Science.gov

Sample records for acoustic blanking zone

  1. Seismic blanking zones in the deep-water Ullung Basin, East Sea of Korea.

    NASA Astrophysics Data System (ADS)

    Ryu, Byong-Jae; Riedel, Michael; Yoo, Dong-Geun

    2015-04-01

    A total 12366.395 L.km of 2D multichannel seismic data were acquired by the Korea Institute of Geoscience and Mineral Resources (KIGAM) for detecting and mapping seismic indicators for the presence of gas hydrate in the deep-water Ulleung Basin, East Sea of Korea. The seismic data were acquired using Trilogy System of Geco-Prakla, Bolt Air-gun System onboard the R/V TAMHAE II of KIGAM during the years of 2000 to 2004. The seismic faices of shallow sediments were also analyzed to understand the sedimentary strata developed in the basin. Seismic data were processed to define gas hydrate indicators such as bottom simulating reflectors (BSRs) and seismic blank zones. The BSR was identified by (a) its polarity opposite to the seafloor, (b) its seafloor-parallel reflection behavior, and (c) its occurrence at a sub-bottom depth corresponding to the expected base of gas hydrate stability zone, on heat flow and other thermal data for the region and on seismic velocity data. The seismic velocity analysis was also conducted for determining the velocity deviation effect of high-velocity gas hydrate and underlying low-velocity free gas. The BSRs occur mainly in the southern part of the basin where mass transport deposits are widely occurring. A number of vertical to sub-vertical seismic blanking zones were identified in the basin. The blanking zones are near-vertical broad chimney-like structures of reduced seismic reflectivity. They may be formed by gas and/or fluid upwelling through fractures and faults. Many of the blanking zones show apparent velocity pull-up effects of sediment layering structures that are interpreted to be a result of higher velocity gas hydrate. The presence of substantial amounts of gas hydrate in the blank zones were first found by piston coring in 2007, and subsequently confirmed by two deep-drilling expeditions in 2007 and 2010. Most of the blanking zones occur in well-bedded turbidite/hemi-pelagic sediments in the northern deep basin. The

  2. Finite Element Modeling of Transition Zone in Friction Stir Welded Tailor-Made Blanks

    SciTech Connect

    Zadpoor, Amir A.; Sinke, Jos; Benedictus, Rinze

    2007-05-17

    Finite element modeling of a prototype friction stir welded blank made of aluminum alloy 2024-T351 is considered in this paper. Feasibility of implementation of the experimentally-obtained mechanical properties of the weld nugget and heat-affected zones in FEM models is investigated. Limiting dome height test is considered as case of the study. Three different finite element models implementing different levels of the weld details are built and compared. It is shown that despite increased simulation time, implementation of the weld nugget and heat-affected zones is justified by significantly improved accuracy of the simulation results.

  3. A Preliminary Evaluation of Near-Transducer Velocities Collected with Low-Blank Acoustic Doppler Current Profiler

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.

    2002-01-01

    Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic "ringing" to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments3 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.

  4. Determination of elastoplastic mechanical properties of the weld and heat affected zone metals in tailor-welded blanks by nanoindentation test

    NASA Astrophysics Data System (ADS)

    Ma, Xiangdong; Guan, Yingping; Yang, Liu

    2015-09-01

    The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy.

  5. Quantitative measurement of acoustic pressure in the focal zone of acoustic lens-line focusing using the Schlieren method.

    PubMed

    Jiang, Xueping; Cheng, Qian; Xu, Zheng; Qian, Menglu; Han, Qingbang

    2016-04-01

    This paper proposes a theory and method for quantitative measurement of the acoustic lens-line focusing ultrasonic (ALLFU) field in its focal spot size and acoustic pressure using the Schlieren imaging technique. Using Fourier transformation, the relationship between the brightness of the Schlieren image and the acoustic pressure was introduced. The ALLFU field was simulated using finite element method and compared with the Schlieren acoustic field image. The measurement of the focal spot size was performed using the Schlieren method. The acoustic pressure in the focal zone of the ALLFU field and the transducer-transmitting voltage response were quantitatively determined by measuring the diffraction light fringe intensity. The results show that the brightness of the Schlieren image is a linear function of the acoustic intensity when the acousto-optic interaction length remains constant and the acoustic field is weak. PMID:27139646

  6. Modified blank ammunition injuries.

    PubMed

    Ogunc, Gokhan I; Ozer, M Tahir; Coskun, Kagan; Uzar, Ali Ihsan

    2009-12-15

    Blank firing weapons are designed only for discharging blank ammunition cartridges. Because they are cost-effective, are easily accessible and can be modified to live firearms plus their unclear legal situation in Turkish Law makes them very popular in Turkey. 2004 through 2008, a total of 1115 modified blank weapons were seized in Turkey. Blank firing weapons are easily modified by owners, making them suitable for discharging live firearm ammunition or modified blank ammunitions. Two common methods are used for modification of blank weapons. After the modification, these weapons can discharge the live ammunition. However, due to compositional durability problems with these types of weapons; the main trend is to use the modified blank ammunitions rather than live firearm ammunition fired from modified blank firing weapons. In this study, two types of modified blank weapons and two types of modified blank cartridges were tested on three different target models. Each of the models' shooting side was coated with 1.3+/-2 mm thickness chrome tanned cowhide as a skin simulant. The first model was only coated with skin simulant. The second model was coated with skin simulant and 100% cotton police shirt. The third model was coated with skin simulant and jean denim. After the literature evaluation four high risky anatomic locations (the neck area; the eyes; the thorax area and inguinal area) were pointed out for the steel and lead projectiles are discharged from the modified blank weapons especially in close range (0-50 cm). The target models were designed for these anatomic locations. For the target models six Transparent Ballistic Candle blocks (TCB) were prepared and divided into two test groups. The first group tests were performed with lead projectiles and second group with steel projectile. The shortest penetration depth (lead projectile: 4.358 cm; steel projectile 8.032 cm) was recorded in the skin simulant and jean denim coated block for both groups. In both groups

  7. Photomultiplier blanking circuit

    NASA Technical Reports Server (NTRS)

    Mcclenahan, J. O.

    1972-01-01

    Circuit for protecting photomultiplier equipment from current surges which occur when exposed to brilliant illumination is discussed. Components of circuit and details of operation are provided. Circuit diagram to show action of blanking pulse on zener diode is included.

  8. EUVL Mask Blank Repair

    SciTech Connect

    Barty, A; Mirkarimi, P; Stearns, D G; Sweeney, D; Chapman, H N; Clift, M; Hector, S; Yi, M

    2002-05-22

    EUV mask blanks are fabricated by depositing a reflective Mo/Si multilayer film onto super-polished substrates. Small defects in this thin film coating can significantly alter the reflected field and introduce defects in the printed image. Ideally one would want to produce defect-free mask blanks; however, this may be very difficult to achieve in practice. One practical way to increase the yield of mask blanks is to effectively repair multilayer defects, and to this effect they present two complementary defect repair strategies for use on multilayer-coated EUVL mask blanks. A defect is any area on the mask which causes unwanted variations in EUV dose in the aerial image obtained in a printing tool, and defect repair is correspondingly defined as any strategy that renders a defect unprintable during exposure. The term defect mitigation can be adopted to describe any strategy which renders a critical defect non-critical when printed, and in this regard a non-critical defect is one that does not adversely affect device function. Defects in the patterned absorber layer consist of regions where metal, typically chrome, is unintentionally added or removed from the pattern leading to errors in the reflected field. There currently exists a mature technology based on ion beam milling and ion beam assisted deposition for repairing defects in the absorber layer of transmission lithography masks, and it is reasonable to expect that this technology will be extended to the repair of absorber defects in EUVL masks. However, techniques designed for the repair of absorber layers can not be directly applied to the repair of defects in the mask blank, and in particular the multilayer film. In this paper they present for the first time a new technique for the repair of amplitude defects as well as recent results on the repair of phase defects.

  9. Acoustic Microscopy for Visualization and Evaluation of Ceramic-ceramic Contact Zone

    NASA Astrophysics Data System (ADS)

    Morokov, E. S.; Levin, V. M.; Petronyuk, Yu. S.; Podzorova, L. I.; Il'Icheva, A. A.; Lebedenko, I. Yu.; Anisimova, S. V.

    Impulse acoustic microscopy technique has been applied for investigation of features of ceramic-ceramic contact zone. At the interface the method allows to identified and localized detachment and extended partial contact area (kissing contact), shown distribution of the thickness of the interlayer and its homogeneity.

  10. Acoustic contrast, planarity and robustness of sound zone methods using a circular loudspeaker array.

    PubMed

    Coleman, Philip; Jackson, Philip J B; Olik, Marek; Møller, Martin; Olsen, Martin; Abildgaard Pedersen, Jan

    2014-04-01

    Since the mid 1990s, acoustics research has been undertaken relating to the sound zone problem-using loudspeakers to deliver a region of high sound pressure while simultaneously creating an area where the sound is suppressed-in order to facilitate independent listening within the same acoustic enclosure. The published solutions to the sound zone problem are derived from areas such as wave field synthesis and beamforming. However, the properties of such methods differ and performance tends to be compared against similar approaches. In this study, the suitability of energy focusing, energy cancelation, and synthesis approaches for sound zone reproduction is investigated. Anechoic simulations based on two zones surrounded by a circular array show each of the methods to have a characteristic performance, quantified in terms of acoustic contrast, array control effort and target sound field planarity. Regularization is shown to have a significant effect on the array effort and achieved acoustic contrast, particularly when mismatched conditions are considered between calculation of the source weights and their application to the system. PMID:25234991

  11. Mask Blank Defect Detection

    SciTech Connect

    Johnson, M A; Sommargren, G E

    2000-02-04

    Mask blanks are the substrates that hold the master patterns for integrated circuits. Integrated circuits are semiconductor devices, such as microprocessors (mPs), dynamic random access memory (DRAMs), and application specific integrated circuits (ASICs) that are central to the computer, communication, and electronics industries. These devices are fabricated using a set of master patterns that are sequentially imaged onto light-sensitive coated silicon wafers and processed to form thin layers of insulating and conductive materials on top of the wafer. These materials form electrical paths and transistors that control the flow of electricity through the device. For the past forty years the semiconductor industry has made phenomenal improvements in device functionality, compactness, speed, power, and cost. This progress is principally due to the exponential decrease in the minimum feature size of integrated circuits, which has been reduced by a factor of {radical}2 every three years. Since 1992 the Semiconductor Industry Association (SIA) has coordinated the efforts of producing a technology roadmap for semiconductors. In the latest document, ''The International Technology Roadmap for Semiconductors: 1999'', future technology nodes (minimum feature sizes) and targeted dates were specified and are summarized in Table 1. Lithography is the imaging technology for producing a de-magnified image of the mask on the wafer. A typical de-magnification factor is 4. Mask blank defects as small as one-eighth the equivalent minimum feature size are printable and may cause device failure. Defects might be the result of the surface preparation, such as polishing, or contamination due to handling or the environment. Table 2 shows the maximum tolerable defect sizes on the mask blank for each technology node. This downward trend puts a tremendous burden on mask fabrication, particularly in the area of defect detection and reduction. A new infrastructure for mask inspection will be

  12. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    NASA Astrophysics Data System (ADS)

    Desjouy, C.; Ollivier, S.; Marsden, O.; Dragna, D.; Blanc-Benon, P.

    2015-10-01

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular - also called Von Neumann - regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.

  13. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    SciTech Connect

    Desjouy, C. Ollivier, S.; Dragna, D.; Blanc-Benon, P.; Marsden, O.

    2015-10-28

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – also called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.

  14. Granular Shear Zone Formation: Acoustic Emission Measurements and Fiber-bundle Models

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Or, Dani

    2013-04-01

    We couple the acoustic emissions method with conceptual models of granular material behavior for investigation of granular shear zone formation and to assess eminence of landslide hazard. When granular materials are mechanically loaded or sheared, they tend to produce discrete events of force network restructuring, and frictional interaction at grain contacts. Such abrupt perturbations within the granular lattice release part of the elastic energy stored in the strained material. Elastic waves generated by such events can be measured as acoustic emissions (AE) and may be used as surrogates for intermittent structural transitions associated with shear zone formation. To experimentally investigate the connection between granular shearing and acoustic signals we performed an array of strain-controlled shear-frame tests using glass beads. AE were measured with two different systems operating at two frequency ranges. High temporal resolution measurements of the shear stresses revealed the presence of small fluctuations typically associated with low-frequency (< 20 kHz) acoustic bursts. Shear stress jumps and linked acoustic signals give account of discrete events of grain network rearrangements and obey characteristic exponential frequency-size distributions. We found that statistical features of force jumps and AE events depend on mechanical boundary conditions and evolve during the straining process. Activity characteristics of high-frequency (> 30 kHz) AE events is linked to friction between grains. To interpret failure associated AE signals, we adapted a conceptual fiber-bundle model (FBM) that describes some of the salient statistical features of failure and associated energy production. Using FBMs for the abrupt mechanical response of the granular medium and an associated grain and force chain AE generation model provides us with a full description of the mechanical-acoustical granular shearing process. Highly resolved AE may serve as a diagnostic tool not only

  15. Final inspection of photomask blanks

    NASA Astrophysics Data System (ADS)

    Schubert, Fredi; Sauerbrei, Hartmut; Aschke, Lutz; Knapp, Konrad

    2001-04-01

    In order to increase the quality in manufacturing of future photon mask generations Schott Lithotec is brought in a brand new, much increased automatic laser inspection system into a new manufacturing line of photo mask blanks. It is in a position to detect additionally to the standard defect types further defect types like dim- and bright-chrome defects. The resolution of the system is less than 100 nm. With a quickly inspecting time per blank of less than three minutes and for the first time in the world used automatic SMIF-pod-handling this is a tool for the 100 percent final inspection in the manufacturing of photo mask blanks.

  16. Experimental and Numerical Study on Blanking Process with Negative Clearance

    NASA Astrophysics Data System (ADS)

    Hirota, Kenji; Yanaga, Hiroki; Fukushima, Katsunori

    This study summarizes the characteristics of blanking behavior with a negative clearance. Several experiments were performed for two aluminum sheets over a wide range of clearances including negative values. Blanking with negatively large clearances was found to produce fine cut edges with less roll-over and no fracture zone even for a brittle material. Corresponding simulations were performed using the Ayada's criterion for predicting ductile fracture initiation. Each zone of blanked part edges such as roll-over and fractured zone agreed well with that obtained in the experiments except a few cases accompanied by secondary shear. The reason for prevention of fracture by using negative clearances was explained with the change of the damage value during the process; the damage value was kept low throughout the blanking operation since the mean stress dominating the damage value became compressive around the die edge. Influences of blanking parameters on load-stroke curves were also investigated. The curves for negative clearances showed gradual increase in load toward the end of stroke. The earlier fracture initiated, the earlier the load reached a peak. Simulated curves showed the same tendency and in good agreement with the experimental ones quantitatively.

  17. Analysis of heat transfer during quenching of a gear blank

    SciTech Connect

    Aceves, S M; Sahai, V

    1999-03-01

    This paper presents experimental and numerical results for the quench of a gear blank in agitated and stagnant oil. Heat transfer within the gear blank is analyzed with a whole domain-optimizer technique inverse solution method, to calculate the time history at every point in the gear blank. The development of this procedure represents the first stage in an overall analysis of the quench process that will later include material phase transformations and deformation. The paper presents ten variations in setting up the inverse problem, to analyze which combination of independent variables and decision variables results in the best match between experimental and numerical results. The results indicate that dividing the boundary of the gear blank into four zones and assigning a fixed heat transfer coefficient or heat flux to each zone yields an average RMS error (average difference between experimental and numerical results) of the order of 40 K. This error can be reduced by either increasing the number of zones, by reducing the number of thermocouples being matched, or by allowing the heat transfer or heat flux to vary within the zones. Of these possibilities, variation of heat transfer within the zones gives the best improvement in the quality of the match for the amount of extra effort required to run the problem.

  18. Sharp acoustic boundaries across an altitudinal avian hybrid zone despite asymmetric introgression.

    PubMed

    Halfwerk, W; Dingle, C; Brinkhuizen, D M; Poelstra, J W; Komdeur, J; Slabbekoorn, H

    2016-07-01

    Birdsong is a sexually selected trait that could play an important evolutionary role when related taxa come into secondary contact. Many songbird species, however, learn their songs through copying one or more tutors, which complicates the evolutionary outcome of such contact. Two subspecies of a presumed vocal learner, the grey-breasted wood-wren (Henicorhina leucophrys), replace each other altitudinally across the western slope of the Ecuadorian Andes. These subspecies are morphologically very similar, but show striking differences in their song. We examined variation in acoustic traits and genetic composition across the altitudinal range covered by both subspecies and between two allopatric populations. The acoustic boundary between the subspecies was found to be highly abrupt across a narrow elevational range with virtually no evidence of song convergence. Mixed singing and use of hetero-subspecific song occurred in the contact zone and was biased towards the use of leucophrys song types. Hetero-subspecific song copying by hilaris and not by leucophrys reflected a previously found asymmetric pattern of response to song playback. Using amplified fragment length polymorphisms (AFLP) markers, we detected hybridization in the contact zone and asymmetric introgression in parapatric populations, with more leucophrys alleles present in hilaris populations than vice versa. This pattern may be a trail of introgression due to upslope displacement of leucophrys by hilaris. Our data suggest that song learning may impact speciation and hybridization in contrasting ways at different spatial scales: although learning may speed up population divergence in songs, thereby enhancing assortative mating and reducing gene flow, it may at a local level also lead to the copying of heterospecific songs, therefore allowing some level of hybridization and introgression. PMID:27037611

  19. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  20. Amplitude blanking in seismic profiles from Lake Baikal

    USGS Publications Warehouse

    Lee, M.W.; Agena, W.F.; Hutchinson, D.R.

    1996-01-01

    Imaging of the deepest sedimentary section in Lake Baikal using multichannel seismic profiling was hampered by amplitude blanking that is regionally extensive, is associated with water depths greater than about 900 m and occurs at sub-bottom depths of 1-2 km in association with the first water-bottom multiple. Application of a powerful multiple suppression technique improved the quality of occasional discontinuous, dipping primary reflections, but failed to substantially alter the non-reflective character of the blanking zone. Detailed analysis of amplitudes from original data and synthetic models show that the threshold for detecting primary energy in deep water of Lake Baikal occurs when the primary is about 14-20 dB less than the multiple energy. The blanking occurs because of anomalously low reflectivities of the deep sediments coupled with this 20 dB limitation in real data processing. The blanking cuts across seismic stratal boundaries, and is therefore probably unrelated to depositional lithologies. The deepest, early rift deposits, inferred to come from a mixed fluvial and lacustrine setting, do not easily explain the widespread and uniform character of the blanked deposits. More likely, blanking occurs because of processes or phenomena that physically alter the deposits, causing them to be non-reflective and/or highly attenuating. No single process explains all the observations, but a combination of diagenesis, overpressure, and the presence of dispersed free gas at sub-bottom depths of 1-2 km, offer plausible and possible conditions that contribute to blanking. Copyright ?? 1996 Published by Elsevier Science Ltd.

  1. CO2 laser tailored blank welding: process monitoring

    NASA Astrophysics Data System (ADS)

    D'Angelo, Giuseppe; Borello, Elena; Pallaro, Nereo

    1996-09-01

    Tailored blank welding has been a rapidly growing segment of the automotive industry over the last five years. It allows to choose the optimal thickness of the sheets for different zones taking into account different mechanical stresses, vehicle safety reinforcement. Through the elimination of extra reinforcement parts, the use of tailored blanks allows to produce lighter car bodies and to simplify the production cycle. As more laser welding systems are being installed in industry, in order to increase the productivity and maintain constant quality of the products, the demand for the development of process monitoring systems increases. In this paper a monitoring system, based on the measurement of the radiation from the plasma plume during the CO2 tailored blanks laser welding, is presented. Using an appropriate combination of optical components, detectors and a special software, a complete apparatus has been developed. The signals were found to be correlated to weld quality parameters including the defects such as holes, overlapping and open butts.

  2. 7 CFR 201.35 - Blank spaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Blank spaces. 201.35 Section 201.35 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS Labeling in General § 201.35 Blank spaces. Blank spaces on the label shall be deemed to imply...

  3. 7 CFR 51.2001 - Blank.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Blank. 51.2001 Section 51.2001 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2001 Blank. Blank means a...

  4. 7 CFR 51.2001 - Blank.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Blank. 51.2001 Section 51.2001 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2001 Blank. Blank means a...

  5. 7 CFR 201.35 - Blank spaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Blank spaces. 201.35 Section 201.35 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS Labeling in General § 201.35 Blank spaces. Blank spaces on the label shall be deemed to imply...

  6. 7 CFR 201.35 - Blank spaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Blank spaces. 201.35 Section 201.35 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS Labeling in General § 201.35 Blank spaces. Blank spaces on the label shall be deemed to imply...

  7. 7 CFR 201.35 - Blank spaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Blank spaces. 201.35 Section 201.35 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS Labeling in General § 201.35 Blank spaces. Blank spaces on the label shall be deemed to imply...

  8. 7 CFR 201.35 - Blank spaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Blank spaces. 201.35 Section 201.35 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS Labeling in General § 201.35 Blank spaces. Blank spaces on the label shall be deemed to imply...

  9. The Effect of Temperature Rise in a Fine Blanking Tool

    NASA Astrophysics Data System (ADS)

    Kim, Su-Hyun; Kang, JeongJin; Lee, Dong-Jae; Lee, Kwan-Young; Kim, Heon-Young; Kim, Hyung-Jong

    2007-05-01

    This study was performed to investigate the influence of the tool temperature rise in a fine blanking process. It is known that most of the plastic deformation energy changes into heat and the heat raises tool temperature increasingly in the continual fine blanking process. Real-time measurement of the temperature distribution on the tool surfaces was carried out using a thermal infrared camera. Finite element analysis for the fine blanking process considering the heat transfer and thermal expansion was also performed, and the result was compared with the experimental data. It is found that the tool temperature rises rapidly within one minute (20 to 30 strokes) from the beginning of the continual process and thereafter increases very slowly. It is thought that the increase of tool temperature affects the decrease tendency of fracture zone in blanked workpiece. The phenomena could be properly predicted using finite element method and it is expected that effective information for the design and manufacture of die in a fine blanking process could be given through finite element analysis.

  10. Detection of bond failure in the anchorage zone of reinforced concrete beams via acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Abouhussien, Ahmed A.; Hassan, Assem A. A.

    2016-07-01

    In this study, acoustic emission (AE) monitoring was utilised to identify the onset of bond failure in reinforced concrete beams. Beam anchorage specimens were designed and tested to fail in bond in the anchorage zone. The specimens included four 250 × 250 × 1500 mm beams with four variable bonded lengths (100, 200, 300, and 400 mm). Meanwhile, an additional 250 × 250 × 2440 mm beam, with 200 mm bonded length, was tested to investigate the influence of sensor location on the identification of bond damage. All beams were tested under four-point loading setup and continuously monitored using three distributed AE sensors. These attached sensors were exploited to record AE signals resulting from both cracking and bond deterioration until failure. The variations in the number of AE hits and cumulative signal strength (CSS) versus test time were evaluated to achieve early detection of crack growth and bar slippage. In addition, AE intensity analysis was performed on signal strength of collected AE signals to develop two additional parameters: historic index (H (t)) and severity (S r). The analysis of these AE parameters enabled an early detection of both first cracks (at almost the mid-span of the beam) and bar slip in either of the anchorage zones at the beams’ end before their visual observation, regardless of sensor location. The results also demonstrated a clear correlation between the damage level in terms of crack development/measured free end bar slip and AE parameters (number of hits, CSS, H(t), and S r).

  11. Acoustic Holography of the Solar Convection Zone with SOHO-MDI Observations

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2005-01-01

    The original grant with the title stated above was NAG5-10984, awarded to the Solar Physics Research Corporation (SPRC) in July, 2001, and was to be a three-year project. The basic theme of the project was the development and application of computational seismic holography for imaging, diagnostics, and monitoring of magnetic anomalies beneath active regions, in the deep solar interior, and on the Sun's far surface. The project was roughly separated into the following five tasks: (1) A holographic survey of active regions. (2) p-Mode absorption diagnostics of magnetic regions. (3) Acoustic modeling of the shallow subphotospheres of active regions and the quiet-Sun supergranulation based on phase-correlation seismic holography. (4) Seismic holography of the deep convection zone. (5) Improvements in holographic imaging of the far surface of the Sun. Following the death of Karen Harvey, President of SPRC, during the first year, the grant was transferred to Northwest Research Associates as NAG5-12901. Substantial but progress had been made on most of the above tasks in the first year under NAG5-10984, but none were completed. This work was continued under NAG5-12901.

  12. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  13. Deformed ellipsoidal diffraction grating blank

    NASA Technical Reports Server (NTRS)

    Decew, Alan E., Jr.

    1994-01-01

    The Deformed Ellipsoidal Grating Blank (DEGB) is the primary component in an ultraviolet spectrometer. Since one of the major concerns for these instruments is throughput, significant efforts are made to reduce the number of components and subsequently reflections. Each reflection results in losses through absorption and scattering. It is these two sources of photon loss that dictated the requirements for the DEGB. The first goal is to shape the DEGB in such a way that the energy at the entrance slit is focused as well as possible on the exit slit. The second goal is to produce a surface smooth enough to minimize the photon loss due to scattering. The program was accomplished in three phases. The first phase was the fabrication planning. The second phase was the actual fabrication and initial testing. The last phase was the final testing of the completed DEGB.

  14. Numerical Simulation of Blanking Process over a Wide Range of Clearances

    NASA Astrophysics Data System (ADS)

    Takata, Yusuke; Hirota, Kenji

    A number of special blanking processes are available for producing fine cut edges and blanking with a negative clearance is one of them. The aim of this study is to elucidate the mechanism of precision blanking with a negative clearance by using finite element method. Experiments were performed for two kinds of aluminum sheets over a wide range of clearances between -30 and 20 percent of the sheet thickness. Fine blanked products with no fractured zone were obtained in the case with negatively large clearances, while fractured zone appeared on the cut edge by conventional blanking. Corresponding simulations were carried out by using the Ayada's and the Jeong's criterion to predict ductile fracture initiation. Numerical results with both criteria agreed well with the experimental results except a few cases accompanied by secondary shear. The difference in blanking mechanism between the positive and the negative clearance blanking was explained by the variation of the damage value; it reached the threshold value for positive clearances, while it was kept low and never exceeded the threshold for negatively large clearances.

  15. Research on flow mechanism of material for spur gear in closed extruding fine blanking process

    NASA Astrophysics Data System (ADS)

    Deng, Ming; Liu, Lu-zhou

    2013-05-01

    The finite element method (FEM) is applied to analyze closed extruding fine blanking gear. The reason of engendering corner collapse is the friction between blank and die. Meanwhile, this paper analyzes effects of various counterpunch forces on the flow characteristics, obtains the fiber distribution on different sections of the gear. The effects of counterpunch forces on material flow characteristics in deformation zone and the swirling flow in scrap are also obtained.

  16. New decade of shaped beryllium blanks

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Don H.; Heberling, Jody; Campbell, Jeffrey; Morales, Amanda; Sayer, Aaron

    2015-09-01

    Near-net-shape powder consolidation technology has been developing over the past 30+ years. One relatively recent example is production of hexagonal shaped beryllium mirror blanks made for the James Webb Space Telescope. More cost saving examples, specifically from the past decade, utilizing growing experience and lesson's learned whether from a mirror substrate or structure will be discussed to show the latitude of production technology. Powder consolidation techniques include Hot Isostatic Pressing (HIP) for either round or shaped blanks and Vacuum Hot Pressing (VHP) consolidation for round blanks. The range of sizes will be presented to further illustrate the latitude of current production capability.

  17. Acoustic monitoring of earthquakes along the Blanco Transform Fault zone and Gorda Plate and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Dziak, Robert Paul

    Hydroacoustic tertiary (T-) waves are seismically generated acoustic waves that propagate over great distances in the ocean sound channel with little loss in signal strength. Hydrophone recorded T-waves can provide a lower earthquake detection threshold and an improved epicenter location accuracy for oceanic earthquakes than land-based seismic networks. Thus detection and location of NE Pacific ocean earthquakes along the Blanco Transform Fault (BTFZ) and Gorda plate using the U.S. Navy's SOSUS (SOund SUrveillance System) hydrophone arrays afford greater insight into the current state of stress and crustal deformation mechanics than previously available. Acoustic earthquake information combined with bathymetry, submersible observations, earthquake source- parameter estimates, petrologic samples, and water-column chemistry renders a new tectonic view of the southern Juan de Fuca plate boundaries. Chapter 2 discusses development of seismo-acoustic analysis techniques using the well-documented April 1992 Cape Mendocino earthquake sequence. Findings include a hydrophone detection threshold estimate (M ~ 2.4), and T-wave propagation path modeling to approximate earthquake acoustic source energy. Empirical analyses indicate that acoustic energy provides a reasonable magnitude and seismic moment estimate of oceanic earthquakes not detected by seismic networks. Chapters 3 documents a probable volcanogenic T-wave event swarm along a pull-apart basin within the western BTFZ during January 1994. Response efforts yielded evidence of anomalous water-column 3He concentrations, pillow- lava volcanism, and the first discovery of active hydrothermal vents along an oceanic fracture zone. Chapter 4 discusses the detection of a NE-SW trending microearthquake band along the mid-Gorda plate which was active from initiation of SOSUS recording in August 1991 through July 1992, then abruptly ceased. It is proposed that eventual termination of the Gorda plate seismicity band is due to

  18. Inspection of lithographic mask blanks for defects

    DOEpatents

    Sommargren, Gary E.

    2001-01-01

    A visible light method for detecting sub-100 nm size defects on mask blanks used for lithography. By using optical heterodyne techniques, detection of the scattered light can be significantly enhanced as compared to standard intensity detection methods. The invention is useful in the inspection of super-polished surfaces for isolated surface defects or particulate contamination and in the inspection of lithographic mask or reticle blanks for surface defects or bulk defects or for surface particulate contamination.

  19. Formability Studies on Transverse Tailor Welded Blanks

    SciTech Connect

    Bhaskar, V. Vijay; Narasimhan, K.

    2005-08-05

    Tailor Welded Blanks (TWB) technology is one of the several approaches that have been used to reduce the weight of the automobile body. TWBs are made up of two or more blanks having different/same properties (geometry, material etc.) prior to forming. The formability of these blanks depends on material and geometric parameters like strength ratio and thickness ratio. The study of these blanks can be classified on the basis of the weld orientation chosen viz. transverse weld or longitudinal weld with respect to the major straining direction.This paper studies the formability issues related to transverse TWB by FE simulation. The formability is assessed by analyzing tensile and Limit Dome Height (LDH) tests. The weld region is assumed to be a line in all the simulations. While modeling the tensile test, ultimate tensile strength (UTS) and elongation are monitored, and in LDH testing, pole height and maximum load (in near plane strain condition) are monitored. LDH testing shows that as thickness ratio increases, the load bearing capacity and the pole height decreases. There is a contribution from both the thicker and the thinner blank to the overall deforming volume. Failure location analysis shows that there is an abrupt change in the location of the failure from punch nose region to weld line region as the thickness ratio reaches a critical magnitude (1.08).The study of material properties shows that as the yield strength ratio (S ratio) and strain hardening exponent ratio (N ratio) between the blanks increases, the maximum load which the blank can sustain without failure (UTS) increases. This becomes constant and comparable to that of single sheet at higher N and S ratios.

  20. Automatic classification of blank substrate defects

    NASA Astrophysics Data System (ADS)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask

  1. Acoustic measurement of sediment dynamics in the coastal zones using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Sudhakaran, A., II; Paramasivam, A.; Seshachalam, S.; A, C.

    2014-12-01

    Analyzing of the impact of constructive or low energy waves and deconstructive or high energy waves in the ocean are very much significant since they deform the geometry of seashore. The deformation may lead to productive result and also to the end of deteriorate damage. Constructive waves results deposition of sediment which widens the beach where as deconstructive waves results erosion which narrows the beach. Validation of historic sediment transportation and prediction of the direction of movement of seashore is essential to prevent unrecoverable damages by incorporating precautionary measurements to identify the factors that influence sediment transportation if feasible. The objective of this study is to propose a more reliable and energy efficient Information and communication system to model the Coastal Sediment Dynamics. Various factors influencing the sediment drift at a particular region is identified. Consequence of source depth and frequency dependencies of spread pattern in the presence of sediments is modeled. Property of source depth and frequency on sensitivity to values of model parameters are determined. Fundamental physical reasons for these sediment interaction effects are given. Shallow to deep water and internal and external wave model of ocean is obtained intended to get acoustic data assimilation (ADA). Signal processing algorithms are used over the observed data to form a full field acoustic propagation model and construct sound speed profile (SSP). The inversions of data due to uncertainties at various depths are compared. The impact of sediment drift over acoustic data is identified. An energy efficient multipath routing scheme Wireless sensor networks (WSN) is deployed for the well-organized communication of data. The WSN is designed considering increased life time, decreased power consumption, free of threats and attacks. The practical data obtained from the efficient system to model the ocean sediment dynamics are evaluated with remote

  2. Penetrating ocular trauma associated with blank cartridge

    PubMed Central

    2014-01-01

    Background Blank cartridge guns are generally regarded as being harmless and relative safe. However recent published articles demonstrated that the gas pressure from the exploding propellant of blank cartridge is powerful enough to penetrate the thoracic wall, abdominal muscle, small intestine and the skull. And there has been a limited number of case reports of ocular trauma associated with blank cartridge injury. In addition, no report on case with split extraocular muscle injury with traumatic cataract and penetrating corneoscleral wound associated with blank cartridge has been previously documented. This report describes the case of patient who sustained penetrating ocular injury with extraocular muscle injury by a close-distance blank cartridge that required surgical intervention. Case presentation A 20-year-old man sustained a penetrating globe injury in the right eye while cleaning a blank cartridge pistol. His uncorrected visual acuity at presentation was hand motion and he had a flame burn of his right upper and lower lid with multiple missile wounds. On slit-lamp examination, there was a 12-mm laceration of conjunctiva along the 9 o'clock position with two pinhole-like penetrating injuries of cornea and sclera. There was also a 3-mm corneal laceration between 9 o'clock and 12 o'clock and the exposed lateral rectus muscle was split. Severe Descemet's membrane folding with stromal edema was observed, and numerous yellow, powder-like foreign bodies were impacted in the cornea. Layered anterior chamber bleeding with traumatic cataract was also noted. Transverse view of ultrasonography showed hyperechoic foreign bodies with mild reduplication echoes and shadowing. However, a computed tomographic scan using thin section did not reveal a radiopaque foreign body within the right globe. Conclusion To our best knowledge, this is the first case report of split extraocular muscle injury with traumatic cataract and penetrating ocular injury caused by blank cartridge

  3. 46 CFR 56.25-7 - Blanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... requirements of 104.5.3 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2). ... 46 Shipping 2 2011-10-01 2011-10-01 false Blanks. 56.25-7 Section 56.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pipe...

  4. 46 CFR 56.25-7 - Blanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... requirements of 104.5.3 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2). ... 46 Shipping 2 2013-10-01 2013-10-01 false Blanks. 56.25-7 Section 56.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pipe...

  5. 46 CFR 56.25-7 - Blanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... requirements of 104.5.3 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2). ... 46 Shipping 2 2014-10-01 2014-10-01 false Blanks. 56.25-7 Section 56.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pipe...

  6. 46 CFR 56.25-7 - Blanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... requirements of 104.5.3 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2). ... 46 Shipping 2 2012-10-01 2012-10-01 false Blanks. 56.25-7 Section 56.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pipe...

  7. 46 CFR 56.25-7 - Blanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Blanks. 56.25-7 Section 56.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pipe Flanges... requirements of 104.5.3 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2)....

  8. GPS/acoustic seafloor geodetic observation in the subduction zone around Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Sato, M.; Kido, M.; Tadokoro, K.; Fujimoto, H.

    2013-12-01

    GPS/acoustic (GPS/A) seafloor geodetic observation is a precise seafloor positioning technique and has made great progress over the last decade. GPS/A observation determines the positions of acoustic mirror-type transponders installed on the seafloor by combining the two techniques of kinematic GPS and acoustic ranging through a ship or a buoy. The original idea was proposed by Prof. Spiess at the Scripps Institution of Oceanography in 1985 and its protocol and hardware were made through research and development of his group by the mid-1990s. In Japan, three research groups, Japan Coast Guard, Tohoku University and Nagoya University, began to develop the GPS/A observation system in the 1990s, established GPS/A observation sites mainly on the landward slope of the plate boundaries around Japan, such as the Japan Trench and the Nankai trough, and have been carrying out campaign observations since around 2000. The primary purpose of our observation is to detect and monitor the crustal deformation caused by the subduction of the oceanic plate near the plate boundary where large interplate earthquakes have repeatedly occurred. By continuous efforts for over a decade, the positioning precision has achieved a few centimeters and seafloor movements such as intraplate deformation and coseismic displacements have been successfully detected. In particular, regarding the 2011 Tohoku-oki earthquake (M9.0), which occurred off northeastern Japan on March 11, 2011, east-southeastward coseismic displacements of up to 31 m were observed above the focal region, especially close to the epicenter, while those detected by on-land GPS measurements over 100 km away from the epicenter, conducted by the Geospatial Information Authority of Japan, was up to 5.3 m. Coseismic slip models on the plate boundary estimated from not only GPS data but also GPS/A results indicate that a huge slip of more than 50 m generated close to the trench axis, which was much larger than that estimated from GPS

  9. Light comfort zones of mesopelagic acoustic scattering layers in two contrasting optical environments

    NASA Astrophysics Data System (ADS)

    Røstad, Anders; Kaartvedt, Stein; Aksnes, Dag L.

    2016-07-01

    We make a comparison of the mesopelagic sound scattering layers (SLs) in two contrasting optical environments; the clear Red Sea and in murkier coastal waters of Norway (Masfjorden). The depth distributions of the SL in Masfjorden are shallower and narrower than those of the Red Sea. This difference in depth distribution is consistent with the hypothesis that the organisms of the SL distribute according to similar light comfort zones (LCZ) in the two environments. Our study suggest that surface and underwater light measurements ranging more than 10 orders of magnitude is required to assess the controlling effects of light on SL structure and dynamics.

  10. Mask blank particle inspection in vacuum environments

    NASA Astrophysics Data System (ADS)

    Sekine, Akihiko; Nagahama, Hiroyuki; Tojo, Toru; Akeno, Kiminobu; Hirano, Ryoichi

    2002-10-01

    The mask blank surface inspection system for the electron beam mask writing system (EB mask writer) has developed. This system, that has the small vacuum chamber attachable to EB mask writer, inspects a mask blank that is just before EB writing in vacuum environments. It can inspect whole area of the 230mm mask at 0.3micrometer sensitivity. It also can perform fast inspection by applying the original scanning algorithm for the laser beam. It has the wide detective range from 0.3 to 2.0 micrometers of particle size. It can distinguish sizes of particles in that range. The auto focus function is most important factor for maintaining the sensitivity.

  11. Zooplankton and micronekton biovolume at the Mid-Atlantic Ridge and Charlie-Gibbs Fracture Zone estimated by multi-frequency acoustic survey

    NASA Astrophysics Data System (ADS)

    Cox, Martin J.; Letessier, Tom B.; Brierley, Andrew S.

    2013-12-01

    To examine the potential influence of the Mid-Atlantic Ridge and Charlie-Gibbs Fracture Zone on zooplankton and micronekton biovolume in the upper 200 m of the water column, multi-frequency acoustic data (18, 38, 70, 120 and 200 kHz) were acquired at four study sites from the RRS James Cook using hull-mounted scientific echosounders. Multi-frequency inversion techniques were employed to classify each 20 m depth×500 m along-track region of the water column to a zooplankton or micronekton acoustic scatterering class, such as copepod or euphausiid, and to estimate biovolume. We found a highly significant north-south (across fracture zone) difference in areal biovolume (p-value=0.01) but no significant east-west (across ridge) difference (p-value=0.07). Areal biovolume at all sites was dominated by the acoustic scatter class ‘euphausiid’, with higher biovolumes occurring in the southern stations. Our acoustic observations suggest the existence of different pelagic communities to the north and south of the SPF, with the southern community having a greater proportion of fish.

  12. The morphology and structure of the Hannibal Bank fisheries management zone, Pacific Panama using acoustic seabed mapping.

