Frequency and Time Domain Modeling of Acoustic Liner Boundary Conditions
NASA Technical Reports Server (NTRS)
Bliss, Donald B.
1982-01-01
As part of a research program directed at the acoustics of advanced subsonic propulsion systems undertaken at NASA Langley, Duke University was funded to develop a boundary condition model for bulk-reacting nacelle liners. The overall objective of the Langley program was to understand and predict noise from advanced subsonic transport engines and to develop related noise control technology. The overall technical areas included: fan and propeller source noise, acoustics of ducts and duct liners, interior noise, subjective acoustics, and systems noise prediction. The Duke effort was directed toward duct liner acoustics for the development of analytical methods to characterize liner behavior in both frequency domain and time domain. A review of duct acoustics and liner technology can be found in Reference [1]. At that time, NASA Langley was investigating the propulsion concept of an advanced ducted fan, with a large diameter housed inside a relatively short duct. Fan diameters in excess of ten feet were proposed. The lengths of both the inlet and exhaust portions of the duct were to be short, probably less than half the fan diameter. The nacelle itself would be relatively thin-walled for reasons of aerodynamic efficiency. The blade-passage frequency was expected to be less than I kHz, and very likely in the 200 to 300 Hz range. Because of the design constraints of a short duct, a thin nacelle, and long acoustic wavelengths, the application of effective liner technology would be especially challenging. One of the needs of the NASA Langley program was the capability to accurately and efficiently predict the behavior of the acoustic liner. The traditional point impedance method was not an adequate model for proposed liner designs. The method was too restrictive to represent bulk reacting liners and to allow for the characterization of many possible innovative liner concepts. In the research effort at Duke, an alternative method, initially developed to handle bulk
Periodic Time-Domain Nonlocal Nonreflecting Boundary Conditions for Duct Acoustics
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Zorumski, William E.
1996-01-01
Periodic time-domain boundary conditions are formulated for direct numerical simulation of acoustic waves in ducts without flow. Well-developed frequency-domain boundary conditions are transformed into the time domain. The formulation is presented here in one space dimension and time; however, this formulation has an advantage in that its extension to variable-area, higher dimensional, and acoustically treated ducts is rigorous and straightforward. The boundary condition simulates a nonreflecting wave field in an infinite uniform duct and is implemented by impulse-response operators that are applied at the boundary of the computational domain. These operators are generated by convolution integrals of the corresponding frequency-domain operators. The acoustic solution is obtained by advancing the Euler equations to a periodic state with the MacCormack scheme. The MacCormack scheme utilizes the boundary condition to limit the computational space and preserve the radiation boundary condition. The success of the boundary condition is attributed to the fact that it is nonreflecting to periodic acoustic waves. In addition, transient waves can pass rapidly out of the solution domain. The boundary condition is tested for a pure tone and a multitone source in a linear setting. The effects of various initial conditions are assessed. Computational solutions with the boundary condition are consistent with the known solutions for nonreflecting wave fields in an infinite uniform duct.
Time dependent inflow-outflow boundary conditions for 2D acoustic systems
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Myers, Michael K.
1989-01-01
An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.
Jing, Yun; Xiang, Ning
2008-01-01
This paper proposes a modified boundary condition to improve the room-acoustic prediction accuracy of a diffusion equation model. Previous boundary conditions for the diffusion equation model have certain limitations which restrict its application to a certain number of room types. The boundary condition employing the Sabine absorption coefficient [V. Valeau et al., J. Acoust. Soc. Am. 119, 1504-1513 (2006)] cannot predict the sound field well when the absorption coefficient is high, while the boundary condition employing the Eyring absorption coefficient [Y. Jing and N. Xiang, J. Acoust. Soc. Am. 121, 3284-3287 (2007); A. Billon et al., Appl. Acoust. 69, (2008)] has a singularity whenever any surface material has an absorption coefficient of 1.0. The modified boundary condition is derived based on an analogy between sound propagation and light propagation. Simulated and experimental data are compared to verify the modified boundary condition in terms of room-acoustic parameter prediction. The results of this comparison suggest that the modified boundary condition is valid for a range of absorption coefficient values and successfully eliminates the singularity problem. PMID:18177146
Structural acoustic control of plates with variable boundary conditions: design methodology.
Sprofera, Joseph D; Cabell, Randolph H; Gibbs, Gary P; Clark, Robert L
2007-07-01
A method for optimizing a structural acoustic control system subject to variations in plate boundary conditions is provided. The assumed modes method is used to build a plate model with varying levels of rotational boundary stiffness to simulate the dynamics of a plate with uncertain edge conditions. A transducer placement scoring process, involving Hankel singular values, is combined with a genetic optimization routine to find spatial locations robust to boundary condition variation. Predicted frequency response characteristics are examined, and theoretically optimized results are discussed in relation to the range of boundary conditions investigated. Modeled results indicate that it is possible to minimize the impact of uncertain boundary conditions in active structural acoustic control by optimizing the placement of transducers with respect to those uncertainties. PMID:17614487
A comparison of time domain boundary conditions for acoustic waves in wave guides
NASA Technical Reports Server (NTRS)
Banks, H. T.; Propst, G.; Silcox, R. J.
1991-01-01
Researchers consider several types of boundary conditions in the context of time domain models for acoustic waves. Experiments with four different duct terminations (hard wall, free radiation, foam, and wedge) were carried out in a wave duct from which reflection coefficients over a wide frequency range were measured. These reflection coefficients were used to estimate parameters in the time domain boundary conditions. A comparison of the relative merits of the models in describing the data is presented. Boundary conditions which yield a good fit of the model to the experimental data were found for all duct terminations except the wedge.
Active control of the acoustic boundary conditions of combustion test rigs
NASA Astrophysics Data System (ADS)
Bothien, Mirko R.; Moeck, Jonas P.; Oliver Paschereit, Christian
2008-12-01
In the design process of burners for gas turbines, new burner generations are generally tested in single or multi burner combustion test rigs. With these experiments, computational fluid dynamics, and finite element calculations, the burners' performance in the full-scale engine is sought to be predicted. Especially, information about the thermoacoustic behaviour and the emission characteristics is very important. As the thermoacoustics strongly depend on the acoustic boundary conditions of the system, it is obvious that test rig conditions should match, or be close to those of the full-scale engine. This is, however, generally not the case. Hence, if the combustion process in the test rig is stable at certain operating conditions, it may show unfavourable dynamics at the same conditions in the engine. In this work, a method is proposed which uses an active control scheme to manipulate the acoustic boundary conditions of the test rig. Using this method, the boundary conditions can be continuously modified, ranging from anechoic to fully reflecting in a broad frequency range. The concept is applied to an atmospheric combustion test rig with a swirl-stabilized burner. It is shown that the test rig's properties can be tuned to correspond to those of the full-scale engine. For example, the test rig length can be virtually extended, thereby introducing different resonance frequencies, without having to implement any hardware changes. Furthermore, the acoustic boundary condition can be changed to that of a choked flow without actually needing the flow to be choked.
