harald; Mo, Eirik; Angelsen, Bjørn A.

    2004-06-01

    Presented here is a characterization of aberration in medical ultrasound imaging. The characterization is optimal in the sense of maximizing the expected energy in a modified beamformer output of the received acoustic backscatter. Aberration correction based on this characterization takes the form of an aberration correction filter. The situation considered is frequently found in applications when imaging organs through a body wall: aberration is introduced in a layer close to the transducer, and acoustic backscatter from a scattering region behind the body wall is measured at the transducer surface. The scattering region consists of scatterers randomly distributed with very short correlation length compared to the acoustic wavelength of the transmit pulse. The scatterer distribution is therefore assumed to be δ correlated. This paper shows how maximizing the expected energy in a modified beamformer output signal naturally leads to eigenfunctions of a Fredholm integral operator, where the associated kernel function is a spatial correlation function of the received stochastic signal. Aberration characterization and aberration correction are presented for simulated data constructed to mimic aberration introduced by the abdominal wall. The results compare well with what is obtainable using data from a simulated point source.

  14. Calibration techniques and sampling resolution requirements for groundtruthing multibeam acoustic backscatter (EM3000) and QTC VIEW™ classification technology

    NASA Astrophysics Data System (ADS)

    Sutherland, T. F.; Galloway, J.; Loschiavo, R.; Levings, C. D.; Hare, R.

    2007-12-01

    Both acoustic and sediment surveys were carried out in the Broughton Archipelago, British Columbia, in order to map a former aquaculture site and calibrate acoustic surveys with georeferenced sediment properties. The acoustic surveys included EM3000 Multibeam (including backscatter) and QTC VIEW™ (Series IV) technologies, while the geotechnical survey entailed Van Veen grab sampling of surface sediments and associated analyses. The two acoustic technologies were consistent in their ability to identify distinct regions of seafloor characterized by rock outcrops, consolidated substrates, or gel-mud depositional fields. Both multibeam backscatter data and QTC VIEW™ number-coded classifications were extracted across a range of circular areas located at each georeferenced sampling station (radii: 2, 3, 4, 5, 8, 12, 16, 20 m). Statistical correlations were observed between backscatter and certain geotechnical properties, such as sediment porosity, sediment grain size fractions (<2 μm, silt content), and particulate sulfur concentration. The areal resolution of backscatter extraction was explored in terms of determining a sensitive calibration technique between backscatter and sediment properties. In general the highest r2 values between backscatter and sediment variables were observed across extraction radii between 8 and 20 m. Such groundtruthing techniques could be used to interpolate seafloor characteristics between sampling stations and provide a steering tool for sampling designs associated with benthic monitoring programs.

  15. Acoustic excitation of the circular Bragg{endash}Fresnel lens in backscattering geometry

    SciTech Connect

    Souvorov, A.; Snigireva, I.; Snigirev, A.; Aristova, E.; Hartman, Y.

    1997-02-01

    An increment of the x-ray flux in crystal Bragg{endash}Fresnel lens (BFL) focus in backscattering geometry obtained by means of acoustic excitation of the BFL crystal substrate has been investigated. The dependence of the x ray{close_quote}s total reflected power versus ultrasound parameters has been studied in a low frequency range (10{endash}50 MHz). The proposed technique allows an increase in the flux in a BFL focus by a factor of 2 which almost achieves the kinematic limit. {copyright} {ital 1997 American Institute of Physics.}

  16. Experimental investigation of geodesic acoustic modes on JET using Doppler backscattering

    NASA Astrophysics Data System (ADS)

    Silva, C.; Hillesheim, J. C.; Hidalgo, C.; Belonohy, E.; Delabie, E.; Gil, L.; Maggi, C. F.; Meneses, L.; Solano, E.; Tsalas, M.; Contributors, JET

    2016-10-01

    Geodesic acoustic modes (GAMs) have been investigated in JET ohmic discharges using mainly Doppler backscattering. Characteristics and scaling properties of the GAM are studied. Time and spatial resolved measurements of the perpendicular velocity indicate that GAMs are located in a narrow layer at the edge density gradient region with amplitude corresponding to about 50% of the mean local perpendicular velocity. GAMs on JET appear to be regulated by the turbulence drive rather than by their damping rate. It is also shown that the GAM amplitude is ~20% larger in deuterium than in hydrogen plasmas.

  17. 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction

    NASA Astrophysics Data System (ADS)

    Zhu, Xi; Wang, Tiejun; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Niemann, K. Olaf

    2015-12-01

    Leaf water content (LWC) plays an important role in agriculture and forestry management. It can be used to assess drought conditions and wildfire susceptibility. Terrestrial laser scanner (TLS) data have been widely used in forested environments for retrieving geometrically-based biophysical parameters. Recent studies have also shown the potential of using radiometric information (backscatter intensity) for estimating LWC. However, the usefulness of backscatter intensity data has been limited by leaf surface characteristics, and incidence angle effects. To explore the idea of using LiDAR intensity data to assess LWC we normalized (for both angular effects and leaf surface properties) shortwave infrared TLS data (1550 nm). A reflectance model describing both diffuse and specular reflectance was applied to remove strong specular backscatter intensity at a perpendicular angle. Leaves with different surface properties were collected from eight broadleaf plant species for modeling the relationship between LWC and backscatter intensity. Reference reflectors (Spectralon from Labsphere, Inc.) were used to build a look-up table to compensate for incidence angle effects. Results showed that before removing the specular influences, there was no significant correlation (R2 = 0.01, P > 0.05) between the backscatter intensity at a perpendicular angle and LWC. After the removal of the specular influences, a significant correlation emerged (R2 = 0.74, P < 0.05). The agreement between measured and TLS-derived LWC demonstrated a significant reduction of RMSE (root mean square error, from 0.008 to 0.003 g/cm2) after correcting for the incidence angle effect. We show that it is possible to use TLS to estimate LWC for selected broadleaved plants with an R2 of 0.76 (significance level α = 0.05) at leaf level. Further investigations of leaf surface and internal structure will likely result in improvements of 3D LWC mapping for studying physiology and ecology in vegetation.

  18. Plating Processes Utilizing High Intensity Acoustic Beams

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor); Denofrio, Charles (Inventor)

    2002-01-01

    A system and a method for selective plating processes are disclosed which use directed beams of high intensity acoustic waves to create non-linear effects that alter and improve the plating process. The directed beams are focused on the surface of an object, which in one embodiment is immersed in a plating solution, and in another embodiment is suspended above a plating solution. The plating processes provide precise control of the thickness of the layers of the plating, while at the same time, in at least some incidents, eliminates the need for masking.

  19. Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research.

    PubMed

    Jech, J Michael; Horne, John K; Chu, Dezhang; Demer, David A; Francis, David T I; Gorska, Natalia; Jones, Benjamin; Lavery, Andone C; Stanton, Timothy K; Macaulay, Gavin J; Reeder, D Benjamin; Sawada, Kouichi

    2015-12-01

    Analytical and numerical scattering models with accompanying digital representations are used increasingly to predict acoustic backscatter by fish and zooplankton in research and ecosystem monitoring applications. Ten such models were applied to targets with simple geometric shapes and parameterized (e.g., size and material properties) to represent biological organisms such as zooplankton and fish, and their predictions of acoustic backscatter were compared to those from exact or approximate analytical models, i.e., benchmarks. These comparisons were made for a sphere, spherical shell, prolate spheroid, and finite cylinder, each with homogeneous composition. For each shape, four target boundary conditions were considered: rigid-fixed, pressure-release, gas-filled, and weakly scattering. Target strength (dB re 1 m(2)) was calculated as a function of insonifying frequency (f = 12 to 400 kHz) and angle of incidence (θ = 0° to 90°). In general, the numerical models (i.e., boundary- and finite-element) matched the benchmarks over the full range of simulation parameters. While inherent errors associated with the approximate analytical models were illustrated, so were the advantages as they are computationally efficient and in certain cases, outperformed the numerical models under conditions where the numerical models did not converge.

  20. Noise transmission loss of aircraft panels using acoustic intensity methods

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    The two-microphone, cross-spectral, acoustic intensity measurement technique was used to determine the acoustic transmission loss of three different aircraft panels. The study was conducted in the transmission loss apparatus in the Langley aircraft noise reduction laboratory.

  1. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    PubMed

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications.

  2. Fourth-order acoustic torque in intense sound fields

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Kanber, H.; Olli, E. E.

    1978-01-01

    The observation of a fourth-order acoustic torque in intense sound fields is reported. The torque was determined by measuring the acoustically induced angular deflection of a polished cylinder suspended by a torsion fiber. This torque was measured in a sound field of amplitude greater than that in which first-order acoustic torque has been observed.

  3. Acoustic characterization of echogenic liposomes: Frequency-dependent attenuation and backscatter

    PubMed Central

    Kopechek, Jonathan A.; Haworth, Kevin J.; Raymond, Jason L.; Douglas Mast, T.; Perrin, Stephen R.; Klegerman, Melvin E.; Huang, Shaoling; Porter, Tyrone M.; McPherson, David D.; Holland, Christy K.

    2011-01-01

    Ultrasound contrast agents (UCAs) are used clinically to aid detection and diagnosis of abnormal blood flow or perfusion. Characterization of UCAs can aid in the optimization of ultrasound parameters for enhanced image contrast. In this study echogenic liposomes (ELIPs) were characterized acoustically by measuring the frequency-dependent attenuation and backscatter coefficients at frequencies between 3 and 30 MHz using a broadband pulse-echo technique. The experimental methods were initially validated by comparing the attenuation and backscatter coefficients measured from 50-μm and 100-μm polystyrene microspheres with theoretical values. The size distribution of the ELIPs was measured and found to be polydisperse, ranging in size from 40 nm to 6 μm in diameter, with the highest number observed at 65 nm. The ELIP attenuation coefficients ranged from 3.7 ± 1.0 to 8.0 ± 3.3 dB/cm between 3 and 25 MHz. The backscatter coefficients were 0.011 ± 0.006 (cm str)−1 between 6 and 9 MHz and 0.023 ± 0.006 (cm str)−1 between 13 and 30 MHz. The measured scattering-to-attenuation ratio ranged from 8% to 22% between 6 and 25 MHz. Thus ELIPs can provide enhanced contrast over a broad range of frequencies and the scattering properties are suitable for various ultrasound imaging applications including diagnostic and intravascular ultrasound. PMID:22088022

  4. Geomorphology, acoustic backscatter, and processes in Santa Monica Bay from multibeam mapping.

    PubMed

    Gardner, James V; Dartnell, Peter; Mayer, Larry A; Hughes Clarke, John E

    2003-01-01

    Santa Monica Bay was mapped in 1996 using a high-resolution multibeam system, providing the first substantial update of the submarine geomorphology since the initial compilation by Shepard and Emery [(1941) Geol. Soc. Amer. Spec. Paper 31]. The multibeam mapping generated not only high-resolution bathymetry, but also coregistered, calibrated acoustic backscatter at 95 kHz. The geomorphology has been subdivided into six provinces; shelf, marginal plateau, submarine canyon, basin slope, apron, and basin. The dimensions, gradients, and backscatter characteristics of each province is described and related to a combination of tectonics, climate, sea level, and sediment supply. Fluctuations of eustatic sea level have had a profound effect on the area; by periodically eroding the surface of Santa Monica plateau, extending the mouth of the Los Angeles River to various locations along the shelf break, and by connecting submarine canyons to rivers. A wetter glacial climate undoubtedly generated more sediment to the rivers that then transported the increased sediment load to the low-stand coastline and canyon heads. The trends of Santa Monica Canyon and several bathymetric highs suggest a complex tectonic stress field that has controlled the various segments. There is no geomorphic evidence to suggest Redondo Canyon is fault controlled. The San Pedro fault can be extended more than 30 km to the northwest by the alignment of a series of bathymetric highs and abrupt changes in direction of channel thalwegs.

  5. Evaluation of Backscatter in the northeastern Red Sea using a Lowered Acoustic Doppler Profiler, Simrad EK60 Echosounder and in situ Observations

    NASA Astrophysics Data System (ADS)

    Torres, D. J.; Klevjer, T. A.; Solberg, I.; Bower, A. S.; Kaartvedt, S.

    2010-12-01

    An oceanographic research cruise aboard the R/V Aegaeo was conducted in the Red Sea from 16-29 March 2010. The primary objective of the cruise was to undertake the first large-scale physical oceanographic survey of the northeastern quadrant of the Red Sea, including observations of top-to-bottom ocean currents and water properties such as temperature, salinity, dissolved oxygen, turbidity and fluorescence. Additional objectives were to take seawater samples throughout the water column for carbonate chemistry and microbial studies, and to survey the distribution of pelagic fishes using acoustic methods. A total of 111 casts were made during the cruise which covered nine transects ranging from 22°-28°N. A modified SeaBird 9/11+ rosette/CTD system equipped with a pair of upward and downward facing 300 kHz Lowered Acoustic Doppler Current Profilers (LADCP) from Teledyne RD Instruments was used for station sampling. The LADCP system is primarily used for measuring full water column absolute velocity profiles. However, this study focuses on using the LADCP echo intensity data to measure ocean backscatter. Complex methods are usually required for calibration of acoustic instruments to measure backscatter due to attenuation and absorption of sound in water. Here we present a method for data processing which eliminates the need for calibration by using a single bin at a fixed distance from the ADCP transducers. We also present data from a Simrad EK60 echosounder which collected underway acoustic data throughout the cruise. Diurnal migration patterns of mesopelagic fish (an abundant and important part of the Red Sea ecosystem) are clearly evident in both data sets. Although the LADCP (due to bin size settings optimized for water velocity measurements) cannot resolve the thinner layers of acoustic scatterers compared to the 38 kHz EK60 data, it can be a very useful tool for measuring fish and zooplankton distribution from ships not equipped with high end acoustic

  6. Broadband acoustic backscatter and high-resolution morphology of fish: Measurement and modeling

    NASA Astrophysics Data System (ADS)

    Reeder, D. Benjamin; Jech, J. Michael; Stanton, Timothy K.

    2004-08-01

    Broadband acoustic backscattering measurements, advanced high-resolution imaging of fish morphology using CT scans and phase-contrast x rays (in addition to traditional x rays), and associated scattering modeling using the images have been conducted involving alewife (Alosa pseudoharengus), a swimbladder-bearing fish. A greater-than-octave bandwidth (40-95 kHz) signal was used to insonify live, individual, adult alewife that were tethered while being rotated in 1-deg increments over all angles in two planes of rotation (lateral and dorsal/ventral). These data, in addition to providing the orientation dependence of the scattering over a continuous band of frequencies, were also used (after pulse compression) to identify dominant scattering features of the fish (including the skull and swimbladder). The x-ray and CT scan images of the swimbladder were digitized and incorporated into two scattering models: (1) Kirchhoff-ray mode (KRM) model [Clay and Horne, J. Acoust. Soc. Am. 96, 1661-1668 (1994)] and (2) conformal-mapping-based Fourier matching method (FMM), which has recently been extended to finite-length bodies [Reeder and Stanton, J. Acoust. Soc. Am. 116. 729-746 (2004)]. Comparisons between the scattering predictions and data demonstrate the utility of the CT scan imagery for use in scattering models, as it provided a means for rapidly and noninvasively measuring the fish morphology in three dimensions and at high resolution. In addition to further validation of the KRM model, the potential of the new FMM formulation was demonstrated, which is a versatile approach, valid over a wide range of shapes, all frequencies and all angles of orientation.

  7. Characterization of high intensity focused ultrasound transducers using acoustic streaming.

    PubMed

    Hariharan, Prasanna; Myers, Matthew R; Robinson, Ronald A; Maruvada, Subha H; Sliwa, Jack; Banerjee, Rupak K

    2008-03-01

    A new approach for characterizing high intensity focused ultrasound (HIFU) transducers is presented. The technique is based upon the acoustic streaming field generated by absorption of the HIFU beam in a liquid medium. The streaming field is quantified using digital particle image velocimetry, and a numerical algorithm is employed to compute the acoustic intensity field giving rise to the observed streaming field. The method as presented here is applicable to moderate intensity regimes, above the intensities which may be damaging to conventional hydrophones, but below the levels where nonlinear propagation effects are appreciable. Intensity fields and acoustic powers predicted using the streaming method were found to agree within 10% with measurements obtained using hydrophones and radiation force balances. Besides acoustic intensity fields, the streaming technique may be used to determine other important HIFU parameters, such as beam tilt angle or absorption of the propagation medium.

  8. Statistical properties of intensity of partially polarised semiconductor laser light backscattered by a single-mode optical fibre

    SciTech Connect

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    2015-08-31

    We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)

  9. A multiple case study for calibrating acoustic backscatter to total suspended material in a large river system

    NASA Astrophysics Data System (ADS)

    Gunkel, Brittany Lynne

    Sediment transport measurements are determined using techniques such as bed-material and suspended-sediment sampling, and more recently the conversion of acoustic backscatter (ABS). Acoustic waves scatter and attenuate while passing through a water-sediment mixture and the backscatter is converted to sediment concentration, size, and shape. A multiple case study performed using data from West Bay, Old River, and Mississippi River at Vicksburg show the variability of a large river system TSM flux during assorted hydrographs and two methods (CHL and moving boat) capture the events. After processing and applying the two methods the results showed that the methods are typically within 8% to 41% of each other when computing sediment flux. The conversion of total suspended material (TSM) from ABS was an average of 0.2% to 69% from the sample TSM. Peak part of the hydrograph had the highest average suspended sediment concentration (SSC) and descending had the lowest average SSC.

  10. Active-layer thickness estimation from X-band SAR backscatter intensity

    NASA Astrophysics Data System (ADS)

    Widhalm, Barbara; Bartsch, Annett; Leibman, Marina; Khomutov, Artem

    2017-02-01

    The active layer above the permafrost, which seasonally thaws during summer, is an important parameter for monitoring the state of permafrost. Its thickness is typically measured locally, but a range of methods which utilize information from satellite data exist. Mostly, the normalized difference vegetation index (NDVI) obtained from optical satellite data is used as a proxy. The applicability has been demonstrated mostly for shallow depths of active-layer thickness (ALT) below approximately 70 cm. Some permafrost areas including central Yamal are, however, characterized by larger ALT. Surface properties including vegetation structure are also represented by microwave backscatter intensity. So far, the potential of such data for estimating ALT has not been explored. We therefore investigated the relationship between ALT and X-band synthetic aperture radar (SAR) backscatter of TerraSAR-X (averages for 10 × 10 m window) in order to examine the possibility of delineating ALT with continuous and larger spatial coverage in this area and compare it to the already-established method of using NDVI from Landsat (30 m). Our results show that the mutual dependency of ALT and TerraSAR-X backscatter on land cover types suggests a connection of both parameters. A range of 5 dB can be observed for an ALT range of 100 cm (40-140 cm), and an R2 of 0.66 has been determined over the calibration sites. An increase of ALT with increasing backscatter can be determined. The root mean square error (RMSE) over a comparably heterogeneous validation site with maximum ALT of > 150 cm is 20 cm. Deviations are larger for measurement locations with mixed vegetation types (especially partial coverage by cryptogam crust) with respect to the spatial resolution of the satellite data.

  11. Acoustic backscattering by deepwater fish measured in situ from a manned submersible

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Au, Whitlow W. L.; Kelley, Christopher D.; Taylor, Christopher

    2003-02-01

    An outstanding problem in fisheries acoustics is the depth dependence of scattering characteristics of swimbladder-bearing fish, and the effects of pressure on the target strength of physoclistous fish remain unresolved. In situ echoes from deepwater snappers were obtained with a sonar transducer mounted on a manned submersible next to a low-light video camera, permitting simultaneous echo recording and identification of species, fish size and orientation. The sonar system, consisting of a transducer, single board computer, hard disk, and analog-to-digital converter, used a 80 μs, broadband signal (bandwidth 35 kHz, center frequency 120 kHz). The observed relationship between fish length and in situ target strength shows no difference from the relationship measured at the surface. No differences in the species-specific temporal echo characteristics were observed between surface and in situ measures. This indicates that the size and shape of the snappers' swimbladders are maintained both at the surface and at depths of up to 250 m. Information obtained through controlled backscatter measurements of tethered, anesthetized fish at the surface can be applied to free-swimming fish at depth. This is the first published account of the use of a manned submersible to measure in situ scattering from identified, individual animals with known orientations. The distinct advantage of this technique compared with other in situ techniques is the ability to observe the target fish, obtaining accurate species, size, and orientation information.

  12. Analysis of Backscatter and Seafloor Acoustical Properties across deepwater sandwaves in Cook Strait, New Zealand

    NASA Astrophysics Data System (ADS)

    Lurton, X.; Lamarche, G.

    2011-12-01

    Central Cook Strait, New Zealand presents a variety of geological landforms subjected to intense hydrodynamic conditions. A comprehensive EM300 multibeam coverage of the strait was used to develop a method to objectively characterise the seafloor substrate. Specific post-processing was applied to the backscatter data to correct the signal from sensor bias, and was completed by correlating a quantitative description of backscatter with the field data. The final calibrated Backscattering Strength (BS) provides information on the physical characteristics of the seafloor. The BS imagery was used for both qualitative and quantitative interpretation, and give access to a level of detail higher than with conventional multibeam bathymetry. We developed a functional descriptive model of the physical BS angular response, describing satisfactorily the various typical BS responses met over Cook Strait and providing a first-order interpretation of the substrate composition. The full model needs 6 input parameters, but a practical classification can be obtained with only two (the BS value at 45° and the specular-to-oblique contrast). We analyse the BS angular response of sandwaves and erosional bedforms typically met in the central Cook Strait. The sandwave fields occur in 200-350 m of water depth and exhibit large-scale topographical features (wavelengths 100 - 250 m; vertical amplitudes 2 - 10 m). They are conspicuous in the backscatter imagery, and analysing their BS variations according to topography is specially informative. The BS level has a sharp minimum at the wave crests and is maximal inside the troughs, with a typical dynamics of 6 dB. Such a variation cannot be explained by the dependence on incident angle retrieved from local high-resolution bathymetry. Hence we infer that the reflectivity variations observed on the sandwaves are due to sediment facies changes, from fine to coarse sand in this case. This is corroborated by the fact that some sandwave fields with

  13. The range and intensity of backscattered electrons for use in the creation of high fidelity electron beam lithography patterns.

    PubMed

    Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E

    2013-08-02

    We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.

  14. Spectral anomalies in high intensity stimulated Raman backscattering in laser plasmas

    SciTech Connect

    Skoric, M.M.; Jovanovic, M.S.

    1995-12-31

    A large amount of effort is put into studies of fascinating new physics that is observed as one moves into a regime for collective effects with ultra short pulse high intensity laser plasmas. Recently, a Livermore-UCLA collaboration has observed a sub-psec version of classic laser plasma stimulated Raman backscattering (SRBS) instability. The backscattered light displays novel spectral signatures that depend on laser intensity. Broad and modulated frequency spectrum that spreads to the blue side of the incident wavelength; that is obviously different from classic SRBS which downshifts the incident frequency by approximately the electron plasma frequency (EPW). The authors study anomalous SRBS signatures in the 1-D model of underdense uniform weakly collisional plasma Layer. The set of three coupled equations, that account for pump depletion and relativistic detuning of EPW is simulated in space-time. By increasing a laser pump, a generic route via steady state periodic and quasi-periodic regime with an intermittent transition to spatio-temporal chaos is discovered. This type of intermittency in which quasi-periodic oscillations are interrupted by chaotic bursts displays modulated spectra with many peaks immersed in a broad band chaotic background. The picture reveals patches of turbulence inside the coherent state; the continuous transition amounts to a progressive increase of turbulence through the increase of the pump strength. Features, such as spiky burst-like reflectivity, anomalous broadening and blue shifted SRBS spectra are obtained and compared with recent experiments. Consistency, with observed anomalous spectral data is outlined.

  15. Acoustic intensity calculations for axisymmetrically modeled fluid regions

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.; Everstine, Gordon C.

    1992-01-01

    An algorithm for calculating acoustic intensities from a time harmonic pressure field in an axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave equation and elasticity equations. Acoustic intensities are then calculated from pressures and pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged in a fluid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity method and the usefulness of energy flow paths in the understanding of the response of fluid-structure interaction problems. The structural-acoustic analogy used is summarized for completeness. This study uncovered a NASTRAN limitation involving numerical precision issues in the CONEAX stiffness calculation causing large errors in the system matrices for nearly cylindrical cones.

  16. On acoustic intensity measurements in the presence of mean flow

    NASA Technical Reports Server (NTRS)

    Munro, D. H.; Ingard, K. U.

    1979-01-01

    A theoretical analysis demonstrates that the technique of measuring acoustic intensity by means of cross correlation between nearby microphones cannot, in general, be extended to situations in which there is mean flow. However, it may be possible to use this technique to measure intensities in ducts with mean flow at frequencies below their cutoff frequencies.

  17. Erratum: ?Stimulated Brillouin Backscattering and Ion Acoustic Wave Secondary Instability? [Phys. Plasmas 16, 032701 (2009)

    SciTech Connect

    Cohen, B I; Williams, E A; Berger, R L; Pesme, D; Riconda, C

    2009-04-20

    This Erratum addresses errors that occurred in some of the analysis in our recent publication (Ref. 1). The main elements of Ref. 1 are (1) the presentation of kinetic simulations of simulated Brillouin backscattering (SBS) and the accompanying secondary instability of the primary SBS ion acoustic wave (IAW) with and without the inclusion of the second harmonic of the primary IAW; (2) analyses of the four-wave (primary IAW, low-frequency IAW, and two sidebands of the primary IAW) and seven-wave (includes the second harmonic of the primary IAW and its two sidebands, as well as the four waves defined in the foregoing) dispersion relations for the secondary IAW instability; (3) comparisons of the results of solving the dispersion relations to the two particle simulations; (4) mode coupling calculations for SBS and the four-wave system of IAWs that model the particle simulations; and (5) a discussion and summary. However, the simplified 7-wave dispersion relation used in Ref. 1 propagated a typographical error in Eq.(44) in Ref. 2, the Pesme, Riconda, and Tikhonchuk (PRT) paper. This Erratum corrects Eq.(44) of Ref. 2 (discussed in more detail in an Erratum3 for Ref. 2) and revises Sec. IV of Ref. 1 by correcting the analysis and comparisons of the 4-wave and 7-wave dispersion relations, and the comparison of the 7-wave dispersion relation to the particle simulations. We find that the results of the corrected 7-wave dispersion relation are not profoundly different from the corresponding results in Ref. 1 and the 7-wave growth rates of the most unstable modes are more similar to the results of the 4-wave dispersion relation. The main results of Ref. 1 are unchanged: (1) the particle simulations exhibit a secondary IAW instability that is a modulational instability involving parallel and obliquely propagating IAWs; (2) the two types of particle simulation exhibit similar spectra, and the second harmonic IAW is a transient feature in the first particle simulation that is

  18. Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer

    NASA Astrophysics Data System (ADS)

    Liu, W.; Zagzebski, J. A.; Hall, T. J.; Madsen, E. L.; Varghese, T.; Kliewer, M. A.; Panda, S.; Lowery, C.; Barnes, S.

    2008-08-01

    Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical fluctuations associated with parametric imaging, becomes readily available with a 2D array. In this work, we show phantom and in vivo breast tumor scatterer size image results using a prototype 2D CMUT transducer (9 MHz center frequency) attached to a clinical scanner. A uniform phantom with two 1 cm diameter spherical inclusions of slightly smaller scatterer size was submerged in oil and scanned by both the 2D CMUT and a conventional piezoelectric linear array transducer. The attenuation and scatterer sizes of the sample were estimated using a reference phantom method. RF correlation analysis was performed using the data acquired by both transducers. The 2D CMUT results indicate that at a 2 cm depth (near the transmit focus for both transducers) the correlation coefficient reduced to less than 1/e for 0.2 mm lateral or 0.25 mm elevational separation between acoustic scanlines. For the conventional array this level of decorrelation requires a 0.3 mm lateral or 0.75 mm elevational translation. Angular and/or elevational compounding is used to reduce the variance of scatterer size estimates. The 2D array transducer acquired RF signals from 140 planes over a 2.8 cm elevational direction. If no elevational compounding is used, the fractional standard deviation of the size estimates is about 12% of the mean size estimate for both the spherical inclusion and the background. Elevational compounding of 11 adjacent planes reduces it to 7% for both media. Using an experimentally estimated

  19. Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer

    PubMed Central

    Liu, W; Zagzebski, J A; Hall, T J; Madsen, E L; Varghese, T; Kliewer, M A; Panda, S; Lowery, C; Barnes, S

    2009-01-01

    Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical fluctuations associated with parametric imaging, becomes readily available with a 2D array. In this work, we show phantom and in vivo breast tumor scatterer size image results using a prototype 2D CMUT transducer (9 MHz center frequency) attached to a clinical scanner. A uniform phantom with two 1 cm diameter spherical inclusions of slightly smaller scatterer size was submerged in oil and scanned by both the 2D CMUT and a conventional piezoelectric linear array transducer. The attenuation and scatterer sizes of the sample were estimated using a reference phantom method. RF correlation analysis was performed using the data acquired by both transducers. The 2D CMUT results indicate that at a 2 cm depth (near the transmit focus for both transducers) the correlation coefficient reduced to less than 1/e for 0.2 mm lateral or 0.25 mm elevational separation between acoustic scanlines. For the conventional array this level of decorrelation requires a 0.3 mm lateral or 0.75 mm elevational translation. Angular and/or elevational compounding is used to reduce the variance of scatterer size estimates. The 2D array transducer acquired RF signals from 140 planes over a 2.8 cm elevational direction. If no elevational compounding is used, the fractional standard deviation of the size estimates is about 12% of the mean size estimate for both the spherical inclusion and the background. Elevational compounding of 11 adjacent planes reduces it to 7% for both media. Using an experimentally estimated

  20. Quantitative broadband ultrasonic backscatter - An approach to nondestructive evaluation in acoustically inhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Odonnell, M.; Miller, J. G.

    1981-01-01

    The use of a broadband backscatter technique to obtain the frequency dependence of the longitudinal-wave ultrasonic backscatter coefficient from a collection of scatterers in a solid is investigated. Measurements of the backscatter coefficient were obtained over the range of ultrasonic wave vector magnitude-glass sphere radius product between 0.1 and 3.0 from model systems consisting of dilute suspensions of randomly distributed crown glass spheres in hardened polyester resin. The results of these measurements were in good agreement with theoretical prediction. Consequently, broadband measurements of the ultrasonic backscatter coefficient may represent a useful approach toward characterizing the physical properties of scatterers in intrinsically inhomogeneous materials such as composites, metals, and ceramics, and may represent an approach toward nondestructive evaluation of these materials.

  1. Digital control of high-intensity acoustic testing

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1975-01-01

    A high intensity acoustic test system is reported that consists of a reverberation room measuring 18 feet wide by 21 feet long by 26 feet high, with an internal volume of 10,900 cubic feet. The room is rectangular in shape. Acoustic energy is supplied through two 50-Hz cutoff exponential horns about 12 feet long. Each of the two horns has two transducers rated at 4000 acoustic watts each. A gaseous nitrogen supply is used to supply the energy. The equalized electrical signal is corrected by a circuit designed to compensate for the transducer nonlinearity, then fed into one channel of a phase linear power amplifier, then into the transducer. The amplifiers have been modified to increase their reliability. The acoustic energy in the room is monitored by six B and K 1/2-inch condenser microphones. The electrical signal from each microphone is fed into a six channel real time averager to give a spatial average of the signals.

  2. Digital control of high-intensity acoustic testing

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1975-01-01

    To eliminate previous system instabilities and control high-intensity acoustic tests, a digital control vibration test system is modified by a software change. Three systems for the control of acoustic testing are compared: a hybrid digital/analog system, a digital vibration system, and the same digital vibration system modified by a software change to allow acoustic testing. It is shown that the hybrid system and the modified vibration system exhibit almost equal performance, although the hybrid system performs testing twice as fast. The development of a specialized acoustic test control system is justified since it costs far less than the general-purpose vibration control system. However, the latter is much easier to set up for a test, which is important in preventing overtesting of valuable spacecraft components.

  3. Broadband source localization using horizontal-beam acoustic intensity striations.

    PubMed

    Turgut, Altan; Orr, Marshall; Rouseff, Daniel

    2010-01-01

    Waveguide invariant theory is applied to horizontal line array (HLA) beamformer output to localize moving broadband noise sources from measured acoustic intensity striation patterns. Acoustic signals emitted by ships of opportunity (merchant ships) were simultaneously recorded on a HLA and three hydrophones separated by 10 km during the RAGS03 (relationship between array gain and shelf-break fluid processes) experiment. Hough transforms are used to estimate both the waveguide invariant parameter "beta" and the ratio of source range at the closest point of approach to source speed from the observed striation patterns. Broadband (50-150-Hz) acoustic data-sets are used to demonstrate source localization capability as well as inversion capability of waveguide invariant parameter beta. Special attention is paid to bathymetric variability since the acoustic intensity striation patterns seem to be influenced by range-dependent bathymetry of the experimental area. The Hough transform method is also applied to the HLA beam-time record data and to the acoustic intensity data from three distant receivers to validate the estimation results from HLA beamformer output. Good agreement of the results from all three approaches suggests the feasibility of locating broadband noise sources and estimating waveguide invariant parameter beta in shallow waters.

  4. Buoyancy characteristics of the bloater (Coregonus hoyi) in relation to patterns of vertical migration and acoustic backscattering

    USGS Publications Warehouse

    Fleischer, Guy W.; TeWinkel, Leslie M.

    1998-01-01

    Acoustic studies in Lake Michigan found that bloaters (Coregonus hoyi) were less reflective per size than the other major pelagic species. This difference in in situ acoustic backscattering could indicate that the deep-water bloaters have compressed swimbladders for much of their vertical range with related implications on buoyancy. To test this hypothesis, the buoyancy characteristics of bloaters were determined with fish placed in a cage that was lowered to bottom and monitored with an underwater camera. We found bloaters were positively buoyant near surface, neutrally buoyant at intermediate strata, and negatively buoyant near bottom. This pattern was consistent for the range of depths bloaters occur. The depth of neutral buoyancy (near the 50-n strata) corresponds with the maximum extent of vertical migration for bloaters observed in acoustic surveys. Fish below this depth would be negatively buoyant which supports our contention that bloaters deeper in the water column have compressed swimbladders. Understanding the buoyancy characteristics of pelagic fishes will help to predict the effects of vertical migration on target strength measurement and confirms the use of acoustics as a tool to identify and quantify the ecological phenomenon of vertical migration.

  5. Ultrasound-modulated optical tomography with intense acoustic bursts.

    PubMed

    Zemp, Roger J; Kim, Chulhong; Wang, Lihong V

    2007-04-01

    Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.

  6. Random matrix theory applied to acoustic backscattering and imaging in complex media.

    PubMed

    Aubry, Alexandre; Derode, Arnaud

    2009-02-27

    The singular values distribution of the propagation operator in a random medium is investigated in a backscattering configuration. Experiments are carried out with pulsed ultrasonic waves around 3 MHz, using an array of transducers. Coherent backscattering and field correlations are taken into account. Interestingly, the distribution of singular values shows a dramatically different behavior in the single and multiple-scattering regimes. Based on a matrix separation of single and multiple-scattered waves, an experimental illustration of imaging through a highly scattering slab is presented.

  7. Use of acoustic backscatter to estimate continuous suspended sediment and phosphorus concentrations in the Barton River, northern Vermont, 2010-2013

    USGS Publications Warehouse

    Medalie, Laura; Chalmers, Ann T.; Kiah, Richard G.; Copans, Benjamin

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Vermont Department of Environmental Conservation, investigated the use of acoustic backscatter to estimate concentrations of suspended sediment and total phosphorus at the Barton River near Coventry, Vermont. The hypothesis was that acoustic backscatter—the reflection of sound waves off objects back to the source from which they came—measured by an acoustic Doppler profiler (ADP) and recorded as ancillary data for the calculation of discharge, also could be used to generate a continuous concentration record of suspended sediment and phosphorus at the streamgage, thereby deriving added value from the instrument. Suspended-sediment and phosphorus concentrations are of particular interest in Vermont, where impairment of surface waters by suspended sediments and phosphorus is a major concern. Regression models for estimating suspended-sediment concentrations (SSCs) and total phosphorus concentrations evaluated several independent variables: measured backscatter (MB), water-corrected backscatter (WCB), sediment-corrected backscatter (SCB), discharge, fluid-absorption coefficient, sediment-driven acoustic attenuation coefficient, and discharge hysteresis. The best regression equations for estimating SSC used backscatter as the predictor, reflecting the direct relation between acoustic backscatter and SSC. Backscatter was a better predictor of SSC than discharge in part because hysteresis between SSC and backscatter was less than for SSC and discharge. All three backscatter variables—MB, WCB, and SCB—performed equally as predictors of SSC and phosphorus concentrations at the Barton River site. The similar abilities to predict SSC among backscatter terms may partially be attributed to the low values and narrow range of the sediment-driven acoustic attenuation in the Barton River. The regression based on SCB was selected for estimating SSC because it removes potential bias caused by attenuation and temperature

  8. Comparison of Two High Intensity Acoustic Test Facilities

    NASA Astrophysics Data System (ADS)

    Launay, A.; Tadao Sakita, M.; Kim, Youngkey K.

    2004-08-01

    In two different countries, at the same period of time, the institutes in charge of the development of space activities have decided to extend their satellite integration and test center, and to implement a reverberant acoustic chamber. In Brazil the INPE laboratory (LIT : Laboratorio de Integracao e Testes) and in South Korea the KARI laboratory (SITC : Satellite Integration and Test Center) started their projects in July 2000 for the RATF (Reverberant Acoustic Test Facility) and in May 2001 for the HIAC (High Intensity Acoustic Chamber) respectively, writing the technical specifications. The kick-off meetings took place in December 2000 and in February 2002 and the opening ceremonies in December 19, 2002 in Brazil and in August 22, 2003 in Korea. This paper compares the two projects in terms of design choices, manufacturing processes, equipment installed and technical final characteristics.

  9. Bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site in 1996, 1998, and 2000

    USGS Publications Warehouse

    Butman, Bradford; Danforth, William W.; Clarke, John E. Hughes; Signell, Richard

    2017-01-01

    Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of three meters. The area was mapped by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and with support from the Canadian Hydrographic Service and the University of New Brunswick.

  10. [Comparative study of time-correlated temperature and back-scattered light intensity for human Hegu acupoint and non-acupoint tissue irradiated by near-infrared laser].

    PubMed

    Zhou, Fang; Wei, Hua-Jiang; Guo, Zhou-Yi; Li, Ang; Yang, Ning-Ning; Yang, Hong-Qin; Xie, Shu-Sen

    2012-09-01

    Characteristics and differences of temperature and back-scattered light intensity in different depths of 0.2, 0.4, 0.6, 0.8 and 1 mm for both human Hegu acupoint and non-acupoint tissue irradiated by 808 nm diode laser at the different power of 15, 25 and 35 mW were studied. The temperature and the back-scattered light intensity in different depths of 0.2, 0.4, 0.6, 0.8 and 1 mm for human Hegu acupoint and non-acupoint tissue were measured by using the infrared thermography and optical coherence tomography. The result shows few differences in the temperature and the back-scattered light intensity of human Hegu acupoint and non-acupoint tissue before irradiation. The temperature and back-scattered light intensity of Hegu acupoint and the non-acupoint after irradiation were significantly higher, and the temperature and back-scattered light intensity of Hegu acupoint significantly were higher than the non-acupoint areas. At 0-40 min after the irradiation, the temperature and back-scattered light intensity of Hegu acupoint and the non-acupoint area will fluctuate and gradually decrease with the passage of time. From the results above, it is clearly seen that Hegu acupoint is different from non-acupoint both in the back-scattered light intensity and temperature after irradiation, and Hegu acupoint is more sensitive to laser irradiation than non-acupoint tissue.

  11. Improving Plating by Use of Intense Acoustic Beams

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Denofrio, Charles

    2003-01-01

    An improved method of selective plating of metals and possibly other materials involves the use of directed high-intensity acoustic beams. The beams, typically in the ultrasonic frequency range, can be generated by fixed-focus transducers (see figure) or by phased arrays of transducers excited, variously, by continuous waves, tone bursts, or single pulses. The nonlinear effects produced by these beams are used to alter plating processes in ways that are advantageous.

  12. Acoustic intensity near a high-powered military jet aircraft.

    PubMed

    Stout, Trevor A; Gee, Kent L; Neilsen, Tracianne B; Wall, Alan T; James, Michael M

    2015-07-01

    The spatial variation in vector acoustic intensity has been calculated between 100 and 3000 Hz near a high-performance military aircraft. With one engine of a tethered F-22A Raptor operating at military power, a tetrahedral intensity probe was moved to 27 locations in the geometric near and mid-fields to obtain the frequency-dependent intensity vector field. The angles of the maximum intensity region rotate from aft to sideline with increasing frequency, becoming less directional above 800 Hz. Between 100 and 400 Hz, which are principal radiation frequencies, the ray-traced dominant source region rapidly contracts and moves upstream, approaching nearly constant behavior by 1000 Hz.

  13. Quantifying quagga mussel veliger abundance and distribution in Copper Basin Reservoir (California) using acoustic backscatter.

    PubMed

    Anderson, Michael A; Taylor, William D

    2011-11-01

    Quagga mussels (Dreissena bugensis) have been linked to oligotrophication of lakes, alteration of aquatic food webs, and fouling of infrastructure associated with water supply and power generation, causing potentially billions of dollars in direct and indirect damages. Understanding their abundance and distribution is key in slowing their advance, assessing their potential impacts, and evaluating effectiveness of control strategies. Volume backscatter strength (Sv) measurements at 201- and 430-kHz were compared with quagga mussel veliger and zooplankton abundances determined from samples collected using a Wisconsin closing net from the Copper Basin Reservoir on the Colorado River Aqueduct. The plankton within the lower portion of the water column (>18 m depth) was strongly dominated by D-shaped quagga mussel veligers, comprising up to 95-99% of the community, and allowed direct empirical measurement of their mean backscattering cross-section. The upper 0-18 m of the water column contained a smaller relative proportion of veligers based upon net sampling. The difference in mean volume backscatter strength at these two frequencies was found to decrease with decreasing zooplankton abundance (r(2) = 0.94), allowing for correction of Sv due to the contribution of zooplankton and the determination of veliger abundance in the reservoir. Hydroacoustic measurements revealed veligers were often present at high abundances (up to 100-200 ind L(-1)) in a thin 1-2 m layer at the thermocline, with considerable patchiness in their distribution observed along a 700 m transect on the reservoir. Under suitable conditions, hydroacoustic measurements can rapidly provide detailed information on the abundance and distribution of quagga mussel veligers over large areas with high horizontal and vertical resolution.

  14. Acoustic intensity in the interaction region of a parametric source

    NASA Astrophysics Data System (ADS)

    Lauchle, G. C.; Gabrielson, T. B.; van Tol, D. J.; Kottke, N. F.; McConnell, J. A.

    2003-10-01

    The goal of this project was to measure acoustic intensity in the strong interaction region of a parametric source in order to obtain a clear definition of the source-generation region and to separate the local generation (the reactive field) from propagation (the real or active field). The acoustic intensity vector was mapped in the interaction region of a parametric projector at Lake Seneca. The source was driven with primary signals at 22 kHz and 27 kHz. Receiving sensors were located 8.5 meters from the projector. At that range, the secondary at 5 kHz was between 40 and 45 dB below either primary. For the primary levels used, the plane-wave shock inception distance would have been at least 14 meters. Furthermore, the Rayleigh distance for the projector was about 4 meters so the measurements at 8.5 meters were in the strong interaction region but not in saturation. Absorption was negligible over these ranges. The intensity measurements were made at fixed range but varying azimuth angle and varying depth thus developing a two-dimensional cross-section of the secondary beam. Measurements of both the active and reactive intensity vectors will be presented along with a discussion of measurement error. [Work supported by ONR Code 321SS.

  15. Underwater Acoustic Propagation in the Philippine Sea: Intensity Fluctuations

    NASA Astrophysics Data System (ADS)

    White, Andrew W.

    In the spring of 2009, broadband transmissions from a ship-suspended source with a 284 Hz center frequency were received on a moored and navigated vertical array of hydrophones over a range of 107 km in the Philippine Sea. During a 60-hour period over 19 000 transmissions were carried out. The observed wavefront arrival structure reveals four distinct purely refracted acoustic paths: one with a single upper turning point near 80 m depth, two with a pair of upper turning points at a depth of roughly 300 m, and one with three upper turning points at 420 m. Individual path intensity, defined as the absolute square of the center frequency Fourier component for that arrival, was estimated over the 60-hour duration and used to compute scintillation index and log-intensity variance. Monte Carlo parabolic equation simulations using internal-wave induced sound speed perturbations obeying the Garrett-Munk internal-wave en- ergy spectrum were in agreement with measured data for the three deeper-turning paths but differed by as much as a factor of four for the near surface-interacting path. Estimates of the power spectral density and temporal autocorrelation function of intensity were attempted, but were complicated by gaps in the measured time-series. Deep fades in intensity were observed in the near surface-interacting path. Hypothesized causes for the deep fades were examined through further acoustic propagation modeling and analysis of various available oceanographic measurements.

  16. Baryon acoustic oscillation intensity mapping of dark energy.

    PubMed

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-07

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  17. Baryon Acoustic Oscillation Intensity Mapping of Dark Energy

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  18. Acoustic measurement of suspensions of clay and silt particles using single frequency attenuation and backscatter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of ultrasonic acoustic technology to measure the concentration of fine suspended sediments has the potential to greatly increase the temporal and spatial resolution of sediment measurements while reducing the need for personnel to be present at gauging stations during storm events. The conv...

  19. Calibration of ultrasound backscatter temperature imaging for high-intensity focused ultrasound treatment planning.

    PubMed

    Civale, John; Rivens, Ian; Ter Haar, Gail; Morris, Hugh; Coussios, Constantin; Friend, Peter; Bamber, Jeffrey

    2013-09-01

    High-intensity focused ultrasound (HIFU) is rapidly gaining acceptance as a non-invasive method for soft tissue tumor ablation, but improvements in the methods of treatment delivery, planning and monitoring are still required. Backscatter temperature imaging (BTI) uses ultrasound to visualize heating-induced echo strain and may be used to indicate the position of the HIFU focal region using low-power "sub-lesioning" exposure. The technique may also provide a quantitative tool for assessing the efficacy of treatment delivery if apparent strain measurements can be related to the underlying temperature rise. To obtain temperature estimates from strain measurements, the relationship between these variables has to be either measured or otherwise assumed from previous calibrations in similar tissues. This article describes experimental measurements aimed at deriving the relationship between temperature rise and apparent strain in the laboratory environment using both ex vivo bovine liver tissue samples and normothermically perfused porcine livers. A BTI algorithm was applied to radiofrequency ultrasound echo data acquired from a clinical ultrasound scanner (Z.One, Zonare Medical Systems, Mountain View, CA, USA) where the imaging probe was aligned with the focal region of a HIFU transducer. Temperature measurements were obtained using needle thermocouples implanted in the liver tissue. A series of "non-ablative" HIFU exposures giving peak temperatures below 10°C were made in three separate ex vivo bovine livers, yielding an average strain/temperature coefficient of 0.126 ± 0.088 percentage strain per degree Celsius. In the perfused porcine livers at a starting temperature of 38°C (normal body temperature) the strain/temperature coefficients were found to be 0.040 ± 0.029 percentage strain per degree Celsius. The uncertainty in these results is directly linked to the precision of the strain measurement, as well as the naturally occurring variance between different

  20. Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface

    DTIC Science & Technology

    2012-09-30

    interference; for example how it relates directly the angles of interfering wavefronts and therefore reflection and refraction processes in a waveguide . We...intensity fields in an underwater waveguide through modification of the RAM parabolic wave equation (PE) code [3]. The vector products of the PE are used...advising PhD student Mr. Jeffrey Daniels, from the Acoustics Research Detachment (Bayview ID) Carderock Division, who has received an ILIR grant from

  1. Acoustic Intensity Measurements in the Presence of Low Mach Number Flow

    DTIC Science & Technology

    1993-09-01

    broadband acoustic holography ,3 intensity measurements in the presence of flow,"𔄁𔄀. 7 in-situ evaluation of the acoustic impedance and sound absorption...Cross Spectra" Ph.D. Thesis, Catholic University, (1987). 3. Loyau, T., Pascal, J., Gaillard, P., "Broadband Acoustic Holography Reconstruction From...AD-A269 995 The Pennsylvania State University APPLIED RESEARCH LABORATORY P.O. Box 30 State College, PA 16804 ACOUSTIC INTENSITY MEASUREMENTS IN THE

  2. Electron intensities obtained during backscattered-Mössbauer spectroscopy. I. Comparison between theory and experiment

    NASA Astrophysics Data System (ADS)

    Lee, T. S.; Placek, T. D.; Dumesic, J. A.; Tatarchuk, B. J.

    A simple theoretical model that calculates the percent effect (i.e., ratio of resonant to nonresonant events) and also the spectral area of backscattered-conversion electron Mössbauer spectra is presented for systems containing 2657Fe. Attenuation of nonresonant background photons in the absorber is described assuming a simple exponential decay while attenuation of resonant 14.41 keV γ-rays is calculated using the expression derived by Margulies and Ehrman. Four different methods of representing electron transmission in the solid have been compared. Good agreement between model calculations and experimental data are obtained provided suitable electron transmission functions are used. Since the proposed model is also capable of calculating the electron energy spectrum in multilayer films, it provides a new and relatively simple formalism for the determination of depth-profiles from backscattered-electron spectra.

  3. Sea floor topography and backscatter intensity of the Hudson Canyon region offshore of New York and New Jersey

    USGS Publications Warehouse

    Butman, Bradford; Twichell, David C.; Rona, Peter A.; Tucholke, Brian E.; Middleton, Tammie J.; Robb, James M.

    2006-01-01

    These maps show the sea floor topography and backscatter intensity of the Hudson Canyon region on the continental slope and rise offshore of New Jersey and New York (fig. 1 and fig. 2). Sheet 1 shows sea floor topography as shaded relief. Sheet 2 shows sea floor topography as shaded relief with backscatter intensity superimposed in color. Both sheets are at a scale of 1:300,000 and also show smoothed topographic contours at selected intervals. The maps are based on new multibeam echo-sounder data collected on an 18-day cruise carried out aboard the National Oceanic and Atmospheric Administration (NOAA) Ship Ronald H. Brown during August and September 2002. Additional multibeam data of the Hudson Canyon collected by the Woods Hole Oceanographic Institution (WHOI), on the continental shelf collected by the STRATAFORM project (Goff and others, 1999), and a survey of the Hudson Shelf Valley (Butman and others, 2003), and a compilation of bathymetric data from the National Geophysical Data Center (NGDC) Coastal Relief Model provide coverage of areas surrounding Hudson Canyon (fig. 2). Interpretations of the surficial geology also utilize widely spaced 3.5- and 10-kiloHertz (kHz) high-resolution seismic profiles collected by the U.S. Geological Survey (fig.2).

  4. Planning the acoustic environment of a neonatal intensive care unit.

    PubMed

    Philbin, M Kathleen

    2004-06-01

    This article addresses general principles of designing a quiet neonatal intensive care unit (NICU) and describes basic aspects of room acoustics as these apply to the NICU. Recommended acoustical criteria for walls, background noise, vibration, and reverberation are included as appendices. Crowding in open, multiple-bed NICUs is the major factor in designs that inevitably produce noisy nurseries with limited space for parents. Quiet infant spaces with appropriate sound sources rely on isolation of the infant from facility and operational noise sources (eg, adult work spaces, supply delivery, and travel paths) and extended contact with family members.However, crowding has been an important influence on the clinical practice and social context of neonatology. It allows clinicians to rely on wide visual and auditory access to many patients for monitoring their well-being. It also allows immediate social contact with other adults, both staff and families. Giving up this wide access and relying on other forms of communication in order to provide for increased quiet and privacy for staff, infants, and parents is a challenge for some design teams. Studies of the effects of various nursery designs on infants, parents, clinicians, and the delivery of services are proposed as a means of advancing the field of design.

  5. Bathymetry and acoustic backscatter data collected in 2010 from Cat Island, Mississippi

    USGS Publications Warehouse

    Buster, Noreen A.; Pfeiffer, William R.; Miselis, Jennifer L.; Kindinger, Jack G.; Wiese, Dana S.; Reynolds, B.J.

    2012-01-01

    Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center (SPCMSC), in collaboration with the U.S. Army Corps of Engineers (USACE), conducted geophysical and sedimentological surveys around Cat Island, the westernmost island in the Mississippi-Alabama barrier island chain (fig. 1). The objectives of the study were to understand the geologic evolution of Cat Island relative to other barrier islands in the northern Gulf of Mexico and to identify relationships between the geologic history, present day morphology, and sediment distribution. This report contains data from the bathymetry and side-scan sonar portion of the study collected during two geophysical cruises. Interferometric swath bathymetry and side-scan sonar data were collected aboard the RV G.K. Gilbert September 7-15, 2010. Single-beam bathymetry was collected in shallow water around the island (< 2 meter (m)) from the RV Streeterville from September 28 to October 2, 2010, to cover the data gap between the landward limit of the previous cruise and the shoreline. This report serves as an archive of processed interferometric swath and single-beam bathymetry and side scan sonar data. GIS data products include a 50-m cell size interpolated gridded bathymetry surface, trackline maps, and an acoustic side-scan sonar image. Additional files include error analysis maps, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FDGC) metadata.

  6. Tracking Energy Flow Using a Volumetric Acoustic Intensity Imager (VAIM)

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas P.