    PubMed

    Cunningham, Sarah; Guzman, Hector M; Bates, Richard

    2013-12-01

    The Hannibal Bank sits within the Coiba UNESCO World Heritage Site in Pacific Panama and is also a fisheries management zone. Despite the protected status of the area and the importance of the Bank for commercial fish species such as snapper and tuna, the seamount has received no detailed survey except some collection of organisms. This study mapped the major topographic features and complexity of the Hannibal Bank seamount using acoustic remote sensing. A survey area of around 125 km2 was defined using existing charts and side-scan sonar data were collected during July 2008. A bathymetric output was imported to ArcGIS where a digital bathymetric model and slope map were created. The Benthic Terrain Modeler (BTM) extension for ArcGIS was used to calculate bathymetric position index and rugosity, and used to create a map of zones representing the various seabed morphology zones. The Hannibal bank is an elongated, triangular guyot (flat topped seamount), which ranges in depth from 53m to 416m, covers an area of 76 km2 and is 14.4 km long and 7.1 km wide. Hannibal bank is composed of steep slopes, more gentle slopes, top of the seamount, crests (elevated ridges at the top of the pinnacles), rugose areas (on crests, top of seamount and slope), gullies and pinnacles. The bank is asymmetric in nature with the Northerly side having a relatively gentle slope with gullies across the surface compared to the SouthWest side which is far steeper and more rugose. There are two pinnacles to the North and South East of the bank that range in depth from 180 to 333 m. Rocky substrate makes up 22.6 km2 of the bank and sediment 37.8 km2. The bank and its steeply sided, rugose areas and pinnacles provide upright structures which can disrupt and topographically enhance currents, increasing productivity. The rugose areas of Hannibal Bank should be primary targets for further research efforts as they may contain corals and their rugosity indicates that these should be some of the highest

  13. Seeing Red and Shooting Blanks: Study of Red Quasars and Blank X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Elvis, Martin

    2005-01-01

    A major paper describing the technique and providing a list of 'blanks' was published in the Astrophysical Journal (abstract below). The results revealed a fascinating trove of novel X-ray sources: high redshift clusters of galaxies found efficiently; X-ray absorbed, optically clean AGN, which may be the bright prototypes of Chandra Deep Survey sources; and several with a still unknown nature. Recent XMM-Newton results confirm the existence of this class of X-ray source with much refined positions. During the first year of this project we have made a major discovery. The second 'blanks' X-ray source observed with Chandra was found to be extended. Using Chandra data and ground-based R and K band imaging we estimated this to be a high redshift cluster of galaxies with z approx. 0.85. Spectroscopy agrees with this estimate (z=0.89). This success shows that our method of hunting down 'blank' field X-ray sources is a highly efficient method of finding the otherwise elusive high redshift clusters. With extensive follow-up we should be able to use 'blanks' to make cosmological tests. The paper is now in press in the Astrophysical Journal (abstract below.) The other Chandra source is point-like, showing that there are a variety of 'blank' source types. Other follow-up observations with XMM-Newton, and (newly approved in cycle 2) with Chandra are eagerly awaited. A follow-up paper uses a large amount of supporting data for the remaining blanks. A combination of ROSAT, Chandra and ground based data convincingly identified one of the blanks as a Ultra-luminous X-ray source (ULX) in a spiral galaxy (abstract below). This program resulted in 3 refereed papers in major journals, 4 conference proceedings and a significant fraction of the PhD thesis of Dr. Ilaria Cagnoni. Details of the publications are given.

  14. Numerical simulation of fine blanking process using fully coupled advanced constitutive equations with ductile damage

    NASA Astrophysics Data System (ADS)

    Labergere, C.; Saanouni, K.; Benafia, S.; Galmiche, J.; Sulaiman, H.

    2013-05-01

    This paper presents the modelling and adaptive numerical simulation of the fine blanking process. Thermodynamically-consistent constitutive equations, strongly coupled with ductile damage, together with specific boundary conditions (particular command of forces on blank holder and counterpunch) are presented. This model is implemented into ABAQUS/EXPLICIT using the Vumat user subroutine and connected with an adaptive 2D remeshing procedure. The different material parameters are identified for the steel S600MC using experimental tensile tests conducted until the final fracture. A parametric study aiming to examine the sensitivity of the process parameters (die radius, clearance die/punch) to the punch force and fracture surfaces topology (convex zone, sheared zone, fracture zone and the burr).

  15. Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation

    NASA Astrophysics Data System (ADS)

    Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred

    2005-08-01

    In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.

  16. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles

    USGS Publications Warehouse

    Lee, T.-G.; Hein, J.R.; Lee, Kenneth; Moon, J.-W.; Ko, Y.-T.

    2005-01-01

    A detailed analysis of chirp (3-7 kHz) subbottom profiles and bathymetry was performed on data collected from seamounts near the Ogasawara Fracture Zone (OFZ) in the western Pacific. The OFZ, which is a 150 km wide rift zone showing 600 km of right-lateral movement in a NW-SE direction, is unique among the fracture zones of the Pacific in that it includes many old seamounts (e.g., Magellan Seamounts and seamounts on Dutton Ridge). Sub-seafloor acoustic echoes on the seamounts are classified into nine specific types based on the nature and continuity of the echoes, subbottom structure, and morphology of the seafloor: (1) distinct echoes (types I-1, I-2, I-3), (2) indistinct echoes (types II-1, II-2, II-3), and (3) hyperbolic echoes (types III-1, III-2, III-3). Type I-2 pelagic sediments, characterized by thin and intermittent coverage, were probably deposited in topographically sheltered areas when bottom currents were strong, whereas type I-1 pelagic sediments accumulated during continuous and widespread sedimentation. Development of seamount flank rift zones in the OFZ may have been influenced by preexisting structures in the transform fracture zone at the time of volcanism, whereas those on Ita Mai Tai seamount in the Pigafetta Basin originated solely by edifice-building processes. Flank rift zones that formed by dike intrusions and eruptions played an important role in mass wasting. Mass-wasting processes included block faulting or block slides around the summit margin, sliding/slumping, debris flows, and turbidites, which may have been triggered by faulting, volcanism, dike injection, and weathering during various stages in the evolution of the seamounts. ?? 2005 Elsevier Ltd. All rights reserved.

  17. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Gook; Hein, James R.; Lee, Kiehwa; Moon, Jai-Woon; Ko, Young-Tak

    2005-10-01

    A detailed analysis of chirp (3-7 kHz) subbottom profiles and bathymetry was performed on data collected from seamounts near the Ogasawara Fracture Zone (OFZ) in the western Pacific. The OFZ, which is a 150 km wide rift zone showing 600 km of right-lateral movement in a NW-SE direction, is unique among the fracture zones of the Pacific in that it includes many old seamounts (e.g., Magellan Seamounts and seamounts on Dutton Ridge). Sub-seafloor acoustic echoes on the seamounts are classified into nine specific types based on the nature and continuity of the echoes, subbottom structure, and morphology of the seafloor: (1) distinct echoes (types I-1, I-2, I-3), (2) indistinct echoes (types II-1, II-2, II-3), and (3) hyperbolic echoes (types III-1, III-2, III-3). Type I-2 pelagic sediments, characterized by thin and intermittent coverage, were probably deposited in topographically sheltered areas when bottom currents were strong, whereas type I-1 pelagic sediments accumulated during continuous and widespread sedimentation. Development of seamount flank rift zones in the OFZ may have been influenced by preexisting structures in the transform fracture zone at the time of volcanism, whereas those on Ita Mai Tai seamount in the Pigafetta Basin originated solely by edifice-building processes. Flank rift zones that formed by dike intrusions and eruptions played an important role in mass wasting. Mass-wasting processes included block faulting or block slides around the summit margin, sliding/slumping, debris flows, and turbidites, which may have been triggered by faulting, volcanism, dike injection, and weathering during various stages in the evolution of the seamounts.

  18. Novel acid-free cleaning process for mask blanks

    NASA Astrophysics Data System (ADS)

    Koster, Harald; Branz, Karsten; Dietze, Uwe; Dress, Peter; Hess, Guenter

    2005-06-01

    Knowledge of particle removal during the mask cleaning was transferred to the blank cleaning and vice versa. The experiments are focusing on a variety of blank substrates (glass substrates, chrome on glass blanks and phase shift mask blanks substrates). The principal equipment concept and the process optimization strategies for cleaning of those different kinds of blank substrates are presented. With a fixed process flow, including UV-treatment, Fulljet and MegaSonic treatment, Rinse and Dry, process parameters are varied to define the optimum process conditions. Criteria for an optimum process are particle removal efficiency in general and optical integrity for phase shift mask blanks in particular. The particle removal efficiency for all investigated blank types is within a range of 96-100%. Especially for Ta/SiO2 phase shift mask blanks we demonstrate that during the cleaning process the optical properties only change by 0.07° phase loss and 0.01% transmission loss per cleaning cycle, respectively.

  19. Forming of tailor-welded blanks

    NASA Astrophysics Data System (ADS)

    Saunders, F. I.; Wagoner, R. H.

    1996-09-01

    Beginning in 1992, tailor-welded blanks (TWBs) were used in the United States automotive industry to consolidate parts, reduce tolerances, save weight, and increase stiffness. This business is expanding rapidly; more than 500 million of annual TWB sales are expected by 1997. Welds in steel are generally stronger than the base material, such that weld failure by preferential localization is not a critical issue. However, the forming characteristics of TWBs must be understood in order to design and produce high-quality parts with reasonable production and tooling costs. Three formability issues were addressed in this study: the intrinsic ductility and relative formability of three weld types (CO2 and Nd:YAG laser welds and mash-seam welds with and without mechanical postweld processing); the value and correspondence of mechanical tests to each other and to press performance; and the prediction of the forming behavior using the finite element method (FEM). Two failure modes for TWBs were identified. While the local ductility of welds can differ greatly, little difference in press formability was measured among the weld types. More important than weld ductility are the changed deformation patterns which depend on the differential strength but depend little on local weld prop-erties. Finite element method (FEM) simulations of dome tests and scale fender-forming operations show good agreement with measurements, as long as boundary conditions are known accurately. The importance of weld-line displacement is discussed and several simulations are compared with ex-periments.

  20. Blank fire configuration for automatic pistol

    DOEpatents

    Teague, Tommy L.

    1990-01-01

    A pistol configured to fire blank cartridges includes a modified barrel with a breech portion connected to an aligned inner sleeve. Around the inner sleeve, there is disposed an outer sleeve having a vent therein through which the cartridge discharges. The breech portion is connected to a barrel anchor to move backward in a slight arc when the pistol is fired. A spring retention rod projects from the barrel anchor and receives a shortened recoil spring therearound which recoil spring has one end abutting a stop on the barrel anchor and the other end in abutment with the end of a spring retaining cup. The spring retaining cup is engaged by a flange projecting from a slide so that when the pistol is fired, the slide moves rearwardly against the compression of the spring to eject the spent cartridge and then moves forwardly under the urging of the spring to load a fresh cartridge into the breech portion. The spring then returns all of the slidable elements to their initial position so that the pistol may again be fired.

  1. Blank fire configuration for automatic pistol

    SciTech Connect

    Teague, T.L.

    1990-03-13

    This patent describes a pistol configured to fire blank cartridges that includes a modified barrel with a breech portion connected to an aligned inner sleeve. Around the inner sleeve, there is disposed an outer sleeve having a vent therein through which the cartridge discharges. The breech portion is connected to a barrel anchor to move backward in a slight arc when the pistol is fired. A spring retention rod projects from the barrel anchor and receives a shortened recoil spring therearound which recoil spring has one end abutting a stop on the barrel anchor and the other end in abutment with the end of a spring retaining cup. The spring retaining cup is engaged by a flange projecting from a slide so that when the pistol is fired, the slide moves rearwardly against the compression of the spring to eject the spent cartridge and then moves forwardly under the urging of the spring to load a fresh cartridge into the breech portion. The spring then returns all of the slidable elements to their initial position so that the pistol may again be fired.

  2. Blank fire configuration for automatic pistol

    SciTech Connect

    Teague, T.L.

    1988-08-31

    A pistol configured to fire blank cartridges includes a modified barrel with a breach portion connected to an aligned inner sleeve. Around the inner sleeve, there is disposed an outer sleeve having a vent therein through which the cartridge discharges. The breach portion is connected to a barrel anchor to move backward in a slight arc when the pistol is fired. A spring retaining rod projects from the barrel anchor and receives a coiled recoil spring therearound which recoil spring has one end abutting a stop on the barrel anchor and the other end in abutment with the end of a spring retaining cup. The spring retaining cup is engaged by a flange projecting from the slider so that when the pistol is fired, the slider moves rearwardly against the compression of the spring to eject the spent cartridge and then moves forwardly under the urging of the spring to load a fresh cartridge into the breach portion. The spring then returns all of the slidable elements to their initial position so that the pistol may again be fired. 4 figs.

  3. Failure Prediction in Fine Blanking Process with Stress Limit Model

    NASA Astrophysics Data System (ADS)

    Tong, Longchang; Manopulo, Niko; Hora, Pavel

    2010-06-01

    Extremely small blanking clearance and nearly sharp edges of blanking tool are the characteristics of fine blanking that produces near net shape parts. The extreme forming conditions make the failure prediction for fine blanking more difficult than for ordinary forming processes. Stress Limit Criterion (SLC) is adopted in this work to perform the failure prediction of 3D fine blanking process. In comparison with the stress triaxiality diagram, SLC is not sensitively affected by complex nonlinear deformation paths and can perform the task as well. However, the parameters that support the model have to be obtained with combination of dedicatedly designed experiments and numerical simulation. The FEM simulation must also be able to provide stable and reliable results.

  4. Effectiveness of imaging seismic attenuation using visco-acoustic full waveform tomography: Examples from the Seattle Fault Zone and Northern Perth Basin

    NASA Astrophysics Data System (ADS)

    Takam Takougang, E.; Calvert, A. J.

    2012-12-01

    Attenuation characterizes the decrease in amplitude of seismic waves as they propagate away from the source. A seismic wave propagating in the subsurface will suffer from two types of attenuation: Intrinsic attenuation and scattering attenuation. Scattering attenuation is due to small scale heterogeneity in the subsurface, whereas intrinsic attenuation arises from inelastic rock properties. Intrinsic attenuation can provide key information about the subsurface, which can be of value to the mining as well as the oil and gas industry. However, accurate imaging of intrinsic seismic attenuation using visco-acoustic full-waveform tomography is not straight forward. Attenuation models recovered by visco-acoustic waveform tomography are often contain contaminated by scattering effects as well as elastic mode conversion artefacts due to the inability of the visco-acoustic approximation to perfectly predict the amplitude of visco-elastic field data. The effect of scattering can be reduced if a velocity model with a high resolution is used. This usually necessitates a two-step inversion approach consisting of first recovering the velocity model and later, the attenuation model. In this study, we present a specific preconditioning of the data based on matching the amplitude variation with offset (AVO) of the field and modelled visco-acoustic data, and a specific inversion approach based on a sequential recovering of the seismic velocity and attenuation models using the visco-acoustic approximation. Our purpose is to improve the quality of the recovered attenuation model by decoupling the reconstruction of velocity and attenuation, thus reducing artefacts. We apply the method to two different areas: The Seattle Fault Zone in Puget Sound in the northwestern USA, using marine seismic reflection data from the Seismic Hazards investigation in Puget Sound (SHIPS) survey collected in 1998, and the Allanooka area within the Northern Perth Basin using high resolution seismic

  5. Formability Analysis of Diode-Laser-Welded Tailored Blanks of Advanced High-Strength Steel Sheets

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Baltazar Hernandez, V. H.; Kuntz, M. L.; Zhou, Y.

    2009-08-01

    Currently, advances due to tailored blanking can be enhanced by the development of new grades of advanced high-strength steels (HSSs), for the further weight reduction and structural improvement of automotive components. In the present work, diode laser welds of three different grades of advanced high-strength dual-phase (DP) steel sheets (with tensile strengths of 980, 800, and 450 MPa) to high-strength low-alloy (HSLA) material were fabricated by applying the proper welding parameters. Formability in terms of Hecker’s limiting dome height (LDH), the strain distribution on the hemispherical dome surface, the weld line movement during deformation, and the load-bearing capacity during the stretch forming of these different laser-welded blanks were compared. Finite element (FE) analysis of the LDH tests of both the parent metals and laser-welded blanks was done using the commercially available software package LS-DYNA (Livermore Software Technology Corporation, Livermore, CA); the results compared well with the experimental data. It was also found that the LDH was not affected by the soft zone or weld zone properties; it decreased, however, with an increase in a nondimensional parameter, the “strength ratio” (SR). The weld line movement during stretch forming is an indication of nonuniform deformation resulting in a decrease in the LDH. In all the dissimilar weldments, fracture took place on the HSLA side, but the fracture location shifted to near the weld line (at the pole) in tailor-welded blanks (TWBs) of a higher strength ratio.

  6. 2. D Street facade and rear (east) blank wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. D Street facade and rear (east) blank wall of parking garage. Farther east is 408 8th Street (National Art And Frame Company). - PMI Parking Garage, 403-407 Ninth Street, Northwest, Washington, District of Columbia, DC

  7. 12. BUILDING 227. BLANK AMMUNITION LOADING PLANT. ELEVATIONS AND SECTIONS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. BUILDING 227. BLANK AMMUNITION LOADING PLANT. ELEVATIONS AND SECTIONS. November 1, 1940 - Frankford Arsenal, Building No. 227, South side of Hagner Road between Ripley & Mellon Streets, Philadelphia, Philadelphia County, PA

  8. Determinants of attentive blank stares. An EFRP study.

    PubMed

    Fudali-Czyż, Agnieszka; Francuz, Piotr; Augustynowicz, Paweł

    2014-10-01

    Attentive blank stares mean a failure to notice changes in a visual scene, despite looking at the area of change (Caplovitz, Fendrich, & Hughes, 2008). In this research project we have shown that people differ in terms of attentive blank stare incidences. Novices tend to fail to notice changes in the target area more often than experts. This effect is greater in persons with low visual working memory capacity (VWMC) than with high VWMC. In addition, in a group of novices with low VWMC, attentive blank stares are more frequent compared to a group with high VWMC. Attentive blank stares did not disappear even after the high VWMC group were given expertise training. With the method of eye-fixation-related potentials (EFRP) we analyzed the amplitude of lambda response, which may reflect the state of the attentional system, during encoding information about a change, prior to a decision whether a change has occurred or not. We demonstrate that the cases of attentive blank stares are accompanied by significantly lower amplitude of the lambda response compared with cases involving change detection. In addition, we discovered greater lambda responses in a group with expertise who noticed the change than in novices. The EFRP record coming from occipital electrodes in the 80-180ms window function was marked by left-sided asymmetry in the cases of change detection and by right-sided asymmetry in the cases of attentive blank stares. PMID:25087155

  9. Optical detection of folded mini-zone-edge coherent acoustic modes in a doped GaAs/AlAs superlattice

    NASA Astrophysics Data System (ADS)

    Beardsley, R.; Akimov, A. V.; Glavin, B. A.; Maryam, W.; Henini, M.; Kent, A. J.

    2010-07-01

    A coherent phonon mode with frequency corresponding to the first mini Brillouin-zone edge stop gap is observed in ultrafast pump-probe measurements on a doped semiconductor superlattice structure. It is proposed that the optical detection of the mode is facilitated by interactions with the free carriers present in the superlattice.

  10. Inferring the acoustic dead-zone volume by split-beam echo sounder with narrow-beam transducer on a noninertial platform.

    PubMed

    Patel, Ruben; Pedersen, Geir; Ona, Egil

    2009-02-01

    Acoustic measurement of near-bottom fish with a directional transducer is generally problematical because the powerful bottom echo interferes with weaker echoes from fish within the main lobe but at greater ranges than that of the bottom. The volume that is obscured is called the dead zone. This has already been estimated for the special case of a flat horizontal bottom when observed by an echo sounder with a stable vertical transducer beam [Ona, E., and Mitson, R. B. (1996). ICES J. Mar. Sci. 53, 677-690]. The more general case of observation by a split-beam echo sounder with a transducer mounted on a noninertial platform is addressed here. This exploits the capability of a split-beam echo sounder to measure the bottom slope relative to the beam axis and thence to allow the dead-zone volume over a flat but sloping bottom to be estimated analytically. The method is established for the Simrad EK60 scientific echo sounder, with split-beam transducers operating at 18, 38, 70, 120, and 200 kHz. It is validated by comparing their estimates of seafloor slope near the Lofoten Islands, N67-70, with simultaneous measurements made by two hydrographic multibeam sonars, the Simrad EM100295 kHz and EM30030 kHz systems working in tandem. PMID:19206847

  11. Seeing Red and Shooting Blanks: A Study of Red Quasars And Blank Field X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Elvis, Martin

    2003-01-01

    The primary source catalog of 'blanks' (bright ROSAT sources with no optical counterparts) has been published in the Astrophysical Journal. The first follow-up paper has also been published. This paper used a combination of ROSAT, Chandra and ground based data to convincingly identify one of the blanks as a Ultra-luminous X-ray source (ULX) in a spiral galaxy. A paper detailing optical and near-IR imaging observations of the remaining sources is underway.

  12. Velocity Structure of the Alpine Fault Zone, New Zealand: Laboratory and Log-Based Fault Rock Acoustic Properties at Elevated Pressures

    NASA Astrophysics Data System (ADS)

    Jeppson, T.; Graham, J. L., II; Tobin, H. J.; Paris Cavailhes, J.; Celerier, B. P.; Doan, M. L.; Nitsch, O.; Massiot, C.

    2015-12-01

    The elastic properties of fault zone rocks at seismogenic depth play a key role in rupture nucleation, propagation, and damage associated with fault slip. In order to understand the seismic hazard posed by a fault we need to both measure these properties and understand how they govern that particular fault's behavior. The Alpine Fault is the principal component of the active transpressional plate boundary through the South Island of New Zealand. Rapid exhumation along the fault provides an opportunity to study near-surface rocks that have experienced similar histories to those currently deforming at mid-crustal depths. In this study, we examine the acoustic properties of the Alpine Fault in Deep Fault Drilling Project (DFDP)-1 drill core samples and borehole logs from the shallow fault zone, DFDP-2 borehole logs from the hanging wall, and outcrop samples from a number of field localities along the central Alpine Fault. P- and S-wave velocities were measured at ultrasonic frequencies on saturated 2.5 cm-diameter core plugs taken from DFDP-1 core and outcrops. Sampling focused on mylonites, cataclasites, and fault gouge from both the hanging and foot walls of the fault in order to provide a 1-D seismic velocity transect across the entire fault zone. Velocities were measured over a range of effective pressures between 1 and 68 MPa to determine the variation in acoustic properties with depth and pore pressure. When possible, samples were cut in three orthogonal directions and S-waves were measured in two polarization directions on all samples to constrain velocity anisotropy. XRD and petrographic characterization were used to examine how fault-related alteration and deformation change the composition and texture of the rock, and to elucidate how these changes affect the measured velocities. The ultrasonic velocities were compared to sonic logs from DFDP to examine the potential effects of frequency dispersion, brittle deformation, and temperature on the measured

  13. Experimental and Numerical Investigations of Constraint Effect on Deformation Behavior of Tailor-Welded Blanks

    NASA Astrophysics Data System (ADS)

    Li, Yanhua; Lin, Jianping

    2015-08-01

    Tailor-welded blanks (TWBs) have been considered as a productive sheet forming method in automotive industries. However, formability of TWBs is reduced due to different properties or thicknesses of the blanks and is a challenge for manufacturing designers. The plastic capacity of TWBs is decreased even when the material and thickness are the same. The constraint effect of the laser weld (including weld and heat-affected zone) material in the forming process of similar TWBs is a key problem to be solved in the research, development and application of thin-sheet TWBs. In this paper, uniaxial tensile tests with full-field strain measurement by digital image correlation and Erichsen tests are performed to investigate the constraint effect on deformation behavior and explore the mechanism of decreasing formability of similar TWBs. In addition, finite element models are conducted under ABAQUS code to further reveal the phenomenal behavior of the constraint effect. The results of the base material and welded blanks are compared for characterizing the differences. Furthermore, in order to better understand this mechanism, theoretical and numerical investigations are employed and compared to interpret the constraint effect of laser weld on the deformation behavior of TWBs. An index is proposed to quantify the constraint effect. Results show that the constraint effect of laser weld appears in both stretch forming and drawing of TWBs. Strain paths are approaching the plane strain condition as compared to the monolithic blank due to the constraint effect. Constraint effect is a major factor affecting the formability of TWBs when the failure occurs away from the weld seam.

  14. Seeing Red and Shooting Blanks: A Study of Red Quasars and Blank Field X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    We have identified a population of 'blank field sources' (or 'blanks') among the ROSAT (Roentgen Satellite) bright unidentified X-ray sources with faint optical counterparts. The extreme X-ray over optical flux ratio of blank field sources is not compatible with the main classes of X-ray emitters except for extreme BL Lacertae objects at fx/fv is equal to or less than 35. From the analysis of ROSAT archival data we found evidence for only three sources, out of 16, needing absorption in excess of the Galactic value and no indication of variability. We also found evidence for an extended nature for only one of the five blanks with a serendipitous HRI (High Resolution Imager) detection; this source (1WGA J1226.9+3332) was confirmed as a z=0.89 cluster of galaxies. Palomar images reveal the presence of a red (O - E is equal to or greater than 2) counterpart in the X-ray error circle for six blanks. The identification process brought to the discovery of another high z cluster of galaxies, one (possibly extreme) BL Lac and two apparently normal type 1 AGNs (Active Galactic Nuclei). These AGNs, together with four more AGN-like objects seem to form a well defined group: they present type 1 X-ray spectra but red Palomar counterparts. We discuss the possible explanations for the discrepancy between the X-ray and optical data, among which: a suppressed big blue bump emission, an extreme dust to gas (approximately 40 - 60 the Galactic ratio) ratio value and a high redshift (z is greater than or equal to 3.5) QSO (Quasi-Stellar Object) nature. These AGN-like blanks seem to be the bright (and easier to study) analogs of the sources which are being found in deep Chandra observations. Five more blanks have a still an unknown nature.

  15. NHEXAS PHASE I REGION 5 STUDY--QA ANALYTICAL RESULTS FOR METALS IN BLANKS

    EPA Science Inventory

    This data set includes analytical results for measurements of metals in 205 blank samples and for particles in 64 blank samples. Measurements were made for up to 12 metals in blank samples of air, dust, soil, water, food and beverages, blood, hair, and urine. Blank samples were u...

  16. NHEXAS PHASE I MARYLAND STUDY--QA ANALYTICAL RESULTS FOR METALS IN BLANKS

    EPA Science Inventory

    The Metals in Blanks data set contains the analytical results of measurements of up to 11 metals in 115 blank samples from 58 households. Measurements were made in blank samples of indoor and outdoor air, drinking water, beverages, urine, and blood. Blank samples were used to a...

  17. Structural analysis of a new type lightweight optical mirror blank

    NASA Astrophysics Data System (ADS)

    Li, Yeping; Cui, Xiangqun; Hu, Ningsheng

    2010-07-01

    To reduce the cost and increase the feasibility of the astronomical optical telescope, modern large optical telescope is normally required to be as light as possible. Therefore lightweight mirror is always pursued by large telescopes development. In this paper, a new type lightweight optical mirror blank, the evaluation of its technical feasibility and the reduction of cost are introduced. For the purpose of applying active optics with this lightweight mirror blank, the structural analysis, thermal analysis and optical performance simulation by the finite element method have been presented.

  18. Steps toward 8m honeycomb mirror blanks. III - 1.8m honeycomb sandwich blanks cast from borosilicate glass

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Hill, J. M.

    1984-01-01

    The design, fabrication techniques, and equipment used for producing two 1.8-m honeycomb sandwich blanks, eventually leading to production of 8-m blanks, are reported. The procedure employed 85 cast hexagonal tiles at the bottom section, affixed against flotation by SiC bolts. The two plano concave mirrors are 1.83 m thick, weight 500 kg, and are each designed for 19 supports of astatic-lever type. Both blanks are of high quality and with an adequately low bubble content; one is to be figured to high-precision 0.25-arcsecond images, and is to be tested on the Multiple Mirror Telescope. Construction of a spin-casting facility based on the same principle is being planned for test-fabricating spin-cast mirrors on a smaller scale.

  19. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  20. Magnetron sputtering for the production of EUV mask blanks

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick; Ngai, Tat; Karumuri, Anil; Yum, Jung; Lee, Hojune; Gilmer, David; Vo, Tuan; Goodwin, Frank

    2015-03-01

    Ion Beam Deposition (IBD) has been the primary technique used to deposit EUV mask blanks since 1995 when it was discovered it could produce multilayers with few defects. Since that time the IBD technique has been extensively studied and improved and is finally approaching usable defectivities. But in the intervening years, the defectivity of magnetron sputtering has been greatly improved. This paper evaluates the suitability of a modern magnetron tool to produce EUV mask blanks and the ability to support HVM production. In particular we show that the reflectivity and uniformity of these tools are superior to current generation IBD tools, and that the magnetron tools can produce EUV films with defect densities comparable to recent best IBD tool performance. Magnetron tools also offer many advantages in manufacturability and tool throughput; however, challenges remain, including transitioning the magnetron tools from the wafer to mask formats. While work continues on quantifying the capability of magnetron sputtering to meet the mask blank demands of the industry, for the most part the remaining challenges do not require any fundamental improvements to existing technology. Based on the recent results and the data presented in this paper there is a clear indication that magnetron deposition should be considered for the future of EUV mask blank production.

  1. The Concurrent Validity of the Correctional Officers' Interest Blank.

    ERIC Educational Resources Information Center

    Sevy, Bruce A.

    1988-01-01

    Available data yields an estimated validity of .27 for the Corrections Officer Interest Blank (COIB) as a predictor of job performance of corrections officers. The COIB is only weakly related to the job performance of juvenile counselors and has no relationship to the performance of probation officers. (JOW)

  2. [Dangerousness of blank fright guns and salute rifles].

    PubMed

    Schöning, R; Krause, D; Lichtenberg, W; Schmidt, U; Effenberger, O

    1997-01-01

    According to the German law salute-fire guns altered weapons with a barrel length of more than 60 cm. They have inside the barrel special constructions, which are guiding the gunshot residues under high pressure to the muzzle. Therefore they own an high potential of injury, like blank-cartridge guns with short barrels. PMID:9313063

  3. [Morphologic detection of Bacillus cereus in blank cartridges].

    PubMed

    Rothschild, M A; Mülling, C

    1998-01-01

    Wound infections after gunshot wounds from live ammunition can produce serious complications. It is well known that projectiles per se are neither sterile nor does their firing cause sterilization. The germs on the surface of a projectile enter the body together with the projectile and are thus introduced into the wound together with skin bacteria. However it is less known that wound infections can occur in wounds caused by the gas jet from blank ammunition (mainly from shots at very close range). In such ammunition without a projectile, the propellant particles are usually contaminated with bacteria which find their way into the wound together with skin germs. In previous investigations, we have microbiologically detected the species Bacillus cereus in the propellant of blank cartridges. In the present study, we have applied scanning electron microscopic methods to find out which areas of the blank cartridges are colonized by these bacteria. For this purpose 20 blank cartridges, each from 4 different manufacturers, were electronmicroscopically examined. B. cereus only found on the surface of intact nitrocellulose particles but not in the interior of broken prepared propellant particles. Bacterial structures were not morphologically identified on black powder particles. PMID:9701752

  4. Grammatical Categories in Robert Frost's Blank Verse: A Quantitative Analysis.

    ERIC Educational Resources Information Center

    Lyford, Roland Hazen

    Structural linguistic techniques were utilized to categorize the grammatical elements employed by Robert Frost in 46 blank-verse poems. Nineteen main grammatical categories and 26 verb sub-categories based on distinctive selection criteria were devised to examine the range and distribution of Frost's grammatical patterns. Five control poems by E.…

  5. A numerical study on intended and unintended failure mechanisms in blanking of sandwich plates

    NASA Astrophysics Data System (ADS)

    Chen, L.; Soyarslan, C.; Tekkaya, A. E.

    2013-05-01

    Metal-polymer-metal sandwich plates are widely used in the automotive and aerospace industry. As for different applications the sandwich plates can be divided into two types. They are sound-damping laminates with a polymer core much thinner than the metallic faces and low-density laminates with a core thickness of approximately 40-60% of the total thickness. One frequent process step in production of parts made of these plates is the blanking process whose hereditary effects draw the limits of further forming stages or service performance and life; e.g. the failure of the adhesive in the thermoplastic polymer interface affects the sound-damping efficiency intensively. With this motivation, we present FE simulation of an axi-symmetric blanking process of steel/polyethylene/steel sound-damping laminates. The mechanical behavior of the metallic layers was characterized by finite strain rate independent elasto-plasticity where progressive material deterioration and fracture are given account for using continuum damage mechanics (CDM). This material model is made accessible via implementations as VUMAT subroutines for ABAQUS/Explicit. Possible failure of the thermoplastic polymer which may lead to delamination of the metallic layers is modeled using ABAQUS built-in cohesive zone elements. The results show that existing intended and unintended failure modes, e.g. blanking of the metallic and thermoplastic polymer constituents as well as failure of polymer layer under shear and compression, can be effectively studied with the proposed framework for process enhancement. As a future work, a damage coupled nonlinear visco-elastic constitutive model will be devised for the simulation of the thermoplastic layer in low-density laminates.

  6. Production of EUV mask blanks with low killer defects

    NASA Astrophysics Data System (ADS)

    Antohe, Alin O.; Kearney, Patrick; Godwin, Milton; He, Long; John Kadaksham, Arun; Goodwin, Frank; Weaver, Al; Hayes, Alan; Trigg, Steve

    2014-04-01

    For full commercialization, extreme ultraviolet lithography (EUVL) technology requires the availability of EUV mask blanks that are free of defects. This remains one of the main impediments to the implementation of EUV at the 22 nm node and beyond. Consensus is building that a few small defects can be mitigated during mask patterning, but defects over 100 nm (SiO2 equivalent) in size are considered potential "killer" defects or defects large enough that the mask blank would not be usable. The current defect performance of the ion beam sputter deposition (IBD) tool will be discussed and the progress achieved to date in the reduction of large size defects will be summarized, including a description of the main sources of defects and their composition.

  7. Three cases of death caused by shots from blank cartridge.

    PubMed

    Zdravkovic, Miodrag; Milic, Miroslav; Stojanovic, Miroslav; Kostov, Milos

    2009-12-01

    The authors describe 3 cases of lethal injuries caused by 7.62 mm blank cartridge shots from military automatic rifle of domestic origin (AK 47, 7.62 mm). In 1 case, the cartridge was fired from a weapon that had been leaned on the head, with subsequent destruction of brain, and in other 2 cases, the weapon had been leaned on the chests, which led to destruction of heart parts. The injuries were caused by the action of striking wave of gunpowder explosion, the air blast type. The cases demonstrate that the gas pressure from the exploding propellant of blank cartridge is powerful enough to penetrate the thoracic wall and the skull. PMID:19901805

  8. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    SciTech Connect

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair; Szymanski, Robert; Luzanski, Tom; Marshall, Dustin

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearing compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.

  9. Stressed mirror polishing: finite element simulation of mirror blank deformation

    NASA Astrophysics Data System (ADS)

    Han, Yu; Lu, Lihong

    2014-08-01

    The theoretical principle of Stressed Mirror Polishing (SMP) is introduced, including the representation method of elastic deformation, the formulations of discrete bending moment and shearing force. A Finite Element Analysis (FEA) simulation model of has been set up by ANSYS software. The warping facility in this model is consisted of 36 aluminum alloy arms equally distribute on the ambit of mirror blank. Two forces are applied on each arm to provide bending moment and shearing force. Taking type 82 segment of Thirty Meters Telescope (TMT) primary mirror for example, a FEA simulation of mirror blank deformation has been performed. Simulation result shows that, the deformation error is 33μm PV. The theoretical deformation PV value is 205μm and the simulation deformation PV value is 172μm, converging rate reaches to 0.84 in a single warping cycle. After three or four warping cycles, the residue error may converge into 1μm.

  10. Modification methods of blank pistols in Turkey in 2006.

    PubMed

    Saribey, Aylin Yalçin; Tarimci, Celik

    2009-05-01

    This study describes the modification methods of blank cartridge firing pistols in Turkey. We have examined cases submitted to the Aydin Regional Criminal Laboratory of Turkey in 2006. In total, 95 modified pistols and 300 modified cartridges were examined. The blank cartridge firing pistols are guns which look similar to "real" pistols, however, there are blockages in their barrel in order to prevent the discharge of a bullet. However, as a result of simple modifications, these pistols can be easily converted into "real" firearms. Studied modification methods are removing the obstruction from the barrel, removing the partial obstruction from the barrel, sleeving a smaller diameter tube into the original barrel, using a replacement barrel, and rifling the original barrel. Special cartridges for these modified pistols are also produced. These modified pistols and cartridges were evaluated in respect of the converting methods. PMID:19302384

  11. Advances in Low-Defect Multilayers for EUVL Mask Blanks

    SciTech Connect

    Folta, J A; Davidson, J C; Larson, C C; Walton, C C; Kearney, P A

    2002-04-15

    Low-defect multilayer coatings are required to fabricate mask blanks for Extreme Ultraviolet Lithography (EUVL). The mask blanks consist of high reflectance E W multilayers on low thermal expansion substrates. A defect density of 0.0025 printable defects/cm{sup 2} for both the mask substrate and the multilayer is required to provide a mask blank yield of 60%. Current low defect multilayer coating technology allows repeated coating-added defect levels of 0.05/cm{sup 2} for defects greater than 90 nm polystyrene latex sphere (PSL) equivalent size for lots of 20 substrates. Extended clean operation of the coating system at levels below 0.08/cm{sup 2} for 3 months of operation has also been achieved. Two substrates with zero added defects in the quality area have been fabricated, providing an existence proof that ultra low defect coatings are possible. Increasing the ion source-to-target distance from 410 to 560 mm to reduce undesired coating of the ion source caused the defect density to increase to 0.2/cm{sup 2}. Deposition and etching diagnostic witness substrates and deposition pinhole cameras showed a much higher level of ion beam spillover (ions missing the sputter target) than expected. Future work will quantify beam spillover, and test designs to reduce spillover, if it is confirmed to be the cause of the increased defect level. The LDD system will also be upgraded to allow clean coating of standard format mask substrates. The upgrade will confirm that the low defect process developed on Si wafers is compatible with the standard mask format 152 mm square substrates, and will provide a clean supply of EUVL mask blanks needed to support development of EUVL mask patterning processes and clean mask handling technologies.

  12. The Problems of Mechanical Treatment of Leucosapphire Blanks

    NASA Astrophysics Data System (ADS)

    Petreshin, D. I.; Handozhko, A. V.; Protasev, V. B.; Fedonin, O. N.; Bizykina, N. A.; Shukin, D. Y.

    2016-04-01

    The problems of the technology of mechanical treatment of hard crystal materials, particularly leucosapphires and their possible solutions, are discovered. General questions of the project works, solutions of accurate basic tasks and secure fixation of the blanks or tooling backup of the work technology are considered. The results of experimental studies of the diamond tool dressing and their efficiency evolution results are provided. Some recommendations on the technological process development are worked out.

  13. Photomask blanks enhancement for the laser reticle writer

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hideo; Asakawa, Keishi; Yokoya, Yasunori

    1995-07-01

    The laser writer (CORE) has come to the front for advanced reticle fabrication so that photomask blanks enhancement is much more to be desired for the application. We have investigated novel techniques to bring out photomask blanks potential to expand process windows for the laser writer application, which included optimization of resist coating thickness by studying standing wave effect, optimization of soft-baking by studying resist behavior to soft-baking temperature, and optimization of pretreatment by studying resist adhesion characteristic to chromium oxide based film and molybdenum silicide based film. We have also explored very basic features of several resists in a comparison between the most popular OCG-895i and new candidates under an optimized coating thickness and soft-baking temperature respectively for each resist. This paper describes details of our findings on novel techniques for photomask blanks enhancement, and a comparison result of several resists in very basic features, in order to expand process windows to meet critical dimension performance requirements of advanced reticle fabrication by the laser writer.

  14. Fatal cranial shot by blank cartridge gun: two suicide cases.

    PubMed

    Buyuk, Yalcin; Cagdir, Sadi; Avsar, Abdullah; Duman, Gokce U; Melez, D Oguzhan; Sahin, Feyzi

    2009-08-01

    Blank firing pistols are generally considered to be harmless and these guns are not accepted as being firearms in most countries. Due to lack of legal regulations these guns are easily purchased by anyone aged over 18 years. Reports of serious injuries and even fatalities due to these guns are increasing in the literature. These guns when modified or even unmodified can cause serious and potentially fatal injuries. Without doing any changes to the barrel, using blank or tear gas cartridges, firing at contact range can cause penetration of gas into the body including bone originated from gun powder. We report two suicide cases shooting themselves at temporal region with a blank cartridge gun at contact range. There was no foreign body on radiological examination and there was no trajectory of a bullet inside the brain. In both cases the wound was at the right temporal region and there was defect at temporal bone. There was circular soot around this bone defect. The injury of the brain tissue was localized at the level of the defect but there was widespread subarachnoidal bleeding. We discussed the potential danger of these guns and stressed the need of legal regulations concerning these guns. PMID:19573850

  15. Radar interference blanking in radio astronomy using a Kalman tracker

    NASA Astrophysics Data System (ADS)

    Dong, W.; Jeffs, B. D.; Fisher, J. R.

    2005-06-01

    Radio astronomical observations of highly Doppler shifted spectral lines of neutral hydrogen and the hydroxyl molecule must often be made at frequencies allocated to pulsed air surveillance radar in the 1215-1350 MHz frequency range. The Green Bank telescope (GBT) and many other observatories must deal with these terrestrial signals. Even when strong radar fixed clutter echoes are removed, there are still weaker aircraft echoes present which can corrupt the data. We present an algorithm which improves aircraft echo blanking using a Kalman filter tracker to follow the path of a sequence of echoes observed on successive radar antenna sweeps. Aircraft tracks can be used to predict regions (in bearing and range) for the next expected echoes, even before they are detected. These data can then be blanked in real time without waiting for the pulse peak to arrive. Additionally, we briefly suggest an approach for a new Bayesian algorithm which combines tracker and pulse detector operations to enable more sensitive weak pulse detection. Examples are presented for Kalman tracking and radar transmission blanking using real observations at the GBT.

  16. Influence of Anisotropy Properties in Finite Element Optimization of Blank Shape Using NURBS Surfaces

    SciTech Connect

    Padmanabhan, R.; Oliveira, M. C.; Baptista, A. J.; Menezes, L. F.; Alves, J. L.