Evaluation of several non-reflecting computational boundary conditions for duct acoustics
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Zorumski, William E.; Hodge, Steve L.
1994-01-01
Several non-reflecting computational boundary conditions that meet certain criteria and have potential applications to duct acoustics are evaluated for their effectiveness. The same interior solution scheme, grid, and order of approximation are used to evaluate each condition. Sparse matrix solution techniques are applied to solve the matrix equation resulting from the discretization. Modal series solutions for the sound attenuation in an infinite duct are used to evaluate the accuracy of each non-reflecting boundary conditions. The evaluations are performed for sound propagation in a softwall duct, for several sources, sound frequencies, and duct lengths. It is shown that a recently developed nonlocal boundary condition leads to sound attenuation predictions considerably more accurate for short ducts. This leads to a substantial reduction in the number of grid points when compared to other non-reflecting conditions.
Li, Chenxi; Cazzolato, Ben; Zander, Anthony
2016-01-01
The classic analytical model for the sound absorption of micro perforated materials is well developed and is based on a boundary condition where the velocity of the material is assumed to be zero, which is accurate when the material vibration is negligible. This paper develops an analytical model for finite-sized circular micro perforated membranes (MPMs) by applying a boundary condition such that the velocity of air particles on the hole wall boundary is equal to the membrane vibration velocity (a zero-slip condition). The acoustic impedance of the perforation, which varies with its position, is investigated. A prediction method for the overall impedance of the holes and the combined impedance of the MPM is also provided. The experimental results for four different MPM configurations are used to validate the model and good agreement between the experimental and predicted results is achieved. PMID:26827008
Ultrasound-induced lung hemorrhage: Role of acoustic boundary conditions at the pleural surface
NASA Astrophysics Data System (ADS)
O'Brien, William D.; Kramer, Jeffrey M.; Waldrop, Tony G.; Frizzell, Leon A.; Miller, Rita J.; Blue, James P.; Zachary, James F.
2002-02-01
In a previous study [J. Acoust. Soc. Am. 108, 1290 (2000)] the acoustic impedance difference between intercostal tissue and lung was evaluated as a possible explanation for the enhanced lung damage with increased hydrostatic pressure, but the hydrostatic-pressure-dependent impedance difference alone could not explain the enhanced occurrence of hemorrhage. In that study, it was hypothesized that the animal's breathing pattern might be altered as a function of hydrostatic pressure, which in turn might affect the volume of air inspired and expired. The acoustic impedance difference between intercostal tissue and lung would be affected with altered lung inflation, thus altering the acoustic boundary conditions. In this study, 12 rats were exposed to 3 volumes of lung inflation (inflated: approximately tidal volume; half-deflated: half-tidal volume; deflated: lung volume at functional residual capacity), 6 rats at 8.6-MPa in situ peak rarefactional pressure (MI of 3.1) and 6 rats at 16-MPa in situ peak rarefactional pressure (MI of 5.8). Respiration was chemically inhibited and a ventilator was used to control lung volume and respiratory frequency. Superthreshold ultrasound exposures of the lungs were used (3.1-MHz, 1000-Hz PRF, 1.3-μs pulse duration, 10-s exposure duration) to produce lesions. Deflated lungs were more easily damaged than half-deflated lungs, and half-deflated lungs were more easily damaged than inflated lungs. In fact, there were no lesions observed in inflated lungs in any of the rats. The acoustic impedance difference between intercostal tissue and lung is much less for the deflated lung condition, suggesting that the extent of lung damage is related to the amount of acoustic energy that is propagated across the pleural surface boundary.
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Fang, Jun; Kurbatskii, Konstantin A.
1996-01-01
A set of nonhomogeneous radiation and outflow conditions which automatically generate prescribed incoming acoustic or vorticity waves and, at the same time, are transparent to outgoing sound waves produced internally in a finite computation domain is proposed. This type of boundary condition is needed for the numerical solution of many exterior aeroacoustics problems. In computational aeroacoustics, the computation scheme must be as nondispersive ans nondissipative as possible. It must also support waves with wave speeds which are nearly the same as those of the original linearized Euler equations. To meet these requirements, a high-order/large-stencil scheme is necessary The proposed nonhomogeneous radiation and outflow boundary conditions are designed primarily for use in conjunction with such high-order/large-stencil finite difference schemes.
Feng, Xue; Ben Tahar, Mabrouk; Baccouche, Ryan
2016-01-01
This paper presents a solution for aero-acoustic problems using the Galbrun equation in the time domain with a non-uniform steady mean flow in a two-dimensional coordinate system and the perfectly matched layer technique as the boundary conditions corresponding to an unbounded domain. This approach is based on an Eulerian-Lagrangian description corresponding to a wave equation written only in terms of the Lagrangian perturbation of the displacement. It is an alternative to the Linearized Euler Equations for solving aero-acoustic problems. The Galbrun equation is solved using a mixed pressure-displacement Finite Element Method. A complex Laplace transform scheme is used to study the time dependent variables. Several numerical examples are presented to validate and illustrate the efficiency of the proposed approach. PMID:26827028
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1985-01-01
Elliptic and hyperbolic problems in unbounded regions are considered. These problems, when one wants to solve them numerically, have the difficulty of prescribing boundary conditions at infinity. Computationally, one needs a finite region in which to solve these problems. The corresponding conditions at infinity imposed on the finite distance boundaries should dictate the boundary conditions at infinity and be accurate with respect to the interior numerical scheme. The treatment of these boundary conditions for wave-like equations is discussed.
NASA Astrophysics Data System (ADS)
King, J. R. C.; Ziolkowski, A. M.; Ruffert, M.