    2006-01-01

    A new measurement device has been invented at the Naval Research Laboratory which images instantaneously the intensity vector throughout a three-dimensional volume nearly a meter on a side. The measurement device consists of a nearly transparent spherical array of 50 inexpensive microphones optimally positioned on an imaginary spherical surface of radius 0.2m. Front-end signal processing uses coherence analysis to produce multiple, phase-coherent holograms in the frequency domain each related to references located on suspect sound sources in an aircraft cabin. The analysis uses either SVD or Cholesky decomposition methods using ensemble averages of the cross-spectral density with the fixed references. The holograms are mathematically processed using spherical NAH (nearfield acoustical holography) to convert the measured pressure field into a vector intensity field in the volume of maximum radius 0.4 m centered on the sphere origin. The utility of this probe is evaluated in a detailed analysis of a recent in-flight experiment in cooperation with Boeing and NASA on NASA s Aries 757 aircraft. In this experiment the trim panels and insulation were removed over a section of the aircraft and the bare panels and windows were instrumented with accelerometers to use as references for the VAIM. Results show excellent success at locating and identifying the sources of interior noise in-flight in the frequency range of 0 to 1400 Hz. This work was supported by NASA and the Office of Naval Research.

  7. A multivariate analytical method to characterize sediment attributes from high-frequency acoustic backscatter and ground-truthing data (Jade Bay, German North Sea coast)

    NASA Astrophysics Data System (ADS)

    Biondo, Manuela; Bartholomä, Alexander

    2017-04-01

    One of the burning issues on the topic of acoustic seabed classification is the lack of solid, repeatable, statistical procedures that can support the verification of acoustic variability in relation to seabed properties. Acoustic sediment classification schemes often lead to biased and subjective interpretation, as they ultimately aim at an oversimplified categorization of the seabed based on conventionally defined sediment types. However, grain size variability alone cannot be accounted for acoustic diversity, which will be ultimately affected by multiple physical processes, scale of heterogeneity, instrument settings, data quality, image processing and segmentation performances. Understanding and assessing the weight of all of these factors on backscatter is a difficult task, due to the spatially limited and fragmentary knowledge of the seabed from of direct observations (e.g. grab samples, cores, videos). In particular, large-scale mapping requires an enormous availability of ground-truthing data that is often obtained from heterogeneous and multidisciplinary sources, resulting into a further chance of misclassification. Independently from all of these limitations, acoustic segments still contain signals for seabed changes that, if appropriate procedures are established, can be translated into meaningful knowledge. In this study we design a simple, repeatable method, based on multivariate procedures, with the scope to classify a 100 km2, high-frequency (450 kHz) sidescan sonar mosaic acquired in the year 2012 in the shallow upper-mesotidal inlet of the Jade Bay (German North Sea coast). The tool used for the automated classification of the backscatter mosaic is the QTC SWATHVIEWTMsoftware. The ground-truthing database included grab sample data from multiple sources (2009-2011). The method was designed to extrapolate quantitative descriptors for acoustic backscatter and model their spatial changes in relation to grain size distribution and morphology. The

  8. Acoustic backscatter measurements with a 153 kHz ADCP in the northeastern Gulf of Mexico: determination of dominant zooplankton and micronekton scatterers

    NASA Astrophysics Data System (ADS)

    Ressler, Patrick H.

    2002-11-01

    A 153 kHz narrowband acoustic Doppler current profiler (ADCP) was used to measure volume backscattering strength ( Sv) during a deepwater oceanographic survey of cetacean and seabird habitat in the northeastern Gulf of Mexico. Sv was positively related to zooplankton and micronekton biomass (wet displacement volume) in 'sea-truth' net hauls made with a 1 m 2 Multiple Opening-Closing Net Environmental Sensing System (MOCNESS). A subset of these MOCNESS tows was used to explore the relationship between the numerical densities of various taxonomic categories of zooplankton and the ADCP backscatter signal. Crustaceans, small fish, and fragments of non-gas-bearing siphonophores in the net samples all showed significant, positive correlations with the acoustic signal, while other types of gelatinous zooplankton, pteropod and atlantid molluscs, and gas-filled siphonophore floats showed no significant correlation with Sv. Previously published acoustic scattering models for zooplankton were used to calculate expected scattering for several general zooplankton types and sizes for comparison with the field data. Even though gelatinous material often made up a large fraction of the total biomass, crustaceans, small fish, and pteropods were most likely the important scatterers. Since only crustacean and small fish densities were significantly correlated with Sv, it is suggested that Sv at 153 kHz can be used as a relative proxy for the abundance of these organisms in the Gulf of Mexico.

  9. Measurement of transmission loss characteristics using acoustic intensity techniques at the KU-FRL Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1983-01-01

    The transmission loss characteristics of panels using the acoustic intensity technique is presented. The theoretical formulation, installation of hardware, modifications to the test facility, and development of computer programs and test procedures are described. A listing of all the programs is also provided. The initial test results indicate that the acoustic intensity technique is easily adapted to measure transmission loss characteristics of panels. Use of this method will give average transmission loss values. The fixtures developed to position the microphones along the grid points are very useful in plotting the intensity maps of vibrating panels.

  10. Use of SDWBA predictions for acoustic volume backscattering and the Self-Organizing Map to discern frequencies identifying Meganyctiphanes norvegica from mesopelagic fish species

    NASA Astrophysics Data System (ADS)

    Peña, M.; Calise, L.

    2016-04-01

    To acoustically assess the biomass of multiple species or taxa within a survey region, the volume backscatter data should be apportioned to the constituent sound scatterers. Typically, measured backscatter is attributed to certain species using predictions at different frequencies, mostly based on the difference in scattering at the frequencies of 38 and 120 kHz (dual frequency method). We used the full version of the stochastic distortedwave Born approximation (SDWBA) model to predict backscatter spectra for Meganyctiphanes norvegica and to explore the sensitivities of ΔMVBS to the model parameters, e.g. acoustic frequency and incidence angle, and animal density and sound speed contrast, length, and shape. The orientation is almost the unique parameter responsible for variation, with fatness affecting longer lengths. We present a summary of ΔMVBS that can serve as the basis for identification algorithms. Next, we simulate the scenario encountered in the Balearic Sea (western Mediterranean) where Northern krill are mixed with mesopelagic fish species (bristlemouths and lanternfishes), which are modeled with a prolate spheroid model. Simulated numerical data are employed to emulate the discrimination process with the most common identification techniques and typical survey frequencies. The importance of using density-independent techniques for acoustic classification is highlighted. Finally, an unsupervised neural network, the Self-Organizing Map (SOM), is used to cluster these theoretical data and identify the frequencies that provide, in this case, the most classification potential. The simulation results confirm that pairs of frequencies spanning the Rayleigh and geometric scattering regimes of the targets are the most useful for clustering; a minimum of four frequencies are necessary to separate the three species, while three frequencies are able to differentiate krill from mesopelagic fish species.

  11. Acoustic emission intensity analysis of corrosion in prestressed concrete piles

    NASA Astrophysics Data System (ADS)

    Vélez, William; Matta, Fabio; Ziehl, Paul

    2014-02-01

    Corrosion of steel strands in prestressed concrete (PC) bridges may lead to substantial damage or collapse well before the end of the design life. Acoustic Emission (AE) is a suitable nondestructive technique to detect and locate corrosion in reinforced and prestressed concrete, which is key to prioritize inspection and maintenance. An effective tool to analyze damage-related AE data is intensity analysis (IA), which is based on two data trends, namely Severity (average signal strength of high amplitude hits) and Historic Index (ratio of the average signal strength of the most recent hits to the average of all hits). IA criteria for corrosion assessment in PC were recently proposed based on empirical evidence from accelerated corrosion tests. In this paper, AE data from prestressed and non-prestressed concrete pile specimens exposed to salt water wet-dry cycling for over 600 days are used to analyze the relation between Severity and Historic Index and actual corrosion. Evidence of corrosion is gained from the inspection of decommissioned specimens. The selection of suitable J and K parameters for IA is discussed, and an IA chart with updated corrosion criteria for PC piles is presented.

  12. Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface

    DTIC Science & Technology

    2014-09-30

    also advising PhD student Mr. Jeffrey Daniels, from the Acoustics Research Detachment (Bayview ID) Carderock Division, who has received an ILIR...2013. [2] D.R. Dall’Osto and P. H. Dahl, Elliptical acoustic particle motion in underwater waveguides , J. Acoust. Soc. Am., 134 (1), 109-118, July

  13. High-intensity acoustic tests of a thermally stressed plate

    NASA Technical Reports Server (NTRS)

    Ng, Chung Fai; Clevenson, Sherman A.

    1991-01-01

    An investigation was conducted in the Thermal Acoustic Fatigue Apparatus at the Langley Research Center to study the acoustically excited random motion of an aluminum plate which is buckled due to thermal stresses. The thermal buckling displacements were measured and compared with theory. The general trends of the changes in resonances frequencies and random responses of the plate agree with previous theoretical prediction and experimental results for a mechanically buckled plate.

  14. International Congress on Acoustic Intensity Measurement: Measurement Techniques and Applications, 2nd, Senlis, France, September 23-26, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Recent developments in acoustic-intensity measurement are discussed in reviews and reports of theoretical and experimental investigations. Instrumentation, vector acoustics, sound radiation, intensity in the presence of flow, intensity in structures, sound power, source localization, impedance, absorption, and transmission are the fields covered by the contributions. Specific topics addressed include microphone configurations for intensity probes, the rotational structure of intensity fields, acoustic intensity and numerical simulation, sound-power measurement in the presence of background noise, and techniques for measuring the absorption coefficient of acoustic materials. Graphs, drawings, diagrams, tables of numerical data, and photographs of test setups are provided.

  15. GLOBE backscatter - Climatologies and mission results. [Global Backscatter Experiment

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Post, Madison J.

    1991-01-01

    The Global Backscatter Experiment (GLOBE) goals require intensive study of the global climatology of atmospheric aerosol backscatter at IR wavelengths. Airborne and ground-based lidars have been developed to measure atmospheric backscatter profiles at CO2 laser wavelengths. Descriptions of the calibration techniques and selected measurement results are presented.

  16. Evaluation of suspended sediment concentrations, sediment fluxes and sediment depositions along a reservoir by using laser diffraction and acoustic backscatter data

    NASA Astrophysics Data System (ADS)

    Lizano, Laura; Haun, Stefan

    2015-04-01

    Costa Rica was investigated where huge depositions have been recorded since the reservoir was built. The SSC's were measured with a LISST-SL (Laser In-Situ Scattering and Transmissometry instrument) which is based on the laser diffraction method and measures simultaneously the SSC as well as the particle size distribution. The measured SSC's were subsequently used to calculate the sediment fluxes within the transects, based on the intensity of backscattered sound from an acoustic measurement device. The total amount of deposited sediments could be calculated from the sediment fluxes, obtained by moving ADCP measurements (Acoustic Doppler Current Profiler) along chosen transects and so an image of the amount of settled sediments could be drawn. The results of this study show the advantage of using two highly sophisticated measurement devices in parallel to receive accurate numbers for sediment fluxes within reservoirs, which can in addition be used in further studies to develop management strategies to reduce sediment depositions.

  17. Acoustics and psychosocial environment in intensive coronary care

    PubMed Central

    Blomkvist, V; Eriksen, C; Theorell, T; Ulrich, R; Rasmanis, G

    2005-01-01

    Aims: To examine the influence of different acoustic conditions on the work environment and the staff in a coronary critical care unit (CCU). Method: Psychosocial work environment data from start and end of each individual shift were obtained from three shifts (morning, afternoon, and night) for a one-week baseline period and for two four-week periods during which either sound reflecting or sound absorbing tiles were installed. Results: Reverberation times and speech intelligibility improved during the study period when the ceiling tiles were changed from sound reflecting tiles to sound absorbing ones of identical appearance. Improved acoustics positively affected the work environment; the afternoon shift staff experienced significantly lower work demands and reported less pressure and strain. Conclusions: Important gains in the psychosocial work environment of healthcare can be achieved by improving room acoustics. The study points to the importance of further research on possible effects of acoustics in healthcare on staff turnover, quality of patient care, and medical errors. PMID:15723873

  18. Imaging Active and Relict Seafloor Methane Seep Sites: a Comparison of Seafloor 3D Seismic Reflectivity and Multibeam Sonar Backscatter Intensity at Omakere Ridge, Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Golding, T. V.; Pecher, I. A.; Crutchley, G. J.; Klaeschen, D.; Papenberg, C. A.; Bialas, J.; Greinert, J.; Townend, J.; SO214 Shipboard Scientific Party

    2011-12-01

    Omakere Ridge is an anticlinal thrust ridge in water depths of 1100-1700 m on the Hikurangi Margin, east of the North Island of New Zealand, and an area of active seafloor methane seepage associated with an extensive gas hydrate province. Methane seep sites on the Hikurangi Margin are characterised by localised build-ups of hard authigenic carbonate and chemosynthetic seep fauna that exist on a seafloor otherwise characterised by soft, muddy sediments. Previous studies have shown that these seep sites appear as areas of high backscatter in sonar images, but backscatter data alone do not provide detailed information on the present level of activity of a seep site, or the thickness of the carbonate build-up. Here we present a comparison of seafloor seismic reflectivity and multibeam sonar backscatter intensity data collected from active and relict methane seep sites on Omakere Ridge. High-resolution P-Cable 3D seismic reflection data and 12 kHz EM120 multibeam sonar data were collected in March 2011 during the RV Sonne cruise SO214. Seafloor seismic amplitude maps have been derived from the shipboard post-stack migrated data cube. A pronounced acquisition artifact is manifest in the seafloor horizon slice as high and low amplitude stripes that alternate periodically in the crossline direction. We have removed this artifact from the seafloor horizon slice using Kx-Ky filtering, followed by direct sampling and deterministic removal of the very-low-frequency components in the spatial domain. The seismic amplitude map has then been transformed into a calibrated seafloor reflection coefficient map. Sonar backscatter mosaics have been created after correcting for instrument response, angular variation in backscatter and bathymetry. Several backscatter mosaics were incorporated into a stacked mosaic over the study area to attenuate random noise. The high sonar backscatter response at the seep sites is generally accompanied by high seismic reflectivity. However, the

  19. Use of acoustic intensity measurements in the characterization of jet noise sources

    NASA Astrophysics Data System (ADS)

    Musafir, R. E.; Slama, J. G.; Zindeluk, M.

    The usefulness of two-microphone acoustic-intensity (AI) measurements for characterizing the acoustic field of a jet flow is investigated by means of numerical simulations. The theoretical principles and data basis for the simulations are explained, and the intensity patterns generated by the simulation are presented graphically. It is found that the vector information in AI data from the near field are useful in understanding complex sources, but that far-field intensity charts cannot locate separate sources and may be misleading if not analyzed in terms of a sound physical model.

  20. Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface

    DTIC Science & Technology

    2013-09-30

    scientists), and Kevin Williams, all of APL-UW, and William Hodgkiss of SIO-MPL. The PI is also advising PhD student Mr. Jeffrey Daniels, from the...the University of Washington. PUBLICATIONS [1] D.R. Dall’Osto and P. H. Dahl, Elliptical acoustic particle motion in underwater waveguides , J...published, refereed] [3] D. R. Dall’Osto, Properties of the Acoustic Vector Field in Underwater Waveguides , Ph.D. thesis, Dept. Mechanical Engineering

  1. Digital control of high-intensity acoustic testing. [for spacecraft

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1975-01-01

    Three systems for the control of acoustic testing are compared: a hybrid digital/analog system, a digital vibration system, and the same digital vibration system modified by a software change. The hybrid system was constructed to control the 1/3-octaves from 50 to 1000 Hz. The vibration system was equipped with programs for sine and random vibration tests, shock analysis and synthesis, and signal analysis. For the modified vibration system, the random-vibration control program of the unmodified unit was changed so that acoustic tests could be performed. The performance of the three systems is compared by conducting probability-density and time-history analyses of the proposed test spectrum for the Mariner Jupiter/Saturn 1977 program. The results of the analyses show that the hybrid and modified vibration systems perform almost equally, but the modified vibration system is easier to use and produces better test documentation.

  2. Development of anticavitation hydrophone using a titanium front plate: Effect of the titanium front plate in high-intensity acoustic field with generation of acoustic cavitation

    NASA Astrophysics Data System (ADS)

    Shiiba, Michihisa; Okada, Nagaya; Kurosawa, Minoru; Takeuchi, Shinichi

    2016-07-01

    Novel anticavitation hydrophones were fabricated by depositing a hydrothermally synthesized lead zirconate titanate polycrystalline film at the back of a titanium front plate. These anticavitation hydrophones were not damaged by the measurement of the acoustic field formed by a high-intensity focused ultrasound (HIFU) device. Their sensitivity was improved by approximately 20 dB over that of the conventional anticavitation hydrophone by modifying their basic structure and materials. The durability of the anticavitation hydrophone that we fabricated was compared by exposing it to a high-intensity acoustic field at the focal point of the HIFU field and in the water tank of an ultrasound cleaner. Therefore, the effect of the surface of the titanium front plate on acoustic cavitation was investigated by exposing such a surface to the high-intensity acoustic field. We found that the fabricated anticavitation hydrophone was robust and was not damaged easily, even in the focused acoustic field where acoustic cavitation occurs.

  3. Dynamic coherent backscattering mirror

    PubMed Central

    Xu, M.

    2016-01-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation. PMID:26937296

  4. Dynamic coherent backscattering mirror

    SciTech Connect

    Zeylikovich, I.; Xu, M.

    2016-02-15

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  5. Development of an Autonomous, Compact, Broadband Acoustic Backscattering System for Remote Characterization of Zooplankton Variability (PART II)

    DTIC Science & Technology

    2010-09-30

    temporal scales (e.g. Holliday and Pieper , 1980, 1995; Pieper et al., 1990; Napp et al., 1993; Wiebe et al., 1996; Benfield et al., 1998; Brierley et...Holliday, D.V. and Pieper , R.E. (1980). “Volume scattering strengths and zooplankton distributions at acoustic frequencies between 0.5 and 3 MHz,” J...Acoust. Soc. Am. 67(1), 135-146. Holliday, V.D. and Pieper , R.E. (1995). “Bioacoustical oceanography at high frequencies,” ICES J. Mar. Sci. 52

  6. Rain simulation studies for high-intensity acoustic nose cavities

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.; Cho, Y. I.; Shakkottai, P.; Back, L. H.

    1988-01-01

    Unarmed plastic projectiles can be equipped with small axisymmetric cavities for the generation of intense tones that are useful in training maneuvers. Attention is presently given to the simulation of rainfall in an airstream and the effect of rain droplet impingement on the nose of projectiles, and especially to any penetration or accumulation of water at the base of the cavity that might increase the fundamental cavity frequency and/or reduce the intensity of sound production during rain conditions.

  7. Surface acoustical intensity measurements on a diesel engine

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.; Crocker, M. J.

    1980-01-01

    The use of surface intensity measurements as an alternative to the conventional selective wrapping technique of noise source identification and ranking on diesel engines was investigated. A six cylinder, in line turbocharged, 350 horsepower diesel engine was used. Sound power was measured under anechoic conditions for eight separate parts of the engine at steady state operating conditions using the conventional technique. Sound power measurements were repeated on five separate parts of the engine using the surface intensity at the same steady state operating conditions. The results were compared by plotting sound power level against frequency and noise source rankings for the two methods.

  8. Resonant excitation of intense acoustic waves in crystals

    SciTech Connect

    Alshits, V. I. Bessonov, D. A.; Lyubimov, V. N.

    2013-06-15

    The resonant excitation of an intense elastic wave through nonspecular reflection of a special pump wave in a crystal is described. The choice of the plane and angle of incidence is dictated by the requirement that the excited reflected wave be close to the bulk eigenmode with its energy flow along a free boundary. The resonance parameters have been found for a medium with an arbitrary anisotropy. General relations are concretized for monoclinic, rhombic, and hexagonal systems. A criterion is formulated for an optimal selection of crystals in which the resonant reflection is close to the conversion one, when almost all of the energy from the incident beam of the pump wave falls into the near-surface narrow high-intensity reflected beam. Estimates and illustrations are given for such crystals as an example. The intensity of the reflected beam increases with its narrowing, but its diffraction divergence also increases with this narrowing. Nevertheless, the intensity of the beam can be increased by a factor of 5-10 at sufficiently high frequencies while keeping its divergence at an acceptable level. Amplification by two orders of magnitude can be achieved by compressing the beam in two dimensions through its double reflection.

  9. Loudness Change in Response to Dynamic Acoustic Intensity

    ERIC Educational Resources Information Center

    Olsen, Kirk N.; Stevens, Catherine J.; Tardieu, Julien

    2010-01-01

    Three experiments investigate psychological, methodological, and domain-specific characteristics of loudness change in response to sounds that continuously increase in intensity (up-ramps), relative to sounds that decrease (down-ramps). Timbre (vowel, violin), layer (monotone, chord), and duration (1.8 s, 3.6 s) were manipulated in Experiment 1.…

  10. High-intensity acoustics for military nonlethal applications: a lack of useful systems.

    PubMed

    Jauchem, James R; Cook, Michael C

    2007-02-01

    There have been many previous claims of nonlethal acoustic weapon effects, mostly in the popular rather than the scientific literature. Anecdotal reports of extraordinary effects can make meaningful assessment and review of this area very difficult. Acoustics research has shown that the nonlethal weapon capabilities of audible sound generators have been grossly overstated. Although high-intensity infrasound significantly disrupted animal behavior in some experiments, the generation of such energy in a volume large enough to be of practical use is unlikely because of basic physical principles. On the basis of experimentation completed to date at a number of institutions, it seems unlikely that high-intensity acoustic energy in the audible, infrasonic, or low-frequency range can provide a device suitable for use as a nonlethal weapon.

  11. Intermediate and High-Frequency Acoustic Backscattering Cross Sections for Water-Ice Interfaces: I. Two-Component Profile Models.

    DTIC Science & Technology

    2014-09-26

    Ice Research in the Arctic Ocean via Submarine," Trans. N.Y. Acad. of Sciences 23, 662-674, 1961. [2]. R. H. Mellen, "Underwater Acoustic Scattering...Backscattenng Cross Sections for Water- Ice Interfaces: I. Two.Component Profile Models r2avid Middleton CV) (Consultant) Associate Technical Director LC...Distribution unlimited. --. Preface This work was accomplished under NUSC’s Arctic Program, Code 01Y and Code 10. The sponsoring activity is the Naval

  12. Field Demonstration of a Broadband Acoustical Backscattering System Mounted on a REMUS-100 for Inferences of Zooplankton Size and Abundancy

    DTIC Science & Technology

    2011-09-30

    the Rayleigh-to-geometric scattering transition is within the frequency band of the WHOI broadband system (e.g., copepods ), and either larger fluid...that numerical abundance of zooplankton was dominated by small copepods that were relatively evenly distributed throughout the water-column...indication in either the MONESS or the VPR that the acoustic scattering layer was correlated to an increased abundance of zooplankton. Small copepods

  13. Sensitivity of Backscatter Intensity of ALOS/PALSAR to Above-ground Biomass and Other Biophysical Parameters of Boreal Forests in Alaska and Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Hayashi, M.; Kim, Y.; Ishii, R.; Kobayashi, H.; Shoyama, K.; Adachi, M.; Takahashi, A.; Saigusa, N.; Ito, A.

    2012-12-01

    For the better understanding of the carbon cycle in the global environment, investigations on the spatio-temporal variation of the carbon stock which is stored as vegetation biomass is important. The backscatter intensity of "Phased Array type L-band Synthetic Aperture Radar (PALSAR)" onboard the satellite "Advanced Land Observing Satellite (ALOS)" provides us the information which is applicable to estimate the forest above-ground biomass (AGB). This study examines the sensitivity of the backscatter intensity of ALOS/PALSAR to the forest AGB and other biophysical parameters (tree height, tree diameter at breast height (DBH), and tree stand density) for boreal forests in two geographical regions of Alaska and Kushiro, northern Japan, and compares the sensitivities in two regions. In Alaska, a forest survey was executed in the south-north transect (about 300 km long) along a trans-Alaska pipeline which profiles the ecotone from the boreal forest to tundra in 2007. Forest AGBs and other biophysical parameters at 29 forests along the transect were measured by Bitterlich method. In Kushiro, a forest survey was carried out at 42 forests in 2011 and those parameters were similarly obtained by Bitterlich method. 20 and 2 scenes of ALOS/PALSAR FBD Level 1.5 data that cover the regions in Alaska and Kushiro, respectively, were collected and mosaicked. Backscatter intensities of ALOS/PALSAR in HH (horizontally polarized transmitted and horizontally polarized received) and HV (horizontally polarized transmitted and vertically polarized received) modes were compared with the forest AGB and other biophysical parameters. The intensity generally increased with the increase of those biophysical parameters in both HV and HH modes, but the intensity in HV mode generally had a stronger correlation to those parameters than in HH mode in both Alaska and Kushiro. The HV intensity had strong correlation to the forest AGB and DBH, while weak correlation to the tree stand density in Alaska

  14. A novel imaging technique based on the spatial coherence of backscattered waves: demonstration in the presence of acoustical clutter

    NASA Astrophysics Data System (ADS)

    Dahl, Jeremy J.; Pinton, Gianmarco F.; Lediju, Muyinatu; Trahey, Gregg E.

    2011-03-01

    In the last 20 years, the number of suboptimal and inadequate ultrasound exams has increased. This trend has been linked to the increasing population of overweight and obese individuals. The primary causes of image degradation in these individuals are often attributed to phase aberration and clutter. Phase aberration degrades image quality by distorting the transmitted and received pressure waves, while clutter degrades image quality by introducing incoherent acoustical interference into the received pressure wavefront. Although significant research efforts have pursued the correction of image degradation due to phase aberration, few efforts have characterized or corrected image degradation due to clutter. We have developed a novel imaging technique that is capable of differentiating ultrasonic signals corrupted by acoustical interference. The technique, named short-lag spatial coherence (SLSC) imaging, is based on the spatial coherence of the received ultrasonic wavefront at small spatial distances across the transducer aperture. We demonstrate comparative B-mode and SLSC images using full-wave simulations that include the effects of clutter and show that SLSC imaging generates contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) that are significantly better than B-mode imaging under noise-free conditions. In the presence of noise, SLSC imaging significantly outperforms conventional B-mode imaging in all image quality metrics. We demonstrate the use of SLSC imaging in vivo and compare B-mode and SLSC images of human thyroid and liver.

  15. Design and construction of a reverberation chamber for high-intensity acoustic testing.

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1973-01-01

    A high-intensity acoustic test facility was constructed at the Jet Propulsion Laboratory (JPL) to support the Mariner Mars 1971 project. For ease of construction, the reverberation chamber itself is rectangular, which resulted in very little sacrifice in acoustic performance. Levels as high as 156 dB can be achieved with the chamber empty and test levels of 150 dB have been used with a Mariner Mars spacecraft model (full size) in the chamber. Levels as high as this must be generated using electropneumatic transducers, which modulate gaseous nitrogen to this facility.

  16. Photo acoustic study of plants exposed to varying light intensity growth conditions: Spectral and morphological changes

    NASA Astrophysics Data System (ADS)

    Mesquita, R. C.; Barja, P. R.; da Silva, E. C.; Mansanares, A. M.

    2005-06-01

    In this paper we describe results of photo acoustic (PA) measurements carried out on various plants exposed to varying light intensity conditions. Depending on the species and light intensity conditions, the PA absorption spectra show differences in peaks associated with pigments and the cuticle. These differences are related to the spatial distribution of the pigments that differs from plant to plant. We have also performed systematic study of oxygen evolution at different wavelengths. The obtained oxygen spectra are equivalent to the action spectra usually acquired by determining the CO2 uptake and energy storage. The intensities of oxygen spectra exhibit differences depending on distinct morphology of plant.

  17. Changes in backscatter of liver tissue due to thermal coagulation induced by focused ultrasound.

    PubMed

    Shishitani, Takashi; Matsuzawa, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-08-01

    Ultrasonic imaging has advantages in its self-consistency in guiding and monitoring ultrasonic treatment such as high-intensity focused ultrasound (HIFU) treatment. Changes in ultrasonic backscatter of tissues due to HIFU treatment have been observed, but their mechanism is still under discussion. In this paper, ultrasonic backscatter of excised and degassed porcine liver tissue was observed before and after HIFU exposure using a diagnostic scanner, and its acoustic impedance was mapped using an ultrasonic microscope. The histology of its pathological specimen was also observed using an optical microscope. The observed decrease in backscatter intensity due to HIFU exposure was consistent with a spatial Fourier analysis of the histology, which also showed changes due to the exposure. The observed increase in acoustic impedance due to the exposure was also consistent with the histological change assuming that the increase was primarily caused by the increase in the concentration of hepatic cells.

  18. Phase space distribution of an electron beam emerging from Compton/Thomson back-scattering by an intense laser pulse

    NASA Astrophysics Data System (ADS)

    Petrillo, V.; Chaikovska, I.; Ronsivalle, C.; Rossi, A. R.; Serafini, L.; Vaccarezza, C.

    2013-01-01

    We analyze the energy distribution of a relativistic electron beam after the Compton back-scattering by a counterpropagating laser field. The analysis is performed for parameters in the range of realistic X-γ sources, in the framework of the Quantum Electrodynamics, by means of the code CAIN. The results lead to the conclusion that, in the regime considered, the main effect is the initial formation of stripes, followed by the diffusion of the most energetic particles toward lower values in the longitudinal phase space, with a final increase of the electron energy bandwidth.

  19. Evaluating external nutrient and suspended-sediment loads to Upper Klamath Lake, Oregon, using surrogate regressions with real-time turbidity and acoustic backscatter data

    USGS Publications Warehouse

    Schenk, Liam N.; Anderson, Chauncey W.; Diaz, Paul; Stewart, Marc A.

    2016-12-22

    Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression models for the Williamson River site showed strong correlations of turbidity with total phosphorus and suspended-sediment concentrations (adjusted coefficients of determination [Adj R2]=0.73 and 0.95, respectively). Regression models for the Wood River site had relatively poor, although statistically significant, relations of turbidity with total phosphorus, and turbidity and acoustic backscatter with suspended sediment concentration, with high prediction uncertainty. Total phosphorus loads for the partial 2014 water year (excluding October and November 2013) were 39 and 28 metric tons for the Williamson and Wood Rivers, respectively. These values are within the low range of phosphorus loads computed for these rivers from prior studies using water-quality data collected by the Klamath Tribes. The 2014 partial year total phosphorus loads on the Williamson and Wood Rivers are assumed to be biased low because of the absence of data from the first 2 months of water year 2014, and the drought conditions that were prevalent during that water year. Therefore, total phosphorus and suspended-sediment loads in this report should be considered as representative of a low-water year for the two study sites. Comparing loads from the Williamson and Wood River monitoring sites for November 2013–September 2014 shows that the Williamson and Sprague Rivers combined, as measured at the Williamson River site, contributed substantially more suspended sediment to Upper Klamath Lake than the Wood River, with 4,360 and 1,450 metric tons measured, respectively.Surrogate techniques have proven useful at

  20. Hazard from intense low-frequency acoustic impulses. Final report

    SciTech Connect

    Price, G.R.

    1986-10-01

    It was predicted that because the ear is spectrally tuned, it should be most affected by intense impulses with spectral peaks near the frequency where it is tuned best (3.0 kHz for the human ear) and progressively less affected by impulses at lower frequencies. This prediction is counter to all the DRCs for impulse noise; therefore, an adequate test is essential. In order to augment the data on hearing loss to low-spectral-frequency impulses, three groups of cats (eight, nine, and ten animals) were exposed on one occasion to 50 impulses from a 105-mm howitzer at peak SPLs of 153, 159, and 166 dB. Threshold shifts were measured electrophysiologically on the day of exposure (CTS) and following a 2-month recovery period (PTS). Maximum PTSs appeared at 4 kHz (even though the spectral peak of the impulse had been at about 100 Hz), and CTSs recovered into PTSs about half as large. Furthermore, the group data, even small CTSs tended to have a permanent component. These data raise the question as to whether or not any threshold shift persisting an hour or two after exposure to high levels should be considered tolerable. When compared with data from rifle fire exposures, the data confirmed the earlier prediction that as the spectral frequency drops, hazard declines at the rate of a little more than 3 dB/oct, contrary to the rating by existing DRCs.

  1. Absorption of intense microwaves and ion acoustic turbulence due to heat transport

    SciTech Connect

    De Groot, J.S.; Liu, J.M.; Matte, J.P.

    1994-02-04

    Measurements and calculations of the inverse bremsstrahlung absorption of intense microwaves are presented. The isotropic component of the electron distribution becomes flat-topped in agreement with detailed Fokker-Planck calculations. The plasma heating is reduced due to the flat-topped distributions in agreement with calculations. The calculations show that the heat flux at high microwave powers is very large, q{sub max} {approx} 0.3 n{sub e}v{sub e}T{sub e}. A new particle model to, calculate the heat transport inhibition due to ion acoustic turbulence in ICF plasmas is also presented. One-dimensional PIC calculations of ion acoustic turbulence excited due to heat transport are presented. The 2-D PIC code is presently being used to perform calculations of heat flux inhibition due to ion acoustic turbulence.

  2. Design, construction, activation, and operation of a high intensity acoustic test chamber

    NASA Technical Reports Server (NTRS)

    Kamel, L. T.

    1986-01-01

    The design philosophy, construction, integration, and activation of the high intensity acoustic test chamber for production acceptance testing of satellites are discussed. The 32,000 cubic-foot acoustic test cell consists of a steel reinforced concrete chamber with six electropneumatic noise generators. One of the innovative features of the chamber is a unique quarter horn assembly that acoustically couples the noise generators to the chamber. Design concepts, model testing, and evaluation results are presented. Considerations such as nitrogen versus compressed air source, digital closed loop spectrum control versus manual equalizers, and microprocessor based interlock systems are included. Construction difficulties, anomalies encountered, and their resolution are also discussed. Results of the readiness testing are highlighted.

  3. Riverbed sediment classification using multi-beam echo-sounder backscatter data.

    PubMed

    Amiri-Simkooei, AliReza; Snellen, Mirjam; Simons, Dick G

    2009-10-01

    A method has recently been developed that employs multi-beam echo-sounder backscatter data to both obtain the number of sediment classes and discriminate between them by applying the Bayes decision rule to multiple hypotheses [Simons and Snellen, Appl. Acoust. 70, 1258-1268 (2009)]. In deep water, the number of scatter pixels within the beam footprint is large enough to ensure Gaussian distributions for the backscatter strengths and to increase the discriminative power between acoustic classes. In very shallow water (<10 m), however, this number is too small. This paper presents an extension of this high-frequency methodology for these environments, together with a demonstration of its performance using backscatter data from the river Waal, The Netherlands. The objective of this work is threefold. (i) Increasing the discriminating power of the classification method: high-resolution bathymetry data allow precise bottom slope corrections for obtaining the true incident angle, and the high-resolution backscatter data reduce the statistical fluctuations via an averaging procedure. (ii) Performing a correlation analysis: the dependence of acoustic backscatter classification on sediment physical properties is verified by observing a significant correlation of 0.75 (and a disattenuated correlation of 0.90) between the classification results and sediment mean grain size. (iii) Enhancing the statistical description of the backscatter intensities: angular evolution of the K-distribution shape parameter indicates that the riverbed is a rough surface, in agreement with the results of the core analysis.

  4. Hazard from intense low-frequency acoustic impulses.

    PubMed

    Price, G R

    1986-10-01

    It was predicted that because the ear is spectrally tuned, it should be most affected by intense impulses with spectral peaks near the frequency where it is tuned best (3.0 kHz for the human ear) and progressively less affected by impulses at lower frequencies [G.R. Price, Scand. Audiol. Suppl. 16, 111-121 (1982)]. This prediction is counter to all the DRCs for impulse noise; therefore an adequate test is essential. In order to augment the data on hearing loss to low-spectral-frequency impulses, three groups of cats (eight, nine, and ten animals) were exposed on one occasion to 50 impulses from a 105-mm howitzer at peak SPLs of 153, 159, and 166 dB. Threshold shifts were measured electrophysiologically on the day of exposure (CTS) and following a 2-month recovery period (PTS). Maximum PTSs appeared at 4 kHz (even though the spectral peak of the impulse had been at about 100 Hz), and CTSs recovered into PTSs about half as large. Furthermore, for group data, even small CTSs tended to have a permanent component. These data raise the question as to whether or not any threshold shift persisting an hour or two after exposure to high levels should be considered tolerable. When compared with data from rifle fire exposures, the data confirmed the earlier prediction that as the spectral frequency drops, hazard declines at the rate of a little more than 3 dB/oct, contrary to the rating by existing DRCs.

  5. Chronic stroke and aging: the impact of acoustic stimulus intensity on fractionated reaction time.

    PubMed

    Coombes, Stephen A; Janelle, Christopher M; Cauraugh, James H

    2009-03-13

    In control samples, intense acoustic "go" stimuli accelerate the central and peripheral motor processes that compose simple reaction time movements. The goal of the current study was to determine whether movements that are initiated to intense acoustic cues facilitate simple reaction times in (1) adults with chronic stroke as compared to age matched controls and (2) in older as compared to younger adults. EMG and force data were collected from three groups (stroke, older adults, and younger adults) during a ballistic wrist and finger extension task. Movements were made to the onset of 80 dB and 107 dB acoustic cues and simple reaction times were fractionated into premotor and motor components. The present findings offer two important contributions to the literature. First, increases in stimulus intensity led to faster motor times in the impaired limb of stroke subjects. Second, increased stimulus intensity led to faster premotor reaction times across all groups, although an age rather than a stroke-specific motor deficit was evidenced, with the younger control group displaying significantly faster premotor times. Findings are integrated with previous evidence concerning post stroke corticospinal tract integrity and are interpreted via mechanisms which address stroke and age-related changes in motoneurons and activity in motor units.

  6. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    PubMed

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  7. The acoustic environment of intensive care wards based on long period nocturnal measurements.

    PubMed

    Xie, Hui; Kang, Jian

    2012-01-01

    The patients in the Intensive Care Units are often exposed to excessive levels of noise and activities. They can suffer from sleep disturbance, especially at night, but they are often too ill to cope with the poor environment. This article investigates the acoustic environment of typical intensive care wards in the UK, based on long period nocturnal measurements, and examines the differences between singlebed and multibed wards, using statistical analysis. It has been shown that the acoustic environment differs significantly every night. There are also significant differences between the noise levels in the singlebed and multibed wards, where acoustic ceilings are present. Despite the similar background noises in both ward types, more intrusive noises tend to originate from the multibed wards, while more extreme sounds are likely to occur in the single wards. The sound levels in the measured wards for each night are in excess of the World Health Organization's (WHO) guide levels by at least 20 dBA, dominantly at the middle frequencies. Although the sound level at night varies less than that in the daytime, the nocturnal acoustic environment is not dependant on any specific time, thus neither the noisiest nor quietest period can be determined. It is expected that the statistical analysis of the collected data will provide essential information for the development of relevant guidelines and noise reduction strategies.

  8. Computation of acoustic ressure fields produced in feline brain by high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Omidi, Nazanin

    In 1975, Dunn et al. (JASA 58:512-514) showed that a simple relation describes the ultrasonic threshold for cavitation-induced changes in the mammalian brain. The thresholds for tissue damage were estimated for a variety of acoustic parameters in exposed feline brain. The goal of this study was to improve the estimates for acoustic pressures and intensities present in vivo during those experimental exposures by estimating them using nonlinear rather than linear theory. In our current project, the acoustic pressure waveforms produced in the brains of anesthetized felines were numerically simulated for a spherically focused, nominally f1-transducer (focal length = 13 cm) at increasing values of the source pressure at frequencies of 1, 3, and 9 MHz. The corresponding focal intensities were correlated with the experimental data of Dunn et al. The focal pressure waveforms were also computed at the location of the true maximum. For low source pressures, the computed waveforms were the same as those determined using linear theory, and the focal intensities matched experimentally determined values. For higher source pressures, the focal pressure waveforms became increasingly distorted, with the compressional amplitude of the wave becoming greater, and the rarefactional amplitude becoming lower than the values calculated using linear theory. The implications of these results for clinical exposures are discussed.

  9. Mid-frequency acoustic propagation in shallow water on the New Jersey shelf: mean intensity.

    PubMed

    Tang, Dajun; Henyey, Frank S; Wang, Zhongkang; Williams, Kevin L; Rouseff, Daniel; Dahl, Peter H; Quijano, Jorge; Choi, Jee Woong

    2008-09-01

    Mid-frequency (1-10 kHz) sound propagation was measured at ranges 1-9 km in shallow water in order to investigate intensity statistics. Warm water near the bottom results in a sound speed minimum. Environmental measurements include sediment sound speed and water sound speed and density from a towed conductivity-temperature-depth chain. Ambient internal waves contribute to acoustic fluctuations. A simple model involving modes with random phases predicts the mean transmission loss to within a few dB. Quantitative ray theory fails due to near axial focusing. Fluctuations of the intensity field are dominated by water column variability.

  10. Regularization method for measurement of structural intensity using nearfield acoustical holography.

    PubMed

    Saijyou, Kenji; Okawara, Chiaki

    2005-04-01

    The regularization method for measurement of structural intensity using nearfield acoustical holography is proposed. Spatial derivatives of normal displacement are necessary to obtain the structural intensity. The derivative operations amplify high-wave-number components of measurement noise. Therefore, the estimation of an appropriate wave-number filter is crucial for implementation of the measurement of structural intensity. In conventional methods, this wave-number filter is determined from the flexural wavelength. And the same wave-number filter is applied to obtain all spatial derivatives. As a result, structural intensity obtained from the pressure hologram, whose signal-to-noise ratio is low, is seriously contaminated by the noise. To overcome this difficulty, regularization theory is applied to determine the appropriate wave-number filter for each order of derivatives. The effectiveness of the proposed method is demonstrated by experiments.

  11. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    SciTech Connect

    Chen, Tao; Fan, Tingbo; Zhang, Wei; Qiu, Yuanyuan; Tu, Juan E-mail: dzhang@nju.edu.cn; Guo, Xiasheng; Zhang, Dong E-mail: dzhang@nju.edu.cn

    2014-03-21

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focused HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.

  12. Sea floor maps showing topography, sun-illuminated topography, and backscatter intensity of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts

    USGS Publications Warehouse

    Valentine, P.C.; Middleton, T.J.; Fuller, S.J.

    2000-01-01

    This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.

  13. Two-dimensional particle-in-cell simulations of plasma cavitation and bursty Brillouin backscattering for nonrelativistic laser intensities

    SciTech Connect

    Riconda, C.; Weber, S.; Tikhonchuk, V. T.; Adam, J.-C.; Heron, A.

    2006-08-15

    Two-dimensional particle-in-cell simulations of laser-plasma interaction using a plane-wave geometry show strong bursty stimulated Brillouin backscattering, rapid filamentation, and subsequent plasma cavitation. It is shown that the cavitation is not induced by self-focusing. The electromagnetic fields below the plasma frequency that are excited are related to transient soliton-like structures. At the origin of these solitons is a three-wave decay process exciting new modes in the plasma. The cavitation is responsible for a strong local reduction of the reflectivity and goes along with an efficient but transient heating of the electrons. Once heating ceases, transmission starts to increase. Local as well as global average reflectivities attain a very low value due to strong plasma density variations brought about by the cavitation process. On the one hand, the simulations confirm the existence of a new mechanism of cavity and soliton formation in nonrelativistic laser-plasma interaction in two dimensions, which was shown to exist in one-dimensional simulations [S. Weber, C. Riconda, and V. T. Tikhonchuk, Phys. Rev. Lett. 94, 055005 (2005)]. On the other hand, new aspects are introduced inherently related to the additional degree of freedom.

  14. An inverse method for estimation of the acoustic intensity in the focused ultrasound field

    NASA Astrophysics Data System (ADS)

    Yu, Ying; Shen, Guofeng; Chen, Yazhu

    2017-03-01

    Recently, a new method which based on infrared (IR) imaging was introduced. Authors (A. Shaw, et al and M. R. Myers, et al) have established the relationship between absorber surface temperature and incident intensity during the absorber was irradiated by the transducer. Theoretically, the shorter irradiating time makes estimation more in line with the actual results. But due to the influence of noise and performance constrains of the IR camera, it is hard to identify the difference in temperature with short heating time. An inverse technique is developed to reconstruct the incident intensity distribution using the surface temperature with shorter irradiating time. The algorithm is validated using surface temperature data generated numerically from three-layer model which was developed to calculate the acoustic field in the absorber, the absorbed acoustic energy during the irradiation, and the consequent temperature elevation. To assess the effect of noisy data on the reconstructed intensity profile, in the simulations, the different noise levels with zero mean were superposed on the exact data. Simulation results demonstrate that the inversion technique can provide fairly reliable intensity estimation with satisfactory accuracy.

  15. Spatial correlation of the high intensity zone in deep-water acoustic field

    NASA Astrophysics Data System (ADS)

    Li, Jun; Li, Zheng-Lin; Ren, Yun

    2016-12-01

    The spatial correlations of acoustic field have important implications for underwater target detection and other applications in deep water. In this paper, the spatial correlations of the high intensity zone in the deep-water acoustic field are investigated by using the experimental data obtained in the South China Sea. The experimental results show that the structures of the spatial correlation coefficient at different ranges and depths are similar to the transmission loss structure in deep water. The main reason for this phenomenon is analyzed by combining the normal mode theory with the ray theory. It is shown that the received signals in the high intensity zone mainly include one or two main pulses which are contributed by the interference of a group of waterborne modes with similar phases. The horizontal-longitudinal correlations at the same receiver depth but in different high intensity zones are analyzed. At some positions, more pulses are received in the arrival structure of the signal due to bottom reflection and the horizontal-longitudinal correlation coefficient decreases accordingly. The multi-path arrival structure of receiving signal becomes more complex with increasing receiver depth. Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012 and 41561144006).

  16. A closed-loop automatic control system for high-intensity acoustic test systems.

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1973-01-01

    Description of an automatic control system for high-intensity acoustic tests in reverberation chambers. Working in 14 one-third-octave bands from 50 to 1000 Hz, the desired sound pressure levels are set into the memory in the control system before the test. The control system then increases the sound pressure level in the reverberation chamber gradually in each of the one-third-octave bands until the level set in the memory is reached. This level is then maintained for the duration of the test. Additional features of the system are overtest protection, the capability of 'holding' the spectrum at any time, and the presence of a total test timer.

  17. Infrared backscattering

    NASA Technical Reports Server (NTRS)

    Bohren, Craig F.; Nevitt, Timothy J.; Singham, Shermila Brito

    1989-01-01

    All particles in the atmosphere are not spherical. Moreover, the scattering properties of randomly oriented nonspherical particles are not equivalent to those of spherical particles no matter how the term equivalent is defined. This is especially true for scattering in the backward direction and at the infrared wavelengths at which some atmospheric particles have strong absorption bands. Thus calculations based on Mie theory of infrared backscattering by dry or insoluble atmospheric particles are suspect. To support this assertion, it was noted that peaks in laboratory-measured infrared backscattering spectra show appreciable shifts compared with those calculated using Mie theory. One example is ammonium sulfate. Some success was had in modeling backscattering spectra of ammonium sulfate particles using a simple statistical theory called the continuous distribution of ellipsoids (CDE) theory. In this theory, the scattering properties of an ensemble are calculated. Recently a modified version of this theory was applied to measured spectra of scattering by kaolin particles. The particles were platelike, so the probability distribution of ellipsoidal shapes was chosen to reflect this. As with ammonium sulfate, the wavelength of measured peak backscattering is shifted longward of that predicted by Mie theory.

  18. Sidescan backscatter variations of cold seeps on the Hikurangi Margin (New Zealand): indications for different stages in seep development

    NASA Astrophysics Data System (ADS)

    Dumke, Ines; Klaucke, Ingo; Berndt, Christian; Bialas, Jörg

    2014-06-01

    Cold seeps on the Hikurangi Margin off New Zealand exhibit various seabed morphologies producing different intensity patterns in sidescan backscatter images. Acoustic backscatter characteristics of 25 investigated seep sites fall into four distinct types characterised by variations in backscatter intensity, distribution and inferred structural heights. The types reflect different carbonate morphologies including up to 20-m-high structures (type 1), low-relief crusts (type 2), scattered blocks (type 3) and carbonate-free sites (type 4). Each seep corresponds to a single type; intermediates were not observed. This correlates well with published data on seep fauna at each site, with the four types representing three different faunal habitats of successive stages of seep development. Backscatter signatures in sidescan sonar images of cold seeps may therefore serve as a convenient proxy for variations in faunal habitats.

  19. Investigation of contact acoustic nonlinearities on metal and composite airframe structures via intensity based health monitoring.

    PubMed

    Romano, P Q; Conlon, S C; Smith, E C

    2013-01-01

    Nonlinear structural intensity (NSI) and nonlinear structural surface intensity (NSSI) based damage detection techniques were improved and extended to metal and composite airframe structures. In this study, the measurement of NSI maps at sub-harmonic frequencies was completed to provide enhanced understanding of the energy flow characteristics associated with the damage induced contact acoustic nonlinearity mechanism. Important results include NSI source localization visualization at ultra-subharmonic (nf/2) frequencies, and damage detection results utilizing structural surface intensity in the nonlinear domain. A detection metric relying on modulated wave spectroscopy was developed and implemented using the NSSI feature. The data fusion of the intensity formulation provided a distinct advantage, as both the single interrogation frequency NSSI and its modulated wave extension (NSSI-MW) exhibited considerably higher sensitivities to damage than using single-sensor (strain or acceleration) nonlinear detection metrics. The active intensity based techniques were also extended to composite materials, and results show both NSSI and NSSI-MW can be used to detect damage in the bond line of an integrally stiffened composite plate structure with high sensitivity. Initial damage detection measurements made on an OH-58 tailboom (Penn State Applied Research Laboratory, State College, PA) indicate the techniques can be transitioned to complex airframe structures achieving high detection sensitivities with minimal sensors and actuators.

  20. Aerosol backscatter studies supporting LAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1989-01-01

    Optimized Royal Signals and Radar Establishment (RSRE), Laser True Airspeed System (LATAS) algorithm for low backscatter conditions was developed. The algorithm converts backscatter intensity measurements from focused continuous-wave (CW) airborne Doppler lidar into backscatter coefficients. The performance of optimized algorithm under marginal backscatter signal conditions was evaluated. The 10.6 micron CO2 aerosol backscatter climatologies were statistically analyzed. Climatologies reveal clean background aerosol mode near 10(exp -10)/kg/sq m/sr (mixing ratio units) through middle and upper troposhere, convective mode associated with planetary boundary layer convective activity, and stratospheric mode associated with volcanically-generated aerosols. Properties of clean background mode are critical to design and simulation studies of Laser Atmospheric Wind Sounder (LAWS), a MSFC facility Instrument on the Earth Observing System (Eos). Previous intercomparisons suggested correlation between aerosol backscatter at CO2 wavelength and water vapor. Field measurements of backscatter profiles with MSFC ground-based Doppler lidar system (GBDLS) were initiated in late FY-88 to coincide with independent program of local rawinsonde releases and overflights by Multi-spectral Atmospheric Mapping Sensor (MAMS), a multi-channel infrared radiometer capable of measuring horizontal and vertical moisture distributions. Design and performance simulation studies for LAWS would benefit from the existence of a relationship between backscatter and water vapor.

  1. Measurement of Acoustic Intensity Distribution and Radiation Power of Flat-Plate Phased-Array Sound Source

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tomoki; Takahashi, Kumiko; Seki, Daizaburou; Hasegawa, Akio

    2002-05-01

    The acoustic intensity distribution and radiation power of a flat-plate phased-array sound source consisting of Tonpilz-type transducers were measured. This study shows that the active acoustic intensity is skewed in the direction of wave propagation. In addition, it clarifies that if the measurement is carried out in the immediate vicinity of the sound source, the reactive acoustic intensity distribution is effective for identifying the positions of the individual sound source elements. Experimental values of active radiation power agree well with theoretical values. Conversely, experimental values of reactive radiation power do not agree with theoretical values; it is clear that they fluctuate significantly with distance from the radiating surface. The reason for this is explained in the case of a point sound source.

  2. Stimulated brillouin backscatter of a short-pulse laser

    SciTech Connect

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-11-03

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x{prime} = x {minus} V{sub g}t, t{prime} = t, where V{sub g} is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency).

  3. Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach

    PubMed Central

    Canney, Michael S.; Bailey, Michael R.; Crum, Lawrence A.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.

    2008-01-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24 000 W∕cm2. The inputs to a Khokhlov–Zabolotskaya–Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W∕cm2, lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields. PMID:19062878

  4. Acoustic characterization of high intensity focused ultrasound fields: a combined measurement and modeling approach.

    PubMed

    Canney, Michael S; Bailey, Michael R; Crum, Lawrence A; Khokhlova, Vera A; Sapozhnikov, Oleg A

    2008-10-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24,000 W/cm(2). The inputs to a Khokhlov-Zabolotskaya-Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W/cm(2), lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields.

  5. Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection.

    PubMed

    Han, Ming; Liu, Tongqing; Hu, Lingling; Zhang, Qi

    2013-12-02

    We theoretically and experimentally demonstrate a fiber-optic ultrasonic sensor system based on a fiber-ring laser whose cavity consisting of a regular fiber Bragg grating (FBG) and a tunable optical band-pass filter (TOBPF). The FBG is the sensing element and the TOBPF is used to set the lasing wavelength at a point on the spectral slope of the FBG. The ultrasonic signal is detected by the variations of the laser output intensity in response to the cold-cavity loss modulations from the ultrasonically-induced FBG spectral shift. The system demonstrated here has a simple structure and low cost, making it attractive for acoustic emission detection in structure health monitoring.

  6. Low-frequency acoustic pressure, velocity, and intensity thresholds in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas).