    2007-04-07

    Sheet metal forming is a complex process controlled by process parameters and material properties of the blank sheet. The initial anisotropy has influence on the determination of optimal blank shape because it governs the material flow. In this paper, the influence of the initial anisotropy, in achieving an optimal blank shape, is analyzed using mild steel (DC06) blank sheet and two different tool geometries: circular and rectangular cup. The numerical method is based on the initial NURBS surface used to produce the mesh that models the blank and the resulting flange geometry of the deformed part. Different rolling direction orientations were considered in the blanks for deep drawing to investigate their effect on the blank shape optimization procedure. From the numerical study it is evident that the described method is sensitive to the initial anisotropy in the material and can produce optimal initial blank shape within few iterations.

  17. Seeing Red and Shooting Blanks: A Study of Red Quasars and Blank Field X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Elvis, Martin

    2004-01-01

    One type of "Blank Field X-ray Source" is now being seen in deep Chandra and XMM-Newton surveys. These are the newly dubbed "XBONGs" (X-ray Bright, Optically Normal Galaxies). The study of the brighter counterparts from ROSAT and XMM- Newton serendipitous surveys is therefore of renewed interest and topicality. We continue to define the properties of the ROSAT sample which is the basis of this grant. We expect to publish the SEDs of these sources soon.

  18. NHEXAS PHASE I ARIZONA STUDY--QA ANALYTICAL RESULTS FOR METALS IN BLANK SAMPLES

    EPA Science Inventory

    The Metals in Blank Samples data set contains the analytical results of measurements of up to 27 metals in 82 blank samples from 26 households. Measurements were made in blank samples of dust, indoor and outdoor air, personal air, food, beverages, blood, urine, and dermal wipe r...

  19. Electroslag melting of blanks for valve bodies of atomic electric power plants

    SciTech Connect

    Rabinovich, V.I.; Borodin, M.A.; Chistyakov, G.A.; Kriger, Yu.N.

    1983-01-01

    The application of electroslag melting (ESM) makes it possible to obtain high quality castings. In the power engineering industry, the ESM method is used to manufacture blanks for the control valves of atomic electric power plants which were formerly made by forging. Valve body blanks made from sand steel castings are cheaper than blanks obtained by ESM, but of inferior quality.

  20. Evaluation of alternative capping layers for EUVL mask ML blank

    NASA Astrophysics Data System (ADS)

    Yan, Pei-yang; Spiller, Eberhard; Gullikson, Eric; Hill, Shannon

    2005-11-01

    The standard silicon (Si) capping layer used for extreme ultra-violet lithography (EUVL) multilayer (ML) mask blanks has some shortcomings, such as low oxidation resistance, low chemical resistance, low etch selectivity in either the SiO2 buffer layer etch to the capping layer or the absorber etch (e.g., TaN) to the capping layer. These performance and process issues with Si capped ML mask blank will reduce the mask lifetime and require tighter process control during EUVL mask fabrication. Alternative capping materials have been investigated for both EUVL optics and for mask applications.1-5 It has been initially demonstrated that Ru capping layers have high oxidation resistance and high mask process margin as compared to Si ML cap. In this paper, we will present a detailed evaluation of Ru and ion beam deposited (IBD) diamond-like-carbon (DLC) for EUVL mask application. Performance evaluations of the DLC mask blank capping layer and Ru capping layer were made in the area of reflectivity performance, shelf-life, and EUV exposure stability. It has been shown that EUV exposure induced capping layer change depends upon the exposure conditions. However, we found that as long as the induced relative change in the ML cap material are the same (e.g., the same amount of oxidation), regardless of exposure time and exposure conditions, the resulting reflectivity change is about the same. In the case of the two capping layer materials we evaluated, the capping surface reaction with active oxygen is the primary cause for the reflectivity degradation.

  1. Automatic classification and accurate size measurement of blank mask defects

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2015-07-01

    A blank mask and its preparation stages, such as cleaning or resist coating, play an important role in the eventual yield obtained by using it. Blank mask defects' impact analysis directly depends on the amount of available information such as the number of defects observed, their accurate locations and sizes. Mask usability qualification at the start of the preparation process, is crudely based on number of defects. Similarly, defect information such as size is sought to estimate eventual defect printability on the wafer. Tracking of defect characteristics, specifically size and shape, across multiple stages, can further be indicative of process related information such as cleaning or coating process efficiencies. At the first level, inspection machines address the requirement of defect characterization by detecting and reporting relevant defect information. The analysis of this information though is still largely a manual process. With advancing technology nodes and reducing half-pitch sizes, a large number of defects are observed; and the detailed knowledge associated, make manual defect review process an arduous task, in addition to adding sensitivity to human errors. Cases where defect information reported by inspection machine is not sufficient, mask shops rely on other tools. Use of CDSEM tools is one such option. However, these additional steps translate into increased costs. Calibre NxDAT based MDPAutoClassify tool provides an automated software alternative to the manual defect review process. Working on defect images generated by inspection machines, the tool extracts and reports additional information such as defect location, useful for defect avoidance[4][5]; defect size, useful in estimating defect printability; and, defect nature e.g. particle, scratch, resist void, etc., useful for process monitoring. The tool makes use of smart and elaborate post-processing algorithms to achieve this. Their elaborateness is a consequence of the variety and

  2. Method and apparatus for inspecting an EUV mask blank

    DOEpatents

    Goldberg, Kenneth A.

    2005-11-08

    An apparatus and method for at-wavelength EUV mask-blank characterization for inspection of moderate and low spatial frequency coating uniformity using a synchrotron or other source of EUV light. The apparatus provides for rapid, non-destruction, non-contact, at-wavelength qualification of large mask areas, and can be self-calibrating or be calibrated to well-characterized reference samples. It can further check for spatial variation of mask reflectivity or for global differences among masks. The apparatus and method is particularly suited for inspection of coating uniformity and quality and can detect defects in the order of 50 .mu.m and above.

  3. Understanding the ion beam in EUV mask blank production

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick; Jindal, Vibhu; Weaver, Alfred; Teora, Pat; Sporre, John; Ruzic, David; Goodwin, Frank

    2012-03-01

    One of the major technical hurdles to be overcome before EUV lithography can enter high volume manufacturing is the amount of defects in EUV mask blanks, many of which occur during the EUV reflector deposition process. The technology currently used to deposit this reflector is ion beam sputter deposition. Understanding the properties of the ion beam and the nature of the plasma in the deposition chamber is therefore critical to understanding defect production mechanisms and subsequently eliminating them. In this work, we have studied how the source parameters influence ion beam divergence, its footprint on the target, and the amount of beam that misses the target and hits the shielding. By optimizing the source parameters, we can modulate certain target- and shield-specific defect types. We have compared our data with models of source performance and found general agreement, enabling the theory to be fine-tuned based on the results of the measurements. Models are being developed to better describe actual source performance. We have also investigated the plasma conditions the ion beam creates in the tool, which is crucial to understanding the transport of defects from their source to the mask. A well characterized ion beam and plasma will lead to process and tool changes that will ultimately reduce defect levels in EUV mask blanks.

  4. Performance in practical use of actinic EUVL mask blank inspection

    NASA Astrophysics Data System (ADS)

    Yamane, Takeshi; Kim, Yongdae; Takagi, Noriaki; Terasawa, Tsuneo; Ino, Tomohisa; Suzuki, Tomohiro; Miyai, Hiroki; Takehisa, Kiwamu; Kusunose, Haruhiko

    2014-07-01

    A high-volume manufacturing (HVM) actinic blank inspection (ABI) prototype has been developed, of which the inspection capability for a native defect was evaluated. An analysis of defect signal intensity (DSI) analysis showed that the DSI varied as a result of mask surface roughness. Operating the ABI under a review mode reduced that variation by 71 %, and therefore this operation was made available for precise DSI evaluation. The result also indicated that the defect capture rate was influenced by the DSI variation caused by mask surface roughness. A mask blank was inspected three times by the HVM ABI prototype, and impact of the detected native defects on wafer CD was evaluated. There was observed a pronounced relationship between the DSI and wafer CD; and this means that the ABI tool could detect wafer printable defects. Using the total DSI variation, the capture rate of the smallest defect critical for 16 nm node was estimated to be 93.2 %. This means that most of the critical defects for 16 nm node can be detected with the HVM ABI prototype.

  5. Defects caused by blank masks and repair solution with nanomachining for 20nm node

    NASA Astrophysics Data System (ADS)

    Lee, HyeMi; Kim, ByungJu; Kim, MunSik; Jung, HoYong; Kim, Sang Pyo; Yim, DongGyu

    2014-09-01

    As the number of masks per wafer product set is increasing and low k1 lithography requires tight mask specifications, the patterning process below sub 20nm tech. node for critical layers will be much more expensive compared with previous tech. generations. Besides, the improved resolution and the zero defect level are necessary to meet tighter specifications on a mask and these resulted in the increased the blank mask price as well as the mask fabrication cost. Unfortunately, in spite of expensive price of blank masks, the certain number of defects on the blank mask is transformed into the mask defects and its ratio is increased. But using high quality blank mask is not a good idea to avoid defects on the blank mask because the price of a blank mask is proportional to specifications related to defect level. Furthermore, particular defects generated from the specific process during manufacturing a blank mask are detected as a smaller defect than real size by blank inspection tools because of its physical properties. As a result, it is almost impossible to prevent defects caused by blank masks during the mask manufacturing. In this paper, blank defect types which is evolved into mask defects and its unique characteristics are observed. Also, the repair issues are reviewed such as the pattern damage according to the defect types and the repair solution is suggested to satisfy the AIMS (Arial Image Measurement System) specification using a nanomachining tool.

  6. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--QA ANALYTICAL RESULTS FOR METALS IN BLANK SAMPLES

    EPA Science Inventory

    The Metals in Blank Samples data set contains the analytical results of measurements of up to 27 metals in 52 blank samples. Measurements were made in blank samples of dust, indoor air, food, water, and dermal wipe residue. Blank samples were used to assess the potential for sa...

  7. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--QA ANALYTICAL RESULTS FOR PESTICIDES IN BLANK SAMPLES

    EPA Science Inventory

    The Pesticides in Blank Samples data set contains the analytical results of measurements of up to 20 pesticides in 34 blank samples. Measurements were made in blank samples of dust, indoor air, food, water, and dermal wipe residue. Blank samples were used to assess the potentia...

  8. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--QA ANALYTICAL RESULTS FOR VOCS IN BLANK SAMPLES

    EPA Science Inventory

    The VOCs in Blank Samples data set contains the analytical results of measurements of up to 47 volatile organic compounds (VOCs) in 24 blank samples. Measurements were made in blank samples of indoor air, outdoor air, and water. Blank samples were used to assess the potential f...

  9. Understanding EUV mask blank surface roughness induced LWR and associated roughness requirement

    SciTech Connect

    Yan, Pei-Yang; Zhang, Guojing; Gullickson, Eric M.; Goldberg, Kenneth A.; Benk, Markus P.

    2015-03-01

    Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL mask blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.

  10. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  11. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  12. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  13. Mind-blanking: when the mind goes away

    PubMed Central

    Ward, Adrian F.; Wegner, Daniel M.

    2013-01-01

    People often feel like their minds and their bodies are in different places. Far from an exotic experience, this phenomenon seems to be a ubiquitous facet of human life (e.g., Killingsworth and Gilbert, 2010). Many times, people's minds seem to go “somewhere else”—attention becomes disconnected from perception, and people's minds wander to times and places removed from the current environment (e.g., Schooler et al., 2004). At other times, however, people's minds may seem to go nowhere at all—they simply disappear. This mental state—mind-blanking—may represent an extreme decoupling of perception and attention, one in which attention fails to bring any stimuli into conscious awareness. In the present research, we outline the properties of mind-blanking, differentiating this mental state from other mental states in terms of phenomenological experience, behavioral outcomes, and underlying cognitive processes. Seven experiments suggest that when the mind seems to disappear, there are times when we have simply failed to monitor its whereabouts—and there are times when it is actually gone. PMID:24098287

  14. Optimisation of the blank shape for micro deep drawing of rectangular parts

    SciTech Connect

    Hu Zhenyu; Vollertsen, Frank

    2011-05-04

    In this investigation the blank shape for micro deep drawing of rectangular parts was for the first time optimized using FEM method with consideration of the real process conditions in micro forming, i.e. the coefficient of friction and the flow curves of thin foils. The acquired optimized blank shape was then validated by applying it to experiments. For both numerical and experimental investigations a punch with a section of 2x1 mm{sup 2} was used. Aluminum Al99.5 with a sheet thickness of 20 {mu}m was used as blank material in this investigation. A flange free drawn part was successfully obtained from experiment using the blank shape and blank holder force optimized using FEM.

  15. High Speed Surface Micro-Polishing for Spurious Reduction of Small Quartz Crystal Blanks

    NASA Astrophysics Data System (ADS)

    Hatsuzawa, Takeshi; Hamano, Hisashi; Saito, Masashi; Yanagida, Yasuko

    Surface polishing is required for small crystal blanks to eliminate frequency spurious generated by the infinite rectangular shape. From the productivity viewpoint, bi-convex or plano-cylindrical surface are generally used to realize the energy trapping at the central part of the blanks. So far barrel polishing is the common fabrication technology to obtain bi-convex surface, however, the surface is finished insufficiently and fabrication process takes longer time as the blank size becomes small. To solve this difficulty, two types of new surface micro-polishing mechanisms with fixed abrasive and arrayed blank arrangement are experimentally examined to obtain plano-cylindrical surface. The fastest finishing time of 10 s for a blank is achieved together with the spurious elimination.

  16. Acoustical Characterization of the Columbia River Estuary

    NASA Astrophysics Data System (ADS)

    Reeder, D. B.

    2014-12-01

    Investigations of near-shore and in-shore environments have, rightly, focused on geological, thermodynamic and hydrodynamic parameters. A complementary acoustical characterization of the estuarine environment provides another layer of information to facilitate a more complete understanding of the physical environment. Relatively few acoustical studies have been carried out in rivers, estuaries or other energetic environments; nearly all acoustical work in such environments has been done at high acoustic frequencies—in the 10's and 100's of kHz. To this end, within the context of a larger hydrodynamic field experiment (RIVET II), a small acoustic field experiment was carried out in the Columbia River Estuary (CRE), the acoustic objective of which was to characterize the acoustic environment in the CRE in terms of ambient noise field statistics and acoustic propagation characteristics at low-to-mid-frequencies. Acoustically, the CRE salt wedge consists of two isospeed layers separated by a thin, three-dimensional high-gradient layer. Results demonstrate that (1) this stratification supports ducting of low-angle acoustic energy in the upper layer and the creation of an acoustic shadow zone in the lower layer; (2) the spatiotemporal dynamics of the salt wedge structure during the very energetic flood and ebb tides induce significant variability in the acoustic environment, as well as significant flow noise across the acoustic transducer; and (3) this flow noise correlates to current velocity and complicates acoustical observations at low frequencies.

  17. Low-defect reflective mask blanks for extreme ultraviolet lithography

    SciTech Connect

    Burkhart, S C; Cerjarn, C; Kearney, P; Mirkarimi, P; Walton, C; Ray-Chaudhuri, A

    1999-03-11

    Extreme Ultraviolet Lithgraphy (EUVL) is an emerging technology for fabrication of sub-100 nm feature sizes on silicon, following the SIA roadmap well into the 21st century. The specific EUVL system described is a scanned, projection lithography system with a 4:1 reduction, using a laser plasma EUV source. The mask and all of the system optics are reflective, multilayer mirrors which function in the extreme ultraviolet at 13.4 nm wavelength. Since the masks are imaged to the wafer exposure plane, mask defects greater than 80% of the exposure plane CD (for 4:1 reduction) will in many cases render the mask useless, whereas intervening optics can have defects which are not a printing problem. For the 100 nm node, we must reduce defects to less than 0.01/cm² @ 80nm or larger to obtain acceptable mask production yields. We have succeeded in reducing the defects to less than 0.1/cm² for defects larger than 130 nm detected by visible light inspection tools, however our program goal is to achieve 0.01/cm² in the near future. More importantly though, we plan to have a detailed understanding of defect origination and the effect on multilayer growth in order to mitigate defects below the 10-2/cm² level on the next generation of mask blank deposition systems. In this paper we will discuss issues and results from the ion-beam multilayer deposition tool, details of the defect detection and characterization facility, and progress on defect printability modeling.

  18. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  19. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers. PMID:25839273

  20. A Study of Forming Force in the Fine-blanking Process Using the Theoretical Predication and Experimental Approach

    NASA Astrophysics Data System (ADS)

    Elyasi, Majid; Daeizadeh, Vahid

    2011-01-01

    In the fine-blanking process, a smooth cut surface over almost the entire thickness of the material and high degree of dimensional accuracy are produced Previous research on fine-blanking was carried out mainly to develop this technology and clarify its mechanism In this paper the effect of the shape of the workpiece, material tensile strength and initial blank thickness on forming force in fine-blanking process was studied by theoretical formulation and experimental approach The theoretical formulation was used as a tool to carry out the predication of fine-blanking force The obtained results indicated that by increasing the shape of the workpiece the forces in fine-blanking process is increased Also, by increasing the initial blank thickness and the material tensile strength, the forces in fine-blanking process is increased

  1. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... 177. Battista RA. Gamma knife radiosurgery for vestibular schwannoma. Otolaryngol Clin North Am . 2009;42:635-654. ...

  2. 76 FR 14697 - Aleris Blanking and Rim Products, Inc., a Division of Aleris International, Inc., Terre Haute, IN...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... the Federal Register on March 2, 2010 (75 FR 9436-9437). The workers produce aluminum blanks and hoops... Employment and Training Administration Aleris Blanking and Rim Products, Inc., a Division of Aleris... Blanking and Rim Products, Inc., a division of Aleris International, Inc., Terre Haute, Indiana, who...

  3. Fracture process zone in granite

    USGS Publications Warehouse

    Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.

    2000-01-01

    In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.

  4. Improved confidence intervals when the sample is counted an integer times longer than the blank.

    PubMed

    Potter, William Edward; Strzelczyk, Jadwiga Jodi

    2011-05-01

    Past computer solutions for confidence intervals in paired counting are extended to the case where the ratio of the sample count time to the blank count time is taken to be an integer, IRR. Previously, confidence intervals have been named Neyman-Pearson confidence intervals; more correctly they should have been named Neyman confidence intervals or simply confidence intervals. The technique utilized mimics a technique used by Pearson and Hartley to tabulate confidence intervals for the expected value of the discrete Poisson and Binomial distributions. The blank count and the contribution of the sample to the gross count are assumed to be Poisson distributed. The expected value of the blank count, in the sample count time, is assumed known. The net count, OC, is taken to be the gross count minus the product of IRR with the blank count. The probability density function (PDF) for the net count can be determined in a straightforward manner. PMID:21451310

  5. Numerical and experimental analysis on the formability of tailor welded blanks based on digital image correlation

    NASA Astrophysics Data System (ADS)

    Li, Yanhua; Lin, Jianping; Guo, Ruiquan

    2013-12-01

    Formability of tailor welded blanks (TWBs) and control of blank deformation during stamping is always a challenge for manufacturing designers due to different properties or thicknesses of the blanks. The plastic deformation capacity of TWBs is reduced even when the material and thickness are the same. Same material same gauge TWBs (SMSG- TWBs) are now widely applied to mass production of automobile components for raising the utilization ratio of materials and expanding the dimension of steel coil. The aim of this work is to investigate the formability of SMSG-TWBs by both numerical and experimental approaches. Local constitutive properties of laser welded beads are determined by tensile tests with the aid of digital image correlation (DIC). Based on these mechanical properties, the formability of TWBs and monolithic blank are evaluated by performing Erichsen cupping tests numerically and experimentally. The influence of weld on strain distribution is discussed as well. Comparisons with the experimental results showed general agreement.

  6. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  7. Attenuated phase-shift mask (PSM) blanks for flat panel display

    NASA Astrophysics Data System (ADS)

    Kageyama, Kagehiro; Mochizuki, Satoru; Yamakawa, Hiroyuki; Uchida, Shigeru

    2015-10-01

    The fine pattern exposure techniques are required for Flat Panel display applications as smart phone, tablet PC recently. The attenuated phase shift masks (PSM) are being used for ArF and KrF photomask lithography technique for high end pattern Semiconductor applications. We developed CrOx based large size PSM blanks that has good uniformity on optical characteristics for FPD applications. We report the basic optical characteristics and uniformity, stability data of large sized CrOx PSM blanks.

  8. Effect of the atrial blanking time on the detection of atrial fibrillation in dual chamber pacing.

    PubMed

    Nowak, B; Kracker, S; Rippin, G; Horstick, G; Vincent, A; Geil, S; Himmrich, E; Meyer, J

    2001-04-01

    Patients with paroxysmal atrial fibrillation (PAF) and dual chamber pacemakers frequently have short postventricular atrial blanking times and sensitive atrial sensing thresholds used to provide reliable detection and mode switching during AF. However, short atrial blanking times increase the risk of atrial sensing of ventricular far-field signals. We evaluated if the length of the atrial blanking time influences the detection of AF. The study included ten patients with a VDDR (n = 7) or DDDR system (n = 3), who presented with AF at 18 follow-up visits. Bipolar atrial sensing was programmed to the most sensitive value. Atrial blanking times were programmed from 100 to 200 ms in 25-ms steps in each patient. Using marker annotation, the following parameters were measured at ten consecutive ventricular beats: VAF = the interval between ventricular stimulus and first sensing of AF; AFS = the number of atrial-sensed events between two ventricular events; and XAF = the interpolated number of atrial-sensed events during atrial blanking time. The intervals between ventricular events and between atrial-sensed event markers showed no significant differences for the five blanking times tested. There was no significant influence of the atrial blanking time onto the measured parameters (least square means +/- standard error) with VAF between 281 +/- 12 and 300 +/- 12 ms (P = NS), AFs between 3.4 +/- 0.2 and 3.6 +/- 0.2 beats (P = NS) and XAF between 1.84 +/- 0.12 and 2.03 +/- 0.12 beats (P = NS). At ventricular rates < 100/min, the atrial sensing of AF in dual chamber pacemakers demonstrated no evidence for deterioration by an increase of the atrial blanking time from 100 to 200 ms. Thus, the risk of ventricular far-field sensing may be reduced without compromising atrial sensing. PMID:11341088

  9. 40 CFR 53.58 - Operational field precision and blank test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... section 6 of 40 CFR part 50, appendix L, conditioned and preweighed as required by section 8 of 40 CFR... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Operational field precision and blank... Methods for PM2.5 or PM10â2.5 § 53.58 Operational field precision and blank test. (a) Overview. This...

  10. Estimation of Thermal Contact Conductance between Blank and Tool Surface in Hot Stamping Process

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Hanafiah Shaharudin, M. A.

    2016-02-01

    In hot stamping, the determination of the thermal contact conductance values between the blank and tool surface during the process is crucial for the purpose of simulating the blank rapid cooling inside the tool using finite element analysis (FEA). The thermal contact conductance value represents the coefficient of the heat transfer at the surface of two solid bodies in contact and is known to be influenced greatly by the applied pressure. In order to estimate the value and its dependency on applied pressure, the process of hot stamping was replicated and simplified into a process of compression of heated flat blank in between the tool at different applied pressure. The temperature of the blank and tool surface were measured by means of thermocouples installed inside the tool. Based on the measured temperature, the thermal contact conductance between the surfaces was calculated using Newton's cooling law equation. The calculated value was then used to simulate the blank cooling inside the tool using FEA commercial software. This paper describes an experimental approach to estimate the thermal contact conductance between a blank made of Boron Steel (USIBOR 1500) and tool made of Tool Steel (STAVAX). Its dependency on applied pressure is also studied and the experimental results were then compared with FEA simulations.

  11. SEMATECH produces defect-free EUV mask blanks: defect yield and immediate challenges

    NASA Astrophysics Data System (ADS)

    Antohe, Alin O.; Balachandran, Dave; He, Long; Kearney, Patrick; Karumuri, Anil; Goodwin, Frank; Cummings, Kevin

    2015-03-01

    Availability of defect-free reflective mask has been one of the most critical challenges to extreme ultraviolet lithography (EUVL). To mitigate the risk, significant progress has been made on defect detection, pattern shifting, and defect repair. Clearly such mitigation strategies are based on the assumption that defect counts and sizes from incoming mask blanks must be below practical levels depending on mask specifics. The leading industry consensus for early mask product development is that there should be no defects greater than 80 nm in the quality area, 132 mm x 132 mm. In addition less than 10 defects smaller than 80 nm may be mitigable. SEMATECH has been focused on EUV mask blank defect reduction using Veeco Nexus TM IBD platform, the industry standard for mask blank production, and assessing if IBD technology can be evolved to a manufacturing solution. SEMATECH has recently announced a breakthrough reduction of defects in the mask blank deposition process resulting in the production of two defect-free EUV mask blanks at 54 nm inspection sensitivity (SiO2 equivalent). This paper will discuss the dramatic reduction of baseline EUV mask blank defects, review the current deposition process run and compare results with previous process runs. Likely causes of remaining defects will be discussed based on analyses as characterized by their compositions and whether defects are embedded in the multilayer stack or non-embedded.

  12. Improvement of defect mitigation with EUV actinic blank inspection prototype for 16 nm hp

    NASA Astrophysics Data System (ADS)

    Murachi, Tetsunori; Amano, Tsuyoshi; Suzuki, Tomohiro; Miyai, Hiroki

    2014-04-01

    A major challenge for extreme ultraviolet lithography (EUVL) is avoiding defects in the fabrication of multilayered (ML) mask blanks. Substrate defects and adders during ML coating are responsible for ML defects which causes changes on phase and amplitude of EUV light. ML defects must be identified by inspection prior to absorber patterning in order to reduce the effects of ML defects via covering them with patterns to permit the use of fewer ML defect blanks. Fiducial marks (FMs) on ML blanks can be used for mask alignment and to accurately and precisely determine the locations of ML defects. In this study, we fabricated an FM mask by resist exposure using an e-beam writer and etching. Then, we inspected FMs and ML defects with an EUV actinic full-field mask blank inspection tool developed by EIDEC-LaserTec (LT ABI). Next, we evaluated the ML defect location accuracy on the mask based on FMs of several line depths by deriving center position of FMs and defects with Lorentz, Gaussian fitting and center-of-mass calculation. Here, we explain the estimation of defect location accuracy using FMs and the LT ABI, and discuss the defect numbers which can be covered by absorber patterns. Fewer than 19 defects per blank should be required for EUV blanks to cover ML defects with patterns.

  13. Impact of the analytical blank in the uncertainty evaluation of the copper content in waters by flame atomic absorption spectrometry.

    PubMed

    de Oliveira, Elcio Cruz; Monteiro, Maria Inês Couto; Pontes, Fernanda Veronesi Marinho; de Almeida, Marcelo Dominguez; Carneiro, Manuel Castro; da Silva, Lílian Irene Dias; Alcover Neto, Arnaldo

    2012-01-01

    Chemical analysts use analytical blanks in their analyses, but seldom is this source of uncertainty evaluated. Generally, there is great confusion. Although the numerical value of the blank, in some situations, can be negligible, its source of uncertainty cannot be. This article discusses the uncertainty contribution of the analytical blank using a numerical example of the copper content in waters by flame atomic absorption spectrometry. The results indicate that the uncertainties of the analytical blank can contribute up to 50% when the blank sample is considered in this analysis, confirming its high impact. This effect can be primarily observed where the analyte concentration approaches the lower range of the analytical curve. Even so, the blank is not always computed. Therefore, the relevance of the analytical blank can be confirmed by uncertainty evaluation. PMID:22649945

  14. Quartz sand as "blank" compound in rehabilitation experience of industrial barren

    NASA Astrophysics Data System (ADS)

    Gorbacheva, T. T.; Ivanova, L. A.; Kikuchi, R.; Gerardo, R.

    2010-05-01

    During 2008 the field test was performed near the smelter complex Monchegorsk (67°51'N, 32°48'E) to estimate suitability of innovate method for site remediation in severe conditions such as in industrial barren. The method is based on cultivation of perennial grasses using hydroponics with thermally inflated vermiculite from local deposit (Kovdor) followed by rolled lawn placement on very contaminated sites near Monchegorsk. Growing in very contaminated ground resulted in 50% rolled lawn surface loss during first year but with biodiversity maintenance. Field experiment was carried out in three variants (1- mineral ground - flat site; 2- mineral ground- slope sites; 3- organogenic ground - flat site in depression in five replicates. More comprehensive results were received for mineral ground due to better natural washing compared to organogenic ground. In all variants we observed secondary roots formation. It seems obvious that plant roots choose the best zones of soils to grow, and that they avoided toxic zones. Observations continued during 2009 to follow freezing influence and nutrient loss rate. We observed grass survival of about 20-30% during second year of field test but grass roots proliferated very slowly in contaminated ground. Affinity to the ground is one of most important estimate of rolled lawn efficiency for grass cover creation. One of possible measure to improve rolled lawn affinity is to establish additional permeable barrier for grass roots isolation from toxic ground. Simultaneously with rolled lawn placement litterbag experiment was carried out with quartz sand as filling. Quartz was chosen as blank compound and as possible material for permeable barrier creation. Original quartz have some initial nutritional status: pH 6.87, available forms of K 1.9 mg g-1, Ca 9.5 mg g-1, Mg 2.8 mg g-1, P 0.4 mg g-1. There was both increasing and decreasing of quartz nutritional status during 2008-2009 period. Besides quartz is recognized to be some barrier

  15. Edge Length and Surface Area of a Blank: Experimental Assessment of Measures, Size Predictions and Utility

    PubMed Central

    Dogandžić, Tamara; Braun, David R.; McPherron, Shannon P.

    2015-01-01

    Blank size and form represent one of the main sources of variation in lithic assemblages. They reflect economic properties of blanks and factors such as efficiency and use life. These properties require reliable measures of size, namely edge length and surface area. These measures, however, are not easily captured with calipers. Most attempts to quantify these features employ estimates; however, the efficacy of these estimations for measuring critical features such as blank surface area and edge length has never been properly evaluated. In addition, these parameters are even more difficult to acquire for retouched implements as their original size and hence indication of their previous utility have been lost. It has been suggested, in controlled experimental conditions, that two platform variables, platform thickness and exterior platform angle, are crucial in determining blank size and shape meaning that knappers can control the interaction between size and efficiency by selecting specific core angles and controlling where fracture is initiated. The robustness of these models has rarely been tested and confirmed in context other than controlled experiments. In this paper, we evaluate which currently employed caliper measurement methods result in the highest accuracy of size estimations of blanks, and we evaluate how platform variables can be used to indirectly infer aspects of size on retouched artifacts. Furthermore, we investigate measures of different platform management strategies that control the shape and size of artifacts. To investigate these questions, we created an experimental lithic assemblage, we digitized images to calculate 2D surface area and edge length, which are used as a point of comparison for the caliper measurements and additional analyses. The analysis of aspects of size determinations and the utility of blanks contributes to our understanding of the technological strategies of prehistoric knappers and what economic decisions they made

  16. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  17. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  18. Underwater Acoustics

    NASA Astrophysics Data System (ADS)

    Kuperman, William A.; Roux, Philippe

    It is well underwater established that sound waves, compared to electromagnetic waves, propagate long distances in the ocean. Hence, in the ocean as opposed to air or a vacuum, one uses sound navigation and ranging (SONAR) instead navigation and ranging (SONAR) of radar, acoustic communication instead of radio, and acoustic imaging and tomography instead of microwave or optical imaging or X-ray tomography. Underwater acoustics is the science of sound in water (most commonly in the ocean) and encompasses not only the study of sound propagation, but also the masking of sound signals by interfering phenomenon and signal processing for extracting these signals from interference. This chapter we will present the basics physics of ocean acoustics and then discuss applications.

  19. On the Determination of the Blank Shape Contour for Thin Precision Parts Obtained by Stamping

    NASA Astrophysics Data System (ADS)

    Azaouzi, M.; Delamézière, A.; Naceur, H.; Sibaud, D.; Batoz, J. L.; Belouettar, S.

    2007-05-01

    The present study deals with the "automatic" determination of the initial blank shape contour for 3D thin metallic precision parts obtained by stamping, knowing the 3D CAD geometry of the final part (the desired product). The forming process can involve several steps presented in this paper that consists in applying a heuristic method of optimization to find out the initial blank shape of thin precision metallic part in order to obtain a final part, with a required 3D geometry (specified). The purpose of the present approach is to replace the experimental trial and error optimization method used currently, which is expensive and time consuming. The principle of the "heuristic" optimization method is to first estimate the blank shape using the Inverse Approach, then to compensate the shape error calculated in each node of the blank contour. The "heuristic" optimization loop is done using a precise incremental code (Abaqus Explicit or Stampack) and, the iterations loop is stopped when the shape errors are within some initially fixed tolerances. The method is tested in the case of a special stamping process where the parts are pressed in one or more steps using a manual press, without blank holder and by the mean of tools having complex shape. The sensitivities of the process parameters regarding the optimal solution are investigated.

  20. Deep blank-field catalogue for medium- and large-sized telescopes

    NASA Astrophysics Data System (ADS)

    Jiménez Esteban, F. M.; Cabrera Lavers, A.; Cardiel, N.; Alacid, J. M.

    2012-11-01

    The observation of blank fields, defined as regions of the sky that are devoid of stars down to a given threshold magnitude, constitutes one of the most relevant calibration procedures required for the proper reduction of astronomical data obtained following typical observing strategies. In this work, we have used Delaunay triangulation to search for deep blank fields throughout the whole sky, with a minimum size of 10 arcmin in diameter and an increasing threshold magnitude from 15 to 18 in the R band of the USNO-B Catalog of the United States Naval Observatory. The result is a catalogue with the deepest blank fields known so far. A short sample of these regions has been tested with the 10.4-m Gran Telescopio Canarias, and it has been shown to be extremely useful for medium- and large-sized telescopes. Because some of the regions found could also be suitable for new extragalactic studies, we have estimated the galactic extinction in the direction of each deep blank field. This catalogue is accessible through the virtual observatory tool TESELA, and the user can retrieve - and visualize using ALADIN - the deep blank fields available near a given position in the sky.

  1. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  2. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  3. Enhanced procedural blank control for organic geochemical studies of critical sample material.

    PubMed

    Leider, A; Schumacher, T C; Hallmann, C

    2016-09-01

    Organic contamination of sedimentary rocks can produce artefacts in studies of hydrocarbon composition, and this can have significant negative consequences for interpretations of the geobiological record. False positives - that is cases of non-syngenetic hydrocarbon biomarkers - are common in Precambrian studies, and significant challenges persist despite the intensive effort devoted to these studies. Efforts to standardize the 'burden of proof' for distinguishing between contamination and syngenetic material have to date failed to yield a simple or universal protocol, yet the need remains great, as both bitumen-lean rocks and bitumen-rich samples can be vulnerable to the accumulation of false-positive signals. In an effort to determine the best approach to quality control, we tested the capability of different blank materials to collect ambient contamination by assessing their capacity to adsorb hydrocarbons during storage in plastic bags and found that commonly used Quartz sand does not provide an adequate measure of storage- or laboratory-induced contamination. Brick blanks, having the advantage that they can parallel rock samples even during the sawing process, are characterized by similar poor adsorption properties. Primarily steered by mineralogy, organic carbon content and surface area, model-black shales can adsorb up to 20 times more contaminants than sand blanks and up to 200 times more contaminants than organic-free model-carbonates. This observation provides an explanation for reports and observations of seemingly systematic stratigraphic variation of contaminants, but mostly should raise awareness for the evaluation of procedural blanks, in particular of sample-to-blank ratios, when studying bitumen-lean rock samples of varying lithologies. Additionally, differences between the hydrocarbon profiles in plastic bags and the hydrocarbon signatures transferred to blank materials emphasize difficulties in the unequivocal detection of contamination sources

  4. Mercury Deposition Network Site Operator Training for the System Blank and Blind Audit Programs

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Lehmann, Christopher M.B.

    2008-01-01

    The U.S. Geological Survey operates the external quality assurance project for the National Atmospheric Deposition Program/Mercury Deposition Network. The project includes the system blank and blind audit programs for assessment of total mercury concentration data quality for wet-deposition samples. This presentation was prepared to train new site operators and to refresh experienced site operators to successfully process and submit system blank and blind audit samples for chemical analysis. Analytical results are used to estimate chemical stability and contamination levels of National Atmospheric Deposition Program/Mercury Deposition Network samples and to evaluate laboratory variability and bias.

  5. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H. Dale; Busse, Lawrence J.; Lemon, Douglas K.

    1985-01-01

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  6. Acoustic emission linear pulse holography

    SciTech Connect

    Collins, H. D.; Busse, L. J.; Lemon, D. K.

    1985-07-30

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  7. Acoustic paramagnetic logging tool

    DOEpatents

    Vail, III, William B.

    1988-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  8. Prediction of Grades and Satisfaction Using the Strong Vocational Interest Blank.

    ERIC Educational Resources Information Center

    Welch, Thomas Alfred

    Research was undertaken to investigate improving selection criteria for several curricula at the Naval Postgraduate School using the Strong Vocational Interest Blank and a biographical questionnaire as indicators of academic success and satisfaction with curriculum and future assignments. The seven curricula investigated were merged into three…

  9. Use of Monocrystalline Silicon as Tool Material for Highly Accurate Blanking of Thin Metal Foils

    SciTech Connect

    Hildering, Sven; Engel, Ulf; Merklein, Marion

    2011-05-04

    The trend towards miniaturisation of metallic mass production components combined with increased component functionality is still unbroken. Manufacturing these components by forming and blanking offers economical and ecological advantages combined with the needed accuracy. The complexity of producing tools with geometries below 50 {mu}m by conventional manufacturing methods becomes disproportional higher. Expensive serial finishing operations are required to achieve an adequate surface roughness combined with accurate geometry details. A novel approach for producing such tools is the use of advanced etching technologies for monocrystalline silicon that are well-established in the microsystems technology. High-precision vertical geometries with a width down to 5 {mu}m are possible. The present study shows a novel concept using this potential for the blanking of thin copper foils with monocrystallline silicon as a tool material. A self-contained machine-tool with compact outer dimensions was designed to avoid tensile stresses in the brittle silicon punch by an accurate, careful alignment of the punch, die and metal foil. A microscopic analysis of the monocrystalline silicon punch shows appropriate properties regarding flank angle, edge geometry and surface quality for the blanking process. Using a monocrystalline silicon punch with a width of 70 {mu}m blanking experiments on as-rolled copper foils with a thickness of 20 {mu}m demonstrate the general applicability of this material for micro production processes.

  10. Enabling high speed friction stir welding of aluminum tailor welded blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  11. Fill in the Blank: Culture Jamming and the Advertising of Agency

    ERIC Educational Resources Information Center

    Lambert-Beatty, Carrie

    2010-01-01

    This article is a review on billboard liberation and some other projects that develop the idea of talking back or over advertising in a playful and youthful way. In one of them, Ji Lee's Bubble Project, an artist places blank thought-bubble stickers on street advertisements and waits to see what people write on them, completing the work of art and…

  12. Is ''BLANK'' a Suitable Neutral Prime for Event-Related Potential Experiments?

    ERIC Educational Resources Information Center

    Dien, Joseph; Franklin, Michael S.; May, Christopher J.

    2006-01-01

    We report an experiment that evaluates whether "BLANK" or an unrelated prime is a more suitable baseline for assessing priming for an ERP study. Sixteen subjects performed a lexical decision task with a 1 s prime-target stimulus onset asynchrony. Increased amplitude for the N400 was observed for targets in the unrelated prime condition whereas…

  13. Avoiding the Blank Stare: Teacher Training with the Gradual Release of Responsibility in Mind

    ERIC Educational Resources Information Center

    Clark, Sandra

    2014-01-01

    Most teachers have experienced the "blank stare" when after teaching a lesson implementing all their best strategies using their best language-learning English and at the moment of releasing responsibility--that is, moving from the teacher's responsibility to prepare students for the task to their responsibility to carry it out--the…

  14. Blank corrections for ramped pyrolysis radiocarbon dating of sedimentary and soil organic carbon.

    PubMed

    Fernandez, Alvaro; Santos, Guaciara M; Williams, Elizabeth K; Pendergraft, Matthew A; Vetter, Lael; Rosenheim, Brad E

    2014-12-16

    Ramped pyrolysis (RP) targets distinct components of soil and sedimentary organic carbon based on their thermochemical stabilities and allows the determination of the full spectrum of radiocarbon ((14)C) ages present in a soil or sediment sample. Extending the method into realms where more precise ages are needed or where smaller samples need to be measured involves better understanding of the blank contamination associated with the method. Here, we use a compiled data set of RP measurements of samples of known age to evaluate the mass of the carbon blank and its associated (14)C signature, and to assess the performance of the RP system. We estimate blank contamination during RP using two methods, the modern-dead and the isotope dilution method. Our results indicate that during one complete RP run samples are contaminated by 8.8 ± 4.4 μg (time-dependent) of modern carbon (MC, fM ∼ 1) and 4.1 ± 5.5 μg (time-independent) of dead carbon (DC, fM ∼ 0). We find that the modern-dead method provides more accurate estimates of uncertainties in blank contamination; therefore, the isotope dilution method should be used with caution when the variability of the blank is high. Additionally, we show that RP can routinely produce accurate (14)C dates with precisions ∼100 (14)C years for materials deposited in the last 10,000 years and ∼300 (14)C years for carbon with (14)C ages of up to 20,000 years. PMID:25375178

  15. Coherent acoustic phonons in nanostructures

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.

    2008-02-01

    Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.