2015-03-01
We have developed a new boundary condition for finite volume simulations of oscillating bubbles. Our method uses an approximation to the motion outside the domain, based on the solution at the domain boundary. We then use this approximation to apply boundary conditions by defining incoming characteristic waves at the domain boundary. Our boundary condition is applicable in regions where the motion is close to spherically symmetric. We have tested our method on a range of one- and two-dimensional test cases. Results show good agreement with previous studies. The method allows simulations of oscillating bubbles for long run times (5 ×105 time steps with a CFL number of 0.8) on highly truncated domains, in which the boundary condition may be applied within 0.1% of the maximum bubble radius. Conservation errors due to the boundary conditions are found to be of the order of 0.1% after 105 time steps. The method significantly reduces the computational cost of fixed grid finite volume simulations of oscillating bubbles. Two-dimensional results demonstrate that highly asymmetric bubble features, such as surface instabilities and the formation of jets, may be captured on a small domain using this boundary condition.
Asymptotic behavior to a von Kármán equations of memory type with acoustic boundary conditions
NASA Astrophysics Data System (ADS)
Kang, Jum-Ran
2016-06-01
We study the stability of solutions to a von Kármán plate model of memory type with acoustic boundary conditions. We establish the general decay rate result, using some properties of the convex functions. Our result is obtained without imposing any restrictive assumptions on the behavior of the relaxation function at infinity. These general decay estimates extend and improve on some earlier results-exponential or polynomial decay rates.
NASA Technical Reports Server (NTRS)
Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo
1995-01-01
Premixed combustors, which are being considered for low NOx engines, are susceptible to instabilities due to feedback between pressure perturbations and combustion. This feedback can cause damaging mechanical vibrations of the system as well as degrade the emissions characteristics and combustion efficiency. In a lean combustor instabilities can also lead to blowout. A model was developed to perform linear combustion-acoustic stability analysis using detailed chemical kinetic mechanisms. The Lewis Kinetics and Sensitivity Analysis Code, LSENS, was used to calculate the sensitivities of the heat release rate to perturbations in density and temperature. In the present work, an assumption was made that the mean flow velocity was small relative to the speed of sound. Results of this model showed the regions of growth of perturbations to be most sensitive to the reflectivity of the boundary when reflectivities were close to unity.
Wright, Louise; Robinson, Stephen P; Humphrey, Victor F
2009-03-01
This paper presents a computational technique using the boundary element method for prediction of radiated acoustic waves from axisymmetric surfaces with nonaxisymmetric boundary conditions. The aim is to predict the far-field behavior of underwater acoustic transducers based on their measured behavior in the near-field. The technique is valid for all wavenumbers and uses a volume integral method to calculate the singular integrals required by the boundary element formulation. The technique has been implemented on a distributed computing system to take advantage of its parallel nature, which has led to significant reductions in the time required to generate results. Measurement data generated by a pair of free-flooding underwater acoustic transducers encapsulated in a polyurethane polymer have been used to validate the technique against experiment. The dimensions of the outer surface of the transducers (including the polymer coating) were an outer diameter of 98 mm with an 18 mm wall thickness and a length of 92 mm. The transducers were mounted coaxially, giving an overall length of 185 mm. The cylinders had resonance frequencies at 13.9 and 27.5 kHz, and the data were gathered at these frequencies. PMID:19275294
NASA Astrophysics Data System (ADS)
Song, Peng; Liu, Zhaolun; Zhang, Xiaobo; Tan, Jun; Xia, Dongming; Li, Jing; Zhu, Bo
2015-12-01
This paper introduces the fourth-order absorbing boundary condition (ABC) into staggered-grid finite difference forward modeling of the first-order stress-velocity acoustic equation, and develops a new method to optimize coefficients of the fourth-order ABC to further improve its overall absorbing effect. Theoretical analysis and the results of numerical tests demonstrate that the fourth-order ABC with optimized coefficients has much higher absorbing efficiency than both the conventional second-order and fourth-order ABCs without optimized coefficients, for waves with large incident angles. Compared with the perfectly matched layer (PML) with 40 layers, the fourth-order ABC not only has a much better absorbing effect, but also uses far less computer memory for calculation. We present the fourth-order ABC with optimized coefficients as an ideal artificial boundary for the simulation of the acoustic equation based on extensive and complex structure models. Supported by the Fundamental Research Funds for the Central Universities (201513005).
Dynamic Acoustic Detection of Boundary Layer transition
NASA Technical Reports Server (NTRS)
Grohs, Jonathan R.
1995-01-01
The wind tunnel investigation into the acoustic nature of boundary layer transition using miniature microphones. This research is the groundwork for entry into the National Transonic Facility (NTF) at the NASA Langley Research Center (LaRC). Due to the extreme environmental conditions of NTF testing, low temperatures and high pressures, traditional boundary layer detection methods are not available. The emphasis of this project and further studies is acoustical sampling of a typical boundary layer and environmental durability of the miniature microphones. The research was conducted with the 14 by 22 Foot Subsonic Tunnel, concurrent with another wind tunnel test. Using the resources of LaRC, a full inquiry into the feasibility of using Knowles Electronics, Inc. EM-3086 microphones to detect the surface boundary layer, under differing conditions, was completed. This report shall discuss the difficulties encountered, product performance and observations, and future research adaptability of this method.
Solitons induced by boundary conditions
Zhou, R.L.
1987-01-01
Although soliton phenomena have attracted wide attention since 1965, there are still not enough efforts paid to mixed-boundary - initial-value problems that are important in real physical cases. The main purpose of this thesis is to study carefully the various boundary-induced soliton under different initial conditions. The author states with three sets of nonlinear equations: KdV equations and Boussinesq equations (for water); two-fluid equations for cold-ion plasma. He was interested in four types of problems involved with water solitons: excitation by different time-dependent boundary conditions under different initial conditions; head-on and over-taking collisions; reflection at a wall and the excitation by pure initial conditions. For KdV equations, only cases one and four are conducted. The results from two fully nonlinear KdV and Boussinesq equations are compared, and agree extremely well. The Boussinesq equations permit solition head-on collisions and reflections, studied the first time. The results from take-over collision agree with KdV results. For the ion-acoustic plasma, a set of Boussinesq-type equations was derived from the standard two-fluid equations for the ion-acoustic plasma. It theoretically proves the essential nature of the solitary wave solutions of the cold-ion plasma. The ion acoustic solitons are also obtained by prescribing a potential phi/sub 0/ at one grid point.