    PubMed

    Finneran, James J; Carder, Donald A; Ridgway, Sam H

    2002-01-01

    The relative contributions of acoustic pressure and particle velocity to the low-frequency, underwater hearing abilities of the bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas) were investigated by measuring (masked) hearing thresholds while manipulating the relationship between the pressure and velocity. This was accomplished by varying the distance within the near field of a single underwater sound projector (experiment I) and using two underwater sound projectors and an active sound control system (experiment II). The results of experiment I showed no significant change in pressure thresholds as the distance between the subject and the sound source was changed. In contrast, velocity thresholds tended to increase and intensity thresholds tended to decrease as the source distance decreased. These data suggest that acoustic pressure is a better indicator of threshold, compared to particle velocity or mean active intensity, in the subjects tested. Interpretation of the results of experiment II (the active sound control system) was difficult because of complex acoustic conditions and the unknown effects of the subject on the generated acoustic field; however, these data also tend to support the results of experiment I and suggest that odontocete thresholds should be reported in units of acoustic pressure, rather than intensity.

  7. Low-frequency acoustic pressure, velocity, and intensity thresholds in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas)

    NASA Astrophysics Data System (ADS)

    Finneran, James J.; Carder, Donald A.; Ridgway, Sam H.

    2002-01-01

    The relative contributions of acoustic pressure and particle velocity to the low-frequency, underwater hearing abilities of the bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas) were investigated by measuring (masked) hearing thresholds while manipulating the relationship between the pressure and velocity. This was accomplished by varying the distance within the near field of a single underwater sound projector (experiment I) and using two underwater sound projectors and an active sound control system (experiment II). The results of experiment I showed no significant change in pressure thresholds as the distance between the subject and the sound source was changed. In contrast, velocity thresholds tended to increase and intensity thresholds tended to decrease as the source distance decreased. These data suggest that acoustic pressure is a better indicator of threshold, compared to particle velocity or mean active intensity, in the subjects tested. Interpretation of the results of experiment II (the active sound control system) was difficult because of complex acoustic conditions and the unknown effects of the subject on the generated acoustic field; however, these data also tend to support the results of experiment I and suggest that odontocete thresholds should be reported in units of acoustic pressure, rather than intensity.

  8. Use of acoustic backscatter and vertical velocity to estimate concentration and dynamics of suspended solids in Upper Klamath Lake, south-central Oregon: Implications for Aphanizomenon flos-aquae

    USGS Publications Warehouse

    Wood, Tamara M.; Gartner, Jeffrey W.

    2010-01-01

    Vertical velocity and acoustic backscatter measurements by acoustic Doppler current profilers were used to determine seasonal, subseasonal (days to weeks), and diel variation in suspended solids in a freshwater lake where massive cyanobacterial blooms occur annually. During the growing season, the suspended material in the lake is dominated by the buoyancy-regulating cyanobacteria, Aphanizomenon flos-aquae. Measured variables (water velocity, relative backscatter [RB], wind speed, and air and water temperatures) were averaged over the deployment season at each sample time of day to determine average diel cycles. Phase shifts between diel cycles in RB and diel cycles in wind speed, vertical water temperature differences (delta T(degree)), and horizontal current speeds were found by determining the lead or lag that maximized the linear correlation between the respective diel cycles. Diel cycles in RB were more in phase with delta T(degree) cycles, and, to a lesser extent, wind cycles, than to water current cycles but were out of phase with the cycle that would be expected if the vertical movement of buoyant cyanobacteria colonies was controlled primarily by light. Clear evidence of a diel cycle in vertical velocity was found only at the two deepest sites in the lake. Cycles of vertical velocity, where present, were out of phase with expected vertical motion of cyanobacterial colonies based on the theoretical cycle for light-driven vertical movement. This suggests that water column stability and turbulence were more important factors in controlling vertical distribution of colonies than light. Variations at subseasonal time scales were determined by filtering data to pass periods between 1.2 and 15 days. At subseasonal time scales, correlations between RB and currents or air temperature were consistent with increased concentration of cyanobacterial colonies near the surface when water column stability increased (higher air temperatures or weaker currents) and

  9. Sea floor topography and backscatter intensity of the Historic Area Remediation Site (HARS), offshore of New York, based on multibeam surveys conducted in 1996, 1998, and 2000

    USGS Publications Warehouse

    Butman, Bradford; Danforth, W.W.; Knowles, S.C.; May, Brian; Serrett, Laurie

    2000-01-01

    An area offshore of Sandy Hook, New Jersey, has been used extensively for disposal of dredged and other materials, derived from the New York/New Jersey Harbor and surrounding areas, since the late 1800's (Figure 1). Between 1976 and 1995, the New York Bight Dredged Material Disposal Site, also known as the Mud Dump Site (Figure 2), received on average about 6 million cubic yards of material each year from federal and private maintenance dredging and from harbor deepening activities (Massa and others, 1996). In September 1997 the Mud Dump Site (MDS) was closed as an official ocean disposal site by the U.S. Environmental Protection Agency (http://www.epa.gov/), and the MDS and surrounding areas were designated as the Historic Area Remediation Site (HARS). The HARS is subdivided into a Primary Remediation Area (PRA, subdivided into 9 cells), a Buffer Zone, and a No-Discharge Zone (Figure 2). The sea floor of the HARS, approximately 9 square nautical miles in area, is being remediated by placing at least a one-meter cap of Category I (clean) dredged material on top of the existing surface sediments that exhibit varying degrees of degradation. (See http://www.nan.usace.army.mil/business/prjlinks/dmmp/benefic/hars.htm)(Category I sediments have no potential short or long-term impacts and are acceptable for unrestricted ocean disposal (EPA, 1996)). About 1.1 million cubic yards of dredged material for remediation was placed in the HARS in 1999, and 2.5 million cubic yards in 2000. Three multibeam echosounder surveys were carried out to map the topography and surficial geology of the HARS. The surveys were conducted November 23 - December 3, 1996, October 26 - November 11, 1998, and April 6 - 30, 2000. The surveys were carried out as part of a larger survey of the Hudson Shelf Valley and adjacent shelf (Butman and others, 1998, (http://pubs.usgs.gov/openfile/of98-616/). This report presents maps showing topography, shaded relief, and backscatter intensity (a measure of sea

  10. Considerations on the acoustic energy radiated by toothed gears. [model for calculating noise intensity

    NASA Technical Reports Server (NTRS)

    Popinceanu, N. G.; Kremmer, I.

    1974-01-01

    A mechano-acoustic model is reported for calculating acoustic energy radiated by a working gear. According to this model, a gear is an acoustic coublet formed of the two wheels. The wheel teeth generate cylindrical acoustic waves while the front surfaces of the teeth behave like vibrating pistons. Theoretical results are checked experimentally and good agreement is obtained with open gears. The experiments show that the air noise effect is negligible as compared with the structural noise transmitted to the gear box.

  11. Continuous loudness response to acoustic intensity dynamics in melodies: effects of melodic contour, tempo, and tonality.

    PubMed

    Olsen, Kirk N; Stevens, Catherine J; Dean, Roger T; Bailes, Freya

    2014-06-01

    The aim of this work was to investigate perceived loudness change in response to melodies that increase (up-ramp) or decrease (down-ramp) in acoustic intensity, and the interaction with other musical factors such as melodic contour, tempo, and tonality (tonal/atonal). A within-subjects design manipulated direction of linear intensity change (up-ramp, down-ramp), melodic contour (ascending, descending), tempo, and tonality, using single ramp trials and paired ramp trials, where single up-ramps and down-ramps were assembled to create continuous up-ramp/down-ramp or down-ramp/up-ramp pairs. Twenty-nine (Exp 1) and thirty-six (Exp 2) participants rated loudness continuously in response to trials with monophonic 13-note piano melodies lasting either 6.4s or 12s. Linear correlation coefficients >.89 between loudness and time show that time-series loudness responses to dynamic up-ramp and down-ramp melodies are essentially linear across all melodies. Therefore, 'indirect' loudness change derived from the difference in loudness at the beginning and end points of the continuous response was calculated. Down-ramps were perceived to change significantly more in loudness than up-ramps in both tonalities and at a relatively slow tempo. Loudness change was also greater for down-ramps presented with a congruent descending melodic contour, relative to an incongruent pairing (down-ramp and ascending melodic contour). No differential effect of intensity ramp/melodic contour congruency was observed for up-ramps. In paired ramp trials assessing the possible impact of ramp context, loudness change in response to up-ramps was significantly greater when preceded by down-ramps, than when not preceded by another ramp. Ramp context did not affect down-ramp perception. The contribution to the fields of music perception and psychoacoustics are discussed in the context of real-time perception of music, principles of music composition, and performance of musical dynamics.

  12. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results.

    PubMed

    Shih, Cho-Chiang; Lai, Ting-Yu; Huang, Chih-Chung

    2016-08-01

    The ability to measure the elastic properties of plaques and vessels is significant in clinical diagnosis, particularly for detecting a vulnerable plaque. A novel concept of combining intravascular ultrasound (IVUS) imaging and acoustic radiation force impulse (ARFI) imaging has recently been proposed. This method has potential in elastography for distinguishing between the stiffness of plaques and arterial vessel walls. However, the intensity of the acoustic radiation force requires calibration as a standard for the further development of an ARFI-IVUS imaging device that could be used in clinical applications. In this study, a dual-frequency transducer with 11MHz and 48MHz was used to measure the association between the biological tissue displacement and the applied acoustic radiation force. The output intensity of the acoustic radiation force generated by the pushing element ranged from 1.8 to 57.9mW/cm(2), as measured using a calibrated hydrophone. The results reveal that all of the acoustic intensities produced by the transducer in the experiments were within the limits specified by FDA regulations and could still displace the biological tissues. Furthermore, blood clots with different hematocrits, which have elastic properties similar to the lipid pool of plaques, with stiffness ranging from 0.5 to 1.9kPa could be displaced from 1 to 4μm, whereas the porcine arteries with stiffness ranging from 120 to 291kPa were displaced from 0.4 to 1.3μm when an acoustic intensity of 57.9mW/cm(2) was used. The in vitro ARFI images of the artery with a blood clot and artificial arteriosclerosis showed a clear distinction of the stiffness distributions of the vessel wall. All the results reveal that ARFI-IVUS imaging has the potential to distinguish the elastic properties of plaques and vessels. Moreover, the acoustic intensity used in ARFI imaging has been experimentally quantified. Although the size of this two-element transducer is unsuitable for IVUS imaging, the

  13. Seasonal absolute acoustic intensity, atmospheric forcing and currents in a tropical coral reef system

    NASA Astrophysics Data System (ADS)

    de Jesús Salas Pérez, José; Salas-Monreal, David; Monreal-Gómez, María Adela; Riveron-Enzastiga, Mayra Lorena; Llasat, Carme

    2012-03-01

    The seasonal patterns of marine circulation and biovolume were obtained from time-series measurements carried out in the "Parque Nacional Sistema Arrecifal Veracruzano" (PNSAV), located in the western continental shelf of the Gulf of Mexico, from June 2008 to September 2009. Two mechanisms were depicted as the responsible for the current pattern observed in the PNSAV and not only one as suggested in large-scale studies. The first mechanism is the wind generated currents. This mechanism by itself is responsible for up to 78% of total variation of the seasonal circulation in the PNSAV as estimated with the first mode of the EOF's (Empirical Orthogonal Functions), which was correlated (Normalized Lagged Correlation) with the north-south wind component. Therefore, the wind and the first mode were highly correlated for most of the year (r > 0.7). The second mode was attributed to the low frequency current, associated to the meso-scale circulation of the Gulf of Mexico, owing to the cyclonic eddy of the Campeche Bay. Both mechanisms were mostly observed throughout the year. Nevertheless, the cyclonic eddy of the Campeche Bay (meso-scale) was the first responsible for the current fluctuations observed during the summer of 2008 and 2009. The absolute acoustic intensity (plankton biovolumes) was highly correlated to currents, showing high spatial variability, attributed to advection produced by the meso-scale circulation and to river discharges, but also by eddy diffusion produced by atmospheric and coastal water fronts.

  14. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  15. [Backscattering spectrum analysis of nonspheroid soot particle].

    PubMed

    Xing, Jian; Sun, Xiao-gang; Yuan, Gui-bin; Qi, Xu; Tang, Hong

    2010-08-01

    In the process of measuring soot concentration and grain diameter, the backscattering spectrum of soot particle model was calculated to ascertain and analyze main effective factor of backscattering intensity. In the present paper, ellipsoid, column and generalized Chebyshev, three nonspheroid models, were selected according to micrograph of practical soot particle, which aims to simulate practical soot particle with equivalent diameter of about 1 microm. T-matrix method was used to calculate backscattering spectrum of the three nonspheriod models, and the main effective factor curves of intensity were obtained, too. Both numerical computer simulations and experimental results illustrate that nonspheroid particle backscattering intensity is stronger than that of spheroid particle in the visible/infrared spectrum band, especially for generalized Chebyshev model, whose backscattering intensity can be even 3.5 times higher than that of forward scattering. Meanwhile, the absorbency non-spheroid particle (complex refractive index m = 1.57 - 0.56i) backscattering intensity is stronger than that of non-absorbency nonspheriod particle (complex refractive index m = 1.57 - 0.001i). Furthermore, with the increase in particle equivalent radius, the light source wavelength also needs to be increase to obtain more light intensity information. The backscattering light spectrum information provides a reasonable basis for selecting light source and measure angle.

  16. An experimental and theoretical study of high-intensity, high-efficiency sirens: A thesis in acoustics

    SciTech Connect

    Pla, F.G.

    1987-05-01

    High-intensity, high-efficiency sound sources are needed for acoustic agglomeration of particle-laden aerosols in power plant flues and for combustion enhancement. The mechanical design of an experimental and a full-size siren is presented. Tunable inlet chambers are included to minimize the acoustic power radiated backward in the siren. Results show that tunable inlets are most effective at low pressure ratios and low frequencies. The main acoustic losses are discussed. A theoretical study of the sound generation mechanism in sirens is then presented. The various sound attenuation mechanisms are reviewed and a low frequency numerical solution for the frequency response is given. Finite-amplitude sound propagation in a horn is also studied. Results are presented that agree very well with experimental data. Important nonlinear phenomena such as shock formation, acoustic saturation, and distortion of initially non-sinusoidal finite-amplitude waves are discussed. Finally, a new siren design methodology is presented, including a step-by-step discussion on how to minimize the acoustic losses. 126 refs., 70 figs., 7 tabs.

  17. Comments on inferring the properties of the solar acoustic sources by modeling the velocity and/or intensity fluctuations

    NASA Astrophysics Data System (ADS)

    Jefferies, Stuart M.; Moretti, Pier-Francesco; Oliviero, Maurizio; Giebink, Cynthia

    2003-02-01

    We model the observed velocity and intensity power spectra and the intensity-velocity cross-spectrum using an updated version of the Severino et al. (2001) model that includes the effects of the acoustic source. We find that in order to accurately describe the data it is necessary to include a correlated background component in both the V and I signals at low frequencies, and in the I signal at high frequencies. Preliminary results show that even using the new model we can not uniquely determine the phase that is related to the acoustic source depth at low frequencies, or the amplitudes and phases of the individual correlated background signals. It appears that further physical or observational constraints are needed before we can obtain this information.

  18. Baryonic acoustic oscillations from 21 cm intensity mapping: the Square Kilometre Array case

    NASA Astrophysics Data System (ADS)

    Villaescusa-Navarro, Francisco; Alonso, David; Viel, Matteo

    2017-04-01

    We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21 cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometre Array (SKA) instrument, makes it undetectable at redshifts z ≳ 1. We however demonstrate that the BAO peak can still be detected in the radial 21 cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21 cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21 cm power spectrum. We systematically investigate the signal to noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected noise levels of SKA would degrade the final BAO errors by ∼5 per cent with respect to the cosmic-variance limited case at low redshifts, but that the effect grows up to ∼65 per cent at z ∼ 2-3. Furthermore, we find that the radial BAO signature is robust against foreground systematics, and that the main effect is an increase of ∼20 per cent in the final uncertainty on the standard ruler caused by the contribution of foreground residuals as well as the reduction in sky area needed to avoid high-foreground regions. We also find that it should be possible to detect the radial BAO signature with high significance in the full redshift range. We conclude that a 21 cm experiment carried out by the SKA should be able to make direct measurements of the expansion rate H(z) with measure the expansion with competitive per cent level precision on redshifts z ≲ 2.5.

  19. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force.

    PubMed

    Shou, Wende; Huang, Xiaowei; Duan, Shimei; Xia, Rongmin; Shi, Zhonglong; Geng, Xiaoming; Li, Faqi

    2006-12-22

    How to measure the acoustic power of HIFU is one of the most important tasks in its medical application. In the paper a whole series of formula for calculating the radiation force related to the acoustic power radiated by a single element focusing transducer and by the focusing transducer array were given. Various system of radiation force balance (RFB) to measure the acoustic power of HIFU in medicine were designed and applied in China. In high power experiments, the dependence of radiation force acting the absorbing target on the target position at the beam axis of focusing transducer was fined. There is a peak value of "radiation force" acting the absorbing target in the focal region when the acoustic power through the focal plane exceeds some threshold. In order to avoid this big measurement error caused by the 'peak effect' in focal region, the distance between the absorbing target of RFB and the focusing transducer or transducer array was defined to be equal to or less than 0.7 times of the focal length in the National Standard of China for the measurements of acoustic power and field characteristics of HIFU. More than six different therapeutic equipments of HIFU have been examined by RFB for measuring the acoustic power since 1998. These results show that RFB with the absorbing target is valid in the acoustic power range up to 500W with good linearity for the drive voltage squared of focusing transducer or array. The uncertainty of measurement is within +/-15%.

  20. Measuring Ultrasonic Backscatter in the Presence of Nonlinear Propagation

    NASA Astrophysics Data System (ADS)

    Stiles, Timothy; Guerrero, Quinton

    2011-11-01

    A goal of medical ultrasound is the formation of quantitative ultrasound images in which contrast is determined by acoustic or physical properties of tissue rather than relative echo amplitude. Such images could greatly enhance early detection of many diseases, including breast cancer and liver cirrhosis. Accurate determination of the ultrasonic backscatter coefficient from patients remains a difficult task. One reason for this difficulty is the inherent nonlinear propagation of ultrasound at high intensities used for medical imaging. The backscatter coefficient from several tissue-mimicking samples were measured using the planar reflector method. In this method, the power spectrum from a sample is compared to the power spectrum of an optically flat sample of quartz. The results should be independent of incident pressure amplitude. Results demonstrate that backscatter coefficients can vary by more than an order of magnitude when ultrasound pressure varies from 0.1 MPa to 1.5 MPa at 5.0 MHz. A new method that incorporates nonlinear propagation is proposed to explain these discrepancies.

  1. A closed-loop automatic control system for high-intensity acoustic test systems.

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1973-01-01

    Sound at sound pressure levels in the range from 130 to 160 dB is used in the investigation. Random noise is passed through a series of parallel filters, generally 1/3-octave wide. A basic automatic system is investigated because of preadjustment inaccuracies and high costs found in a study of a typical manually controlled acoustic testing system. The unit described has been successfully used in automatic acoustic tests in connection with the spacecraft tests for the Mariner 1971 program.

  2. High intensity acoustic tests of a thermally stressed aluminum plate in TAFA

    NASA Technical Reports Server (NTRS)

    Ng, Chung Fai; Clevenson, Sherman A.

    1989-01-01

    An investigation was conducted in the Thermal Acoustic Fatigue Apparatus at the Langley Research Center to study the acoustically excited random motion of an aluminum plate which is buckled due to thermal stresses. The thermal buckling displacements were measured and compared with theory. The general trends of the changes in resonances frequencies and random responses of the plate agree with previous theoretical prediction and experimental results for a mechanically buckled plate.

  3. Changes in room acoustics elicit a Mismatch Negativity in the absence of overall interaural intensity differences.

    PubMed

    Frey, Johannes Daniel; Wendt, Mike; Löw, Andreas; Möller, Stephan; Zölzer, Udo; Jacobsen, Thomas

    2017-02-15

    Changes in room acoustics provide important clues about the environment of sound source-perceiver systems, for example, by indicating changes in the reflecting characteristics of surrounding objects. To study the detection of auditory irregularities brought about by a change in room acoustics, a passive oddball protocol with participants watching a movie was applied in this study. Acoustic stimuli were presented via headphones. Standards and deviants were created by modelling rooms of different sizes, keeping the values of the basic acoustic dimensions (e.g., frequency, duration, sound pressure, and sound source location) as constant as possible. In the first experiment, each standard and deviant stimulus consisted of sequences of three short sounds derived from sinusoidal tones, resulting in three onsets during each stimulus. Deviant stimuli elicited a Mismatch Negativity (MMN) as well as two additional negative deflections corresponding to the three onset peaks. In the second experiment, only one sound was used; the stimuli were otherwise identical to the ones used in the first experiment. Again, an MMN was observed, followed by an additional negative deflection. These results provide further support for the hypothesis of automatic detection of unattended changes in room acoustics, extending previous work by demonstrating the elicitation of an MMN by changes in room acoustics.

  4. Acoustic correlates of caller identity and affect intensity in the vowel-like grunt vocalizations of baboons

    NASA Astrophysics Data System (ADS)

    Rendall, Drew

    2003-06-01

    Comparative, production-based research on animal vocalizations can allow assessments of continuity in vocal communication processes across species, including humans, and may aid in the development of general frameworks relating specific constitutional attributes of callers to acoustic-structural details of their vocal output. Analyses were undertaken on vowel-like baboon grunts to examine variation attributable to caller identity and the intensity of the affective state underlying call production. Six hundred six grunts from eight adult females were analyzed. Grunts derived from 128 bouts of calling in two behavioral contexts: concerted group movements and social interactions involving mothers and their young infants. Each context was subdivided into a high- and low-arousal condition. Thirteen acoustic features variously predicted to reflect variation in either caller identity or arousal intensity were measured for each grunt bout, including tempo-, source- and filter-related features. Grunt bouts were highly individually distinctive, differing in a variety of acoustic dimensions but with some indication that filter-related features contributed disproportionately to individual distinctiveness. In contrast, variation according to arousal condition was associated primarily with tempo- and source-related features, many matching those identified as vehicles of affect expression in other nonhuman primate species and in human speech and other nonverbal vocal signals.

  5. Inverse problem of nonlinear acoustics: Synthesizing intense signals to intensify the thermal and radiation action of ultrasound

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Gurbatov, S. N.

    2016-07-01

    Inverse problems of nonlinear acoustics have important applied significance. On the one hand, they are necessary for nonlinear diagnostics of media, materials, manufactured articles, building units, and biological and geological structures. On the other hand, they are needed for creating devices that ensure optimal action of acoustic radiation on a target. However, despite the many promising applications, this direction remains underdeveloped, especially for strongly distorted high-intensity waves containing shock fronts. An example of such an inverse problem is synthesis of the spatiotemporal structure of a field in a radiating system that ensures the highest possible energy density in the focal region. This problem is also related to the urgent problems of localizing wave energy and the theory of strongly nonlinear waves. Below we analyze some quite general and simple inverse nonlinear problems.

  6. Acoustic characterization of high intensity focused ultrasound field generated from a transmitter with large aperture

    NASA Astrophysics Data System (ADS)

    Fan, Tingbo; Chen, Tao; Zhang, Wei; Hu, Jimin; Zhang, Yichuan; Zhang, Dong

    2017-03-01

    A combined experiment and simulation method was utilized to characterize the acoustic field generated from a strong focused HIFU transmitter. The nonlinear sound propagation was described by the spheroidal beam equation (SBE). The relationship between the source pressure amplitude and excitation voltage was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; then the acoustic pressure field generated by the strong focused transducer was predicted by using the SBE model. A commercial fiber optic probe hydrophone (FOPH) was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a half aperture angle of 30°. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results show that the current approach might be useful to describe the HIFU field.

  7. Project PROBE Leg I - Report and archive of multibeam bathymetry and acoustic backscatter , CTD/XBT and GPS navigation data collected during USGS Cruise 02051 (NOAA Cruise RB0208) Puerto Rico Trench September 24, 2002 to September 30, 2002

    USGS Publications Warehouse

    ten Brink, Uri S.; Worley, Charles R.; Smith, Shep; Stepka, Thomas; Williams, Glynn F.

    2006-01-01

    On September 24-30, 2002, six days of scientific surveying to map a section of the Puerto Rico Trench (PRT) took place aboard the National Oceanic and Atmospheric Administration (NOAA) ship Ron Brown. The cruise was funded by NOAA's Office of Ocean Exploration. Multibeam bathymetry and acoustic-backscatter data were collected over an area of about 25,000 sq. km of the Puerto Rico trench and its vicinity at water depths of 4000-8400 m. Weather conditions during the entire survey were good; there were light to moderate winds and 1-2 foot swells experiencing minor chop. The roll and pitch of the ship's interaction with the ocean were not conspicuous. Cruise participants included personnel from USGS, NOAA, and University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center. The cruise resulted in the discovery of a major active strike-slip fault system close to the trench, submarine slides on the descending North American tectonic plate, and an extinct mud volcano, which was cut by the strike-slip fault system. Another strike-slip fault system closer to Puerto Rico that was previously considered to accommodate much of the relative plate motion appears to be inactive. The seaward continuation of the Mona Rift, a zone of extension between Puerto Rico and the Dominican Republic that generated a devastating tsunami in 1918, was mapped for the first time.

  8. Cavitation inception by the backscattering of pressure waves from a bubble interface

    SciTech Connect

    Takahira, Hiroyuki Ogasawara, Toshiyuki Mori, Naoto Tanaka, Moe

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  9. A "looming bias" in spatial hearing? Effects of acoustic intensity and spectrum on categorical sound source localization.

    PubMed

    McCarthy, Lisa; Olsen, Kirk N

    2017-01-01

    Continuous increases of acoustic intensity (up-ramps) can indicate a looming (approaching) sound source in the environment, whereas continuous decreases of intensity (down-ramps) can indicate a receding sound source. From psychoacoustic experiments, an "adaptive perceptual bias" for up-ramp looming tonal stimuli has been proposed (Neuhoff, 1998). This theory postulates that (1) up-ramps are perceptually salient because of their association with looming and potentially threatening stimuli in the environment; (2) tonal stimuli are perceptually salient because of an association with single and potentially threatening biological sound sources in the environment, relative to white noise, which is more likely to arise from dispersed signals and nonthreatening/nonbiological sources (wind/ocean). In the present study, we extrapolated the "adaptive perceptual bias" theory and investigated its assumptions by measuring sound source localization in response to acoustic stimuli presented in azimuth to imply looming, stationary, and receding motion in depth. Participants (N = 26) heard three directions of intensity change (up-ramps, down-ramps, and steady state, associated with looming, receding, and stationary motion, respectively) and three levels of acoustic spectrum (a 1-kHz pure tone, the tonal vowel /ә/, and white noise) in a within-subjects design. We first hypothesized that if up-ramps are "perceptually salient" and capable of eliciting adaptive responses, then they would be localized faster and more accurately than down-ramps. This hypothesis was supported. However, the results did not support the second hypothesis. Rather, the white-noise and vowel conditions were localized faster and more accurately than the pure-tone conditions. These results are discussed in the context of auditory and visual theories of motion perception, auditory attentional capture, and the spectral causes of spatial ambiguity.

  10. Acoustic characterization of multi-element, dual-frequency transducers for high-intensity contact ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, M.; N'Djin, W. A.; Persaud, L.; Bronskill, M.; Chopra, R.

    2012-10-01

    High-intensity contact ultrasound therapy can generate precise volumes of thermal damage in deep-seated tissue using interstitial or intracavitary devices. Multi-element, dual-frequency transducers offer increased spatial control of the heating pattern by enabling modulation of ultrasound power and frequency along the device. The performance and acoustic coupling between elements of simple, multi-element, dual-frequency transducers was measured. Transducer arrays were fabricated by cutting halfway through a rectangular plate of PZT, creating individual 4 × 5 mm segments with fundamental frequency (4.1 MHz) and third harmonic (13.3 MHz). Coupling between elements was investigated using a scanning laser vibrometer to measure transducer surface displacements at each frequency and different acoustic powers (0, 10, 20 W/cm2). The measured acoustic power was proportional to the input electrical power with no hysteresis and efficiencies >50% at both frequencies. Maximum transducer surface displacements were observed near element centers, reducing to ˜1/3-maximum near edges. The power and frequency of neighboring transducer segments had little impact on an element's output. In the worst case, an element operating at 4.1 MHz and 20 W/cm2 coupled only 1.5 W/cm2 to its immediate neighboring element. Multi-element, dual-frequency transducers were successfully constructed using a simple dicing method. Coupling between elements was minor, therefore the power and frequency of each transducer element could be considered independent.

  11. Characterization of intense ion beam energy density and beam induced pressure on the target with acoustic diagnostics

    SciTech Connect

    Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.; Yu, Xiao

    2013-08-15

    We have developed the acoustic diagnostics based on a piezoelectric transducer for characterization of high-intensity pulsed ion beams. The diagnostics was tested using the TEMP-4M accelerator (150 ns, 250–300 kV). The beam is composed of C{sup +} ions (85%) and protons, the beam energy density is 0.5–5 J/cm{sup 2} (depending on diode geometry). A calibration dependence of the signal from a piezoelectric transducer on the ion beam energy density is obtained using thermal imaging diagnostics. It is shown that the acoustic diagnostics allows for measurement of the beam energy density in the range of 0.1–2 J/cm{sup 2}. The dependence of the beam generated pressure on the input energy density is also determined and compared with the data from literature. The developed acoustic diagnostics do not require sophisticated equipment and can be used for operational control of pulsed ion beam parameters with a repetition rate of 10{sup 3} pulses/s.

  12. Using bathymetric derivatives to detect seabed features and assessment of backscatter variability of morphologically complex seabed

    NASA Astrophysics Data System (ADS)

    Alevizos, E.; Greinert, J.; Meysman, F. J.

    2013-12-01

    This study examines the application of bathymetry derivatives for seabed classification with respect in geomorphological seabed mapping of complex areas. Our dataset comprises of multibeam bathymetry and backscatter from a geomorphological complex site off the shore of Grevelingen (North Sea, Netherlands). The site comprises significant variability due to previous dredging activity and proximity to the shore whereas it includes a dump site for shells. By utilizing the Benthic Terrain Modeler add-in of ArcGIS we calculated first and second order bathymetric derivatives according to which we produced a morphological classification map of the area using the standardized process of the Greene & Bizzaro, Coded Classification Scheme. Bathymetric terrain analysis revealed the existence of low-relief large scale bedforms that could not be distinguished sufficiently in the bathymetry raster and the backscatter mosaic. This is of particular importance in bedform mapping and hydrodynamic modeling of such areas. Additionally backscatter data was mosaicked and classified by utilizing the Angular Response Analysis method. The ARA results include mean grain size, acoustic impedance and roughness predictions. We validated the results using several ground truth samples against predicted mean grain size values. Generally, some grade of discrepancy between actual and predicted grain size was identified. By having the grain size variation generally low over different parts of the area we suggest that acoustic impedance and seabed micro-roughness possibly control the backscatter intensity for the given area with the sonar frequency used. Therefore it is proposed that future ground truth data shall include measurements for sediment shear strength and fine-scale underwater stereo photography which will add valuable information in backscatter classification over morphologically complex seabed.

  13. Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating.

    PubMed

    Anand, Ajay; Kaczkowski, Peter J

    2008-09-01

    Previously, noninvasive methods of estimating local tissue thermal and acoustic properties using backscattered ultrasound have been proposed in the literature. In this article, a noninvasive method of estimating local thermal diffusivity in situ during focused ultrasound heating using beamformed acoustic backscatter data and applying novel signal processing techniques is developed. A high intensity focused ultrasound (HIFU) transducer operating at subablative intensities is employed to create a brief local temperature rise of no more than 10 degrees C. Beamformed radio-frequency (RF) data are collected during heating and cooling using a clinical ultrasound scanner. Measurements of the time-varying "acoustic strain", that is, spatiotemporal variations in the RF echo shifts induced by the temperature related sound speed changes, are related to a solution of the heat transfer equation to estimate the thermal diffusivity in the heated zone. Numerical simulations and experiments performed in vitro in tissue mimicking phantoms and excised turkey breast muscle tissue demonstrate agreement between the ultrasound derived thermal diffusivity estimates and independent estimates made by a traditional hot-wire technique. The new noninvasive ultrasonic method has potential applications in thermal therapy planning and monitoring, physiological monitoring and as a means of noninvasive tissue characterization.

  14. Intensive sound speed monitoring in ocean and its impact on the GPS/acoustic seafloor geodetic measurement

    NASA Astrophysics Data System (ADS)

    Kido, Motoyuki

    2016-04-01

    GPS/acoustic (GPS/A) technique, based on GPS positioning and acoustic ranging, is now getting a popular tool to measure seafloor crustal movement. Several groups in the world have been intensively conducted campaign surveys in the region of scientifically interest. As the technology of measurement has been matured and plenty of data are accumulated, researchers are now aware of the limit of its precision mainly due to unexpected undulation of sound speed in ocean, which significantly degrades acoustic ranging. If sound speed structure keeps its figure during survey period, e.g., more than a couple of hours, it can be estimated by a moving survey to get sufficient paths from various directions to illustrate the structure. However the sound speed structure often varies quickly with in a hour due to internal gravitational wave excited by interaction of tidal current and seafloor topography. In this case one cannot separate temporal and spatial variations. We revisited our numerous sound speed profile data derived from numbers of XBT measurements, which were concurrently carried out with GPS/A survey along the Nankai Trough and Japan Trench. Among the measurements, we found notably short-period variation in sound speed profile through intensive XBT survey repeatedly cast every 6 minutes for one hour, which also appeared in residuals in traveltime of acoustic ranging. The same feature is also found in more moderate rate for semidiurnal undulation, in which vertical oscillation of the middle of the profile can be clearly seen rather than variation of absolute sound speed. This also reflects traveltime residuals in the GPS/A measurement. These typical frequencies represent dominant wavelengths of spatial sound speed variation. In the latter, local horizontal variation can be negligible in the vicinity of a point survey area and the traditional analysis can be applicable that assumes time-varying stratified sound speed structure. In the former case, on the contrary, local

  15. Sustained acoustic medicine: a novel long duration approach to biomodulation utilizing low intensity therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Langer, Matthew D.; Lewis, George K.

    2015-05-01

    Therapeutic ultrasound is an established technique for biomodulation used by physical therapists. Typically it is used to deliver energy locally for the purpose of altering tissue plasticity and increasing local circulation. Access to ultrasound therapy has been limited by equipment and logistic requirements, which has reduced the overall efficacy of the therapy. Ultrasound miniaturization allows for development of portable, wearable, self-applied ultrasound devices that sidestep these limitations. Additionally, research has shown that the timescale of acoustic stimulation matters, and directly affects the quality of result. This paper describes a novel, long duration approach to therapeutic ultrasound and reviews the current data available for a variety of musculoskeletal conditions.

  16. Toward efficient light diffraction and intensity variations by using wide bandwidth surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Lee, Young Ok; Chen, Fu; Lee, Kee Keun

    2016-06-01

    We have developed acoustic-optic (AO) based display units for implementing a handheld hologram display by modulating light deflection through wide bandwidth surface acoustic wave (SAW). The developed AO device consists of a metal layer, a ZnS waveguide layer, SAW inter digital transducers (IDTs), and a screen for display. When RF power with a particular resonant frequency was applied to IDTs, SAW was radiated and interfered with confined beam propagating along ZnS waveguide layer. The AO interacted beam was deflected laterally toward a certain direction depending on Bragg diffraction condition, exited out of the waveguide layer and then directed to the viewing screen placed at a certain distance from the device to form a single pixel. The deflected angles was adjusted by modulating the center frequency of the SAW IDT (SAW grating), the RF power of SAW, and the angles between propagating light beam path along waveguide and radiating SAW. The diffraction efficiency was also characterized in terms of waveguide thickness, SAW RF input power, and aperture length. Coupling of mode (COM) modeling was fulfilled to find optimal device parameters prior to fabrication. All the parameters affecting the deflection angle and efficiency to form a pixel for a three-dimensional (3D) hologram image were characterized and then discussed.

  17. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water.

    PubMed

    Ferkous, Hamza; Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2015-09-01

    In the present work, comprehensive experimental and numerical investigations of the effects of frequency and acoustic intensity on the sonochemical degradation of naphthol blue black (NBB) in water have been carried out. The experiments have been examined at three frequencies (585, 860 and 1140 kHz) and over a wide range of acoustic intensities. The observed experimental results have been discussed using a more realistic approach that combines the single bubble sonochemistry and the number of active bubbles. The single bubble yield has been predicted using a model that combines the bubble dynamics with chemical kinetics consisting of series of chemical reactions (73 reversible reactions) occurring inside an air bubble during the strong collapse. The experimental results showed that the sonochemical degradation rate of NBB increased substantially with increasing acoustic intensity and decreased with increasing ultrasound frequency. The numerical simulations revealed that NBB degraded mainly through the reaction with hydroxyl radical (OH), which is the dominant oxidant detected in the bubble during collapse. The production rate of OH radical inside a single bubble followed the same trend as that of NBB degradation rate. It increased with increasing acoustic intensity and decreased with increasing frequency. The enhancing effect of acoustic intensity toward the degradation of NBB was attributed to the rise of both the individual chemical bubble yield and the number of active bubbles with increasing acoustic intensity. The reducing effect of frequency was attributed to the sharp decrease in the chemical bubble yield with increasing frequency, which would not compensated by the rise of the number of active bubbles with the increase in ultrasound frequency.

  18. Coherent microwave backscatter of natural snowpacks

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.; Angelakos, D. J.; Clapp, F. D.; Smith, J. L.

    1977-01-01

    The backscatter of natural snowpacks was measured using a swept-frequency system operating from 5.8 to 8.0 GHz. Snow layering produced sequences of maxima and minima in backscatter intensity, with typical peak-to-valley ratios of 15 db. Wetness produced in the upper portion of the snowpack by solar heat input enhanced the effect of layering. The layer response persisted for incidence exhibits predominantly coherent properties. Frequency modulation of the incident signal masked the layer response by averaging the unmodulated response over the bandwidth represented by the modulation. Further changes in backscatter were attributed to changes in wetness in the surface regions of the snowpack; for a fixed frequency of 13.5 GHz and incidence angle of 39 deg, the backscatter decreased typically 15 db between 11 A.M. and noon, and returned to approximately its initial level of overnight.

  19. A high intensity acoustic source for active attenuation of exhaust noise

    NASA Astrophysics Data System (ADS)

    Glendinning, A. G.; Elliott, S. J.; Nelson, P. A.

    1988-04-01

    An electropneumatic sound source was developed for active noise control systems applied in hostile environments such as the exhaust systems of gas turbines and internal combustion engines. It employs a gas bearing to support the friction free motion of a sliding plate which is used to modulate the supply of compressed air. The sliding plate is driven by an electrodynamic vibrator. Experimental results demonstrate that this arrangement reduces harmonic distortion to at least 20 dB below the fundamental driving frequency for most operating conditions. A theoretical analysis of the transducer enables predictions to be made of the acoustic volume velocity (source strength) produced by the transducer as a function of the upstream pressure and displacement of the sliding valve. Applicability of the transducer to gas turbine and internal combustion engine exhaust systems was tested, and net power consumption resulting from the operation of the device was estimated.

  20. Comparison of Different Measurement Technologies for the In-Flight Assessment of Radiated Acoustic Intensity

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Palumbo, Daniel L.; Buehrle, Ralph D.; Williams, Earl G.; Valdivia, Nicolas; Herdic, Peter C.; Sklanka, Bernard

    2005-01-01

    A series of tests was planned and conducted in the Interior Noise Test Facility at Boeing Field, on the NASA Aries 757 flight research aircraft, and in the Structural Acoustic Loads and Transmission Facility at NASA Langley Research Center. These tests were designed to answer several questions concerning the use of array methods in flight. One focus of the tests was determining whether and to what extent array methods could be used to identify the effects of an acoustical treatment applied to a limited portion of an aircraft fuselage. Another focus of the tests was to verify that the arrays could be used to localize and quantify a known source purposely placed in front of the arrays. Thus the issues related to backside sources and flanking paths present in the complicated sound field were addressed during these tests. These issues were addressed through the use of reference transducers, both accelerometers mounted to the fuselage and microphones in the cabin, that were used to correlate the pressure holograms. measured by the microphone arrays using either SVD methods or partial coherence methods. This correlation analysis accepts only energy that is coherent with the sources sensed by the reference transducers, allowing a noise control engineer to only identify and study those vibratory sources of interest. The remainder of this paper will present a detailed description of the test setups that were used in this test sequence and typical results of the NAH/IBEM analysis used to reconstruct the sound fields. Also, a comparison of data obtained in the laboratory environments and during flights of the 757 aircraft will be made.

  1. Control of collective FSBS and backscatter SRS through plasma composition

    NASA Astrophysics Data System (ADS)

    Rose, Harvey; Lushnikov, Pavel

    2005-10-01

    Nominal NIF parameters are near the collective forward SBS (FSBS) threshold (P. M. Lushnikov and H. A. Rose, Phys. Rev. Lett. 92, 255003 (2004), ``L&R''). It will be shown that being on this instability edge can be used as a control lever: a small amount of high Z dopant may lead to qualitative change in FSBS regime at fixed laser intensity, possibly reducing backscatter instability losses (Such results have already been observed, but absent SSD, a key aspect of our theory: R. M. Stevenson et al., Phys. Plasmas 11, 2709 (2004); L. J. Suter et al., 2738, ib.). Ponderomotive FSBS regimes are determined by the parameter I=F^2( vosc / vosc ve . - ve )^2( ne / ne nc . - nc ) / ( ne / ne nc . - nc ) ν . - ν, with ν the dimensionless ion acoustic damping coefficient and F the optic f/#. Analytical results will be presented which show a decrease of I1pt's threshold value through the addition of high Z dopant to low Z plasma, owing to increased thermal contribution to FSBS. Alternatively, one may raise the threshold by managing the value of νby, e.g., adding He to SiO2. For nominal NIF parameters, a range of He fraction in SiO2 plasma is predicted to suppress backscatter SRS while maintaining control of forward SBS.

  2. Numerical investigation of acoustic field in enclosures: Evaluation of active and reactive components of sound intensity

    NASA Astrophysics Data System (ADS)

    Meissner, Mirosław

    2015-03-01

    The paper focuses on a theoretical description and numerical evaluation of active and reactive components of sound intensity in enclosed spaces. As the study was dedicated to low-frequency room responses, a modal expansion of the sound pressure was used. Numerical simulations have shown that the presence of energy vortices whose size and distribution depend on the character of the room response is a distinctive feature of the active intensity field. When several modes with frequencies close to a source frequency are excited, the vortices within the room are positioned irregularly. However, if the response is determined by one or two dominant modes, a regular distribution of vortices in the room can be observed. The irrotational component of the active intensity was found using the Helmholtz decomposition theorem. As was evidenced by numerical simulations, the suppression of the vortical flow of sound energy in the nearfield permits obtaining a clear image of the sound source.

  3. Effect of the initial field's phase dislocation on the intensity enhancement factor of the laser beam backscattered off a diffuse target

    NASA Astrophysics Data System (ADS)

    Banakh, V. A.; Rytchkov, D. S.

    2014-11-01

    The given article presents the results of the investigation of the vortex laser beam reflection off a diffuse target in turbulent medium. Expressions of the mutual coherence function (MCF) and the relative intensity enhancement factor (REF) of a laser beam at the receiver plane are derived. The effect of the initial phase dislocation in the laser field distribution on the MCF and the REF of a backward wave at the receiver plane is investigated.

  4. Short-term acoustic forecasting via artificial neural networks for neonatal intensive care units.

    PubMed

    Young, Jason; Macke, Christopher J; Tsoukalas, Lefteri H

    2012-11-01

    Noise levels in hospitals, especially neonatal intensive care units (NICUs), have become of great concern for hospital designers. This paper details an artificial neural network (ANN) approach to forecasting the sound loads in NICUs. The ANN is used to learn the relationship between past, present, and future noise levels. By training the ANN with data specific to the location and device used to measure the sound, the ANN is able to produce reasonable predictions of noise levels in the NICU. Best case results show average absolute errors of 5.06 ± 4.04% when used to predict the noise levels one hour ahead, which correspond to 2.53 dBA ± 2.02 dBA. The ANN has the tendency to overpredict during periods of stability and underpredict during large transients. This forecasting algorithm could be of use in any application where prediction and prevention of harmful noise levels are of the utmost concern.

  5. Observations of Enhanced Radar Backscatter (ERB) from Millstone Hill

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1991-01-01

    Intense enhancements of the incoherent radar backscatter spectrum from the topside ionosphere were observed with the Millstone Hill UHF radar. Enhancements occurring at the local ion acoustic frequency causing large asymmetries in the measured ion line may be produced by current driven instabilities. These enhancements pose a practical problem for space surveillance systems because their cross section and spectral width are characteristic of satellites. Conversely, their hard target signature complicates the study of naturally occurring ERB events; it is nearly impossible to distinguish them from satellites based on a single measurement. Statistical comparisons of observed coherent echo distributions with predictions from a satellite catalog were used to broadly identify periods of ERB activity. A series of experiments using multiple diagnostics, including satellite instruments, for simultaneous observations have established the association of ERB with large fluxes of soft suprathermal electrons carrying field aligned currents. Zenith data are also presented which show the asymmetric growth of ion acoustic waves directly above Millstone Hill. Details of these results are presented.

  6. Low-temperature acoustic properties of nanostructured zirconium obtained by intensive plastic deformation

    NASA Astrophysics Data System (ADS)

    Vatazhuk, E. N.; Pal-Val, P. P.; Natsik, V. D.; Pal-Val, L. N.; Tikhonovsky, M. A.; Velikodny, A. N.; Khaimovich, P. A.

    2011-02-01

    The temperature dependences of the logarithmic decrement and dynamic Young's modulus of polycrystalline coarse-grained and nanostructured Zr are studied at temperatures of 2.5-340K. A nanostructured state of samples with grain sizes on the order of 100nm was produced by intensive plastic deformation (IPD). The measurements were made using a two-component vibrator technique at frequencies of 73-350kHz. A relaxation peak in the internal friction near 250K was discovered in the coarse-grained, annealed Zr which is retained after IPD, but its height increases by roughly a factor of 10 and the localization temperature shifts to lower values. In addition, after IPD a new internal friction peak shows up at moderately low temperatures near 80K. The activation parameters for the observed peaks are estimated and it is shown that they arise from different thermally activated dislocation processes: interactions of dislocations with impurities and kink pair formation in dislocations. It was found that IPD is accompanied by a significant (1-8%) reduction in the Young's modulus because of quasistatic and dynamic dislocation effects. A glass-like anomaly appears in the temperature dependence of the Young's modulus of nanostructured Zr at T <20K which may be determined by tunnelling and thermally activated relaxation of quasilocal excitations.

  7. Preliminary Analysis of Low-Frequency Backscatter Data from the Blake Escarpment

    DTIC Science & Technology

    1990-06-01

    distr ibtion and strength of acoustic energy backscattered fromot1e Blake Escarpment. The angular variability of backscatter surces on the Blake...data where scattered energy has been transformed to the appropriate scattering surface) are used to estimate the size and distribution of scatterers...In Figure 4 strong backscattered energy centered at 2.4 km range with reflection times less than 1.0 s denote a promontory near the top of the

  8. NOAA backscatter studies

    NASA Technical Reports Server (NTRS)

    Post, Madison J.

    1991-01-01

    In the past year, NOAA has measured and analyzed another year's worth of backscatter over Boulder, CO. The average profile was computed from 80 satellite observations of backscatter spread throughout the year, using NOAA's CO2 coherent lidar operating at a wavelength of 10.59 microns. The seasonal averages show a familiar trend (highest backscattering in spring, perhaps due to Asian dust or biomass burning, and lowest backscattering in fall). The 1990 average profile was not significantly different from the 1988 or 1989 profiles, except that it displays a slight increase in the upper troposphere, perhaps due to the Redoubt Volcano. The NOAA's backscatter processing program (BETA) was refined to enable the calculation of gaseous absorption effects based on rawinsonde measurements, as well as using atmospheric models. NOAA participated in two intercomparisons of aerosol measuring instruments near Boulder, called FRLAB (Front Range Lidar, Aircraft, and Balloon Experiment). Considerable effort was also put into developing a multiagency science proposal to NASA headquarters to work with both JPL and NASA-Marshall to produce an airborne Doppler lidar facility for the DC-8.

  9. Reducing parametric backscattering by polarization rotation

    SciTech Connect

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. But, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction, it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Though the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.

  10. Reducing parametric backscattering by polarization rotation

    DOE PAGES

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. But, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction,more » it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Though the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.« less

  11. Reducing parametric backscattering by polarization rotation

    NASA Astrophysics Data System (ADS)

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. However, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction, it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Although the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.

  12. Flooded Lung Generates a Suitable Acoustic Pathway for Transthoracic Application of High Intensity Focused Ultrasound in Liver.

    PubMed

    Lesser, Thomas Günther; Boltze, Carsten; Schubert, Harald; Wolfram, Frank

    2016-01-01

    Background: In recent years, high intensity focused ultrasound (HIFU) has gained increasing clinical interest as a non-invasive method for local therapy of liver malignancies. HIFU treatment of tumours and metastases in the liver dome is limited due to the adjacent ultrasound blocking lung. One-lung flooding (OLF) enables complete sonography of lung and adjoining organs including liver. HIFU liver ablation passing through the flooded lung could enable a direct intercostal beam path and thus improve dose deposition in liver. In this study, we evaluate the feasibility of an ultrasound guided transthoracic, transpulmonary HIFU ablation of liver using OLF. Methods: After right-side lung flooding, ultrasound guided HIFU was applied transthoracic- transpulmonary into liver to create thermal lesions in three pigs. The HIFU beam was targeted five times into liver, two times at the liver surface and three times deeper into the tissue. During autopsy examinations of lung, diaphragm and liver located in the HIFU path were performed. The focal liver lesions and lung tissue out of the beam path were examined histologically. Results: Fifteen thermal liver lesions were generated by transpulmonary HIFU sonication in all targeted regions. The lesions appeared well-demarcated in grey color with a cigar-shaped configuration. The mean length and width of the superficial and deeper lesions were 15.8 mm (range: 13-18 mm) and 5.8 mm (range: 5-7 mm), and 10.9 mm (range: 9-13 mm) and 3.3 mm (range: 2-5 mm), respectively. Histopathological, all liver lesions revealed a homogeneous thermal necrosis lacking vitality. There were no signs of damage of the overlying diaphragm and lung tissue. Conclusions: Flooded lung is a suitable pathway for applying HIFU to the liver, thus enabling a transthoracic, transpulmonary approach. The enlarged acoustic window could enhance the ablation speed for targets in the hepatic dome.

  13. Flooded Lung Generates a Suitable Acoustic Pathway for Transthoracic Application of High Intensity Focused Ultrasound in Liver

    PubMed Central

    Lesser, Thomas Günther; Boltze, Carsten; Schubert, Harald; Wolfram, Frank

    2016-01-01

    Background: In recent years, high intensity focused ultrasound (HIFU) has gained increasing clinical interest as a non-invasive method for local therapy of liver malignancies. HIFU treatment of tumours and metastases in the liver dome is limited due to the adjacent ultrasound blocking lung. One-lung flooding (OLF) enables complete sonography of lung and adjoining organs including liver. HIFU liver ablation passing through the flooded lung could enable a direct intercostal beam path and thus improve dose deposition in liver. In this study, we evaluate the feasibility of an ultrasound guided transthoracic, transpulmonary HIFU ablation of liver using OLF. Methods: After right-side lung flooding, ultrasound guided HIFU was applied transthoracic- transpulmonary into liver to create thermal lesions in three pigs. The HIFU beam was targeted five times into liver, two times at the liver surface and three times deeper into the tissue. During autopsy examinations of lung, diaphragm and liver located in the HIFU path were performed. The focal liver lesions and lung tissue out of the beam path were examined histologically. Results: Fifteen thermal liver lesions were generated by transpulmonary HIFU sonication in all targeted regions. The lesions appeared well-demarcated in grey color with a cigar-shaped configuration. The mean length and width of the superficial and deeper lesions were 15.8 mm (range: 13-18 mm) and 5.8 mm (range: 5-7 mm), and 10.9 mm (range: 9-13 mm) and 3.3 mm (range: 2-5 mm), respectively. Histopathological, all liver lesions revealed a homogeneous thermal necrosis lacking vitality. There were no signs of damage of the overlying diaphragm and lung tissue. Conclusions: Flooded lung is a suitable pathway for applying HIFU to the liver, thus enabling a transthoracic, transpulmonary approach. The enlarged acoustic window could enhance the ablation speed for targets in the hepatic dome. PMID:27766022

  14. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-07-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

  15. Experimental investigation on dynamic response of aircraft panels excited by high-intensity acoustic loads in thermal environment

    NASA Astrophysics Data System (ADS)

    WU, Z. Q.; LI, H. B.; ZHANG, W.; CHENG, H.; KONG, F. J.; LIU, B. R.

    2016-09-01

    Metallic and composite panels are the major components for thermal protection system of aircraft vehicles, which are exposed to a severe combination of aerodynamic, thermal and acoustic environments during hypersonic flights. A thermal-acoustic testing apparatus which simulates thermal and acoustic loads was used to validate the integrity and the reliability of these panels. Metallic and ceramic matrix composite flat panels were designed. Dynamic response tests of these panels were carried out using the thermal acoustic apparatus. The temperature of the metallic specimen was up to 400 °C, and the temperature of the composite specimen was up to 600 °C. Moreover, the acoustic load was over 160 dB. Acceleration responses of these testing panels were measured using high temperature instruments during the testing process. Results show that the acceleration root mean square values are dominated by sound pressure level of acoustic loads. Compared with testing data in room environment, the peaks of the acceleration dynamic response shifts obviously to the high frequency in thermal environment.

  16. Suspended particulate matter estimates using optical and acoustic sensors: application in Nestos River plume (Thracian Sea, North Aegean Sea).