  16. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  17. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  18. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--QA ANALYTICAL RESULTS FOR PAHS IN BLANK SAMPLES

    EPA Science Inventory

    The PAHs in Blanks data set contains the analytical results for measurements of up to 26 polynuclear aromatic hydrocarbons (PAHs) in 27 blank samples of indoor air, outdoor air, and food. The PAHs of interest include Anthracene (CAS # 120-12-7), Benzo(ghi)pyrelene (CAS# 191-24-2...

  19. Summary and evaluation of pesticides in field blanks collected for the National Water-Quality Assessment Program, 1992-95

    USGS Publications Warehouse

    Martin, Jeffrey D.; Gilliom, Robert J.; Schertz, Terry L.

    1999-01-01

    Field blanks are quality-control samples used to assess contamination in environmental water samples. Contamination is the unintentional introduction of a chemical (pesticides in this instance) into an environmental water sample from sources such as inadequately cleaned equipment, dirty hands, dust, rain, or fumes. Contamination causes a positive bias in analytical measurements that may need to be considered in the analysis and interpretation of the environmental data. Estimates of pesticide contamination in environmental water samples collected for the National Water-Quality Assessment (NAWQA) Program are used to qualify, where needed, interpretations of the occurrence and distribution of pesticides in the surface and ground waters of the United States. Field blanks collected from 1992 to 1995 as part of the NAWAQA Program were analyzed for 88 pesticides and pesticide metabolites. Of 47 pesticides determined by gas chromatography/mass spectrometry, 23 were detected at least once in 175 surfacewater field blanks and 15 were detected at least once in 145 ground-water field blanks. The most frequently detected pesticides in surface-water field blanks were atrazine (in 10.9 percent of blanks), simazine (9.1 percent), and metolachlor (4.6 percent). The most frequently detected pesticides in ground-water field blanks were p,p?-DDE (4.1 percent) and atrazine (2.8 percent). The maximum pesticide concentration detected by gas chromatography/ mass spectrometry in a surfacewater field blank was 0.120 microgram per liter (mg/L) for pronamide; the maximum concentration detected in a ground-water field blank was 0.013 mg/L for chlorpyrifos and prometon. Of 41 pesticides determined by high-performance liquid chromatography, diuron and 2,4-D were detected once in 109 surface-water field blanks and bromacil, diuron, and fenuron were detected once in 104 ground-water field blanks. Except for a detection of 2,4-D at 0.230 mg/L, the detectable concentrations of these pesticides were

  20. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  1. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  2. A Rapid and Portable DIC Analysis for Aquatic Systems: Rise of the Blanks.

    NASA Astrophysics Data System (ADS)

    Olack, G.; Pfister, C. A.; Wootton, J. T.; Colman, A. S.

    2015-12-01

    Dissolved inorganic carbon analysis, in both fresh water and marine systems, can help determine carbon sources, sinks and flows through an ecosystem (Apongwa et al. 2013). Methods to measure DIC with small quantities in situ are becoming more important as the need for DIC estimation increases across aquatic ecosystems. Recently a number of papers have measured both δ13CVPDB and concentrations by injecting a relatively small amount of sample, e.g. 1 to 2 mL, into prepared sample tubes and then analyzing the headspace gas (Spötl 2004, Torres et al. 2005, Assayag et al. 2006). The initial sampling can be done in the field and samples are stable for weeks to months (Capasso et al. 2005, Taipale and Sonninen 2009) prior to analysis. However, CO2 gas samples can have a contaminant interfering with measurements when concentrations are low, e.g. 0.04% CO2 (Knohl et al. 2004), though the effect can be negligible at higher concentrations, e.g. 1% (Spötl 2005). We investigate fitting a blank correction to a suite of standards to quantify the contamination and more accurately measure the DIC concentration and isotopic values. We examined 6 and 18 month time points, using the suite of standards with δ13CVPDB of 18.69, -2.69 and -16.86 ‰, 2 to 3 mM concentration range. Fitting the blank correction allows us to detect the blank in the 6 month time point. The blank only has a minor effect on the -2.69 and -16.86 ‰ standards, <0.1 ‰, but a significant one for the 18.69 ‰ standard, ~0.4 ‰. Samples run ca. 2 mM in the range of 0 ‰ only see a blank effect in the range of 0.15 ‰, but samples run at < 1 mM show potential shifts of up to 0.8 ‰. The 18 month test showed the tubes are under vacuum—apparently the He diffuses thru the chlorobutyl rubber septa. Those samples can still be analyzed, either by charging them with He so they will not be under vacuum, or running as is and letting the vacuum in the tubes draw in air during the analysis. After correcting for the

  3. Blank Slate

    ERIC Educational Resources Information Center

    Webber-Thrush, Diane

    2011-01-01

    Ullysses Tucker likes a good challenge. After spending the first 20 years of his career working in media, he entered the development profession in 2000. He worked for the State University of New York Plattsburgh, New Jersey's Montclair State University, Louisiana's Grambling State University, and Western Illinois University before joining London…

  4. Printability of native blank defects and programmed defects and their stack structures

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Joo; Harris-Jones, Jenah; Teki, Ranganath; Cordes, Aaron; Nakajima, Toshio; Mochi, Iacopo; Goldberg, Kenneth A.; Yamaguchi, Yuya; Kinoshita, Hiroo

    2011-11-01

    We describe the characterization of native phase defects in the manufacturing of extreme ultraviolet (EUV) mask blanks using the state-of-the-art mask metrology equipment in SEMATECH's Mask Blank Development Center (MBDC). We used commercially available quartz substrates and deposited Mo/Si multilayers on the substrates to characterize phase defects. We also prepared programmed defects of various dimensions using e-beam patterning technology on which multilayers were deposited. Transmission electron microscopy (TEM) was used to study multilayer profile changes, while SEMATECH's actinic inspection tool (AIT) was used to image defects and predict their printability. Defect images at different focal depths of the AIT are correlated to TEM cross sections and atomic force microscopy (AFM) dimensions. The printability of native and programmed defects was also investigated.

  5. Amplitude blanking related to the pore-filling of gas hydrate in sediments

    USGS Publications Warehouse

    Lee, M.W.; Dillon, William P.

    2001-01-01

    Seismic indicators of gas-hydrate-bearing sediments include elevated interval velocities and amplitude reduction of seismic reflections owing to the presence of gas hydrate in the sediment's pore spaces. However, large amplitude blanking with relatively low interval velocities observed at the Blake Ridge has been enigmatic because realistic seismic models were absent to explain the observation. This study proposes models in which the gas hydrate concentrations vary in proportion to the porosity. Where gas hydrate concentrations are greater in more porous media, a significant amplitude blanking can be achieved with relatively low interval velocity. Depending on the amount of gas hydrate concentration in the pore space, reflection amplitudes from hydrate-bearing sediments can be much less, less or greater than those from corresponding non-hydrate-bearing sediments.

  6. Actinic defect counting statistics over 1 cm2 area of EUVL mask blank

    SciTech Connect

    Jeong, Seongtae; Lai, Chih-Wei; Rekawa, Seno; Walton, Chris W.; Bokor, Jeffrey

    2000-02-18

    As a continuation of comparison experiments between EUV inspection and visible inspection of defects on EUVL mask blanks, we report on the result of an experiment where the EUV defect inspection tool is used to perform at-wavelength defect counting over 1 cm{sup 2} of EUVL mask blank. Initial EUV inspection found five defects over the scanned area and the subsequent optical scattering inspection was able to detect all of the five defects. Therefore, if there are any defects that are only detectable by EUV inspection, the density is lower than the order of unity per cm2. An upgrade path to substantially increase the overall throughput of the EUV inspection system is also identified in the manuscript.

  7. Fill in the blank: culture jamming and the advertising of agency.

    PubMed

    Lambert-Beatty, Carrie

    2010-01-01

    This article is a review on billboard liberation and some other proj-ects that develop the idea of talking back or over advertising in a playful and youthful way. In one of them, Ji Lee's Bubble Project, an artist places blank thought-bubble stickers on street advertisements and waits to see what people write on them, completing the work of art and transgression. In other initiative, blank pages with the word God were placed around the city in place of advertising, inviting people to complete the prayer/complaint and to participate in a Suggestion Box, a project that collected "suggestions" from people out in the street. A review of playful and youthful ways to "rebel" against the impositions of powers like media and advertising. PMID:20391621

  8. A Novel Approach to the Determination of Forming Limit Diagrams for Tailor-Welded Blanks

    NASA Astrophysics Data System (ADS)

    Mamusi, Hossein; Masoumi, Abolfazl; Hashemi, Ramin; Mahdavinejad, Ramazanali

    2013-11-01

    This paper presents the results of simulated hemispherical die stretching of laser-welded, low carbon steel (ST12 and ST14) blanks of various thicknesses. The simulations were designed to produce forming limit diagrams (FLDs) for the tailor-welded blanks. Multiple criteria, including the second time derivatives of major strain, thickness strain, and equivalent plastic strain extracted from the strain history of simulations, were used to accurately detect the start of necking in FLDs. This is to say that necking starts when the second derivative of the thickness strain, major strain or plastic strain reaches its maximum value. Knowing the onset of necking, one can measure the major and minor strains at the critical area and produce the corresponding FLD. Results from the proposed method and those from experimental tests are compared to demonstrate the efficiency of the proposed method.

  9. Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer

    DOEpatents

    Cardinale, Gregory F.

    2002-01-01

    A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.

  10. High-throughput automatic defect review for 300mm blank wafers with atomic force microscope

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2015-03-01

    While feature size in lithography process continuously becomes smaller, defect sizes on blank wafers become more comparable to device sizes. Defects with nm-scale characteristic size could be misclassified by automated optical inspection (AOI) and require post-processing for proper classification. Atomic force microscope (AFM) is known to provide high lateral and the highest vertical resolution by mechanical probing among all techniques. However, its low throughput and tip life in addition to the laborious efforts for finding the defects have been the major limitations of this technique. In this paper we introduce automatic defect review (ADR) AFM as a post-inspection metrology tool for defect study and classification for 300 mm blank wafers and to overcome the limitations stated above. The ADR AFM provides high throughput, high resolution, and non-destructive means for obtaining 3D information for nm-scale defect review and classification.

  11. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  12. Additional evidence of EUV blank defects first seen by wafer printing

    NASA Astrophysics Data System (ADS)

    Jonckheere, Rik; Van den Heuvel, Dieter; Bret, Tristan; Hofmann, Thorsten; Magana, John; Aharonson, Israel; Meshulach, Doron; Hendrickx, Eric; Ronse, Kurt

    2011-11-01

    First experimental evidence is given that a second generation blank inspection tool has missed a number of printing reticle defects caused by an imperfection of its EUV mirror, i.e., so-called multi-layer defects (ML-defects). This work continued to use a combination of blank inspection (BI), patterned mask inspection (PMI) and wafer inspection (WI) to find as many as possible printing defects on EUV reticles. The application of more advanced wafer inspection, combined with a separate repeater analysis for each of the multiple focus conditions used for exposure on the ASML Alpha Demo Tool (ADT) at IMEC, has allowed to increase the detection capability for printing ML-defects. It exploits the previous finding that ML-defects may have a through-focus printing behavior. They cause a different grade of CD impact on the pattern in their neighborhood, depending on the focus condition. Subsequent reticle review is done on the corresponding locations with both SEM (Secondary Electron Microscope) and AFM (Atomic Force Microscope). This review methodology has allowed achieving clear evidence of printing ML defects missed by this BI tool, despite of a too high nuisance rate, reported before. This establishes a next step in the investigation how essential actinic blank inspection (ABI) is. Presently it is the only known technique whose detection capability is considered independent from the presence of a (residual) distortion of the multi-layer at the top surface. This is considered an important asset for blank inspection, because the printability of a ML-defect in EUV lithography is determined by the distortion throughout the multilayer, not that at the top surface.

  13. Study Of Various Initial Blank Shapes To Minimize The Earing In The Different Shaped Formed Parts Using Finite Element Analysis

    SciTech Connect

    Desai, Sharvari G.; Date, P P.; Pardeshi, R. H.

    2005-08-05

    In deep drawing process planar anisotropy is found to be a major problem. A high planar anisotropy causes earing in the formed cup (formation of wavy edge at the top). In this paper anisotropic behavior of stainless steel sheet is studied for drawn rectangular, circular and octagonal shaped parts. Finite element based simulation software PAMSTAMP2G is used to simulate the forming of the octagonal deep drawn cup. It is well known that the blank shape and size greatly affects the strain distribution in deep drawing process. Earing is a major problem due to highly anisotropic behavior of the selected material. To optimize the initial blank shape to minimize earing, the flow of material was observed at various steps during the forming and accordingly blank shapes were modified. Four blank shapes were considered to minimize earing for the forming of octagonal product. Finally a circular blank was used for forming of the octagonal part which gave minimum earing. The thickness strain distribution for circular shaped blank is better as compared to other blank shapes.

  14. Predetermined Flake Production at the Lower/Middle Paleolithic Boundary: Yabrudian Scraper-Blank Technology

    PubMed Central

    Shimelmitz, Ron; Kuhn, Steven L.; Ronen, Avraham; Weinstein-Evron, Mina

    2014-01-01

    While predetermined débitage technologies are recognized beginning with the middle Acheulian, the Middle Paleolithic is usually associated with a sharp increase in their use. A study of scraper-blank technology from three Yabrudian assemblages retrieved from the early part of the Acheulo-Yabrudian complex of Tabun Cave (ca. 415–320 kyr) demonstrates a calculated and preplanned production, even if it does not show the same complexity and elaboration as in the Levallois technology. These scraper dominated assemblages show an organization of production based on an intensive use of predetermination blank technology already in place at the end of the Lower Paleolithic of the Levant. These results provide a novel perspective on the differences and similarities between the Lower and Middle Paleolithic industries. We suggest that there was a change in the paradigm in the way hominins exploited stone tools: in many Middle Paleolithic assemblages the potential of the stone tools for hafting was a central feature, in the Lower Paleolithic ergonometric considerations of manual prehension were central to the design of blanks and tools. PMID:25192429

  15. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  16. High-Speed Friction-Stir Welding To Enable Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current joining technologies for automotive aluminum alloys are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding has been traditionally applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum welded components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability utilizing a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  17. Use of non-quadratic yield surfaces in design of optimal deep-draw blank geometry

    SciTech Connect

    Logan, R.W.

    1995-12-01

    Planar anisotropy in the deep-drawing of sheet can lead to the formation of ears in cylindrical cups and to undesirable metal flow in the blankholder in the general case. For design analysis purposes in non-linear finite-element codes, this anisotropy is characterized by the use of an appropriate yield surface which is then implemented into codes such as DYNA3D . The quadratic Hill yield surface offers a relatively straightforward implementation and can be formulated to be invariant to the coordinate system. Non-quadratic yield surfaces can provide more realistic strength or strain increment ratios, but they may not provide invariance and thus demand certain approximations. Forms due to Hosford and Badat et al. have been shown to more accurately address the earning phenomenon. in this work, use is made of these non-quadratic yield surfaces in order to determine the optimal blank shape for cups and other shapes using ferrous and other metal blank materials with planar anisotropy. The analyses are compared to previous experimental studies on non-uniform blank motion due to anisotropy and asymmetric geometry.

  18. A study of storage life extension for high performance chemically amplified resist coated blanks

    NASA Astrophysics Data System (ADS)

    Yang, Sin-Ju; Seo, Sung-Min; Ko, Sang-Hoon; Cha, Han-Sun; Kang, Geung-Won; Nam, Kee-Soo; Seo, Woong-Won; Jung, Woo-Kyun; Cho, Hyun-Kyoon; Kim, Jin-Min; Choi, Sang-Soo

    2005-06-01

    The importance of advanced e-beam writing system and chemically amplified resist (CAR) coated blank is increasing gradually in high-end grade photomask manufacture according to CD embodiment of 90 nm and beyond technology node requiring because of the shrinkage of design rule in the semiconductor industry. However, many studies have been reported that CAR has several troubles and especially, CAR sensitivity change is occurred by airborne molecular contamination (AMC). So, the storage life of CAR coated blank is shortened. This problem may cause the difficulty of high-end grade photomask manufacture because it is hard to secure stable mean to target (MTT) and CD uniformity by sensitivity change, T-top profile and footing profile. Therefore, the purpose of this paper is to investigate the storage life extension for high performance CAR coated blank through improvement of the packing materials. Firstly, a variety of packing materials were collected and the selected packing materials were analyzed by Automatic Thermal Desorption Gas Chromatograph/Mass Spectrometer (ATD GC/MS) and Ion Chromatograph (IC) to examine AMC generated from the packing materials. As a result, molecular condensables such as alcohols, hydrocarbons and fatty acids were detected and molecular acids and molecular bases those are NH4+, Cl-, NOx- and SOx- were also detected from the packing materials, respectively. From the above results, we selected the best packing materials which generated the least AMC and the worst packing materials which generated the most AMC. Additionally, we verified photomask process with CAR coated blanks which were packed with those packing materials with post coating delay (PCD) by 50 kV e-beam writing system. In consequence, dose to clear (DTC) showed 4.6 μC/cm2 at 0 day PCD for both of the best and the worst packing materials of CAR coated blank. After 90 days PCD, DTC variation was only 0.4 μC/cm2 for the best packing materials, but DTC variation of 4.0 μC/cm2

  19. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  20. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  1. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  2. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  3. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  4. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  5. Designing single-beam multitrapping acoustical tweezers.

    PubMed

    Silva, Glauber T; Baggio, André L

    2015-02-01

    The concept of a single-beam acoustical tweezer device which can simultaneously trap microparticles at different points is proposed and demonstrated through computational simulations. The device employs an ultrasound beam produced by a circular focused transducer operating at 1 MHz in water medium. The ultrasound beam exerts a radiation force that may tweeze suspended microparticles in the medium. Simulations show that the acoustical tweezer can simultaneously trap microparticles in the pre-focal zone along the beam axis, i.e. between the transducer surface and its geometric focus. As acoustical tweezers are fast becoming a key instrument in microparticle handling, the development of acoustic multitrapping concept may turn into a useful tool in engineering these devices. PMID:25304994

  6. Cone of Darkness: Finding Blank-sky Positions for Multi-object Wide-field Observations

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.

    2014-05-01

    We present the Cone of Darkness, an application to automatically configure blank-sky positions for a series of stacked, wide-field observations, such as those carried out by the SAMI instrument on the Anglo-Australian Telescope (AAT). The Sydney-AAO Multi-object Integral field spectrograph (SAMI) uses a plug-plate to mount its 13×61 core imaging fibre bundles (hexabundles) in the optical plane at the telescope's prime focus. To make the most efficient use of each plug-plate, several observing fields are typically stacked to produce a single plate. When choosing blank-sky positions for the observations it is most effective to select these such that one set of 26 holes gives valid sky positions for all fields on the plate. However, when carried out manually this selection process is tedious and includes a significant risk of error. The Cone of Darkness software aims to provide uniform blank-sky position coverage over the field of observation, within the limits set by the distribution of target positions and the chosen input catalogs. This will then facilitate the production of the best representative median sky spectrum for use in sky subtraction. The application, written in C++, is configurable, making it usable for a range of instruments. Given the plate characteristics and the positions of target holes, the software segments the unallocated space on the plate and determines the position which best fits the uniform distribution requirement. This position is checked, for each field, against the selected catalog using a TAP ADQL search. The process is then repeated until the desired number of sky positions is attained.

  7. Particle transport in plasma systems for development of EUVL mask blanks

    NASA Astrophysics Data System (ADS)

    Stoltz, Peter; Likhanskii, Alex; Zhou, Chuandong; Jindal, Vibhu; Kearney, Patrick

    2012-11-01

    Defect transport in development of EUVL mask blanks is an important issue for the near-term of the industry. One main issue affecting transport is how the defect may charge in the presence of plasma. In some cases, plasma may act to contain defects away from the mask surface. We show simulation results of the effect of plasma on defect transport demonstrating how the formation of plasma sheathes and a plasma potential act to confine highly negatively charged particles, such as defect particles would be.

  8. Actual defect observation results of an extreme-ultraviolet blank mask by coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Harada, Tetsuo; Hashimoto, Hiraku; Amano, Tsuyoshi; Kinoshita, Hiroo; Watanabe, Takeo

    2016-03-01

    Extreme-ultraviolet (EUV) lithography poses a number of challenges, one of which is the production of a defect-free mask. To observe the defects on an EUV mask in a quantitative phase image, we have developed a microcoherent EUV scatterometry microscope. The intensity and phase images of the defects are reconstructed using ptychography. We observe four actual defects on an EUV blank mask using the microscope. The reconstructed shapes of the actual defects correspond well to those measured by atomic force microscopy (AFM). Our microscope should therefore function as an essential review tool in characterizing defects.

  9. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  10. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Beach, Kirk; Carter, Stephen; Chandler, Wayne; Curra, Francesco; Kaczkowski, Peter; Keilman, George; Khokhlova, Vera; Martin, Roy; Mourad, Pierre; Vaezy, Shahram

    2000-07-01

    In cases of severe injury, physicians speak of a "golden hour"—a brief grace period in which quickly applied, proper therapy can save the life of the patient. Much of this mortality results from exsanguination, i.e., bleeding to death—often from internal hemorrhage. The inability of a paramedic to treat breaches in the vascular system deep within the body or to stem the loss of blood from internal organs is a major reason for the high level of mortality associated with blunt trauma. We have undertaken an extensive research program to treat the problem of internal bleeding. Our approach is as follows: (a) We use scanning ultrasound to identify internal bleeding and hemorrhage, (b) we use ultrasound imaging to locate specific breaches in the vascular system, both from damaged vessels and gross damage to the capillary bed, and (c) we use High Intensity Focused Ultrasound (HIFU) to treat the damaged region and to induce hemostasis. We present a general review of this research with some emphasis on the role of nonlinear acoustics.

  11. Growth and Printability of Multilayer Phase Defects on EUV MaskBlanks

    SciTech Connect

    Liang, Ted; Ultanir, Erdem; Zhnag, Guojing; Park, Seh-Jin; Anderson, Erik; Gullikson, Eric; Naulleau, Patrick; Salmassi, Farhad; Mirkarimi, Paul; Spiller, Eberhard; Baker, Sherry

    2007-06-10

    The ability to fabricate defect-free mask blanks is a well-recognized challenge in enabling extreme ultraviolet lithography (EUVL) for semiconductor manufacturing. Both the specification and reduction of defects necessitate the understanding of their printability and how they are generated and grow during Mo-Si multilayer (ML) deposition. A ML phase defect can be depicted by its topographical profile on the surface as either a bump or pit, which is then characterized by height or depth and width. The complexity of such seemingly simple phase defects lies in the many ways they can be generated and the difficulties of measuring their physical shape/size and optical effects on printability. An effective way to study phase defects is to use a programmed defect mask (PDM) as 'model' test sample where the defects are produced with controlled growth on a ML blank and accurate placement in varying proximity to absorber patterns on the mask. This paper describes our recent study of ML phase defect printability with resist data from exposures of a ML PDM on the EUV micro-exposure tool (MET, 5X reduction with 0.3NA).

  12. Formability of Friction Stir-Welded Blanks with Different Thickness Ratios

    NASA Astrophysics Data System (ADS)

    Kolahgar, Sina; Ghaffarpour, Morteza; Habibi, Niloufar; Kokabi, Amir Hossein; Akbarzadeh, Abbas

    2016-05-01

    Welded sheets with different thicknesses are one of the interesting types of tailor-welded blanks (TWBs) that are widely used in metal-forming industries. In the present work, the formability behavior of different 1100-aluminum TWBs was studied. In this regard, the TWBs were made with different thickness ratios by using friction stir welding (FSW) at different welding rotational speeds ( ω). The thickness ratios of 1.0, 1.3, and 1.7 were investigated where the thinner sheets had 1.5 mm thick for all conditions; i.e., the volume of welded material increased when the thickness ratio increased. Macrostructural observations, mechanical investigations, and sheet-forming limit tests were conducted. The results indicate that increasing ω leads to increasing the weld nugget size up to a maximum level and welding became impossible at higher ω. Furthermore, increasing heat input during FSW, the ultimate tensile strength of welds reduced in comparison with the initial cold-worked base metal. However, the ductility improved by increasing the heat input, which produced the sound welds. Formability studies of the friction stir-welded blanks with equal thicknesses have shown that the forming ratio improves up to 2.8 times the base metal. Forming limit curves also illustrate that increasing the thickness ratio of TWB causes the formability ratio to decrease steadily. Thus, when the thickness ratio becomes 1.7, the formability of TWB decreases approximately to the thinnest base metal.

  13. Optimization of the Blank Holder Force Using the Neural Network Algorithm

    NASA Astrophysics Data System (ADS)

    Albut, A.; Ciubotaru, V.; Radu, C.; Olaru, I.

    2011-08-01

    In case of sheet metal forming the main dimensional errors are caused by the springback phenomena. The present work deals with numerical simulation related to draw bending and springback of U-shaped parts. The current paper is trying to prove out the important role of the blank holder force variation during the forming process. The Dynaform 5.6 software was used to simulate the forming process, in which the blank holder force varies linearly in four steps between 20 and 50 kN. The factorial simulations test plan was made using the Design Experts 7.0 software and 72 simulations were necessarily to cover completely the variation domain. The part obtained after each simulation is analyzed and measured to quantify the errors caused by springback. Parameters as: angle between flange and sidewall, angle between sidewall and part bottom, chamfer radius between part bottom and sidewall or chamfer radius between sidewall and flange are recorded in a data base. The initial simulations plan together with the generated data base is loaded in a neural network software called NeuroSolution 5. The presented optimization method is a good method to reduce the springback effect. The inconvenient of this method is the large number of simulations tests that must be done and the large amount of data necessarily as input for the NeuroSolution software.

  14. Technique for rapid at-wavelength inspection of extreme ultraviolet mask blanks

    SciTech Connect

    Spector, S. J.; White, D. L.; Tennant, D. M.; Ocola, L. E.; Novembre, A. E.; Peabody, M. L.; Wood, O. R. II

    1999-11-01

    We have developed two new methods for at-wavelength inspection of mask blanks for extreme-ultraviolet (EUV) lithography. In one method an EUV photoresist is applied directly to a mask blank which is then flood exposed with EUV light and partially developed. In the second method, the photoresist is applied to an EUV transparent membrane that is placed in close proximity to the mask and then exposed and developed. Both reflectivity defects and phase defects alter the exposure of the resist, resulting in mounds of resist at defect sites that can then be located by visual inspection. In the direct application method, a higher contrast resist was shown to increase the height of the mounds, thereby improving the sensitivity of the technique. In the membrane method, a holographic technique was used to reconstruct an image of the mask, revealing the presence of very small defects, approximately 0.2 {mu}m in size. The demonstrated clean transfer of phase and amplitude defects to resist features on a membrane will be important when flagging defects in an automatic inspection tool. (c) 1999 American Vacuum Society.

  15. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  16. Acoustic-to-seismic coupling variations in cold regions

    NASA Astrophysics Data System (ADS)

    Albert, Donald G.

    2002-05-01

    Experiments were conducted to investigate the variations that may occur in acoustic-to-seismic coupling arising from changes in local near-surface conditions. The emphasis of the investigations was on cold regions, where many different surface conditions exist and where conditions may change over a short time period from wind, precipitation, freezing, or thawing. The measurements were conducted by recording blank pistol shots with surface geophones and microphones. Results are presented for grassland, thin and thick seasonal snow covers, polar firn, thin grounded ice, thick glacier ice, and floating river ice. The ratio of induced ground motion to acoustic pressure ranged from 0.5 to 20 micro-meters per second per Pascal. Often two arrivals were detected on the geophones, a high-speed seismic compressional wave followed by the air wave. [Work funded by the U.S. Army.

  17. Prediction of cracks in continuously cast steel beam blank through fully coupled analysis of fluid flow, heat transfer, and deformation behavior of a solidifying shell

    SciTech Connect

    Lee, J.E.; Yeo, T.J.; Oh, K.H.; Yoon, J.K.; Yoon, U.S.

    2000-01-01

    A mathematical model has been developed for the prediction of cracks in the continuously cast steel beam blank through the fully coupled analysis of fluid flow, heat transfer, and deformation behavior of a solidifying shell. Fluid flow and heat transfer in the strand mold were analyzed with a three-dimensional (3-D) finite-volume method (FVM). For the complex geometry of the beam blank, a body-fitted coordinate (BFC) system was employed, Thermo-elastic-plastic deformation behavior in the strand was analyzed using the finite-element method (FEM) based on the two-dimensional (2-D) slice model. The thermal fields of the strand calculated with the FVM were used in the analysis of the deformation behavior of the strand. Through the iterative analysis of the fluid flow, heat-transfer, and deformation behavior, the coupling parameter of the heat-transfer coefficient between the strand and the mold was obtained. In order to describe the thermophysical properties and thermomechanical behavior of steel in the mushy zone, the microsegregation of solute elements was assessed. Consequently, some characteristic temperatures of steel as well as variations of phase fractions with temperature were determined. The probability of cracking in the strand, originating form an interdendritic liquid film, was quantified as a crack susceptibility coefficient. Recirculating flows were developed in the web and flange-tip regions. The development of a solidifying shell in the flange-center region was retarded by the inlet flow from a submerged entry nozzle (SEN). An air gap was formed mainly near the flange-tip corner. Surface cracks in the web and fillet regions and internal cracks in the flange-tip region were predicted.

  18. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with sound visualization, acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-re verberation methods, both essential for visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, Can we see two birds singing or one bird with two beaks?

  19. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with "sound visualization," acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-reverberation methods, both essentialfor visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, "Can we see two birds singing or one bird with two beaks?"

  20. Actinic detection of multilayer defects on EUV mask blanks using LPP light source and dark-field imaging

    NASA Astrophysics Data System (ADS)

    Tezuka, Yoshihiro; Ito, Masaaki; Terasawa, Tsuneo; Tomie, Toshihisa

    2004-05-01

    The development of defect-free mask blanks including inspection is one of the big challenges for the implementation of extreme ultraviolet lithography (EUVL), especially when the introduction of EUVL is rescheduled to a later technology node. Among others, inspection of multilayer coated mask blanks with no oversight of critical defects and with minimal detection of false defects is a challenging issue for providing mask blanks free of defects or with thorough characterization of any existing defects. MIRAI Project has been developing a novel actinic (at-wavelength) inspection tool for detecting critical multilayer defects using a dark-field imaging and a laser-produced plasma (LPP) light source, expecting better sensitivity and better correlation with printability. The first experimental set up is completed for proof-of-concept (POC) demonstration using 20x Schwarzschild imaging optics and a backsideilluminated CCD. An in-house LPP light source is integrated to optimally illuminate the area of interest by EUV with a wavelength of 13.5nm. For its illuminator, a multilayer-coated elliptical mirror is used to illuminate a mask blank with the EUV that is collected within a wide solid angle from the light source. The first EUV dark-field image is obtained from a mask blank with programmed multilayer defects which are manufactured by locating well-defined patterns before depositing Mo/Si multilayer on EUV mask substrate. All the fabricated multilayer defects down to 70nm in width and 3.5nm in height are detected as clear signals that are distinguishable from the background intensity arising from the scattering by the surface roughness of the multilayer-coated mask blank. We have also detected a phase defect as low as 2nm in height. False defect count was not only zero within the area of view but also statistically confirmed to be less than one within the whole area of a mask blank assuming the extrapolation of observed fluctuation of background intensity is applicable

  1. What Is an Acoustic Neuroma

    MedlinePlus

    ... Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, is a rare benign tumor of the ... Acoustic Neuroma? An acoustic neuroma, known as a vestibular schwannoma, is a benign (non-cancerous) growth that ...

  2. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  3. Warm Deep Drawing of Rectangular Parts of AZ31 Magnesium Alloy Sheet Adopting Variable Blank Holder Force

    NASA Astrophysics Data System (ADS)

    Ying-hong, Peng; Qun-feng, Chang; Da-yong, Li; Xiao-qin, Zeng

    2007-05-01

    AZ31 magnesium alloy sheet with good shape and formability is fabricated by warm cross rolling. Uniaxial tensile tests are conducted using a Gleeble 3500 thermal - mechanical simulator, and the mechanical properties of AZ31 magnesium alloy sheet are analyzed. A warm deep drawing process of square part is also simulated by the finite element method. The influences of blank holder force on the formability are numerically investigated. A double-action hydraulic press that can realize adjustable blank holder forces is developed and its working principle and control system are introduced. Some warm deep drawing experiments of square parts of AZ31 magnesium alloy sheet are also performed. Different variation schemes of the blank holder force with the stroke of the punch are tested, and the experiment results are compared. Results show that the suitable blank holder force variation scheme is a ladder curve with the punch stroke. Adopting the variable blank holder force technique can improve 13.2% of the drawing depth of square parts of AZ31 magnesium alloy sheet.

  4. Warm Deep Drawing of Rectangular Parts of AZ31 Magnesium Alloy Sheet Adopting Variable Blank Holder Force

    SciTech Connect

    Peng Yinghong; Chang Qunfeng; Li Dayong; Zeng Xiaoqin

    2007-05-17

    AZ31 magnesium alloy sheet with good shape and formability is fabricated by warm cross rolling. Uniaxial tensile tests are conducted using a Gleeble 3500 thermal - mechanical simulator, and the mechanical properties of AZ31 magnesium alloy sheet are analyzed. A warm deep drawing process of square part is also simulated by the finite element method. The influences of blank holder force on the formability are numerically investigated. A double-action hydraulic press that can realize adjustable blank holder forces is developed and its working principle and control system are introduced. Some warm deep drawing experiments of square parts of AZ31 magnesium alloy sheet are also performed. Different variation schemes of the blank holder force with the stroke of the punch are tested, and the experiment results are compared. Results show that the suitable blank holder force variation scheme is a ladder curve with the punch stroke. Adopting the variable blank holder force technique can improve 13.2% of the drawing depth of square parts of AZ31 magnesium alloy sheet.

  5. Genetic algorithm optimization of the forming process in case of a U-shaped part made from tailor welded blanks

    NASA Astrophysics Data System (ADS)

    Aurelian, Albut

    2013-05-01

    This paper presents an optimization method to minimize the springback phenomenon, which generate the main dimensional errors in case of sheet metal forming. The present work deals with numerical simulation related to draw bending and springback of U-shaped part made from tailor welded blanks. The base materials from tailor welded blanks have different springback behaviours, fact that must be taken in consideration in the optimisation process. The Dynaform 5.8.1 software was used to simulate the forming process, in which the blank holder is segmented in two parts in order to apply different holding force for each material. In this research the blank holder forces and the deformation speed take different numerical values. The factorial simulations test plan was made using the Design Experts 7.0 software to cover completely the variation domain. The part obtained after each simulation is analyzed and measured to quantify the errors caused by springback. Parameters as: angle between flange and sidewall, angle between sidewall and part bottom are recorded in a data base. The initial simulations plan together with the obtained results is used to understand the influence of the variable parameters on the springback behaviour of the U-shaped part made from tailor welded blanks. The gained knowledge is used to generate the objective function required by the genetic algorithm optimization method.

  6. Recent advances in SEMATECH's mask blank development program, the remaining technical challenges, and future outlook

    NASA Astrophysics Data System (ADS)

    Goodwin, Frank; Kearney, Patrick; Kadaksham, Arun J.; Wurm, Stefan

    2013-10-01

    film for the device. In addition to the increase in complexity of the mask, introduction of EUVL requires infrastructure development of new substrate, mask blank, and finished reticle inspection tools and techniques for handling and storage of a mask without a pellicle. This paper will highlight recent advances in the ability to produce pilot line quality EUV mask blanks to meet the near-term requirements and review the existing technology gaps which must be closed to extend the current capability to meet HVM needs. A special focus will be put on substrate and mask blank defect densities; other process and infrastructure challenges will also be discussed.

  7. Using acoustic cavitation to enhance chemotherapy of DOX liposomes: experiment in vitro and in vivo.

    PubMed

    Zhao, Ying-Zheng; Dai, Dan-Dan; Lu, Cui-Tao; Lv, Hai-Feng; Zhang, Yan; Li, Xing; Li, Wen-Feng; Wu, Yan; Jiang, Lei; Li, Xiao-Kun; Huang, Pin-Tong; Chen, Li-Juan; Lin, Min

    2012-09-01

    Experiments in vitro and in vivo were designed to investigate tumor growth inhibition of chemotherapeutics-loaded liposomes enhanced by acoustic cavitation. Doxorubicin-loaded liposomes (DOX liposomes) were used in experiments to investigate acoustic cavitation mediated effects on cell viability and chemotherapeutic function. The influence of lingering sensitive period after acoustic cavitation on tumor inhibition was also investigated. Animal experiment was carried out to verify the practicability of this technique in vivo. From experiment results, blank phospholipid-based microbubbles (PBM) combined with ultrasound (US) at intensity below 0.3 W/cm² could produce acoustic cavitation which maintained cell viability at high level. Compared with DOX solution, DOX liposomes combined with acoustic cavitation exerted effective tumor inhibition in vitro and in vivo. The lingering sensitive period after acoustic cavitation could also enhance the susceptibility of tumor to chemotherapeutic drugs. DOX liposomes could also exert certain tumor inhibition under preliminary acoustic cavitation. Acoustic cavitation could enhance the absorption efficiency of DOX liposomes, which could be used to reduce DOX adverse effect on normal organs in clinical chemotherapy. PMID:22188116

  8. Symptoms of Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  9. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  10. Metal pins fired from unmodified blank cartridge guns and very small calibre weapons--technical and wound ballistic aspects.

    PubMed

    Rabl, W; Riepert, T; Steinlechner, M

    1998-01-01

    Blank cartridge guns are generally regarded as being harmless and are not considered to be firearms in most countries. A comparison of the legal situations in Germany and Austria concerning weapons is given. There have been several reports of serious injuries and even fatalities due to these weapons. Ballistic experiments show that even unmodified blank cartridge guns and very small calibre weapons can fire wire nails and can inflict potentially fatal injuries even at distances of 50 cm. Two serious injuries inflicted by metal pins fired from a blank cartridge gun and a very small calibre weapon are reported. These cases suggest that such weapons should also be considered handguns in the legal sense. PMID:9646170

  11. Statistical investigation of a blank holder force distribution system for a multi-step deep drawing process

    NASA Astrophysics Data System (ADS)

    Tommerup, So/ren; Endelt, Benny; Nielsen, Karl Brian

    2013-12-01

    This paper investigates process control possibilities obtained from a new tool concept for adaptive blank holder force (BHF) distribution. The investigation concerns the concept's application to a multi-step deep drawing process exemplified by the NUMISHEET2014 benchmark 2: Springback of draw-redraw pan. An actuator system, where several cavities are embedded into the blank holder plate is used. By independently controlling the pressure of hydraulic fluid in these cavities, a controlled deflection of the blank holder plate surface can be achieved whereby the distribution of the BHF can be controlled. Using design of experiments, a full 3-level factorial experiments is conducted with respect to the cavity pressures, and the effects and interactions are evaluated.

  12. Experimental Investigations on Formability of Aluminum Tailor Friction Stir Welded Blanks in Deep Drawing Process

    NASA Astrophysics Data System (ADS)

    Kesharwani, R. K.; Panda, S. K.; Pal, S. K.

    2015-02-01

    In the present work, tailor friction stir welded blanks (TFSWBs) were fabricated successfully using 2.0-mm-thick AA5754-H22 and AA5052-H32 sheet metals with optimized tool design and process parameters. Taguchi L9 orthogonal array has been used to design the friction stir welding experiments, and the Grey relational analysis has been applied for the multi objective optimization in order to maximize the weld strength and total elongation reducing the surface roughness and energy consumption. The formability of the TFSWBs and parent materials was evaluated and compared in terms of limiting drawing ratio (LDR) using a conventional circular die. It was found that the formability of the TFSWBs was comparable with that of both the parent materials without failure in the weldment. A modified conical tractrix die (MCTD) was proposed to enhance the LDR of the TFSWBs. It was found that the formability was improved by 27% using the MCTD.

  13. Repair of localized defects in multilayer-coated reticle blanks for extreme ultraviolet lithography

    DOEpatents

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.

    2004-11-23

    A method is provided for repairing defects in a multilayer coating layered onto a reticle blank used in an extreme ultraviolet lithography (EUVL) system. Using high lateral spatial resolution, energy is deposited in the multilayer coating in the vicinity of the defect. This can be accomplished using a focused electron beam, focused ion beam or a focused electromagnetic radiation. The absorbed energy will cause a structural modification of the film, producing a localized change in the film thickness. The change in film thickness can be controlled with sub-nanometer accuracy by adjusting the energy dose. The lateral spatial resolution of the thickness modification is controlled by the localization of the energy deposition. The film thickness is adjusted locally to correct the perturbation of the reflected field. For example, when the structural modification is a localized film contraction, the repair of a defect consists of flattening a mound or spreading out the sides of a depression.

  14. A study of defects on EUV mask using blank inspection, patterned mask inspection, and wafer inspection

    SciTech Connect

    Huh, S.; Ren, L.; Chan, D.; Wurm, S.; Goldberg, K. A.; Mochi, I.; Nakajima, T.; Kishimoto, M.; Ahn, B.; Kang, I.; Park, J.-O.; Cho, K.; Han, S.-I.; Laursen, T.

    2010-03-12

    The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into high volume manufacturing. yet link data is available for understanding native defects on real masks. In this paper, a full-field EUV mask is fabricated to investigate the printability of various defects on the mask. The printability of defects and identification of their source from mask fabrication to handling were studied using wafer inspection. The printable blank defect density excluding particles and patterns is 0.63 cm{sup 2}. Mask inspection is shown to have better sensitivity than wafer inspection. The sensitivity of wafer inspection must be improved using through-focus analysis and a different wafer stack.