Evaluation of Boundary Conditions for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Hixon, R.; Shih, S.-H.; Mankbadi, Reda R.
1995-01-01
The performance of three boundary conditions for aeroacoustics were investigated, namely, (1) Giles-1990; (2) Tam and Webb-1993, and (3) Thompson-1987. For each boundary condition, various implementations were tested to study the sensitivity of their performance to the implementation procedure. Details of all implementations are given. Results are shown for the acoustic field of a monopole in a uniform freestream.
Acoustic radar investigations of boundary layer phenomena
NASA Technical Reports Server (NTRS)
Marks, J. R.
1974-01-01
A comparison is made between acoustic radar echoes and conventional meteorological data obtained from the WKY tower, for the purpose of better understanding the relationships between acoustic radar echoes and boundary layer processes. Two thunderstorm outflow cases are presented and compared to both acoustic radar data and Charba's gust front model. The acoustic radar echoes reveal the boundary between warm and cold air and other areas of mixing and strong thermal gradient quite well. The thunderstorm outflow of 27 June 1972 is found to compare with in most respects to Charba's gust front model. The major difference is the complete separation of the head from the main body of cold air, probably caused by erosion of the area behind the head by mixing with the ambient air. Two cases of nocturnal inversions caused by advection of warmer air aloft are presented. It is found that areas of turbulent mixing or strong thermal gradient can be identified quite easily in the acoustic radar record.
NASA Astrophysics Data System (ADS)
Liu, Yang; Sen, Mrinal K.
2011-09-01
Most conventional finite-difference methods adopt second-order temporal and (2M)th-order spatial finite-difference stencils to solve the 3D acoustic wave equation. When spatial finite-difference stencils devised from the time-space domain dispersion relation are used to replace these conventional spatial finite-difference stencils devised from the space domain dispersion relation, the accuracy of modelling can be increased from second-order along any directions to (2M)th-order along 48 directions. In addition, the conventional high-order spatial finite-difference modelling accuracy can be improved by using a truncated finite-difference scheme. In this paper, we combine the time-space domain dispersion-relation-based finite difference scheme and the truncated finite-difference scheme to obtain optimised spatial finite-difference coefficients and thus to significantly improve the modelling accuracy without increasing computational cost, compared with the conventional space domain dispersion-relation-based finite difference scheme. We developed absorbing boundary conditions for the 3D acoustic wave equation, based on predicting wavefield values in a transition area by weighing wavefield values from wave equations and one-way wave equations. Dispersion analyses demonstrate that high-order spatial finite-difference stencils have greater accuracy than low-order spatial finite-difference stencils for high frequency components of wavefields, and spatial finite-difference stencils devised in the time-space domain have greater precision than those devised in the space domain under the same discretisation. The modelling accuracy can be improved further by using the truncated spatial finite-difference stencils. Stability analyses show that spatial finite-difference stencils devised in the time-space domain have better stability condition. Numerical modelling experiments for homogeneous, horizontally layered and Society of Exploration Geophysicists/European Association of
Numerical Boundary Condition Procedures
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.
Advances in Numerical Boundary Conditions for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.
1997-01-01
Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.
Acoustic sounding in the planetary boundary layer
NASA Technical Reports Server (NTRS)
Kelly, E. H.
1974-01-01
Three case studies are presented involving data from an acoustic radar. The first two cases examine data collected during the passage of a mesoscale cold-air intrusion, probably thunderstorm outflow, and a synoptic-scale cold front. In these studies the radar data are compared to conventional meteorological data obtained from the WKY tower facility for the purpose of radar data interpretation. It is shown that the acoustic radar echoes reveal the boundary between warm and cold air and other areas of turbulent mixing, regions of strong vertical temperature gradients, and areas of weak or no wind shear. The third case study examines the relationship between the nocturnal radiation inversion and the low-level wind maximum or jet in the light of conclusions presented by Blackadar (1957). The low-level jet is seen forming well above the top of the inversion. Sudden rapid growth of the inversion occurs which brings the top of the inversion to a height equal that of the jet. Coincident with the rapid growth of the inversion is a sudden decrease in the intensity of the acoustic radar echoes in the inversion layer. It is suggested that the decrease in echo intensity reveals a decrease in turbulent mixing in the inversion layer as predicted by Blackadar. It is concluded that the acoustic radar can be a valuable tool for study in the lower atmosphere.
Solution of Exterior Acoustic Problems by the Boundary Element Method.
NASA Astrophysics Data System (ADS)
Kirkup, Stephen Martin
Available from UMI in association with The British Library. The boundary element method is described and investigated, especially in respect of its application to exterior two -dimensional Laplace problems. Both empirical and algebraic analyses (including the effects of approximation of the boundary and boundary functions and the precision of the evaluation of the discrete forms) are developed. Methods for the automatic evaluation of the discrete forms of the Laplace and Helmholtz integral operators are reviewed and extended. Boundary element methods for the solution of exterior Helmholtz problems with general (but most importantly Neumann) boundary conditions are reviewed and some are explicitly stated using a new notation. Boundary element methods based on the boundary integral equations introduced by Brakhage & Werner/ Leis/ Panich/ Kussmaul (indirect) and Burton & Miller (direct) are given prime consideration and implemented for three -dimensional problems. The influence of the choice of weighting parameter on the performance of the methods is explored and further guidance is given. The application of boundary element methods and methods based on the Rayleigh integral to acoustic radiation problems are considered. Methods for speeding up their solution via the boundary element method are developed. Library subroutines for the solution of acoustic radiation problems are described and demonstrated. Computational techniques for the problem of predicting the noise produced by a running engine are reviewed and appraised. The application of the boundary element method to low-noise engine design and in the design of noise shields is considered. The boundary element method is applied to the Ricardo crankcase simulation rig, which is an engine -like structure. A comparison of predicted and measured sound power spectra is given.