    PubMed

    Anastasiou, Sotiria; Sylaios, Georgios K; Tsihrintzis, Vassilios A

    2015-06-01

    The present study investigates the use of combined methods of optical and acoustic sensors, in collaboration with direct in situ measurements, for the calibration and validation of a model transforming acoustic backscatter intensity series into suspended particulate matter (SPM) concentration datasets. The model follows previously elaborated techniques, placing particular attention to the parameterization of the acoustic absorption index as a function of water physical properties. Results were obtained from the annual deployment (during 2007-2008) of an upward-facing acoustic Doppler current profiler (ADCP) (307 kHz), equipped with a Wave Array, and an optical backscatter sensor (OBS), at the bottom of Thassos Passage near Nestos River plume (Thracian Sea, Northern Greece). The OBS was calibrated through linear regression, using 2007 and 2012 field sampling data, exhibiting an error of 13-14 % due to chlorophyll presence. The ADCP signal was calibrated through simultaneous measurements of backscatter intensity and turbidity profiles. Harmonic analysis on the model-produced SPM concentrations explained the tidal influence on their variability, especially during the summer. Empirical orthogonal functions analysis revealed the impact of waves and wave-induced currents on SPM variability. Finally, Nestos River sediment load was found uncorrelated to the SPM change in Thassos Passage, due to the dispersal and sediment deposition near the river mouth.

  17. THERMAL NEUTRON BACKSCATTER IMAGING.

    SciTech Connect

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  18. A relationship between ultrasonic integrated backscatter and myocardial contractile function.

    PubMed Central

    Wickline, S A; Thomas, L J; Miller, J G; Sobel, B E; Perez, J E

    1985-01-01

    We have shown previously that the physiologic, mechanical cardiac cycle is associated with a parallel, cardiac cycle-dependent variation of integrated backscatter (IB). However, the mechanisms responsible are not known. The mathematical and physiological considerations explored in the present study suggest that the relationship between backscatter and myocardial contractile function reflects cyclic alterations in myofibrillar elastic parameters, with the juxtaposition of intracellular and extracellular elastic elements that have different intrinsic acoustic impedances providing an appropriately sized scattering interface at the cellular level. Cardiac cycle-dependent changes in the degree of local acoustic impedance mismatch therefore may elicit concomitant changes in backscatter. Because acoustic impedance is determined partly by elastic modulus, changes in local elastic moduli resulting from the non-Hookian behavior of myocardial elastic elements exposed to stretch may alter the extent of impedance mismatch. When cardiac cell mechanical behavior is represented by a three-component Maxwell-type model of muscle mechanics, the systolic decrease in IB that we have observed experimentally is predicted. Our prior observations of regional intramural differences in IB and the dependence of IB on global contractile function are accounted for as well. When the model is tested experimentally by assessing its ability to predict the regional and global behavior of backscatter in response to passive left ventricular distention, good concordance is observed. Images PMID:3908482

  19. Using ultrasound backscattering signals and Nakagami statistical distribution to assess regional cataract hardness.

    PubMed

    Caixinha, Miguel; Jesus, Danilo A; Velte, Elena; Santos, Mário J; Santos, Jaime B

    2014-12-01

    This study aims to analyze the protein aggregates spatial distribution for different cataract degrees, and correlate this information with the lens acoustical parameters and by this way, assess the cataract regional hardness. Different cataract degrees were induced ex vivo in porcine lenses. A 25 MHz ultrasonic transducer was used to obtain the acoustical parameters (velocity, attenuation, and backscattering signals). B-scan and Nakagami images were constructed. Also, lenses with different cataract degrees were sliced in two regions (nucleus and cortex), for fibers and collagen detection. A significant increase with cataract formation was found for the velocity, attenuation, and brightness intensity of the B-scan images and Nakagami m parameter ( ). The acoustical parameters showed a good to moderate correlation with the m parameter for the different stages of cataract formation. A strong correlation was found between the protein aggregates in the cortex and the m parameter. Lenses without cataract are characterized using a classification and regression tree, by a mean brightness intensity ≤0.351, a variance of the B-scan brightness intensity ≤0.070, a velocity ≤1625 m/s, and an attenuation ≤0.415 dB/mm·MHz (sensitivity: 100% and specificity: 72.6%). To characterize different cataract degrees, the m parameter should be considered. Initial stages of cataract are characterized by a mean brightness intensity >0.351 and a variance of the m parameter >0.110. Advanced stages of cataract are characterized by a mean brightness intensity >0.351, a variance of the m parameter ≤0.110, and a mean m parameter >0.374. For initial and advanced stages of cataract, a sensitivity of 78.4% and a specificity of 86.5% are obtained.

  20. Recovering an electromagnetic obstacle by a few phaseless backscattering measurements

    NASA Astrophysics Data System (ADS)

    Li, Jingzhi; Liu, Hongyu; Wang, Yuliang

    2017-03-01

    We consider the electromagnetic scattering from a convex polyhedral PEC or PMC obstacle due to a time-harmonic incident plane wave. It is shown that the modulus of the far-field pattern in the backscattering aperture possesses a certain local maximum behavior. Using the local maximum indicating phenomena, one can determine the exterior unit normal directions, as well as the face areas, of the front faces of the obstacle. Then we propose a recovery scheme of reconstructing the obstacle by phaseless backscattering measurements. This work significantly extends our recent study in Li and Liu (2014 preprint) from two dimensions and acoustic scattering to the more challenging three dimensions and electromagnetic scattering.

  1. Quantifying Fish Backscattering using SONAR Instrument and Kirchhoff Ray Mode (KRM) Model

    NASA Astrophysics Data System (ADS)

    Manik, Henry M.

    2016-08-01

    Sonar instrument was used to study backscattering from tuna fish. Extraction of target strength, incidence angle, and frequency dependence of the backscattered signal for individual scatterer was important for biological information. For this purpose, acoustic measurement of fish backscatter was conducted in the laboratory. Characteristics and general trends of the target strength of fish with special reference to tuna fish were investigated by using a Kirchhoff Ray Mode (KRM) model. Backscattering strength were calculated for the KRM having typical morphological and physical parameters of actual fish. Those backscattering amplitudes were shown as frequency, body length, backscattering patterns, the density and sound speed dependences, and orientation dependence. These results were compared with experimentally measured target strength data and good agreement was found. Measurement and model showed the target strength from the fish are depend on the presence of swimbladder. Target Strength increase with increasing the frequency and fish length.

  2. Coherent backscattering of light in nematic liquid crystals

    SciTech Connect

    Aksenova, E. V. Kuz'min, V. L.; Romanov, V. P.

    2009-03-15

    Multiple light scattering by director fluctuations in nematic liquid crystals is considered. A uniform director orientation is assumed to be specified by an applied magnetic field. The coherent backscattering effect, which consists in the presence of a sharp light backscattering peak, is studied. The Bethe-Salpeter equation is used to calculate the multiple scattering intensity taking into account the contributions of ladder and cyclic diagrams. An analytical expression for the angular and polarization dependences of the coherent backscattering intensity is obtained in terms of the diffusion approximation. The calculation and experimental results are compared. The developed theory is shown to qualitatively describe the elliptical shape of the backscattering cone, to explain the absence of a coherent contribution for crossed polarizations, and to calculate the relative peak height.

  3. The Acoustic Properties of Low Intensity Vocalizations Match Hearing Sensitivity in the Webbed-Toed Gecko, Gekko subpalmatus

    PubMed Central

    Chen, Jingfeng; Jono, Teppei; Cui, Jianguo; Yue, Xizi; Tang, Yezhong

    2016-01-01

    The design of acoustic signals and hearing sensitivity in socially communicating species would normally be expected to closely match in order to minimize signal degradation and attenuation during signal propagation. Nevertheless, other factors such as sensory biases as well as morphological and physiological constraints may affect strict correspondence between signal features and hearing sensitivity. Thus study of the relationships between sender and receiver characteristics in species utilizing acoustic communication can provide information about how acoustic communication systems evolve. The genus Gekko includes species emitting high-amplitude vocalizations for long-range communication (loud callers) as well as species producing only low-amplitude vocalizations when in close contact with conspecifics (quiet callers) which have rarely been investigated. In order to investigate relationships between auditory physiology and the frequency characteristics of acoustic signals in a quiet caller, Gekko subpalmatus we measured the subjects’ vocal signal characteristics as well as auditory brainstem responses (ABRs) to assess auditory sensitivity. The results show that G. subpalmatus males emit low amplitude calls when encountering females, ranging in dominant frequency from 2.47 to 4.17 kHz with an average at 3.35 kHz. The auditory range with highest sensitivity closely matches the dominant frequency of the vocalizations. This correspondence is consistent with the notion that quiet and loud calling species are under similar selection pressures for matching auditory sensitivity with spectral characteristics of vocalizations. PMID:26752301

  4. The Acoustic Properties of Low Intensity Vocalizations Match Hearing Sensitivity in the Webbed-Toed Gecko, Gekko subpalmatus.

    PubMed

    Chen, Jingfeng; Jono, Teppei; Cui, Jianguo; Yue, Xizi; Tang, Yezhong

    2016-01-01

    The design of acoustic signals and hearing sensitivity in socially communicating species would normally be expected to closely match in order to minimize signal degradation and attenuation during signal propagation. Nevertheless, other factors such as sensory biases as well as morphological and physiological constraints may affect strict correspondence between signal features and hearing sensitivity. Thus study of the relationships between sender and receiver characteristics in species utilizing acoustic communication can provide information about how acoustic communication systems evolve. The genus Gekko includes species emitting high-amplitude vocalizations for long-range communication (loud callers) as well as species producing only low-amplitude vocalizations when in close contact with conspecifics (quiet callers) which have rarely been investigated. In order to investigate relationships between auditory physiology and the frequency characteristics of acoustic signals in a quiet caller, Gekko subpalmatus we measured the subjects' vocal signal characteristics as well as auditory brainstem responses (ABRs) to assess auditory sensitivity. The results show that G. subpalmatus males emit low amplitude calls when encountering females, ranging in dominant frequency from 2.47 to 4.17 kHz with an average at 3.35 kHz. The auditory range with highest sensitivity closely matches the dominant frequency of the vocalizations. This correspondence is consistent with the notion that quiet and loud calling species are under similar selection pressures for matching auditory sensitivity with spectral characteristics of vocalizations.

  5. A method for removing arm backscatter from EPID images

    SciTech Connect

    King, Brian W.; Greer, Peter B.

    2013-07-15

    Purpose: To develop a method for removing the support arm backscatter from images acquired using current Varian electronic portal imaging devices (EPIDs).Methods: The effect of arm backscatter on EPID images was modeled using a kernel convolution method. The parameters of the model were optimized by comparing on-arm images to off-arm images. The model was used to develop a method to remove the effect of backscatter from measured EPID images. The performance of the backscatter removal method was tested by comparing backscatter corrected on-arm images to measured off-arm images for 17 rectangular fields of different sizes and locations on the imager. The method was also tested using on- and off-arm images from 42 intensity modulated radiotherapy (IMRT) fields.Results: Images generated by the backscatter removal method gave consistently better agreement with off-arm images than images without backscatter correction. For the 17 rectangular fields studied, the root mean square difference of in-plane profiles compared to off-arm profiles was reduced from 1.19% (standard deviation 0.59%) on average without backscatter removal to 0.38% (standard deviation 0.18%) when using the backscatter removal method. When comparing to the off-arm images from the 42 IMRT fields, the mean {gamma} and percentage of pixels with {gamma} < 1 were improved by the backscatter removal method in all but one of the images studied. The mean {gamma} value (1%, 1 mm) for the IMRT fields studied was reduced from 0.80 to 0.57 by using the backscatter removal method, while the mean {gamma} pass rate was increased from 72.2% to 84.6%.Conclusions: A backscatter removal method has been developed to estimate the image acquired by the EPID without any arm backscatter from an image acquired in the presence of arm backscatter. The method has been shown to produce consistently reliable results for a wide range of field sizes and jaw configurations.

  6. Backscattering enhancement from a conducting surface with isotropic roughness

    NASA Astrophysics Data System (ADS)

    Knotts, M. E.; O'Donnell, K. A.

    1993-05-01

    Measurements are presented of the angular distribution of scattered intensity associated with backscattering enhancement from a conducting surface with two-dimensional roughness. For a linearly polarized incident wave, the diffusely scattered intensity is found to be significantly polarization-dependent.

  7. Averaged indicators of secondary flow in repeated acoustic Doppler current profiler crossings of bends

    USGS Publications Warehouse

    Dinehart, R.L.; Burau, J.R.

    2005-01-01

    [1] Cross-stream velocity was measured in a large river bend at high spatial resolution over three separate survey episodes. A suite of methods for resolving cross-stream velocity distributions was tested on data collected using acoustic Doppler current profilers (ADCP) in the sand-bedded Sacramento River, California. The bend was surveyed with repeated ADCP crossings at eight cross sections during a rising limb of high discharge in February 2004 and twice on recession in March 2004. By translating and interpolating repeated ADCP crossings to planar grids, velocity ensembles at similar positions along irregular boat paths could be averaged. The averaging minimized turbulent fluctuations in streamwise velocities over 1 m/s, enabling the resolution of weaker cross-stream velocities (???15-30 cm/s). Secondary-flow influence on suspended sediment was inferred from a lateral region of acoustic backscatter intensity aligned with outward flow over the point bar. A near-bed decrease in backscatter intensity across the pool corresponded with inward cross-stream flow. These suspension indicators were used to orient averaged velocity grids for unambiguously defining the cross-stream velocity magnitudes. Additional field investigations could test whether the correlation between cross-stream velocity and backscatter intensity patterns results from helical recirculation of suspended sediment to the inside of the bend. These river measurements, consistent with classic and recent laboratory studies, show that ADCP surveys can provide refined views of secondary flow and sediment movement in large rivers.

  8. The influence of acoustic-dislocation interaction on intensity of the bound exciton recombination in initial and irradiated GaAsP LEDs structures

    NASA Astrophysics Data System (ADS)

    Konoreva, O. V.; Olikh, Ya. M.; Pinkovska, M. B.; Radkevych, O. I.; Tartachnyk, V. P.; Shlapatska, V. V.

    2017-02-01

    Acoustic-excitant interaction of GaAsP light emitting diodes (initial and irradiated by 2 MeV electrons) was studied. Structure based on GaAs1-xPx solid solutions, grown by epitaxy from the vapor phase, were the object of the research. It was observed that ultrasonic treatment (UST) results in the drop of the emitting intensity of structures, which relaxes to the previous values after ultrasound termination. The possible reason of observed changes concerning nonequilibrium dislocation clusters were discussed. Electron irradiation leads to the exponential drop of emitting intensity, which restores after UST much slower than initial one. Radiation degradation parameters τ0/Kτ of yellow and orange LEDs were found.

  9. Side-looking sonar backscatter response at dual frequencies

    NASA Astrophysics Data System (ADS)

    Ryan, William B. F.; Flood, Roger D.

    1996-12-01

    Dual-frequency side-looking sonars have the potential to be used as remote sensing tools to characterize subaqueous terrains. In one case study of the carbonate-ooze-coated Blake Plateau off-shore of Georgia, U.S.A., the difference in acoustic attenuation for 50 and 20 mm wavelengths (30 and 72 kHz frequency) permits the discrimination of sub-bottom scatterers from seabed surface textural features to reveal patchy regions where a buried hard ground had been pock-marked by karst-like depressions. In a second study of the Upper Hudson River in New York, U.S.A., related to environmental contaminates, the backscatter response at 15 and 3 mm acoustic wavelengths (100 and 500 kHz frequency) serves as a useful proxy for sediment grain size with coarser detritus distinguished from finer sediments. Sand and gravel regions inferred from the backscatter were confirmed by ground truth sampling.

  10. Integrating Acoustic Imaging of Flow Regimes With Bathymetry: A Case Study, Main Endeavor Field

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Rona, P. A.; Jackson, D. R.; Jones, C. D.

    2003-12-01

    A unified view of the seafloor and the hydrothermal flow regimes (plumes and diffuse flow) is constructed for three major vent clusters in the Main Endeavour Field (e.g., Grotto, S&M, and Salut) of the Endeavour Segment, Juan de Fuca Ridge. The Main Endeavour Field is one of RIDGE 2000's Integrated Study Sites. A variety of visualization techniques are used to reconstruct the plumes (3D) and the diffuse flow field (2D) based on our acoustic imaging data set (July 2000 cruise). Plumes are identified as volumes of high backscatter intensity (indicating high particulate content or sharp density contrasts due to temperature variations) that remained high intensity when successive acoustic pings were subtracted (indicating that the acoustic targets producing the backscatter were in motion). Areas of diffuse flow are detected using our acoustic scintillation technique (AST). For the Grotto vent region (where a new Doppler technique was used to estimate vertical velocities in the plume), we estimate the areal partitioning between black smoker and diffuse flow in terms of volume fluxes. The volumetric and areal regions, where plume and diffuse flow were imaged, are registered over the bathymetry and compared to geologic maps of each region. The resulting images provide a unified view of the seafloor by integrating hydrothermal flow with geology.

  11. Reduction of peak acoustic pressure and shaping of heated region by use of multifoci sonications in MR-guided high-intensity focused ultrasound mediated mild hyperthermia

    PubMed Central

    Partanen, Ari; Tillander, Matti; Yarmolenko, Pavel S.; Wood, Bradford J.; Dreher, Matthew R.; Köhler, Max O.

    2013-01-01

    Purpose: Ablative hyperthermia (>55 °C) has been used as a definitive treatment for accessible solid tumors not amenable to surgery, whereas mild hyperthermia (40–45 °C) has been shown effective as an adjuvant for both radiotherapy and chemotherapy. An optimal mild hyperthermia treatment is spatially accurate, with precise and homogeneous heating limited to the target region while also limiting the likelihood of unwanted thermal or mechanical bioeffects (tissue damage, vascular shutoff). Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) can noninvasively heat solid tumors under image-guidance. In a mild hyperthermia setting, a sonication approach utilizing multiple concurrent foci may provide the benefit of reducing acoustic pressure in the focal region (leading to reduced or no mechanical effects), while providing better control over the heating. The objective of this study was to design, implement, and characterize a multifoci sonication approach in combination with a mild hyperthermia heating algorithm, and compare it to the more conventional method of electronically sweeping a single focus. Methods: Simulations (acoustic and thermal) and measurements (acoustic, with needle hydrophone) were performed. In addition, heating performance of multifoci and single focus sonications was compared using a clinical MR-HIFU platform in a phantom (target = 4–16 mm), in normal rabbit thigh muscle (target = 8 mm), and in a Vx2 tumor (target = 8 mm). A binary control algorithm was used for real-time mild hyperthermia feedback control (target range = 40.5–41 °C). Data were analyzed for peak acoustic pressure and intensity, heating energy efficiency, temperature accuracy (mean), homogeneity of heating (standard deviation [SD], T10 and T90), diameter and length of the heated region, and thermal dose (CEM43). Results: Compared to the single focus approach, multifoci sonications showed significantly lower (67% reduction) peak acoustic

  12. Backscattering of agglomerate particles

    NASA Astrophysics Data System (ADS)

    Zubko, Evgenij; Ovcharenko, Andrey; Bondarenko, Sergey; Shkuratov, Yuriy; Scotto, Cathy S.; Merritt, Charles; Hart, Matthew B.; Eversole, Jay D.; Videen, Gorden W.

    2004-12-01

    We examine how aggregation affects the light-scattering signatures, especially the polarization in the near-backward-scattering direction. We use the discrete dipole approximation (DDA) to study the backscatter of agglomerate particles consisting of oblong monomers. We examine the effects of monomer number and packing structure on the resulting negative polarization branch at small phase angle. We find large a dependence on the orientation of the monomers within the agglomerate and a smaller dependence on the number of monomers, suggesting that the mechanism producing the negative polarization minimum depends strongly on the interactions between the individual monomers. We also examine experimental measurements of substrates composed of biological cells. We find that the light-scattering signatures in the backward direction are not only different for different spore species, but for spores that have been prepared using different methodologies. These signatures are reproducible in different substrates composed of the spores from the same batches.

  13. Acoustic Scattering by an Heterogeneous River Bed: Relationship to Bathymetry and Implications for Sediment Classification using Multibeam Echosounder Data

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Grams, P. E.; Kaplinski, M. A.

    2013-12-01

    Bed sediment classification using backscatter intensities from multibeam echosounder (MBES) systems in rivers is attractive due to its high coverage and resolution, limited costs compared to conventional sampling, and the potential combination of bathymetric and bottom sediment mapping in one instrument. Sediment classification by means of hydro-acoustic remote sensing is becoming an established discipline in oceanography. A number of techniques have been proposed, none of which has become the preferred method. In rivers, however, the field is relatively new and faces challenges not typically encountered in deep ocean settings. For example, river beds tend to have larger mean and maximum slopes than typical seabeds. Shallow water depths not only make MBES deployments more difficult, but also make the size of the beam footprint on the bed small which can lead to relatively noisy backscatter data. In particular, sediments can more heterogeneous in terms of: 1) range of particle sizes (both in a given area and over an entire mapped reach); 2) range of grain size over proximal bedform fields; 3) superimposed bedforms; and 4) abrupt sedimentological transitions over small scales. This sediment heterogeneity means grain-size usually changes along swath, which has a number of implications for existing sediment classification methods which use the distribution of backscatter intensities over all acoustic beams. We discuss these implications with reference to MBES data collected from the Colorado River in Grand Canyon, Arizona. We analyze the scale-dependence of probability density functions (PDF) of measured elevations in different sedimentological settings, which reveals the appropriate spatial scale at which to apply acoustic scattering theories. We also discuss the joint PDF of elevation and backscatter over different scales as a means by which to create an adaptive gridding scheme in which each grid is scaled appropriately, in situations with rapidly changing

  14. Optimization of real-time acoustical and mechanical monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for high focused ultrasound (HMIFU).

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2013-01-01

    Harmonic Motion Imaging (HMI) for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in silica, in vitro and in vivo. Its principle is based on emission of an Amplitude-modulated therapeutic ultrasound beam utilizing a therapeutic transducer to induce an oscillatory radiation force while tracking the focal tissue mechanical response during the HIFU treatment using a confocally-aligned diagnostic transducer. In order to translate towards the clinical implementation of HMIFU, a complete assessment study is required in order to investigate the optimal radiation force threshold for reliable monitoring the local tissue mechanical property changes, i.e., the estimation HMIFU displacement under thermal, acoustical, and mechanical effects within focal medium (i.e., boiling, cavitation, and nonlinearity) using biological specimen. In this study, HMIFU technique is applied on HIFU treatment monitoring on freshly excised ex vivo canine liver specimens. In order to perform the multi-characteristic assessment, the diagnostic transducer was operated as either a pulse-echo imager or Passive Cavitation Detector (PCD) to assess the acoustic and mechanical response, while a bare-wire thermocouple was used to monitor the focal temperature change. As the acoustic power of HIFU treatment was ranged from 2.3 to 11.4 W, robust HMI displacement was observed across the entire range. Moreover, an optimized range for high quality displacement monitoring was found to be between 3.6 to 5.2W, where displacement showed an increase followed by significant decrease, indicating a stiffening of focal medium due to thermal lesion formation, while the correlation coefficient was maintained above 0.95.

  15. Seabed maps showing topography, ruggedness, backscatter intensity, sediment mobility, and the distribution of geologic substrates in Quadrangle 6 of the Stellwagen Bank National Marine Sanctuary Region offshore of Boston, Massachusetts

    USGS Publications Warehouse

    Valentine, Page C.; Gallea, Leslie B.

    2015-11-10

    The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, and areas dominated by fine-grained or coarse-grained sand. Interpretations of bathymetric and seabed backscatter imagery, photographs, video, and grain-size analyses were used to create the geology-based maps. In all, data from 420 stations were analyzed, including sediment samples from 325 locations. The seabed geology map shows the distribution of 10 substrate types ranging from boulder ridges to immobile, muddy sand to mobile, rippled sand. Mapped substrate types are defined on the basis of sediment grain-size composition, surface morphology, sediment layering, the mobility or immobility of substrate surfaces, and water depth range. This map series is intended to portray the major geological elements (substrates, topographic features, processes) of environments within quadrangle 6. Additionally, these maps will be the basis for the study of the ecological requirements of invertebrate and vertebrate species that utilize these substrates and guide seabed management in the region.

  16. Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments

    SciTech Connect

    Khokhlova, Tanya D; Pelivanov, Ivan M; Solomatin, Vladimir S; Karabutov, Aleksander A; Sapozhnikov, Oleg A

    2006-12-31

    The possibility of using the opto-acoustic (OA) method for monitoring high-intensity ultrasonic therapy is studied. The optical properties of raw and boiled liver samples used as the undamaged model tissue and tissue destroyed by ultrasound, respectively, are measured. Experiments are performed with samples consisting of several alternating layers of raw and boiled liver of different thickness. The position and transverse size of the thermal lesion were determined from the temporal shape of the OA signals. The results of measurements are compared with the real size and position of the thermal lesion determined from the subsequent cuts of the sample. It is shown that the OA method permits the diagnostics of variations in biological tissues upon ultrasonic therapy. (special issue devoted to multiple radiation scattering in random media)

  17. Determination of Backscattering Sources in Various Targets

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Zoughi, R.; Wu, L. K. (Principal Investigator)

    1985-01-01

    The objectives of this research are to identify the primary contributors to 10 GHz radar backscatter from various natural and man-made surfaces and objects, and to use this information in developing new and better models for the scatter. When the true sources are known for the scattering that leads to variation in intensity on radar images, the images (and sets of them) may be interpreted more meaningfully in terms of the variation of parameters of interest for science or application. For example, better interpretation of vegetation images may be possible for yield forecasting and stress detection.

  18. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  19. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  20. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  1. Nonlinear frequency shift in Raman backscattering and its implications for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Kaganovich, D.; Hafizi, B.; Palastro, J. P.; Ting, A.; Helle, M. H.; Chen, Y.-H.; Jones, T. G.; Gordon, D. F.

    2016-12-01

    Raman backscattered radiation of intense laser pulses in plasmas is investigated for a wide range of intensities relevant to laser wakefield acceleration. The weakly nonlinear dispersion relation for Raman backscattering predicts an intensity and density dependent frequency shift that is opposite to that suggested by a simple relativistic consideration. This observation has been benchmarked against experimental results, providing a novel diagnostic for laser-plasma interactions.

  2. Acoustic iridescence.

    PubMed

    Cox, Trevor J

    2011-03-01

    An investigation has been undertaken into acoustic iridescence, exploring how a device can be constructed which alter sound waves, in a similar way to structures in nature that act on light to produce optical iridescence. The main construction had many thin perforated sheets spaced half a wavelength apart for a specified design frequency. The sheets create the necessary impedance discontinuities to create backscattered waves, which then interfere to create strongly reflected sound at certain frequencies. Predictions and measurements show a set of harmonics, evenly spaced in frequency, for which sound is reflected strongly. And the frequency of these harmonics increases as the angle of observation gets larger, mimicking the iridescence seen in natural optical systems. Similar to optical systems, the reflections become weaker for oblique angles of reflection. A second construction was briefly examined which exploited a metamaterial made from elements and inclusions which were much smaller than the wavelength. Boundary element method predictions confirmed the potential for creating acoustic iridescence from layers of such a material.

  3. Compton backscattering of intracavity storage ring free-electron laser radiation

    SciTech Connect

    Dattoli, G.; Giannessi, L.; Torre, A.

    1995-12-31

    We discuss the{gamma}-ray production by Compton backscattering of intracavity storage ring Free-Electron Laser radiation. We use a semi-analytical model which provides the build up of the signal combined with the storage ring damping mechanism and derive simple relations yielding the connection between backscattered. Photons brightness and the intercavity laser equilibrium intensity.

  4. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  5. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power.

    PubMed

    Pajek, Daniel; Burgess, Alison; Huang, Yuexi; Hynynen, Kullervo

    2014-09-01

    The purpose of this study was to evaluate use of intravascular perfluorocarbon droplets to reduce the sonication power required to achieve clot lysis with high-intensity focused ultrasound. High-intensity focused ultrasound with droplets was initially applied to blood clots in an in vitro flow apparatus, and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to illustrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24 ± 5% of the sonication power without droplets. Recanalization occurred in 71% of rabbits that received 1-ms pulsed sonications during continuous intravascular droplet infusion (p = 0.041 vs controls). Preliminary experiments indicated that damage was confined to the ultrasonic focus, suggesting that tolerable treatments would be possible with a more tightly focused hemispheric array that allows the whole focus to be placed inside of the main arteries in the human brain.

  6. The role of acoustic nonlinearity in tissue heating behind the rib cage using high intensity focused ultrasound phased array

    PubMed Central

    Yuldashev, Petr V.; Shmeleva, Svetlana M.; Ilyin, Sergey A.; Sapozhnikov, Oleg A.; Gavrilov, Leonid R.; Khokhlova, Vera A.

    2013-01-01

    The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path, and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low power sonications. Intensity levels at the face of the array elements that corresponded to formation of high amplitude shock fronts in the focal region were determined as 10 W·cm−2 in the free field in water and 40 W·cm−2 in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue. PMID:23528338

  7. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  8. Broadband enhanced backscattering spectroscopy of strongly scattering media.

    PubMed

    Muskens, O L; Lagendijk, A

    2008-01-21

    We report on a new experimental method for enhanced backscattering spectroscopy (EBS) of strongly scattering media over a bandwidth from 530-1000 nm. The instrument consists of a supercontinuum light source and an angle-dependent detection system using a fiber-coupled grating spectrometer. Using a combination of two setups, the backscattered intensity is obtained over a large angular range and using circularly polarized light. We present broadband EBS of a TiO(2) powder and of a strongly scattering porous GaP layer. In combination with theoretical model fits, the EBS system yields the optical transport mean free path over the available spectral window.

  9. Light Backscattering Polarization Patterns from Turbid Media: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Rakovic, Milun J.; Kattawar, George W.; Mehrubeoglu, Mehrube; Cameron, Brent D.; Wang, Lihong V.; Rastegar, Sohi; Coté, Gerard L.

    1999-05-01

    We present both experimental measurements and Monte-Carlo-based simulations of the diffusely backscattered intensity patterns that arise from illuminating a turbid medium with a polarized laser beam. It is rigorously shown that, because of axial symmetry of the system, only seven elements of the effective backscattering Mueller matrix are independent. A new numerical method that allows simultaneous calculation of all 16 elements of the two-dimensional Mueller matrix is used. To validate our method we compared calculations to measurements from a turbid medium that consisted of polystyrene spheres of different sizes and concentrations in deionized water. The experimental and numerical results are in excellent agreement.

  10. Light backscattering polarization patterns from turbid media: theory and experiment.

    PubMed

    Raković, M J; Kattawar, G W; Mehrubeoğlu, M B; Cameron, B D; Wang, L V; Rastegar, S; Coté, G L

    1999-05-20

    We present both experimental measurements and Monte-Carlo-based simulations of the diffusely backscattered intensity patterns that arise from illuminating a turbid medium with a polarized laser beam. It is rigorously shown that, because of axial symmetry of the system, only seven elements of the effective backscattering Mueller matrix are independent. A new numerical method that allows simultaneous calculation of all 16 elements of the two-dimensional Mueller matrix is used. To validate our method we compared calculations to measurements from a turbid medium that consisted of polystyrene spheres of different sizes and concentrations in deionized water. The experimental and numerical results are in excellent agreement.

  11. Thresholds of Raman backscatter: effects of collisions and Landau damping

    SciTech Connect

    Estabrook, K.; Kruer, W.L.

    1983-11-03

    We present 1.5 dimensional simulations and theory of the threshold of Raman backscatter for a variety of density profiles, background temperatures and collision frequencies, nu/sub ei/. The simulations show Raman backscatter of approx. 4 x 10/sup -4/ at intensities approx. 30 times below the del n threshold which we suggest is due to light scattering off of noise electron plasma waves. The absorption drops significantly and the threshold rises as the Landau damping ..omega../sub i/ and/or nu/sub ei/ approach the growth rate ..gamma../sub 0/. Many experiments are already in the collisional regime.

  12. Tolerance to exercise intensity modulates pleasure when exercising in music: The upsides of acoustic energy for High Tolerant individuals

    PubMed Central

    2017-01-01

    Moderate physical activity can be experienced by some as pleasurable and by others as discouraging. This may be why many people lack sufficient motivation to participate in the recommended 150 minutes of moderately intense exercise per week. In the present study, we assessed how pleasure and enjoyment were modulated differently by one’s tolerance to self-paced physical activity. Sixty-three healthy individuals were allocated to three independent experimental conditions: a resting condition (watching TV), a cycling in silence condition, and a cycling in music condition. The tolerance threshold was assessed using the PRETIE-Questionnaire. Physical activity consisted in cycling during 30 minutes, at an intensity perceived as “somewhat difficult” on the Ratings of Perceived Exertion Scale. While controlling for self-reported physical activity level, results revealed that for the same perception of exertion and a similar level of enjoyment, the High Tolerance group produced more power output than the Low Tolerance group. There was a positive effect of music for High Tolerant individuals only, with music inducing greater power output and more pleasure. There was an effect of music on heart rate frequency in the Low Tolerant individuals without benefits in power output or pleasure. Our results suggest that for Low Tolerant individuals, energizing environments can interfere with the promised (positive) distracting effects of music. Hence, tolerance to physical effort must be taken into account to conceive training sessions that seek to use distracting methods as means to sustain pleasurable exercising over time. PMID:28248980

  13. The activation of tissue factor by high intensity focused ultrasound—a pathway to acoustic-biochemical hemostasis

    NASA Astrophysics Data System (ADS)

    Yang, Xinmai; Barber, Frank E.; Morrissey, James H.; Church, Charles C.

    2006-05-01

    High intensity focused ultrasound (HIFU) is believed to have great potential for inducing hemostasis in severely bleeding trauma victims. The addition of HIFU-activated biomolecular substances to the blood during treatment could significantly reduce the time required to achieve hemostasis, but such substances must remain inactive everywhere except at the site of injury. The integral-membrane protein, tissue factor (TF), is by far the most potent known trigger for the blood clotting cascade. We propose to employ liposomes with the extracellular domain of TF facing the lumen ("encrypted TF") to allow the TF molecules to be introduced into the blood stream without causing systemic activation of coagulation. HIFU sonication at the site of injury will be used to break up the liposomes and thereby expose TF to the plasma, thus combining the hemostatic potential of HIFU along with an increase in the rate of clot formation triggered by TF. In our initial studies we have produced a range of concentrations of liposomes containing encrypted TF in a buffer solution and exposed them to ultrasound at a number of different intensity levels and duty cycles. Clotting assays were performed to determine the level of the desired effect of the ultrasound. The results suggest that HIFU can be effective in exposing active TF from the encrypted liposomes to accelerate blood clotting at the site of exposure.

  14. Tolerance to exercise intensity modulates pleasure when exercising in music: The upsides of acoustic energy for High Tolerant individuals.

    PubMed

    Carlier, Mauraine; Delevoye-Turrell, Yvonne

    2017-01-01

    Moderate physical activity can be experienced by some as pleasurable and by others as discouraging. This may be why many people lack sufficient motivation to participate in the recommended 150 minutes of moderately intense exercise per week. In the present study, we assessed how pleasure and enjoyment were modulated differently by one's tolerance to self-paced physical activity. Sixty-three healthy individuals were allocated to three independent experimental conditions: a resting condition (watching TV), a cycling in silence condition, and a cycling in music condition. The tolerance threshold was assessed using the PRETIE-Questionnaire. Physical activity consisted in cycling during 30 minutes, at an intensity perceived as "somewhat difficult" on the Ratings of Perceived Exertion Scale. While controlling for self-reported physical activity level, results revealed that for the same perception of exertion and a similar level of enjoyment, the High Tolerance group produced more power output than the Low Tolerance group. There was a positive effect of music for High Tolerant individuals only, with music inducing greater power output and more pleasure. There was an effect of music on heart rate frequency in the Low Tolerant individuals without benefits in power output or pleasure. Our results suggest that for Low Tolerant individuals, energizing environments can interfere with the promised (positive) distracting effects of music. Hence, tolerance to physical effort must be taken into account to conceive training sessions that seek to use distracting methods as means to sustain pleasurable exercising over time.

  15. A simulation algorithm for ultrasound liver backscattered signals.

    PubMed

    Zatari, D; Botros, N; Dunn, F

    1995-11-01

    In this study, we present a simulation algorithm for the backscattered ultrasound signal from liver tissue. The algorithm simulates backscattered signals from normal liver and three different liver abnormalities. The performance of the algorithm has been tested by statistically comparing the simulated signals with corresponding signals obtained from a previous in vivo study. To verify that the simulated signals can be classified correctly we have applied a classification technique based on an artificial neural network. The acoustic features extracted from the spectrum over a 2.5 MHz bandwidth are the attenuation coefficient and the change of speed of sound with frequency (dispersion). Our results show that the algorithm performs satisfactorily. Further testing of the algorithm is conducted by the use of a data acquisition and analysis system designed by the authors, where several simulated signals are stored in memory chips and classified according to their abnormalities.

  16. 3D Backscatter Imaging System

    NASA Technical Reports Server (NTRS)

    Turner, D. Clark (Inventor); Whitaker, Ross (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  17. Laser light backscatter from intermediate and high Z plasmas

    NASA Astrophysics Data System (ADS)

    Berger, R. L.; Constantin, C.; Divol, L.; Meezan, N.; Froula, D. H.; Glenzer, S. H.; Suter, L. J.; Niemann, C.

    2006-09-01

    In experiments at the Omega Laser Facility [J. M. Soures et al., Fusion Technol. 30, 492 (1996)], stimulated Brillouin backscatter (SBS) from gasbags filled with krypton and xenon gases was ten times lower than from CO2-filled gasbags with similar electron densities. The SBS backscatter was a 1%-5% for both 527 and 351nm interaction beams at an intensity of ˜1015W /cm2. The SRS backscatter was less than 1%. The 351nm interaction beam is below the threshold for filamentation and the SBS occurs in the density plateau between the blast waves. Inverse bremsstrahlung absorption of the incident and SBS light account for the lower reflectivity from krypton than from CO2. The 527nm interaction beam filaments in the blowoff plasma before the beam propagates through the blast wave, where it is strongly absorbed. Thus, most of the 527nm SBS occurs in the flowing plasma outside the blast waves.

  18. Effects of optical backscattering on silicon photonic hybrid laser performance

    NASA Astrophysics Data System (ADS)

    Pacradouni, V.; Klein, J.; Pond, J.

    2016-04-01

    We present numerical results on the effect of backscattering at the junctions of double bus ring resonators in a Vernier ring hybrid laser design. The structure is comprised off a pair of III-V gain media evanescently coupled to a silicon on insulator racetrack comprised of a pair of double bus ring resonators coupled together through straight and flared waveguide sections. We show how the small backscattering at the ring resonator junctions has the effect of splitting and shifting the resonances off the clockwise and counter clockwise propagating modes thereby modifying the feedback spectrum from the ideal case. We then simulate results such as light current (LI) curves, relative intensity noise (RIN) and laser spectrum, and compare the laser performance including backscattering effects with the ideal case.

  19. Photoelectron backscattering in vacuum phototubes

    NASA Astrophysics Data System (ADS)

    Lubsandorzhiev, B. K.; Vasiliev, R. V.; Vyatchin, Y. E.; Shaibonov, B. A. J.

    2006-11-01

    In this article we describe results of studies of a photoelectron backscattering effect in vacuum phototubes: classical photomultipliers (PMT) and hybrid phototubes (PH). Late pulses occurring in PMTs are attributed to the photoelectron backscattering and distinguished from pulses due to an anode glow effect. The late pulses are measured in a number of PMTs and HPs with various photocathode sizes covering 1 50 cm range and different types of the first dynode materials and construction designs. It is shown that the late pulses are a generic feature of all vacuum photodetectors—PMTs and PHs—and they do not deteriorate dramatically amplitude and timing responses of vacuum phototubes.

  20. Temporal and spatial variability of ADCP backscatter on a continental slope

    NASA Astrophysics Data System (ADS)

    Sindlinger, Laurie R.; Biggs, Douglas C.; DiMarco, Steven F.

    2005-01-01

    Previous research has shown that acoustic volume backscatter intensity (ABI) from an acoustic Doppler current profiler (ADCP) can be a proxy for zooplankton and micronekton biomass over time or space. As part of NOAA's Sperm Whale and Acoustic Monitoring Program (SWAMP) and a follow-on ichthyoplankton survey (SEAMAP), a ship-mounted 300-kHz broadband ADCP collected current velocity and ABI data from July to September 2001 in the northeast Gulf of Mexico. The present study sought to compare/contrast the variability in ABI both spatially and temporally using the data obtained from the SWAMP and SEAMAP cruises. The ADCP data were averaged over 2 min and 4 m vertical bins from 16 to 56 m below sea surface. Usually, ABI in this epipelagic realm averaged 3 dB higher at night than during the day because of diel vertical migration of zooplankton and micronekton into these near surface waters, while in a region having cyclonic circulation along the continental margin of the northeast Gulf, ABI averaged 6 dB higher than in an anticyclonic warm filament there. Wet displacement volumes (WDV) were measured using Bongo net tows to estimate that a 6 dB increase in ABI was equivalent to an increase from 9 to 10.5 ml WDV of plankton+micronekton per 100 m 3. Sperm whale abundance has been shown to be positively correlated with regions of locally high ABI, and sperm whale sightings during SWAMP were also compared to our ABI measurements. Spectral and Empirical Orthogonal Function analyses were performed on subsets of the ABI data for which 10-14 day time series were available and showed 2-3 day periodicity near-surface, corresponding to spatial scales of 10 1-10 2 km. During summer 2001, the mesoscale circulation along the subtropical continental margin in the northeastern Gulf was found to be the principal forcing factor for low frequency ABI variation. Increased backscatter observations are also correlated with offshore flow from the continental margin to the deep ocean

  1. Cruise report RV Ocean Surveyor Cruise 0-1-00-GM; the bathymetry and acoustic backscatter of the Pinnacles area; northern Gulf of Mexico, May 23, through June 10, 2000; Venice, LA to Venice, LA

    USGS Publications Warehouse

    Gardner, James V.; Sulak, Kenneth J.; Dartnell, Peter; Hellequin, Laurent; Calder, Brian R.; Mayer, Larry A.

    2000-01-01

    and juvenile habitats for economically important sport/food fishes. Also, deep-reef ecosystems as well as the fish populations they sustain are impacted by intensive oil-field development. It is now known that deep OCS reefs function as a key source of re-population (via seasonal and ontogenetic migration) of already heavily impacted inshore reefs. A reflection of this realization is the recent closure by the Gulf States Fisheries Management Council of a 600 mi 2 area of the Florida Middle Grounds (another unmapped major "40-fathom" OCS reef complex) to commercial fishing to preserve grouper spawning aggregations. It is known that the Pinnacles reefs support a lush fauna of ahermatypic hard corals, soft corals, black corals, sessile crinoids and sponges—together forming a living habitat for a well-developed fish fauna. The fish fauna comprises typical Caribbean reef fishes and Carolinian shelf fishes, plus epipelagic fishes, and a few deep-sea fishes. The base of the megafaunal invertebrate food web is plankton, borne by essentially continuous semi-laminar currents flowing predominantly out of the SW, up, along and across the shelf edge. These currents are intercepted by pinnacles reefs, which lie roughly in two linear tracts, parallel to the coastline (see fig. 1 in report). USGS research initiated in 1997 (Sulak et al., in progress) has demonstrated that the Pinnacles reef fish fauna is dominated by planktivorous fishes. Ongoing food habits, trophic web and stable isotope analyses by the USGS are reinforcing a basic picture of deep OCS reefs as ecosystems based on exogenous current-borne plankton. Long-term current meter deployments have demonstrated that the >3 m,

  2. Validation of automated supervised segmentation of multibeam backscatter data from the Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Hillman, Jess I. T.; Lamarche, Geoffroy; Pallentin, Arne; Pecher, Ingo A.; Gorman, Andrew R.; Schneider von Deimling, Jens

    2017-01-01

    Using automated supervised segmentation of multibeam backscatter data to delineate seafloor substrates is a relatively novel technique. Low-frequency multibeam echosounders (MBES), such as the 12-kHz EM120, present particular difficulties since the signal can penetrate several metres into the seafloor, depending on substrate type. We present a case study illustrating how a non-targeted dataset may be used to derive information from multibeam backscatter data regarding distribution of substrate types. The results allow us to assess limitations associated with low frequency MBES where sub-bottom layering is present, and test the accuracy of automated supervised segmentation performed using SonarScope® software. This is done through comparison of predicted and observed substrate from backscatter facies-derived classes and substrate data, reinforced using quantitative statistical analysis based on a confusion matrix. We use sediment samples, video transects and sub-bottom profiles acquired on the Chatham Rise, east of New Zealand. Inferences on the substrate types are made using the Generic Seafloor Acoustic Backscatter (GSAB) model, and the extents of the backscatter classes are delineated by automated supervised segmentation. Correlating substrate data to backscatter classes revealed that backscatter amplitude may correspond to lithologies up to 4 m below the seafloor. Our results emphasise several issues related to substrate characterisation using backscatter classification, primarily because the GSAB model does not only relate to grain size and roughness properties of substrate, but also accounts for other parameters that influence backscatter. Better understanding these limitations allows us to derive first-order interpretations of sediment properties from automated supervised segmentation.

  3. Backscatter measurements for NIF ignition targets (invited).

    PubMed

    Moody, J D; Datte, P; Krauter, K; Bond, E; Michel, P A; Glenzer, S H; Divol, L; Niemann, C; Suter, L; Meezan, N; MacGowan, B J; Hibbard, R; London, R; Kilkenny, J; Wallace, R; Kline, J L; Knittel, K; Frieders, G; Golick, B; Ross, G; Widmann, K; Jackson, J; Vernon, S; Clancy, T

    2010-10-01

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  4. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  5. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  6. Electromagnetic backscattering by corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, C. A.; Griesser, T.

    1986-01-01

    The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.

  7. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  8. Los Angeles and San Diego Margin High-Resolution Multibeam Bathymetry and Backscatter Data

    USGS Publications Warehouse

    Dartnell, Peter; Gardner, James V.; Mayer, Larry A.; Hughes-Clarke, John E.

    2004-01-01

    Summary -- The U.S. Geological Survey in cooperation with the University of New Hampshire and the University of New Brunswick mapped the nearshore regions off Los Angeles and San Diego, California using multibeam echosounders. Multibeam bathymetry and co-registered, corrected acoustic backscatter were collected in water depths ranging from about 3 to 900 m offshore Los Angeles and in water depths ranging from about 17 to 1230 m offshore San Diego. Continuous, 16-m spatial resolution, GIS ready format data of the entire Los Angeles Margin and San Diego Margin are available online as separate USGS Open-File Reports. For ongoing research, the USGS has processed sub-regions within these datasets at finer resolutions. The resolution of each sub-region was determined by the density of soundings within the region. This Open-File Report contains the finer resolution multibeam bathymetry and acoustic backscatter data that the USGS, Western Region, Coastal and Marine Geology Team has processed into GIS ready formats as of April 2004. The data are available in ArcInfo GRID and XYZ formats. See the Los Angeles or San Diego maps for the sub-region locations. These datasets in their present form were not originally intended for publication. The bathymetry and backscatter have data-collection and processing artifacts. These data are being made public to fulfill a Freedom of Information Act request. Care must be taken not to confuse artifacts with real seafloor morphology and acoustic backscatter.

  9. Coherent and incoherent ultrasound backscatter from cell aggregates.

    PubMed

    de Monchy, Romain; Destrempes, François; Saha, Ratan K; Cloutier, Guy; Franceschini, Emilie

    2016-09-01

    The effective medium theory (EMT) was recently developed to model the ultrasound backscatter from aggregating red blood cells [Franceschini, Metzger, and Cloutier, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 2668-2679 (2011)]. The EMT assumes that aggregates can be treated as homogeneous effective scatterers, which have effective properties determined by the aggregate compactness and the acoustical characteristics of the cells and the surrounding medium. In this study, the EMT is further developed to decompose the differential backscattering cross section of a single cell aggregate into coherent and incoherent components. The coherent component corresponds to the squared norm of the average scattering amplitude from the effective scatterer, and the incoherent component considers the variance of the scattering amplitude (i.e., the mean squared norm of the fluctuation of the scattering amplitude around its mean) within the effective scatterer. A theoretical expression for the incoherent component based on the structure factor is proposed and compared with another formulation based on the Gaussian direct correlation function. This theoretical improvement is assessed using computer simulations of ultrasound backscatter from aggregating cells. The consideration of the incoherent component based on the structure factor allows us to approximate the simulations satisfactorily for a product of the wavenumber times the aggregate radius krag around 2.

  10. Acoustic measurement method of the volume flux of a seafloor hydrothermal plume

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2011-12-01

    Measuring fluxes (volume, chemical, heat, etc.) of the deep sea hydrothermal vents has been a crucial but challenging task faced by the scientific community since the discovery of the vent systems. However, the great depths and complexities of the hydrothermal vents make traditional sampling methods laborious and almost daunting missions. Furthermore, the samples, in most cases both sparse in space and sporadic in time, are hardly enough to provide a result with moderate uncertainty. In September 2010, our Cabled Observatory Vent Imaging Sonar System (COVIS, http://vizlab.rutgers.edu/AcoustImag/covis.html) was connected to the Neptune Canada underwater ocean observatory network (http://www.neptunecanada.ca) at the Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. During the experiment, the COVIS system produced 3D images of the buoyant plume discharged from the vent complex Grotto by measuring the back-scattering intensity of the acoustic signal. Building on the methodology developed in our previous work, the vertical flow velocity of the plume is estimated from the Doppler shift of the acoustic signal using geometric correction to compensate for the ambient horizontal currents. A Gaussian distribution curve is fitted to the horizontal back-scattering intensity profile to determine the back-scattering intensity at the boundary of the plume. Such a boundary value is used as the threshold in a window function for separating the plume from background signal. Finally, the volume flux is obtained by integrating the resulting 2D vertical velocity profile over the horizontal cross-section of the plume. In this presentation, we discuss preliminary results from the COVIS experiment. In addition, several alternative approaches are applied to determination of the accuracy of the estimated plume vertical velocity in the absence of direct measurements. First, the results from our previous experiment (conducted in 2000 at the same vent complex using a

  11. Portable fluorescence meter with reference backscattering channel

    NASA Astrophysics Data System (ADS)

    Kornilin, Dmitriy V.; Grishanov, Vladimir N.; Zakharov, Valery P.; Burkov, Dmitriy S.

    2016-09-01

    Methods based on fluorescence and backscattering are intensively used for determination of the advanced glycation end products (AGE) concentration in the biological tissues. There are strong correlation between the AGE concentration and the severity of such diseases like diabetes, coronary heart disease and renal failure. This fact can be used for diagnostic purposes in medical applications. Only few investigations in this area can be useful for development of portable and affordable in vivo AGE meter because the most of them are oriented on using spectrometers. In this study we describe the design and the results of tests on volunteers of portable fluorescence meter based on two photodiodes. One channel of such fluorimeter is used for measurement of the autofluorescence (AF) intensity, another one - for the intensity of elastically scattered radiation, which can be used as a reference. This reference channel is proposed for normalization of the skin autofluorescence signal to the human skin photo type. The fluorimeter, that was developed is relatively compact and does not contain any expensive optical and electronic components. The experimental results prove that proposed tool can be used for the AGE estimation in human skin.

  12. Acoustic Image Models for Obstacle Avoidance with Forward-Looking Sonar

    NASA Astrophysics Data System (ADS)

    Masek, T.; Kölsch, M.

    Long-range forward-looking sonars (FLS) have recently been deployed in autonomous unmanned vehicles (AUV). We present models for various features in acoustic images, with the goal of using this sensor for altitude maintenance, obstacle detection and obstacle avoidance. First, we model the backscatter and FLS noise as pixel-based, spatially-varying intensity distributions. Experiments show that these models predict noise with an accuracy of over 98%. Next, the presence of acoustic noise from two other sources including a modem is reliably detected with a template-based filter and a threshold learned from training data. Lastly, the ocean floor location and orientation is estimated with a gradient-descent method using a site-independent template, yielding sufficiently accurate results in 95% of the frames. Temporal information is expected to further improve the performance.

  13. Reduced Brillouin backscatter in CO2 laser-target interaction

    NASA Astrophysics Data System (ADS)

    Ng, A.; Offenberger, A. A.; Karttunen, S. J.

    1981-02-01

    A substantially reduced Brillouin reflection has been found for CO2 laser-irradiated high-density gas targets. In contrast to the high reflectivity (60%) previously observed for underdense hydrogen plasma, total backscatter (stimulated plus specular) is found to peak at 30% for incident intensity 5 times 10 to the twelfth W per square centimeter and decrease thereafter to 18% at 10 to the thirteenth W per square centimeter. The ponderomotive effects are postulated to account for these observations.

  14. Acoustic droplet vaporization for diagnostic and therapeutic applications

    NASA Astrophysics Data System (ADS)

    Kripfgans, Oliver Daniel

    A technology, termed Acoustic Droplet Vaporization (ADV), is developed whereby superheated droplets are caused to vaporize by application of an ultrasonic field. The droplet emulsion (90% <6 um diameter) is made by mixing saline, albumin, and perfluorocarbon at high speed. It has been observed that an acoustic pressure threshold exists above which the droplets vaporize into bubbles approximately 25-times the original droplet diameter. For frequencies between 1.5 and 8 MHz, the threshold decreases from 4.5 to 0.75 MPa peak rarefactional pressure. The single pulse efficiency of ADV has been measured as 26%. This technology might be useful for tissue occlusion in cancer treatment as well as for aberration correction in acoustic imaging. To demonstrate these potential applications, gas bubbles were made in vivo in animal models by ADV. It was found that ADV could be used to temporarily form large gas bubbles (>30 um) in vivo, which at large number density occluded targeted tissues and reduced the blood flow by 34%. Alternatively, for a very sparse droplet population, gas bubbles could serve as potential point beacons for phase aberration correction given their backscatter amplitudes of 24 dB above tissue background. Other possible applications include drug delivery, indicator for cryo therapy, pressure/radiation beacons, hyperthermia, and cavitation nuclei. ADV of individual droplets showed that during acoustic irradiation, droplets perform dipole-type oscillations and that such oscillations increased in amplitude with acoustic intensity. Smaller droplets required more acoustic intensity for vaporization than larger droplets; however, independent of droplet diameter, a maximum oscillation amplitude of 1.3 um, was required. This threshold corresponds to a Reynolds number of ˜5 x 104. Vaporization started either as a spot on the axis of oscillation close to a pole of the droplet, or homogeneously throughout the droplet's imaged cross-section. It is concluded that

  15. ERS-1 SAR backscatter changes associated with ice growing on shallow lakes in Arctic Alaska

    NASA Technical Reports Server (NTRS)

    Jeffries, M. O.; Wakabayashi, H.; Weeks, W. F.