  15. Actinic detection of sub-100 nm defects on extreme ultraviolet lithography mask blanks

    SciTech Connect

    Jeong, Seongtae; Johnson, Lewis; Rekawa, Seno; Walton, Chris C.; Prisbrey, Shon T.; Tejnil, Edita; Underwood, James H.; Bokor, Jeffrey; EECS Department, University of California, Berkeley, California 94720

    1999-11-01

    We present recent experimental results from a prototype actinic (operates at the 13 nm extreme ultraviolet wavelength) defect inspection system for extreme ultraviolet lithography mask blanks. The defect sensitivity of the current actinic inspection system is shown to reach 100 nm in experiments with programmed defects. A method to cross register and cross correlate between the actinic inspection system and a commercial visible-light scattering defect inspection system is also demonstrated. Thus, random, native defects identified using the visible-light tool can reliably be found and scanned by our actinic tool. We found that native defects as small as 86 nm (as classified by the visible-light tool) were detectable by the actinic tool. These results demonstrate the capability of this tool for independent defect counting experiments. (c) 1999 American Vacuum Society.

  16. [Suicidal shot in the mouth with an unmodified blank cartridge pistol].

    PubMed

    Bungardt, Nikola; Dettmeyer, Reinhard; Madea, Burkhard

    2005-01-01

    In the medicolegal literature reports of suicides with weapons designed for self-defence, especially gas pistols, are rare. We report on a suicide of a 54-year-old woman who fired a fatal shot in her mouth with an unmanipulated blank cartridge pistol, make Röhm RG 8, calibre 8 mm. The autopsy findings (lips and mucosa of the buccal vestibule without injuries, but extensive lesions of the tongue and the middle and rear third of the smooth palate) suggest that the shot was fired - as observed by a witness - with the barrel of the weapon inside the oral cavity. Both macroscopic inspection and histological investigations excluded the possibility that death was caused by an injury of the brain, in particular the brain stem. The immediate cause of death was deep aspiration of chyme with concurrent aspiration of blood. PMID:16134396

  17. Feasibility study of transmission of OTV camera control information in the video vertical blanking interval

    NASA Technical Reports Server (NTRS)

    White, Preston A., III

    1994-01-01

    The Operational Television system at Kennedy Space Center operates hundreds of video cameras, many remotely controllable, in support of the operations at the center. This study was undertaken to determine if commercial NABTS (North American Basic Teletext System) teletext transmission in the vertical blanking interval of the genlock signals distributed to the cameras could be used to send remote control commands to the cameras and the associated pan and tilt platforms. Wavelength division multiplexed fiberoptic links are being installed in the OTV system to obtain RS-250 short-haul quality. It was demonstrated that the NABTS transmission could be sent over the fiberoptic cable plant without excessive video quality degradation and that video cameras could be controlled using NABTS transmissions over multimode fiberoptic paths as long as 1.2 km.

  18. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  19. Backside defect printability for contact layer with different reticle blank material

    NASA Astrophysics Data System (ADS)

    Ning, Guoxiang; Holfeld, Christian; Fischer, Daniel; Ackmann, Paul; Holfeld, Andre; Kurth, Karin; Sczyrba, Martin; Hertzsch, Tino; Seltmann, Rolf; Ho, Angeline; GN, Fang H.

    2012-11-01

    Backside defects are out of focus during wafer exposure by the mask thickness and cannot be directly imaged on wafer. However, backside defects will induce transmission variation during wafer exposure. When the size of backside defect is larger than 200 microns, the shadow of such particles will locally change the illumination conditions of the mask patterns and may result in a long range critical dimension (CD) variation on wafer depending on numerical aperture (NA) and pupil shape. Backside defects will affect both wafer CD and critical dimension uniformity (CDU), especially for two-dimensional (2D) structures. This paper focuses on the printability of backside defects on contact layer using annular and quadrupole illumination mode, as well as using different reticle blank material. It also targets for gaining better understanding of critical sizes of backside defects on contact layer for different reticle blanks. We have designed and manufactured two test reticles with repeating patterns of 28nm and 40nm technology node of contact layers. Programmed chrome defects of varying size are placed on the backside opposite to the repeating front side patterns in order to measure the spatial variation of transmission and wafer CD. The test mask was printed on a bare silicon wafer, and the printed features measured for size by spatial sampling. We have investigated two contact layers with different illumination conditions. One is advance binary with single exposure; another is phase shift mask with double exposure. Wafer CD variation for different backside defect sizes are demonstrated for the two contact layers. The comparison between backside defect size with inter-field and intra-field CD variation is also discussed.

  20. Manufacture of Φ1.2m reaction bonded silicon carbide mirror blank CFID

    NASA Astrophysics Data System (ADS)

    Zhang, Ge; Zhao, Rucheng; Zhao, Wenxing; Bao, Jianxun

    2010-05-01

    Silicon carbide (SiC) is a new type candidate material for large-scale lightweight space mirror. Its low thermal distortion, high stiffness, fine optical quality and dimensional stability, make SiC an ideal material for large space born telescope. Since ten years Changchun institute optics, fine mechanics and physics (CIOMP) has developed reaction bonded SiC (RB-SiC) technology for space application, and can fabricate RB-SiC mirror with scale less than 1.0 meter for telescope. The green body is prepared with gel-casting method which is an attractive new ceramic forming process for making high-quality, complex-shaped ceramic parts. And then unmolding, drying, binder burning out, reacting bonded, the RB-SiC can be obtained. But with the development of space-born or ground telescope, the scale of primary mirror has exceeded 1.0 meter. So CIOMP has developed an assembly technique which called novel reaction-formed joint technology for larger RB-SiC mirror blank. The steps include joining of green bodies with mixture comprised of SiC particles and phenolic resin etc, firing, machining and sintering. Joining the Φ1.2 meter RB-SiC mirror blank by the novel reaction-formed joint technology. And testing the welding layer's performance, the results show that the thickness of 54-77μm, the microstructure and thermal property can be comparable to the substrate and the mechanical property are excellent in bending strength of 307MPa.

  1. Properties of acoustic sources in the Sun

    NASA Technical Reports Server (NTRS)

    Kumar, Pawan

    1994-01-01

    The power spectrum of solar acoustic oscillations shows peaks extending out to frequencies much greater than the acoustic cutoff frequency of approximately 5.3 mHz, where waves are no longer trapped. Kumar & Lu (1991) proposed that these peaks arise from the interference of traveling waves which are generated by turbulent convection. According to this model, the frequencies of the peaks in the power spectrum depend on the static structure of the Sun as well as the radial location of the sources. Kumar & Lu used this idea to determine the depth of the acoustic sources. However, they ignored dissipative effects and found that the theoretically computed power spectrum was falling off much more rapidly than the observed spectrum. In this paper, we include the interaction of radiation with acoustic waves in the computation of the power spectrum. We find that the theoretically calculated power spectra, when radiative damping is included are in excellent agreement with the observed power spectra over the entire observed frequency range of 5.3 to 7.5 mHz above the acoustic cutoff frequency. Moreover, by matching the peak frequencies in the observed and theoretical spectra we find the mean depth of acoustic sources to be 140 +/- 60 km below the photosphere. We show that the spectrum of solar turbulence near the top of the solar convection zone is consistent with the Kolmogorov spectrum, and that the observed high frequency power spectrum provides strong evidence that the acoustic sources in the Sun are quadrupolar. The data, in fact, rules out dipole sources as significant contributors to acoustic wave generation in the Sun. The radial extent of the sources is poorly determined and is estimated to be less than about 550 km.

  2. 75 FR 9436 - Aleris Blanking and Rim Products, Inc., a Division of Aleris International, Inc., Terre Haute, IN...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... (75 FR 3932). The initial investigation resulted in a negative determination based on the findings... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Aleris Blanking and Rim Products, Inc., a Division of...

  3. Estimating surface hardening profile of blank for obtaining high drawing ratio in deep drawing process using FE analysis

    NASA Astrophysics Data System (ADS)

    Tan, C. J.; Aslian, A.; Honarvar, B.; Puborlaksono, J.; Yau, Y. H.; Chong, W. T.

    2015-12-01

    We constructed an FE axisymmetric model to simulate the effect of partially hardened blanks on increasing the limiting drawing ratio (LDR) of cylindrical cups. We partitioned an arc-shaped hard layer into the cross section of a DP590 blank. We assumed the mechanical property of the layer is equivalent to either DP980 or DP780. We verified the accuracy of the model by comparing the calculated LDR for DP590 with the one reported in the literature. The LDR for the partially hardened blank increased from 2.11 to 2.50 with a 1 mm depth of DP980 ring-shaped hard layer on the top surface of the blank. The position of the layer changed with drawing ratios. We proposed equations for estimating the inner and outer diameters of the layer, and tested its accuracy in the simulation. Although the outer diameters fitted in well with the estimated line, the inner diameters are slightly less than the estimated ones.

  4. Testing the Reliability of Delay Discounting of Ten Commodities Using the Fill-in-the-Blank Method

    ERIC Educational Resources Information Center

    Weatherly, Jeffrey N.; Derenne, Adam; Terrell, Heather K.

    2011-01-01

    Several measures of delay discounting have been shown to be reliable over periods of up to 3 months. In the present study, 115 participants completed a fill-in-the-blank (FITB) delay-discounting task on sets of 5 different commodities, 12 weeks apart. Results showed that discounting rates were not well described by a hyperbolic function but were…

  5. Design of Channel Type Indirect Blank Holder for Prevention of Wrinkling and Fracture in Hot Stamping Process

    NASA Astrophysics Data System (ADS)

    Choi, Hong-seok; Ha, Se-yoon; Cha, Seung-hoon; kang, Chung-gil; Kim, Byung-min

    2011-08-01

    The hot stamping process has been used in the automotive industry to reduce the weight of the body-in-white and to increase passenger safety via improved crashworthiness. In this study, a new form die with a simple structure that can prevent defects such as wrinkle and fracture is proposed for the manufacture of hot stamped components. The wrinkling at the flange cannot be eliminated when using a conventional form die. It is known that the initiation of wrinkling is influenced by many factors such as the mechanical properties of the sheet material, geometry of the sheet and tool, and other process parameters, including the blank holding force (BHF) and the contact conditions. In this research, channel type indirect blank holder (CIBH) is introduced to replace general blank holder for manufacturing the hot stamped center pillar. First, we investigate the tension force acting on the blank according to the channel shapes. We determine the appropriate range by comparing the tension force with the upper and lower BHFs in a conventional stamping process. We then use FE-analysis to study the influence of the slope angle and corner radius of the channel on the formability. Finally, the center pillar is manufactured using the form die with the selected channel.

  6. Production of the 4.26 m ZERODUR mirror blank for the Advanced Technology Solar telescope (ATST)

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Werner, Thomas; Westerhoff, Thomas

    2014-07-01

    The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) will be the most powerful solar telescope in the world. It is currently being built by the Association of Universities for Research in Astronomy (AURA) in a height of 3000 m above sea level on the mountain Haleakala of Maui, Hawaii. The primary mirror blank of diameter 4.26 m is made of the extremely low thermal expansion glass ceramic ZERODUR® of SCHOTT AG Advanced Optics. The DKIST primary mirror design is extremely challenging. With a mirror thickness of only 78 to 85 mm it is the smallest thickness ever machined on a mirror of 4.26 m in diameter. Additionally the glassy ZERODUR® casting is one of the largest in size ever produced for a 4 m class ZERODUR® mirror blank. The off axis aspherical mirror surface required sophisticated grinding procedures to achieve the specified geometrical tolerance. The small thickness of about 80 mm required special measures during processing, lifting and transport. Additionally acid etch treatment was applied to the convex back-surface and the conical shaped outer diameter surface to improve the strength of the blank. This paper reports on the challenging tasks and the achievements on the material property and dimensional specification parameter during the production of the 4.26 m ZERODUR® primary mirror blank for AURA.

  7. The Use of Application Blanks as Pre-Screening Devices in Employee Selection: An Assessment of Practices in Public Schools.

    ERIC Educational Resources Information Center

    Bredeson, Paul V.

    1988-01-01

    Reports on a study of the use of employment application blanks as prescreening devices in public school employee selection. Findings suggest two major areas for further research. The first relates to legal compliance with Equal Opportunity Employment guidelines. The second concerns information relevancy to personnel selection. (JAM)

  8. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--QA ANALYTICAL RESULTS FOR PARTICULATE MATTER IN BLANK SAMPLES

    EPA Science Inventory

    The Particulate Matter in Blank Samples data set contains the analytical results for measurements of two particle sizes in 12 samples. Filters were pre-weighed, loaded into impactors, kept unexposed in the laboratory, unloaded and post-weighed. Positive weight gains for laborat...

  9. 47 CFR 73.646 - Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal. 73.646 Section 73.646 Telecommunication FEDERAL COMMUNICATIONS... nature are subject to common carrier regulation. Licensees operating such services are required to...

  10. 47 CFR 73.646 - Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal. 73.646 Section 73.646 Telecommunication FEDERAL COMMUNICATIONS... nature are subject to common carrier regulation. Licensees operating such services are required to...

  11. 47 CFR 73.646 - Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal. 73.646 Section 73.646 Telecommunication FEDERAL COMMUNICATIONS... nature are subject to common carrier regulation. Licensees operating such services are required to...

  12. 47 CFR 73.646 - Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal. 73.646 Section 73.646 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Television Broadcast Stations § 73.646 Telecommunications Service on...

  13. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  14. Optimizing EUV mask blank cleaning processes using the Lasertec M7360

    NASA Astrophysics Data System (ADS)

    Shimomura, Takeya; Kadaksham, Arun John; House, Matt; Ma, Andy; Goodwin, Frank

    2012-03-01

    EUV lithography is considered the most promising lithography solution for the 16 nm node and beyond. As EUV light is strongly absorbed by all known materials, reflective optics are used instead of conventional transmittance optics applied to ArF and KrF lithography. The EUV mask must also need be reflective. It typically consists of a Ta-based absorber layer, Ru capping layer, Si/Mo multilayer on a low thermal expansion material (LTEM) substrate with a backside Cr-based metal coating. Because of the strong absorbance of the EUV light, a pellicle is not practical. Therefore, EUV masks must be cleaned more frequently to maintain the necessary cleanliness. This poses numerous unique challenges in cleaning processes. For example, the EUV mask integrity, including critical dimension (CD), EUV reflectivity, and absorber thickness must be kept intact during multiple cleanings throughout the mask's lifetime. Requirements of defect size for the cleaning, furthermore, are becoming tighter as semiconductor circuit design rules get smaller. According to the International Technology Roadmap For Semiconductors (ITRS), the smallest defect size that must be removed is 23 nm for the 18 nm NAND Flash node in 2013. In addition to defects on the frontside, defects on a backside also need to be minimized since they might lead overlay error due to local distortions of EUV masks on an electrostatic chuck. This paper focuses on evaluations of cleaning performances using the Lasertec M1350 and M7360 blank inspection system, which has a 71 nm and 43 nm sensitivity. The 43nm is the current best sensitivity while keeping a >90% defect capture rate. First, the cleaning performance using the standard process has been investigated. We found a mitigation of adders was a key challenge for the EUV mask cleaning. The primary source of the adders was also identified as pits. Secondly, the megasonic cleaning process has been optimized to mitigate the adders. We could successfully reduce the adders by

  15. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  16. Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling

    NASA Technical Reports Server (NTRS)

    Lee, M. C. (Inventor)

    1985-01-01

    Amorphous metals are produced by forming a molten unit of metal and deploying the unit into a bidirectional acoustical levitating field or by dropping the unit through a spheroidizing zone, a slow quenching zone, and a fast quenching zone in which the sphere is rapidly cooled by a bidirectional jet stream created in the standing acoustic wave field produced between a half cylindrical acoustic driver and a focal reflector or a curved driver and a reflector. The cooling rate can be further augmented first by a cryogenic liquid collar and secondly by a cryogenic liquid jacket surrounding a drop tower. The molten unit is quenched to an amorphous solid which can survive impact in a unit collector or is retrieved by a vacuum chuck.

  17. Clad vent set cup closure-weld-zone grinding evaluation

    SciTech Connect

    Ulrich, G.B.; Woods, A.T.; Ohriner, E.K.

    1996-04-01

    Clad vent set (CVS) cups were ground in the closure-weld zone to reduce the wall-thickness variation created by the cup deep-drawing process. A significantly more uniform wall thickness would be beneficial for the CVS closure-weld operation. The goal was to reduce the average within-cup wall-thickness variation (defined as the range of wall thicknesses in the closure-weld zone) approximately 50% from the Cassini production value of 42 {micro}m. This goal was shown to be achievable but, unfortunately, not with the existing blank and formed cup thicknesses.

  18. Combustion-acoustic stability analysis for premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo; Cowan, Lizabeth

    1995-01-01

    Lean, prevaporized, premixed combustors are susceptible to combustion-acoustic instabilities. A model was developed to predict eigenvalues of axial modes for combustion-acoustic interactions in a premixed combustor. This work extends previous work by including variable area and detailed chemical kinetics mechanisms, using the code LSENS. Thus the acoustic equations could be integrated through the flame zone. Linear perturbations were made of the continuity, momentum, energy, chemical species, and state equations. The qualitative accuracy of our approach was checked by examining its predictions for various unsteady heat release rate models. Perturbations in fuel flow rate are currently being added to the model.

  19. Dual excitation acoustic paramagnetic logging tool

    DOEpatents

    Vail, III, William B.

    1989-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  20. Dual excitation acoustic paramagnetic logging tool

    DOEpatents

    Vail, W.B. III.

    1989-02-14

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be performed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described. 6 figs.

  1. Acoustic Gaits: Gait Analysis With Footstep Sounds.

    PubMed

    Altaf, M Umair Bin; Butko, Taras; Juang, Biing-Hwang Fred

    2015-08-01

    We describe the acoustic gaits-the natural human gait quantitative characteristics derived from the sound of footsteps as the person walks normally. We introduce the acoustic gait profile, which is obtained from temporal signal analysis of sound of footsteps collected by microphones and illustrate some of the spatio-temporal gait parameters that can be extracted from the acoustic gait profile by using three temporal signal analysis methods-the squared energy estimate, Hilbert transform and Teager-Kaiser energy operator. Based on the statistical analysis of the parameter estimates, we show that the spatio-temporal parameters and gait characteristics obtained using the acoustic gait profile can consistently and reliably estimate a subset of clinical and biometric gait parameters currently in use for standardized gait assessments. We conclude that the Teager-Kaiser energy operator provides the most consistent gait parameter estimates showing the least variation across different sessions and zones. Acoustic gaits use an inexpensive set of microphones with a computing device as an accurate and unintrusive gait analysis system. This is in contrast to the expensive and intrusive systems currently used in laboratory gait analysis such as the force plates, pressure mats and wearable sensors, some of which may change the gait parameters that are being measured. PMID:25769144

  2. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  3. Acoustic streaming and Sun's meridional circulation

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel

    2016-09-01

    A vast number of physical processes involving oscillations of a bounded viscous fluid are relevantly influenced by acoustic streaming. When this happens a steady circulation of fluid develops in a thin boundary adjacent to the interface. Some examples are refracted sound waves, a fluid inside a spherical cavity undergoing torsional oscillations or a pulsating liquid droplet. Steady streaming around circular interfaces consists of a hemispherically symmetric recirculation of fluid from the equatorial plane to the polar axes closely resembling the meridional circulation pattern observed in the Sun's convection zone that determines the solar cycle. In this paper, it is argued that the acoustic pulsations exhibited by the Sun would lead to acoustic streaming in the boundary of the convection zone. A simple estimation using a typical dominant frequency of 3 mHz and the observed surface oscillation amplitude yields a steady streaming velocity us ∼ 10 m s‑1, which is on the order of the meridional circulation velocity observed in the Sun's convection zone.

  4. Low thermal expansion material (LTEM) cleaning and optimization for extreme ultraviolet (EUV) blank deposition

    NASA Astrophysics Data System (ADS)

    Kadaksham, Arun J.; Teki, Ranganath; Godwin, Milton; House, Matt; Goodwin, Frank

    2013-04-01

    With the insertion of extreme ultraviolet lithography (EUVL) for high volume manufacturing (HVM) expected in the next few years, it is necessary to examine the performance of low thermal expansion materials (LTEMs) and assess industry readiness of EUV substrates. Owing to the high cost of LTEM, most of the development work so far has been done on fused silica substrates. Especially in developing cleaning technology prior to multilayer deposition, fused silica substrates have been used extensively, and defect trends and champion blank data have been reported using multilayer deposition data on fused silica substrates. In this paper, the response of LTEMs to cleaning processes prior to multilayer deposition is discussed. Cleaning processes discussed in this paper are developed using fused silica substrates and applied on LTEM substrates. The defectivity and properties of LTEM to fused silica are compared. Using the dense scan feature of the substrate inspection tool capable of detecting defects down to 35 nm SiO2 equivalent size and appropriate defect decoration techniques to decorate small defects on substrates to make them detectable, cleaning technologies that have the potential to meet high demands on LTEM for EUVL are developed and optimized.

  5. Delineating the Construct Network of the Personnel Reaction Blank: Associations with Externalizing Tendencies and Normal Personality

    PubMed Central

    Blonigen, Daniel M.; Patrick, Christopher J.; Gasperi, Marianna; Steffen, Benjamin; Ones, Deniz S.; Arvey, Richard D.; de Oliveira Baumgartl, Viviane; do Nascimento, Elizabeth

    2010-01-01

    Integrity testing has long been utilized in personnel selection to screen for tendencies toward counterproductive workplace behaviors. The construct of externalizing from the psychopathology literature represents a coherent spectrum marked by disinhibitory traits and behaviors. The present study used a sample of male and female undergraduates to examine the construct network of the Personnel Reaction Blank (PRB; Gough, Arvey, & Bradley, 2004), a measure of integrity, in relation to externalizing as well as normal-range personality constructs assessed by the Multidimensional Personality Questionnaire (MPQ; Tellegen & Waller, 2008). Results revealed moderate to strong associations between several PRB scales and externalizing, which were largely accounted for by MPQ traits subsumed by Negative Emotionality and Constraint. After accounting for MPQ traits in the prediction of externalizing, a modest predictive increment was achieved when adding the PRB scales, particularly biographical indicators from the Prosocial Background subscale. The findings highlight externalizing as a focal criterion for scale development in the integrity testing literature, and help delineate the construct network of the PRB within the domains of personality and psychopathology. PMID:21171783

  6. Microstructure-Texture-Mechanical Properties in Hot Rolling of a Centrifugal Casting Ring Blank

    NASA Astrophysics Data System (ADS)

    Qin, Fang-cheng; Li, Yong-tang; Qi, Hui-ping; Ju, Li

    2016-03-01

    Deformation characteristic of centrifugal casting 25Mn steel was investigated by compression tests, and then processing maps were established. According to the deformation parameters identified from the established processing maps and hot ring rolling (HRR) process, the industrial test for the 25Mn ring blank was performed. Optical microscope (OM) and electron backscatter diffraction (EBSD) techniques were used for detecting grain boundary features and textures of deformation structures. The morphologies and mechanisms of tensile and impact fracture were revealed. The results show that softening effect plays a dominant role in higher temperatures of 1050-1150 °C and strain rates lower than 0.1 s-1. The average grain size of the rolled 25Mn ring is about 28 μm, but the grains are more coarse and inhomogeneous on the middle layer than that on rest of the areas. The texture on the outer layer is characterized by strong {110} <112> and weak {112} <111>, followed by {001} <100> and {001} <110> on the inner layer and {110} <110> on the center layer, which is mainly associated with the shear deformation. The rolled ring with precise geometrical dimensions and sound mechanical properties is fabricated by HRR. Tensile fracture is composed of clear river-shaped pattern and a little dimple near the inner layer and outer layer, and the fracture mechanism is mainly quasi-cleavage fracture, accompanied by dimple fracture. The morphologies of impact fracture consist of tear ridge and cleavage platform.

  7. Preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels.

    PubMed

    Im, Hee-Jung; Lee, Byung Cheol; Yeon, Jei-Won

    2013-11-01

    Ag nanoparticles, used for halogen (especially iodine) adsorption and an evaluation of halogen behavior, were embedded in synthesized inorganic-organic hybrid gels. In particular, an irradiation method using an electron beam plays a part in introducing Ag nanoparticles to the organofunctionalized silica gels from AgNO3 solutions in a simple way at atmospheric pressure and room temperature. For preparation of the Ag nanoparticle-embedded inorganic-organic hybrid gels, ligands of ethylenediamine (NH2CH2CH2NH-, TMSen) and mercapto (HS-) functionalized three-dimensional porous SiO2 sol-gels were first synthesized through hydrolysis and condensation reactions, and Ag nanoparticles were then embedded into the ethylenediamine- and mercapto-anchored silica gels each, through electron-beam irradiation. The addition of ligands yielded larger average pore sizes than the absence of any ligand. Moreover, the ethylenediamine ligand led to looser structures and better access of the Ag nanoparticles to the ethylenediamine-anchored gel. As a result, more Ag nanoparticles were introduced into the ethylenediamine-anchored gel. The preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels are discussed in detail. PMID:24245307

  8. Velocity Interferometer blanking due to preheating in a double pulse planar experiment

    NASA Astrophysics Data System (ADS)

    Laffite, S.; Baton, S. D.; Combis, P.; Clerouin, J.; Koenig, M.; Recoules, V.; Rousseaux, C.; Videau, L.

    2014-08-01

    Optical diagnostics, such as VISAR (Velocity Interferometer System for Any Reflector) or SOP (Streaked Optical Pyrometry), have become essential in shock timing experiments. Their high precision allows for accurate measurements of shock velocities, chronometry, and brightness temperature. However, in some instances, these measurements can be compromised. In planar shock coalescence experiments recently performed at the LULI facility [Baton et al., Phys. Rev. Lett. 108, 195002 (2012)], VISAR signal loss was observed. In these experiments, a strong shock launched by a high-intensity spike catches up with a previously shock launched by an earlier, low-intensity beam. The disappearance of the VISAR signal is attributed to a preheating of the coronal plasma by x-rays generated by the high intensity spike. The signal does not disappear if the high-intensity spike starts after VISAR probe beam begins to reflect off of the first shock. The VISAR diagnostic, modeled using an assessment of the optical index in quartz, compares favorably to experimental results. This provides evidence that x-ray preheating can cause blanking of the VISAR signal in quartz.

  9. Velocity Interferometer blanking due to preheating in a double pulse planar experiment

    SciTech Connect

    Laffite, S.; Combis, P.; Clerouin, J.; Recoules, V.; Rousseaux, C.; Videau, L.; Baton, S. D.; Koenig, M.

    2014-08-15

    Optical diagnostics, such as VISAR (Velocity Interferometer System for Any Reflector) or SOP (Streaked Optical Pyrometry), have become essential in shock timing experiments. Their high precision allows for accurate measurements of shock velocities, chronometry, and brightness temperature. However, in some instances, these measurements can be compromised. In planar shock coalescence experiments recently performed at the LULI facility [Baton et al., Phys. Rev. Lett. 108, 195002 (2012)], VISAR signal loss was observed. In these experiments, a strong shock launched by a high-intensity spike catches up with a previously shock launched by an earlier, low-intensity beam. The disappearance of the VISAR signal is attributed to a preheating of the coronal plasma by x-rays generated by the high intensity spike. The signal does not disappear if the high-intensity spike starts after VISAR probe beam begins to reflect off of the first shock. The VISAR diagnostic, modeled using an assessment of the optical index in quartz, compares favorably to experimental results. This provides evidence that x-ray preheating can cause blanking of the VISAR signal in quartz.

  10. Engineering multiple biological functional motifs into a blank collagen-like protein template from Streptococcus pyogenes.

    PubMed

    Peng, Yong Y; Stoichevska, Violet; Schacht, Kristin; Werkmeister, Jerome A; Ramshaw, John A M

    2014-07-01

    Bacterially derived triple-helical, collagen-like proteins are attractive as potential biomedical materials. The collagen-like domain of the Scl2 protein from S. pyogenes lacks any specific binding sites for mammalian cells yet possesses the inherent structural integrity of the collagen triple-helix of animal collagens. It can, therefore, be considered as a structurally-stable "blank slate" into which various defined, biological sequences, derived from animal collagens, can be added by substitutions or insertions, to enable production of novel designed materials to fit specific functional requirements. In the present study, we have used site directed mutagenesis to substitute two functional sequences, one for heparin binding and the other for integrin binding, into different locations in the triple-helical structure. This provided three new constructs, two containing the single substitutions and one containing both substitutions. The stability of these constructs was marginally reduced when compared to the unmodified sequence. When compared to the unmodified bacterial collagen, both the modified collagens that contain the heparin binding site showed marked binding of fluorescently labeled heparin. Similarly, the modified collagens from both constructs containing the integrin binding site showed significant adhesion of L929 cells that are known to possess the appropriate integrin receptor. C2C12 cells that lack any appropriate integrins did not bind. These data show that bacterial collagen-like sequences can be modified to act like natural extracellular matrix collagens by inserting one or more unique biological domains with defined function. PMID:23913780

  11. [Trauma due to blank cartridges and fireworks. Early and correct treatment prevents tattooing and scarring].

    PubMed

    Herrmann, A; Wohlrab, J; Marsch, W C

    2004-01-01

    Traumata secondary to blank cartridges and fireworks are not harmless at all. They can cause cosmetic disfigurement due to permanent tattooing and scars. Often the face and hands are injured. Fourteen patients with blast injuries were treated between 1992 and 2002 in our clinic. The average age was 20.4 years (range: 13-41 years, median: 17.5 years). Eight patients were aged under 18 years. Most of the victims were males (11 of 14). According to the extent of the powder tattooing we removed the particles under local or general anesthesia within 24 h. We used sterile tooth and hand brushes. After the operation we treated the wounds with local antibiotics. We describe two cases to illustrate our procedure. Early correct treatment of tattooing caused by fireworks or gun powder explosions within 24 h up to a maximum of 72 h prevents the development of permanent cosmetic disfigurement. The technique is simple, effective, and saves the cost of later removal of traumatic tattoos by laser or dermabrasion. PMID:14749849

  12. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  13. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  14. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  15. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  16. Acoustic dispersive prism

    NASA Astrophysics Data System (ADS)

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  17. An Analysis of Consolidation Grouting Effect of Bedrock Based on its Acoustic Velocity Increase

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Lu, Wen-bo; Zhang, Wen-ju; Yan, Peng; Zhou, Chuang-bing

    2015-05-01

    Acoustic velocity is an important parameter to evaluate the mechanical properties of fractured rock masses. Based on the in situ acoustic velocity measurement data of ~20 hydropower stations in China, we assessed the acoustic velocity increase of rock masses as a result of consolidation grouting in different geological conditions, such as fault sites, weathered areas and excavation-induced damage zones. We established an empirical relationship between the acoustic velocity of rock masses before and after consolidation grouting, and examined the correlation between acoustic velocity and deformation modulus. A case study is presented about a foundation consolidation grouting project for an intake tower of Pubugou Hydropower Station. The results show that different types of rock masses possess distinct ranges for resultant acoustic velocity increase by consolidation grouting. Under a confidence interval of 95 %, the ranges of the increasing rate of acoustic velocity in a faulted zone, weathered zone, and excavation-induced damage zone are observed to be 12.7-43.1, 12.3-31.2, and 6.9-14.5 %, respectively. The acoustic velocity before grouting and its increasing rate can be used to predict the effectiveness of consolidation grouting.

  18. Investigation on Interference Coordination Employing Almost Blank Subframes in Heterogeneous Networks for LTE-Advanced Downlink

    NASA Astrophysics Data System (ADS)

    Miki, Nobuhiko; Saito, Yuya; Shirakabe, Masashige; Morimoto, Akihito; Abe, Tetsushi

    This paper investigates the application of inter-cell interference coordination (ICIC) in heterogeneous networks for the LTE-Advanced downlink where picocells are overlaid onto macrocells. In LTE-Advanced, in order to perform ICIC, almost blank subframes (ABSs) are employed, where only the cell-specific reference signal (CRS) is transmitted to protect the subframes in the picocells from severe interference from the macrocells. Furthermore, multicast/broadcast over single-frequency network (MBSFN) subframes are employed to reduce the interference of the CRS on the data channel, although the control channel still suffers from interference from the CRS. When the cell range expansion (CRE), which offload the UEs from macrocells to picocells, is used to improve the system performance, the influence from the CRS increases. In order to assess the influence, the required CRE bias to improve the data channel is investigated based on a system-level simulation under various conditions such as the number of picocells, the protected subframe ratio, and the user distribution. The simulation results show that the cell-edge user throughput is improved with the CRE bias of more than 8dB, employing ABSs. Furthermore, simulation results show that one dominant source of interference is observed for the sets of user equipment (UEs) connected to the picocells via CRE with such a bias value. Based on observation, the influence that the CRS has on the control channel, i.e., physical control format indicator channel (PCFICH), and physical downlink control channel (PDCCH) is investigated based on a link-level simulation combined with a system-level simulation. The simulation results show that protecting the PCFICH is very important compared to protecting the PDCCH, since the block error rate (BLER) performance of the PCFICH becomes worse than the required BLER of 10-3 to support various conditions, although the BLER performance of the PDCCH can exceed the required BLER of 10-2 by spanning

  19. Investigating printability of native defects on EUV mask blanks through simulations and experiments

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Mihir; Jindal, Vibhu; Herbol, Henry; Jang, Il-Yong; Kwon, Hyuk Joo; Harris-Jones, Jenah; Denbeaux, Gregory

    2014-04-01

    Availability of defect-free masks is considered to be a critical issue for enabling extreme ultraviolet lithography (EUVL) as the next generation technology. Since completely defect-free masks will be hard to achieve, it is essential to have a good understanding of the defect printability as well as the fundamental aspects of a defect that result in the defects being printed. In this work, the native mask blank defects were characterized using atomic force microscopy (AFM) and cross-section transmission electron microscopy (TEM), and the defect printability of the characterized native mask defects was evaluated using finite-difference time-domain (FDTD) simulations. The simulation results were compared with the through-focus aerial images obtained at the SEMATECH Actinic Inspection Tool (AIT) at Lawrence Berkeley National Lab (LBNL) for the characterized defects. There was a reasonable agreement between the through-focus FDTD simulation results and the AIT results. To model the Mo/Si multilayer growth over the native defects, which served as the input for the FDTD simulations, a level-set technique was used to predict the evolution of the multilayer disruption over the defect. Unlike other models that assume a constant flux of atoms (of materials to be deposited) coming from a single direction, this model took into account the direction and incident fluxes of the materials to be deposited, as well as the rotation of the mask substrate, to accurately simulate the actual deposition conditions. The modeled multilayer growth was compared with the cross-section TEM images, and a good agreement was observed between them.

  20. Acoustics Critical Readiness Review

    NASA Technical Reports Server (NTRS)

    Ballard, Kenny

    2010-01-01

    This presentation reviews the status of the acoustic equipment from the medical operations perspective. Included is information about the acoustic dosimeters, sound level meter, and headphones that are planned for use while on orbit. Finally there is information about on-orbit hearing assessments.

  1. The challenge of acoustics

    NASA Astrophysics Data System (ADS)

    Lord, P.

    1981-01-01

    The various applications of acoustics, including sonar, ultrasonic examination of unborn foetuses and architectural applications, are briefly reviewed. Problems in traffic and industrial noise, auditorium design and explosive noise are considered in more detail. The educational aspects of acoustical science and technology are briefly considered.

  2. Mask blank defect printability comparison using optical and SEM mask and wafer inspection and bright field actinic mask imaging

    NASA Astrophysics Data System (ADS)

    Mangat, Pawitter; Verduijn, Erik; Wood, Obert R.; Benk, Markus P.; Wojdyla, Antoine; Goldberg, Kenneth A.

    2015-07-01

    Despite significant enhancements in defect detection using optical and e-beam methodology, the smaller length scales and increasing challenges of future technology nodes motivate ongoing research into the need and associated cost of actinic inspection for EUV masks. This paper reports an extensive study of two EUV patterned masks, wherein the mask blank defectivity was characterized using optical (mask and wafer) methods and bright-field mask imaging (using the SHARP actinic microscope) of previously identified blank defects. We find that the bright field actinic imaging tool microscope captures and images many defects that are not seen by the automated optical inspection of patterned masks and printed wafers. In addition, actinic review reveals the impact of multilayer damage and depicts the printability profile which can be used as an added metric to define the patterned mask repair and defect compensation strategies.

  3. Investigation of pitch and angle in the gradual-triangle lenticular lens for point-blank LED fog lamp.

    PubMed

    Chen, Hsi-Chao; Yang, Chi-Hao

    2014-05-10

    The effects of different pitch and angle of gradual-triangle lenticular lens for the point-blank LED fog lamp were investigated under the standard of ECE R19. The novel LED fog lamp was assembled from a point-blank LED light source, a parabolic reflector, and a gradual-triangle lenticular lens. Light tracing analysis was used for the design of the gradual-triangle lenticular lens. The pitch, which varied from 1 to 6 mm, and the apex angle, which changed from 5 to 32 deg, were both investigated in regard to the gradual-triangle lenticular lens. The optimum pitch was 5 mm, and the efficiency of the lamp system and lenticular lens could reach 93% and 98.1% by simulation, respectively. The results of experiment had over 94%, which is similar to that of simulation by normalized cross correlation (NCC) for the light intensity. PMID:24922033

  4. Acoustic design by topology optimization

    NASA Astrophysics Data System (ADS)

    Dühring, Maria B.; Jensen, Jakob S.; Sigmund, Ole

    2008-11-01

    To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology optimization method is based on continuous material interpolation functions in the density and bulk modulus. The objective function is the squared sound pressure amplitude. First, room acoustic problems are considered and it is shown that the sound level can be reduced in a certain part of the room by an optimized distribution of reflecting material in a design domain along the ceiling or by distribution of absorbing and reflecting material along the walls. We obtain well defined optimized designs for a single frequency or a frequency interval for both 2D and 3D problems when considering low frequencies. Second, it is shown that the method can be applied to design outdoor sound barriers in order to reduce the sound level in the shadow zone behind the barrier. A reduction of up to 10 dB for a single barrier and almost 30 dB when using two barriers are achieved compared to utilizing conventional sound barriers.

  5. Highly directional acoustic receivers.

    PubMed

    Cray, Benjamin A; Evora, Victor M; Nuttall, Albert H

    2003-03-01

    The theoretical directivity of a single combined acoustic receiver, a device that can measure many quantities of an acoustic field at a collocated point, is presented here. The formulation is developed using a Taylor series expansion of acoustic pressure about the origin of a Cartesian coordinate system. For example, the quantities measured by a second-order combined receiver, denoted a dyadic sensor, are acoustic pressure, the three orthogonal components of acoustic particle velocity, and the nine spatial gradients of the velocity vector. The power series expansion, which can be of any order, is cast into an expression that defines the directivity of a single receiving element. It is shown that a single highly directional dyadic sensor can have a directivity index of up to 9.5 dB. However, there is a price to pay with highly directive sensors; these sensors can be significantly more sensitive to nonacoustic noise sources. PMID:12656387

  6. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  7. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  8. Acoustic integrated extinction

    PubMed Central

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency. PMID:27547100

  9. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  10. Cochlear bionic acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  11. RIM-13: A high-resolution imaging tool for aerial image monitoring of patterned and blank EUV reticles

    NASA Astrophysics Data System (ADS)

    Booth, M.; Brunton, A.; Cashmore, J.; Elbourn, P.; Elliner, G.; Gower, M.; Greuters, J.; Hirsch, J.; Kling, L.; McEntee, N.; Richards, P.; Truffert, V.; Wallhead, I.; Whitfield, M.

    2006-03-01

    Key features of the RIM-13 EUV actinic reticle imaging microscope are summarised. This is a tool which generates aerial images from blank or patterned EUV masks, emulating the illumination and projection optics of an exposure tool. Such images of mask defects, acquired by a CCD camera, are analysed using the tool software to predict their effect on resist exposure. Optical, mechanical and software performance of the tool are reported.

  12. Improved tumor targeting and antitumor activity of camptothecin loaded solid lipid nanoparticles by preinjection of blank solid lipid nanoparticles.