Solution of exterior acoustic problems by the boundary element method
NASA Astrophysics Data System (ADS)
Kirkup, Stephen Martin
The boundary element method is described and investigated, especially in respect of its application to exterior two-dimensional Laplace problems. Both empirical and algebraic analyses (including the effects of approximation of the boundary and boundary functions and the precision of the evaluation of the discrete forms) are developed. Methods for the automatic evaluation of the discrete forms of the Laplace and Helmholtz integral operators are reviewed and extended. Boundary element methods for the solution of exterior Helmholtz problems with general (but most importantly Neumann) boundary conditions are reviewed and some are explicitly stated using a new notation. Boundary element methods based on the boundary integral equations introduced by Brakhage and Werner/Leis/Panich/Kussmaul (indirect) and Burton and Miller (direct) are given prime consideration and implemented for three-dimensional problems. The influence of the choice of weighting parameter on the performance of the methods is explored and further guidance is given. The application of boundary element methods and methods based on the Rayleigh integral to acoustic radiation problems are considered. Methods for speeding up their solution via the boundary element method are developed. Library subroutines for the solution of acoustic radiation problems are described and demonstrated. Computational techniques for the problem of predicting the noise produced by a running engine are reviewed and appraised. The application of the boundary element method to low-noise engine design and in the design of noise shields is considered. The boundary element method is applied to the Ricardo crankcase simulation rig, which is an engine-like structure. A comparison of predicted and measured sound power spectra is given.
Acoustics of laminar boundary layers breakdown
NASA Technical Reports Server (NTRS)
Wang, Meng
1994-01-01
Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.
Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Auriault, Laurent
1996-01-01
It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.
Prediction of sound fields in acoustical cavities using the boundary element method. M.S. Thesis
NASA Technical Reports Server (NTRS)
Kipp, C. R.; Bernhard, R. J.
1985-01-01
A method was developed to predict sound fields in acoustical cavities. The method is based on the indirect boundary element method. An isoparametric quadratic boundary element is incorporated. Pressure, velocity and/or impedance boundary conditions may be applied to a cavity by using this method. The capability to include acoustic point sources within the cavity is implemented. The method is applied to the prediction of sound fields in spherical and rectangular cavities. All three boundary condition types are verified. Cases with a point source within the cavity domain are also studied. Numerically determined cavity pressure distributions and responses are presented. The numerical results correlate well with available analytical results.
Xu, Y.; Xia, J.; Miller, R.D.
2007-01-01
The need for incorporating the traction-free condition at the air-earth boundary for finite-difference modeling of seismic wave propagation has been discussed widely. A new implementation has been developed for simulating elastic wave propagation in which the free-surface condition is replaced by an explicit acoustic-elastic boundary. Detailed comparisons of seismograms with different implementations for the air-earth boundary were undertaken using the (2,2) (the finite-difference operators are second order in time and space) and the (2,6) (second order in time and sixth order in space) standard staggered-grid (SSG) schemes. Methods used in these comparisons to define the air-earth boundary included the stress image method (SIM), the heterogeneous approach, the scheme of modifying material properties based on transversely isotropic medium approach, the acoustic-elastic boundary approach, and an analytical approach. The method proposed achieves the same or higher accuracy of modeled body waves relative to the SIM. Rayleigh waves calculated using the explicit acoustic-elastic boundary approach differ slightly from those calculated using the SIM. Numerical results indicate that when using the (2,2) SSG scheme for SIM and our new method, a spatial step of 16 points per minimum wavelength is sufficient to achieve 90% accuracy; 32 points per minimum wavelength achieves 95% accuracy in modeled Rayleigh waves. When using the (2,6) SSG scheme for the two methods, a spatial step of eight points per minimum wavelength achieves 95% accuracy in modeled Rayleigh waves. Our proposed method is physically reasonable and, based on dispersive analysis of simulated seismographs from a layered half-space model, is highly accurate. As a bonus, our proposed method is easy to program and slightly faster than the SIM. ?? 2007 Society of Exploration Geophysicists.
Boundary Condition for Modeling Semiconductor Nanostructures
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Oyafuso, Fabiano; von Allmen, Paul; Klimeck, Gerhard
2006-01-01
A recently proposed boundary condition for atomistic computational modeling of semiconductor nanostructures (particularly, quantum dots) is an improved alternative to two prior such boundary conditions. As explained, this boundary condition helps to reduce the amount of computation while maintaining accuracy.
Acoustic streaming field structure. Part II. Examples that include boundary-driven flow.
Bradley, Charles
2012-01-01
In this paper three simple acoustic streaming problems are presented and solved. The purpose of the paper is to demonstrate the use of a previously published streaming model by Bradley [J. Acoust. Soc. Am. 100(3), 1399-1408 (1996)] and illustrate, with concrete examples, some of the features of streaming flows that were predicted by the general model. In particular, the problems are intended to demonstrate cases in which the streaming field boundary condition at the face of the radiator has a nontrivial lateral dc velocity component. Such a boundary condition drives a steady solenoidal flow just like a laterally translating boundary drives Couette flow. PMID:22280567
Acoustic Emissions Reveal Combustion Conditions
NASA Technical Reports Server (NTRS)
Ramohalli, D. N. R.; Seshan, P. K.
1983-01-01
Turbulent-flame acoustic emissions change with air/fuel ratio variations. Acoustic emissions sensed and processed to detect inefficient operation; control system responds by adjusting fuel/air mixture for greater efficiency. Useful for diagnosis of combustion processes and fuel/air control.
Tidal Boundary Conditions in SEAWAT
Mulligan, Ann E.; Langevin, Christian; Post, Vincent E.A.
2011-01-01
SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.
NASA Technical Reports Server (NTRS)
Stakolich, E. G.
1978-01-01
An air ejector was designed and built to remove the boundary-layer air from the inlet a turbofan engine during an acoustic ground test program. This report describes; (1) how the ejector was sized; (2) how the ejector performed; and (3) the performance of a scale model ejector built and tested to verify the design. With proper acoustic insulation, the ejector was effective in reducing boundary layer thickness in the inlet of the turbofan engine while obtaining the desired acoustic test conditions.
Acoustic transmission enhancement through a soft interlayer with a reactance boundary.
Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen
2015-08-01
Research has shown that acoustic transmission enhancement (ATE) can occur in stiff materials with high acoustic impedance that include a soft interlayer with low acoustic impedance inserted between them without any opening (i.e., without any links between the two stiff materials). Previously, ATE was induced either by coupling acoustic surface waves or Love waves with the Fabry-Perot resonant modes inside the apertures or by the locally resonant modes of the structure. However, in this article ATE is achieved using wave-vector redistribution induced by a reactance boundary. An optimal boundary was designed to adjust the wave vector in the propagation direction, decreasing reflection caused by impedance differences. The role of boundary conditions on ATE was also clarified. PMID:26328694
NASA Technical Reports Server (NTRS)
Kompenhans, J.