    1993-01-01

    Spatial and temporal backscatter intensity (sigma(sup o)) variations from ice growing on shallow lakes during winter 1991-92 near Barrow, NW Alaska, have been quantified for the first time using ERS-I C-band SAR data acquired at the Alaska SAR Facility. A field and laboratory validation program, including measurements of the thickness and structure-stratigraphy of the ice, indicates that sigma(sup o) values are strongly dependent on whether the ice freezes to the lake bottom, or remains afloat. Backscatter intensity decreases significantly when the ice grounds on the bottom. Strong backscatter from floating ice is attributed to a specular ice-water interface and vertically oriented tubular bubbles. During the spring thaw, backscatter undergoes a reversal; sigma(sup o) values from ice that was grounded increase, while sigma(sup o) values from ice that was afloat decrease. This phenomenon has not previously been reported.

  16. Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms.

    PubMed

    Anderson, Janelle J; Herd, Maria-Teresa; King, Michael R; Haak, Alexander; Hafez, Zachary T; Song, Jun; Oelze, Michael L; Madsen, Ernest L; Zagzebski, James A; O'Brien, William D; Hall, Timothy J

    2010-01-01

    Ultrasonic backscatter is useful for characterizing tissues and several groups have reported methods for estimating backscattering properties. Previous interlaboratory comparisons have been made to test the ability to accurately estimate the backscatter coefficient (BSC) by different laboratories around the world. Results of these comparisons showed variability in BSC estimates but were acquired only for a relatively narrow frequency range, and, most importantly, lacked reference to any independent predictions from scattering theory. The goal of this study was to compare Faran-scattering-theory predictions with cooperatively-measured backscatter coefficients for low-attenuating and tissue-like attenuating phantoms containing glass sphere scatterers of different sizes for which BSCs can independently be predicted. Ultrasonic backscatter measurementswere made for frequencies from 1 to 12 MHz. Backscatter coefficients were estimated using two different planar-reflector techniques at two laboratories for two groups of phantoms. Excellent agreement was observed between BSC estimates from both laboratories. In addition, good agreement with the predictions of Faran's theory was obtained, with average fractional (bias) errors ranging from 8-14%. This interlaboratory comparison demonstrates the ability to accurately estimate parameters derived from the BSC, including an effective scatterer size and the acoustic concentration, both of which may prove useful for diagnostic applications of ultrasound tissue characterization.

  17. Deep Seafloor Acoustic Backscattering Measurements Using Sea Beam

    DTIC Science & Technology

    1985-12-01

    seafloor down to maximum ocean depth (11 km). Since 1977 when the first system became operational aboard the French R/V Jean Charcot , nine other...Geological Observatory), Surveyor (National Oceanographic • and Atmospheric Administration), and Jean Charcot (IFREMER). Sea Beam •investigators who...1967. Renard, V. and J. P. Allenou, Seabeam, multi-beam echo-sounding in " Jean Charcot " . Description, evaluation and first results, Internat’l

  18. Acoustic Neuroma

    MedlinePlus

    ... search IRSA's site Unique Hits since January 2003 Acoustic Neuroma Click Here for Acoustic Neuroma Practice Guideline ... to microsurgery. One doctor's story of having an acoustic neuroma In August 1991, Dr. Thomas F. Morgan ...

  19. Geological Interpretation of Bathymetric and Backscatter Imagery of the Sea Floor off Eastern Cape Cod, Massachusetts

    USGS Publications Warehouse

    Poppe, Larry J.; Paskevich, Valerie F.; Butman, Bradford; Ackerman, Seth D.; Danforth, William W.; Foster, Dave S.; Blackwood, Dann S.

    2006-01-01

    The imagery, interpretive data layers, and data presented herein were derived from multibeam echo-sounder data collected off Eastern Cape Cod, Massachusetts, and from the stations occupied to verify these acoustic data. The basic data layers show sea-floor topography, sun-illuminated shaded relief, and backscatter intensity; interpretive layers show the distributions of surficial sediment and sedimentary environments. Presented verification data include new and historical sediment grain-size analyses and a gallery of still photographs of the seabed. The multibeam data, which cover a narrow band of the sea floor extending from Provincetown around the northern tip of Cape Cod and south southeastward to off Monomoy Island, were collected during transits between concurrent mapping projects in the Stellwagen Bank National Marine Sanctuary (Valentine and others, 2001; Butman and others, 2004; and Valentine, 2005) and Great South Channel (Valentine and others, 2003a, b, c, d). Although originally collected to maximize the use of time aboard ship, these data provide a fundamental framework for research and management activities in this part of the Gulf of Maine (Noji and others, 2004), show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. These data and interpretations also support ongoing modeling studies of the lower Cape's aquifer system (Masterson, 2004) and of erosional hotspots along the Cape Cod National Seashore (List and others, 2006).

  20. Elastic Wave Propagation Mechanisms in Underwater Acoustic Environments

    DTIC Science & Technology

    2015-09-30

    Elastic wave propagation mechanisms in underwater acoustic environments Scott D. Frank Marist College Department of Mathematics Poughkeepsie...conversion from elastic propagation to acoustic propagation, and intense interface waves on underwater acoustic environments with elastic bottoms... acoustic energy in the water column. Elastic material parameters will be varied for analysis of the dissipation of water column acoustic energy

  1. A study of radar backscattering from water surface in response to rainfall

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Zheng, Quanan; Liu, Ren; Wang, Dan; Duncan, James H.; Huang, Shih-Jen

    2016-03-01

    In this paper, radar backscattering from a water surface in response to rainfall was studied. The paper consists of two parts. First, the spatial characteristics of raindrops in rain fields were analyzed based on published data and the response of a water surface to rainfall was experimentally studied in the laboratory. Rain-generated surface features including stalks, crowns, ring waves, and secondary drops were measured. It was found that stalks and crowns are dominant in terms of their height and energy. Second, the radar signatures of a rainfall event simultaneously observed by C band ENVISAT (European satellite), ASAR (Advanced Synthetic Aperture Radar), and ground-based weather radar in the Northwest Pacific were investigated. The relationship between the radar return intensity extracted from the C band ASAR image and the reflectivity factor (rain rate) obtained from ground-based weather radar was analyzed. For light/moderate rain (with low reflectivity factors), the radar backscattering intensity increases as the reflectivity factor increases. For heavy rain (with high reflectivity factors), the radar backscattering intensity decreases as the reflectivity factor increases. The maximum radar backscattering intensity occurs at a reflectivity factor of 45 dBZ (with rain rate of 24 mm/h). It was found that the spaceborne radar backscattering intensity strongly correlates with the average distance between the stalks on the water surface in the rain field in a nonlinear manner. The physics of the radar signatures of the rain event are explored.

  2. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  3. Characterizing spatial variability in velocity and turbulence intensity using 3-D acoustic Doppler velocimeter data in a plane-bed reach of East St. Louis Creek, Colorado, USA

    NASA Astrophysics Data System (ADS)

    David, Gabrielle C. L.; Legleiter, Carl J.; Wohl, Ellen; Yochum, Steven E.

    2013-02-01

    We investigated the influence on flow resistance of flow structure and turbulence at the reach scale in a mountain channel using 3-D velocity measurements and geostatistical analysis to understand the complexity of the flow structure in a reach with limited bed irregularities. The increase in flow resistance at low flows in a plane-bed reach was not fully explained by grain resistance, therefore detailed 3-D velocity measurements were made to investigate spatial variability in velocity and turbulence components and potential controls on flow resistance. One plane-bed reach was surveyed over two stages in Fraser Experimental Forest, Colorado, using a combination of a total station, LiDAR (Light Detection and Ranging), and a SonTek Flowtracker handheld ADV (acoustic Doppler velocimeter). LiDAR was used to capture bank and channel geometry at low flows, whereas the water surface and bed data were collected with the total station at all flows. We used the standard deviation of bed elevation (σb) within a moving window as an index of roughness height (ks) and calculated the relative submergence of the bed at different stages as h/ks, where h is the local flow depth. ADV measurements were collected on a grid with a 0.3 m to 0.5 m spacing. Geostatistical analysis of the velocity data indicated that the flow was highly three-dimensional and varied based on stage, demonstrating that even small irregularities in the bed have a significant influence on the flow characteristics. The streamwise component was the largest at both low and high flow, but varied more throughout the reach at low flow. At high flow, the greatest streamwise velocities were located within the thalweg. Areas of upwelling and downwelling also varied based on stage, with this component being strongly influenced by small changes in the morphology at high flow, and by protuberant grains at low flows. The cross-stream velocity and turbulence components were controlled by the flow structure and less by the

  4. Observations of backscatter from sand and gravel seafloors between 170 and 250 kHz.

    PubMed

    Weber, Thomas C; Ward, Larry G

    2015-10-01

    Interpreting observations of frequency-dependence in backscatter from the seafloor offers many challenges, either because multiple frequencies are used for different observations that will later be merged or simply because seafloor scattering models are not well-understood above 100 kHz. Hindering the understanding of these observations is the paucity of reported, calibrated acoustic measurements above 100 kHz. This manuscript seeks to help elucidate the linkages between seafloor properties and frequency-dependent seafloor backscatter by describing observations of backscatter collected from sand, gravel, and bedrock seafloors at frequencies between 170 and 250 kHz and at a grazing angle of 45°. Overall, the frequency dependence appeared weak for all seafloor types, with a slight increase in seafloor scattering strength with increasing frequency for an area with unimodal, very poorly to moderately well sorted, slightly granular to granular medium sand with significant amounts of shell debris and a slight decrease in all other locations.

  5. Problem of intensity reduction of acoustic fields generated by gas-dynamic jets of motors of the rocket-launch vehicles at launch

    NASA Astrophysics Data System (ADS)

    Vorobyov, A. M.; Abdurashidov, T. O.; Bakulev, V. L.; But, A. B.; Kuznetsov, A. B.; Makaveev, A. T.

    2015-04-01

    The present work experimentally investigates suppression of acoustic fields generated by supersonic jets of the rocket-launch vehicles at the initial period of launch by water injection. Water jets are injected to the combined jet along its perimeter at an angle of 0° and 60°. The solid rocket motor with the rocket-launch vehicles simulator case is used at tests. Effectiveness of reduction of acoustic loads on the rocket-launch vehicles surface by way of creation of water barrier was proved. It was determined that injection angle of 60° has greater effectiveness to reduce pressure pulsation levels.

  6. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  7. Stimulated Raman backscattering of laser radiation in deep plasma channels

    NASA Astrophysics Data System (ADS)

    Kalmykov, S. Yu.; Shvets, G.

    2004-10-01

    Stimulated Raman backscattering (RBS) of intense laser radiation confined by a single-mode plasma channel with a radial variation of plasma frequency greater than a homogeneous-plasma RBS bandwidth is characterized by a strong transverse localization of resonantly driven electron plasma waves (EPW). The EPW localization reduces the peak growth rate of RBS and increases the amplification bandwidth. The continuum of nonbound modes of backscattered radiation shrinks the transverse field profile in a channel and increases the RBS growth rate. Solution of the initial-value problem shows that an electromagnetic pulse amplified by the RBS in the single-mode deep plasma channel has a group velocity higher than in the case of homogeneous-plasma Raman amplification. Implications to the design of a RBS pulse compressor in a plasma channel are discussed.

  8. Beta Backscatter Measures the Hardness of Rubber

    NASA Technical Reports Server (NTRS)

    Morrissey, E. T.; Roje, F. N.

    1986-01-01

    Nondestructive testing method determines hardness, on Shore scale, of room-temperature-vulcanizing silicone rubber. Measures backscattered beta particles; backscattered radiation count directly proportional to Shore hardness. Test set calibrated with specimen, Shore hardness known from mechanical durometer test. Specimen of unknown hardness tested, and radiation count recorded. Count compared with known sample to find Shore hardness of unknown.

  9. Lake Michigan fish acoustic data from 2011 to 2016

    USGS Publications Warehouse

    Warner, David M.; Claramunt, Randall M.; Hanson, Dale

    2016-01-01

    Each line in the file “Lake Michigan fish acoustic data from 2011 to 2016.csv” represents the acoustic data and estimated fish density for a single depth layer of water. Surveys are conducted along transects, transects are divided horizontally into successive intervals, and then within an interval there are multiple successive depth layers. Area backscattering (ABC), mean acoustic size (sigma), and fish density are reported for each unique transect-interval – layer from Lake Michigan in the years 2011-2016. Area backscattering (PRC_ABC), mean acoustic size (sigma), and fish density in the intervals and layers of acoustic survey transects of Lake Michigan in the years 2011-2016. The survey is carried out using a stratified, systematic design with transect locations randomized within each stratum. As a result, transect location varies each year.

  10. Acoustic Doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. Thompson

    SciTech Connect

    Kim, H.S.; Flagg, C.N.; Shi, Y.

    1996-12-01

    Acoustic Doppler current profiler (ADCP) data is part of the core data for the US JGOFS Arabian Sea project, along with hydrographic and nutrient data. Seventeen cruises are scheduled to take place between September 1994 and January 1996 on the R/V T.G. Thompson. Seven of the cruises follow a standard cruise track, taking hydrographic, chemical and biological measurements. The rest of the cruises, which take place generally within the standard cruise region defined by a set track, are for the deployment and recovery of moored equipment and towing of a SeaSoar. Detailed description of ADCP hardware, the AutoADCP data acquisition system, and the collection of navigation and compass data on the Thompson is documented in Section 2. Followed by data collection for each cruise together with a cruise track, Section 3 presents the processing and analysis of velocity and acoustic backscatter intensity data. Section 5 shows results of profile quality diagnosis.

  11. Mobile spectrometer measures radar backscatter

    NASA Technical Reports Server (NTRS)

    Gogineni, S.; Moore, R. K.; Onstott, R. G.; Kim, Y. S.; Bushnell, D.

    1984-01-01

    The present article is concerned with a helicopter-borne spectrometer (Heloscat), which has been developed to permit high-quality scattering measurements from a mobile platform at remote sites. The term 'spectrometer' referes to a class of scatterometers. The term 'scatterometer' is employed to denote a specialized radar for measuring scattering coefficients as a function of angle. A spectrometer, on the other hand, is a scatterometer which can measure backscatter at several frequencies. The Heloscat system is discussed, taking into account two antennas, RF hardware, and an externally mounted pendulum for angle encoding. A dual-antenna configuration is used for cross-polarized measurements, while a single-antenna system is used for like-polarized measurements. Attention is also given to oscillator characteristics, efficient data handling, and aspects of calibration.

  12. Acoustic Imaging of Combustion Noise

    NASA Technical Reports Server (NTRS)

    Ramohalli, K. N.; Seshan, P. K.

    1984-01-01

    Elliposidal acoustic mirror used to measure sound emitted at discrete points in burning turbulent jets. Mirror deemphasizes sources close to target source and excludes sources far from target. At acoustic frequency of 20 kHz, mirror resolves sound from region 1.25 cm wide. Currently used by NASA for research on jet flames. Produces clearly identifiable and measurable variation of acoustic spectral intensities along length of flame. Utilized in variety of monitoring or control systems involving flames or other reacting flows.

  13. Range compensation for backscattering measurements in the difference-frequency nearfield of a parametric sonar.

    PubMed

    Foote, Kenneth G

    2012-05-01

    Measurement of acoustic backscattering properties of targets requires removal of the range dependence of echoes. This process is called range compensation. For conventional sonars making measurements in the transducer farfield, the compensation removes effects of geometrical spreading and absorption. For parametric sonars consisting of a parametric acoustic transmitter and a conventional-sonar receiver, two additional range dependences require compensation when making measurements in the nonlinearly generated difference-frequency nearfield: an apparently increasing source level and a changing beamwidth. General expressions are derived for range compensation functions in the difference-frequency nearfield of parametric sonars. These are evaluated numerically for a parametric sonar whose difference-frequency band, effectively 1-6 kHz, is being used to observe Atlantic herring (Clupea harengus) in situ. Range compensation functions for this sonar are compared with corresponding functions for conventional sonars for the cases of single and multiple scatterers. Dependences of these range compensation functions on the parametric sonar transducer shape, size, acoustic power density, and hydrography are investigated. Parametric range compensation functions, when applied with calibration data, will enable difference-frequency echoes to be expressed in physical units of volume backscattering, and backscattering spectra, including fish-swimbladder-resonances, to be analyzed.

  14. A computational simulation study on the acoustic pressure generated by a dental endosonic file: effects of intensity, file shape and volume.

    PubMed

    Tiong, T Joyce; Price, Gareth J; Kanagasingam, Shalini

    2014-09-01

    One of the uses of ultrasound in dentistry is in the field of endodontics (i.e. root canal treatment) in order to enhance cleaning efficiency during the treatment. The acoustic pressures generated by the oscillation of files in narrow channels has been calculated using the COMSOL simulation package. Acoustic pressures in excess of the cavitation threshold can be generated and higher values were found in narrower channels. This parallels experimental observations of sonochemiluminescence. The effect of varying the channel width and length and the dimensions and shape of the file are reported. As well as explaining experimental observations, the work provides a basis for the further development and optimisation of the design of endosonic files.

  15. APL - North Pacific Acoustic Laboratory

    DTIC Science & Technology

    2013-09-30

    been spread over adjacent depths in the same manner as in the plots of the measured data in Figures 2 and 3. Histograms of intensity normalized...Mercer, J. A., Colosi, J. A., and Howe, B. M., “Deep seafloor arrivals in long range ocean acoustic propagation,” J. Acoust. Soc. Am., in press

  16. Discriminant classification of different fish-species backscattering

    NASA Astrophysics Data System (ADS)

    Zhang, Qiao; Xu, Feng; Liu, Yin; Zhang, Chun

    2012-11-01

    The complex structure of fish and multispecies composition complicate the analysis of acoustic data. Consequently, it is difficult to obtain a highly accurate rate of classification by using current approaches. This paper introduces two discriminating methods: the adaptive segmentation temporal centroid method and the wavelet packet multi-scale information entropy method. To verify and compare these two methods, an ex situ experiment has been performed with three kinds of fish: Crucian carp (Carassius auratus), Yellow-headed catfish (Pelteobagrus fulvidraco) and Bluntnose black bream (Megalobrama amblycephale). The backscattering signals of these fishes are obtained. Then the temporal centroid in the divided sub-segmentation of the backscattering envelope is calculated, and the multi-scale information entropy of the wavelet packet decomposition in different frequency bands is extracted. Finally, three kinds of fish are successfully classified by using a BP neural network. The result shows that the adaptive segmentation temporal centroid method is 4% more accurate than the wavelet packet multi-scale information entropy method.

  17. Results from long-term detection of mixing layer height: ceilometer and comparison with Radio-Acoustic Sounding System

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Emeis, Stefan; Jahn, Carsten; Tuma, Michael; Münkel, Christoph; Suppan, Peter

    2012-11-01

    The mixing layer height (MLH) is an important factor which influences exchange processes of ground level emissions. The continuous knowledge of MLH is supporting the understanding of processes directing air quality. If the MLH is located near to the ground, which occurs mainly during winter and night-time, air pollution can be high due to a strongly limited air mass dilution. Since 2006 different methods for long-term continuous remote sensing of mixing layer height (MLH) are operated in Augsburg. The Vaisala ceilometers LD40 and CL31 are used which are eye-safe commercial mini-lidar systems. The ceilometer measurements provide information about the range-dependent aerosol concentration; gradient minima within this profile mark the borders of mixed layers. Special software for these ceilometers provides routine retrievals of lower atmosphere layering from vertical profiles of laser backscatter data. The radiosonde data from the station Oberschleissheim near Munich (about 50 km away from Augsburg city) are also used for MLH determination. The profile behavior of relative humidity (strong decrease) and virtual potential temperature (inversion) of the radiosonde agree mostly well with the MLH indication from ceilometer laser backscatter density gradients. A RASS (Radio-Acoustic Sounding System) from Metek is applied which detects the height of a turbulent layer characterized by high acoustic backscatter intensities due to thermal fluctuations and a high variance of the vertical velocity component as well as the vertical temperature profile from the detection of acoustic signal propagation and thus temperature inversions which mark atmospheric layers. These data of RASS measurements are the input for a software-based determination of MLH. A comparison of the results of the remote sensing methods during simultaneous measurements was performed. The information content of the different remote sensing instruments for MLH in dependence from different weather classes was

  18. Repeated surveys by acoustic Doppler current profiler for flow and sediment dynamics in a tidal river

    USGS Publications Warehouse

    Dinehart, R.L.; Burau, J.R.

    2005-01-01

    A strategy of repeated surveys by acoustic Doppler current profiler (ADCP) was applied in a tidal river to map velocity vectors and suspended-sediment indicators. The Sacramento River at the junction with the Delta Cross Channel at Walnut Grove, California, was surveyed over several tidal cycles in the Fall of 2000 and 2001 with a vessel-mounted ADCP. Velocity profiles were recorded along flow-defining survey paths, with surveys repeated every 27 min through a diurnal tidal cycle. Velocity vectors along each survey path were interpolated to a three-dimensional Cartesian grid that conformed to local bathymetry. A separate array of vectors was interpolated onto a grid from each survey. By displaying interpolated vector grids sequentially with computer animation, flow dynamics of the reach could be studied in three-dimensions as flow responded to the tidal cycle. Velocity streamtraces in the grid showed the upwelling of flow from the bottom of the Sacramento River channel into the Delta Cross Channel. The sequential display of vector grids showed that water in the canal briefly returned into the Sacramento River after peak flood tides, which had not been known previously. In addition to velocity vectors, ADCP data were processed to derive channel bathymetry and a spatial indicator for suspended-sediment concentration. Individual beam distances to bed, recorded by the ADCP, were transformed to yield bathymetry accurate enough to resolve small bedforms within the study reach. While recording velocity, ADCPs also record the intensity of acoustic backscatter from particles suspended in the flow. Sequential surveys of backscatter intensity were interpolated to grids and animated to indicate the spatial movement of suspended sediment through the study reach. Calculation of backscatter flux through cross-sectional grids provided a first step for computation of suspended-sediment discharge, the second step being a calibrated relation between backscatter intensity and sediment

  19. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  20. Reflective echo tomographic imaging using acoustic beams

    SciTech Connect

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  1. Monte Carlo study of backscatter in a flattening filter free clinical accelerator.

    PubMed

    Titt, U; Vassiliev, O N; Pönisch, F; Kry, S F; Mohan, R

    2006-09-01

    In conventional linear accelerators, the flattening filter provides a uniform lateral dose profile. In intensity modulated radiation therapy applications, however, the flatness of the photon field and hence the presence of a flattening filter, is not necessary. Removing the filter may provide some advantages, such as faster treatments and smaller out-of-field doses to the patients. In clinical accelerators the backscattered radiation dose from the collimators must be taken into account when the dose to the target volume in the patient is being determined. In the case of a conventional machine, this backscatter is known to great precision. In a flattening filter free accelerator, however, the amount of backscatter may be different. In this study we determined the backscatter contribution to the monitor chamber signal in a flattening filter free clinical accelerator (Varian Clinac 21EX) with Monte Carlo simulations. We found that with the exception of very small fields in the 18-MV photon mode, the contribution of backscattered radiation to the monitor signal did not differ from that of conventional machines with a flattening filter. Hence, a flattening filter free clinical accelerator would not necessitate a different backscatter correction.

  2. Nakagami imaging for detecting thermal lesions induced by high-intensity focused ultrasound in tissue.

    PubMed

    Rangraz, Parisa; Behnam, Hamid; Tavakkoli, Jahan

    2014-01-01

    High-intensity focused ultrasound induces focalized tissue coagulation by increasing the tissue temperature in a tight focal region. Several methods have been proposed to monitor high-intensity focused ultrasound-induced thermal lesions. Currently, ultrasound imaging techniques that are clinically used for monitoring high-intensity focused ultrasound treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation, and elastography-based methods. On the contrary, the efficacy of two-dimensional Nakagami parametric imaging based on the distribution of the ultrasound backscattered signals to quantify properties of soft tissue has recently been evaluated. In this study, ultrasound radio frequency echo signals from ex vivo tissue samples were acquired before and after high-intensity focused ultrasound exposures and then their Nakagami parameter and scaling parameter of Nakagami distribution were estimated. These parameters were used to detect high-intensity focused ultrasound-induced thermal lesions. Also, the effects of changing the acoustic power of the high-intensity focused ultrasound transducer on the Nakagami parameters were studied. The results obtained suggest that the Nakagami distribution's scaling and Nakagami parameters can effectively be used to detect high-intensity focused ultrasound-induced thermal lesions in tissue ex vivo. These parameters can also be used to understand the degree of change in tissue caused by high-intensity focused ultrasound exposures, which could be interpreted as a measure of degree of variability in scatterer concentration in various parts of the high-intensity focused ultrasound lesion.

  3. Anisotropic physical properties of myocardium characterized by ultrasonic measurements of backscatter, attenuation, and velocity

    NASA Astrophysics Data System (ADS)

    Baldwin, Steven L.

    The goal of elucidating the physical mechanisms underlying the propagation of ultrasonic waves in anisotropic soft tissue such as myocardium has posed an interesting and largely unsolved problem in the field of physics for the past 30 years. In part because of the vast complexity of the system being studied, progress towards understanding and modeling the mechanisms that underlie observed acoustic parameters may first require the guidance of careful experiment. Knowledge of the causes of observed ultrasonic properties in soft tissue including attenuation, speed of sound, and backscatter, and how those properties are altered with specific pathophysiologies, may lead to new noninvasive approaches to the diagnosis of disease. The primary aim of this Dissertation is to contribute to an understanding of the physics that underlies the mechanisms responsible for the observed interaction of ultrasound with myocardium. To this end, through-transmission and backscatter measurements were performed by varying acoustic properties as a function of angle of insonification relative to the predominant myofiber direction and by altering the material properties of myocardium by increased protein cross-linking induced by chemical fixation as an extreme form of changes that may occur in certain pathologies such as diabetes. Techniques to estimate acoustic parameters from backscatter were broadened and challenges to implementing these techniques in vivo were addressed. Provided that specific challenges identified in this Dissertation can be overcome, techniques to estimate attenuation from ultrasonic backscatter show promise as a means to investigate the physical interaction of ultrasound with anisotropic biological media in vivo. This Dissertation represents a step towards understanding the physics of the interaction of ultrasonic waves with anisotropic biological media.

  4. Evaluation of a rubber-compound diaphragm for acoustic fisheries surveys: Effects on dual-beam signal intensity and beam patterns

    USGS Publications Warehouse

    Fleischer, Guy W.; Argyle, R.L.; Nester, R.T.; Dawson, J.J.

    2002-01-01

    The use of rubber-compound windows for fisheries acoustics must consider operating frequency and ambient water temperatures. Signal attenuation by the rubber becomes pronounced with increased frequency and decreased temperature. Based on our results, a 420 k Hz system could be expected to lose up to 3-4 dB in colder water through a 5.1-cm thick rubber diaphragm. At 120 k Hz, signal loss was negligible and would undoubtedly also be inconsequential for even lower frequencies used in fisheries applications (e.g., 70, 38 k Hz).

  5. Cyclone diagnostics. [rainfall estimation, backscatter, and lidar

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A GOES IR rainfall estimation algorithm was completed and verified. The technique was applied to the South Pacific convergent zone. The NASA earth observation mission series is discussed briefly. Backscatter was investigated using 10.6 micron coherent lidar.

  6. C-band backscattering from corn canopies

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Ranson, K. J.; Biehl, L. L.

    1991-01-01

    A frequency-modulatad continuous-wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck, and backscatter coefficients of corn (Zea mays L.) were acquired as functions of polarizations, view angles, and row directions. As phytomass and green-leaf area index increased, the backscatter also increased. Near anthesis, when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level for view angles of 30 deg or greater. C-band backscatter data could provide information to monitor tillage operations at small view zenith angles and vegetation at large view zenith angles.

  7. Acoustic Seaglider

    DTIC Science & Technology

    2008-03-07

    a national naval responsibility. Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial...problem and acoustic navigation and communications within the context of distributed autonomous persistent undersea surveillance sensor networks...Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial coherence and the description of ambient

  8. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  9. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  10. Lidar backscattering measurements of background stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Northam, G. B.; Butler, C. F.

    1979-01-01

    A comparative lidar-dustsonde experiment was conducted in San Angelo, Texas, in May 1974 in order to estimate the uncertainties in stratospheric-aerosol backscatter for the NASA Langley 48-inch lidar system. The lidar calibration and data-analysis procedures are discussed. Results from the Texas experiment indicate random and systematic uncertainties of 35 and 63 percent, respectively, in backscatter from a background stratospheric-aerosol layer at 20 km.

  11. Multispectral Backscattering: A Fractal-Structure Probe

    DTIC Science & Technology

    2000-01-01

    discussed in more details below in Sec.D. 2.1 Orientation-Averaged T - Matrix Code In principle, for the case of rigid aggregate of homogeneous spheres, the...reliable approximation up to the largest values of x attainable by T - matrix code with our computers. 3 Backscattering Coefficient The backscattering...basic T - matrix code may be found at http://www.giss.nasa.gov crmim/, and original DDA code comes from http://www.astro.princeton.edu

  12. Backscatter correction factor for megavoltage photon beam

    SciTech Connect

    Hu, Yida; Zhu, Timothy C.

    2011-10-15

    Purpose: For routine clinical dosimetry of photon beams, it is often necessary to know the minimum thickness of backscatter phantom material to ensure that full backscatter condition exists. Methods: In case of insufficient backscatter thickness, one can determine the backscatter correction factor, BCF(s,d,t), defined as the ratio of absorbed dose measured on the central-axis of a phantom with backscatter thickness of t to that with full backscatter for square field size s and forward depth d. Measurements were performed in SAD geometry for 6 and 15 MV photon beams using a 0.125 cc thimble chamber for field sizes between 10 x 10 and 30 x 30 cm at depths between d{sub max} (1.5 cm for 6 MV and 3 cm for 15 MV) and 20 cm. Results: A convolution method was used to calculate BCF using Monte-Carlo simulated point-spread kernels generated for clinical photon beams for energies between Co-60 and 24 MV. The convolution calculation agrees with the experimental measurements to within 0.8% with the same physical trend. The value of BCF deviates more from 1 for lower energies and larger field sizes. According to our convolution calculation, the minimum BCF occurs at forward depth d{sub max} and 40 x 40 cm field size, 0.970 for 6 MV and 0.983 for 15 MV. Conclusions: The authors concluded that backscatter thickness is 6.0 cm for 6 MV and 4.0 cm for 15 MV for field size up to 10 x 10 cm when BCF = 0.998. If 4 cm backscatter thickness is used, BCF is 0.997 and 0.983 for field size of 10 x 10 and 40 x 40 cm for 6 MV, and is 0.998 and 0.990 for 10 x 10 and 40 x 40 cm for 15 MV, respectively.

  13. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    DOEpatents

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  14. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    SciTech Connect

    Hielscher, A.H.; Mourant, J.R.; Bigio, I.J.

    2000-01-04

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser ({lambda} = 543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4 x 4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  15. SNR characterization in distributed acoustic sensing

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Eyal, Avishay

    2016-05-01

    In this paper we study the SNR associated with acoustic detection in Rayleigh-based Distributed Acoustic Sensing (DAS) systems. The study is focused on phase sensitive DAS due to its superiority in terms of linearity and sensitivity. Since DAS is based on coherent interference of backscattered light from multiple scatterers it is prone to signal fading. When left unresolved, the issue of signal fading renders the associated SNR randomly dependent on position and time. Hence, its proper measurement and characterization requires statistical tools. Here such tools are introduced and a methodology for finding the mean SNR and its distribution is implemented in both experiment and simulation. It is shown that the distribution of the DAS-SNR can be obtained from the distribution of backscattered power in OTDR and the mean DAS-SNR is proportional to the energy of the interrogation pulse.

  16. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOEpatents

    Vo-Dinh, Tuan; Norton, Stephen J.

    2001-01-01

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  17. Measurement of intrinsic optical backscattering characteristics of cells using fiber-guided near infrared light

    PubMed Central

    2010-01-01

    Background Intrinsic optical signals (IOS), which reflect changes in transmittance and scattering light, have been applied to characterize the physiological conditions of target biological tissues. Backscattering approaches allow mounting of the source and detector on the same side of a sample which creates a more compact physical layout of device. This study presents a compact backscattering design using fiber-optic guided near-infrared (NIR) light to measure the amplitude and phase changes of IOS under different osmotic challenges. Methods High-frequency intensity-modulated light was guided via optic fiber, which was controlled by micromanipulator to closely aim at a minimum cluster of cortical neurons. Several factors including the probe design, wavelength selection, optimal measuring distance between the fiber-optical probe and cells were considered. Our experimental setup was tested in cultured cells to observe the relationship between the changes in backscattered NIR light and cellular IOS, which is believed mainly caused by cell volume changes in hypo/hyperosmotic solutions (± 20, ± 40 and ± 60 mOsm). Results The critical parameters of the current setup including the optimal measuring distance from fiber-optical probe to target tissue and the linear relationship between backscattering intensity and cell volume were determined. The backscattering intensity was found to be inversely proportional to osmotic changes. However, the phase shift exhibited a nonlinear feature and reached a plateau at hyperosmotic solution. Conclusions Our study indicated that the backscattering NIR light guided by fiber-optical probe makes it a potential alternative for continuous observation of intrinsic optical properties of cell culture under varied physical or chemical challenges. PMID:20184751

  18. Temporal variability of zooplankton biomass from ADCP backscatter time series data at the Bermuda Testbed Mooring site

    NASA Astrophysics Data System (ADS)

    Jiang, Songnian; Dickey, Tommy D.; Steinberg, Deborah K.; Madin, Laurence P.

    2007-04-01

    Temporal variability of acoustically estimated zooplankton biomass at the Bermuda Testbed Mooring (BTM) site in the Sargasso Sea (at 31°43'N, 64°10'W) is described for time scales from less than an hour to the seasonal cycle primarily using data obtained between August 1996 and November 2000, and from May 10 to November 13, 2003. Concurrent high frequency BTM observations of meteorological, physical, and bio-optical variables are used to interpret processes contributing to the zooplankton variability. Zooplankton biomass estimates are derived from regressions of backscatter intensity data measured with an upward looking 153-kHz acoustic Doppler current profiler (ADCP) and zooplankton net tow data collected near the BTM site as part of the Bermuda Atlantic Time-series Study (BATS). Our data show clear event-scale variations. Peaks are associated with annual spring blooms involving mixed layer shoaling and in some cases passages of mesoscale eddy features. Biomass peaks are often coincident with maxima seen in BTM chlorophyll fluorescence measurements (inferred phytoplankton biomass). Some storm events do not appear to manifest in significant perturbations of zooplankton distributions; however, Hurricane Fabian (2003) greatly impacted these distributions. Estimates of zooplankton biomass and relative vertical velocity show the vertical structure of daily migration patterns. Seasonal variations in migration patterns are also evident, with diel changes in zooplankton biomass most pronounced in spring and least pronounced in winter. In summary, our high temporal resolution time series of estimated zooplankton biomass in the open ocean provide information on scales inaccessible through conventional monthly ship-based sampling. These data have implications for upper ocean ecology and the vertical transport of carbon and nitrogen through the diel migration of zooplankton.

  19. Hulu Sungai Perak Bed Sediment Mapping Using Underwater Acoustic Sonar

    NASA Astrophysics Data System (ADS)

    Arriafdi, N.; Zainon, O.; Din, U.; Rasid, A. W.; Mat Amin, Z.; Othman, R.; Mardi, A. S.; Mahmud, R.; Sulaiman, N.

    2016-09-01

    Development in acoustic survey techniques in particular side scan sonar have revolutionized the way we are able to image, map and understand the riverbed environment. It is now cost effective to image large areas of the riverbed using these techniques and the backscatter image created from surveys provides base line data from which thematic maps of the riverbed environment including maps of morphological geology, can be derived when interpreted in conjunction with in situ sampling data. This article focuses on investigation characteristics of sediments and correlation of side scan backscatter image with signal strength. The interpretation of acoustic backscatter rely on experienced interpretation by eye of grey scale images produced from the data. A 990F Starfish Side Scan Sonar was used to collect and develop a series of sonar images along 6 km of Hulu Sungai Perak. Background sediments could be delineated accurately and the image textures could be linked to the actual river floor appearance through grab sampling. A major difference was found in the acoustic returns from the two research area studies: the upstream area shows much rougher textures. This is due to an actual differences in riverbed roughness, caused by a difference in bottom currents and sediment dynamics in the two areas. The highest backscatter correlates with coarsest and roughness sediment. Result suggest that image based backscatter classification shows considerable promise for interpretation of side scan sonar data for the production of geological maps.

  20. Effects of Acoustic Complexity on Processing Sound Intensity in 10- to 11-Year-Old Children: Evidence From Cortical Auditory Evoked Potentials

    PubMed Central

    Dinces, Elizabeth; Sussman, Elyse

    2012-01-01

    Objectives/Hypothesis The environmental complexity that sounds are presented in, as well as the stimulus presentation rate, influences how sound intensity is centrally encoded with differences between children and adults. Study Design Cortical auditory evoked potential (CAEP) comparison study in children and adults examining two stimulus rates and three different stimulus contexts. Methods Twelve 10 and 11 year olds and 11 adults were studied in two experiments examining the CAEP to a 1-KHz, 50-ms tone. A Slow-Rate experiment at 750-ms stimulus onset asynchrony (SOA) compared the CAEPs of 78 dB to 86 dB SPL in 2 complexity conditions. A Fast-Rate experiment was performed at 125 ms SOA with the same conditions plus an additional complexity condition. Repeated measures and mixed-model analysis of variance (ANOVA) was used to examine the latency and amplitude of the CAEP components. Results CAEP amplitudes and latencies were significantly affected by rate, intensity, and age with complexity interacting in multiple mixed-mode ANOVAs. P1 was the only CAEP component present at the Fast Rate. There were main effects of rate, age, and stimulus intensity level on the CAEP amplitudes and latencies. Maturational differences were seen in the interactions of intensity with complexity for the different CAEP components. Conclusions Complexity of the sound environment was reflected in the relative amplitude of the CAEPs evoked by sound intensity. The effect of stimulus intensity depended on the complexity of the surrounding environment. Effects of the surrounding sounds were different in children than in adults. PMID:21792970

  1. First- and second-order backscattering from clouds illuminated by finite beams.

    PubMed

    Anderson, R C; Browell, E V

    1972-06-01

    Calculations have been carried out for first- and second-order backscattering from water clouds illuminated by a continuous 0.9-micro beam with a finite divergence angle. In the single-scattering calculations several cloud types were used, while only an approximation to fair weather cumulus clouds was used for double scattering. It was found that the intensity and hence the reflectivity varied with the transceiver-cloud distance for both orders of scattering. Second-order backscattering also varied with field of view. From these results a criterion is suggested for determining when the plane parallel atmosphere theories can be used with finite beams.

  2. Computation of Nonlinear Backscattering Using a High-Order Numerical Method

    NASA Technical Reports Server (NTRS)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2001-01-01

    The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.

  3. GLObal Backscatter Experiment (GLOBE) Pacific survey mission

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.; Rothermel, Jeffry; Arnold, James E.; Williams, Steven F.

    1991-01-01

    NASA conducted the GLObal Backscatter Experiment (GLOBE) Survey Mission over the near coastal and remote Pacific Ocean during 6 to 30 Nov. 1989 (GLOBE 1) and 13 May to 5 Jun. 1990 (GLOBE 2). These missions studied the optical, physical, and chemical properties of atmospheric aerosols. Particular emphasis was given to the magnitude and spatial variability of aerosol backscatter coefficients at mid-infrared wavelengths, and to the remote middle and upper troposphere, where these aerosol properties are poorly understood. Survey instruments were selected to provide either direct beta measurements at the key wavelengths, empirical links with long term or global scale aerosol climatologies, or aerosol microphysics data required to model any of these quantities. The survey deployment included both long distance 6 to 8 hour transit flights and detailed 4 to 6 hour local flights. Several general features were observed from preliminary Survey data analyses. Validation and intercomparison results have shown good agreement, usually better than a factor of two. Atmospheric aerosols frequently exhibited a three layer vertical structure, with (1) high and fairly uniform backscatter in the shallow cloud capped marine boundary layer; (2) moderate and highly variable backscatter in a deeper overlaying cloud pumped layer; and (3) low, regionally uniform, but seasonally and latitudinally variable backscatter in the middle and upper troposphere. The survey missions represent two isolated snapshots of a small portion of the global aerosol system. Consequently, Survey results can best be understood by synthesizing them with the more comprehensive GLOBE data base, which is being compiled at NASA-Marshall.

  4. Effects of Intensive Voice Treatment (the Lee Silverman Voice Treatment [LSVT]) on Vowel Articulation in Dysarthric Individuals with Idiopathic Parkinson Disease: Acoustic and Perceptual Findings

    ERIC Educational Resources Information Center

    Sapir, Shimon; Spielman, Jennifer L.; Ramig, Lorraine O.; Story, Brad H.; Fox, Cynthia

    2007-01-01

    Purpose: To evaluate the effects of intensive voice treatment targeting vocal loudness (the Lee Silverman Voice Treatment [LSVT]) on vowel articulation in dysarthric individuals with idiopathic Parkinson's disease (PD). Method: A group of individuals with PD receiving LSVT (n = 14) was compared to a group of individuals with PD not receiving LSVT…

  5. Light-scattering study of the localization of longitudinal acoustic pseudomodes in a buried silica layer

    NASA Astrophysics Data System (ADS)

    Ghislotti, G.; Bottani, C. E.; Mutti, P.; Byloos, C.; Giovannini, L.; Nizzoli, F.

    1995-04-01

    Brillouin light spectroscopy in p-p backscattering geometry is used to study sagittal surface acoustic phonons in silicon on insulator structures formed on a silicon buffer. The experimental spectra show, near the longitudinal threshold of silicon, two peaks whose physical meaning is discussed by comparison with theoretical cross sections. Calculations of Brillouin cross sections were performed, taking into account both the ripple and elastooptic coupling mechanisms. The peaks originate from two pseudomodes: the first is highly localized in the buried SiO2 layer and the second in the top silicon layer. The dependence of the pseudomode localization and cross section intensity with the parallel wave vector and with the thickness of the top silicon layer are discussed.

  6. A combined use of acoustic and optical devices to investigate suspended sediment in rivers

    NASA Astrophysics Data System (ADS)

    Guerrero, Massimo; Rüther, Nils; Haun, Stefan; Baranya, Sandor

    2017-04-01

    The use of acoustic and optic devices has become more and more common for estimating suspended sediment loads in rivers. The echo intensity levels (EIL) recorded by means of an Acoustic Doppler Current Profiler (ADCP) have been applied in different methods, which provided relationships between scattering particles features derived from samples (i.e., concentration and grain size) and corresponding backscattering strength and sound attenuation. At the same time, the laser diffraction was applied by an in-stream sampler (LISST-SL) to measure suspended sediment concentration and the corresponding particle size distribution (PSD). These two techniques exhibited different limitations in terms of the measured range of concentration, sensitivity to a certain spectrum of particle sizes, and instruments deploy feasibility especially in large rivers, in a way that the use of sampled PSD by LISST-SL to validate ADCP methods may not be trivial. The aim of this study was to combine the vertical profiling of EIL by an ADCP with results from LISST-SL, eventually demonstrating the possibility of using moving ADCP measurements to detect different suspended matters along a Danube River section characterized by a small tributary junction. At the same time, this work elucidates optical to acoustic method deviations that hinders an actual validation of ADCP methods based on LISST-SL rather than with physical samplings.

  7. Nanoparticles Formed by Acoustic Destruction of Microbubbles and Their Utilization for Imaging and Effects on Therapy by High Intensity Focused Ultrasound

    PubMed Central

    Blum, Nicholas T.; Yildirim, Adem; Chattaraj, Rajarshi; Goodwin, Andrew P.

    2017-01-01

    This work reports that when PEG-lipid-shelled microbubbles with fluorocarbon interior (C4F10, C5F12, or C6F14) are subjected to ultrasound pulses, they produce metastable, fluid-filled nanoparticles that can be re-imaged upon administration of HIFU. The nanoparticles produced by destruction of the microbubbles (MBNPs) are of 150 nm average diameter and can be re-imaged for up to an hour after creation for C 4F10, and for at least one day for C5F12. The active species were found to be fluid (gas or liquid) filled nanoparticles rather than lipid debris. The acoustic droplet vaporization threshold of the nanoparticles was found to vary with the vapor pressure of the encapsulated fluorocarbon, and integrated image brightness was found to increase dramatically when the temperature was raised above the normal boiling point of the fluorocarbon. Finally, the vaporization threshold decreases in serum as compared to buffer, and administration of HIFU to the nanoparticles caused breast cancer cells to completely detach from their culture substrate. This work demonstrates a new functionality of microbubbles that could serve as a platform technology for ultrasound-based theranostics. PMID:28255360

  8. A real-time measure of cavitation induced tissue disruption by ultrasound imaging backscatter reduction.

    PubMed

    Hall, Timothy L; Fowlkes, J Brian; Cain, Charles A

    2007-03-01

    A feedback method for obtaining real-time information on the mechanical disruption of tissue through ultrasound cavitation is presented. This method is based on a substantial reduction in ultrasound imaging backscatter from the target volume as the tissue structure is broken down. Ex-vivo samples of porcine liver were exposed to successive high-intensity ultrasound pulses at a low duty cycle to induce mechanical disruption of tissue parenchyma through cavitation (referred to as histotripsy). At the conclusion of treatment, B-scan imaging backscatter was observed to have decreased by 22.4 +/- 2.3 dB in the target location. Treated samples of tissue were found to contain disrupted tissue corresponding to the imaged hypoechoic volume with no remaining discernable structure and a sharp boundary. The observed, substantial backscatter reduction may be an effective feedback mechanism for assessing treatment efficacy in ultrasound surgery using pulsed ultrasound to create cavitation.

  9. Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening

    NASA Astrophysics Data System (ADS)

    Kim, Young L.; Liu, Yang; Turzhitsky, Vladimir M.; Roy, Hemant K.; Wali, Ramesh K.; Subramanian, Hariharan; Pradhan, Prabhakar; Backman, Vadim

    2006-07-01

    The phenomenon of enhanced backscattering (EBS) of light, also known as coherent backscattering (CBS) of light, has been the object of intensive investigation in nonbiological media over the last two decades. However, there have been only a few attempts to explore EBS for tissue characterization and diagnosis. We have recently made progress in the EBS measurements in tissue by taking advantage of low spatial coherence illumination, which has led us to the development of low-coherence enhanced backscattering (LEBS) spectroscopy. In this work, we review the current state of research on LEBS. After a brief discussion of the basic principle of EBS and LEBS, we present an overview of the unique features of LEBS for tissue characterization, and show that LEBS enables depth-selective spectroscopic assessment of mucosal tissue. Then, we demonstrate the potential of LEBS spectroscopy for predicting the risk of colon carcinogenesis and colonoscopy-free screening for colorectal cancer (CRC).

  10. Note: One order of magnitude better signal-to-noise ratio for neutron backscattering

    NASA Astrophysics Data System (ADS)

    Appel, Markus; Frick, Bernhard

    2017-03-01

    We report on a new achievement which allows increasing the signal-to-noise ratio of reactor backscattering spectrometers by more than one order of magnitude by sacrificing at most 50% of the count rate. This method was recently tested on the backscattering instrument IN16B at ILL, where signal-to-noise ratios of more than 10 000 for standard samples and up to 40 000 for strong scatterers were measured with only 37% reduction in intensity. The described method is applicable at any reactor backscattering spectrometer equipped with a so-called background chopper which can optionally function as a pulse suppression chopper and presents a major advancement for high energy resolution spectroscopy with neutrons.

  11. Monte Carlo Modeling of Gamma Ray Backscattering for Crack Identification in the Aluminum alloy Plate

    NASA Astrophysics Data System (ADS)

    Wirawan, Rahadi; Waris, Abdul; Djamal, Mitra; Gunawan, H.; Kim, H. J.

    2017-01-01

    A Monte Carlo simulation study has been conducted of the Cs-37 gamma ray backscattering in the aluminum alloy plate. This simulation was performed in order to identify the existence of the crack in the aluminum alloy plate, the correlation between the backscattering peak and the crack width. We are able to analyze the absorbed energy distribution in the NaI(Tl) scintillation detector. For the experimental measurement, we are using 5 μCi of a Cs-137 gamma source and 2 in. x 2in. NaI(Tl) scintillation detector with the PMT. The aluminum alloy dimension is about 8 cm x 6 cm x 1 cm. The crack model is represented by the slit with the varying width (1 mm, 2 mm, 4 mm, and 6 mm). The existence of a crack is identified by the decreasing intensity of the gamma backscattering energy peak. These predicted results have a good agreement with the experimental measurement.

  12. Eigenfunction analysis of stochastic backscatter for aberration correction in medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varslot, Trond; Mo, Eirik; Krogstad, Harald; Angelsen, Bjørn

    2004-05-01

    A filter for aberration correction in medical ultrasound imaging is presented. The filter is optimal in the sense of maximizing the expected energy in a modified beamformer output of the received acoustic backscatter. The situation considered is frequently found in applications when imaging organs through a body wall: aberration is introduced in a layer close to the transducer, and acoustic backscatter from a scattering region behind the body wall is measured at the transducer surface. The scattering region consists of scatterers randomly distributed with very short correlation length compared to the acoustic wave length of the transmit pulse. The scatterer distribution is therefore assumed to be δ-correlated. Theoretical considerations imply that maximizing the expected energy in a modified beamformer output signal naturally leads to eigenfunctions of a Fredholm integral operator, where the associated kernel function is a spatial correlation function of the received stochastic signal. Aberration characterization and aberration correction have been studied for simulated data constructed to mimic aberration introduced by the abdominal wall. The results compare well with what is obtained using a diffraction limited time-reversal filter based on simulated point source data.

  13. Evaluation of a compact sensor for backscattering and absorption

    NASA Astrophysics Data System (ADS)

    Gainusa Bogdan, Alina; Boss, Emmanuel S.

    2011-07-01

    Seawater inherent optical properties (IOPs) are key parameters in a wide range of applications in environmental studies and oceanographic research. In particular, the absorption coefficient (a) is the typical IOP used to obtain the concentration of chlorophyll-a in the water---a critical parameter in biological oceanography studies and the backscattering coefficient (bb) is used as a measure of turbidity. In this study, we test a novel instrument concept designed to obtain both the absorption and backscattering coefficients. The instrument would emit a collimated monochromatic light beam into the water retrieving the backscattered light intensity as a function of distance from the center of illumination. We use Monte Carlo modeling of light propagation to create an inversion algorithm that translates the signal from such an instrument into values of a and bb. Our results, based on simulations spanning the bulk of natural values of seawater IOP combinations, indicate that a 6.2cm diameter instrument with a radial resolution of 1cm would be capable of predicting bb within less than 13.4% relative difference and a within less than 57% relative difference (for 90% of the inverted a values, the relative errors fall below 29.7%). Additionally, these errors could be further reduced by constraining the inversion algorithm with information from concurrent measurements of other IOPs. Such a compact and relatively simple device could have multiple applications for in situ optical measurements, including a and bb retrievals from instrumentation mounted on autonomous underwater vehicles. Furthermore, the same methodology could possibly be used for an out-of-water sensor.

  14. SAR backscatter from coniferous forest gaps

    NASA Technical Reports Server (NTRS)

    Day, John L.; Davis, Frank W.

    1992-01-01

    A study is in progress comparing Airborne Synthetic Aperture Radar (AIRSAR) backscatter from coniferous forest plots containing gaps to backscatter from adjacent gap-free plots. Issues discussed are how do gaps in the range of 400 to 1600 sq m (approximately 4-14 pixels at intermediate incidence angles) affect forest backscatter statistics and what incidence angles, wavelengths, and polarizations are most sensitive to forest gaps. In order to visualize the slant-range imaging of forest and gaps, a simple conceptual model is used. This strictly qualitative model has led us to hypothesize that forest radar returns at short wavelengths (eg., C-band) and large incidence angles (e.g., 50 deg) should be most affected by the presence of gaps, whereas returns at long wavelengths and small angles should be least affected. Preliminary analysis of 1989 AIRSAR data from forest near Mt. Shasta supports the hypothesis. Current forest backscatter models such as MIMICS and Santa Barbara Discontinuous Canopy Backscatter Model have in several cases correctly predicted backscatter from forest stands based on inputs of measured or estimated forest parameters. These models do not, however, predict within-stand SAR scene texture, or 'intrinsic scene variability' as Ulaby et al. has referred to it. For instance, the Santa Barbara model, which may be the most spatially coupled of the existing models, is not truly spatial. Tree locations within a simulated pixel are distributed according to a Poisson process, as they are in many natural forests, but tree size is unrelated to location, which is not the case in nature. Furthermore, since pixels of a simulated stand are generated independently in the Santa Barbara model, spatial processes larger than one pixel are not modeled. Using a different approach, Oliver modeled scene texture based on an hypothetical forest geometry. His simulated scenes do not agree well with SAR data, perhaps due to the simple geometric model used. Insofar as texture

  15. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets.