    PubMed

    Jang, Dong-Jin; Moon, Cheol; Oh, Euichaul

    2016-05-01

    This study aimed to enhance the in vivo antitumor effects of camptothecin (CPT), a strong antitumor agent whose delivery is limited by poor aqueous solubility and instability of the active lactone form. CPT was loaded into sterically stabilized, solid lipid nanoparticles (CPT-SLNs) formulated for intravenous administration. The influence of preinjected blank SLNs on the tumor targeting, pharmacokinetics and antitumor activity of CPT-SLNs was investigated. The CPT-SLNs composed of trilaurin-based lipid matrix containing poloxamer188 and pegylated phospholipid as stabilizers were prepared by hot homogenization method and evaluated for in vitro characteristics and in vivo performance. The CPT-SLNs showed an in vitro long-term sustained release pattern and effectively protected the CPT lactone form from hydrolysis under physiological conditions. Notable tumor targeting and tumor growth inhibition were observed after intravenous administration of CPT-SLNs to mice with subcutaneous transplants of CT26 carcinoma cells. In pharmacokinetic studies in rats, CPT-SLNs markedly elevated plasma CPT level and prolonged blood circulation compared to free CPT. Nonetheless, high uptake of CPT-SLNs by reticuloendothelial system (RES)-rich tissues resulted in limited tumor targeting of CPT-SLNs and plasma CPT levels. Preinjection of blank SLNs before administration of CPT-SLNs to tumor-bearing mice substantially reduced the accumulation of CPT-SLNs in RES organs. This led to significantly enhanced tumor targeting, improved pharmacokinetic parameters and increased antitumor efficacy of CPT-SLNs. These results suggested that the in vivo antitumor effects of CPT-SLNs could be further enhanced by preinjection of blank SLNs. Therefore, CPT-SLNs with preinjected blank SLNs could be a potential approach for stable and effective CPT-based cancer therapy. PMID:27133053

  13. Numerical and Experimental Studies on Strain Distribution and Weld Line Movement in Stretch Forming of Tailor Welded Blanks

    SciTech Connect

    Panda, Sushanta Kumar; Kumar, D. Ravi

    2007-05-17

    Use of laser welded blanks of multiple sheets of material which are referred to as Tailor Welded Blanks (TWB) is one of the current interests for automotive industries as it reduces manufacturing cost, weight of the vehicle and also improves the quality of the component. As the varieties of TWB applications are increasing, the effects of the difference in material properties, surface properties, weld and its orientation on blank formability have become important both in deep-drawing and stretch forming. In this work, formability of two types of TWBs has been studied experimentally by performing out-of-plane stretch forming tests using a 101.6 mm diameter hemispherical punch. The materials used in this study were Interstitial-Free (IF) steel sheet samples of different thickness (1.0mm and 1.5 mm) and samples of same thickness (1.5 mm) but with different surface characteristics (galvanized and ungalvanized). In the stretch forming experiments, the limiting dome height (LDH) and strain distribution were measured. The influence of weld orientation with respect to major surface strain on formability was studied by conducting experiments in or close to plane strain condition. It has been found that thickness ratio and difference in properties have significant influence on major and minor strain distributions and weld line movement, but the difference in surface characteristics has a minor effect. The simulations results agreed well with the observations from the experimental work conducted on stretch forming of TWBs.

  14. Design and fabrication of a 3m class light weighted mirror blank for the E-ELT M5

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Seibert, Volker; Thomas, Armin; Westerhoff, Thomas; Müller, Michael; Cayrel, Marc

    2011-09-01

    In the recent past, SCHOTT has demonstrated its ability to manufacture large light weighted ZERODUR® mirror blanks for telescope projects like the GREGOR solar-telescope, for example. In 2010, SCHOTT was commissioned with a study aimed at developing a design for the M5 mirror blank of the ESO E-ELT. The tip and tilt M5 mirror of the European Extremely Large Telescope (E-ELT) requires a demanding approach in light weighting. The approximately 3.1 m x 2.5 m elliptical plano mirror is specified to a weight of less than 500 kg with high Eigenfrequencies and low deformation under different inclination angles. The study was divided into two parts. The first part focused on coming up with an optimized light weighted design with respect to performance and processability with finite element modeling. In the second part of the study, a concept for the processing sequence including melting, cold-processing, acid etching and handling of the M5 blank was developed. By producing a prototype section, SCHOTT demonstrated its ability to manufacture the demanding features, including pockets 350 mm in depth, thin walls and sloped pocket bottoms. This paper outlines the results of the design work, processing concept and demonstrator fabrication.

  15. Observations of acoustic surface waves in outdoor sound propagation

    NASA Astrophysics Data System (ADS)

    Albert, Donald G.

    2003-05-01

    Acoustic surface waves have been detected propagating outdoors under natural conditions. Two critical experimental conditions were employed to ensure the conclusive detection of these waves. First, acoustic pulses rather than a continuous wave source allowed an examination of the waveform shape and avoided the masking of wave arrivals. Second, a snow cover provided favorable ground impedance conditions for surface waves to exist. The acoustic pulses were generated by blank pistol shots fired 1 m above the snow. The resultant waveforms were measured using a vertical array of six microphones located 60 m away from the source at heights between 0.1 and 4.75 m. A strong, low frequency ``tail'' following the initial arrival was recorded near the snow surface. This tail, and its exponential decay with height (z) above the surface (~e-αz), are diagnostic features of surface waves. The measured attenuation coefficient α was 0.28 m-1. The identification of the surface wave is confirmed by comparing the measured waveforms with waveforms predicted by the theoretical evaluation of the explicit surface wave pole term using residue theory.

  16. Ocean seismo-acoustics. Low-frequency underwater acoustics

    SciTech Connect

    Akal, T.; berkson, J.M.

    1986-01-01

    This book presents information on seismo-acoustic propagation in seawater and sea beds that includes theoretical developments, modelling and experiments, and fluctuations. Boundary scatteiring, seismo-acoustic waves and seismo-acoustic noise are discussed. Technology and new approaches in seismo-acoustic measurements are presented.

  17. [The possibility of forensic medical assessment of the damage to clothes caused by a blank shots with the MP-79-9TM pistol].

    PubMed

    Kutsenko, K I; Makarov, I Iu

    2013-01-01

    The authors undertook an analysis of constructional features of standard blank and non-lethal cartridges for the MP-79-9TM pistol. The composition of gunshot products and the maximum distance over which they propagate have been determined. Special attention is given to the peculiarities of the damage caused to the target cloths (cotton and woolen) by blank rounds shot from different distances. A new chemical method was used for the first time to detect the particles of gunpowder on the victim's cloth; the possibility of its application for differential diagnostics of gunshot damages inflicted by blank and traumatic cartridges affected from different distances was estimated. PMID:23802297

  18. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  19. Acoustic mapping velocimetry

    NASA Astrophysics Data System (ADS)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  20. Some Problems of modern acoustics

    NASA Technical Reports Server (NTRS)

    Stan, A.

    1974-01-01

    The multidisciplinary and interdisciplinary character of acoustics is considered and its scientific, technological, economical and social implications, as well as the role of acoustics in creating new machines and equipment and improving the quality of products are outlined. Research beyond audible frequencies, as well as to extremely high acoustic intensities, which requires the development of a nonlinear acoustics is elaborated.

  1. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  2. Acoustic rotation control

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Croonquist, A. P.; Wang, T. G. (Inventor)

    1983-01-01

    A system is described for acoustically controlled rotation of a levitated object, which avoids deformation of a levitated liquid object. Acoustic waves of the same wavelength are directed along perpendicular directions across the object, and with the relative phases of the acoustic waves repeatedly switched so that one wave alternately leads and lags the other by 90 deg. The amount of torque for rotating the object, and the direction of rotation, are controlled by controlling the proportion of time one wave leads the other and selecting which wave leads the other most of the time.

  3. PRSEUS Acoustic Panel Fabrication

    NASA Technical Reports Server (NTRS)

    Nicolette, Velicki; Yovanof, Nicolette P.; Baraja, Jaime; Mathur, Gopal; Thrash, Patrick; Pickell, Robert

    2011-01-01

    This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration with regards to acoustic response. A PRSEUS panel was designed and fabricated and provided to NASA-LaRC for acoustic response testing in the Structural Acoustics Loads and Transmission (SALT) facility). Preliminary assessments of the sound transmission characteristics of a PRSEUS panel subjected to a representative Hybrid Wing Body (HWB) operating environment were completed for the NASA Environmentally Responsible Aviation (ERA) Program.

  4. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  5. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  6. Refraction of acoustic duct waveguide modes by exhaust jets.

    NASA Technical Reports Server (NTRS)

    Mani, R.

    1973-01-01

    The refraction of acoustic duct waveguide modes emitted from the open end of a semiinfinite rectangular duct by a jet-like exhaust flow is studied theoretically. The problem is formulated as a Wiener-Hopf problem and is ultimately solved by an approximate method due to Carrier and Koiter. Continuity of transverse acoustic particle displacement and of acoustic pressure is assumed at the jet/still-air interface. The solution exhibits several features of the acoustics of moving media such as a source convection effect, zones of relative silence, and simple refraction. Plots of far-field directivity patterns are presented for several cases and show refraction effects to be important even at modest exhaust Mach numbers of order 0.3. Only subsonic exhaust Mach numbers are considered.

  7. Tailored Heat Treated Accumulative Roll Bonded Aluminum Blanks: Microstructure and Mechanical Behavior

    NASA Astrophysics Data System (ADS)

    Maier, Verena; Hausöl, Tina; Schmidt, Christian W.; Böhm, Wolfgang; Nguyen, Hung; Merklein, Marion; Höppel, Heinz Werner; Göken, Mathias

    2012-09-01

    Aluminum alloy AA6016 was accumulative roll bonded up to eight cycles and investigated regarding formability by bending tests. Due to the limited bendability of accumulative roll bonding (ARB) processed materials, a tailored laser heat treatment was performed along the bending edge before forming. This tailored laser heat treatment causes a local recrystallization and recovery of the bending samples at the deformation zone, which locally increases ductility and allows higher bending angles achievable with lower forming forces. Between the recrystallized heat treated zone and the unaffected ultrafine-grained (UFG) base material, a gradient in grain size with a bimodal region is formed. This observed microstructural profile is confirmed by local mechanical testing measuring the hardness and strain rate sensitivity by nanoindentation techniques.

  8. Planned complex suicide by self-poisoning and a manipulated blank revolver: remarkable findings due to multiple gunshot wounds and self-made wooden projectiles.

    PubMed

    Padosch, Stephan A; Schmidt, Peter H; Madea, Burkhard

    2003-11-01

    A remarkable case of complex suicide with poisoning and multiple self-inflicted gunshot wounds to the head is reported. After ingestion of a liquid insecticide, the victim shot himself twice in the head, once in each temple. Self-manufactured wooden dowels were used as projectiles in combination with conventional blank cartridges. The dowels had been glued on top of the blank cartridges and expelled by propellant gases. Moreover, the blank revolver used had been extensively manipulated in a rarely observed manner. Several occlusive devices had been removed from the barrel and the cylinder chamber to enable the expulsion of the wooden projectiles. The investigation of the methods used and the circumstances found at the scene pointed towards a planned complex suicide. A remarkable case with unusual projectiles, i.e., wooden dowels, fired by an extensively manipulated blank gun is reported, emphasizing the importance of close collaboration between the police firearm laboratory and forensic pathology in practical casework. PMID:14640288

  9. Acoustic Neuroma Association

    MedlinePlus

    ... Platinum Sponsors More from this sponsor... Platinum Sponsor Gold Sponsor University of Colorado Acoustic Neuroma Program Rocky Mountain Gamma Knife Center Gold Sponsor NYU Langone Medical Center Departments of Neurosurgery ...

  10. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  11. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  12. Acoustics lecturing in Mexico

    NASA Astrophysics Data System (ADS)

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  13. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  14. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  15. Numerical Techniques in Acoustics

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J. (Compiler)

    1985-01-01

    This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.

  16. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  17. Acoustic communication by ants

    NASA Astrophysics Data System (ADS)

    Hickling, Robert

    2002-05-01

    Many ant species communicate acoustically by stridulating, i.e., running a scraper over a washboard-like set of ridges. Ants appear to be insensitive to airborne sound. Consequently, myrmecologists have concluded that the stridulatory signals are transmitted through the substrate. This has tended to diminish the importance of acoustic communication, and it is currently believed that ant communication is based almost exclusively on pheromones, with acoustic communication assigned an almost nonexistent role. However, it can be shown that acoustic communication between ants is effective only if the medium is air and not the substrate. How, then, is it possible for ants to appear deaf to airborne sound and yet communicate through the air? An explanation is provided in a paper [R. Hickling and R. L. Brown, ``Analysis of acoustic communication by ants,'' J. Acoust. Soc. Am. 108, 1920-1929 (2000)]. Ants are small relative to the wavelengths they generate. Hence, they create a near field, which is characterized by a major increase in sound velocity (particle velocity of sound) in the vicinity of the source. Hair sensilla on the ants' antennae respond to sound velocity. Thus, ants are able to detect near-field sound from other ants and to exclude extraneous airborne sound.

  18. Acoustic detection of pneumothorax

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (<2000 Hz) acoustic methods for medical diagnosis. Several candidate methods of pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (p<0.0001). The ratio of acoustic energy between low (<220 Hz) and mid (550-770 Hz) frequency bands was significantly different in the control (healthy) and pneumothorax states (p<0.0001). The second approach measured breath sounds in the absence of an external acoustic input. Pneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (p<0.01 for each). Finally, chest percussion was implemented. Pneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  19. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  20. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  1. Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment

    SciTech Connect

    Eugene Kim; Philip K. Hopke; Youjun Qin

    2005-08-01

    Because the particulate organic carbon (OC) concentrations reported in U.S. Environment Protection Agency Speciation Trends Network (STN) data were not blank corrected, the OC blank concentrations were estimated using the intercept in particulate matter {lt} 2.5 {mu}m in aerodynamic diameter (PM2.5) regression against OC concentrations. The estimated OC blank concentrations ranged from 1 to 2.4 {mu}g/m{sup 3} showing higher values in urban areas for the 13 monitoring sites in the northeastern United States. In the STN data, several different samplers and analyzers are used, and various instruments show different method detection limit (MDL) values, as well as errors. A comprehensive set of error structures that would be used for numerous source apportionment studies of STN data was estimated by comparing a limited set of measured concentrations and their associated uncertainties. To examine the estimated error structures and investigate the appropriate MDL values, PM2.5 samples collected at a STN site in Burlington, VT, were analyzed through the application of the positive matrix factorization. A total of 323 samples that were collected between December 2000 and December 2003 and 49 species based on several variable selection criteria were used, and eight sources were successfully identified in this study with the estimated error structures and min values among different MDL values from the five instruments: secondary sulfate aerosol (41%) identified as the result of emissions from coal-fired power plants, secondary nitrate aerosol (20%), airborne soil (15%), gasoline vehicle emissions (7%), diesel emissions (7%), aged sea salt (4%), copper smelting (3%), and ferrous smelting (2%). Time series plots of contributions from airborne soil indicate that the highly elevated impacts from this source were likely caused primarily by dust storms.

  2. Towards a zero-blank, preconcentration-free voltammetric method for iron analysis at picomolar concentrations in unbuffered seawater.

    PubMed

    Laglera, Luis M; Caprara, Salvatore; Monticelli, Damiano

    2016-04-01

    A method with negligible blank values for the determination of total iron at the ultratrace level in seawater has been optimized and validated exploring for the first time the performance and limitations of Adsorptive Cathodic Stripping Voltammetry (AdCSV) in non-buffered solutions. The method is based on the CSV determination of the Fe-dihydroxynaphthalene (DHN) complex using atmospheric oxygen to catalytically enhance the signal via hydrogen peroxide formation at the electrode/solution interface. The accumulation of hydroxyl ions, the by-product of the hydrogen peroxide formation, increased the pH in the diffusion layer in the absence of buffer bringing it to 9, the optimum for the analytical performance of the method. Voltammograms in UV digested seawater showed no stability or reproducibility drawbacks. The negligible, lower than 5pM, blank level, is due to the simplicity of the procedure requiring no sample manipulation and a maximum of three reagents only, necessarily the ligand DHN and a base only for those samples previously acidified to raise the pH to circumneutral values (here HCl and NH3 according to common trace metals protocols). These reagents do not require cleaning before use, further simplifying the overall procedure. Analysis of seawater previously acidified at pH ~1.5 with HCl and neutralized with ammonia showed interferences due to the buffering properties of the NH3/NH4Cl couple and the transient formation of a volatile electroactive interference that can be easily removed by simply allowing a set time before analysis. In general, the proposed method features several advantages, including high sample throughput, an excellent limit of detection at 12pM, minimum sample handling (no preconcentration or change of matrix is required), cost effectiveness and mainly a negligible blank. The method was successfully validated using open ocean consensus samples (SAFe D2 and S). PMID:26838429

  3. Near-Field Acoustical Characterization of Clustered Rocket Engines

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Vu, Bruce T.; Lindsay Halie K.

    2005-01-01

    This paper presents an approach for the prediction and characterization of the near-field acoustic levels from closely-spaced clustered rocket engines. The calculations are based on the method proposed by Eldred, wherein the flowfield from the clustered rockets is divided into two zones. Zone 1 contains the isolated nozzles which produce noise independently, and extends up to a distance where the individual flows completely mix to form an equivalent single nozzle flow. Zone 2 is occupied by the single mixed stream starting from the station where the jets merge. The acoustic fields from the two zones are computed separately on the basis of the NASA-SP method of Eldred developed for a single equivalent nozzle. A summation of the spectra for the two zones yields the total effective sound pressure level for the clustered engines. Under certain conditions of nozzle spacing and flow parameters, the combined sound pressure level spectrum for the clustered nozzles displays a double peak. Test cases are presented here to demonstrate the importance of hydrodynamic interactions responsible for the double peak in the sound spectrum in the case of clustered rocket nozzles, and the role of ground reflections in the case of non-interfering jets. A graphics interface (Rocket Acoustic Prediction Tool) has been developed to take into account the effects of clustered nozzles and ground reflections.

  4. [Dangers of blank firearms--risk of injury and expert assessment].

    PubMed

    Schyma, P; Schyma, C

    2000-09-01

    Starters' pistols have a wounding potential which strongly depends on the shot range and the combination of weapon and ammunition. The detrimental effect consists of five aspects: gas pressure, particles, thermal effect, chemical irritation and shooting noise. Fatal injuries are caused by contact shots in the head, neck or chest. Shots from less than 5 cm distance can lead to loss of the eye. Particles work as small projectiles at distances of less than 50 cm and cause powder tattooing, concerning the eye however severe cornea injuries are possible. The thermal effect can be observed with shooting distances of up to 30 cm. The chemical irritation depends on the kind of irritant and the exposure of the victim. The acoustic trauma leads in some cases to irreversible lesions of the inner ear, depending on the distance and the position of the victim to the weapon. To provide evidence of shooting, the polyvinyl-alcohol method (PVAL), adhesive films and the examination of clothing are recommended. For the shot range, determination imaging procedures (microfocus X-ray, infrared optics etc.) and analytic methods like X-ray fluorescence (EDX) are used. A reconstruction of injury cases is performed with gelatine models (Fackler system) used in wound ballistics. PMID:10992799

  5. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  6. Weldability of Advanced High Strength Steels using Ytterbium:Yttrium Aluminium Garnet high power laser for Tailor-Welded Blank applications

    NASA Astrophysics Data System (ADS)

    Sharma, Rajashekhar Shivaram

    Use of a high power Yb:YAG laser is investigated for joining advanced high strength steel materials for use in tailor-welded blank (TWB) applications. TWB's are materials of different chemistry, coating or thicknesses that are joined before metal forming and other operations such as trimming, assembly and painting are carried out. TWB is becoming an important design tool in the automotive industry for reducing weight, improving fuel economy and passenger safety, while reducing the overall costs for the customer. Three advanced high strength steels, TRIP780, DP980 and USIBOR, which have many unique properties that are conducive to achieving these objectives, along with mild steel, are used in this work. The objective of this work is to ensure that high quality welds can be obtained using Yb:YAG lasers which are also becoming popular for metal joining operations, since they produce high quality laser beams that suffer minimal distortion when transported via fiber optic cables. Various power levels and speeds for the laser beam were used during the investigation. Argon gas was consistently used for shielding purposes during the welding process. After the samples were welded, metallographic examination of the fusion and heat-affected zones using optical and scanning electron microscopes were carried out to determine the microstructures as well as weld defects. Optical and scanning electron microscopes were also used to examine the top of welds as well as fracture surfaces. Additionally, cross-weld microhardness evaluations, tensile tests using Instron tester, limited fatigue tests as well as formability evaluations using OSU plane strain evaluation were carried out. The examinations included a 2-factor full factorial design of experiments to determine the impact of coatings on the surface roughness on the top of the welds. Tensile strengths of DP980, TRIP780 and mild steel materials as well as DP980 welded to TRIP780 and mild steel in the rolling direction as well as

  7. Acoustic emission characterization using AE (parameter) delay

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.

    1983-01-01

    The acoustic emission (AE) parameter delay concept is defined as that particular measured value of a parameter at which a specified baseline level of cumulative AE activity is reached. The parameter can be from any of a broad range of elastic, plastic, viscoelastic, and fracture mechanics parameters, as well as their combinations. Such parameters include stress, load, strain, displacement, time, temperature, loading cycle, unloading stress, stress intensity factor, strain energy release rate, and crack tip plasticity zone size, while the AE activity may be AE event counts, ringdown counts, energy, event duration, etc., as well as their combinations. Attention is given to examples for the AE parameter delay concept, together with various correlations.

  8. A theoretical study of acoustic glitches in low-mass main-sequence stars

    SciTech Connect

    Verma, Kuldeep; Antia, H. M.; Basu, Sarbani; Mazumdar, Anwesh E-mail: antia@tifr.res.in E-mail: anwesh@tifr.res.in

    2014-10-20

    There are regions in stars, such as ionization zones and the interface between radiative and convective regions, that cause a localized sharp variation in the sound speed. These are known as 'acoustic glitches'. Acoustic glitches leave their signatures on the oscillation frequencies of stars, and hence these signatures can be used as diagnostics of these regions. In particular, the signatures of these glitches can be used as diagnostics for the position of the second helium ionization zone and that of the base of the envelope convection zone. With the help of stellar models, we study the properties of these acoustic glitches in main-sequence stars. We find that the acoustic glitch due to the helium ionization zone does not correspond to the dip in the adiabatic index Γ{sub 1} caused by the ionization of He II, but to the peak in Γ{sub 1} between the He I and He II ionization zones. We find that it is easiest to study the acoustic glitch that is due to the helium ionization zone in stars with masses in the range 0.9-1.2 M {sub ☉}.

  9. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  10. Scanning Tomographic Acoustic Microscopy

    NASA Astrophysics Data System (ADS)

    Wade, G.; Meyyappan, A.

    1988-07-01

    The technology for "seeing" with sound has an important and interesting history. Some of nature's creatures have been using sound waves for many millenia to image otherwise unobservable objects. The human species, lacking this natural ability, have overcome this deficiency by developing several different ultrasonic imaging techniques. acoustic microscopy is one such technique, which produces high resolution images of detailed structure of small objects in a non-destructive fashion. Two types of acoustic microscopes have evolved for industrial exploitation. They are the scanning laser acoustic microscope (SLAM) and the scanning acoustic microscope (SAM). In this paper, we review the principles of SLAM and describe how we use elements of SLAM to realize the scanning tomographic acoustic microscope (STAM). We describe the data acquisition process and the image reconstruction procedure. We also describe techniques to obtain projection data from different angles of wave incidence enabling us to reconstruct different planes of a complex specimen tomo-graphically. Our experimental results show that STAM is capable of producing high-quality high-resolution subsurface images.

  11. Design study of the geometry of the blanking tool to predict the burr formation of Zircaloy-4 sheet

    SciTech Connect

    Ha, Jisun Lee, Hyungyil Kim, Dongchul Kim, Naksoo

    2013-12-16

    In this work, we investigated factors that influence burr formation for zircaloy-4 sheet used for spacer grids of nuclear fuel roads. Factors we considered are geometric factors of punch. We changed clearance and velocity in order to consider the failure parameters, and we changed shearing angle and corner radius of L-shaped punch in order to consider geometric factors of punch. First, we carried out blanking test with failure parameter of GTN model using L-shaped punch. The tendency of failure parameters and geometric factors that affect burr formation by analyzing sheared edges is investigated. Consequently, geometric factor's influencing on the burr formation is also high as failure parameters. Then, the sheared edges and burr formation with failure parameters and geometric factors is investigated using FE analysis model. As a result of analyzing sheared edges with the variables, we checked geometric factors more affect burr formation than failure parameters. To check the reliability of the FE model, the blanking force and the sheared edges obtained from experiments are compared with the computations considering heat transfer.

  12. Accurate Die Design for Automotive Panel Stamping Considering the Compensation Related with Die Deflection and Blank Thinning

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xu, Dongkai; Xia, Guodong; Li, Xifeng; Chen, Jieshi; Zhang, Jian; Yan, Wei; Li, Yue

    2011-08-01

    In order to improve assembly accuracy, automotive body panels have to be fabricated with higher dimensional and surface quality requirements, therefore the die faces should be designed more accurately to consider more relevant factors. In the presented study, we proposed algorithms to realize the following functions: through forming process simulation, the thinning distribution on the deformed blank was extracted as first kind of compensation; through die structural CAE analysis which automatically mapped the boundary contact forces onto the die surfaces from process simulation results, the die deflection was calculated as second kind of compensation. These two quantitative contributions were added together to compensate the die face. The proposed methodologies were programmed and integrated with LS-Dyna and HyperWorks, and also integrated with Autoform and CATIA linear CAE functionalities separately. In addition, a software toolkit to calculate the contacting ratio was also developed to evaluate the effectiveness of die face compensation. The second toolkit developed was verified by an automotive structural part forming die design, through die compensation and geometric optimization, the predicted contact ratio between the die face and formed blank was improved a lot, and the first toolkit was testified by a fender drawing die design. It shows that the die face compensation can be realized and integrated seamlessly between CAD model, process simulation model and die structural CAE model with the help of data I/O tools developed by the authors.

  13. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    ERIC Educational Resources Information Center

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  14. Acoustic energy shaping

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Elleman, D. D. (Inventor)

    1977-01-01

    A suspended mass is shaped by melting all or a selected portion of the mass and applying acoustic energy in varying amounts to different portions of the mass. In one technique for forming an optical waveguide slug, a mass of oval section is suspended and only a portion along the middle of the cross-section is heated to a largely fluid consistency. Acoustic energy is applied to opposite edges of the oval mass to press the unheated opposite edge portions together so as to form bulges at the middle of the mass. In another technique for forming a ribbon of silicon for constructing solar cells, a cylindrical thread of silicon is drawn from a molten mass of silicon, and acoustic energy is applied to opposite sides of the molten thread to flatten it into a ribbon.

  15. Passive broadband acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  16. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  17. Latticed pentamode acoustic cloak

    PubMed Central

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  18. Seamount acoustic scattering

    NASA Astrophysics Data System (ADS)

    Boehlert, George W.

    The cover of the March 1 issue of Eos showed a time series of acoustic scattering above Southeast Hancock Seamount (29°48‧N, 178°05‧E) on July 17-18, 1984. In a comment on that cover Martin Hovland (Eos, August 2, p. 760) argued that gas or “other far reaching causes” may be involved in the observed acoustic signals. He favors a hypothesis that acoustic scattering observed above a seeping pockmark in the North Sea is a combination of bubbles, stable microbubbles, and pelagic organisms and infers that this may be a more general phenomenon and indeed plays a role in the attraction of organisms to seamounts

  19. A New Wave of Acoustics.

    ERIC Educational Resources Information Center

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  20. Helicopter acoustic alerting system for high-security facilities

    NASA Astrophysics Data System (ADS)

    Steadman, Robert L.; Hansen, Scott; Park, Chris; Power, Dennis

    2009-05-01

    Helicopters present a serious threat to high security facilities such as prisons, nuclear sites, armories, and VIP compounds. They have the ability to instantly bypass conventional security measures focused on ground threats such as fences, check-points, and intrusion sensors. Leveraging the strong acoustic signature inherent in all helicopters, this system would automatically detect, classify, and accurately track helicopters using multi-node acoustic sensor fusion. An alert would be generated once the threat entered a predefined 3-dimension security zone in time for security personnel to repel the assault. In addition the system can precisely identify the landing point on the facility grounds.

  1. Generation of broadband electrostatic noise by electron acoustic solitons

    SciTech Connect

    Dubouloz, N.; Pottelette, R.; Malingre, M. ); Treumann, R.A. )

    1991-02-01

    Broadband electrostatic noise (BEN) bursts whose amplitude sometimes reaches about 100 mV m{sup {minus}1} have been observed by the Viking satellite in the dayside auroral zone. These emissions have been shown to be greatly influenced by nonlinear effects and to occur simultaneously with the observation of particle distributions favouring the destabilization of the electron acoustic mode. It is shown that electron acoustic solitons passing by the satellite would generate spectra that can explain the high-frequency part of BEN, above the electron plasma frequency.

  2. Acoustic emission of coal in the postlimiting deformation state

    SciTech Connect

    Voznesenskii, A.S.; Tavostin, M.N.

    2005-08-01

    The features of acoustic emission in coal samples in the state of pre- and postlimiting deformation are considered. It is shown that in the postlimiting deformation stages and in the transient period, a contrary change is observed in a correlation coefficient of the acoustic emission activity N{Sigma} recorded in the upper and lower portions of a sample; whereas in the prelimiting deformation stages, this change is consistent. It is proposed to recognize the stages of deformation by the correlation coefficient of N{Sigma} recorded in different zones: a positive coefficient corresponds to the prelimiting stage of deformation, and a negative one corresponds to the postlimiting stage.

  3. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  4. Acoustic tooth cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1982-01-01

    An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.

  5. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  6. Strong acoustic wave action

    NASA Astrophysics Data System (ADS)

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  7. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  8. Acoustic and electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Jones, Douglas Samuel

    Theoretical models of EM and acoustic wave propagation are presented in an introductory text intended for intermediate-level science and engineering students. Chapters are devoted to the mathematical representation of acoustic and EM fields, the special theory of relativity, radiation, resonators, waveguide theory, refraction, surface waves, scattering by smooth objects, diffraction by edges, and transient waves. The mathematical tools required for the analysis (Bessel, Legendre, Mathieu, parabolic-cylinder, and spheroidal functions; tensor calculus; and the asymptotic evaluation of integrals) are covered in appendices.

  9. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  10. Electromechanical acoustic liner

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)

    2007-01-01

    A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.

  11. Acoustic loading in straight pipes

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.

    1980-01-01

    Based on linear one-dimensional acoustics, a geometrically perfect elastic waveguide would respond to an oscillatory internal pressure only in the presence of path deflectors (elbows and branches). In practice, a significant elasto-acoustic interaction results even in straight conduits as a result of manufacturing tolerances. A theoretical model of the linear acoustic loading in straight pipes is developed that considers the acoustic wave distortion due to perimeter, axial, and wall thickness nonuniformities.

  12. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Allen, Christopher; Chu, S. Reynold

    2008-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles to ensure compliance with acoustic requirements and thus provide a safe and habitable acoustic environment for the crews, and to validate developed models via building physical mockups and conducting acoustic measurements.

  13. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  14. Variable-Position Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  15. Acoustical Environment of School Buildings.

    ERIC Educational Resources Information Center

    Fitzroy, Dariel; Reid, John L.

    A field study was made of the acoustical environment of schools designed for increased flexibility to meet the spatial requirements of new teaching methods. The object of the study was to define all the criteria for the acoustical design of this type of classroom including the determination of--(1) minimum acoustical separation required for…

  16. ACOUSTICAL ENVIRONMENT OF SCHOOL BUILDINGS.

    ERIC Educational Resources Information Center

    FITZROY, DARIEL; REID, JOHN L.

    A FIELD STUDY WAS MADE OF THE ACOUSTICAL ENVIRONMENT OF SCHOOLS DESIGNED FOR INCREASED FLEXIBILITY TO MEET THE SPATIAL REQUIREMENTS OF NEW TEACHING METHODS. THE OBJECT OF THE STUDY WAS TO DEFINE ALL THE CRITERIA FOR THE ACOUSTICAL DESIGN OF THIS TYPE OF CLASSROOM INCLUDING THE DETERMINATION OF--(1) MINIMUM ACOUSTICAL SEPARATION REQUIRED FOR…

  17. Post Treatment of Acoustic Neuroma

    MedlinePlus

    Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video Pre-Treatment Treatment Options Summary Treatment Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions ...

  18. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  19. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    SciTech Connect

    Cheng, Ying; Liu, XiaoJun; Zhou, Chen; Wei, Qi; Wu, DaJian

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  20. Acoustic vector fields in underwater waveguides

    NASA Astrophysics Data System (ADS)

    Rapids, Brian

    2005-09-01

    The ability to compute the sound pressure level as well as the vectors associated with the acoustic particle motion has existed for some time. However, propagation studies and ambient noise investigations have typically focused only upon the sound pressure levels that would be observed by an omnidirectional hydrophone or array of hydrophones. Recent interest in geophones and accelerometers for use as vector and dyadic sensors should encourage the investigation and analysis of the underlying vector fields contributing to the acoustic intensity and energy density fields. The frequency domain properties of the acoustic vector field generated by monopole sources having frequencies <1kHz in a simple iso-velocity waveguide are presented in order to build a fundamental understanding of the related quantities. Subsequently, similar field quantities computed for more realistic environments such as downward refracting profiles and deep-water profiles supporting convergence zone propagation will be discussed. Regions and phenomena associated with perturbations in the energy flux density will be highlighted.

  1. Microfiber interferometric acoustic transducers.

    PubMed

    Wang, Xiuxin; Jin, Long; Li, Jie; Ran, Yang; Guan, Bai-Ou

    2014-04-01

    Acoustic and ultrasonic transducers are key components in biomedical information technology, which has been applied in medical diagnosis, photoacoustic endoscopy and photoacoustic imaging. In this paper, an acoustic transducer based on Fabry-Perot interferometer (FPI) fabricated in a microscaled optical fiber is demonstrated. The transducer is fabricated by forming two wavelength-matched Bragg gratings into the microfiber by means of side illumination with a 193nm excimer laser. When placing the transducer in water, the applied acoustic signal periodically changes the refractive index (RI) of the surrounding liquid and modulates the transmission of the FPI based on the evanescent-field interaction between the liquid and the transmitting light. As a result, the acoustic signal can be constructed with a tunable laser whose output wavelength is located at the slope of the inteferometric fringes. The transducer presents a sensitivity of 10 times higher than the counterparts fabricated in conventional singlemode fibers and has great potential to achieve higher resolution for photoacoustic imaging due to its reduced diameter. PMID:24718189

  2. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  3. Acoustics in Schools.

    ERIC Educational Resources Information Center

    Singer, Miriam J.

    This paper explores the issues associated with poor acoustics within schools. Additionally, it suggests remedies for existing buildings and those under renovation, as well as concerns for new construction. The paper discusses the effects of unwanted noise on students in terms of physiological, motivational, and cognitive influences. Issues are…

  4. Teaching acoustics online

    NASA Astrophysics Data System (ADS)

    Morrison, Andrew; Rossing, Thomas D.

    2003-10-01

    We teach an introductory course in musical acoustics using a Blackboard. Students in this course can access audio and video materials as well as printed materials on our course website. All homework is submitted online, as are tests and examinations. The students also have the opportunity to use synchronous and asynchronous chat rooms to discuss the course with each other or with the instructors.

  5. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  6. COMBUSTION ACOUSTICS DIAGNOSTICS

    EPA Science Inventory

    This is an Exploratory Research Project that was awarded by APPCD for research on developing an acoustic flame condition monitor. It will involve a bench scale experiment of 4-6 weeks duration to record adjacent audible energy of a Bunsen burner. The experiment will require a d...

  7. The ambient acoustic environment in Laguna San Ignacio, Baja California Sur, Mexico.

    PubMed

    Seger, Kerri D; Thode, Aaron M; Swartz, Steven L; Urbán, Jorge R

    2015-11-01

    Each winter gray whales (Eschrichtius robustus) breed and calve in Laguna San Ignacio, Mexico, where a robust, yet regulated, whale-watching industry exists. Baseline acoustic environments in LSI's three zones were monitored between 2008 and 2013, in anticipation of a new road being paved that will potentially increase tourist activity to this relatively isolated location. These zones differ in levels of both gray whale usage and tourist activity. Ambient sound level distributions were computed in terms of percentiles of power spectral densities. While these distributions are consistent across years within each zone, inter-zone differences are substantial. The acoustic environment in the upper zone is dominated by snapping shrimp that display a crepuscular cycle. Snapping shrimp also affect the middle zone, but tourist boat transits contribute to noise distributions during daylight hours. The lower zone has three source contributors to its acoustic environment: snapping shrimp, boats, and croaker fish. As suggested from earlier studies, a 300 Hz noise minimum exists in both the middle and lower zones of the lagoon, but not in the upper zone. PMID:26627811

  8. Acoustics- Version 1.0

    SciTech Connect

    2012-09-13

    This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, the sounds are removed, as a character forgets what it has heard.

  9. Acoustics- Version 1.0

    2012-09-13

    This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, themore » sounds are removed, as a character forgets what it has heard.« less

  10. A reliability study of springback on the sheet metal forming process under probabilistic variation of prestrain and blank holder force

    NASA Astrophysics Data System (ADS)

    Mrad, Hatem; Bouazara, Mohamed; Aryanpour, Gholamreza

    2013-08-01

    This work deals with a reliability assessment of springback problem during the sheet metal forming process. The effects of operative parameters and material properties, blank holder force and plastic prestrain, on springback are investigated. A generic reliability approach was developed to control springback. Subsequently, the Monte Carlo simulation technique in conjunction with the Latin hypercube sampling method was adopted to study the probabilistic springback. Finite element method based on implicit/explicit algorithms was used to model the springback problem. The proposed constitutive law for sheet metal takes into account the adaptation of plastic parameters of the hardening law for each prestrain level considered. Rackwitz-Fiessler algorithm is used to find reliability properties from response surfaces of chosen springback geometrical parameters. The obtained results were analyzed using a multi-state limit reliability functions based on geometry compensations.

  11. Evaluation of the effect of mask-blank flatness on CDU and DOF in high-NA systems

    NASA Astrophysics Data System (ADS)

    Lee, Christopher; Chang, Chia Wen; Chin, Tomas; Lu, Richard; Fan, Steven; Chen, Derek; Chan, Gordon; Huang, Torey

    2007-10-01

    The purpose of paper is to investigate the impact of mask blank flatness on critical dimension uniformity (CDU) and depth of focus (DOF) in the wafer printing process with a test pattern designed for 65nm node technology. In this experiment we use 3 test masks with different flatness (0.3T, 0.5T and 1T), and the same test pattern array. The mask flatness was measured with a Tropel® UltraFlat TM 200, and the focus error is extracted from the CD data of the focus and energy matrix (FEM) analysis. The goal of the study is to quantify the mask flatness influence on the high-numerical aperture (NA) lithographic process.

  12. Impact of the phase defect structure on an actinic dark-field blank inspection signal and wafer printability

    NASA Astrophysics Data System (ADS)

    Amano, Tsuyoshi; Murachi, Tetsunori; Yamane, Takeshi; Arisawa, Yukiyasu; Terasawa, Tsuneo

    2012-03-01

    A variety of phase defects (PDs) such as programmed bump and pit PDs, and native bump and pit PDs were detected by a dark-field ABI (Actinic Blank Inspection) tool. Among the PDs, some of them seemed to grow and propagate in an angular direction, away from substrate surface as was found by a TEM analysis. This presentation reports on the influence of 3-D phase defect on wafer printability, and on defect detection signals of an ABI tool. The result shows that the impact of the inclination angle on printing performance was quite significant when the PDs were not covered with the absorber pattern. On the other hand, the defect detection signal intensity was negligibly small in the case where the inclination angle was less than 9 degrees. However, ABI with its high magnification optics can pinpoint the PD's actual location as defined by the EUV light, rather than the ones that are not so clearly define by the surface topography.

  13. Radiocarbon Analysis of Individual Amino Acids: Carbon Blank Quantification for a Small-Sample High-Pressure Liquid Chromatography Purification Method.

    PubMed

    Bour, Amy L; Walker, Brett D; Broek, Taylor A B; McCarthy, Matthew D

    2016-04-01

    Compound-specific radiocarbon analysis (CSRA) of amino acids (AAs) is of great interest as a proxy for organic nitrogen (N) cycling rates, dating archeological bone collagen, and investigating processes shaping the biogeochemistry of global N reservoirs. However, recoverable quantities of individual compounds from natural samples are often insufficient for radiocarbon ((14)C) analyses (<50 μg C). Constraining procedural carbon (C) blanks and their isotopic contributions is critical for reporting of accurate CSRA measurements. Here, we report the first detailed quantification of C blanks (including sources, magnitudes, and variability) for a high-pressure liquid chromatography (HPLC) method designed to purify individual AAs from natural samples. We used pairs of AA standards with either modern (M) or dead (D) fraction modern (Fm) values to quantify MC and DC blanks within several chromatographic regions. Blanks were determined for both individual and mixed AA standard injections with peak loadings ranging from 10 to 85 μg C. We found 0.8 ± 0.4 μg of MC and 1.0 ± 0.5 μg of DC were introduced by downstream sample preparation (drying, combustion, and graphitization), which accounted for essentially the entire procedural blank for early eluting AAs. For late-eluting AAs, higher eluent organic content and fraction collected volumes contributed to total blanks of 1.5 ± 0.75 μg of MC and 3.0 ± 1.5 μg of DC. Our final measurement uncertainty for 20 μg of C of most AAs was ±0.02 Fm, although sample size requirements are larger for similar uncertainty in late-eluting AAs. These results demonstrate the first CSRA protocol for many protein AAs with uncertainties comparable to the lowest achieved in prior studies. PMID:26855019

  14. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  15. Design and evaluation of a field study on the contamination of selected volatile organic compounds and wastewater-indicator compounds in blanks and groundwater samples

    USGS Publications Warehouse

    Thiros, Susan A.; Bender, David A.; Mueller, David K.; Rose, Donna L.; Olsen, Lisa D.; Martin, Jeffrey D.; Bernard, Bruce; Zogorski, John S.