1977-01-01
The reflection factor at a tube which ends at a plate over which a flow is forming was determined as a function of the Strouhal number, formed from the flow velocity, the aperture radius, and the acoustic frequency. Several adjacent openings were investigated to determine the interactions between several openings.
Acoustic Radiation From a Mach 14 Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Zhang, Chao; Duan, Lian; Choudhari, Meelan M.
2016-01-01
Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.
Mean Flow Boundary Conditions for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Hixon, R.; Nallasamy, M.; Sawyer, S.; Dyson, R.
2003-01-01
In this work, a new type of boundary condition for time-accurate Computational Aeroacoustics solvers is described. This boundary condition is designed to complement the existing nonreflective boundary conditions while ensuring that the correct mean flow conditions are maintained throughout the flow calculation. Results are shown for a loaded 2D cascade, started with various initial conditions.
Evaluation of Boundary Conditions for the Gust-Cascade Problem
NASA Technical Reports Server (NTRS)
Hixon, R.; Shih, S.-H.; Mankbadi, R. R.
1998-01-01
Using a high-order accuracy finite-difference time-domain algorithm, the acoustic scattering from a flat-plate cascade is computed. Keeping the grid and time step fixed, the effect of four different boundary conditions on the accuracy and stability of the computed solution is compared.
Increasing Accuracy in Computed Inviscid Boundary Conditions
NASA Technical Reports Server (NTRS)
Dyson, Roger
2004-01-01
A technique has been devised to increase the accuracy of computational simulations of flows of inviscid fluids by increasing the accuracy with which surface boundary conditions are represented. This technique is expected to be especially beneficial for computational aeroacoustics, wherein it enables proper accounting, not only for acoustic waves, but also for vorticity and entropy waves, at surfaces. Heretofore, inviscid nonlinear surface boundary conditions have been limited to third-order accuracy in time for stationary surfaces and to first-order accuracy in time for moving surfaces. For steady-state calculations, it may be possible to achieve higher accuracy in space, but high accuracy in time is needed for efficient simulation of multiscale unsteady flow phenomena. The present technique is the first surface treatment that provides the needed high accuracy through proper accounting of higher-order time derivatives. The present technique is founded on a method known in art as the Hermitian modified solution approximation (MESA) scheme. This is because high time accuracy at a surface depends upon, among other things, correction of the spatial cross-derivatives of flow variables, and many of these cross-derivatives are included explicitly on the computational grid in the MESA scheme. (Alternatively, a related method other than the MESA scheme could be used, as long as the method involves consistent application of the effects of the cross-derivatives.) While the mathematical derivation of the present technique is too lengthy and complex to fit within the space available for this article, the technique itself can be characterized in relatively simple terms: The technique involves correction of surface-normal spatial pressure derivatives at a boundary surface to satisfy the governing equations and the boundary conditions and thereby achieve arbitrarily high orders of time accuracy in special cases. The boundary conditions can now include a potentially infinite number
Acoustic Radiation from High-Speed Turbulent Boundary Layers in a Tunnel-Like Environment
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.; Zhang, Chao
2015-01-01
Direct numerical simulation of acoustic radiation from a turbulent boundary layer in a cylindrical domain will be conducted under the flow conditions corresponding to those at the nozzle exit of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) operated under noisy-flow conditions with a total pressure p(sub t) of 225 kPa and a total temperature of T(sub t) equal to 430 K. Simulations of acoustic radiation from a turbulent boundary layer over a flat surface are used as a reference configuration to illustrate the effects of the cylindrical enclosure. A detailed analysis of acoustic freestream disturbances in the cylindrical domain will be reported in the final paper along with a discussion pertaining to the significance of the flat-plate acoustic simulations and guidelines concerning the modeling of the effects of an axisymmetric tunnel wall on the noise field.
Application of the double absorbing boundary condition in seismic modeling
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Xiang-Yang; Chen, Shuang-Quan
2015-03-01
We apply the newly proposed double absorbing boundary condition (DABC) (Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference (FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer (PML), the complexity decreases, and the stability and flexibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton-Engquist boundary condition and nearly the same as that in the PML.
Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances
NASA Technical Reports Server (NTRS)
Balakamar, P.; Kegerise, Michael A.
2011-01-01
Boundary layer receptivity to two-dimensional acoustic disturbances at different incidence angles and to vortical disturbances is investigated by solving the Navier-Stokes equations for Mach 6 flow over a 7deg half-angle sharp-tipped wedge and a cone. Higher order spatial and temporal schemes are employed to obtain the solution. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. It is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases when the incidence angle is increased from 0 to 30 degrees. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle. The maximum receptivity is obtained when the wave incident angle is about 20 degrees. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that for the acoustic waves. Vortical disturbances first generate the fast acoustic modes and they switch to the slow mode near the continuous spectrum.
Acoustic Markers of Prosodic Boundaries in Spanish Spontaneous Alaryngeal Speech
ERIC Educational Resources Information Center
Cuenca, M. H.; Barrio, M. M.
2010-01-01
Prosodic information aids segmentation of the continuous speech signal and thereby facilitates auditory speech processing. Durational and pitch variations are prosodic cues especially necessary to convey prosodic boundaries, but alaryngeal speakers have inconsistent control over acoustic parameters such as F0 and duration, being as a result noisy…
Dependence of Boundary Layer Mixing On Lateral Boundary Conditions
NASA Astrophysics Data System (ADS)
Straub, D.
Ocean circulation models often show strong mixing in association with lateral bound- ary layers. Such mixing is generally considered to be artifactual rather than real. Fur- thermore, the severity of the problem is boundary condition dependent. For example, an inconsistency between geostrophy and insulating boundary conditions on tempera- ture and salinity cause many modelers to opt for the no slip, rather than slip boundary condtion on the tangential component of momentum. As modellers increasingly move into the eddy revealing regime, biharmonic, rather than harmonic dissipative operators are likely to become more common. Biharmonic operators, however, require specifi- cation of additional boundary conditions. For example, there are several `natural ex- tensions' to each of the slip and no slip conditions. Here, these various possiblities are considered in the context of a simple model. Particular attention is payed to how mixing (and the associated overturning cell) is affected by the choice of boundary condition.