    PubMed

    Li, Xu; Chen, Zhigang; Taflove, Allen; Backman, Vadim

    2005-01-24

    We report the phenomenon of ultra-enhanced backscattering of visible light by nanoparticles facilitated by the 3-D photonic nanojet - a sub-diffraction light beam appearing at the shadow side of a plane-waveilluminated dielectric microsphere. Our rigorous numerical simulations show that backscattering intensity of nanoparticles can be enhanced up to eight orders of magnitude when locating in the nanojet. As a result, the enhanced backscattering from a nanoparticle with diameter on the order of 10 nm is well above the background signal generated by the dielectric microsphere itself. We also report that nanojet-enhanced backscattering is extremely sensitive to the size of the nanoparticle, permitting in principle resolving sub-nanometer size differences using visible light. Finally, we show how the position of a nanoparticle could be determined with subdiffractional accuracy by recording the angular distribution of the backscattered light. These properties of photonic nanojets promise to make this phenomenon a useful tool for optically detecting, differentiating, and sorting nanoparticles.

  16. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets

    NASA Astrophysics Data System (ADS)

    Li, Xu; Chen, Zhigang; Taflove, Allen; Backman, Vadim

    2005-01-01

    We report the phenomenon of ultra-enhanced backscattering of visible light by nanoparticles facilitated by the 3-D photonic nanojet a sub-diffraction light beam appearing at the shadow side of a plane-waveilluminated dielectric microsphere. Our rigorous numerical simulations show that backscattering intensity of nanoparticles can be enhanced up to eight orders of magnitude when locating in the nanojet. As a result, the enhanced backscattering from a nanoparticle with diameter on the order of 10 nm is well above the background signal generated by the dielectric microsphere itself. We also report that nanojet-enhanced backscattering is extremely sensitive to the size of the nanoparticle, permitting in principle resolving sub-nanometer size differences using visible light. Finally, we show how the position of a nanoparticle could be determined with subdiffractional accuracy by recording the angular distribution of the backscattered light. These properties of photonic nanojets promise to make this phenomenon a useful tool for optically detecting, differentiating, and sorting nanoparticles.

  17. Multibeam Sonar Backscatter Data Acquisition and Processing: Guidelines and Recommendations from the GEOHAB Backscatter Working Group

    NASA Astrophysics Data System (ADS)

    Heffron, E.; Lurton, X.; Lamarche, G.; Brown, C.; Lucieer, V.; Rice, G.; Schimel, A.; Weber, T.

    2015-12-01

    Backscatter data acquired with multibeam sonars are now commonly used for the remote geological interpretation of the seabed. The systems hardware, software, and processing methods and tools have grown in numbers and improved over the years, yet many issues linger: there are no standard procedures for acquisition, poor or absent calibration, limited understanding and documentation of processing methods, etc. A workshop organized at the GeoHab (a community of geoscientists and biologists around the topic of marine habitat mapping) annual meeting in 2013 was dedicated to seafloor backscatter data from multibeam sonars and concluded that there was an overwhelming need for better coherence and agreement on the topics of acquisition, processing and interpretation of data. The GeoHab Backscatter Working Group (BSWG) was subsequently created with the purpose of documenting and synthetizing the state-of-the-art in sensors and techniques available today and proposing methods for best practice in the acquisition and processing of backscatter data. Two years later, the resulting document "Backscatter measurements by seafloor-mapping sonars: Guidelines and Recommendations" was completed1. The document provides: An introduction to backscatter measurements by seafloor-mapping sonars; A background on the physical principles of sonar backscatter; A discussion on users' needs from a wide spectrum of community end-users; A review on backscatter measurement; An analysis of best practices in data acquisition; A review of data processing principles with details on present software implementation; and finally A synthesis and key recommendations. This presentation reviews the BSWG mandate, structure, and development of this document. It details the various chapter contents, its recommendations to sonar manufacturers, operators, data processing software developers and end-users and its implication for the marine geology community. 1: Downloadable at https://www.niwa.co.nz/coasts-and-oceans/research-projects/backscatter-measurement-guidelines

  18. Elastic back-scattering patterns via particle surface roughness and orientation from single trapped airborne aerosol particles

    NASA Astrophysics Data System (ADS)

    Fu, Richard; Wang, Chuji; Muñoz, Olga; Videen, Gorden; Santarpia, Joshua L.; Pan, Yong-Le

    2017-01-01

    We demonstrate a method for simultaneously measuring the back-scattering patterns and images of single laser-trapped airborne aerosol particles. This arrangement allows us to observe how the back-scattering patterns change with particle size, shape, surface roughness, orientation, etc. The recoded scattering patterns cover the angular ranges of θ=167.7-180° (including at 180° exactly) and ϕ=0-360° in spherical coordinates. The patterns show that the width of the average speckle intensity islands or rings is inversely proportional to particle size and how the shape of these intensity rings or islands also depends on the surface roughness. For an irregularly shaped particle with substantial roughness, the back-scattering patterns are formed with speckle intensity islands, the size and orientations of these islands depend more on the overall particle size and orientation, but have less relevance to the fine alteration of the surface structure and shapes. The back-scattering intensity at 180° is very sensitive to the particle parameters. It can change from a maximum to a minimum with a change of 0.1% in particle size or refractive index. The method has potential use in characterizing airborne aerosol particles, and may be used to provide back-scattering information for LIDAR applications.

  19. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  20. Characteristics and short-term changes of the Po Delta seafloor morphology through high-resolution bathymetric and backscatter data

    NASA Astrophysics Data System (ADS)

    Madricardo, Fantina; Bosman, Alessandro; Kruss, Aleksandra; Remia, Alessandro; Correggiari, Anna; Fogarin, Stefano; Romagnoli, Claudia; Moscon, Giorgia

    2016-04-01

    instability phenomena along the slope. Moreover, the acoustic backscatter intensity data and grab samples collected in the area provided information about the superficial sediment distribution during the two surveys, while the study of the water-column backscatter intensity revealed the presence of gas plume in the water-column. These results contribute to a better understanding the recent sediment dynamics and evolution of the Po Delta system.

  1. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array.

    PubMed

    Yuldashev, Petr V; Shmeleva, Svetlana M; Ilyin, Sergey A; Sapozhnikov, Oleg A; Gavrilov, Leonid R; Khokhlova, Vera A

    2013-04-21

    The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm(-2) in the free field in water and 40 W cm(-2) in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.

  2. Backscattering measuring system for optimization of intravenous laser irradiation dose

    NASA Astrophysics Data System (ADS)

    Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.

    1996-11-01

    Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.

  3. Laser-speckle-visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-01-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.

  4. Snowcover influence on backscattering from terrain

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Abdelrazik, M.; Stiles, W. H.

    1984-01-01

    The effects of snowcover on the microwave backscattering from terrain in the 8-35 GHz region are examined through the analysis of experimental data and by application of a semiempirical model. The model accounts for surface backscattering contributions by the snow-air and snow-soil interfaces, and for volume backscattering contributions by the snow layer. Through comparisons of backscattering data for different terrain surfaces measured both with and without snowcover, the masking effects of snow are evaluated as a function of snow water equivalent and liquid water content. The results indicate that with dry snowcover it is not possible to discriminate between different types of ground surface (concrete, asphalt, grass, and bare ground) if the snow water equivalent is greater than about 20 cm (or a depth greater than 60 cm for a snow density of 0.3 g/cu cm). For the same density, however, if the snow is wet, a depth of 10 cm is sufficient to mask the underlying surface.

  5. Window flaw detection by backscatter lighting

    NASA Technical Reports Server (NTRS)

    Crockett, L. K.; Minton, F. R.

    1978-01-01

    Portable fiber-optic probe detects tiny flaws in transparent materials. Probe transmits light through surface to illuminate interior of material by backscattering off its edges. Light-sensitive contact paper records scratch pattern. Technique can be used for rapid visual checks. Flexible fiber optics are safely used in explosive or flammable areas; they present no hazard of breakage or contamination in controlled environments.

  6. Visualization of x-ray backscatter data

    SciTech Connect

    Greenawald, E.C.; Ham, Y.S.; Poranski, C.F. Jr.

    1993-12-31

    Of the several processes which occur when x-rays interact with matter, Compton scattering is dominant in the range of energies commonly used in industrial radiography. The Compton interaction between an x-ray photon and a free or outer shell electron causes the electron to recoil and the photon to be propagated in a new direction with a reduced energy. Regardless of the incident beam energy, some photons are always scattered in the backwards direction. The potential for determining material properties by the detection of x-ray backscatter has been recognized for years. Although work in this area has been eclipsed by the rapid development of computerized tomography (CT), a variety of industrial backscatter imaging techniques and applications have been demonstrated. Backscatter inspection is unique among x-ray methods in its applicability with access to only one side of the object. The authors are currently developing the application of x-ray backscatter tomography (XBT) to the inspection of steel-reinforced rubber sonar domes on US Navy vessels. In this paper, the authors discuss the visualization methods they use to interpret the XBT data. They present images which illustrate the capability of XBT as applied to sonar domes and a variety of other materials and objects. They also demonstrate and discuss the use of several data visualization software products.

  7. Laser Forward and Backscattering in Particulate Media,

    DTIC Science & Technology

    1985-03-01

    puissance jdoit Itre beaucoup plus petite qua l’unitG. Tor T ~ ~ ITI GRa vTT TPS’~ UNCLASSIFIED TABLE OF CONTENTS LIST OF SYMBOLS...ktnown effects of the mltiple-scattering phenomenon, in parti- cular its greater influence on the backscatter than on the transmission measurements

  8. Incidence angle normalization of radar backscatter data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  9. Laissez-Faire : Fully Asymmetric Backscatter Communication

    PubMed Central

    Hu, Pan; Zhang, Pengyu; Ganesan, Deepak

    2016-01-01

    Backscatter provides dual-benefits of energy harvesting and low-power communication, making it attractive to a broad class of wireless sensors. But the design of a protocol that enables extremely power-efficient radios for harvesting-based sensors as well as high-rate data transfer for data-rich sensors presents a conundrum. In this paper, we present a new fully asymmetric backscatter communication protocol where nodes blindly transmit data as and when they sense. This model enables fully flexible node designs, from extraordinarily power-efficient backscatter radios that consume barely a few micro-watts to high-throughput radios that can stream at hundreds of Kbps while consuming a paltry tens of micro-watts. The challenge, however, lies in decoding concurrent streams at the reader, which we achieve using a novel combination of time-domain separation of interleaved signal edges, and phase-domain separation of colliding transmissions. We provide an implementation of our protocol, LF-Backscatter, and show that it can achieve an order of magnitude or more improvement in throughput, latency and power over state-of-art alternatives. PMID:28286885

  10. Ultrasonic backscatter coefficients for weakly scattering, agar spheres in agar phantoms

    PubMed Central

    King, Michael R.; Anderson, Janelle J.; Herd, Maria-Teresa; Ma, Darryl; Haak, Alexander; Wirtzfeld, Lauren A.; Madsen, Ernest L.; Zagzebski, James A.; Oelze, Michael L.; Hall, Timothy J.; O’Brien, William D.

    2010-01-01

    Applicability of ultrasound phantoms to biological tissue has been limited because most phantoms have generally used strong scatterers. The objective was to develop very weakly scattering phantoms, whose acoustic scattering properties are likely closer to those of tissues and then compare theoretical simulations and experimental backscatter coefficient (BSC) results. The phantoms consisted of agar spheres of various diameters (nominally between 90 and 212 μm), containing ultrafiltered milk, suspended in an agar background. BSC estimates were performed at two institutions over the frequency range 1–13 MHz, and compared to three models. Excellent agreement was shown between the two laboratory results as well as with the three models. PMID:20707460

  11. Synthetic aperture acoustic imaging of non-metallic cords

    NASA Astrophysics Data System (ADS)

    Glean, Aldo A. J.; Good, Chelsea E.; Vignola, Joseph F.; Judge, John A.; Ryan, Teresa J.; Bishop, Steven S.; Gugino, Peter M.; Soumekh, Mehrdad

    2012-06-01

    This work presents a set of measurements collected with a research prototype synthetic aperture acoustic (SAA) imaging system. SAA imaging is an emerging technique that can serve as an inexpensive alternative or logical complement to synthetic aperture radar (SAR). The SAA imaging system uses an acoustic transceiver (speaker and microphone) to project acoustic radiation and record backscatter from a scene. The backscattered acoustic energy is used to generate information about the location, morphology, and mechanical properties of various objects. SAA detection has a potential advantage when compared to SAR in that non-metallic objects are not readily detectable with SAR. To demonstrate basic capability of the approach with non-metallic objects, targets are placed in a simple, featureless scene. Nylon cords of five diameters, ranging from 2 to 15 mm, and a joined pair of 3 mm fiber optic cables are placed in various configurations on flat asphalt that is free of clutter. The measurements were made using a chirp with a bandwidth of 2-15 kHz. The recorded signal is reconstructed to form a two-dimensional image of the distribution of acoustic scatterers within the scene. The goal of this study was to identify basic detectability characteristics for a range of sizes and configurations of non-metallic cord. It is shown that for sufficiently small angles relative to the transceiver path, the SAA approach creates adequate backscatter for detectability.

  12. Study on demodulated signal distribution and acoustic pressure phase sensitivity of a self-interfered distributed acoustic sensing system

    NASA Astrophysics Data System (ADS)

    Shang, Ying; Yang, Yuan-Hong; Wang, Chen; Liu, Xiao-Hui; Wang, Chang; Peng, Gang-Ding

    2016-06-01

    We propose a demodulated signal distribution theory for a self-interfered distributed acoustic sensing system. The distribution region of Rayleigh backscattering including the acoustic sensing signal in the sensing fiber is investigated theoretically under different combinations of both the path difference and pulse width Additionally we determine the optimal solution between the path difference and pulse width to obtain the maximum phase change per unit length. We experimentally test this theory and realize a good acoustic pressure phase sensitivity of  -150 dB re rad/(μPa·m) of fiber in the frequency range from 200 Hz to 1 kHz.

  13. The use of multibeam backscatter and bathymetry as a means of identifying faunal assemblages in a deep-sea cold seep

    NASA Astrophysics Data System (ADS)

    Sen, Arunima; Ondréas, Hélène; Gaillot, Arnaud; Marcon, Yann; Augustin, Jean-Marie; Olu, Karine

    2016-04-01

    Deep-sea ecosystems have attracted considerable commercial interest in recent years because of their potential to sustain a diverse range of mankind's industrial needs. If these systems are to be preserved or exploited in a sustainable manner, mapping habitats and species distributions is critical. As biodiversity at cold-seeps or other deep-sea ecosystems is driven by habitat heterogeneity, imagery is the obvious choice for characterizing these systems and has indeed proven extremely valuable towards mapping biogenic habitats formed by dense aggregations of large sized species, such as coral reefs, tubeworm bushes or bivalve beds. However, the acquisition of detailed images with resolution sufficient for reliable identification is extremely time consuming, labor intensive and highly susceptible to logistical issues. We developed a novel method for quickly mapping cold seep fauna and habitats over large areas, at the scale of squares of kilometers. Our method uses multibeam echosounder bathymetry and acoustic backscatter data, both segmented and reclassified based on topographical features and then combined to obtain a raster containing unique values incorporating both backscatter and bathymetry data. Two datasets, obtained from 30 m and 8 m above the seafloor were used and the results from the two datasets were compared. The method was applied to a cold seep community located in a pockmark in the deep Congo channel and we were able to ground truth the accuracy of our method against images of the area. The two datasets, obtained from different altitudes gave varying results: the 8 m altitude dataset reliably predicted tubeworms and carbonate rock, while the 30 m altitude dataset predicted tubeworms and vesicomyid clams. The 30 m dataset was more accurate than the 8 m altitude dataset in predicting distributions of tubeworms. Overall, all the predictions were quite accurate, with at least 90% of predictions being within 5 m of real distributions.

  14. Iterative Time-Reversed Ultrasonically Encoded Light Focusing in Backscattering Mode

    PubMed Central

    Ruan, Haowen; Jang, Mooseok; Judkewitz, Benjamin; Yang, Changhuei

    2014-01-01

    The Time-Reversed Ultrasound-Encoded (TRUE) light technique enables noninvasive focusing deep inside scattering media. However, the time-reversal procedure usually has a low signal-to-noise ratio because the intensity of ultrasound-encoded light is intrinsically low. Consequently, the contrast and resolution of TRUE focus is far from ideal, especially in the backscattering geometry, which is more practical in many biomedical applications. To improve the light intensity and resolution of TRUE focus, we developed an iterative TRUE (iTRUE) light focusing technique that employs the TRUE focus itself as a signal source (rather than diffused light) for subsequent TRUE procedures. Importantly, this iTRUE technique enables light focusing in backscattering mode. Here, we demonstrate the concept by focusing light in between scattering layers in a backscattering configuration and show that the light intensity at the focus is progressively enhanced by a factor of ~20. By scanning across a fluorescent bead between these two scattering layers, the focusing resolution in the ultrasound axial and lateral directions was improved ~2-fold and ~3-fold, respectively. We further explored the application of iTRUE in biological samples by focusing light between 1 mm thick chicken tissue and cartilage, and light intensity enhancements of the same order were also observed. PMID:25412687

  15. Control of coherent backscattering by breaking optical reciprocity

    NASA Astrophysics Data System (ADS)

    Bromberg, Y.; Redding, B.; Popoff, S. M.; Cao, H.

    2016-02-01

    Reciprocity is a universal principle that has a profound impact on many areas of physics. A fundamental phenomenon in condensed-matter physics, optical physics, and acoustics, arising from reciprocity, is the constructive interference of quantum or classical waves which propagate along time-reversed paths in disordered media, leading to, for example, weak localization and metal-insulator transition. Previous studies have shown that such coherent effects are suppressed when reciprocity is broken. Here we experimentally show that by tuning a nonreciprocal phase we can coherently control complex coherent phenomena, rather than simply suppress them. In particular, we manipulate coherent backscattering of light, also known as weak localization. By utilizing a magneto-optical effect, we control the interference between time-reversed paths inside a multimode fiber with strong mode mixing, observe the optical analog of weak antilocalization, and realize a continuous transition from weak localization to weak antilocalization. Our results may open new possibilities for coherent control of waves in complex systems.

  16. Kinematics of Compton backscattering x-ray source for angiography

    SciTech Connect

    Blumberg, L.N.

    1992-05-01

    Calculations of X-Ray production rates, energy spread, and spectrum of Compton-backscattered photons from a Free Electron Laser on an electron beam in a low energy (136-MeV) compact (8.5-m circumference) storage ring indicate that an X-Ray intensity of 34.6 10{sup 7} X-Ray photons per 0.5-mm {times} 0.5-mm pixel for Coronary Angiography near the 33.169-keV iodine K-absorption edge can be achieved in a 4-msec pulse within a scattering cone of 1-mrad half angle. This intensity, at 10-m from the photon-electron interaction point to the patient is about a factor of 10 larger than presently achieved from a 4.5-T superconducting wiggler source in the NSLS 2.5-GeV storage ring and over an area about 5 times larger. The 2.2-keV energy spread of the Compton-backscattered beam is, however, much larger than the 70-eV spread presently attained form the wiggler source and use of a monochromator. The beam spot at the 10-m interaction point-to-patient distance is 20-mm diameter; larger spots are attainable at larger distances but with a corresponding reduction in X-Ray flux. Such a facility could be an inexpensive clinical alternative to present methods of non-invasive Digital Subtraction Angiography (DSA), small enough to be deployed in an urban medical center, and could have other medical, industrial and aerospace applications. Problems with the Compton backscattering source include laser beam heating of the mirror in the FEL oscillator optical cavity, achieving a large enough X-Ray beam spot at the patient, and obtaining radiation damping of the transverse oscillations and longitudinal emittance dilution of the storage ring electron beam resulting from photon-electron collisions without going to higher electron energy where the X-Ray energy spread becomes excessive for DSA. 38 refs.

  17. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging

    PubMed Central

    Liu, Jianxin; Shang, Tingting; Wang, Fengjuan; Cao, Yang; Hao, Lan; Ren, JianLi; Ran, Haitao; Wang, Zhigang; Li, Pan; Du, Zhiyu

    2017-01-01

    The commonly used ultrasound (US) molecular probes, such as targeted microbubbles and perfluorocarbon emulsions, present a number of inherent problems including the conflict between US visualization and particle penetration. This study describes the successful fabrication of phase changeable folate-targeted perfluoropentane nanodroplets (termed FA-NDs), a novel US molecular probe for tumor molecular imaging with US. Notably, these FA-NDs can be triggered by low-intensity focused US (LIFU) sonication, providing excellent US enhancement in B-mode and contrast-enhanced US mode in vitro. After intravenous administration into nude mice bearing SKOV3 ovarian carcinomas, 1,1′-dioctadecyl-3,3,3′,3′ -tetramethylindotricarbocya-nine iodide-labeled FA-NDs were found to accumulate in the tumor region. FA-NDs injection followed by LIFU sonication exhibited remarkable US contrast enhancement in the tumor region. In conclusion, combining our elaborately developed FA-NDs with LIFU sonication provides a potential protocol for US molecular imaging in folate receptor-overexpressing tumors. PMID:28184161

  18. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging.

    PubMed

    Liu, Jianxin; Shang, Tingting; Wang, Fengjuan; Cao, Yang; Hao, Lan; Ren, JianLi; Ran, Haitao; Wang, Zhigang; Li, Pan; Du, Zhiyu

    2017-01-01

    The commonly used ultrasound (US) molecular probes, such as targeted microbubbles and perfluorocarbon emulsions, present a number of inherent problems including the conflict between US visualization and particle penetration. This study describes the successful fabrication of phase changeable folate-targeted perfluoropentane nanodroplets (termed FA-NDs), a novel US molecular probe for tumor molecular imaging with US. Notably, these FA-NDs can be triggered by low-intensity focused US (LIFU) sonication, providing excellent US enhancement in B-mode and contrast-enhanced US mode in vitro. After intravenous administration into nude mice bearing SKOV3 ovarian carcinomas, 1,1'-dioctadecyl-3,3,3',3' -tetramethylindotricarbocya-nine iodide-labeled FA-NDs were found to accumulate in the tumor region. FA-NDs injection followed by LIFU sonication exhibited remarkable US contrast enhancement in the tumor region. In conclusion, combining our elaborately developed FA-NDs with LIFU sonication provides a potential protocol for US molecular imaging in folate receptor-overexpressing tumors.

  19. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  20. Evaluation of ADCP backscatter inversion to suspended sediment concentration in estuarine environments

    NASA Astrophysics Data System (ADS)

    Park, Hyo-Bong; Lee, Guan-hong

    2016-03-01

    Acoustic Doppler Current Profilers (ADCP), designed for measuring velocity profiles, are widely used for the estimation of suspended sediment concentration from acoustic backscatter strength, but its application to estuarine environments requires further refinement. In this study, we examined the inversion capability of two ADCPs with 600 and 1200 kHz in three Korean estuaries: the supra-macrotidal Han River Estuary (HRE), microtidal Nakdong River Estuary (NRE), and anthropogenically altered macrotidal Yeongsan River Estuary (YRE). In particular, we examined the relative importance of the sound attenuations due to water (αw) and sediment (αs) in response to sediment characteristics (size and concentration) as well as changing salinity and temperature. The inverted concentration was compared with reference concentrations obtained either from water samples or Optical Backscatter Sensors. In NRE and YRE, where suspended sediment concentrations were less than 0.2 g/l, the acoustic inversion performed poorly only with αs (r = 0.20 and 0.38 for NRE and YRE, respectively), but well with αw (r = 0.66 and 0.42 for NRE and YRE, respectively). Thus, it is important to accurately constrain αw in low-concentration estuarine environments. However, we did not find that the varying αw performed considerably better than the constant αw. On the other hand, the acoustic inversion was poorest at HRE regardless of αw and αs (r = 0.71 and mean relative error = 45%). The large discrepancy appears to result from the poorly constrained, spatially and temporally varying sediment characteristics (grain size, density and concentration) due to non-local sediment transport in the macrotidal HRE.

  1. Spectra of Particulate Backscattering in Natural Waters

    NASA Technical Reports Server (NTRS)

    Gordon, Howard, R.; Lewis, Marlon R.; McLean, Scott D.; Twardowski, Michael S.; Freeman, Scott A.; Voss, Kenneth J.; Boynton, Chris G.

    2009-01-01

    Hyperspectral profiles of downwelling irradiance and upwelling radiance in natural waters (oligotrophic and mesotrophic) are combined with inverse radiative transfer to obtain high resolution spectra of the absorption coefficient (a) and the backscattering coefficient (bb) of the water and its constituents. The absorption coefficient at the mesotrophic station clearly shows spectral absorption features attributable to several phytoplankton pigments (Chlorophyll a, b, c, and Carotenoids). The backscattering shows only weak spectral features and can be well represented by a power-law variation with wavelength (lambda): b(sub b) approx. Lambda(sup -n), where n is a constant between 0.4 and 1.0. However, the weak spectral features in b(sub b), suggest that it is depressed in spectral regions of strong particle absorption. The applicability of the present inverse radiative transfer algorithm, which omits the influence of Raman scattering, is limited to lambda < 490 nm in oligotrophic waters and lambda < 575 nm in mesotrophic waters.

  2. Aerosol backscatter lidar calibration and data interpretation

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Menzies, R. T.

    1984-01-01

    A treatment of the various factors involved in lidar data acquisition and analysis is presented. This treatment highlights sources of fundamental, systematic, modeling, and calibration errors that may affect the accurate interpretation and calibration of lidar aerosol backscatter data. The discussion primarily pertains to ground based, pulsed CO2 lidars that probe the troposphere and are calibrated using large, hard calibration targets. However, a large part of the analysis is relevant to other types of lidar systems such as lidars operating at other wavelengths; continuous wave (CW) lidars; lidars operating in other regions of the atmosphere; lidars measuring nonaerosol elastic or inelastic backscatter; airborne or Earth-orbiting lidar platforms; and lidars employing combinations of the above characteristics.

  3. Microwave backscattering from an anisotropic soybean canopy

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Saatchi, S.; Levine, D. M.

    1986-01-01

    Electromagnetic backscattering from a soybean canopy is modeled in the L band region of the spectrum. Mature soybean plants are taken as an ensemble of leaves and stems which are represented by lossy dielectric disks and rods respectively. Field data indicated that leaves and stems are not distributed uniformly in the azimuth coordinate. The plant has a tendency to grow out into the area between the rows. The effects on backscattered radar waves was computed by the distorted Born approximation. Results for look directions along the rows and perpendicular to the rows show that only a modest difference occurs in the L band frequency range. The use of another nonuniform distribution, different from those observed experimentally, results in a significant effect due to vegetation asymmetry.

  4. Backscattering power spectrum for randomly moving vegetation

    NASA Astrophysics Data System (ADS)

    Jiankang, J.; Zhongzhi, Z.; Zhong, S.

    1986-08-01

    The vegetation backscattering power spectrum in the presence of winds is derived. The physical process of the action of stems and leaves of the vegetation is analyzed. A statistical distribution of the random velocity of stems and leaves is obtained, and the vegetation backscattering power spectral density which is dependent on the wind speed and direction as well as the incident wave parameters is given. In the case of uniform notion of vegetation in the direction of winds, the results provide a good interpretation of Fishbein's empirical model. The determination of the values of the equivalent parameters in the spectrum is discussed, and comparisons are made between the derived spectrum and measured published spectra with satisfactory consistence.

  5. Effects of Ion-Ion Collisions and Inhomogeneity in Two-Dimensional Kinetic Ion Simulations of Stimulated Brillouin Backscattering

    SciTech Connect

    Cohen, B I; Divol, L; Langdon, A B; Williams, E A

    2005-10-17

    Two-dimensional simulations with the BZOHAR [B.I. Cohen, B.F. Lasinski, A.B. Langdon, and E.A. Williams, Phys. Plasmas 4, 956 (1997)] hybrid code (kinetic particle ions and Boltzmann fluid electrons) have been used to investigate the saturation of stimulated Brillouin backscatter (SBBS) instability including the effects of ion-ion collisions and inhomogeneity. Ion-ion collisions tend to increase ion-wave dissipation, which decreases the gain exponent for stimulated Brillouin backscattering; and the peak Brillouin backscatter reflectivities tend to decrease with increasing collisionality in the simulations. Two types of Langevin-operator, ion-ion collision models were implemented in the simulations. In both models used the collisions are functions of the local ion temperature and density, but the collisions have no velocity dependence in the first model. In the second model, the collisions are also functions of the energy of the ion that is being scattered so as to represent a Fokker-Planck collision operator. Collisions decorrelate the ions from the acoustic waves in SBS, which disrupts ion trapping in the acoustic wave. Nevertheless, ion trapping leading to a hot ion tail and two-dimensional physics that allows the SBS ion waves to nonlinearly scatter remain robust saturation mechanisms for SBBS in a high-gain limit over a range of ion collisionality. SBS backscatter in the presence of a spatially nonuniform plasma flow is also investigated. Simulations show that depending on the sign of the spatial gradient of the flow relative to the backscatter, ion trapping effects that produce a nonlinear frequency shift can enhance (auto-resonance) or decrease (anti-auto-resonance) reflectivities in agreement with theoretical arguments.

  6. Connecting forest ecosystem and microwave backscatter models

    NASA Technical Reports Server (NTRS)

    Kasischke, Eric S.; Christensen, Norman L., Jr.

    1990-01-01

    A procedure is outlined to connect data obtained from active microwave remote sensing systems with forest ecosystem models. The hierarchy of forest ecosystem models is discussed, and the levels at which microwave remote sensing data can be used as inputs are identified. In addition, techniques to utilize forest ecosystem models to assist in the validation of theoretical microwave backscatter models are identified. Several examples to illustrate these connecting processes are presented.

  7. Backscatter Correction Algorithm for TBI Treatment Conditions

    SciTech Connect

    Sanchez-Nieto, B.; Sanchez-Doblado, F.; Arrans, R.; Terron, J.A.; Errazquin, L.

    2015-01-15

    The accuracy requirements in target dose delivery is, according to ICRU, ±5%. This is so not only in standard radiotherapy but also in total body irradiation (TBI). Physical dosimetry plays an important role in achieving this recommended level. The semi-infinite phantoms, customarily used for dosimetry purposes, give scatter conditions different to those of the finite thickness of the patient. So dose calculated in patient’s points close to beam exit surface may be overestimated. It is then necessary to quantify the backscatter factor in order to decrease the uncertainty in this dose calculation. The backward scatter has been well studied at standard distances. The present work intends to evaluate the backscatter phenomenon under our particular TBI treatment conditions. As a consequence of this study, a semi-empirical expression has been derived to calculate (within 0.3% uncertainty) the backscatter factor. This factor depends lineally on the depth and exponentially on the underlying tissue. Differences found in the qualitative behavior with respect to standard distances are due to scatter in the bunker wall close to the measurement point.

  8. Modeling strategies of ultrasound backscattering by blood

    NASA Astrophysics Data System (ADS)

    Guy, Cloutier; David, Savery; Isabelle, Fontaine; Beng Ghee, Teh

    2002-05-01

    Tissue characterization using ultrasound (US) scattering can allow the identification of relevant cellular biophysical information noninvasively. The characterization of the level of red blood cell (RBC) aggregation is one of the proposed applications. Different modeling strategies have been investigated by our group to better understand the mechanisms of US backscattering by blood, and to propose relevant measurable indices of aggregation. It could be hypothesized from these studies that the microstructure formed by RBC clusters is a main determinant of US backscattered power. The structure factor, which is related to the Fourier transform of the microscopic density function of RBCs, is described and used to explain the scattering behavior for different spatial arrangements of nonaggregated and aggregated RBCs. The microscopic density function was described by the Percus-Yevick approximation (nonaggregated RBCs), and for aggregated RBCs, by the Poisson distribution, the Neyman-Scott point process, and very recently by a flow-dependent rheological model. These statistical and microrheological models allowed the study of US backscattered power as a function of the hematocrit, scatterers' size, insonification frequency, and level of RBC aggregation. Experimental results available from the literature were used to validate the different approaches. [Work supported by Canadian Institutes of Health Research (MOP-36467), HSFQ, FCAR, and FRSQ.

  9. X-ray backscatter imaging for radiography by selective detection and snapshot: Evolution, development, and optimization

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel

    more inclusive theory of the factors affecting CBI contrast generation has tied together the past work of LMR with the more recent research in RSD. A variety of factors that induce changes in the backscatter photon field intensity (resulting in contrast changes in images) include: changes in the electron density field, attenuation changes along the entrance and exit paths, changes in the relative geometric positioning of the target, feature, illumination beam, and detectors. Understanding the interplay of how changes in each of these factors affects image contrast becomes essential to utilizing and optimizing RSD for different applications.

  10. Coherent kilo-electron-volt backscattering from plasma-wave boosted relativistic electron mirrors

    SciTech Connect

    Li, F. Y.; Chen, M. Liu, Y.; Zhang, J.; Sheng, Z. M. E-mail: zmsheng@sjtu.edu.cn; Wu, H. C.; Meyer-ter-Vehn, J.; Mori, W. B.

    2014-10-20

    A different parameter regime of laser wakefield acceleration driven by sub-petawatt femtosecond lasers is proposed, which enables the generation of relativistic electron mirrors further accelerated by the plasma wave. Integrated particle-in-cell simulation, including both the mirror formation and Thomson scattering, demonstrates that efficient coherent backscattering up to keV photon energy can be obtained with moderate driving laser intensities and high density gas targets.

  11. Backscatter and attenuation characterization of ventricular myocardium

    NASA Astrophysics Data System (ADS)

    Gibson, Allyson Ann

    2009-12-01

    This Dissertation presents quantitative ultrasonic measurements of the myocardium in fetal hearts and adult human hearts with the goal of studying the physics of sound waves incident upon anisotropic and inhomogeneous materials. Ultrasound has been used as a clinical tool to assess heart structure and function for several decades. The clinical usefulness of this noninvasive approach has grown with our understanding of the physical mechanisms underlying the interaction of ultrasonic waves with the myocardium. In this Dissertation, integrated backscatter and attenuation analyses were performed on midgestational fetal hearts to assess potential differences in the left and right ventricular myocardium. The hearts were interrogated using a 50 MHz transducer that enabled finer spatial resolution than could be achieved at more typical clinical frequencies. Ultrasonic data analyses demonstrated different patterns and relative levels of backscatter and attenuation from the myocardium of the left ventricle and the right ventricle. Ultrasonic data of adult human hearts were acquired with a clinical imaging system and quantified by their magnitude and time delay of cyclic variation of myocardial backscatter. The results were analyzing using Bayes Classification and ROC analysis to quantify potential advantages of using a combination of two features of cyclic variation of myocardial backscatter over using only one or the other feature to distinguish between groups of subjects. When the subjects were classified based on hemoglobin A1c, the homeostasis model assessment of insulin resistance, and the ratio of triglyceride to high-density lipoprotein-cholesterol, differences in the magnitude and normalized time delay of cyclic variation of myocardial backscatter were observed. The cyclic variation results also suggested a trend toward a larger area under the ROC curve when information from magnitude and time delay of cyclic variation is combined using Bayes classification than when

  12. Leaky Rayleigh wave ultrasonic backscattering enhancements: Experimental tests of theory for tilted solid cylinders and cubes

    NASA Astrophysics Data System (ADS)

    Gipson, Karen

    Backscattering enhancements due to acoustic wave coupling into leaky Rayleigh waves on solid elastic cubes and cylinders submerged in water are investigated. A quantitative ray description of the launching and propagation of the leaky Rayleigh waves is verified to be useful. Leaky Rayleigh waves are launched on the surface of an elastic object if the acoustic wavevector's projection along the surface matches the wavevector associated with leaky Rayleigh wave propagation. Once launched, leaky Rayleigh waves on the surface of an elastic object will be partially reflected at the object's truncations, and under certain conditions the reflection process may result in a reversal of the leaky wavevector on the surface so that the leaky radiation is oriented in the backscattering direction. Furthermore, the radiated wavefront can have a vanishing Gaussian curvature which produces a far-field caustic. The leaky wave pressure on the surface of the scatterer is approximated by convolving the incident pressure with an appropriate function describing the response of the surface to a localized pressure input, and the method of images is used to approximate the reflection processes. The resulting reflected pressure field on or near the target's surface is then propagated to the far field using the Rayleigh-Sommerfeld diffraction integral. Tone burst experiments confirm that this approach provides reasonable predictions for a variety of cases including the retroreflection of leaky waves around a comer on the face of a cube, the retroreflection of meridional leaky waves along the length of a cylinder, and the retroreflection of leaky waves launched diagonally across the flat face of a cylinder. The frequency dependence of these mechanisms for backscattering from a cylinder was also investigated using a pressure source capable of producing an impulsive pressure, and the observed time returns for end-reflected helical waves agree with theoretical predictions. For the high frequencies

  13. Observation of stimulated electron acoustic wave scattering: the case for nonlinear kinetic effects

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Cobble, J. A.; Fernandez, J. C.; Rose, H. A.; Focia, R. J.; Russell, D. A.

    2001-10-01

    Electrostatic waves with a frequency and phase velocity between an ion acoustic wave (IAW) and an electron plasma wave (EPW) have been observed with Thomson scattering in inhomogeneous plasmas, and in the backscattered spectrum for homogeneous single hot spot laser plasmas. We show that these waves are consistent with an electron-acoustic wave (EAW) that is a BGK-like mode due to electron trapping. The nonlinear dispersion relation for BGK-like EPW and EAW is discussed, and previous inhomogeneous Trident and Nova data are re-examined in this context. The possible implications of these results for backscattered SRS on the NIF are discussed.

  14. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  15. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.

  16. Backscatter from ice growing on shallow tundra lakes near Barrow, Alaska, winter 1991-1992

    NASA Technical Reports Server (NTRS)

    Jeffries, M. O.; Wakabayashi, H.; Weeks, W. F.; Morris, K.

    1993-01-01

    The timing of freeze-up and break-up of Arctic lake ice is a potentially useful environmental indicator that could be monitored using SAR. In order to do this, it is important to understand how the properties and structure of the ice during its growth and decay affect radar backscatter and thus lake ice SAR signatures. The availability of radiometrically and geometrically calibrated digital SAR data time series from the Alaska SAR Facility has made it possible for the first time to quantify lake ice backscatter intensity (sigma(sup o)) variations. This has been done for ice growing on shallow tundra lakes near Barrow, NW Alaska, from initial growth in September 1991 until thawing and decay in June 1992. Field and laboratory observations and measurements of the lake ice were made in late April 1992. The field investigations of the coastal lakes near Barrow confirmed previous findings that, (1) ice frozen to the lake bottom had a dark signature in SAR images, indicating weak backscatter, while, (2) ice that was floating had a bright signature, indicating strong backscatter. At all sites, regardless of whether the ice was grounded or floating, there was a layer of clear, inclusion-free ice overlaying a layer of ice with dense concentrations of vertically oriented tubular bubbles. At some sites, there was a third layer of porous, snow-ice overlaying the clear ice.

  17. Global Backscatter Experiment (GLOBE) Results: Aerosol Backscatter Global Distribution and Wavelength Dependence

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.

    1992-01-01

    The GLObal Backscatter Experiment (GLOBE) was initiated by NASA in 1986 as an interagency and international research effort to characterize tropospheric backscatter properties. The primary objective of the program is to develop realistic aerosol backscatter inputs for design and simulation studies for NASA's prospective Laser Atmospheric Wind Sounder (LAWS). To achieve this, GLOBE incorporates several different types of aerosol sensors, which operate from a variety of sensor platforms, covering a wide range of spatial and temporal scales, and measure a diverse set of aerosol physical, chemical, and optical properties. The results of this analysis have provided important new information on the life cycles and physicochemical properties of global scale tropospheric aerosol systems. In addition, GLOBE analytical methods will be useful for the Earth Observing System (EOS) and other studies that involve the assimilation of large, complex atmospheric aerosol databases.

  18. Signal Processing and Calibration of Continuous-Wave Focused CO2 Doppler Lidars for Atmospheric Backscatter Measurement

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Chambers, Diana M.; Jarzembski, Maurice A.; Srivastava, Vandana; Bowdle, David A.; Jones, William D.

    1996-01-01

    Two continuous-wave(CW)focused C02 Doppler lidars (9.1 and 10.6 micrometers) were developed for airborne in situ aerosol backscatter measurements. The complex path of reliably calibrating these systems, with different signal processors, for accurate derivation of atmospheric backscatter coefficients is documented. Lidar calibration for absolute backscatter measurement for both lidars is based on range response over the lidar sample volume, not solely at focus. Both lidars were calibrated with a new technique using well-characterized aerosols as radiometric standard targets and related to conventional hard-target calibration. A digital signal processor (DSP), a surface acoustic and spectrum analyzer and manually tuned spectrum analyzer signal analyzers were used. The DSP signals were analyzed with an innovative method of correcting for systematic noise fluctuation; the noise statistics exhibit the chi-square distribution predicted by theory. System parametric studies and detailed calibration improved the accuracy of conversion from the measured signal-to-noise ratio to absolute backscatter. The minimum backscatter sensitivity is approximately 3 x 10(exp -12)/m/sr at 9.1 micrometers and approximately 9 x 10(exp -12)/m/sr at 10.6 micrometers. Sample measurements are shown for a flight over the remote Pacific Ocean in 1990 as part of the NASA Global Backscatter Experiment (GLOBE) survey missions, the first time to our knowledge that 9.1-10.6 micrometer lidar intercomparisons were made. Measurements at 9.1 micrometers, a potential wavelength for space-based lidar remote-sensing applications, are to our knowledge the first based on the rare isotope C-12 O(2)-18 gas.

  19. Theory of Acoustic Raman Modes in Proteins

    NASA Astrophysics Data System (ADS)

    DeWolf, Timothy; Gordon, Reuven

    2016-09-01

    We present a theoretical analysis that associates the resonances of extraordinary acoustic Raman (EAR) spectroscopy [Wheaton et al., Nat. Photonics 9, 68 (2015)] with the collective modes of proteins. The theory uses the anisotropic elastic network model to find the protein acoustic modes, and calculates Raman intensity by treating the protein as a polarizable ellipsoid. Reasonable agreement is found between EAR spectra and our theory. Protein acoustic modes have been extensively studied theoretically to assess the role they play in protein function; this result suggests EAR spectroscopy as a new experimental tool for studies of protein acoustic modes.

  20. Kinetic simulations of stimulated Raman backscattering and related processes for the shock-ignition approach to inertial confinement fusion

    SciTech Connect

    Riconda, C.; Weber, S.; Tikhonchuk, V. T.; Heron, A.

    2011-09-15

    A detailed description of stimulated Raman backscattering and related processes for the purpose of inertial confinement fusion requires multi-dimensional kinetic simulations of a full speckle in a high-temperature, large-scale, inhomogeneous plasma. In particular for the shock-ignition scheme operating at high laser intensities, kinetic aspects are predominant. High- (I{lambda}{sub o}{sup 2}{approx}5x10{sup 15}W{mu}m{sup 2}/cm{sup 2}) as well as low-intensity (I{lambda}{sub o}{sup 2}{approx}10{sup 15}W{mu}m{sup 2}/cm{sup 2}) cases show the predominance of collisionless, collective processes for the interaction. While the two-plasmon decay instability and the cavitation scenario are hardly affected by intensity variation, inflationary Raman backscattering proves to be very sensitive. Brillouin backscattering evolves on longer time scales and dominates the reflectivities, although it is sensitive to the intensity. Filamentation and self-focusing do occur for all cases but on time scales too long to affect Raman backscattering.

  1. Electromagnetic acoustic imaging.

    PubMed

    Emerson, Jane F; Chang, David B; McNaughton, Stuart; Jeong, Jong Seob; Shung, K K; Cerwin, Stephen A

    2013-02-01

    Electromagnetic acoustic imaging (EMAI) is a new imaging technique that uses long-wavelength RF electromagnetic (EM) waves to induce ultrasound emission. Signal intensity and image contrast have been found to depend on spatially varying electrical conductivity of the medium in addition to conventional acoustic properties. The resultant conductivity- weighted ultrasound data may enhance the diagnostic performance of medical ultrasound in cancer and cardiovascular applications because of the known changes in conductivity of malignancy and blood-filled spaces. EMAI has a potential advantage over other related imaging techniques because it combines the high resolution associated with ultrasound detection with the generation of the ultrasound signals directly related to physiologically important electrical properties of the tissues. Here, we report the theoretical development of EMAI, implementation of a dual-mode EMAI/ultrasound apparatus, and successful demonstrations of EMAI in various phantoms designed to establish feasibility of the approach for eventual medical applications.

  2. Backscattering and Nonparaxiality Arrest Collapse of Damped Nonlinear Waves

    NASA Technical Reports Server (NTRS)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2002-01-01

    The critical nonlinear Schrodinger equation (NLS) models the propagation of intense laser light in Kerr media. This equation is derived from the more comprehensive nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. It is known that if the input power of the laser beam (i.e., L(sub 2) norm of the initial solution) is sufficiently high, then the NLS model predicts that the beam will self-focus to a point (i.e.. collapse) at a finite propagation distance. Mathematically, this behavior corresponds to the formation of a singularity in the solution of the NLS. A key question which has been open for many years is whether the solution to the NLH, i.e., the 'parent' equation, may nonetheless exist and remain regular everywhere, in particular for those initial conditions (input powers) that lead to blowup in the NLS. In the current study, we address this question by introducing linear damping into both models and subsequently comparing the numerical solutions of the damped NLH (boundary-value problem) with the corresponding solutions of the damped NLS (initial-value problem). Linear damping is introduced in much the same way as done when analyzing the classical constant-coefficient Helmholtz equation using the limiting absorption principle. Numerically, we have found that it provides a very efficient tool for controlling the solutions of both the NLH and NHS. In particular, we have been able to identify initial conditions for which the NLS solution does become singular. whereas the NLH solution still remains regular everywhere. We believe that our finding of a larger domain of existence for the NLH than that for the NLS is accounted for by precisely those mechanisms, that have been neglected when deriving the NLS from the NLH, i.e., nonparaxiality and backscattering.

  3. Radio acoustic measurement of temperature profile in the troposphere and stratosphere

    NASA Astrophysics Data System (ADS)

    Matuura, N.; Masuda, Y.; Inuki, H.; Kato, S.; Fukao, S.; Sato, T.; Tsuda, T.

    1986-10-01

    The radio acoustic sounding system (RASS) uses radar to measure the temperature profile in the atmosphere. In the standard technique of atmospheric radar, the radar backscatter results from electrical permittivity variations due to natural phenomena such as turbulence and precipitation. In the RASS technique, the radar backscatter results from periodical permittivity variations due to density/temperature variations imposed on the atmosphere by an acoustic wave artificially generated in such a way that the acoustic wavelength is half the radar (electromagnetic) wavelength. This `Bragg condition' is necessary for efficient backscattering. The backscatter echo of the RASS is affected by the Doppler frequency shift arising both from the speed at which the longitudinal acoustic perturbations propagate (the sound speed), and from the radial bulk velocity in the common volume of the atmosphere-the latter can be measured by the standard technique of turbulence scatter. The observed sound speed is reduced to give the local atmospheric temperature. Here we report an experiment using the RASS, carried out on 1-3 August 1985, which consisted of a high-power, very-high-frequency (VHF) Doppler radar at Shigaraki, Shiga, Japan and a movable high-power acoustic transmitter, and which gave the first experimental proof of the possibility of temperature profiling in the troposphere and stratosphere up to an altitude of ~20 km.

  4. Development and characterization of a blood mimicking fluid for high intensity focused ultrasound.

    PubMed

    Liu, Yunbo; Maruvada, Subha; King, Randy L; Herman, Bruce A; Wear, Keith A

    2008-09-01

    A blood mimicking fluid (BMF) has been developed for the acoustic and thermal characterizations of high intensity focused ultrasound (HIFU) ablation devices. The BMF is based on a degassed and de-ionized water solution dispersed with low density polyethylene microspheres, nylon particles, gellan gum, and glycerol. A broad range of physical parameters, including attenuation coefficient, speed of sound, viscosity, thermal conductivity, and diffusivity, were characterized as a function of temperature (20-70 degrees C). The nonlinear parameter B/A and backscatter coefficient were also measured at room temperature. Importantly, the attenuation coefficient is linearly proportional to the frequency (2-8 MHz) with a slope of about 0.2 dB cm(-1) MHz(-1) in the 20-70 degrees C range as in the case of human blood. Furthermore, sound speed and bloodlike backscattering indicate the usefulness of the BMF for ultrasound flow imaging and ultrasound-guided HIFU applications. Most of the other temperature-dependent physical parameters are also close to the reported values in human blood. These properties make it a unique HIFU research tool for developing standardized exposimetry techniques, validating numerical models, and determining the safety and efficacy of HIFU ablation devices.

  5. Seismo-acoustic imaging of marine hard substrate habitats: a case study from the German Bight (SE North Sea)

    NASA Astrophysics Data System (ADS)

    Papenmeier, Svenja; Hass, H. Christian

    2016-04-01

    The detection of hard substrate habitats in sublittoral environments is a considerable challenge in spite of modern high resolution hydroacoustic techniques. In offshore areas those habitats are mainly represented by either cobbles and boulders (stones) often located in wide areas of soft sediments or by glacial relict sediments (heterogeneous mixture of medium sand to gravel size with cobbles and boulders). Sediment classification and object detection is commonly done on the basis of hydroacoustic backscatter intensities recorded with e.g. sidescan sonar (SSS) and multibeam echo sounder (MBES). Single objects lying on the sediment such as stones can generally be recognized by the acoustic shadow behind the object. However, objects close to the sonar's nadir may remain undetected because their shadows are below the data resolution. Further limitation in the detection of objects is caused by sessile communities that thrive on the objects. The bio-cover tends to absorb most of the acoustic signal. Automated identification based on the backscatter signal is often not satisfactory, especially when stones are present in a setting with glacial deposits. Areas characterized by glacial relict sediments are hardly differentiable in their backscatter characteristics from rippled coarse sand and fine gravel (rippled coarse sediments) without an intensive ground-truthing program. From the ecological point of view the relict and rippled coarse sediments are completely different habitats and need to be distinguished. The case study represents a seismo-acoustic approach in which SSS and nonlinear sediment echo sounder (SES) data are combined to enable a reliable and reproducible differentiation between relict sediments (with stones and coarse gravels) and rippled coarse sediments. Elevated objects produce hyperbola signatures at the sediment surface in the echo data which can be used to complement the SSS data. The nonlinear acoustic propagation of the SES sound pulses produces a

  6. Acoustic Microscopy at Cryogenic Temperatures.

    DTIC Science & Technology

    1982-01-01

    intensities are used, and quantitatitvely acount for the onset of nonlinear excess attenuation. Aooeuuaiol For DTIC TAB Unaranounc ed Just if icat to By...to acoustic power is a reasonable value and can be acounted for by assuming a one-way transducer conversion loss of 5 dB, a lens illumination loss of

  7. Modeling the frequency dependence (5-120 MHz) of ultrasound backscattering by red cell aggregates in shear flow at a normal hematocrit

    NASA Astrophysics Data System (ADS)

    Fontaine, Isabelle; Cloutier, Guy

    2003-05-01

    The frequency dependence of the ultrasound signal backscattered by blood in shear flow was studied using a simulation model. The ultrasound backscattered signal was computed with a linear model that considers the characteristics of the ultrasound system and tissue acoustic properties. The tissue scattering properties were related to the position and shape of the red blood cells (RBCs). A 2D microrheological model simulated the RBC dynamics in a Couette shear flow system. This iterative model, described earlier [Biophys. J. 82, 1696-1710 (2002)], integrates the hydrodynamic effect of the flow, as well as adhesive and repulsive forces between RBCs. RBC aggregation was simulated at 40% hematocrit and shear rates of 0.05-2 s-1. The RBC aggregate sizes ranged, on average, from 3.3 RBCs at 2 s-1 to 33.5 cells at 0.05 s-1. The ultrasound backscattered power was studied at frequencies between 5-120 MHz and insonification angles between 0-180°. At frequencies below approximately 30 MHz, the ultrasound backscattered power increased as the shear rate was decreased and the size of the aggregates was raised. A totally different scattering behavior was noted above 30 MHz. Typical spectral slopes of the backscattered power (log-log scale) between 5-25 MHz equaled 3.8, whereas slopes down to 0.6 were measured at 0.05 s-1, between 40-60 MHz. The ultrasound backscattered power was shown to be angle dependent at low frequencies (5-25 MHz). The anisotropy persisted at high frequencies (>25 MHz) for small aggregates (at 2 s-1). In conclusion, this study sheds some light on the blood backscattering behavior with an emphasis on the non-Rayleigh regime. Additional experimental studies may be necessary to validate the simulation results, and to fully understand the relation between the ultrasound backscattered power, level of RBC aggregation, shear rate, frequency, and insonification angle.

  8. Atmospheric Backscatter Model Development for CO Sub 2 Wavelengths

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Kent, G.; Yue, G. K.

    1982-01-01

    The results of investigations into the problems of modeling atmospheric backscatter from aerosols, in the lowest 20 km of the atmosphere, at CO2 wavelengths are presented, along with a summary of the relevant aerosol characteristics and their variability, and a discussion of the measurement techniques and errors involved. The different methods of calculating the aerosol backscattering function, both from measured aerosol characteristics and from optical measurements made at other wavelengths, are discussed in detail, and limits are placed on the accuracy of these methods. The effects of changing atmospheric humidity and temperature on the backscatter are analyzed and related to the actual atmosphere. Finally, the results of modeling CO2 backscatter in the atmosphere are presented and the variation with height and geographic location discussed, and limits placed on the magnitude of the backscattering function. Conclusions regarding modeling techniques and modeled atmospheric backscatter values are presented in tabular form.

  9. High-sensitivity fiber optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  10. Mudrocks examined by backscattered electron microscopy

    NASA Technical Reports Server (NTRS)

    Pye, K.; Krinsley, D.

    1983-01-01

    A method of studying mudrocks is developed using backscattered electrons (BSE) in scanning electron microscopy. Commercially available detectors are utilized to mix the BSE and secondary electron signals in order to obtain the optimum image for a particular material. Thin sections or polished rock chip surfaces are examined with BSE which provides both the atomic number contrast and topographic contrast. This technique provides very detailed information about the form and composition of individual grains in the mudrock thin sections and can be used in studies of the source, mode of deposition, diagenesis, and tectonic deformational history of mudrocks.