    2011-01-01

    The Field Contamination Study (FCS) was designed to determine the field processes that tend to result in clean field blanks and to identify potential sources of contamination to blanks collected in the field from selected volatile organic compounds (VOCs) and wastewater-indicator compounds (WICs). The VOCs and WICs analyzed in the FCS were detected in blanks collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program during 1996-2008 and 2002-08, respectively. To minimize the number of variables, the study required ordering of supplies just before sampling, storage of supplies and equipment in clean areas, and use of adequate amounts of purge-and-trap volatile-grade methanol and volatile pesticide-grade blank water (VPBW) to clean sampling equipment and to collect field blanks. Blanks and groundwater samples were collected during 2008-09 at 16 sites, which were a mix of water-supply and monitoring wells, located in 9 States. Five different sample types were collected for the FCS at each site: (1) a source-solution blank collected at the USGS National Water Quality Laboratory (NWQL) using laboratory-purged VPBW, (2) source-solution blanks collected in the field using laboratory-purged VPBW, (3) source-solution blanks collected in the field using field-purged VPBW, (4) a field blank collected using field-purged VPBW, and (5) a groundwater sample collected from a well. The source-solution blank and field-blank analyses were used to identify, quantify, and document extrinsic contamination and to help determine the sources and causes of data-quality problems that can affect groundwater samples. Concentrations of compounds detected in FCS analyses were quantified and results were stored in the USGS National Water Information System database after meeting rigorous identification and quantification criteria. The study also utilized information provided by laboratory analysts about evidence indicating the presence of selected compounds

  16. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors.

    PubMed

    Wei, Zongsu; Weavers, Linda K

    2016-07-01

    Scaled-up and economically viable sonochemical systems are critical for increased use of ultrasound in environmental and chemical processing applications. In this study, computational simulations and acoustic pressure maps were used to design a larger-scale sono-reactor containing a multi-stepped ultrasonic horn. Simulations in COMSOL Multiphysics showed ultrasonic waves emitted from the horn neck and tip, generating multiple regions of high acoustic pressure. The volume of these regions surrounding the horn neck were larger compared with those below the horn tip. The simulated acoustic field was verified by acoustic pressure contour maps generated from hydrophone measurements in a plexiglass box filled with water. These acoustic pressure contour maps revealed an asymmetric and discrete distribution of acoustic pressure due to acoustic cavitation, wave interaction, and water movement by ultrasonic irradiation. The acoustic pressure contour maps were consistent with simulation results in terms of the effective scale of cavitation zones (∼ 10 cm and <5 cm above and below horn tip, respectively). With the mapped acoustic field and identified cavitation location, a cylindrically-shaped sono-reactor with a conical bottom was designed to evaluate the treatment capacity (∼ 5 L) for the multi-stepped horn using COMSOL simulations. In this study, verification of simulation results with experiments demonstrates that coupling of COMSOL simulations with hydrophone measurements is a simple, effective and reliable scientific method to evaluate reactor designs of ultrasonic systems. PMID:26964976

  17. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2003-03-01

    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  18. Education in acoustics in Argentina

    NASA Astrophysics Data System (ADS)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  19. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  20. Acoustics Discipline Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    As part of the Fundamental Aeronautics Program Annual Review, a summary of the progress made in 2007 in acoustics research under the Subsonic Fixed Wing project is given. The presentation describes highlights from in-house and external activities including partnerships and NRA-funded research with industry and academia. Brief progress reports from all acoustics Phase 1 NRAs are also included as are outlines of the planned activities for 2008 and all Phase 2 NRAs. N+1 and N+2 technology paths outlined for Subsonic Fixed Wing noise targets. NRA Round 1 progressing with focus on prediction method advancement. NRA Round 2 initiating work focused on N+2 technology, prediction methods, and validation. Excellent partnerships in progress supporting N+1 technology targets and providing key data sets.

  1. Radiosurgery of acoustic neurinomas

    SciTech Connect

    Flickinger, J.C.; Lunsford, L.D.; Coffey, R.J.; Linskey, M.E.; Bissonette, D.J.; Maitz, A.H.; Kondziolka, D. )

    1991-01-15

    Eighty-five patients with acoustic neurinomas underwent stereotactic radiosurgery with the gamma unit at the University of Pittsburgh (Pittsburgh, PA) during its first 30 months of operation. Neuroimaging studies performed in 40 patients with more than 1 year follow-up showed that tumors were smaller in 22 (55%), unchanged in 17 (43%), and larger in one (2%). The 2-year actuarial rates for preservation of useful hearing and any hearing were 46% and 62%, respectively. Previously undetected neuropathies of the trigeminal (n = 12) and facial nerves (n = 14) occurred 1 week to 1 year after radiosurgery (median, 7 and 6 months, respectively), and improved at median intervals of 13 and 8 months, respectively, after onset. Hearing loss was significantly associated with increasing average tumor diameter (P = 0.04). No deterioration of any cranial nerve function has yet developed in seven patients with average tumor diameters less than 10 mm. Radiosurgery is an important treatment alternative for selected acoustic neurinoma patients.

  2. Acoustic methodology review

    NASA Technical Reports Server (NTRS)

    Schlegel, R. G.

    1982-01-01

    It is important for industry and NASA to assess the status of acoustic design technology for predicting and controlling helicopter external noise in order for a meaningful research program to be formulated which will address this problem. The prediction methodologies available to the designer and the acoustic engineer are three-fold. First is what has been described as a first principle analysis. This analysis approach attempts to remove any empiricism from the analysis process and deals with a theoretical mechanism approach to predicting the noise. The second approach attempts to combine first principle methodology (when available) with empirical data to formulate source predictors which can be combined to predict vehicle levels. The third is an empirical analysis, which attempts to generalize measured trends into a vehicle noise prediction method. This paper will briefly address each.

  3. Acoustic tractor beam.

    PubMed

    Démoré, Christine E M; Dahl, Patrick M; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P; Spalding, Gabriel C

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system. PMID:24836252

  4. Acoustic Tractor Beam

    NASA Astrophysics Data System (ADS)

    Démoré, Christine E. M.; Dahl, Patrick M.; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P.; Spalding, Gabriel C.

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system.

  5. Alaskan river environmental acoustics

    NASA Astrophysics Data System (ADS)

    Dahl, Peter H.; Pfisterer, Carl; Geiger, Harold J.

    2005-04-01

    Sonars are used by the Alaska Department of Fish and Game (ADF&G) to obtain daily and hourly estimates of at least four species of migratory salmon during their seasonal migration which lasts from June to beginning of September. Suspended sediments associated with a river's sediment load is an important issue for ADF&G's sonar operations. Acoustically, the suspended sediments are a source of both volume reverberation and excess attenuation beyond that expected in fresh water. Each can impact daily protocols for fish enumeration via sonar. In this talk, results from an environmental acoustic study conducted in the Kenai River (June 1999) using 420 kHz and 200 kHz side looking sonars, and in the Yukon River (July 2001) using a 120 kHz side looking sonar, are discussed. Estimates of the volume scattering coefficient and attenuation are related to total suspended sediments. The relative impact of bubble scattering and sediment scattering is also discussed.

  6. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  7. A Martian acoustic anemometer.

    PubMed

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W

    2016-08-01

    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions. PMID:27586767

  8. Books on acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil A.

    2001-05-01

    The legacy of a man is not limited to just his projects. His writings in many cases are a more lasting, and a definitely more accessible, monument. For 60 years, Leo L. Beranek has produced books on acoustics, acoustic measurements, sound control, music and architecture, noise and vibration control, concert halls, and opera houses in addition to teaching and consulting. His books are standard references and still cited in other books and in technical and professional articles. Many of his books were among, if not, the first comprehensive modern treatment of the subject and many are still foremost. A review of Dr. Beranek's many books as well as some anecdotes about the circumstances and consequences of same will be presented.

  9. Theory on acoustic sources

    NASA Technical Reports Server (NTRS)

    Wright, S. E.

    1978-01-01

    A theory is described for the radiation emission emission from acoustic multipole sources. The sources can be stationary or moving at speeds including supersonic and experience stationary or moving disturbances. The effect of finite source distributions and disturbances is investigated as well as the manner in which they interact. Distinction is made between source distributions that responsed as a function of time and those that respond as a function of space.

  10. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  11. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    1999-01-01

    The Structures and Acoustics Division of NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported are a synopsis of the work and accomplishments reported by the Division during the 1996 calendar year. A bibliography containing 42 citations is provided.

  12. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    2001-01-01

    The Structures and Acoustics Division of the NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included in this report are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported is a synopsis of the work and accomplishments completed by the Division during the 1997, 1998, and 1999 calendar years. A bibliography containing 93 citations is provided.

  13. Fast wideband acoustical holography.

    PubMed

    Hald, Jørgen

    2016-04-01

    Patch near-field acoustical holography methods like statistically optimized near-field acoustical holography and equivalent source method are limited to relatively low frequencies, where the average array-element spacing is less than half of the acoustic wavelength, while beamforming provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods can be used with the same array. But for holography to provide good low-frequency resolution, a small measurement distance is needed, whereas beamforming requires a larger distance to limit sidelobe issues. The wideband holography method of the present paper was developed to overcome that practical conflict. Only a single measurement is needed at a relatively short distance and a single result is obtained covering the full frequency range. The method uses the principles of compressed sensing: A sparse sound field representation is assumed with a chosen set of basis functions, a measurement is taken with an irregular array, and the inverse problem is solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes sparsity. The iterative method is shown to provide very similar results in most cases and to be computationally much more efficient. PMID:27106299

  14. Scanning tomographic acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Hua

    2002-11-01

    This paper provides an overview of the design and development of the scanning tomographic acoustic microscopy (STAM). This research effort spans over a period of more than 12 years, which successfully elevated the acoustic microscopy from the traditional intensity-mapping mode to the level of holographic and tomographic imaging. The tomographic imaging capability of STAM was developed on the platform of the scanning laser acoustic microscope (SLAM), which operates in a coherent transmission mode with plane-wave illumination and scanning laser wavefield detection. The image formation techniques were based on the backward propagation method implemented in the plane-to-plane format. In this paper, the key elements of the design and development, including the modification of the data-acquisition hardware, implementation of image reconstruction algorithms for multiple-frequency and multiple-angle tomography, and the high-precision phase-correction and image registration techniques for the superposition of coherent sub-images, will be discussed. Results of full-scale experiments will also be included to demonstrate the capability of holographic and tomographic image formation in microscopic scale.

  15. Acoustically enhanced heat transport.

    PubMed

    Ang, Kar M; Yeo, Leslie Y; Friend, James R; Hung, Yew Mun; Tan, Ming K

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10(6) Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ∼ 10(-9) m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ∼ 10(-8) m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10(-8) m with 10(6) Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation. PMID:26827343

  16. Acoustically enhanced heat transport

    NASA Astrophysics Data System (ADS)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  17. Spatiotemporally resolved granular acoustics

    NASA Astrophysics Data System (ADS)

    Owens, Eli; Daniels, Karen

    2011-03-01

    Acoustic techniques provide a non-invasive method of characterizing granular material properties; however, there are many challenges in formulating accurate models of sound propagation due to the inherently heterogeneous nature of granular materials. In order to quantify acoustic responses in space and time, we perform experiments in a photoelastic granular material in which the internal stress pattern (in the form of force chains) is visible. We utilize two complementary methods, high-speed imaging and piezoelectric transduction, to provide particle-scale measurements of the amplitude of the acoustic wave. We observe that the average wave amplitude is largest within particles experiencing the largest forces. The force-dependence of this amplitude is in qualitative agreement with a simple Hertzian-like model for contact area. In addition, we investigate the power spectrum of the propagating signal using the piezoelectric sensors. For a Gaussian wave packet input, we observe a broad spectrum of transmitted frequencies below the driving frequency, and we quantify the characteristic frequencies and corresponding length scales of our material as the system pressure is varied.

  18. Zone separator for multiple zone vessels

    DOEpatents

    Jones, John B.

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  19. Sound reproduction in personal audio systems using the least-squares approach with acoustic contrast control constraint.

    PubMed

    Cai, Yefeng; Wu, Ming; Yang, Jun

    2014-02-01

    This paper describes a method for focusing the reproduced sound in the bright zone without disturbing other people in the dark zone in personal audio systems. The proposed method combines the least-squares and acoustic contrast criteria. A constrained parameter is introduced to tune the balance between two performance indices, namely, the acoustic contrast and the spatial average error. An efficient implementation of this method using convex optimization is presented. Offline simulations and real-time experiments using a linear loudspeaker array are conducted to evaluate the performance of the presented method. Results show that compared with the traditional acoustic contrast control method, the proposed method can improve the flatness of response in the bright zone by sacrificing the level of acoustic contrast. PMID:25234882

  20. The source of solar high-frequency acoustic modes - Theoretical expectations

    NASA Technical Reports Server (NTRS)

    Brown, Timothy M.

    1991-01-01

    The source exciting the solar p-modes is likely to be acoustic noise generated in the top part of the sun's convection zone. If so, then simple arguments suggest that most of the emitted energy may come from rare localized events that are well separated from one another in space and time. This note describes the acoustic emission that would be expected from such events, based on a ray-theory analysis. Most of the acoustic energy is found to emerge very close to the source, so that observations to identify emission events will require high spatial resolution.

  1. Acoustic properties of triggered lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Evans, N.; Ramaekers, J.; Trevino, J.; Rassoul, H.; Lucia, R. J.; Dwyer, J. R.; Uman, M. A.; Jordan, D. M.

    2014-12-01

    Acoustic signatures from rocket-triggered lightning are measured by a 15m long, one-dimensional microphone array consisting of 16 receivers situated 90 meters from the lightning channel. Measurements were taken at the International Center for Lightning Research and Testing (ICLRT) in Camp Blanding, FL during the summer of 2014. The linear array was oriented in an end-fire position so that the peak acoustic reception pattern can be steered vertically along the channel with a frequency-dependent spatial resolution, enabling us to sample the acoustic signatures from different portions along the lightning channel. We report on the characteristics of acoustic signatures associated with several return strokes in 6 measured flashes (total of 29 return strokes). In addition, we study the relationship between the amplitude, peak frequency, and inferred energy input of each stroke acoustic signature and the associated measured lightning parameters. Furthermore, challenges of obtaining acoustic measurements in thunderstorm harsh conditions and their countermeasures will also be discussed.

  2. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  3. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  4. Blank Computer Floppy Disk Formatting Using the AppleWorks Program, Apple IIe or GS Computers and a Duodisk or Two Disk Drives.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This manual is a "how to" training device for formatting blank floppy disks in the AppleWorks program using an Apple IIe or Apple IIGS Computer with Duodisk or two disk drives. The manual provides step-by-step directions, and includes 11 figures depicting the computer screen at the various stages of the formatting sequence. (EW)

  5. Acoustic nonlinearity in dispersive solids

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1991-01-01

    An investigation to consider the effects of dispersion on the generation of the static acoustic wave component is presented. It is considered that an acoustic toneburst may be modeled as a modulated continuous waveform and that the generated initial static displacement pulse may be viewed as a modulation-confined disturbance. A theoretical model for the generation of the acoustic modulation solitons evolved is developed and experimental evidence in samples of vitreous silica demonstrating the essential validity of the model is provided.

  6. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Chu, S. Reynold; Allen, Chris

    2009-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.

  7. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  8. Transition section for acoustic waveguides

    DOEpatents

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  9. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  10. Effect of Ultrasonic Vibration on Unmixed Zone Formation

    SciTech Connect

    Cui, Yan; Xu, Cailu; Han, Qingyou

    2006-01-01

    Ultrasonic vibration was introduced into the molten super-austenitic-stainless weld metal during the shielded metal arc welding process. It was observed that the unmixed zone in the weld metal was completely eliminated by high-intensity ultrasonic vibrations. This is mainly due to a complete mixing of the molten filler metal and base metal, at the freezing front, caused by the acoustically induced cavitation and streaming. The elimination of the unmixed zone can significantly enhance the corrosion resistance of the weldment because the unmixed zone is the preferential location for the corrosion attack.

  11. Effects of Post-Weld Heat Treatment on the Mechanical Properties of Similar- and Dissimilar-Alloy Friction Stir Welded Blanks

    SciTech Connect

    Zadpoor, Amir Abbas; Sinke, Jos

    2011-01-17

    Friction stir welding is a solid state joining process with relatively low welding temperatures. Nevertheless, the mechanical properties of friction stir welded blanks are degraded after welding. Indeed, both strength and ductility of the welds are decreased after welding. Often, the resulting friction stir welded blanks need to be formed to their final structural shape. Therefore, the formability of friction stir welded blanks is of primary importance in the manufacturing of structural parts. This paper studies how the mechanical properties and particularly formability of friction stir welded blanks can be improved by applying a post weld heat treatment. Two aluminum alloys from 2000 and 7000 series, namely 2024-T3 and 7075-T6, are selected for the study. The sheet thickness of both materials is 2,0 mm. The selected alloys are welded in three configurations: 2024-T3 and 2024-T3, 7075-T6 and 7075-T6, and 2024-T3 and 7075-T6. The resulting welds are naturally aged for a few months. Three sets of standard dog bone shape tensile test specimens are then machined from the welds. The first set of the specimens is tested without any heat treatment. The second set of the specimens is solution heat treated and quenched before testing. The third set of the specimens is solution heat treated, quenched, and naturally aged for a week before testing. The mechanical properties of the three different sets of specimens are compared with each other. It is shown that careful selection of post weld heat-treatment can greatly improve the formability of friction stir welded blanks.

  12. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  13. Characterizing the stiffness of Human Prostates using Acoustic Radiation Force

    PubMed Central

    Zhai, Liang; Madden, John; Foo, Wen-Chi; Mouraviev, Vladimir; Polascik, Thomas J.; Palmeri, Mark L.; Nightingale, Kathryn R.

    2012-01-01

    Acoustic Radiation Force Impulse (ARFI) imaging has been previously reported to portray normal anatomic structures and pathologies in ex vivo human prostates with good contrast and resolution. These findings were based on comparison with histological slides and McNeal’s zonal anatomy. In ARFI images, the central zone (CZ) appears darker (smaller displacement) than other anatomic zones, and prostate cancer (PCa) is darker than normal tissue in the peripheral zone (PZ). Since displacement amplitudes in ARFI images are determined by both the underlying tissue stiffness and the amplitude of acoustic radiation force which varies with acoustic attenuation, one question that arises is: how are the relative displacements in prostate ARFI images related to the underlying prostatic tissue stiffness? In linear, isotropic elastic materials and in tissues that are relatively uniform in acoustic attenuation (e.g. liver), relative displacement in ARFI images has been shown to be correlated with underlying tissue stiffness. However, the prostate is known to be heterogeneous. Variations in acoustic attenuation of prostatic structures could confound the interpretation of ARFI images due to the associated variations in the applied acoustic radiation force. Therefore, in this study, co-registered three-dimensional (3D) ARFI datasets and quantitative shear wave elasticity imaging (SWEI) datasets were acquired in freshly excised human prostates to investigate the relationship between displacement amplitudes in ARFI prostate images and the matched reconstructed shear moduli. The lateral time-to-peak (LTTP) algorithm was applied to the SWEI data to compute the shear wave speed and reconstruct the shear moduli. Five types of prostatic tissue (PZ, CZ, transition zone (TZ) and benign prostatic hyperplasia (BPH), PCa, and atrophy) were identified, whose shear moduli were quantified to be 4.1±0.8 kPa, 9.9±0.9 kPa, 4.8±0.6 kPa, 10.0±1.0 kPa and 8.0 kPa, respectively. Linear regression was

  14. Ares I Scale Model Acoustic Test Lift-Off Acoustics

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janie D.

    2011-01-01

    The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.

  15. Acoustic Mechanical Feedthroughs

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  16. Dynamic acoustic tractor beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-03-01

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  17. The acoustics of snoring.

    PubMed

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline

    2010-04-01

    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (<500 Hz) and corresponds to a fundamental frequency with associated harmonics. The pitch of snoring is determined by vibration of the soft palate, while nonpalatal snoring is more 'noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as

  18. Quantum positron acoustic waves

    SciTech Connect

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  19. Wind turbine acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  20. Dynamic acoustic tractor beams

    SciTech Connect

    Mitri, F. G.

    2015-03-07

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  1. North Pacific Acoustic Laboratory.

    PubMed

    Worcester, Peter F; Spindel, Robert C

    2005-03-01

    A series of long-range acoustic propagation experiments have been conducted in the North Pacific Ocean during the last 15 years using various combinations of low-frequency, wide-bandwidth transmitters and horizontal and vertical line array receivers, including a 2-dimensional array with a maximum vertical aperture of 1400 m and a horizontal aperture of 3600 m. These measurements were undertaken to further our understanding of the physics of low-frequency, broadband propagation and the effects of environmental variability on signal stability and coherence. In this volume some of the results are presented. In the present paper the central issues these experiments have addressed are briefly summarized. PMID:15810685

  2. Micro scale laser shock forming of pure copper and titanium sheet with forming/blanking compound die

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zhang, Di; Gu, Chunxing; Shen, Zongbao; Ma, Youjuan; Gu, Yuxuan; Qiu, Tangbiao; Liu, Huixia

    2015-04-01

    A new process fabricating micro parts of thin metal foils by laser shock waves with forming/blanking compound die is reported in this article, in which flexible rubber material was used as the soft punch to act on the thin metal sheet. Systematic studies were carried out experimentally on the process with different laser energies and materials. The formed parts were examined in terms of their morphology, surface roughness, forming depth and mechanical properties (including nanohardness, plasticity and elastic modulus) characterized by nanoindentation test. According to the results, the ablation states of confinement medium and the surface roughness of the different regions change with energies. Additionally, the proper energies are necessary to form complex parts and the forming process can be applied to manufacture parts with good surface quality. What's more, the nanoindentation test results showed that the nanohardness, plasticity and elastic modulus of material were increased after impact. The increase in nanohardness and plasticity can attribute to higher stiffness of the parts. The enhanced elastic modulus indicates an increased stiffness of the parts, providing an evidence for the reduced spring back of copper during laser shocking.

  3. Comparing delay discounting rates when using the fill-in-the-blank and multiple-choice methods.

    PubMed

    Weatherly, Jeffrey N; Derenne, Adam

    2011-01-01

    Several methods have been devised to measure delay discounting. The present study recruited university students to complete a delay-discounting task involving five different outcomes (finding a dating partner, free cigarettes, winning $100,000, being owed $100,000, and obtaining one's ideal body image) that was administered using either the fill-in-the blank (FITB) or multiple-choice (MC) method. Results showed that the different administration methods sometimes produced significantly different rates of discounting, the direction of which differed by outcome. Hyperbolic discounting and the area under the discounting curve were nearly always significantly correlated when the FITB method was used but were never significantly correlated when the MC method was used. Discounting across the five outcomes produced a two-factor solution when the FITB data were factor analyzed. The MC data were described by a one-factor solution. The present results illustrate that procedural variables have a potentially profound impact on delay-discounting data, and generalizing from studies on delay discounting should be done with caution until those variables are fully understood. PMID:24836568

  4. The Mars Phoenix Thermal Evolved-Gas Analysis: The Role of an Organic Free Blank in the Search for Organics

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, Douglas W.; Sutter, B.; Golden, D. C.; Morris, Richard V.; Boynton, W. V.

    2008-01-01

    The Thermal Evolved-Gas Analyzer (TEGA) instrument onboard the 2007 Phoenix Lander will perform differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. Data from the instrument will be compared with Mars analog mineral standards, collected under TEGA Mars-like conditions to identify the volatile-bearing mineral phases [1] (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) found in the Martian soil. Concurrently, the instrument will be looking for indications of organics that might also be present in the soil. Organic molecules are necessary building blocks for life, although their presence in the ice or soil does not indicate life itself. The spacecraft will certainly bring organic contaminants to Mars even though numerous steps were taken to minimize contamination during the spacecraft assembly and testing. It will be essential to distinguish possible Mars organics from terrestrial contamination when TEGA instrument begins analyzing icy soils. To address the above, an Organic Free Blank (OFB) was designed, built, tested, and mounted on the Phoenix spacecraft providing a baseline for distinguishing Mars organics from terrestrial organic contamination. Our objective in this report is to describe some of the considerations used in selecting the OFB material and then report on the processing and analysis of the final candidate material

  5. Acoustic microscopy of living cells.

    PubMed Central

    Hildebrand, J A; Rugar, D; Johnston, R N; Quate, C F

    1981-01-01

    This paper reports preliminary results of the observation by acoustic microscopy of living cells in vitro. The scanning acoustic microscope uses high-frequency sound waves to produce images with submicrometer resolution. The contrast observed in acoustic micrographs of living cells depends on the acoustic properties (i.e., density, stiffness, and attenuation) and on the topographic contour of the cell. Variation in distance separating the acoustic lens and the viewed cell also has a profound effect on the image. When the substratum is located at the focal plane, thick regions of the cell show a darkening that can be related to cellular acoustic attenuation (a function of cytoplasmic viscosity). When the top of the cell is placed near the focal plane, concentric bright and dark rings appear in the image. The location of the rings can be related to cell topography, and the ring contrast can be correlated to the stiffness and density of the cell. In addition, the character of the images of single cells varies dramatically when the substratum upon which they are grown is changed to a different material. By careful selection of the substratum, the information content of the acoustic images can be increased. Our analysis of acoustic images of actively motile cells indicates that leading lamella are less dense or stiff than the quiescent trailing processes of the cells. Images PMID:6940179

  6. Digital Controller For Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  7. Acoustical Environment for Academic Buildings.

    ERIC Educational Resources Information Center

    Lortie, L.J.

    Discussion of the parameters governing noise control and room acoustics are followed by a demonstration on how to achieve a good acoustical environment. Topics emphasized include--(1) design and control objectives, (2) noise sources and propagation, (3) reverberation parameters, (4) noise control factors and parameters, and (5) sound systems. Also…

  8. Acoustic Emissions Reveal Combustion Conditions

    NASA Technical Reports Server (NTRS)

    Ramohalli, D. N. R.; Seshan, P. K.

    1983-01-01

    Turbulent-flame acoustic emissions change with air/fuel ratio variations. Acoustic emissions sensed and processed to detect inefficient operation; control system responds by adjusting fuel/air mixture for greater efficiency. Useful for diagnosis of combustion processes and fuel/air control.

  9. Electronic dummy for acoustical testing

    NASA Technical Reports Server (NTRS)

    Bauer, B. B.; Di Mattia, A. L.; Rosencheck, A. J.; Stern, M.; Torick, E. L.

    1967-01-01

    Electronic Dummy /ED/ used for acoustical testing represents the average male torso from the Xiphoid process upward and includes an acoustic replica of the human head. This head simulates natural flesh, and has an artificial voice and artificial ears that measure sound pressures at the eardrum or the entrance to the ear canal.

  10. Sound Advice on Classroom Acoustics.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2003-01-01

    Discusses the importance of acoustic standards in classroom design, presenting an interview with the Acoustical Society of America's (ASA's) standards manager which focuses on reasons for the new ASA standards, the standards document (which was written for K-12 classroom but applies to college classrooms), the need to avoid echo and be able to…

  11. Acoustic Similarity and Dichotic Listening.

    ERIC Educational Resources Information Center

    Benson, Peter

    1978-01-01

    An experiment tests conjectures that right ear advantage (REA) has an auditory origin in competition or interference between acoustically similar stimuli and that feature-sharing effect (FSE) has its origin in assignment of features of phonetically similar stimuli. No effect on the REA for acoustic similarity, and a clear effect of acoustic…

  12. Eutectic growth under acoustic levitation conditions

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Cao, C. D.; Lü, Y. J.; Wei, B.

    2002-12-01

    Samples of Pb-Sn eutectic alloy with a high density of 8.5×103 kg/m3 are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of ``lamellas-broken lamellas-dendrites.'' This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface.

  13. Eutectic growth under acoustic levitation conditions.

    PubMed

    Xie, W J; Cao, C D; Lü, Y J; Wei, B

    2002-12-01

    Samples of Pb-Sn eutectic alloy with a high density of 8.5 x 10(3) kg/m(3) are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of "lamellas-broken lamellas-dendrites." This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface. PMID:12513291

  14. Forensic acoustics: An opportunity to educate

    NASA Astrophysics Data System (ADS)

    Brooks, Bennett

    2003-10-01

    Forensic science is narrowly defined by some as the gathering of evidence to be used in a criminal court proceeding. However, the word ``forensic'' broadly pertains to arguments made in any public forum. Those acousticians engaged in expert witness service may work in a variety of settings that address the interests of the general public. These can include quasilegal local administrative public hearings, conducted at school board or planning and zoning meetings, civil legal actions, and rarely, a criminal trial. When presenting complex scientific arguments in a public forum, the reception with which that information is met can strongly depend upon the self-interest of meeting participants, as well as the common skepticism toward all things technical. To successfully gain favor for a particular viewpoint, the target audience (board commissioners, judges, juries) must be sufficiently educated to understand the methods of acquiring valid acoustical data, and the impact of acoustics to the situation in question. The challenge is to present credible information with just enough detail to persuade, but not overwhelm, the decision maker. Illustrative case studies will be discussed.

  15. Opto-acoustic thrombolysis

    DOEpatents

    Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Fitch, Pat

    2000-01-01

    This invention is a catheter-based device for generating an ultrasound excitation in biological tissue. Pulsed laser light is guided through an optical fiber to provide the energy for producing the acoustic vibrations. The optical energy is deposited in a water-based absorbing fluid, e.g. saline, thrombolytic agent, blood or thrombus, and generates an acoustic impulse in the fluid through thermoelastic and/or thermodynamic mechanisms. By pulsing the laser at a repetition rate (which may vary from 10 Hz to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus or treating vasospasm. The catheter can also incorporate thrombolytic drug treatments as an adjunct therapy and it can be operated in conjunction with ultrasonic detection equipment for imaging and feedback control and with optical sensors for characterization of thrombus type and consistency.

  16. Musical acoustics demonstrations

    NASA Astrophysics Data System (ADS)

    Hoekje, P. L.

    2003-10-01

    The ASA Musical Acoustics Demonstrations website (trial version at http://www.bw.edu/~phoekje) includes sound files, video clips, program code listings, and other material for demonstrations related to musical acoustics. Many of the sound demonstrations may be experienced either as expositions, in which the phenomena are explained before they are presented, or as experiments, in which the explanation comes after listeners have had the opportunity to draw their own conclusions. Suggestions are provided for apparatus construction and classroom experiments, as well as for building simple musical instruments. Software is recommended if it is available free and compatible with multiple personal computer operating systems. For example, Audacity (http://audacity.sourceforce.net) is a sound file editor and analyzer that can be used to visually represent sounds and manipulate them. Source files are included for the synthesized sound examples, which were created in Csound (http://csounds.com), so that interested users may create their own variations. Source code is also included for visual demonstrations created in Visual Python and Python (http://www.python.org), an efficient, high level programming language. Suggestions, criticisms, and contributions are always welcome! [Work supported by ASA and Baldwin-Wallace College.

  17. Acoustic source localization.

    PubMed

    Kundu, Tribikram

    2014-01-01

    In this article different techniques for localizing acoustic sources are described and the advantages/disadvantages of these techniques are discussed. Some source localization techniques are restricted to isotropic structures while other methods can be applied to anisotropic structures as well. Some techniques require precise knowledge of the direction dependent velocity profiles in the anisotropic body while other techniques do not require that knowledge. Some methods require accurate values of the time of arrival of the acoustic waves at the receivers while other techniques can function without that information. Published papers introducing various techniques emphasize the advantages of the introduced techniques while ignoring and often not mentioning the limitations and weaknesses of the new techniques. What is lacking in the literature is a comprehensive review and comparison of the available techniques; this article attempts to do that. After reviewing various techniques the paper concludes which source localization technique should be most effective for what type of structure and what the current research needs are. PMID:23870388

  18. MEMS Based Acoustic Array

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)

    2006-01-01

    Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.

  19. Acoustic particle acceleration sensors

    SciTech Connect

    Franklin, J.B.; Barry, P.J.

    1996-04-01

    A crossed dipole array provides a directional receiving capability in a relatively small sensor package and is therefore very attractive for many applications in acoustics. Particle velocity measurements on two axes perpendicular to each other are required to provide the dipole signals. These can be obtained directly using particle velocity sensors or via simple transfer functions using acceleration and displacement sensors. Also, the derivative of the acoustic pressure with respect to space provides a signal proportional to the particle acceleration and gives rise to the pressure gradient sensor. Each of these sensors has strengths and drawbacks depending on the frequency regime of interest, the noise background, and whether a point or a line configuration of dipole sensors is desired. In this paper, the performance of acceleration sensors is addressed using a sensor concept developed at DREA. These sensors exploit bending stresses in a cantilever beam of piezoelectric material to obtain wide bandwidth and high sensitivity. Models which predict the acceleration sensitivity, pressure sensitivity, and natural frequency for this type of sensor are described. Experimental results obtained using several different versions of these sensors are presented and compared with theory. The predicted performance of acceleration sensors are compared with that of pressure gradient arrays and particle velocity sensors. {copyright} {ital 1996 American Institute of Physics.}

  20. Opto-acoustic thrombolysis

    SciTech Connect

    Celliers, P.; Silva, L. Da; Glinsky, M.; London, R.; Maitland, D.; Matthews, D.; Fitch, P.

    2000-02-08

    This invention is a catheter-based device for generating an ultrasound excitation in biological tissue. Pulsed laser light is guided through an optical fiber to provide the energy for producing the acoustic vibrations. The optical energy is deposited in a water-based absorbing fluid, e.g. saline, thrombolytic agent, blood or thrombus, and generates an acoustic impulse in the fluid through thermoelastic and/or thermodynamic mechanisms. By pulsing the laser at a repetition rate (which may vary from 10 Hz to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus or treating vasospasm. The catheter can also incorporate thrombolytic drug treatments as an adjunct therapy and it can be operated in conjunction with ultrasonic detection equipment for imaging and feedback control and with optical sensors for characterization of thrombus type and consistency.

  1. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  2. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  3. Vadose zone microbiology

    SciTech Connect

    Kieft, Thomas L.; Brockman, Fred J.

    2001-01-17

    The vadose zone is defined as the portion of the terrestrial subsurface that extends from the land surface downward to the water table. As such, it comprises the surface soil (the rooting zone), the underlying subsoil, and the capillary fringe that directly overlies the water table. The unsaturated zone between the rooting zone and the capillary fringe is termed the "intermediate zone" (Chapelle, 1993). The vadose zone has also been defined as the unsaturated zone, since the sediment pores and/or rock fractures are generally not completely water filled, but instead contain both water and air. The latter characteristic results in the term "zone of aeration" to describe the vadose zone. The terms "vadose zone," "unsaturated zone", and "zone of aeration" are nearly synonymous, except that the vadose zone may contain regions of perched water that are actually saturated. The term "subsoil" has also been used for studies of shallow areas of the subsurface immediately below the rooting zone. This review focuses almost exclusively on the unsaturated region beneath the soil layer since there is already an extensive body of literature on surface soil microbial communities and process, e.g., Paul and Clark (1989), Metting (1993), Richter and Markowitz, (1995), and Sylvia et al. (1998); whereas the deeper strata of the unsaturated zone have only recently come under scrutiny for their microbiological properties.

  4. Roseomics: a blank slate

    PubMed Central

    Moorman, Nathaniel J.; Murphy, Eain A.

    2014-01-01

    Recent technological advances have led to an explosion in the system-wide profiling of biological processes in the study of herpesvirus biology, herein referred to as “-omics”. In many cases these approaches have revealed novel virus-induced changes to host cell biology that can be targeted with new antiviral therapeutics. Despite these successes, -omics approaches are not widely applied in the study of roseoloviruses. Here we describe examples of how -omics studies have shaped our understanding of herpesvirus biology, and discuss how these approaches might be used to identify host and viral factors that mediate roseolovirus pathogenesis. PMID:25437230

  5. The acoustic vector sensor: a versatile battlefield acoustics sensor

    NASA Astrophysics Data System (ADS)

    de Bree, Hans-Elias; Wind, Jelmer W.

    2011-06-01

    The invention of the Microflown sensor has made it possible to measure acoustic particle velocity directly. An acoustic vector sensor (AVS) measures the particle velocity in three directions (the source direction) and the pressure. The sensor is a uniquely versatile battlefield sensor because its size is a few millimeters and it is sensitive to sound from 10Hz to 10kHz. This article shows field tests results of acoustic vector sensors, measuring rifles, heavy artillery, fixed wing aircraft and helicopters. Experimental data shows that the sensor is suitable as a ground sensor, mounted on a vehicle and on a UAV.

  6. Multimaterial Acoustic Fibers

    NASA Astrophysics Data System (ADS)

    Chocat, Noemie

    The emergence of multimaterial fibers that combine a multiplicity of solid materials with disparate electrical, optical, and mechanical properties into a single fiber presents new opportunities for extending fiber applications well beyond optical transmission. Fiber reflectors, thermal detectors, photodetectors, chemical sensors, surface-emitting fiber lasers, fiber diodes, and other functional fiber devices have been demonstrated with this approach. Yet, throughout this development and indeed the development of fibers in general, a key premise has remained unchanged : that fibers are essentially static devices incapable of controllably changing their properties at high frequencies. Unique opportunities would arise if a rapid, electrically-driven mechanism for changing fiber properties existed. A wide spectrum of hitherto passive fiber devices could at once become active with applications spanning electronics, mechanics, acoustics, and optics, with the benefits of large surface-area, structural robustness, and mechanical flexibility. This thesis addresses the challenges and opportunities associated with the realization of electromechanical transduction in fibers through the integration of internal piezoelectric and electrostrictive domains. The fundamental challenges related to the fabrication of piezoelectric devices in fiber form are analyzed from a materials perspective, and candidate materials and geometries are selected that are compatible with the thermal drawing process. The first realization of a thermally drawn piezoelectric fiber device is reported and its piezoelectric response is established over a wide range of frequencies. The acoustic properties of piezoelectric fiber devices are characterized and related to their mechanical and geometric properties. Collective effects in multi-fiber constructs are discussed and demonstrated by the realization of a linear phased array of piezoelectric fibers capable of acoustic beam steering. High strain actuation

  7. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    SciTech Connect

    Mazumdar, A.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Ballot, J.; Antia, H. M.; Basu, S.; Houdek, G.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Mathur, S.; García, R. A.; Verner, G. A.; Chaplin, W. J.; Sanderfer, D. T.; Seader, S. E.; Smith, J. C.

    2014-02-10

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  8. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-07-20

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.

  9. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  10. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  11. Electromagnetic acoustic transducer

    DOEpatents

    Alers, George A.; Burns, Jr., Leigh R.; MacLauchlan, Daniel T.

    1988-01-01

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  12. Acoustic effects of sprays

    NASA Technical Reports Server (NTRS)

    Pindera, Maciej Z.; Przekwas, Andrzej J.

    1994-01-01

    Since the early 1960's, it has been known that realistic combustion models for liquid fuel rocket engines should contain at least a rudimentary treatment of atomization and spray physics. This is of particular importance in transient operations. It has long been recognized that spray characteristics and droplet vaporization physics play a fundamental role in determining the stability behavior of liquid fuel rocket motors. This paper gives an overview of work in progress on design of a numerical algorithm for practical studies of combustion instabilities in liquid rocket motors. For flexibility, the algorithm is composed of semi-independent solution modules, accounting for different physical processes. Current findings are report and future work is indicated. The main emphasis of this research is the development of an efficient treatment to interactions between acoustic fields and liquid fuel/oxidizer sprays.

  13. Progress in acoustic holography

    NASA Astrophysics Data System (ADS)

    Hildebrand, B. P.

    1985-01-01

    The theory underlying the methods used in acoustic holography (the real-time liquid surface levitation and the scanning holography methods) and in electromagnetic holography, which uses electromagnetic impulses (radar) or electromagnetic waves (eddy current) is developed. These holographic techniques are illustrated with experimental results, including the use of the liquid surface levitation method for inspecting fiberglass laminate tubes, and examples of the time-of-flight holographic images, the coherent ultrasonic images, multifrequency ultrasonic images, and the synthetic aperture holography images obtained by the use of the scanning holography methodology. Other examples illustrate applications of radar holography and eddy current holography. These examples are used to refute some traditional negative comments on nonoptical holography.

  14. Wind turbine acoustic standards

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.; Shepherd, K. P.; Grosveld, F.

    1981-01-01

    A program is being conducted to develop noise standards for wind turbines which minimize annoyance and which can be used to design specifications. The approach consists of presenting wind turbine noise stimuli to test subjects in a laboratory listening chamber. The responses of the subjects are recorded for a range of stimuli which encompass the designs, operating conditions, and ambient noise levels of current and future installations. Results to date have established the threshold of detectability for a range of impulsive stimuli of the type associated with blade/tower wake interactions. The status of the ongoing psychoacoustic tests, the subjective data, and the approach to the development of acoustic criteria/standards are described.

  15. Acoustic fault injection tool (AFIT)

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.

    1999-05-01

    On September 18, 1997, Honeywell Technology Center (HTC) successfully completed a three-week flight test of its rotor acoustic monitoring system (RAMS) at Patuxent River Flight Test Center. This flight test was the culmination of an ambitious 38-month proof-of-concept effort directed at demonstrating the feasibility of detecting crack propagation in helicopter rotor components. The program was funded as part of the U.S. Navy's Air Vehicle Diagnostic Systems (AVDS) program. Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. The application of acoustic emission for the early detection of helicopter rotor head dynamic component faults has proven the feasibility of the technology. The flight-test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. During the RAMS flight test, 12 test flights were flown from which 25 Gbyte of digital acoustic data and about 15 hours of analog flight data recorder (FDR) data were collected from the eight on-rotor acoustic sensors. The focus of this paper is to describe the CH-46 flight-test configuration and present design details about a new innovative machinery diagnostic technology called acoustic fault injection. This technology involves the injection of acoustic sound into machinery to assess health and characterize operational status. The paper will also address the development of the Acoustic Fault Injection Tool (AFIT), which was successfully demonstrated during the CH-46 flight tests.