Acoustic boundary control method for interior sound suppression
NASA Astrophysics Data System (ADS)
Sun, Jian Q.; Hirsch, S. M.
1997-06-01
Suppressing interior sound radiation in helicopters, fixed- wing aircraft and land vehicles is a very important problem. It has been studied quite extensively in the past few decades. There are two mainstream methods for this problem: active noise cancellation (ANC) using loudspeakers and sound radiation reduction via structural controls (often called active structural acoustic control or ASAC). An ANC system often requires an impractically high dimensionality to achieve the level of global noise reduction in a three dimensional volume that ASAC systems with a relatively low dimensionality are capable of, while actuators for structural control systems are power intensive and less reliable. This paper presents an acoustic boundary control method that may reserve the advantages of both ANC and ASAC. Numerical simulation results of interior noise control are presented to demonstrate the ability of the acoustic boundary control to cancel sound fields due to different primary sources. A discussion is also presented on the spatial characteristics of the acoustic boundary control as a function of frequency. An interesting phenomenon is discovered that may have significant implications to the actuator grouping studies.
Logarithmic minimal models with Robin boundary conditions
NASA Astrophysics Data System (ADS)
Bourgine, Jean-Emile; Pearce, Paul A.; Tartaglia, Elena
2016-06-01
We consider general logarithmic minimal models LM≤ft( p,{{p}\\prime}\\right) , with p,{{p}\\prime} coprime, on a strip of N columns with the (r, s) Robin boundary conditions introduced by Pearce, Rasmussen and Tipunin. On the lattice, these models are Yang–Baxter integrable loop models that are described algebraically by the one-boundary Temperley–Lieb algebra. The (r, s) Robin boundary conditions are a class of integrable boundary conditions satisfying the boundary Yang–Baxter equations which allow loop segments to either reflect or terminate on the boundary. The associated conformal boundary conditions are organized into infinitely extended Kac tables labelled by the Kac labels r\\in {Z} and s\\in {N} . The Robin vacuum boundary condition, labelled by ≤ft(r,s-\\frac{1}{2}\\right)=≤ft(0,\\frac{1}{2}\\right) , is given as a linear combination of Neumann and Dirichlet boundary conditions. The general (r, s) Robin boundary conditions are constructed, using fusion, by acting on the Robin vacuum boundary with an (r, s)-type seam consisting of an r-type seam of width w columns and an s-type seam of width d = s ‑ 1 columns. The r-type seam admits an arbitrary boundary field which we fix to the special value ξ =-\\fracλ{2} where λ =\\frac≤ft( {{p}\\prime}-p\\right)π{{{p}\\prime}} is the crossing parameter. The s-type boundary introduces d defects into the bulk. We consider the commuting double-row transfer matrices and their associated quantum Hamiltonians and calculate analytically the boundary free energies of the (r, s) Robin boundary conditions. Using finite-size corrections and sequence extrapolation out to system sizes N+w+d≤slant 26 , the conformal spectrum of boundary operators is accessible by numerical diagonalization of the Hamiltonians. Fixing the parity of N for r\
Acoustic Radiation from a Mach 14 Turbulent Boundary layer
NASA Astrophysics Data System (ADS)
Zhang, Chao; Duan, Lian; Choudhari, Meelan
2015-11-01
Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0.18 times the recovery temperature. The emphasis is on characterizing the acoustic radiation from the turbulent boundary layer and comparing it with previous simulations at Mach 2.5 and Mach 6 to assess the Mach-number dependence of the freestream pressure fluctuations. In particular, the numerical database is used to provide insights into the pressure disturbance spectrum and amplitude scaling with respect to the freestream Mach number as well as to understand the acoustic source mechanisms at very high Mach numbers. Such information is important for characterizing the freestream disturbance environment in conventional (i.e., noisy) hypersonic wind tunnels. Spectral characteristics of pressure fluctuations at the surface are also investigated. Sponsored by Air Force Office of Scientific Research.
Traction boundary conditions for molecular static simulations
NASA Astrophysics Data System (ADS)
Li, Xiantao; Lu, Jianfeng
2016-08-01
This paper presents a consistent approach to prescribe traction boundary conditions in atomistic models. Due to the typical multiple-neighbor interactions, finding an appropriate boundary condition that models a desired traction is a non-trivial task. We first present a one-dimensional example, which demonstrates how such boundary conditions can be formulated. We further analyze the stability, and derive its continuum limit. We also show how the boundary conditions can be extended to higher dimensions with an application to a dislocation dipole problem under shear stress.
Tunable acoustic radiation pattern assisted by effective impedance boundary
NASA Astrophysics Data System (ADS)
Qian, Feng; Quan, Li; Wang, Li-Wei; Liu, Xiao-Zhou; Gong, Xiu-Fen
2016-02-01
The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no fingerprint of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No.11474160), the Fundamental Research Funds for Central Universities, China (Grant No. 020414380001), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201401), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
Numerical Boundary Conditions for Computational Aeroacoustics Benchmark Problems
NASA Technical Reports Server (NTRS)
Tam, Chritsopher K. W.; Kurbatskii, Konstantin A.; Fang, Jun
1997-01-01
Category 1, Problems 1 and 2, Category 2, Problem 2, and Category 3, Problem 2 are solved computationally using the Dispersion-Relation-Preserving (DRP) scheme. All these problems are governed by the linearized Euler equations. The resolution requirements of the DRP scheme for maintaining low numerical dispersion and dissipation as well as accurate wave speeds in solving the linearized Euler equations are now well understood. As long as 8 or more mesh points per wavelength is employed in the numerical computation, high quality results are assured. For the first three categories of benchmark problems, therefore, the real challenge is to develop high quality numerical boundary conditions. For Category 1, Problems 1 and 2, it is the curved wall boundary conditions. For Category 2, Problem 2, it is the internal radiation boundary conditions inside the duct. For Category 3, Problem 2, they are the inflow and outflow boundary conditions upstream and downstream of the blade row. These are the foci of the present investigation. Special nonhomogeneous radiation boundary conditions that generate the incoming disturbances and at the same time allow the outgoing reflected or scattered acoustic disturbances to leave the computation domain without significant reflection are developed. Numerical results based on these boundary conditions are provided.