  11. Elementary polarization properties in the backscattering configuration.

    PubMed

    Arteaga, Oriol; Garcia-Caurel, Enric; Ossikovski, Razvigor

    2014-10-15

    In the normal incidence backscattering configuration, a polarimetric measurement always preserves the reciprocal symmetry. For a reciprocal Jones matrix, the number of elementary polarization properties is reduced from six to four. In this work, the physical interpretation of these properties is examined and they are compared with the equivalent polarization properties in transmission. It is found that, with the exception of natural optical activity, a polarimetric backreflection experiment can essentially provide the same type of information about the anisotropy of a medium as a transmission analysis, although transmission and backreflection information comes in a completely different form. Experimental examples are provided to illustrate the discussion.

  12. Strain Determination Using Electron Backscatter Diffraction

    SciTech Connect

    Krause, M.; Graff, A.; Altmann, F.

    2010-11-24

    In the present paper we demonstrate the use of electron backscatter diffraction (EBSD) for high resolution elastic strain determination. Here, we focus on analysis methods based on determination of small shifts in EBSD pattern with respect to a reference pattern using cross-correlation algorithms. Additionally we highlight the excellent spatial and depth resolution of EBSD and introduce the use of simulated diffraction patterns based on dynamical diffraction theory for sensitivity estimation. Moreover the potential of EBSD for strain analysis of strained thin films with particular emphasis on appropriate target preparation which respect to occurring lattice defects is demonstrated.

  13. Estimation of sediment transport with an in-situ acoustic retrieval algorithm in the high-turbidity Changjiang Estuary, China

    NASA Astrophysics Data System (ADS)

    Ge, Jian-zhong; Ding, Ping-xing; Li, Cheng; Fan, Zhong-ya; Shen, Fang; Kong, Ya-zhen

    2015-12-01

    A comprehensive acoustic retrieval algorithm to investigate suspended sediment is presented with the combined validations of Acoustic Doppler Current Profiler (ADCP) and Optical Backscattering Sensor (OBS) monitoring along seven cross-channel sections in the high-turbidity North Passage of the Changjiang Estuary, China. The realistic water conditions, horizontal and vertical salinities, and grain size of the suspended sediment are considered in the retrieval algorithm. Relations between net volume scattering of sound attenuation ( S v ) due to sediments and ADCP echo intensity ( E) were obtained with reasonable accuracy after applying the linear regression method. In the river mouth, an intensive vertical stratification and horizontal inhomogeneity were found, with a higher concentration of sediment in the North Passage and a lower concentration in the North Channel and South Passage. Additionally, The North Passage is characterized by higher sediment concentration in the middle region and lower concentration in the entrance and outlet areas. The maximum sediment flux rate, occurred in the middle region, could reach 6.3×105 and 1.5×105 t/h during the spring and neap tide, respectively. Retrieved sediment fluxes in the middle region are significantly larger than that in the upstream and downstream region. This strong sediment imbalance along the main channel indicates potential secondary sediment supply from southern Jiuduansha Shoals.

  14. Backscattering of ultrashort laser pulse in turbid media

    NASA Astrophysics Data System (ADS)

    Narivonchik, Stanislav; Bespalov, Victor G.

    2002-01-01

    Recently there has been considerable interest in the problems of optical imaging in turbid, strongly scattering media, such as tumours in biological tissues, objects in water, etc. To detect objects in the media the analysis of backscattering of picosecond signal can be used. In this paper we report about the influence of medium parameters and detector parameters on temporal profile of the reflected pulse and its intensity. Virtual experiments were carried out with the MONTE-CARLO method, and temporal profile of signal was obtained. The dependencies of the forepart and tail-part of the signal fronts, maximum position of the reflected signal and the reflection coefficient from the scattering particle density and cross section were obtained. These dependencies show that the tail-part of the signal is greatly decreased while the density is increased, compared to the forepart and maximum intensity position of the signal. These results can be used to analyze the scattering particle density and cross section in the turbid materials. Virtual experiments with the presence of various inhomogeneities were performed, which show that not only reflecting and absorbing solid objects, but also even density inhomogeneities can be detected.

  15. Theoretical and Experimental Study of Radar Backscatter from Sea Ice

    DTIC Science & Technology

    1984-01-01

    predicts that the depolarized backscattering coefficient is zero. Moreover, there is no distinction in this model between vertical and horizontal... Backscattering Cross-Section of First-Year Ice at 13 GHz. 38 angles except vertical incidence, mainly due to the 3rewster angle effect. The depolarized ...theories to properly explain the polarization dependence of the backscatter from sea ice. Because depolarization is a secondary effect for the surface

  16. Nonlinear Acoustics

    DTIC Science & Technology

    1974-02-14

    Wester- velt. [60] Streaming. In 1831, Michael Faraday [61] noted that currents of air were set up in the neighborhood of vibrating plates-the first... ducei in the case of a paramettc amy (from Berktay an Leahy 141). C’ "". k•, SEC 10.1 NONLINEAR ACOUSTICS 345 The principal results of their analysis

  17. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-03-03

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  18. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-01-01

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  19. Laser beam smoothing and backscatter saturation processes in plasmas relevant to National Ignition Facility hohlraums

    SciTech Connect

    Berger, R L; Cohen, B I; Decker, C D; Dixit, S; Glenzer, S H; Hinkel, D E; Kirkwood, R K; Langdon, A B; Lefebvre, E; MacGowan, B J; Moody, J D; Rothenberg, J E; Rousseuax, C; Still, C H; Suter, L J; Williams, E A

    1998-10-01

    We have used gas-filled targets irradiated at the Nova laser to simulate National Ignition Facility (NlF) hohlraum plasmas and to study the dependence of Stimulated Raman (SRS) and Brillouin (SBS) Scattering on beam smoothing at a range of laser intensities (3{omega}, 2 - 4 10{sup 15}Wcm{sup -2}) and plasma conditions. We have demonstrated the effectiveness of polarization smoothing as a potential upgrade to the NIF. Experiments with higher intensities and higher densities characteristic of 350eV hohlraum designs indicate that with appropriate beam smoothing the backscatter from such hohlraums may be tolerable.

  20. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar.

    PubMed

    Ansmann, A; Wandinger, U; Riebesell, M; Weitkamp, C; Michaelis, W

    1992-11-20

    Height profiles of the extinction and the backscatter coefficients in cirrus clouds are determined independently from elastic- and inelastic- (Raman) backscatter signals. An extended error analysis is given. Examples covering the measured range of extinction-to-backscatter ratios (lidar ratios) in ice clouds are presented. Lidar ratios between 5 and 15 sr are usually found. A strong variation between 2 and 20 sr can be observed within one cloud profile. Particle extinction coefficients determined from inelastic-backscatter signals and from elastic-backscatter signals by using the Klett method are compared. The Klett solution of the extinction profile can be highly erroneous if the lidar ratio varies along the measuring range. On the other hand, simple backscatter lidars can provide reliable information about the cloud optical depth and the mean cloud lidar ratio.

  1. Multiscale Interactions and Backscatter in Premixed Combustion

    NASA Astrophysics Data System (ADS)

    Hamlington, Peter; Towery, Colin; O'Brien, Jeffrey; Poludnenko, Alexei; Urzay, Javier; Ihme, Matthias

    2015-11-01

    Multiscale interactions and energy transfer between turbulence and flames are fundamental to understanding and modeling premixed turbulent reacting flows. To investigate such flows, direct numerical simulations of statistically planar turbulent premixed flames have been performed, and the dynamics of kinetic energy transfer are examined in both spectral and physical spaces. In the spectral analysis, two-dimensional kinetic energy spectra and triadic interactions are computed through the flame brush. It is found that there is suppression of turbulent small-scale motions in the combustion products, along with backscatter of energy for a range of scales near the thermal laminar flame width. In the physical-space analysis, a differential filter is applied to examine the transfer of kinetic energy between subgrid and resolved scales in the context of large eddy simulations. Subgrid-scale backscatter of kinetic energy driven by combustion is found to prevail over forward scatter throughout the flame brush. The spectral- and physical-space analyses thus both suggest an enhancement of reverse-cascade phenomena in the flame brush, which is possibly driven by accumulation of kinetic energy in the scales where combustion-induced heat release is preferentially deployed.

  2. Radar backscatter properties of milo and soybeans

    NASA Technical Reports Server (NTRS)

    Bush, T. F.; Ulaby, F. T.; Metzler, T.

    1975-01-01

    The radar backscatter from fields of milo and soybeans was measured with a ground based radar as a function of frequency (8-18 GHz), polarization (HH and VV) and angle of incidence (0 deg-70 deg) during the summer of 1974. Supporting ground truth was gathered contemporaneously with the backscatter data. At nadir sigma deg of milo correlated highly, r = 0.96, with soil moisture in the milo field at 8.6 GHz but decreased to a value of r = 0.78 at a frequency of 17.0 GHz. Correlation studies of the variations of sigma deg with soil moisture in the soybean fields were not possible due to a lack of a meaningful soil moisture dynamic range. At the larger angles of incidence, however, sigma deg of soybeans did appear to be dependent on precipitation. It is suggested this phenomenon was caused by the rain altering plant geometry. In general sigma deg of both milo and soybeans had a relatively small dynamic range at the higher angles of incidence and showed no significant dependence on the measured crop parameters.

  3. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  4. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  5. Identifying new saturation mechanisms hindering the development of plasma-based laser amplifiers utilizing Stimulated Raman Backscattering

    NASA Astrophysics Data System (ADS)

    Turnbull, David Pearson

    Stimulated Raman Backscattering (SRBS) has the potential to supplement existing laser amplification technology in order to exceed the maximum intensity that is attainable with modern systems. It utilizes a three wave interaction in plasma in order to transfer the energy from a long, low intensity pumping pulse to a short, counterpropagating seed pulse that undergoes temporal compression as it is amplified and should ultimately be able to reach unfocused intensities up to a relativistic limit about five orders of magnitude larger than conventional systems. If proven viable, it could democratize research conducted with ultraintense laser systems as well as open up new realms of physics. Following theoretical suggestions and previous experimental conclusions, longer and more uniform preformed plasma channels were successfully created by focusing one of the plasma-forming beams to a line using an axicon lens. The beams amplified in those plasma channels were in fact more energetic than those previously reported in the published literature. However, results remained far afield of the theoretical predictions, which prompted an effort to reconcile the analytical work suggesting this scheme can be highly efficient with the experimental results demonstrating saturation. A Frequency-Resolved Optical Gating diagnostic was built in order to obtain greater insight into the amplified pulse shape and frequency distribution, data from which indicated that there was very often a frequency shift that seems to detune the interaction. Several mechanisms appear to be potentially viable sources of this shift. One possibility is that an ion acoustic wave induces wave collapse of the primary Langmuir wave mediating SRBS; this would also increase the damping rate and might even facilitate particle trapping. Additional evidence of this scenario later appeared in the time-integrated spectrometer data. Another possibility is that the amplified seed pulse triggers additional ionization of the

  6. Acoustic topological insulator and robust one-way sound transport

    NASA Astrophysics Data System (ADS)

    He, Cheng; Ni, Xu; Ge, Hao; Sun, Xiao-Chen; Chen, Yan-Bin; Lu, Ming-Hui; Liu, Xiao-Ping; Chen, Yan-Feng

    2016-12-01

    Topological design of materials enables topological symmetries and facilitates unique backscattering-immune wave transport. In airborne acoustics, however, the intrinsic longitudinal nature of sound polarization makes the use of the conventional spin-orbital interaction mechanism impossible for achieving band inversion. The topological gauge flux is then typically introduced with a moving background in theoretical models. Its practical implementation is a serious challenge, though, due to inherent dynamic instabilities and noise. Here we realize the inversion of acoustic energy bands at a double Dirac cone and provide an experimental demonstration of an acoustic topological insulator. By manipulating the hopping interaction of neighbouring ’atoms’ in this new topological material, we successfully demonstrate the acoustic quantum spin Hall effect, characterized by robust pseudospin-dependent one-way edge sound transport. Our results are promising for the exploration of new routes for experimentally studying topological phenomena and related applications, for example, sound-noise reduction.

  7. Oil film thickness measurement using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1980-01-01

    The use of laser-induced water Raman backscatter for remote thin oil film detection and thickness measurement is reported here for the first time. A 337.1-nm nitrogen laser was used to excite the 3400-cm-1 OH stretch band of natural ocean water beneath the oil slick from an altitude of 150 m. The signal strength of the 381-nm water Raman backscatter was always observed to depress when the oil was encountered and then return to its original undepressed value after complete aircraft traversal of the floating slick. After removal of background and oil fluorescence contributions, the ratio of the depressed-to-undepressed airborne water Raman signal intensities, together with laboratory measured oil extinction coefficients, is used to calculate the oil film thickness.

  8. Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium.

    PubMed

    Cameron, B D; Rakovic, M J; Mehrübeoglu, M; Kattawar, G W; Rastegar, S; Wang, L V; Coté, G L

    1998-04-01

    We present both experimental and Monte Carlo-based simulation results for the diffusely backscattered intensity patterns that arise from illumination of a turbid medium with a polarized laser beam. A numerical method that allows the calculation of all 16 elements of the two-dimensional Muller matrix is used; moreover, it is shown that only seven matrix elements are independent. To validate our method, we compared our simulations with experimental measurements, using a turbid medium consisting of 2.02-microm -diameter polystyrene spheres suspended in deionized water. By varying the incident polarization and the analyzer optics for the experimental measurements, we obtained the diffuse backscattering Mueller matrix elements. The experimental and the numerical results are in good agreement.

  9. Acoustically Enhanced Electroplating Being Developed

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2002-01-01

    In cooperation with the NASA Glenn Research Center, Alchemitron Corp. is developing the Acoustically Enhanced Electroplating Process (AEEP), a new technique of employing nonlinear ultrasonics to enhance electroplating. The applications range from electroplating full-panel electronic circuit boards to electroplating microelectronics and microelectromechanical systems (MEMS) devices. In a conventional plating process, the surface area to be plated is separated from the nonplated areas by a temporary mask. The mask may take many forms, from a cured liquid coating to a simple tape. Generally, the mask is discarded when the plating is complete, creating a solid waste product that is often an environmental hazard. The labor and materials involved with the layout, fabrication, and tooling of masks is a primary source of recurring and nonrecurring production costs. The objective of this joint effort, therefore, is to reduce or eliminate the need for masks. AEEP improves selective plating processes by using directed beams of high-intensity acoustic waves to create nonlinear effects that alter the fluid dynamic and thermodynamic behavior of the plating process. It relies on two effects: acoustic streaming and acoustic heating. Acoustic streaming is observed when a high-intensity acoustic beam creates a liquid current within the beam. The liquid current can be directed as the beam is directed and, thus, users can move liquid around as desired without using pumps and nozzles. The current of the electroplating electrolyte, therefore, can be directed at distinct target areas where electroplating is desired. The current delivers fresh electrolyte to the target area while flushing away the spent electrolyte. This dramatically increases the plating rate in the target area. In addition, acoustic heating of both the liquid in the beam and the target surface increases the chemical reaction rate, which further increases the plating rate. The combined effects of acoustic streaming and

  10. Evaluation of image-based multibeam sonar backscatter classification for benthic habitat discrimination and mapping at Stanton Banks, UK

    NASA Astrophysics Data System (ADS)

    McGonigle, Chris; Brown, Craig; Quinn, Rory; Grabowski, Jonathan

    2009-02-01

    In recent years, efforts have increased to develop quantitative, computer-directed methods for segmentation of multibeam (MBES) backscatter data. This study utilises MBES backscatter data acquired at Stanton Banks (UK) and subsequently processed through the QTC-Multiview software environment in a bid to evaluate the program's ability to perform unsupervised classification. Statistical comparison with ground-truth data (grab, stills and video) enabled cross validation of acoustic segmentation and biological assemblages observed at the site. 132 unspecified variables were extracted from user-specified rectangular patches of the backscatter image, reduced to three vectors by PCA, then clustered and classified by the software. Multivariate analyses of ground-truth data were conducted on 75 stills images and 51 grab samples. Video footage coincident with the stills was divided into 30 s segments and coded by dominant substrate and species. Cross tabulation determined the interrelationship between software classifications, multivariate analysis of the biological assemblages and coded video segments. Multiview optimally identified 19 classes using the automated clustering engine. These were revised to 6 habitats a posteriori, using combined analysis of ground-truth data and Multiview data products. These habitats broadly correspond to major physiographic provinces within the region. Multivariate statistical analysis reveals low levels of assemblage similarity (<35%) for samples occurring within Multiview classes, irrespective of the mode of acquisition. Coded video data is more spatially appropriate than the other methods of ground-truthing investigated, although it is less well suited to the extraction of truly quantitative data. Multivariate analysis indicates assemblages within physiographically distinct Multiview classes have a low degree of biological similarity, supporting the notion that abiotic proxies may be contraindicative of benthic assemblage variations. QTC

  11. Application of HARLIE Measurements in Mesoscale Studies: Measurements of Aerosol Backscatter and Winds During A Gust Front

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Miller, David; Schwemmer, Geary; Starr, David OC (Technical Monitor)

    2001-01-01

    Lidar atmospheric systems have required large telescope for receiving atmospheric backscatter signals. Thus, the relative complexity in size and ease of operation has limited their wider use in the atmospheric science and meteorology community. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) uses a scanning holographic receiver and demonstrates that these issues can be overcome. HARLIE participated at the DOE-ARM Southern Great Plains site (CART) during the Water Vapor Intensive Operation Period (WVIOP2000) held September-October 2000. It provided exceptional high temporal and spatial resolution measurements of aerosol and cloud backscatter in three dimensions. HARLIE recorded over 110 hours of data were recorded on 16 days between 17 September and 6 October 2000. Placed in a ground-based trailer for upward looking scanning measurements of clouds and aerosols, HARLIE provided a unique record of time-resolved atmospheric backscatter at 1-micron wavelength. The conical scanning lidar measures atmospheric backscatter on the surface of an inverted 90 degree (full angle) cone up to an altitude of 20 km, 360-degree scans having spatial resolutions of 20 meters in the vertical and 1 degree in azimuth were obtained every 36 seconds during the daily, operating period. In this study we present highlights of HARLIE-based measurements of the boundary layer and cloud parameters as well as atmospheric wind vectors where there is sufficiently resolved structure in the backscatter. In particular we present data and discussions from a bore-front case observed on 23 September 2000.

  12. Evaluation of the Doppler component contribution in the total backscattered flux for noninvasive medical spectroscopy

    NASA Astrophysics Data System (ADS)

    Lapitan, Denis; Rogatkin, Dmitry

    2014-05-01

    The widespread introduction of laser noninvasive diagnostic techniques in medicine gave rise interest to theoretical description of light propagation in turbid media. One of the purposes for that is a preliminary simulation of incoming radiation for diagnostic spectrophotometry equipment. For complex diagnostic devices combining the Laser Doppler Flowmetry (LDF) and the tissue reflectance oximetry (TRO) it is necessary to know a ratio of signals in each diagnostic channel for a proper choice of the radiation power of laser sources, sensitivity of photodetectors, etc. In LDF the lightbeating backscattered signal mixed from moving red blood cells and static inhomogeneities inside the tissue is the useful signal, while in TRO both signals from static and moving scatterers are registered in the sum. The aim of our study was an estimation of the ratio between flux with the Doppler shifted signal and the total backscattered flux. For this purpose the simple analytical model describing the backscattered radiation for a two-layered tissue with different levels of blood volume in the second layer was under consideration. The physical model was based on the improved Kubelka-Munk approach. This approach involves an additional parameter of the density of scatterers, so it is useful for the Doppler signal intensity calculation as well. To assess the intensity of the Doppler component the single-scattering approximation inside the tissue's second layer was used. It was found that the fraction of the Doppler component in the total backscattered flux can vary in the range of 1-10% for the blood volume of 1-20%.

  13. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  14. Estimation of suspended sediment concentration from Acoustic Doppler Current Profiler (ADCP) instrument: A case study of Lembeh Strait, North Sulawesi

    NASA Astrophysics Data System (ADS)

    Dwinovantyo, Angga; Manik, Henry M.; Prartono, Tri; Susilohadi; Ilahude, Delyuzar

    2017-01-01

    Measurement of suspended sediment concentration (SSC) is one of the parameters needed to determine the characteristics of sediment transport. However, the measurement of SSC nowadays still uses conventional technique and it has limitations; especially in temporal resolution. With advanced technology, the measurement can use hydroacoustic technology such as Acoustic Doppler Current Profiler (ADCP). ADCP measures the intensity of backscatter as echo intensity unit from sediment particles. The frequency of ADCP used in this study was 400 kHz. The samples were measured and collected from Lembeh Strait, North Sulawesi. The highest concentration of suspended sediment was 98.89 mg L-1 and the lowest was 45.20 mg L-1. Time series data showed the tidal condition affected the SSC. From the research, we also made correction from sound signal losses effect such as spherical spreading and sound absorption to get more accurate results by eliminating these parameters in echo intensity data. Simple linear regression analysis at echo intensity measured from ADCP to direct measurement of SSC was performed to obtain the estimation of the SSC. The comparison result of estimation of SSC from ADCP measurements and SSC from laboratory analyses was insignificantly different based on t-test statistical analysis with 95% confidence interval percentage.

  15. Optical backscatter characteristics of Arctic polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Schaffner, S. K.; Poole, L. R.; Mccormick, M. P.; Hunt, W. H.

    1990-01-01

    Airborne lidar measurements have been made of polar stratospheric clouds (PSCs) during the Airborne Arctic Stratospheric Expedition in January-February 1989. These show the existence of a systematic relationship between the backscatter depolarization ratio and the (aerosol + molecular)/molecular backscatter ratio. The data are consistent with a two population PSC particle model.

  16. Fading characteristics of panchromatic radar backscatter from selected agricultural targets

    NASA Technical Reports Server (NTRS)

    Bush, T. F.; Ulaby, F. T.

    1973-01-01

    An experiment was performed to empirically determine the fading characteristics of backscattered radar signals from four agricultural targets at 9 GHz. After a short review of the statistics of Rayleigh fading backscatter, the data processing method and results of the data are analyzed. Comparison with theory shows adequate agreement with the experimental results, provided of course, the targets are modeled in a correct manner.

  17. Harmonic generation of ion waves due to Brillouin backscattering

    SciTech Connect

    Estabrook, K.; Kruer, W.L.; Haines, M.G.

    1985-05-22

    We report results of simulations of stimulated Brillouin backscatter in which we see the second spatial harmonic of the ion density fluctuation and compare with linear, fluid theory. We also describe examples of the competition between Raman and Brillouin backscatter. 21 refs., 3 figs.

  18. Relating P-band AIRSAR backscatter to forest stand parameters

    NASA Technical Reports Server (NTRS)

    Wang, Yong; Melack, John M.; Davis, Frank W.; Kasischke, Eric S.; Christensen, Norman L., Jr.

    1993-01-01

    As part of research on forest ecosystems, the Jet Propulsion Laboratory (JPL) and collaborating research teams have conducted multi-season airborne synthetic aperture radar (AIRSAR) experiments in three forest ecosystems including temperate pine forest (Duke, Forest, North Carolina), boreal forest (Bonanza Creek Experimental Forest, Alaska), and northern mixed hardwood-conifer forest (Michigan Biological Station, Michigan). The major research goals were to improve understanding of the relationships between radar backscatter and phenological variables (e.g. stand density, tree size, etc.), to improve radar backscatter models of tree canopy properties, and to develop a radar-based scheme for monitoring forest phenological changes. In September 1989, AIRSAR backscatter data were acquired over the Duke Forest. As the aboveground biomass of the loblolly pine forest stands at Duke Forest increased, the SAR backscatter at C-, L-, and P-bands increased and saturated at different biomass levels for the C-band, L-band, and P-band data. We only use the P-band backscatter data and ground measurements here to study the relationships between the backscatter and stand density, the backscatter and mean trunk dbh (diameter at breast height) of trees in the stands, and the backscatter and stand basal area.

  19. Near-field acoustic streaming jet

    NASA Astrophysics Data System (ADS)

    Moudjed, B.; Botton, V.; Henry, D.; Millet, S.; Garandet, J. P.; Ben Hadid, H.

    2015-03-01

    A numerical and experimental investigation of the acoustic streaming flow in the near field of a circular plane ultrasonic transducer in water is performed. The experimental domain is a parallelepipedic cavity delimited by absorbing walls to avoid acoustic reflection, with a top free surface. The flow velocities are measured by particle image velocimetry, leading to well-resolved velocity profiles. The theoretical model is based on a linear acoustic propagation model, which correctly reproduces the acoustic field mapped experimentally using a hydrophone, and an acoustic force term introduced in the Navier-Stokes equations under the plane-wave assumption. Despite the complexity of the acoustic field in the near field, in particular in the vicinity of the acoustic source, a good agreement between the experimental measurements and the numerical results for the velocity field is obtained, validating our numerical approach and justifying the planar wave assumption in conditions where it is a priori far from obvious. The flow structure is found to be correlated with the acoustic field shape. Indeed, the longitudinal profiles of the velocity present a wavering linked to the variations in acoustic intensity along the beam axis and transverse profiles exhibit a complex shape strongly influenced by the transverse variations of the acoustic intensity in the beam. Finally, the velocity in the jet is found to increase as the square root of the acoustic force times the distance from the origin of the jet over a major part of the cavity, after a strong short initial increase, where the velocity scales with the square of the distance from the upstream wall.

  20. Acoustic dose and acoustic dose-rate.

    PubMed

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  1. Rutherford backscattering analysis of contaminants in PET

    NASA Astrophysics Data System (ADS)

    Pierce, D. E.; Pfeffer, R. L.; Sadler, G. D.

    1997-05-01

    Rutherford Backscattering Spectrometry (RBS) was used to understand the sorption and desorption of organic contaminants in the polymer Poly(ethylene terephthalate), or PET. Samples were exposed to a range of organics to simulate contamination of PET that can take place in the post-consumer waste stream. From RBS analysis, concentration depth profiles were shown to vary from a monolayer regime surface layer to a saturation level, depending on the contaminant. Heat treatments were also applied to contaminated polymer to simulate thermal processing steps in the recycling of PET. Heating caused a dramatic decrease in contaminants and in some cases a complete removal of contamination was achieved to the limit of RBS detectability.

  2. Reducing parametric backscattering by polarization rotation

    NASA Astrophysics Data System (ADS)

    Barth, Ido; Fisch, Nathaniel

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in inertial confinement fusion. However, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based, analytical estimation for the reflectivity reduction agrees with simulations. This work was supported by NNSA Grant No. DE- NA0002948, AFOSR Grant No. FA9550-15-1-0391, and DOE Contract No. DE-AC02-09CH11466.

  3. A dynamic localization model with stochastic backscatter

    NASA Technical Reports Server (NTRS)

    Carati, Daniele; Ghosal, Sandip

    1994-01-01

    The modeling of subgrid scales in large-eddy simulation (LES) has been rationalized by the introduction of the dynamic localization procedure. This method allows one to compute rather than prescribe the unknown coefficients in the subgrid-scale model. Formally, the LES equations are supposed to be obtained by applying to the Navier-Stokes equations a 'grid filter' operation. Though the subgrid stress itself is unknown, an identity between subgrid stresses generated by different filters has been derived. Although preliminary tests of the Dynamic Localization Model (DLM) with k-equation have been satisfactory, the use of a negative eddy viscosity to describe backscatter is probably a crude representation of the physics of reverse transfer of energy. Indeed, the model is fully deterministic. Knowing the filtered velocity field and the subgrid-scale energy, the subgrid stress is automatically determined. We know that the LES equations cannot be fully deterministic since the small scales are not resolved. This stems from an important distinction between equilibrium hydrodynamics and turbulence. In equilibrium hydrodynamics, the molecular motions are also not resolved. However, there is a clear separation of scale between these unresolved motions and the relevant hydrodynamic scales. The result of molecular motions can then be separated into an average effect (the molecular viscosity) and some fluctuations. Due to the large number of molecules present in a box with size of the order of the hydrodynamic scale, the ratio between fluctuations and the average effect should be very small (as a result of the 'law of large numbers'). For that reason, the hydrodynamic balance equations are usually purely deterministic. In turbulence, however, there is no clear separation of scale between small and large eddies. In that case, the fluctuations around a deterministic eddy viscosity term could be significant. An eddy noise would then appear through a stochastic term in the subgrid

  4. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  5. Acoustic Impedance Measurement for Underground Surfaces.

    NASA Astrophysics Data System (ADS)

    Cockcroft, Paul William

    Available from UMI in association with The British Library. Requires signed TDF. This thesis investigates the measurement of acoustic impedance for surfaces likely to be found in underground coal mines. By introducing the concepts of industrial noise, the effects of noise on the ear and relevant legislation the need for the protection of workers can be appreciated. Representative acoustic impedance values are vital as input for existing computer models that predict sound levels in various underground environments. These enable the mining engineer to predict the noise level at any point within a mine in the vicinity of noisy machinery. The concepts of acoustic intensity and acoustic impedance are investigated and different acoustic impedance measurement techniques are detailed. The possible use of either an impedance tube or an intensity meter for these kinds of measurements are suggested. The problems with acoustic intensity and acoustic impedance measurements are discussed with reference to the restraints that an underground environment imposes on any measurement technique. The impedance tube method for work in an acoustics laboratory is shown and the theory explained, accompanied by a few representative results. The use of a Metravib intensity meter in a soundproof chamber to gain impedance values is explained in detail. The accompanying software for the analysis of the two measured pressure signals is shown as well as the actual results for a variety of test surfaces. The use of a Nagra IV-SJ tape recorder is investigated to determine the effect of recording on the measurement and subsequent analysis of the input signals, particularly with reference to the phase difference introduced between the two simultaneous pressure signals. The subsequent use of a Norwegian Electronic intensity meter, including a proposal for underground work, is shown along with results for tests completed with this piece of equipment. Finally, recommendations are made on how to link up

  6. Lattice constant measurement from electron backscatter diffraction patterns.

    PubMed

    Saowadee, N; Agersted, K; Bowen, J R

    2017-02-20

    Kikuchi bands in election backscattered diffraction patterns (EBSP) contain information about lattice constants of crystallographic samples that can be extracted via the Bragg equation. An advantage of lattice constant measurement from EBSPs over diffraction (XRD) is the ability to perform local analysis. In this study, lattice constants of cubic STN and cubic YSZ in the pure materials and in co-sintered composites were measured from their EBSPs acquired at 10 kV using a silicon single crystal as a calibration reference. The EBSP distortion was corrected by spherical back projection and Kikuchi band analysis was made using in-house software. The error of the lattice constant measurement was determined to be in the range of 0.09-1.12% compared to values determined by XRD and from literature. The confidence level of the method is indicated by the standard deviation of the measurement, which is approximately 0.04 Å. Studying Kikuchi band size dependence of the measurement precision shows that the measurement error decays with increasing band size (i.e. decreasing lattice constant). However, in practice, the sharpness of wide bands tends to be low due to their low intensity, thus limiting the measurement precision. Possible methods to improve measurement precision are suggested.

  7. Compton-backscattering x-ray source for coronary angiography

    SciTech Connect

    Blumberg, L.N.

    1992-12-01

    An X-ray source utilizing Compton-backscattered (CB) photons in a 75-MeV electron storage ring containing an infrared FEL is proposed for producing 33.17-keV X-rays (Iodine K-edge) for coronary angiography. The X-ray intensity into a 4-mrad cone is computed as 7.21 {times} 10{sup 14}/sec for a 500-mA electron beam colliding with 0.2-J/bunch, 3.22-{mu}m photons from an in-ring IR-FEL at the 353.21-MHz rate of a SLAC-PEP 500-kW RF system. The resultant average flux at the patient is 6.4 {times} 10{sup 7} photons/pixel/4-msec aver a 12-cm diameter circle at 3-m from the interaction point for the 0.5 {times}0.5-mm{sup 2} pixel size of the present Si(Li) array of the BNL-SMERF Angiography Facility. This flux is 2.1 times larger than obtains at SMERF at a comparable source-to-patient distance and over an area sufficient to encompass the entire coronary region. However, the X-Ray energy spread due to kinematics alone is 2.63-keV, a factor of 35 larger then SMERF, and presents the major difficulty for the digital subtraction angiography method (DSA) envisioned.

  8. Compton-backscattering x-ray source for coronary angiography

    SciTech Connect

    Blumberg, L.N.

    1992-01-01

    An X-ray source utilizing Compton-backscattered (CB) photons in a 75-MeV electron storage ring containing an infrared FEL is proposed for producing 33.17-keV X-rays (Iodine K-edge) for coronary angiography. The X-ray intensity into a 4-mrad cone is computed as 7.21 [times] 10[sup 14]/sec for a 500-mA electron beam colliding with 0.2-J/bunch, 3.22-[mu]m photons from an in-ring IR-FEL at the 353.21-MHz rate of a SLAC-PEP 500-kW RF system. The resultant average flux at the patient is 6.4 [times] 10[sup 7] photons/pixel/4-msec aver a 12-cm diameter circle at 3-m from the interaction point for the 0.5 [times]0.5-mm[sup 2] pixel size of the present Si(Li) array of the BNL-SMERF Angiography Facility. This flux is 2.1 times larger than obtains at SMERF at a comparable source-to-patient distance and over an area sufficient to encompass the entire coronary region. However, the X-Ray energy spread due to kinematics alone is 2.63-keV, a factor of 35 larger then SMERF, and presents the major difficulty for the digital subtraction angiography method (DSA) envisioned.

  9. Microvolume index of refraction determinations by interferometric backscatter

    NASA Astrophysics Data System (ADS)

    Bornhop, Darryl J.

    1995-06-01

    A new method has been applied to the determination of fluid bulk properties in small detection volumes. Through the use of an unfocused He-Ne laser beam and a cylindrical tube of capillary dimensions, relative refractive-index measurements are possible. The backscattered light from the illumination of a tube of capillary dimensions produces an interference pattern that is spatially defined and that contains information related to the bulk properties of the fluid contained in the tube. Positional changes in the intensity-modulated beam profile (interference fringes) are directly related to the refractive index of the fluid in the tube. The determination of dn/n at the 10-7 level is possible in probe volumes of 350 pL. The technique has been applied to tubes as small as 75 mu m inner diameter and as large as 1.0 mm inner diameter. No modification of the simple optical bench is required for facilitating the determination of refractive index for the complete range of tube diameters.

  10. Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).

  11. Quantification of regions of interest in swath sonar backscatter images using grey-level and shape geometry descriptors: the TargAn software

    NASA Astrophysics Data System (ADS)

    Fakiris, Elias; Papatheodorou, George

    2012-06-01

    In this paper, the TargAn software package that is dedicated to parameterizing regions of interest (ROIs) in greyscale images that reflect backscatter information derived by marine geo-acoustical instrumentation (e.g. Side Scan Sonar and Multi-Beam Echo-Sounder) is presented. The ROIs, whose boundaries are marked out either manually or via simple segmentation techniques, are analyzed for as many as 37 features. The adopted and developed methodologies lead to the extraction of: (1) grey-level intensity (1st order) and texture analysis statistics estimated from the inner ROI, (2) descriptors that measure the separation of the ROI in comparison to the intensity characteristics of the peripheral seabed, (3) shape geometry descriptors of the ROI's boundary itself and (4) regional statistics of distinct (segmented) objects possibly included in the ROI. TargAn is implemented in Matlab with a graphical user interface that helps the user to have control over the digitization, segmentation and feature extraction processes involved. It also provides tools for the construction of compact geo-databases, suitable for geostatistical analysis and visualization in popular Geographical Information Systems, concerning the extracted descriptors and the geographic features (e.g. ROIs' boundaries, skeletons, segmented objects) that have been considered for ROIs' analyses. The TargAn software is particularly useful when large amounts of image ROIs need to be objectively quantified and is demonstrated through two case studies regarding Side Scan Sonar imageries. The first one concerns the quantification of marine biohabitats (coralline formations) while the second exhibits the geometrical analysis of pockmarks.

  12. Method and apparatus for acoustic imaging of objects in water

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2005-01-25

    A method, system and underwater camera for acoustic imaging of objects in water or other liquids includes an acoustic source for generating an acoustic wavefront for reflecting from a target object as a reflected wavefront. The reflected acoustic wavefront deforms a screen on an acoustic side and correspondingly deforms the opposing optical side of the screen. An optical processing system is optically coupled to the optical side of the screen and converts the deformations on the optical side of the screen into an optical intensity image of the target object.

  13. [The effects of acoustic overstimulation].

    PubMed

    Häusler, R

    2004-01-01

    Basic aspects of acoustic trauma are presented. Exposure to loud noise leads to an acoustic traumatization with a temporary threshold shift initially and, with increasing exposure, intensity and duration, a permanent hearing loss. Impulse sound such as hammer blows on metal, gun shots and other detonations reaching peak levels of 160 to 180 dB is particularly hazardous to the inner ear. Playing loud musical instruments such as trumpets or percussion may also lead to hearing damage. Less dangerous than often believed is listening to electronically amplified music with walkmen, at discos or rock concerts. The reason is that, while the sound level is quite high, the particularly dangerous sound peaks are absent, as loudspeakers usually have an output limit of 110-120 dB. Traffic noise (cars, trains, air planes) is usually not threatening to the ear, but it may represent a considerable subjective annoyance and a stress factor leading to psychosomatic disturbances (neurovegetative symptoms, sleeping disorders). An effective treatment for the acoustic trauma is still missing. The systematic and consequent prophylaxis either with individual ear protectors (plugs or ear muffs) or by reducing the noise level at the source by means of isolation, encapsulation, or by using motors that are less noisy remains very important. Increasing awareness of acoustic pollution and preventive means have led to a reduction in the incidence of the acoustic trauma in the last decades.

  14. The relationship between aboveground biomass and radar backscatter as observed on airborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Kasischke, Eric S.; Bourgeau-Chavez, Laura L.; Christensen, Norman L., Jr.; Dobson, M. Craig

    1991-01-01

    The initial results of an experiment to examine the dependence of radar image intensity on total above-ground biomass in a southern US pine forest ecosystem are presented. Two sets of data are discussed. First, we examine two L-band (VV-polarization) data sets which were collected 5 years apart. These data sets clearly illustrate the change in backscatter resulting from the growth of a young pine stand. Second, we examine the dependence between radar backscatter and biomass as a function of radar frequency using data from the JPL Airborne Synthetic Aperture Radar (AIRSAR) and ERIM/NADC P-3 SAR systems. These results show that there is a positive correlation between above-ground biomass and radar backscatter and at C-, L-, and P-bands, but very little correlation at C-band. The biomass level for which this positive correlation holds decreases as radar frequency increases. This positive correlation is stronger at HH and HV polarizations that VV polarization at L- and P-bands, but strongest at VV polarization for C-band.

  15. A radar backscattering mechanism of ocean surface in response to rainfall

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Zheng, Quanan; Liu, Ren; Duncan, James H.

    2012-11-01

    The characteristics of ocean surface in response to rainfall and its radar back-scatter are simultaneously measured in laboratory. The experiment is carried out in a water pool that is 1.22 m by 1.22 m with a water depth of 0.3 m. Artificial rainfall is generated from an array of hypodermic needles. The surface characteristics including crowns, stalks, secondary droplets and ring waves are measured with a cinematic Laser-Induced-Florescence (LIF) technique. Our experimental results show that impinging raindrops on the water surface generate various water surface structures with different relative sizes. Among them stalks and crowns comprise the dominant radar backscattering. On the basis of these laboratory experiments and theories of radar scattering from a rough surface, a near-resonance radar backscattering model for quantifying the dependence of the radar return intensity on rain rate on the ocean surface is developed. The model explains the radar response to rain rate simultaneously observed by C-band ASAR and ground-based weather radar. The physical model provides reasonable mechanisms to explain the frequency dependence and polarization behavior of radar signatures from rain cells on the ocean surface. This work is supported by the National Science Foundation, Division of Ocean Sciences under grant OCE962107.

  16. Backscattering of linearly polarized light from turbid tissue-like scattering medium with rough surface

    NASA Astrophysics Data System (ADS)

    Doronin, Alexander; Tchvialeva, Lioudmila; Markhvida, Igor; Lee, Tim K.; Meglinski, Igor

    2016-07-01

    In the framework of further development of a unified computational tool for the needs of biomedical optics, we introduce an electric field Monte Carlo (MC) model for simulation of backscattering of coherent linearly polarized light from a turbid tissue-like scattering medium with a rough surface. We consider the laser speckle patterns formation and the role of surface roughness in the depolarization of linearly polarized light backscattered from the medium. The mutual phase shifts due to the photons' pathlength difference within the medium and due to reflection/refraction on the rough surface of the medium are taken into account. The validation of the model includes the creation of the phantoms of various roughness and optical properties, measurements of co- and cross-polarized components of the backscattered/reflected light, its analysis and extensive computer modeling accelerated by parallel computing on the NVIDIA graphics processing units using compute unified device architecture (CUDA). The analysis of the spatial intensity distribution is based on second-order statistics that shows a strong correlation with the surface roughness, both with the results of modeling and experiment. The results of modeling show a good agreement with the results of experimental measurements on phantoms mimicking human skin. The developed MC approach can be used for the direct simulation of light scattered by the turbid scattering medium with various roughness of the surface.

  17. On the study of radar backscattering of ocean surface in response to rainfall

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Zheng, Quanan; Liu, Ren; Duncan, James H.

    2013-11-01

    A model of radar backscattering from the ocean surface in response to rainfall is developed. The model shows that the radar return intensity is a function of the wavelength and incident angle of the radar waves and the rain rate. The model explains the differences between the radar response to rain rate simultaneously observed by C-band ASAR and ground-based weather radar. An experiment on the simultaneous measurements of the characteristics of the ocean surface in response to rainfall and its radar back-scatter is performed in the laboratory. The experiment is carried out in a water pool that is 1.22 m by 1.22 m with a water depth of 0.3 m. Artificial rainfall is generated from an array of hypodermic needles. The surface characteristics including crowns, stalks and ring waves are measured with a cinematic Laser-Induced-Florescence (LIF) technique while secondary droplets are measured with a shadowgraph technique. The radar backscattering signal is recorded with a dual-polarized, ultra-wide band radar. The frequency dependence and polarization of the radar signatures due to the surface features are discussed. The work is supported by National Science Foundations, Division of Ocean Science.

  18. MTCI acoustic agglomeration particulate control

    SciTech Connect

    Chandran, R.R.; Mansour, M.N.; Scaroni, A.W.; Koopmann, G.H.; Loth, J.L.

    1994-10-01

    The overall objective of this project is to demonstrate pulse combination induced acoustic enhancement of coal ash agglomeration and sulfur capture at conditions typical of direct coal-fired turbines and PFBC hot gas cleanup. MTCI has developed an advanced compact pulse combustor island for direct coal-firing in combustion gas turbines. This combustor island comprises a coal-fired pulse combustor, a combined ash agglomeration and sulfur capture chamber (CAASCC), and a hot cyclone. In the MTCI proprietary approach, the pulse combustion-induced high intensity sound waves improve sulfur capture efficiency and ash agglomeration. The resulting agglomerates allow the use of commercial cyclones and achieve very high particulate collection efficiency. In the MTCI proprietary approach, sorbent particles are injected into a gas stream subjected to an intense acoustic field. The acoustic field serves to improve sulfur capture efficiency by enhancing both gas film and intra-particle mass transfer rates. In addition, the sorbent particles act as dynamic filter foci, providing a high density of stagnant agglomerating centers for trapping the finer entrained (in the oscillating flow field) fly ash fractions. A team has been formed with MTCI as the prime contractor and Penn State University and West Virginia University as subcontractors to MTCI. MTCI is focusing on hardware development and system demonstration, PSU is investigating and modeling acoustic agglomeration and sulfur capture, and WVU is studying aerovalve fluid dynamics. Results are presented from all three studies.

  19. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  20. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  1. Capabilities of the thermal acoustic fatigue apparatus

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.; Daniels, E. F.

    1992-01-01

    The Thermal Acoustic Fatigue Apparatus (TAFA) is a facility for applying intense noise and heat to small test panels. Modifications to TAFA have increased the heating capability to 44 BTU/(ft.-sec.), making it possible to heat test panels to 2000 F and concurrently apply 168 dB of noise. Results of acoustic and thermal surveys are shown. Two test items, a 0.09 in. steel panel and an insulated panel, were used in the thermal survey.

  2. Interference phenomena at backscattering by ice crystals of irregular shape

    NASA Astrophysics Data System (ADS)

    Konoshonkin, Alexander V.; Kustova, Natalia V.; Borovoi, Anatoli G.

    2015-11-01

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simplest model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  3. X-ray backscatter imaging of nuclear materials

    DOEpatents

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  4. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  5. Backscattering measurements of micron-sized spherical particles.

    PubMed

    Heffernan, Brendan M; Heinson, Yuli W; Maughan, Justin B; Chakrabarti, Amitabha; Sorensen, Christopher M

    2016-04-20

    An apparatus was designed and assembled to measure scattered light in the range of 180°±6° where enhanced backscattering, the cause of a glory, occurs. The apparatus was calibrated and tested using Fraunhofer circular aperture diffraction, angle of incidence correction, and a diffuse reflector. Theory indicates that backscattering is strongly dependent on particle size, refractive index, and shape. Experimental measurements from polystyrene latex spheres of two sizes and water droplets showed good agreement with Mie theory, but also indicated the extreme sensitivity of the backscattering to particle parameters. The results presented should have use in the fields of particle scattering, particle metrology, and LIDAR.

  6. Real-time RNN-based acoustic thermometry with feedback control

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen J.; Nam, Joana H.; Fan, Liexiang; Brunke, Shelby S.; Sekins, K. Michael

    2017-03-01

    A major obstacle to the widespread adoption of HIFU therapy is the development of a suitable method of monitoring the a blation therapy in real-time. While MR-thermometry has emerged as a promising method for HIFU therapy monitoring, acoustic guidance has continuously been sought for reasons of cost and practicality. We have previously demonstrated the potential of acoustic thermometry, by using a recurrent neural network (RNN) to estimate changes in tissue temperature during HIFU ablation therapies. A limitation of this method is that an excessive therapeutic dose can cause multiple, non-linear changes within the ultrasound data, resulting in unreliable temperature estimates from the RNN. Accordingly, we propose a revised method of dosing wherein closed loop feedback is used to provide a controlled and specific dose; not only to ensure an efficacious lesion, but also to preserve the integrity of the ultrasound image, thereby producing accurate temperature estimates from the RNN. This investigation of controlling the thermal dose using feedback was performed on ex vivo bovine liver. The acoustic parameters used as inputs to the RNN were: changes in integrated backscatter intensity, thermal strain, and decorrelation. The therapeutic dose was delivered using a 1.1 MHz, 2D-array HIFU transducer transmitting at regular intervals during a 40-second dose. Interleaved between these regular HIFU dose intervals, volumetric ultrasound images were acquired on a Siemens ACUSON SC2000, with a 4Zlc probe. Feedback was introduced to the system by varying the HIFU duty cycle, in order to minimize the difference between a desired temperature curve (assigned a priori) and the estimated focal temperature values. Two methods were used for obtaining the focal temperature: the first was direct measurement using a 75-micron copper-constantan thermocouple embedded within the liver sample, and the second was temperature estimation as calculated from the RNN-based output temperatures

  7. The study of backscatter of basic target for CO{sub 2} laser

    SciTech Connect

    Dai Yongjiang; Ge Chunfeng; Cai Xiping; Sun Dongsong

    1996-12-31

    In this paper the expansion, transmission and distributed function for antenna are analyzed, and the optimum characteristics of the antenna are obtained. If the authors accurately calculate intensity of backscatter from the target, the sign of light facula and distribution of energy have to be considered on the surface of the target. The authors had built swapping relation equation between coordinates of the radar and object space of the target. Using computer simulation, the pseudo-color imaging of the basic target is produced.

  8. X-Ray Backscatter Machine Support Frame

    NASA Technical Reports Server (NTRS)

    Cannon, Brooke

    2010-01-01

    This summer at Kennedy Space Center, I spent 10 weeks as an intern working at the Prototype Development Lab. During this time I learned about the design and machining done here at NASA. I became familiar with the process from where a design begins in Pro/Engineer and finishes at the hands of the machinists. As an intern I was given various small jobs to do and then one project of my own. My personal project was a job for the Applied Physics Lab; in their work they use an X-Ray Backscatter machine. Previously it was resting atop a temporary frame that limited the use of the machine. My job was to design a frame for the machine to rest upon that would allow a full range of sample sizes. The frame was required to support the machine and provide a strain relief for the cords attached to the machine as it moved in the x and y directions. Calculations also had to be done to be sure the design would be able to withstand any loads or outside sources of stress. After the calculations proved the design to be ready to withstand the requirements, the parts were ordered or fabricated, as required. This helped me understand the full process of jobs sent to the Prototype Development Lab.

  9. Acoustic pressure-vector sensor array

    NASA Astrophysics Data System (ADS)

    Huang, Dehua; Elswick, Roy C.; McEachern, James F.

    2004-05-01

    Pressure-vector sensors measure both scalar and vector components of the acoustic field. December 2003 measurements at the NUWC Seneca Lake test facility verify previous observations that acoustic ambient noise spectrum levels measured by acoustic intensity sensors are reduced relative to either acoustic pressure or acoustic vector sensor spectrum levels. The Seneca measurements indicate a reduction by as much as 15 dB at the upper measurement frequency of 2500 Hz. A nonlinear array synthesis theory for pressure-vector sensors will be introduced that allows smaller apertures to achieve narrow beams. The significantly reduced ambient noise of individual pressure-vector elements observed in the ocean by others, and now at Seneca Lake, should allow a nonlinearly combined array to detect significantly lower levels than has been observed in previous multiplicative processing of pressure sensors alone. Nonlinear array synthesis of pressure-vector sensors differs from conventional super-directive algorithms that linearly combine pressure elements with positive and negative weights, thereby reducing the sensitivity of conventional super-directive arrays. The much smaller aperture of acoustic pressure-vector sensor arrays will be attractive for acoustic systems on underwater vehicles, as well as for other applications that require narrow beam acoustic receivers. [The authors gratefully acknowledge the support of ONR and NUWC.

  10. Acoustic Transmitters for Underwater Neutrino Telescopes

    PubMed Central

    Ardid, Miguel; Martínez-Mora, Juan A.; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D.

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  11. Acoustic transmitters for underwater neutrino telescopes.

    PubMed

    Ardid, Miguel; Martínez-Mora, Juan A; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters.

  12. Scale invariance and scaling law of Thomson backscatter spectra of electrons moving in the resonance regime in combined laser and magnetic fields

    NASA Astrophysics Data System (ADS)

    Fu, Yi-Jia; Jiang, Chun; Lv, Chong; Wan, Feng; Sang, Hai-Bo; Xie, Bai-Song

    2016-11-01

    The Thomson backscatter spectra by an electron moving in the resonance acceleration regime are derived analytically and computed numerically in the simultaneous presence of a superintense laser field and a strong uniform magnetic field. The dependences of fundamental frequency of harmonic spectra on the laser intensity and magnetic resonance parameter are examined carefully. By calculating the emission of a single electron in a circularly polarized laser field of plane-wave form and a constant external magnetic field, the scale invariance of the radiation spectra is evident in terms of harmonic orders. The scaling law of backscattered spectra is exhibited remarkably for the laser intensity as well as for the initial axial momentum of the electron when the cyclotron frequency of the electron approaches the laser frequency. The results indicate that the magnetic resonance parameter plays an important role in the strength of emission. And the found rich features of backscattering spectra may be useful to the tunability of the radiation source.

  13. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  14. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  15. Analysis of the backscatter spectrum in an ionospheric modification experiment

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1973-01-01

    Predictions of the backscatter spectrum are compared, including effects of ionospheric inhomogeneity with experimental observations of incoherent backscatter from an artificially heated region. Calculations show that the strongest backscatter echo received is not, in fact, from the reflection level, but from a region some distance below (about 0.5 km for an experiment carried out at Arecibo), where the pump wave from a HF transmitter approximately 100 kW) is below the threshold for parametric amplification. By taking the standing wave pattern of the pump into account, asymmetry is explained of the up-shifted and down-shifted plasma lines in the backscatter spectrum, and the several peaks typically observed in the region of the spectrum near the HF transmitter frequency.

  16. Objective backscattering properties measurements at 2.52 terahertz

    NASA Astrophysics Data System (ADS)

    Li, Qi; Zhou, Yi; Li, Qian; Fan, Chang-Kun; Zhao, Yong-Peng; Chen, De-Ying

    2016-10-01

    We present a system to measure objective backscattering properties at 2.52 terahertz (THz). The optical setup combining 90° off-axis parabolic mirrors with 15° off-axis parabolic mirror decreases the size of the system and then realizes its compact structure. The calibration object, a conducting sphere with a diameter of 50 mm, was introduced to eliminate the influence of the instability of THz radiation and the background noise on measurement results. The lock-in amplifier was adopted to enhance the signal-to-noise ratio (SNR) and then make it possible to observe delicate backscattering behaviors on the surface of the object. Backscattering properties of four scale models were measured in this paper. Experimental results indicate that the maximal error of our system is less than 1 dB, paving the way for practical measurements of objective backscattering properties at THz frequencies.

  17. Power coupling characteristics between FBG and back-scattering signals

    NASA Astrophysics Data System (ADS)

    Li, Jianzhi; Zhao, Desheng; Hou, Yuemin; Sun, Baochen

    2017-03-01

    The property and compatibility between fiber Bragg grating (FBG) and back-scattering signals are investigated by employing optical time domain reflectometry. We compare the power spectrums of spontaneous Brillouin scattering (SpBS), simultaneous Brillouin scattering (SBS) and Rayleigh scattering (RS), and coupling mechanism between FBG and back-scattering signal is explored. Experimental results show that the region of FBG contributes to the backscatter power and causes the desired reflection, and the power peak of FBG in SBS power spectrum is the sharpest among back-scattering light power spectrums and broadens with the decrease of spatial resolution. Moreover, the FBG-based method is used to find the location of temperature or stain event for scatter-based distributed sensors.