  16. Detachable acoustic electric feedthrough

    NASA Astrophysics Data System (ADS)

    Moss, Scott; Skippen, Jeremy; Konak, Michael; Powlesland, Ian; Galea, Steve

    2010-04-01

    This paper outlines the development and characterisation of a detachable acoustic electric feedthrough (DAEF) to transfer power and data across a metal (or composite) plate. The DAEF approach is being explored as a potential means of wirelessly powering in-situ structural health monitoring systems embedded within aircraft and other high value engineering assets. The DAEF technique operates via two axially aligned piezoelectric-magnet structures mounted on opposite sides of a plate. Magnetic force is used to align the two piezoelectric-magnet structures, to create an acoustic path across a plate. The piezoelectric-magnet structures consisted of Pz26 piezoelectric disk elements bonded to NdFeB magnets, with a standard ultrasonic couplant (High-Z) used between the magnet and plate to facilitate the passage of ultrasound. Measured impedance curves are matched to modeled curves using the Comsol multi-physics software coupled with a particle-swarm approach, allowing optimised Pz26 material parameters to be found (i.e. stiffness, coupling and permittivity matrices). The optimised Pz26 parameters are then used in an axi-symmetric Comsol model to make predictions about the DAEF power transfer, which is then experimentally confirmed. With an apparent input power of 1 VA and 4.2 MHz drive frequency, the measured power transfer efficiency across a 1.6 mm Al plate is ~34%. The effect of various system parameters on power transfer is explored, including bondline thickness and plate thickness. DAEF data communication is modelled using LTspice with three-port one-dimensional piezoelectric models, indicating that data rates of 115 kBit/s are feasible.

  17. DETECTING BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Labatie, A.; Starck, J. L.

    2012-02-20

    Baryon acoustic oscillations (BAOs) are a feature imprinted in the galaxy distribution by acoustic waves traveling in the plasma of the early universe. Their detection at the expected scale in large-scale structures strongly supports current cosmological models with a nearly linear evolution from redshift z Almost-Equal-To 1000 and the existence of dark energy. In addition, BAOs provide a standard ruler for studying cosmic expansion. In this paper, we focus on methods for BAO detection using the correlation function measurement {xi}-hat. For each method, we want to understand the tested hypothesis (the hypothesis H{sub 0} to be rejected) and the underlying assumptions. We first present wavelet methods which are mildly model-dependent and mostly sensitive to the BAO feature. Then we turn to fully model-dependent methods. We present the method used most often based on the {chi}{sup 2} statistic, but we find that it has limitations. In general the assumptions of the {chi}{sup 2} method are not verified, and it only gives a rough estimate of the significance. The estimate can become very wrong when considering more realistic hypotheses, where the covariance matrix of {xi}-hat depends on cosmological parameters. Instead, we propose to use the {Delta}l method based on two modifications: we modify the procedure for computing the significance and make it rigorous, and we modify the statistic to obtain better results in the case of varying covariance matrix. We verify with simulations that correct significances are different from the ones obtained using the classical {chi}{sup 2} procedure. We also test a simple example of varying covariance matrix. In this case we find that our modified statistic outperforms the classical {chi}{sup 2} statistic when both significances are correctly computed. Finally, we find that taking into account variations of the covariance matrix can change both BAO detection levels and cosmological parameter constraints.

  18. System for Multiplexing Acoustic Emission (AE) Instrumentation

    NASA Technical Reports Server (NTRS)

    Prosser, William H. (Inventor); Perey, Daniel F. (Inventor); Gorman, Michael R. (Inventor); Scales, Edgar F. (Inventor)

    2003-01-01

    An acoustic monitoring device has at least two acoustic sensors with a triggering mechanism and a multiplexing circuit. After the occurrence of a triggering event at a sensor, the multiplexing circuit allows a recording component to record acoustic emissions at adjacent sensors. The acoustic monitoring device is attached to a solid medium to detect the occurrence of damage.

  19. Reconstructing surface wave profiles from reflected acoustic pulses.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2013-05-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals. The acoustic signals (of nominal frequency 200 kHz) are forward scattered from the underside of surface waves that are generated in a wave tank and scaled to model smooth ocean swell. An inverse processing algorithm is designed and implemented to reconstruct the surface displacement profiles of the waves over one complete period. The inverse processing uses the surface scattered pulses collected at the receiver, an initial wave profile (two are considered), and a broadband forward scattering model based on Kirchhoff's diffraction formula to iteratively adjust the surface until it is considered optimized or reconstructed. Two physical length scales over which information can be known about the surface are confirmed. An outer length scale, the Fresnel zone surrounding each specular reflection point, is the only region where optimized surfaces resulting from each initial profile converge within a resolution set by the inner length scale, a quarter-wavelength of the acoustic pulse. The statistical confidence of each optimized surface is also highest within a Fresnel zone. Future design considerations are suggested such as an array of receivers that increases the region of surface reconstruction by a factor of 2 to 3. PMID:23654368

  20. Acoustic emission monitoring of reinforced and prestressed concrete structures

    NASA Astrophysics Data System (ADS)

    Fowler, Timothy J.; Yepez, Luis O.; Barnes, Charles A.

    1998-03-01

    Acoustic emission is an important global nondestructive test method widely used to evaluate the structural integrity of metals and fiber reinforced plastic structures. However, in concrete, application of the technology is still at the experimental stage. Microcracking and crack growth are the principal sources of emission in concrete. Bond failure, anchor slippage, and crack rubbing are also sources of emission. Tension zone cracking in reinforced concrete is a significant source of emission and has made application of the technique to concrete structures difficult. The paper describes acoustic emission monitoring of full-scale prestressed concrete girders and a reinforced concrete frame during loading. The tests on the prestressed concrete girders showed three sources of emission: shear-induced cracking in the web, flexural cracking at the region of maximum moment, and strand slippage at the anchorage zone. The reinforced concrete frame was monitored with and without concrete shear panels. The research was directed to early detection of the cracks, signature analysis, source location, moment tensor analysis, and development of criteria for acoustic emission inspection of concrete structures. Cracking of concrete in the tension areas of the reinforced concrete sections was an early source of emission. More severe emission was detected as damage levels in the structure increased.

  1. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  2. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  3. The Impact of Structure on Word Meaning and Fill-in-The-Blank Tests Procedures on Short-Term and Long-Term Retention of Vocabulary Items

    ERIC Educational Resources Information Center

    Fazeli, Seyed Hossein

    2009-01-01

    The purpose of research described in the current study to investigate the impact of structure knowing on two types of test, i.e. word-meaning test and fill-in-the-blank test, their correlation and procedures on both short-term and long-term retention of vocabulary items. The importance of the present study, to test the condition that learners are…

  4. Acoustic/Magnetic Stress Sensor

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Namkung, M.

    1986-01-01

    High-resolution sensor fast, portable, does not require permanent bonding to structure. Sensor measures nondestructively type (compressive or tensile) and magnitude of stresses and stress gradients present in class of materials. Includes precise high-resolution acoustic interferometer, sending acoustic transducer, receiving acoustic transducer, electromagnet coil and core, power supply, and magnetic-field-measuring device such as Hall probe. This measurement especially important for construction and applications where steel is widely used. Sensor useful especially for nondestructive evaluation of stress in steel members because of portability, rapid testing, and nonpermanent installation.

  5. Acoustic trauma caused by lightning.

    PubMed

    Mora-Magaña, I; Collado-Corona, M A; Toral-Martiñòn, R; Cano, A

    1996-03-01

    Lesions produced by exposure to noise are frequent in everyday life. Injuries may be found in all systems of the human body, from the digestive to the endocrine, from the cardiovascular to the nervous system. Many organs may be damaged, the ear being one of them. It is known that noise produced by factories, airports, musical instruments and even toys can cause auditory loss. Noises in nature can also cause acoustic trauma. This report is the case history of acoustic trauma caused by lightning. The patient was studied with CAT scan, electroencephalogram, and brain mapping, impedance audiometry with tympanogram and acoustic reflex, audiometry and evoked otoacoustics emissions: distortion products and transients. PMID:8882110

  6. Recent Langley helicopter acoustics contributions

    NASA Technical Reports Server (NTRS)

    Morgan, Homer G.; Pao, S. P.; Powell, C. A.

    1988-01-01

    The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included.

  7. In-Flow Acoustic Sensor

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S. (Inventor)

    1995-01-01

    An acoustic sensor for measuring acoustic waves contained in fluid flow flowing over the sensor is introduced. The acoustic sensor reduces any unwanted self-noise associated with the flowing fluid by providing a nose cone having proper aerodynamic properties and by positioning the diaphragm of a microphone of the sensor at a location where any unwanted noise is at a relatively low level. The nose cone has a rounded, blunt or even sharp tip neither of which creates any major disturbances in the flowing fluid which it intercepts.

  8. Soldier detection using unattended acoustic and seismic sensors

    NASA Astrophysics Data System (ADS)

    Naz, P.; Hengy, S.; Hamery, P.

    2012-06-01

    During recent military conflicts, as well as for security interventions, the urban zone has taken a preponderant place. Studies have been initiated in national and in international programs to stimulate the technical innovations for these specific scenarios. For example joint field experiments have been organized by the NATO group SET-142 to evaluate the capability for the detection and localization of snipers, mortars or artillery guns using acoustic devices. Another important operational need corresponds to the protection of military sites or buildings. In this context, unattended acoustic and seismic sensors are envisaged to contribute to the survey of specific points by the detection of approaching enemy soldiers. This paper describes some measurements done in an anechoic chamber and in free field to characterize typical sounds generated by the soldier activities (walking, crawling, weapon handling, radio communication, clothing noises...). Footstep, speech and some specific impulsive sounds are detectable at various distances from the source. Such detection algorithms may be easily merged with the existing weapon firing detection algorithms to provide a more generic "battlefield acoustic" early warning system. Results obtained in various conditions (grassy terrain, gravel path, road, forest) will be presented. A method to extrapolate the distances of detection has been developed, based on an acoustic propagation model and applied to the laboratory measurements.

  9. Propagation of three-dimensional electron-acoustic solitary waves

    SciTech Connect

    Shalaby, M.; El-Sherif, L. S.; El-Labany, S. K.; Sabry, R.

    2011-06-15

    Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.

  10. Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor

    SciTech Connect

    Steinberg, A.M.; Boxx, I.; Stoehr, M.; Meier, W.; Carter, C.D.

    2010-12-15

    A detailed analysis of the flow-flame interactions associated with acoustically coupled heat-release rate fluctuations was performed for a 10 kW, CH{sub 4}/air, swirl stabilized flame in a gas turbine model combustor exhibiting self-excited thermo-acoustic oscillations at 308 Hz. High-speed stereoscopic particle image velocimetry, OH planar laser induced fluorescence, and OH* chemiluminescence measurements were performed at a sustained repetition rate of 5 kHz, which was sufficient to resolve the relevant combustor dynamics. Using spatio-temporal proper orthogonal decomposition, it was found that the flow-field contained several simultaneous periodic motions: the reactant flux into the combustion chamber periodically oscillated at the thermo-acoustic frequency (308 Hz), a helical precessing vortex core (PVC) circumscribed the burner nozzle at 515 Hz, and the PVC underwent axial contraction and extension at the thermo-acoustic frequency. The global heat release rate fluctuated at the thermo-acoustic frequency, while the heat release centroid circumscribed the combustor at the difference between the thermo-acoustic and PVC frequencies. Hence, the three-dimensional location of the heat release fluctuations depended on the interaction of the PVC with the flame surface. This motivated the compilation of doubly phase resolved statistics based on the phase of both the acoustic and PVC cycles, which showed highly repeatable periodic flow-flame configurations. These include flames stabilized between the inflow and inner recirculation zone, large-scale flame wrap-up by the PVC, radial deflection of the inflow by the PVC, and combustion in the outer recirculation zones. Large oscillations in the flame surface area were observed at the thermo-accoustic frequency that significantly affected the total heat-release oscillations. By filtering the instantaneous reaction layers at different scales, the importance of the various flow-flame interactions affecting the flame area was

  11. Scale Model Thruster Acoustic Measurement Results

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Vargas, Magda B.

    2013-01-01

    Subscale rocket acoustic data is used to predict acoustic environments for full scale rockets. Over the last several years acoustic data has been collected during horizontal tests of solid rocket motors. Space Launch System (SLS) Scale Model Acoustic Test (SMAT) was designed to evaluate the acoustics of the SLS vehicle including the liquid engines and solid rocket boosters. SMAT is comprised of liquid thrusters scalable to the Space Shuttle Main engines (SSME) and Rocket Assisted Take Off (RATO) motors scalable to the 5-segment Reusable Solid Rocket Motor (RSTMV). Horizontal testing of the liquid thrusters provided an opportunity to collect acoustic data from liquid thrusters to characterize the acoustic environments. Acoustic data was collected during the horizontal firings of a single thruster and a 4-thruster (Quad) configuration. Presentation scope. Discuss the results of the single and 4-thruster acoustic measurements. Compare the measured acoustic levels of the liquid thrusters to the Solid Rocket Test Motor V - Nozzle 2 (SRTMV-N2).

  12. Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2014-08-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there. PMID:25096095

  13. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    PubMed

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species. PMID:26233026

  14. Estimation of crack and damage progression in concrete by quantitative acoustic emission analysis

    SciTech Connect

    Ohtsu, Masayasu

    1999-05-01

    The kinematics of cracking can be represented by the moment tensor. To distinguish moment tensor components from acoustic emission waveforms, the SiGMA (simplified Green`s functions for moment tensor analysis) procedure was developed. By applying the procedure to bending tests of notched beams, cracks in the fracture process zone of cementitious materials can be identified by kinematic means. In addition to cracks, estimation of the damage level in structural concrete is also conducted, based on acoustic emission activity of a concrete sample under compression. Depending on the damage resulting from existing microcracks, acoustic emission generated behavior is quantitatively estimated by the rate process analysis. The damage mechanics are introduced to quantify the degree of damage. Determining the current damage level using acoustic emission without information on undamaged concrete is attempted by correlating the damage value with the rate process.

  15. The effective acoustic environment of helicopter crewmen

    NASA Technical Reports Server (NTRS)

    Camp, R. T., Jr.; Mozo, B. T.

    1978-01-01

    Methods of measuring the composite acoustic environment of helicopters in order to quantify the effective acoustic environment of the crewmen and to assess the real acoustic hazards of the personnel are examined. It is indicated that the attenuation characteristics of the helmets and hearing protectors and the variables of the physiology of the human ear be accounted for in determining the effective acoustic environment of Army helicopter crewmen as well as the acoustic hazards of voice communications systems noise.

  16. Hybrid optical and acoustic force based sorting

    NASA Astrophysics Data System (ADS)

    O'Mahoney, Paul; Brodie, Graham W.; Wang, Han; Demore, Christine E. M.; Cochran, Sandy; Spalding, Gabriel C.; MacDonald, Michael P.

    2014-09-01

    We report the combined use of optical sorting and acoustic levitation to give particle sorting. Differing sizes of microparticles are sorted optically both with and without the aid of acoustic levitation, and the results compared to show that the use of acoustic trapping can increase sorting efficiency. The use of a transparent ultrasonic transducer is also shown to streamline the integration of optics and acoustics. We also demonstrate the balance of optical radiation pressure and acoustic levitation to achieve vertical sorting.

  17. Acoustic agglomeration methods and apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  18. Acoustic Characterization of Mesoscale Objects

    SciTech Connect

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  19. PC and PVC Acoustics Demonstrations.

    ERIC Educational Resources Information Center

    Luzader, Stephen

    1990-01-01

    Described are four musical instruments constructed from polyvinyl chloride (PVC) pipe. The use of computerized synthesizers to play scales and chords is discussed. Suggestions for other illustrations of acoustics are included. (CW)

  20. Volumetric Imaging Using Acoustical Holography

    NASA Astrophysics Data System (ADS)

    Garlick, T. F.; Garlick, G. F.

    Transmission acoustical holography holds tremendous promise for medical imaging applications. As with optical holography, an image is obtained using the interference of two coherent acoustic sources, the transmitted object wave with a reference wave. Although resultant images are true holograms, depth can be difficult to quantify and an entire volume in one image can often result in "too much" information. Since Physicians/Radiologists are often interested in viewing a single plane at a time, techniques have been developed to generate acoustic holograms of "slices" within a volume. These primarily include focused transmission holography with spatial and frequency filtering techniques. These techniques along with an overview and current status of acoustical holography in medical imaging applications will be presented

  1. Gas hydrate saturation from acoustic impedance and resistivity logs in the shenhu area, south china sea

    USGS Publications Warehouse

    Wang, X.; Wu, S.; Lee, M.; Guo, Y.; Yang, S.; Liang, J.

    2011-01-01

    During the China's first gas hydrate drilling expedition -1 (GMGS-1), gas hydrate was discovered in layers ranging from 10 to 25 m above the base of gas hydrate stability zone in the Shenhu area, South China Sea. Water chemistry, electrical resistivity logs, and acoustic impedance were used to estimate gas hydrate saturations. Gas hydrate saturations estimated from the chloride concentrations range from 0 to 43% of the pore space. The higher gas hydrate saturations were present in the depth from 152 to 177 m at site SH7 and from 190 to 225 m at site SH2, respectively. Gas hydrate saturations estimated from the resistivity using Archie equation have similar trends to those from chloride concentrations. To examine the variability of gas hydrate saturations away from the wells, acoustic impedances calculated from the 3 D seismic data using constrained sparse inversion method were used. Well logs acquired at site SH7 were incorporated into the inversion by establishing a relation between the water-filled porosity, calculated using gas hydrate saturations estimated from the resistivity logs, and the acoustic impedance, calculated from density and velocity logs. Gas hydrate saturations estimated from acoustic impedance of seismic data are ???10-23% of the pore space and are comparable to those estimated from the well logs. The uncertainties in estimated gas hydrate saturations from seismic acoustic impedances were mainly from uncertainties associated with inverted acoustic impedance, the empirical relation between the water-filled porosities and acoustic impedances, and assumed background resistivity. ?? 2011 Elsevier Ltd.

  2. Fault structure, damage and acoustic emission characteristics

    NASA Astrophysics Data System (ADS)

    Dresen, G. H.; Göbel, T.; Stanchits, S.; Kwiatek, G.; Charalampidou, E. M.

    2011-12-01

    We investigate the evolution of faulting-related damage and acoustic emission activity in experiments performed on granite, quartzite and sandstone samples with 40-50 mm diameter and 100-125 mm length. Experiments were performed in a servo-controlled MTS loading frame in triaxial compression at confining pressures ranging from 20-140 MPa. We performed a series of fracture and stick-slip sliding experiments on prefractured samples. Acoustic emissions (AE) and ultrasonic velocities were monitored using up to 14 P-wave sensors glued to the cylindrical surface of the rock. Full waveforms were stored in a 16 channel transient recording system (Daxbox, PRÖKEL, Germany). Full moment tensor analysis and polarity of AE first motions were used to discriminate source types associated with tensile, shear and pore-collapse cracking. To monitor strain, two pairs of orthogonally oriented strain-gages were glued onto the specimen surface. Fracture nucleation and growth occurred from a nucleation patch mostly located at the specimen surface or at the tip of prefabricated notches inside the specimens. Irrespective of the rock type, fracture propagation is associated with formation of a damage zone surrounding the fracture surface as revealed by distribution of cracks and AE hypocenters displaying a logarithmic decay in microcrack damage with distance normal to the fault trace. The width of the damage zone varies along the fault. After fracturing, faults were locked by increasing confining pressure. Subsequent sliding was mostly induced by driving the piston at a constant displacement rate producing large single events or multiple stick-slips. With increasing sliding distance a corrugated and rough fault surface formed displaying displacement-parallel lineations. Microstructural analysis of fault surfaces and cross-sections revealed formation of multiple secondary shears progressively merging into an anastomosing 3D-network controlling damage evolution and AE activity in the fault

  3. System and method for investigating sub-surface features of a rock formation with acoustic sources generating conical broadcast signals

    DOEpatents

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A method of interrogating a formation includes generating a conical acoustic signal, at a first frequency--a second conical acoustic signal at a second frequency each in the between approximately 500 Hz and 500 kHz such that the signals intersect in a desired intersection volume outside the borehole. The method further includes receiving, a difference signal returning to the borehole resulting from a non-linear mixing of the signals in a mixing zone within the intersection volume.

  4. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  5. Single mode acoustic fiber waveguide

    NASA Technical Reports Server (NTRS)

    Jackson, B. S.; May, R. G.; Claus, R. O.

    1984-01-01

    The single mode operation of a clad rod acoustic waveguide is described. Unlike conventional clad optical and acoustic waveguiding structures which use modes confined to a central core surrounded by a cladding, this guide supports neither core nor cladding modes but a single interface wave field on the core-cladding boundary. The propagation of this bound field and the potential improved freedom from spurious responses is discussed.

  6. Simplified Rotation In Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.; Trinh, E. H.

    1989-01-01

    New technique based on old discovery used to control orientation of object levitated acoustically in axisymmetric chamber. Method does not require expensive equipment like additional acoustic drivers of precisely adjustable amplitude, phase, and frequency. Reflecting object acts as second source of sound. If reflecting object large enough, close enough to levitated object, or focuses reflected sound sufficiently, Rayleigh torque exerted on levitated object by reflected sound controls orientation of object.

  7. Stable And Oscillating Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  8. Acoustically-driven microfluidic systems

    SciTech Connect

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  9. Acoustic techniques in nuclear safeguards

    SciTech Connect

    Olinger, C.T.; Sinha, D.N.

    1995-07-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed.

  10. ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA

    SciTech Connect

    Cantrell, John H.

    2009-03-03

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  11. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice D.

    2014-01-01

    The liftoff phase induces some of the highest acoustic loading over a broad frequency for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle but there are challenges. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests; i.e. static firings conducted in the 1960's, to generate 1/3 octave band Sound Pressure Level (SPL) spectra. These data sets are used to predict the liftoff acoustic environments for launch vehicles. To facilitate the accuracy and quality of acoustic loading, predictions at liftoff for future launch vehicles such as the Space Launch System (SLS), non-stationary flight data from the Ares I-X were processed in PC-Signal in two forms which included a simulated hold-down phase and the entire launch phase. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semiempirical methods. This consisted, initially, of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares IX flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  12. Acoustic Rectification in Dispersive Media

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  13. Multipurpose council chambers ``in the round'' poses acoustical challenges

    NASA Astrophysics Data System (ADS)

    Logsdon, Edward L.

    2003-10-01

    The City of Aurora Council Chambers is used for both municipal and public meetings. The room is configured to provide close-in seating with good sightlines from each of the 300 stadium-style seats. Presentations can be made from the central podium location to either the audience or council dais requiring multiple loudspeaker zoning and control. The cylindrical ceiling, shaped to accommodate video projection and lighting equipment, is acoustically treated to eliminate late reflections. The City Council meetings are broadcast to public TV on a regular basis from this room requiring good room acoustics and sound isolation to reduce echo and achieve acceptably low background noise levels while satisfying the aesthetic palette of the interior designers. A case history will be presented along with photographs showing how specialty wood materials, both absorptive and diffusive, were incorporated along with absorptive plaster and cloth-covered fiberglass panels into the design of the building.

  14. Acoustic pulse propagation near a right-angle wall.

    PubMed

    Liu, Lanbo; Albert, Donald G

    2006-04-01

    Experimental measurements were conducted around a right-angle wall to investigate the effect of this obstacle on sound propagation outdoors. Using small explosions as the source of the acoustic waves allowed reflected and diffracted arrivals to be discerned and investigated in detail. The measurements confirm that diffraction acts as a low-pass filter on acoustic waveforms in agreement with simple diffraction theory, reducing the peak pressure and broadening the waveform shape received by a sensor in the shadow zone. In addition, sensors mounted directly on the wall registered pressure doubling for nongrazing angles of incidence in line-of-sight conditions. A fast two-dimensional finite difference time domain (FDTD) model was developed and provided additional insight into the propagation around the wall. Calculated waveforms show good agreement with the measured waveforms. PMID:16642821

  15. Opto-acoustic cell permeation

    SciTech Connect

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  16. Arctic acoustics ultrasonic modeling studies

    NASA Astrophysics Data System (ADS)

    Chamuel, Jacques R.

    1990-03-01

    A unique collection of laboratory ultrasonic modeling results are presented revealing and characterizing hidden pulsed seismoacoustic wave phenomena from 3-D range dependent liquid/solid boundaries. The research succeeded in isolating and identifying low frequency (10 to 500 Hz) transmission loss mechanisms and provided physical insight into Arctic acoustic problems generally beyond the state-of-the-art of theoretical and numerical analysis. The ultrasonic modeling studies dealt with controversial issues and existing discrepancies on seismo-acoustic waves at water/ice interface, sea ice thickness determination, low frequency transmission loss, and bottom leaky Rayleigh waves. The areas investigated include leaky Rayleigh waves at water/ice interface, leaky flexural waves in floating ice plates, effects of dry/wet cracks in sea ice on plate waves and near grazing acoustic waves, edge waves in floating plates, low frequency backscatter from ice keel width resonances, conversion of underwater acoustic waves into plate waves by keels, nondispersive flexural wave along apex of small angle solid wedge, Scholte and leaky Rayleigh waves along apex of immersed 90 ice wedge, backscatter from trailing edge of floes, floating plate resonances associated with near-grazing underwater acoustic waves, acoustic coupling between adjacent floes, and multiple bottom leaky Rayleigh wave components in water layer over solid bottom.

  17. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice

    2014-01-01

    The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests to generate 1/3 octave band Sound Pressure Level (SPL) spectra. In an effort to update the accuracy and quality of liftoff acoustic loading predictions, non-stationary flight data from the Ares I-X were processed in PC-Signal in two flight phases: simulated hold-down and liftoff. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semi-empirical methods. This consisted of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares I-X flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  18. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    SciTech Connect

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  19. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  20. Aquatic Acoustic Metrics Interface

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specificallymore » designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.« less

  1. Software for Acoustic Rendering

    NASA Technical Reports Server (NTRS)

    Miller, Joel D.

    2003-01-01

    SLAB is a software system that can be run on a personal computer to simulate an acoustic environment in real time. SLAB was developed to enable computational experimentation in which one can exert low-level control over a variety of signal-processing parameters, related to spatialization, for conducting psychoacoustic studies. Among the parameters that can be manipulated are the number and position of reflections, the fidelity (that is, the number of taps in finite-impulse-response filters), the system latency, and the update rate of the filters. Another goal in the development of SLAB was to provide an inexpensive means of dynamic synthesis of virtual audio over headphones, without need for special-purpose signal-processing hardware. SLAB has a modular, object-oriented design that affords the flexibility and extensibility needed to accommodate a variety of computational experiments and signal-flow structures. SLAB s spatial renderer has a fixed signal-flow architecture corresponding to a set of parallel signal paths from each source to a listener. This fixed architecture can be regarded as a compromise that optimizes efficiency at the expense of complete flexibility. Such a compromise is necessary, given the design goal of enabling computational psychoacoustic experimentation on inexpensive personal computers.

  2. Acoustics of the Intonarumori

    NASA Astrophysics Data System (ADS)

    Serafin, Stefania

    2005-04-01

    The Intonarumori were a family of musical instruments invented by the Italian futurist composer and painter Luigi Russolo. Each Intonarumori was made of a wooden parallelepiped sound box, inside which a wheel of different sizes and materials was setting into vibration a catgut or metal string. The pitch of the string was varied by using a lever, while the speed of the wheel was controlled by the performer using a crank. At one end of the string there was a drumhead that transmitted vibrations to the speaker. Unfortunately, all the original Intonarumori were destroyed after a fire during World War II. Since then, researchers have tried to understand the sound production mechanism of such instruments, especially by consulting the patents compiled by Russolo or by reading his book ``The art of noise.'' In this paper we describe the acoustics of the Intonarumori. Based on such description, we propose physical models that simulate such instruments. The intonarumori's string is modeled using a one dimensional waveguide, which is excited either by an impact or a friction model. The body of the instrument is modeled using a 3-D rectangular mesh, while the horn is considered as an omnidirectional radiator.

  3. Covert underwater acoustic communications.

    PubMed

    Ling, Jun; He, Hao; Li, Jian; Roberts, William; Stoica, Petre

    2010-11-01

    Low probability of detection (LPD) communications are conducted at a low received signal-to-noise ratio (SNR) to deter eavesdroppers to sense the presence of the transmitted signal. Successful detection at intended receiver heavily relies on the processing gain achieved by employing the direct-sequence spread-spectrum (DSSS) technique. For scenarios that lack a sufficiently low SNR to maintain LPD, another metric, referred to as low probability of interception (LPI), is of interest to protect the privacy of the transmitted information. If covert communications take place in underwater acoustic (UWA) environments, then additional challenges are present. The time-varying nature of the UWA channel prevents the employment of a long spreading waveform. Furthermore, UWA environments are frequency-selective channels with long memory, which imposes challenges to the design of the spreading waveform. In this paper, a covert UWA communication system that adopts the DSSS technique and a coherent RAKE receiver is investigated. Emphasis is placed on the design of a spreading waveform that not only accounts for the transceiver structure and frequency-selective nature of the UWA channel, but also possesses a superior LPI. The proposed techniques are evaluated using both simulated and SPACE'08 in-water experimental data. PMID:21110585

  4. Aquatic Acoustic Metrics Interface

    SciTech Connect

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.

  5. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1981-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  6. Optimized multisectioned acoustic liners

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1979-01-01

    A critical examination is presented of the use of optimized axially segmented acoustic liners to increase the attenuation of a liner. New calculations show that segmenting is most efficient at high frequencies with relatively long duct lengths where the attenuation is low for both uniform and segmented liners. Statistical considerations indicate little advantage in using optimized liners with more than two segments while the bandwidth of an optimized two-segment liner is shown to be nearly equal to that of a uniform liner. Multielement liner calculations show a large degradation in performance due to changes in assumed input modal structure. Finally, in order to substantiate previous and future analytical results, in-house (finite difference) and contractor (mode matching) programs are used to generate theoretical attenuations for a number of liner configurations for liners in a rectangular duct with no mean flow. Overall, the use of optimized multisectioned liners (sometimes called phased liners) fails to offer sufficient advantage over a uniform liner to warrant their use except in low frequency single mode application.

  7. Acoustically Enhanced Electroplating Being Developed

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2002-01-01

    In cooperation with the NASA Glenn Research Center, Alchemitron Corp. is developing the Acoustically Enhanced Electroplating Process (AEEP), a new technique of employing nonlinear ultrasonics to enhance electroplating. The applications range from electroplating full-panel electronic circuit boards to electroplating microelectronics and microelectromechanical systems (MEMS) devices. In a conventional plating process, the surface area to be plated is separated from the nonplated areas by a temporary mask. The mask may take many forms, from a cured liquid coating to a simple tape. Generally, the mask is discarded when the plating is complete, creating a solid waste product that is often an environmental hazard. The labor and materials involved with the layout, fabrication, and tooling of masks is a primary source of recurring and nonrecurring production costs. The objective of this joint effort, therefore, is to reduce or eliminate the need for masks. AEEP improves selective plating processes by using directed beams of high-intensity acoustic waves to create nonlinear effects that alter the fluid dynamic and thermodynamic behavior of the plating process. It relies on two effects: acoustic streaming and acoustic heating. Acoustic streaming is observed when a high-intensity acoustic beam creates a liquid current within the beam. The liquid current can be directed as the beam is directed and, thus, users can move liquid around as desired without using pumps and nozzles. The current of the electroplating electrolyte, therefore, can be directed at distinct target areas where electroplating is desired. The current delivers fresh electrolyte to the target area while flushing away the spent electrolyte. This dramatically increases the plating rate in the target area. In addition, acoustic heating of both the liquid in the beam and the target surface increases the chemical reaction rate, which further increases the plating rate. The combined effects of acoustic streaming and

  8. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H.; Fleming, James G.; Tuck, Melanie R.

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  9. ACOUSTIC LINERS FOR TURBOFAN ENGINES

    NASA Technical Reports Server (NTRS)

    Minner, G. L.

    1994-01-01

    This program was developed to design acoustic liners for turbofan engines. This program combines results from theoretical models of wave alternation in acoustically treated passages with experimental data from full-scale fan noise suppressors. By including experimentally obtained information, the program accounts for real effects such as wall boundary layers, duct terminations, and sound modal structure. The program has its greatest use in generating a number of design specifications to be used for evaluation of trade-offs. The program combines theoretical and empirical data in designing annular acoustic liners. First an estimate of the noise output of the fan is made based on basic fan aerodynamic design variables. Then, using a target noise spectrum after alternation and the estimated fan noise spectrum, a design spectrum is calculated as their difference. Next, the design spectrum is combined with knowledge of acoustic liner performance and the liner design variables to specify the acoustic design. Details of the liner design are calculated by combining the required acoustic impedance with a mathematical model relating acoustic impedance to the physical structure of the liner. Input to the noise prediction part of the program consists of basic fan operating parameters, distance that the target spectrum is to be measured and the target spectrum. The liner design portion of the program requires the required alternation spectrum, desired values of length to height and several option selection parameters. Output from the noise prediction portion is a noise spectrum consisting of discrete tones and broadband noise. This may be used as input to the liner design portion of the program. The liner design portion of the program produces backing depths, open area ratios, and face plate thicknesses. This program is written in FORTRAN V and has been implemented in batch mode on a UNIVAC 1100 series computer with a central memory requirement of 12K (decimal) of 36 bit words.

  10. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  11. Fault damage zones

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seog; Peacock, David C. P.; Sanderson, David J.

    2004-03-01

    Damage zones show very similar geometries across a wide range of scales and fault types, including strike-slip, normal and thrust faults. We use a geometric classification of damage zones into tip-, wall-, and linking-damage zones, based on their location around faults. These classes can be sub-divided in terms of fault and fracture patterns within the damage zone. A variety of damage zone structures can occur at mode II tips of strike-slip faults, including wing cracks, horsetail fractures, antithetic faults, and synthetic branch faults. Wall damage zones result from the propagation of mode II and mode III fault tips through a rock, or from damage associated with the increase in slip on a fault. Wall damage zone structures include extension fractures, antithetic faults, synthetic faults, and rotated blocks with associated triangular openings. The damage formed at the mode III tips of strike-slip faults (e.g. observed in cliff sections) are classified as wall damage zones, because the damage zone structures are distributed along a fault trace in map view. Mixed-mode tips are likely to show characteristics of both mode II and mode III tips. Linking damage zones are developed at steps between two sub-parallel faults, and the structures developed depend on whether the step is extensional or contractional. Extension fractures and pull-aparts typically develop in extensional steps, whilst solution seams, antithetic faults and synthetic faults commonly develop in contractional steps. Rotated blocks, isolated lenses or strike-slip duplexes may occur in both extensional and contractional steps. Damage zone geometries and structures are strongly controlled by the location around a fault, the slip mode at a fault tip, and by the evolutionary stage of the fault. Although other factors control the nature of damage zones (e.g. lithology, rheology and stress system), the three-dimensional fault geometry and slip mode at each tip must be considered to gain an understanding of

  12. Acoustic communication in plant-animal interactions.

    PubMed

    Schöner, Michael G; Simon, Ralph; Schöner, Caroline R

    2016-08-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals. PMID:27423052

  13. Reflective echo tomographic imaging using acoustic beams

    DOEpatents

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  14. Near field zones of quiet

    NASA Astrophysics Data System (ADS)

    Joseph, P.; Elliott, S. J.; Nelson, P. A.

    1994-05-01

    This paper examines the consequences of driving a single secondary loudspeaker to cancel the pressure due to some primary source at a point in its near field. This simple technique has been applied to the sound field in a highly reverberant room to produce zones of quiet in the vicinity of the loudspeaker, which have diameters that are typically equal to one-tenth of the acoustic wavelength, within which the sound pressure level is attenuated by at least 10 dB. The principal advantage gained with this strategy over other active techniques for controlling the sound field in rooms is that the sound pressure level well away from the control point is largely unaffected, an increase of only a small fraction of one dB being typical. Such a loudspeaker-microphone configuration could be located, for example, in the head rests of cars or aeroplanes, or indeed anywhere where the listener is seated for significant lengths of time and subjected to high ambient noise levels such that auditory comfort may be disturbed.

  15. Preliminary vibration, acoustic, and shock design and test criteria for components on the Lightweight External Tank (LWT)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Space Shuttle LWT is divided into zones and subzones. Zones are designated primarily to assist in determining the applicable specifications. A subzone (general Specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, specifications for appropriate subzone weight ranges are available. Along with the specifications are vibration, acoustic, shock, transportation, handling, and acceptance test requirements and procedures. A method of selecting applicable vibration, acoustic, and shock specifications is presented.

  16. Mars Acoustic Anemometer

    NASA Astrophysics Data System (ADS)

    Banfield, D. J.

    2012-12-01

    We have developed a very high performance anemometer (wind gauge) for use at Mars. This instrument has great scientific as well as strategic reasons to be included on all future missions to the surface of Mars. We will discuss why we set out to develop this instrument, as well as why the previous wind sensors for Mars are insufficient to meet the scientific and strategic needs at Mars. We will also discuss how the instrument works, and how it differs from terrestrial counterparts. Additionally, we will discuss the current status of the instrument. Measuring winds at Mars is important to better understand the atmospheric circulation at Mars, as well as exchange between the surface and atmosphere. The main conduit of transport of water, and hence its current stability at any particular location on Mars is controlled by these atmospheric motions and the exchange between surface and atmosphere. Mars' large-scale winds are moderately well understood from orbital observations, but the interaction with the surface can only be addressed adequately in situ. Previous anemometers have been 2-D (with the exception of REMS on MSL) and slow response (typically <1Hz), and relatively low sensitivity/accuracy (>1 m/s). Our instrument is capable of fully 3-D measurements, with fast response (>20 Hz) and great sensitivity/accuracy (~3 cm/s). This significant step forward in performance is important for the surface-atmosphere exchanges of heat, momentum and volatiles. In particular, our instrument could directly measure the heat and momentum fluxes between surface and atmosphere using eddy-flux techniques proven terrestrially. When combined with a fast response volatile analysis instrument (e.g., a TLS) we can also measure eddy fluxes of volatile transport. Such a study would be nearly impossible to carry out with preceding anemometers sent to Mars with insufficient response time and sensitivity to adequately sample the turbulent eddies. Additionally, our instrument, using acoustics

  17. Virtual acoustic displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.

    1991-01-01

    A 3D auditory display can potentially enhance information transfer by combining directional and iconic information in a quite naturalistic representation of dynamic objects in the interface. Another aspect of auditory spatial clues is that, in conjunction with other modalities, it can act as a potentiator of information in the display. For example, visual and auditory cues together can reinforce the information content of the display and provide a greater sense of presence or realism in a manner not readily achievable by either modality alone. This phenomenon will be particularly useful in telepresence applications, such as advanced teleconferencing environments, shared electronic workspaces, and monitoring telerobotic activities in remote or hazardous situations. Thus, the combination of direct spatial cues with good principles of iconic design could provide an extremely powerful and information-rich display which is also quite easy to use. An alternative approach, recently developed at ARC, generates externalized, 3D sound cues over headphones in realtime using digital signal processing. Here, the synthesis technique involves the digital generation of stimuli using Head-Related Transfer Functions (HRTF's) measured in the two ear-canals of individual subjects. Other similar approaches include an analog system developed by Loomis, et. al., (1990) and digital systems which make use of transforms derived from normative mannikins and simulations of room acoustics. Such an interface also requires the careful psychophysical evaluation of listener's ability to accurately localize the virtual or synthetic sound sources. From an applied standpoint, measurement of each potential listener's HRTF's may not be possible in practice. For experienced listeners, localization performance was only slightly degraded compared to a subject's inherent ability. Alternatively, even inexperienced listeners may be able to adapt to a particular set of HRTF's as long as they provide adequate

  18. Evaluation of volatile organic compound (VOC) blank data and application of study reporting levels to groundwater data collected for the California GAMA Priority Basin Project, May 2004 through September 2010

    USGS Publications Warehouse

    Fram, Miranda S.; Olsen, Lisa D.; Belitz, Kenneth

    2012-01-01

    Volatile organic compounds (VOCs) were analyzed in quality-control samples collected for the California Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. From May 2004 through September 2010, a total of 2,026 groundwater samples, 211 field blanks, and 109 source-solution blanks were collected and analyzed for concentrations of 85 VOCs. Results from analyses of these field and source-solution blanks and of 2,411 laboratory instrument blanks during the same time period were used to assess the quality of data for the 2,026 groundwater samples. Eighteen VOCs were detected in field blanks or source-solution blanks: acetone, benzene, bromodichloromethane, 2-butanone, carbon disulfide, chloroform, 1,1-dichloroethene, dichloromethane, ethylbenzene, tetrachloroethene, styrene, tetrahydrofuran, toluene, trichloroethene, trichlorofluoromethane, 1,2,4-trimethylbenzene, m- and p-xylenes, and o-xylene. The objective of the evaluation of the VOC-blank data was to determine if study reporting levels (SRLs) were needed for any of the VOCs detected in blanks to ensure the quality of the data from groundwater samples. An SRL is equivalent to a raised reporting level that is used in place of the reporting level used by the analyzing laboratory [long‑term method detection level (LT-MDL) or laboratory reporting level (LRL)] to reduce the probability of reporting false-positive detections. Evaluation of VOC-blank data was done in three stages: (1) identification of a set of representative quality‑control field blanks (QCFBs) to be used for calculation of SRLs and identification of VOCs amenable to the SRL approach, (2) evaluation of potential sources of contamination to blanks and groundwater samples by VOCs detected in field blanks, and (3) selection of appropriate SRLs from among four potential SRLs for VOCs detected in field blanks and application of those SRLs to the groundwater data. An important conclusion from this study is that to ensure the

  19. Sonification of acoustic emission data

    NASA Astrophysics Data System (ADS)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  20. Acoustic constituents of prosodic typology

    NASA Astrophysics Data System (ADS)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The