  18. Coherent backscattering of light with nonlinear atomic scatterers

    SciTech Connect

    Wellens, T.; Gremaud, B.; Delande, D.; Miniatura, C.

    2006-01-15

    We study coherent backscattering of a monochromatic laser by a dilute gas of cold two-level atoms in the weakly nonlinear regime. The nonlinear response of the atoms results in a modification of both the average field propagation (nonlinear refractive index) and the scattering events. Using a perturbative approach, the nonlinear effects arise from inelastic two-photon scattering processes. We present a detailed diagrammatic derivation of the elastic and inelastic components of the backscattering signal for both scalar and vectorial photons. In particular, we show that the coherent backscattering phenomenon originates in some cases from the interference between three different scattering amplitudes. This is in marked contrast with the linear regime where it is due to the interference between two different scattering amplitudes. In particular we show that, if elastically scattered photons are filtered out from the photodetection signal, the nonlinear backscattering enhancement factor exceeds the linear barrier of 2, consistently with a three-amplitude interference effect.

  19. Aerosol measurement program strategy for global aerosol backscatter model development

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.

    1985-01-01

    The purpose was to propose a balanced program of aerosol backscatter research leading to the development of a global model of aerosol backscatter. Such a model is needed for feasibility studies and systems simulation studies for NASA's prospective satellite-based Doppler lidar wind measurement system. Systems of this kind measure the Doppler shift in the backscatter return from small atmospheric aerosol wind tracers (of order 1 micrometer diameter). The accuracy of the derived local wind estimates and the degree of global wind coverage for such a system are limited by the local availability and by the global scale distribution of natural aerosol particles. The discussions here refer primarily to backscatter model requirements at CO2 wavelengths, which have been selected for most of the Doppler lidar systems studies to date. Model requirements for other potential wavelengths would be similar.

  20. Preliminary Lidar Experiment to Study the Backscatter Amplification

    NASA Astrophysics Data System (ADS)

    Razenkov, Igor A.; Banakh, Victor A.

    2016-06-01

    Long-term continuous measurements for detection relative backscatter amplification on a horizontal path of 2 km long are performed by using a specific micro pulse lidar. The laser beam path is limited by a solid obstacle. The lidar is located next to an ultrasonic anemometer that measures 3D wind velocity and temperature; the laser spot on the obstacle is observed by using a telephoto lens. The results showed that the backscatter amplification has a clear diurnal variation. Moreover, the backscatter amplification was completely absent in the morning and evening under neutral stratification in the atmospheric surface layer. At night and in the daytime there was a significant increase of the backscatter amplification coefficient.

  1. Terrain-analysis procedures for modeling radar backscatter

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Berlin, G. L.; Pike, R. J.

    1980-01-01

    Procedures developed to obtain both raw measured and surface roughness statistics for radar backscatter modeling are described. A comprehensive and highly flexible software package for terrain analysis is introduced.

  2. BASIS: A New Backscattering Spectrometer at the SNS

    SciTech Connect

    Mamontov, Eugene; Zamponi, Michaela M; Hammons, Stephanie E; Keener, Wylie S; Hagen, Mark E; Herwig, Kenneth W

    2008-01-01

    A new spectrometer named BASIS has recently entered the general user program at the Spallation Neutron Source. BASIS is an acronym for Backscattering Silicon Spectrometer. While there are several operational reactor-based spectrometers that utilize backscattering reflection from silicon single crystals, such as IN10 and IN16 [1] at the ILL, France; HFBS [2] at the NCNR, USA; and SPHERES [3] at the FRM-II, JCNS, Germany, BASIS is the first silicon backscattering spectrometer built on a spallation neutron source. Conceptually, it is similar to previously built time-of-flight backscattering spectrometers that utilize reflections from pyrolytic graphite or mica, such as IRIS [4] and OSIRIS [5] at the ISIS, UK; LAM-80 [6] at the KENS, Japan; or MARS [7] at the SINQ, Switzerland.

  3. Automatic scaling of HF swept-frequency backscatter ionograms

    NASA Astrophysics Data System (ADS)

    Song, Huan; Hu, Yaogai; Jiang, Chunhua; Zhou, Chen; Zhao, Zhengyu

    2015-05-01

    This paper describes a method for automatically scaling HF swept-frequency backscatter ionograms, which can be applied to a low-power oblique backscatter sounding system. Based on the information of vertical echo in the ionogram, propagation mode is recognized from the amplitude differences between E layer and F layer echoes. Points on the leading edge are extracted by using minimum group path delay theory. The spurious points are removed by using residual analysis. A multiple linear polynomial was adopted to fit the extracted leading edge points. Smooth fitting curves can then be obtained. Automatic scaling results from 362 ionograms show that the proposed method can efficiently recognize propagation modes and extract leading edge curves by taking full advantages of echo characteristics and echo amplitudes in the ionograms. This novel method can be applied into real-time backscatter ionogram scaling, which facilitates the extensive usage of oblique backscatter soundings.

  4. Monte Carlo simulation of laser backscatter from sea water

    NASA Astrophysics Data System (ADS)

    Koerber, B. W.; Phillips, D. M.

    1982-01-01

    A Monte Carlo simulation study of laser backscatter from sea water has been carried out to provide data required to assess the feasibility of measuring inherent optical propagation properties of sea water from an aircraft. The possibility was examined of deriving such information from the backscatter component of the return signals measured by the WRELADS laser airborne depth sounder system. Computations were made for various water turbidity conditions and for different fields of view of the WRELADS receiver. Using a simple model fitted to the computed backscatter data, it was shown that values of the scattering data absorption coefficients can be derived from the initial amplitude and the decay rate of the backscatter envelope.

  5. Simulation of coherent backscattering of light in nematic liquid crystals

    SciTech Connect

    Aksenova, E. V. Kokorin, D. I. Romanov, V. P.

    2012-08-15

    Multiple scattering of light by the fluctuations of the director in a nematic liquid crystal (NLC) aligned by a magnetic field is considered. A peak of coherent backscattering is calculated by numerical simulation. Since the indicatrix of single scattering for a liquid crystal (LC) is known exactly, the calculations are carried out without any simplifying assumptions on the parameters of the liquid crystal. Multiple scattering is simulated as a random walk of photons in the medium. A peak of coherent backscattering in such a medium is very narrow; therefore, the so-called semianalytical method is applied. The parameters of the backscattering peak obtained by numerical simulation are compared with the available experimental data and with the results of analytical approximations. It turns out that the experimental data are in good agreement with the results of simulation. The results of numerical simulation adequately describe the anisotropy and the width of the backscattering peak.

  6. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  7. Sonification of acoustic emission data

    NASA Astrophysics Data System (ADS)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  8. Directional ultrasonic backscattering in polycrystals with elongated grains

    NASA Astrophysics Data System (ADS)

    Lobkis, O. I.; Yang, L.; Li, J.; Rokhlin, S. I.

    2012-05-01

    An analytical solution for a three dimensional integral representation of the backscattering (BS) coefficient in polycrystals with elongated grains is obtained. The theory was applied to evaluation of experimental data in Ti alloy with duplex microstructure, which consists of micro-textured regions (MTR) and smaller crystallites. Experiment shows that for microstructure characterization there is significant advantage in using the directional ratios of backscattering coefficients instead their absolute values for data analysis.

  9. E and F Layer H.F. Volume Backscatter Reflectivities.

    DTIC Science & Technology

    1980-02-01

    operations were scheduled for two twenty-four hour runs each week. Three backscatter ionograms , one on boresight and one to east and west of boresight...were made each hour. The ionograms covered 6 to 26 MNlz in freq., and 1000 to 4000 km in range which is the full operating range of the radar. The three... ionograms required about four minutes to complete. ,These were followed by a series of fixed frequency backscatter surroundings to examine the signal

  10. Improving riverbed sediment classification using backscatter and depth residual features of multi-beam echo-sounder systems.

    PubMed

    Eleftherakis, Dimitrios; Amiri-Simkooei, AliReza; Snellen, Mirjam; Simons, Dick G

    2012-05-01

    Riverbed and seafloor sediment classification using acoustic remote sensing techniques is of high interest due to their high coverage capabilities at limited cost. This contribution presents the results of riverbed sediment classification using multi-beam echo-sounder data based on an empirical method. Two data sets are considered, both taken at the Waal River, namely Sint Andries and Nijmegen. This work is a follow-up to the work carried out by Amiri-Simkooei et al. [J. Acoust. Soc. Am. 126(4), 1724-1738 (2009)]. The empirical method bases the classification on features of the backscatter strength and depth residuals. A principal component analysis is used to identify the most appropriate and informative features. Clustering is then applied to the principal components resulting from this set of features to assign a sediment class to each measurement. The results show that the backscatter strength features discriminate between different classes based on the sediment properties, whereas the depth residual features discriminate classes based on riverbed forms such as the "fixed layer" (stone having riprap structure) and riverbed ripples. Combination of these two sets of features is highly recommended because they provide complementary information on both the composition and the structure of the riverbed.

  11. Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions

    SciTech Connect

    Hielscher, A.H.; Mourant, J.R.; Bigio, I.J.

    1997-01-01

    We present experimental results that show the spatial variations of the diffuse-backscattered intensity when linearly polarized light is incident upon highly scattering media. Experiments on polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, and anisotropy factor {ital g} of the particles that constitute the scattering medium. Measurements performed on biological-cell suspensions show the potential of this method for cell characterization. {copyright} 1997 Optical Society of America

  12. Laser speckle visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-03-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light and the speckle visibility[2] is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam.[3] It may be applied to other kinds of acoustic wave in different forms of turbid soft matter, such as biological tissues, pastes or concentrated emulsions. Now at Université Lyon 1 (ILM).

  13. Subgrid-scale backscatter in transitional and turbulent flows

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo; Cabot, William H.; Moin, Parviz; Lee, Sangsan

    1990-01-01

    Most subgrid-scale (SGS) models for large-eddy simulations are absolutely dissipative (that is, they remove energy from the large scales at each point in the physical space). The actual SGS stresses, however, may transfer energy to the large scales (backscatter) at a given location. Direct numerical simulations of turbulent channel flow and compressible isotropic turbulence are used to study the backscatter phenomena. In all flows considered roughly 50 percent of the grid points were experiencing backscatter when a Fourier cutoff filter was used. The backscatter fraction was less with a Gaussian filter, and intermediate with a box filter in physical space. Moreover, the backscatter and forward scatter contributions to the SGS dissipation were comparable, and each was often much larger than the total SGS dissipation. The SGS dissipation (normalized by total dissipation) increased with filter width almost independently of filter type and Reynolds number. The amount of backscatter showed an increasing trend with Reynolds numbers. In the near-wall region of the channel, events characterized by strong Reynolds shear stress correlated fairly well with areas of high SGS dissipation (both forward and backward). In compressible isotropic turbulence similar results were obtained, independent of fluctuation Mach number.

  14. TCR backscattering characterization for microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Riccio, Giovanni; Gennarelli, Claudio

    2014-05-01

    A Trihedral Corner Reflector (TCR) is formed by three mutually orthogonal metal plates of various shapes and is a very important scattering structure since it exhibits a high monostatic Radar Cross Section (RCS) over a wide angular range. Moreover it is a handy passive device with low manufacturing costs and robust geometric construction, the maintenance of its efficiency is not difficult and expensive, and it can be used in all weather conditions (i.e., fog, rain, smoke, and dusty environment). These characteristics make it suitable as reference target and radar enhancement device for satellite- and ground-based microwave remote sensing techniques. For instance, TCRs have been recently employed to improve the signal-to-noise ratio of the backscattered signal in the case of urban ground deformation monitoring [1] and dynamic survey of civil infrastructures without natural corners as the Musmeci bridge in Basilicata, Italy [2]. The region of interest for the calculation of TCR's monostatic RCS is here confined to the first quadrant containing the boresight direction. The backscattering term is presented in closed form by evaluating the far-field scattering integral involving the contributions related to the direct illumination and the internal bouncing mechanisms. The Geometrical Optics (GO) laws allow one to determine the field incident on each TCR plate and the patch (integration domain) illuminated by it, thus enabling the use of a Physical Optics (PO) approximation for the corresponding surface current densities to consider for integration on each patch. Accordingly, five contributions are associated to each TCR plate: one contribution is due to the direct illumination of the whole internal surface; two contributions originate by the impinging rays that are simply reflected by the other two internal surfaces; and two contributions are related to the impinging rays that undergo two internal reflections. It is useful to note that the six contributions due to the

  15. Weak "A" blood subgroup discrimination by a rheo-optical method: a new application of laser backscattering

    NASA Astrophysics Data System (ADS)

    Rasia, Rodolfo J.; Rasia-Valverde, Juana R.; Stoltz, Jean F.

    1996-01-01

    Laser backscattering is an excellent tool to investigate size and concentration of suspended particles. It was successfully applied to the analysis of erythrocyte aggregation. A method is proposed that applies laser backscattering to the evaluation of the strength of the immunologic erythrocyte agglutination by approaching the energy required for the mechanical dissociation of agglutinates. Mills and Snabre have proposed a theory of laser backscattering for erythrocyte aggregation analysis. It is applied here to analyze the dissociation process of erythrocyte agglutinates performed by imposing a constant shear rate to the agglutinate suspension in a couette viscometer until a dispersion of isolated red cells is attained. Experimental verifications of the method were performed on the erythrocytes of the ABO group reacting against an anti-A test serum in twofold series dilutions. Spent energy is approached by a numerical process carried out on the backscattered intensity data registered during mechanical dissociation. Velocities of agglutination and dissociation lead to the calculation of dissociation parameters These values are used to evaluate the strength of the immunological reaction and to discriminate weak subgroups of ABO system.

  16. An Integrated Backscatter Ultrasound Technique for the Detection of Coronary and Carotid Atherosclerotic Lesions

    PubMed Central

    Kawasaki, Masanori

    2015-01-01

    The instability of carotid and coronary plaques has been reported to be associated with acute coronary syndrome, strokes and other cerebrovascular events. Therefore, recognition of the tissue characteristics of carotid and coronary plaques is important to understand and prevent coronary and cerebral artery disease. Recently, an ultrasound integrated backscatter (IB) technique has been developed. The ultrasound IB power ratio is a function of the difference in acoustic characteristic impedance between the medium and target tissue, and the acoustic characteristic impedance is determined by the density of tissue multiplied by the speed of sound. This concept allows for tissue characterization of carotid and coronary plaques for risk stratification of patients with coronary and cerebral artery disease. Two- and three-dimensional IB color-coded maps for the evaluation of tissue components consist of four major components: fibrous, dense fibrosis, lipid pool and calcification. Although several ultrasound techniques using special mathematical algorithms have been reported, a growing body of literature has shown the reliability and usefulness of the IB technique for the tissue characterization of carotid and coronary plaques. This review summarizes concepts, experimental procedures, image reliability and the application of the IB technique. Furthermore, the IB technique is compared with other techniques. PMID:25574937

  17. An integrated backscatter ultrasound technique for the detection of coronary and carotid atherosclerotic lesions.

    PubMed

    Kawasaki, Masanori

    2015-01-07

    The instability of carotid and coronary plaques has been reported to be associated with acute coronary syndrome, strokes and other cerebrovascular events. Therefore, recognition of the tissue characteristics of carotid and coronary plaques is important to understand and prevent coronary and cerebral artery disease. Recently, an ultrasound integrated backscatter (IB) technique has been developed. The ultrasound IB power ratio is a function of the difference in acoustic characteristic impedance between the medium and target tissue, and the acoustic characteristic impedance is determined by the density of tissue multiplied by the speed of sound. This concept allows for tissue characterization of carotid and coronary plaques for risk stratification of patients with coronary and cerebral artery disease. Two- and three-dimensional IB color-coded maps for the evaluation of tissue components consist of four major components: fibrous, dense fibrosis, lipid pool and calcification. Although several ultrasound techniques using special mathematical algorithms have been reported, a growing body of literature has shown the reliability and usefulness of the IB technique for the tissue characterization of carotid and coronary plaques. This review summarizes concepts, experimental procedures, image reliability and the application of the IB technique. Furthermore, the IB technique is compared with other techniques.

  18. The measurement of ultrasound backscattering from cell pellet biophantoms and tumors ex vivo

    PubMed Central

    Han, Aiguo; Abuhabsah, Rami; Miller, Rita J.; Sarwate, Sandhya; O'Brien, William D.

    2013-01-01

    Simple scattering media fit scattering model theories much better than more complex scattering media. Tissue is much more complex as an acoustic scattering media and to date there has not been an adequate scattering model that fits it well. Previous studies evaluated the scattering characteristics of simple media (grouping of cells at various number densities) and fit them to the concentric spheres scattering model theory. This study is to increase the complexity of the media to provide insight into the acoustic scattering characteristics of tissue, and specifically two tumor types. Complementing the data from the tumors is 100% volume fraction cell pellets of the same cell lines. Cell pellets and ex vivo tumors are scanned using high-frequency single-element transducers (9–105 MHz), and the attenuation and backscatter coefficient (BSC) are estimated. BSC comparisons are made between cell pellets and tumors. The results show that the 4T1 (ATCC #CRL-2539) cell pellets and tumors have similar BSC characteristics, whereas the MAT (ATCC #CRL-1666) cell pellets and tumors have significantly different BSC characteristics. Factors that yield such differences are explored. Also, the fluid-filled sphere and the concentric spheres models are evaluated against the BSC characteristics, demonstrating that further work is required. PMID:23862841

  19. A test-bed for Langmuir wave turbulence modeling of stimulated Raman backscatter

    SciTech Connect

    Rose, H.A.

    1999-02-01

    Stimulated Raman backscatter (SRS) may incorporate several, qualitatively different regimes of Langmuir wave dynamics, as it grows convectively in space. These typically include a strictly linear regime at the far end of the plasma from the laser, where SRS comes up from thermal Langmuir wave fluctuations; which may progress to a regime where the primary SRS daughter Langmuir wave is unstable to the Langmuir wave decay instability (LDI); and perhaps to a regime of strong Langmuir wave turbulence (SLT). The accurate description of the spatial transition between these regimes, which may involve large Langmuir wave correlation lengths, is a great challenge for turbulence modeling. In this paper a highly idealized model of SRS in periodic geometry is introduced which allows for the presence of a unique Langmuir wave regime for a given set of physical parameters, and therefore presents the minimal challenge for a turbulence model. One- and two-dimensional simulations of this SRS model, which allows for LDI and SLT as described by Zakharov{close_quote}s model of nonlinear Langmuir wave dynamics, are compared with the predictions of a recently introduced turbulence model, and quantitative agreement is obtained, without the use of any {ital ad hoc} parameters, for the SRS reflectivity and correlation length, and Langmuir and acoustic wave energy densities, over an order of magnitude variation of SRS growth rate and ion acoustic damping rate. {copyright} {ital 1999 American Institute of Physics.}

  20. Acoustic Characteristics of Simulated Respiratory-Induced Vocal Tremor

    ERIC Educational Resources Information Center

    Lester, Rosemary A.; Story, Brad H.

    2013-01-01

    Purpose: The purpose of this study was to investigate the relation of respiratory forced oscillation to the acoustic characteristics of vocal tremor. Method: Acoustical analyses were performed to determine the characteristics of the intensity and fundamental frequency (F[subscript 0]) for speech samples obtained by Farinella, Hixon, Hoit, Story,…

  1. Joint Acoustic Propagation Experiment (JAPE)

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Olsen, Robert O.; Kennedy, Bruce W.

    1993-01-01

    The Joint Acoustic Propagation Experiment (JAPE), performed under the auspices of NATO and the Acoustics Working Group, was conducted at White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of 220 trials using various acoustic sources including speakers, propane cannon, various types of military vehicles, helicopters, a 155mm howitzer, and static high explosives. Of primary importance to the performance of these tests was the intensive characterization of the atmosphere before and during the trials. Because of the wide range of interests on the part of the participants, JAPE was organized in such a manner to provide a broad cross section of test configurations. These included short and long range propagation from fixed and moving vehicles, terrain masking, and vehicle detection. A number of independent trials were also performed by individual participating agencies using the assets available during JAPE. These tests, while not documented in this report, provided substantial and important data to those groups. Perhaps the most significant feature of JAPE is the establishment of a permanent data base which can be used by not only the participants but by others interested in acoustics. A follow-on test was performed by NASA LaRC during the period 19-29 Aug. 1991 at the same location. These trials consisted of 59 overflights of supersonic aircraft in order to establish the relationship between atmospheric turbulence and the received sonic boom energy at the surface.

  2. Tools to evaluate seafloor integrity: comparison of multi-device acoustic seafloor classifications for benthic macrofauna-driven patterns in the German Bight, southern North Sea

    NASA Astrophysics Data System (ADS)

    Holler, Peter; Markert, Edith; Bartholomä, Alexander; Capperucci, Ruggero; Hass, H. Christian; Kröncke, Ingrid; Mielck, Finn; Reimers, H. Christian

    2016-12-01

    To determine the spatial resolution of sediment properties and benthic macrofauna communities in acoustic backscatter, the suitability of four acoustic seafloor classification devices (single-beam echosounder with RoxAnn and QTC 5.5 seafloor classification system, sidescan sonar with QTC Swathview seafloor classification, and multi-beam echosounder with QTC Swathview seafloor classification) was compared in a study area of approx. 6 km2 northwest of the island of Helgoland in the German Bight, southern North Sea. This was based on a simple similarity index between simultaneous sidescan sonar, single-beam echosounder and multi-beam echosounder profiling spanning the period 2011-2014. The results show a high similarity between seafloor classifications based on sidescan sonar and RoxAnn single-beam systems, in turn associated with a lower similarity for the multi-beam echosounder system. Analyses of surface sediment samples at 39 locations along four transects (0.1 m2 Van Veen grab) revealed the presence of sandy mud (southern and western parts), coarse sand, gravel and cobbles. Rock outcrops were identified in the north-eastern and eastern parts. A typical Nucula nitidosa-Abra alba community was found in sandy muds to muddy sands in the northern part, whereas the southern part is characterised by widespread occurrence of the ophiuroid brittle star Amphiura filiformis. A transitional N. nitidosa-A. filiformis community was detected in the central part. Moreover, the southern part is characterised by a high abundance of A. filiformis and its commensal bivalve Kurtiella bidentata. The high number of A. filiformis feeding arms (up to ca. 6,800 per m2) can largely explain the gentle change of backscatter intensity along the tracks, because sediment composition and/or seafloor structures showed no significant variability.

  3. Tools to evaluate seafloor integrity: comparison of multi-device acoustic seafloor classifications for benthic macrofauna-driven patterns in the German Bight, southern North Sea

    NASA Astrophysics Data System (ADS)

    Holler, Peter; Markert, Edith; Bartholomä, Alexander; Capperucci, Ruggero; Hass, H. Christian; Kröncke, Ingrid; Mielck, Finn; Reimers, H. Christian

    2017-04-01

    To determine the spatial resolution of sediment properties and benthic macrofauna communities in acoustic backscatter, the suitability of four acoustic seafloor classification devices (single-beam echosounder with RoxAnn and QTC 5.5 seafloor classification system, sidescan sonar with QTC Swathview seafloor classification, and multi-beam echosounder with QTC Swathview seafloor classification) was compared in a study area of approx. 6 km2 northwest of the island of Helgoland in the German Bight, southern North Sea. This was based on a simple similarity index between simultaneous sidescan sonar, single-beam echosounder and multi-beam echosounder profiling spanning the period 2011-2014. The results show a high similarity between seafloor classifications based on sidescan sonar and RoxAnn single-beam systems, in turn associated with a lower similarity for the multi-beam echosounder system. Analyses of surface sediment samples at 39 locations along four transects (0.1 m2 Van Veen grab) revealed the presence of sandy mud (southern and western parts), coarse sand, gravel and cobbles. Rock outcrops were identified in the north-eastern and eastern parts. A typical Nucula nitidosa- Abra alba community was found in sandy muds to muddy sands in the northern part, whereas the southern part is characterised by widespread occurrence of the ophiuroid brittle star Amphiura filiformis. A transitional N. nitidosa- A. filiformis community was detected in the central part. Moreover, the southern part is characterised by a high abundance of A. filiformis and its commensal bivalve Kurtiella bidentata. The high number of A. filiformis feeding arms (up to ca. 6,800 per m2) can largely explain the gentle change of backscatter intensity along the tracks, because sediment composition and/or seafloor structures showed no significant variability.

  4. Polaritonic pulse and coherent X- and gamma rays from Compton (Thomson) backscattering

    SciTech Connect

    Apostol, M.; Ganciu, M.

    2011-01-01

    The formation of polariton wave-packets created by high-intensity laser beams focused in plasmas is analyzed, and the velocity, energy, size, structure, stability, and electron content of such polaritonic pulses are characterized. It is shown that polaritonic pulses may transport trapped electrons with appreciable energies, provided the medium behaves as a rarefied classical plasma. The relativistic electron energy is related to the polariton group velocity, which is close to the velocity of light in this case. The plasma pulse is polarized, and the electron number in the pulse is estimated as being proportional to the square root of the laser intensity and the 3/2-power of the pulse size. It is shown that Compton (Thomson) backscattering by such polaritonic pulses of electrons may produce coherent X- and gamma rays, as a consequence of the quasirigidity of the electrons inside the polaritonic pulses and their relatively large number. The classical results of the Compton scattering are re-examined in this context, the energy of the scattered photons and their cross-section are analyzed, especially for backscattering, the great enhancement of the scattered flux of X- or gamma rays due to the coherence effect is highlighted and numerical estimates are given for some typical situations.

  5. Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Xu, Zhengbin; Song, Qinghai; Konger, Raymond L.; Kim, Young L.

    2010-05-01

    We experimentally study potential mechanisms by which the enhancement factor in low-coherence enhanced backscattering (LEBS) can probe subtle variations in radial intensity distribution in weakly scattering media. We use enhanced backscattering of light by implementing either (1) low spatial coherence illumination or (2) multiple spatially independent detections using a microlens array under spatially coherent illumination. We show that the enhancement factor in these configurations is a measure of the integrated intensity within the localized coherence or detection area, which can exhibit strong dependence on small perturbations in scattering properties. To further evaluate the utility of the LEBS enhancement factor, we use a well-established animal model of cutaneous two-stage chemical carcinogenesis. In this pilot study, we demonstrate that the LEBS enhancement factor can be substantially altered at a stage of preneoplasia. Our animal result supports the idea that early carcinogenesis can cause subtle alterations in the scattering properties that can be captured by the LEBS enhancement factor. Thus, the LEBS enhancement factor has the potential as an easily measurable biomarker in skin carcinogenesis.

  6. Electromagnetic backscattering from one-dimensional drifting fractal sea surface I: Wave-current coupled model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-06-01

    To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.

  7. Criteria of backscattering in chiral one-way photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  8. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  9. Coherent Backscattering in Los Albedo Media

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.; Hapke, B. W.; Hale, A. S.; Smythe, W. D.; Piatek, J.

    2002-09-01

    The opposition effect [1] observed in phase curves of materials in the lab and on planetary surfaces is attributed to two processes: 'shadow hiding opposition effect' (SHOE) and 'coherent backscattering opposition effect' (CBOE) [2,3,4]. The relative contributions of SHOE and CBOE are studied by measuring reflectance phase curves in circularly polarized light. If single scattering predominates, the circular polarization ratio (CPR) decreases with decreasing phase angle. If multiple scattering predominates, the CPR strongly increases. We observed this increase in CPR in highly reflective media [5,6,7]. In low reflectance media most of the returned signal is singly scattered and CPR is not expected to sharply increase. We have found that most such materials indeed exhibit only a slight CPR increase. However, lunar soils show a strong CPR increase [8]. Recently we encountered another interesting counter example in Boron Carbide-a material with albedo even lower than the Moon's. We find a significant CPR increase, a result inconsistent with the conventional interpretation of CBOE [8]. This suggests that albedo alone is not the principal regulator of CBOE. This CBOE may be due to multiple scattering within individual particles [10]. Unusual particle shapes may facilitate this process. Understanding this behavior contributes to the development of models that can retrieve textural properties from remote sensing data. Work performed at JPL/PITT under NASA PG&G grants. 1.Geherels, T. Astrophys. J, 123, 331-338, 1956. 2. Hapke, B. Icarus, 67, 246-280, 1986. 3. Shkuratov, Yu. SA-A.J., 27, 581-583, 1983. 4. Hapke, B. Icarus, 88, 407-417, 1990. 5. Nelson, R., et al. Icarus 131, 223-230, 1998. 6. Nelson, R., et al Icarus, 147, 545-558, 2000. 7. Nelson, R., et al. Planet. Space Sci, 2002. 8. Hapke B. et al. Science, 260, 509-511. 9. Mishchenko, M.I. Earth, Moon and Planets, 58, 127-144, 1992. 10. Hapke, B. Icarus, 157, 534-537, 2002

  10. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  11. Valveless micropump driven by acoustic streaming

    NASA Astrophysics Data System (ADS)

    Choe, Youngki; Sok Kim, Eun

    2013-04-01

    This paper describes two valveless micropumps built on a 260 µm thick PZT with 20 µm thick parylene acoustic Fresnel lenses with air cavities. The micropumps produce in-plane body force through acoustic streaming effect of high-intensity acoustic beam that is generated by acoustic wave interference. The fabricated micropumps were shown to move microspheres, which have a diameter of 70-90 µm and a density of 0.99 g cm-3, on the water surface to form U-shape streams of microspheres with a drift velocity of 7.3 cm s-1 when the micropumps were located 4 mm below the water surface and driven by 160 Vpeak-to-peak pulsed sinusoidal waves. The driven microspheres formed U-shape streaming even without any fluidic channel according to the serial connection of the pie-shaped lenses and top electrodes. A micropump with a straight-lined fluidic channel was also fabricated and tested to show a 9.2 cm s-1 microspheres' drift velocity and a 9.5 mL min-1 volume pumping rate when combined with the acrylic acoustic wave reflector. Both the Fresnel lens and top electrode were patterned in a pie-shape with its apex angle of 90° to form asymmetric acoustic pressure distribution at the focal plane of the acoustic Fresnel lenses in order to push water in one direction.

  12. What Is an Acoustic Neuroma

    MedlinePlus

    ... ANAUSA.org Connect with us! What is an Acoustic Neuroma? Each heading slides to reveal information. Important ... Acoustic Neuroma Important Points To Know About an Acoustic Neuroma An acoustic neuroma, also called a vestibular ...

  13. Observations regarding coarse sediment classification based on multi-beam echo-sounder's backscatter strength and depth residuals in Dutch rivers.

    PubMed

    Eleftherakis, Dimitrios; Snellen, Mirjam; Amiri-Simkooei, AliReza; Simons, Dick G; Siemes, Kerstin

    2014-06-01

    This contribution investigates the behavior of two important riverbed sediment classifiers, derived from multi-beam echo-sounder (MBES)-operating at 300 kHz-data, in very coarse sediment environments. These are the backscatter strength and the depth residuals. Four MBES data sets collected at different parts of rivers in the Netherlands are employed. From previous research the backscatter strength was found to increase for increasing mean grain sizes. Depth residuals, however, are often found to have lower values for coarser sediments. Investigation of the four data sets indicates that these statements are valid only for moderately coarse sediment such as sand. For very coarse sediments (e.g., coarse gravel) the backscatter strength is found to decrease and the depth residuals increase for increasing mean grain sizes. This is observed when the sediment mean grain size becomes significantly larger than the acoustic wavelength of the MBES (5 mm). Knowledge regarding this behavior is of high importance when using backscatter strength and depth residuals for sediment classification purposes as the reverse in behavior can induce ambiguity in the classification.

  14. Acoustic measuring techniques for suspended sediment

    NASA Astrophysics Data System (ADS)

    Gruber, P.; Felix, D.; Storti, G.; Lattuada, M.; Fleckenstein, P.; Deschwanden, F.

    2016-11-01

    Acoustic signals can be used in various ways for suspended sediment monitoring. One possibility which lends itself particularly well in the context of hydropower plants (HPPs), is to use installations for acoustic discharge measurement (ADM). Such installations already exist at waterways of many HPPs. Similar to certain turbidimeters, the attenuation of the forward scattered signal travelling through the water-sediment mixture is correlated with suspended sediment concentration (SSC). This correlation can be based on reference SSCs, e.g. from gravimetric analyses of bottle samples. Without the need of additional sensors and practically maintenance-free, this method is used successfully in the HPP Fieschertal to warn the HPP operator of high SSC to prevent excessive turbine abrasion. Acoustic methods and systems that allow for estimating both SSC and particle size distribution (PSD) are under development. The simultaneous determination of SSC and PSD is not possible using a single frequency. Therefore, multi-frequency approaches are investigated for generally scattered signals. When backscattered signals are used, a stronger frequency dependency can be exploited. However, the reliable simultaneous determination of particle size (and distribution) and concentration is still a major challenge due to a low signal-to-noise ratio and an ill- posed problem of estimating concentration and size from recorded signals. The optimal setup configuration (angles, frequencies) for such a system is not unique and further investigations are recommended.

  15. Acoustic agglomeration of power plant fly ash. Final report

    SciTech Connect

    Reethof, G.; McDaniel, O.H.

    1982-01-01

    The work has shown that acoustic agglomeration at practical acoustic intensities and frequencies is technically and most likely economically viable. The following studies were performed with the listed results: The physics of acoustic agglomeration is complex particularly at the needed high acoustic intensities in the range of 150 to 160 dB and frequencies in the 2500 Hz range. The analytical model which we developed, although not including nonlinear acoustic efforts, agreed with the trends observed. We concentrated our efforts on clarifying the impact of high acoustic intensities on the generation of turbulence. Results from a special set of tests show that although some acoustically generated turbulence of sorts exists in the 150 to 170 dB range with acoustic streaming present, such turbulence will not be a significant factor in acoustic agglomeration compared to the dominant effect of the acoustic velocities at the fundamental frequency and its harmonics. Studies of the robustness of the agglomerated particles using the Anderson Mark III impactor as the source of the shear stresses on the particles show that the agglomerates should be able to withstand the rigors of flow through commercial cyclones without significant break-up. We designed and developed a 700/sup 0/F tubular agglomerator of 8'' internal diameter. The electrically heated system functioned well and provided very encouraging agglomeration results at acoustic levels in the 150 to 160 dB and 2000 to 3000 Hz ranges. We confirmed earlier results that an optimum frequency exists at about 2500 Hz and that larger dust loadings will give better results. Studies of the absorption of acoustic energy by various common gases as a function of temperature and humidity showed the need to pursue such an investigation for flue gas constituents in order to provide necessary data for the design of agglomerators. 65 references, 56 figures, 4 tables.

  16. FOURTH SEMINAR TO THE MEMORY OF D.N. KLYSHKO: Correlation and dynamic effects in coherent backscattering of light by optically dense ensembles of cold atoms

    NASA Astrophysics Data System (ADS)

    Datsyuk, Vladimir M.; Kupriyanov, Dmitriy V.; Larionov, Nikolay V.; Sokolov, Igor M.

    2005-08-01

    Coherent backscattering of light by optically dense atomic ensembles is considered. The spectrum of scattered radiation is studied. The dynamics of the total intensity and enhancement factor is considered in the case of scattering of pulsed radiation. The spectral and temporal characteristics of coherent backscattering are analysed depending on the observation conditions. As an example, calculations are performed for an ensemble of 85Rb atoms in a magnetooptical trap. It is shown that analysis of the correlation and dynamic properties of scattered radiation makes it possible to separate contributions from different orders of scattering and thereby to study the process of radiation trapping in dense media in more detail.

  17. Intense microwave and particle beams; Proceedings of the Meeting, Los Angeles, CA, Jan. 16-19, 1990

    SciTech Connect

    Brandt, H.E.

    1990-01-01

    Various papers on intense microwave and particle beams are presented. Individual topics addressed include: influence of beam loading on the operation of the relativistic klystron amplifier, gain and efficiency studies of a high-power traveling-wave-tube amplifier, relativistic O-type oscillator-amplifier systems, stability of mutually coupled oscillators, effects of a dense background plasma on the dispersion of backward wave oscillators, scalarized photon analysis of spontaneous emission in the uniform magnetic field FEL, tunable 200-GHz electron cyclotron maser, plasma-filled dielectric Cerenkov maser, MIT 35-GHz cyclotron autoresonance maser amplifier, array feed/reflector antenna design for intense microwave beams, propagation of an intense microwave beam from a phased array. Also discussed are: electromagnetic missile from a nonuniform aperture field, backscattering of electromagnetic missiles, plasma waveguide, electromagnetic missiles from currents on fractal sets, effects of high-power RF fields in the atmosphere and the ionosphere, pulsed sources and currents for acoustic and electromagnetic bullets, digital transmitter array for producing enhanced ionization.

  18. Modeling multi-frequency diurnal backscatter from a walnut orchard

    NASA Technical Reports Server (NTRS)

    Mcdonald, Kyle C.; Dobson, Myron C.; Ulaby, Fawwaz T.

    1991-01-01

    The Michigan Microwave Canopy Scattering Model (MIMICS) is used to model scatterometer data that were obtained during the August 1987 EOS (Earth Observing System) synergism study. During this experiment, truck-based scatterometers were used to measure radar backscatter from a walnut orchard in Fresno County, California. Multipolarized L- and X-band data were recorded for orchard plots for which dielectric and evapotranspiration characteristics were monitored. MIMICS is used to model a multiangle data set in which a single orchard plot was observed at varying impedance angles and a series of diurnal measurements in which backscatter from this same plot was measured continuously over several 24-h periods. MIMICS accounts for variations in canopy backscatter driven by changes in canopy state that occur diurnally as well as on longer time scales. L-band backscatter is dependent not only on properties of the vegetation but also on properties of the underlying soil surface. The behavior of the X-band backscatter is dominated by properties of the tree crowns.

  19. The backscattering characteristics of wetland vegetation and water-level changes detection using multi-mode SAR: A case study

    NASA Astrophysics Data System (ADS)

    Zhang, Meimei; Li, Zhen; Tian, Bangsen; Zhou, Jianmin; Tang, Panpan

    2016-03-01

    A full understanding of the backscattering characteristics of wetlands is necessary for the analysis of the hydrological conditions. In this study, a temporal set of synthetic aperture radar (SAR) imagery, acquired at different frequencies, polarizations and incidence angles over the coastal wetlands of the Liaohe River Delta, China, were used to characterize seasonal variations in radar backscattering coefficient for reed marshes and rice fields. The combination of SAR backscattering intensity and an optical-based normalized difference vegetation index (NDVI) for long time series can provide additional insight into vegetation structural and its hydrological states. After identifying the factors that induce the backscattering and scattering mechanism changes, detailed analysis of L-band ALOS PALSAR interferometric SAR (InSAR) imagery was conducted to study water-level changes under different environmental conditions. In addition, ENVISAT altimetry was used to validate the accuracy of the water-level changes estimated using the InSAR technique-this is an effective tool instead of sparsely distributed gauge stations for the validation. Our study demonstrates that L-band SAR data with horizontal polarization is particularly suitable for the extraction of water-level changes in the study area; however, vertically-polarized C-band data may also be useful where the density of herbaceous vegetation is low at the initial stage. It is also shown that integrated analysis of the backscattering mechanism and interferometric characteristics using multi-mode SAR can considerably enhance the reliability of the water-level retrieval scheme and better capture the spatial distribution of hydrological patterns.

  20. Symptoms of Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  1. NPL closes acoustics department

    NASA Astrophysics Data System (ADS)

    Extance, Andy

    2016-11-01

    The UK's National Physical Laboratory (NPL) has withdrawn funding for its acoustics, polymer and thermoelectrics groups, triggering concern among airborne acoustics specialists that the move could undermine the country's noise-management policies.

  2. Identifying the Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  3. Computer Modeling of Direct Path, Backscattered Bottom Reverberations for the Acoustic Reverberation Special Research Program (ARSRP)

    DTIC Science & Technology

    1990-10-01

    34 .. .:. ..... . . ... H3Od KV38 F-0 (cc .ILI 0 L) C7C) LS..i~i *Q p a 5 -- ,s g v -J -J C)c Z1 E~ KV3 K’o - S.- ’ " , ’ , ~~.. .... ..... . ......., , -inn *Q o c "<g - aa...a -IC) | *."I I I I!-) Sa ao <o o3~ INY3U U) CQC CC) -C0 r- 0 - CD C> CC CC)) ZJ3M~d KV3 ct: Loo 00 00 CE~ ~ ~ ..... 43~ NV3 C’,) I 0 I

  4. Verification and Validation Study for Extraction of Ocean Bottom Acoustic Backscattering Strengths

    DTIC Science & Technology

    2008-07-28

    kernel” of SABLE is the ability to use raytracing and beampattern information to calculate the latitude/longitude cell (or “grid cell”) of the...series. In the general case, an appropriate time interval is selected for computation of the mean reverberation level and the raytrace information is...Transmission loss (TL): NRL and ARL:UT use different models for transmission loss. NRL uses raytrace code written in the 1980’s by R. Pitre [8], while

  5. Investigation of High-Frequency Acoustic Backscattering Model Parameters: Environmental Data from the Arafura Sea

    DTIC Science & Technology

    1989-02-01

    gorgonaceans and pennatulaceans), stalked sponges, stoloniferous bryozoa , and anemones (actiniarians and ceriantharians) are visible. Figure 9 shows...shape ofthesoft-bodied organisms themselves. Algae, bryozoa , and soft corals in particular need a hard substrate to attach the holdfasts: gravel-sized

  6. Strongly driven ion acoustic waves in laser produced plasmas

    SciTech Connect

    Baldis, H.A.; Labaune, C.; Renard, N.

    1994-09-20

    This paper present an experimental study of ion acoustic waves with wavenumbers corresponding to stimulated Brillouin scattering. Time resolved Thomson scattering in frequency and wavenumber space, has permitted to observe the dispersion relation of the waves as a function of the laser intensity. Apart from observing ion acoustic waves associated with a strong second component is observed at laser intensities above 10{sup 13}Wcm{sup {minus}2}.

  7. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  8. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2015-07-17

    under-ice scattering , bathymetric diffraction and the application of the ocean acoustic Parabolic Equation to infrasound. 2. Tasks a. Task 1...QSR-14C0172-Ocean Acoustics -063015 Figure 10. Estimated reflection coefficient as a function of frequency by taking the difference of downgoing and...OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics -063015 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics

  9. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2015-10-19

    OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics-093015 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...number. 1. REPORT DATE OCT 2015 2. REPORT TYPE 3. DATES COVERED 01-07-2015 to 30-09-2015 4. TITLE AND SUBTITLE Deep Water Ocean Acoustics...understanding of the impact of the ocean and seafloor environmental variability on deep- water (long-range) ocean acoustic propagation and to develop

  10. Shallow Water Acoustics Studies

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow Water Acoustics Studies James F. Lynch MS #12...N00014-14-1-0040 http://acoustics.whoi.edu/sw06/ LONG TERM GOALS The long term goals of our shallow water acoustics work are to: 1) understand the...nature of low frequency (10-1500 Hz) acoustic propagation, scattering and noise in shallow water when strong oceanic variability is present in the

  11. Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound.

    PubMed

    Sheet, Debdoot; Karamalis, Athanasios; Eslami, Abouzar; Noël, Peter; Chatterjee, Jyotirmoy; Ray, Ajoy K; Laine, Andrew F; Carlier, Stephane G; Navab, Nassir; Katouzian, Amin

    2014-01-01

    Intravascular Ultrasound (IVUS) is a predominant imaging modality in interventional cardiology. It provides real-time cross-sectional images of arteries and assists clinicians to infer about atherosclerotic plaques composition. These plaques are heterogeneous in nature and constitute fibrous tissue, lipid deposits and calcifications. Each of these tissues backscatter ultrasonic pulses and are associated with a characteristic intensity in B-mode IVUS image. However, clinicians are challenged when colocated heterogeneous tissue backscatter mixed signals appearing as non-unique intensity patterns in B-mode IVUS image. Tissue characterization algorithms have been developed to assist clinicians to identify such heterogeneous tissues and assess plaque vulnerability. In this paper, we propose a novel technique coined as Stochastic Driven Histology (SDH) that is able to provide information about co-located heterogeneous tissues. It employs learning of tissue specific ultrasonic backscattering statistical physics and signal confidence primal from labeled data for predicting heterogeneous tissue composition in plaques. We employ a random forest for the purpose of learning such a primal using sparsely labeled and noisy samples. In clinical deployment, the posterior prediction of different lesions constituting the plaque is estimated. Folded cross-validation experiments have been performed with 53 plaques indicating high concurrence with traditional tissue histology. On the wider horizon, this framework enables learning of tissue-energy interaction statistical physics and can be leveraged for promising clinical applications requiring tissue characterization beyond the application demonstrated in this paper.

  12. Comment on "Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus" [J. Acoust. Soc. Am. 132, 2887-2895 (2012)].

    PubMed

    Marston, Philip L

    2014-03-01

    The phase and group velocities of elastic guided waves are important in the physical interpretation of high frequency scattering by fluid-loaded elastic shells. Outside the context of scattering, those properties are also important for understanding the energy flow in acoustic metamaterials. In a recent investigation of acoustic metamaterials exhibiting anomalous wave propagation [J. Acoust. Soc. Am. 132, 2887-2895 (2012)] criticism of negative group velocity terminology was generalized to elastic waves guided on ordinary materials. Some context and justification for retaining the identification of negative group velocities associated with a type of backscattering enhancement for shells are explained here. The phase evolution direction is determined by the boundary conditions.

  13. Coding Acoustic Metasurfaces.

    PubMed

    Xie, Boyang; Tang, Kun; Cheng, Hua; Liu, Zhengyou; Chen, Shuqi; Tian, Jianguo

    2017-02-01

    Coding acoustic metasurfaces can combine simple logical bits to acquire sophisticated functions in wave control. The acoustic logical bits can achieve a phase difference of exactly π and a perfect match of the amplitudes for the transmitted waves. By programming the coding sequences, acoustic metasurfaces with various functions, including creating peculiar antenna patterns and waves focusing, have been demonstrated.

  14. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  15. Calculations of radar backscattering coefficient of vegetation-covered soils

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Jackson, T. J. (Principal Investigator)

    1983-01-01

    A model for simulating the measured backscattering coefficient of vegetation-covered soil surfaces includes both coherent and incoherent components of the backscattered radar pulses from a rough sil surface. The effect of vegetation canopy scattering is also incorporated into the model by making the radar pulse subject to two-way attenuation and volume scattering when it passes through the vegetation layer. Model results agree well with the measured angular distributions of the radar backscattering coefficient for HH polarization at the 1.6 GHz and 4.75 GHz frequencies over grass-covered fields. It was found that the coherent scattering component is very important at angles near nadir, while the vegetation volume scattering is dominant at incident angles 30 degrees.

  16. Backscatter and attenuation properties of mammalian brain tissues

    NASA Astrophysics Data System (ADS)

    Wijekularatne, Pushpani Vihara

    Traumatic Brain Injury (TBI) is a common category of brain injuries, which contributes to a substantial number of deaths and permanent disability all over the world. Ultrasound technology plays a major role in tissue characterization due to its low cost and portability that could be used to bridge a wide gap in the TBI diagnostic process. This research addresses the ultrasonic properties of mammalian brain tissues focusing on backscatter and attenuation. Orientation dependence and spatial averaging of data were analyzed using the same method resulting from insertion of tissue sample between a transducer and a reference reflector. Apparent backscatter transfer function (ABTF) at 1 to 10 MHz, attenuation coefficient and backscatter coefficient (BSC) at 1 to 5 MHz frequency ranges were measured on ovine brain tissue samples. The resulting ABTF was a monotonically decreasing function of frequency and the attenuation coefficient and BSC generally were increasing functions of frequency, results consistent with other soft tissues such as liver, blood and heart.

  17. Investigation of phonon coherence and backscattering using silicon nanomeshes

    NASA Astrophysics Data System (ADS)

    Lee, Jaeho; Lee, Woochul; Wehmeyer, Geoff; Dhuey, Scott; Olynick, Deirdre L.; Cabrini, Stefano; Dames, Chris; Urban, Jeffrey J.; Yang, Peidong

    2017-01-01

    Phonons can display both wave-like and particle-like behaviour during thermal transport. While thermal transport in silicon nanomeshes has been previously interpreted by phonon wave effects due to interference with periodic structures, as well as phonon particle effects including backscattering, the dominant mechanism responsible for thermal conductivity reductions below classical predictions still remains unclear. Here we isolate the wave-related coherence effects by comparing periodic and aperiodic nanomeshes, and quantify the backscattering effect by comparing variable-pitch nanomeshes. We measure identical (within 6% uncertainty) thermal conductivities for periodic and aperiodic nanomeshes of the same average pitch, and reduced thermal conductivities for nanomeshes with smaller pitches. Ray tracing simulations support the measurement results. We conclude phonon coherence is unimportant for thermal transport in silicon nanomeshes with periodicities of 100 nm and higher and temperatures above 14 K, and phonon backscattering, as manifested in the classical size effect, is responsible for the thermal conductivity reduction.

  18. Bruce Thompson: Adventures and advances in ultrasonic backscatter

    NASA Astrophysics Data System (ADS)

    Margetan, Frank J.

    2012-05-01

    Over the course of his professional career Dr. R. Bruce Thompson published several hundred articles on non-destructive evaluation, the majority dealing with topics in ultrasonics. One longtime research interest of Dr. Thompson, with applications both to microstructure characterization and defect detection, was backscattered grain noise in metals. Over a 20 year period he led a revolving team of staff members and graduate students investigating various aspects of ultrasonic backscatter. As a member of that team I had the privilege of working along side Dr. Thompson for many years, serving as a sort of Dr. Watson to Bruce's Sherlock Holmes. This article discusses Dr. Thompson's general approaches to modeling backscatter, the research topics he chose to explore to systematically elucidate a better understanding of the phenomena, and the many contributions to the field achieved under his leadership. The backscatter work began in earnest around 1990, motivated by a need to improve inspections of aircraft engine components. At that time Dr. Thompson launched two research efforts. The first led to the heuristic Independent Scatterer Model which could be used to estimate the average grain noise level that would be seen in any given ultrasonic inspection. There the contribution from the microstructure was contained in a measureable parameter known as the Figure-of-Merit or FOM. The second research effort, spearheaded by Dr. Jim Rose, led to a formal relationship between FOM and details of the metal microstructure. The combination of the Independent Scattering Model and Rose's formalism provided a powerful tool for investigating backscatter in metals. In this article model developments are briefly reviewed and several illustrative applications are discussed. These include: the determination of grain size and shape from ultrasonic backscatter; grain noise variability in engine-titanium billets and forgings; and the design of ultrasonic inspection systems to improve defect

  19. Attenuation Estimation and Temperature Imaging Using Backscatter for Extracorporeal HIFU Treatment Planning

    NASA Astrophysics Data System (ADS)

    Civale, John; Bamber, Jeff; Miller, Naomi; Rivens, Ian; ter Haar, Gail

    2007-05-01

    For HIFU to be widely applicable in the clinic, problems relating to treatment planning, delivery and monitoring need to be resolved. The characterisation of the acoustic and thermal properties of specific tissues is an important pre-requisite to determining the optimal exposure parameters for individual treatments. We describe a preliminary evaluation of two methods that may be of use in deriving such planning information prior to HIFU. Both methods have been implemented on a diagnostic ultrasound scanner. One is backscatter attenuation estimation (BAE), which uses pulse-echo data and an axial beam translation substitution method to estimate the average attenuation coefficient of tissue overlying the region to be treated. The second method is backscatter temperature imaging (BTI) applied to a non-lesioning test exposure, which is normally used to determine the focal position but here the observed peak temperature rise is employed to provide an estimate of all case-specific losses involved in delivering a dose of thermal energy. HIFU lesioning experiments were performed in ex vivo bovine liver tissue, and used to test the ability of BAE and BTI to provide accurate information for adjusting the HIFU power so as to compensate for varying ultrasonic attenuation by overlying tissues (mimicked by gels with different attenuation properties). HIFU-induced lesions were made according to two types of exposure regime, (a) without regard for the differing attenuation coefficients of gels placed between the HIFU transducer and the tissue to be treated, and (b) after adjusting the HIFU drive power according to corrections derived from BAE and BTI measurements. Both correction methods were found to improve lesion size reproducibility, as measured from cut lesioned tissue specimens, although BTI performed better than BAE. The paper discusses likely reasons for this, as well as problems to be overcome if either method is to be clinically useful.

  20. Backscattering characteristics Analyses of winter wheat covered area and Drought Monitoring Based on active microwave

    NASA Astrophysics Data System (ADS)

    Zhang, C., Sr.; Li, L.

    2015-12-01

    The advantage of active microwave remote sensing on the sensitivity of polarization characteristic, backscatter intensity and phase characteristics to soil moisture demonstrates its potential to map and monitor relative soil moisture changes and drought information with high spatial resolution. However, the existence of soil surface condition and vegetation effects confounds the retrieval of soil moisture from active microwave, and therefore limits its applications on soil moisture retrieval and drought monitoring. To research how to reduce the effect of soil roughness and wheat cover with multi- incident angles and multi polarization active microwave remote sensing data, MIMICS and AIEM models were used to simulate the backscattering coefficient of winter wheat covered field. The interaction between winter wheat at main growth stages and microwave was analyzed. The effects of surface roughness and physical parameters of wheat on the backscattering characteristics and the variation of different incident angles and different polarization conditions are simulated and analyzed emphatically. Then scattering coefficient information of winter wheat covered area at different wheat growth stage was measured with a C band ground-based scattering meter. At the same time, biomass, leaf area index and soil rough degree, soil water content and other related parameters are collected. After comparing and analyzing the measured data and the simulated data at different incident angles and different polarization modes, we propose an approach of using multi polarization and multi angle data to eliminate the soil roughness and wheat vegetation effects and performing the inversion of soil moisture. Using the Radarsat2 satellite SAR data and ground-based scatter data gotten at the same period in 2012, soil moisture information of greater area is obtained, and then the drought information is obtained, which is consistent with the measured results.