Boundary conditions for viscous vortex methods
Koumoutsakos, P.; Leonard, A.; Pepin, F. )
1994-07-01
This paper presents a Neumann-type vorticity boundary condition for the vorticity formulation of the Navier-Stokes equations. The vorticity creation process at the boundary, due to the no-slip condition, is expressed in terms of a vorticity flux. The scheme is incorporated then into a Lagrangian vortex blob method that uses a particle strength exchange algorithm for viscous diffusion. The no-slip condition is not enforced by the generation of new vortices at the boundary but instead by modifying the strength of the vortices in the vicinity of the boundary. 19 refs., 5 figs.
Boundary conditions for the subdiffusion equation
Shkilev, V. P.
2013-04-15
The boundary conditions for the subdiffusion equations are formulated using the continuous-time random walk model, as well as several versions of the random walk model on an irregular lattice. It is shown that the boundary conditions for the same equation in different models have different forms, and this difference considerably affects the solutions of this equation.
Unified slip boundary condition for fluid flows.
Thalakkottor, Joseph John; Mohseni, Kamran
2016-08-01
Determining the correct matching boundary condition is fundamental to our understanding of several everyday problems. Despite over a century of scientific work, existing velocity boundary conditions are unable to consistently explain and capture the complete physics associated with certain common but complex problems, such as moving contact lines and corner flows. The widely used Maxwell and Navier slip boundary conditions make an implicit assumption that velocity varies only in the wall normal direction. This makes their boundary condition inapplicable in the vicinity of contact lines and corner points, where velocity gradient exists both in the wall normal and wall tangential directions. In this paper, by identifying this implicit assumption we are able to extend Maxwell's slip model. Here, we present a generalized velocity boundary condition that shows that slip velocity is a function of not only the shear rate but also the linear strain rate. In addition, we present a universal relation for slip length, which shows that, for a general flow, slip length is a function of the principal strain rate. The universal relation for slip length along with the generalized velocity boundary condition provides a unified slip boundary condition to model a wide range of steady Newtonian fluid flows. We validate the unified slip boundary for simple Newtonian liquids by using molecular dynamics simulations and studying both the moving contact line and corner flow problems. PMID:27627398
Boundary Conditions of the Heliosphere
NASA Technical Reports Server (NTRS)
Slavin, Jonathan D.; Frisch, Priscilla C .
2001-01-01
We present new calculations of the ionization of the Local Interstellar Cloud (LIC) by directly observed sources including nearby stellar extreme ultraviolet (EUV) sources and the diffuse emission of the Soft X-ray Background (SXRB). In addition, we model the important, unobserved EUV emission both from the hot gas responsible for the SXRB and from a possible evaporative boundary between the LIC and the hot gas. We show that these ionization sources can provide the necessary ionization and heating of the cloud to match observations. Including the radiation from the conductive boundary, while not required, does improve the agreement with observations of the temperature of the LIC. The ionization predicted in our models shows good agreement with pickup ion results, interstellar absorption line data towards epsilon CMa, and EUV opacity measurements of nearby white dwarf stars. The areas of disagreement point to a possible underabundance (relative to solar abundance) of neon in the LIC. The presence of dust in the cloud, or at least depleted abundances, is necessary to maintain the heating/cooling balance and reach the observed temperature.
Downstream boundary conditions for viscous flow problems
NASA Technical Reports Server (NTRS)
Fix, G.; Gunzburger, M.
1977-01-01
The problem of the specification of artificial outflow conditions in flow problems is studied. It is shown that for transport type equations incorrect outflow conditions will adversely affect the solution only in a small region near the outflow boundary, while for elliptic equations, e.g. those governing the streamfunction or pressure, a correct boundary specification is essential. In addition, integral outflow boundary conditions for fluid dynamical problems are considered. It is shown that such conditions are well posed, and their effect on the solutions of the Navier-Stokes equations is also considered.
Acoustic explorations of the upper ocean boundary layer
NASA Astrophysics Data System (ADS)
Vagle, Svein
2005-04-01
The upper ocean boundary layer is an important but difficult to probe part of the ocean. A better understanding of small scale processes at the air-sea interface, including the vertical transfer of gases, heat, mass and momentum, are crucial to improving our understanding of the coupling between atmosphere and ocean. Also, this part of the ocean contains a significant part of the total biomass at all trophic levels and is therefore of great interest to researchers in a range of different fields. Innovative measurement plays a critical role in developing our understanding of the processes involved in the boundary layer, and the availability of low-cost, compact, digital signal processors and sonar technology in self-contained and cabled configurations has led to a number of exciting developments. This talk summarizes some recent explorations of this dynamic boundary layer using both active and passive acoustics. The resonant behavior of upper ocean bubbles combined with single and multi-frequency broad band active and passive devices are now giving us invaluable information on air-sea gas transfer, estimation of biological production, marine mammal behavior, wind speed and precipitation, surface and internal waves, turbulence, and acoustic communication in the surf zone.
The Pauli equation with complex boundary conditions
NASA Astrophysics Data System (ADS)
Kochan, D.; Krejčiřík, D.; Novák, R.; Siegl, P.
2012-11-01
We consider one-dimensional Pauli Hamiltonians in a bounded interval with possibly non-self-adjoint Robin-type boundary conditions. We study the influence of the spin-magnetic interaction on the interplay between the type of boundary conditions and the spectrum. Special attention is paid to {PT}-symmetric boundary conditions with the physical choice of the time-reversal operator {T}. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.
From Neuman to Dirichlet boundary conditions
Nikolic, B.; Sazdovic, B.
2007-04-23
The Dirichlet boundary conditions for the end-point of the open string define Dp-brane. It is parameterized by the rest of coordinates, with Neuman boundary conditions. The relations between background fields can produce the local gauge symmetries of the world-sheet action. After gauge fixing, some Neuman boundary conditions turn into the Dirichlet ones, decreasing the number of Dp-brane dimensions. The physical Dp-brane is gauge invariant part of the initial one. The gauge invariant coordinates are expressed as linear combinations of the effective coordinates and momenta. This fact explains the origin of non-commutativity and the existence of commutative Dp-brane coordinates.
An Evaluation of Boundary Conditions for Modeling Urban Boundary Layers
Calhoun, R.J.; Chan, S.T.; Lee, R.L.
2000-05-18
Numerical modeling of the urban boundary layer is complicated by the need to describe airflow patterns outside of the computational domain. These patterns have an impact on how successfully the simulation is able to model the turbulence associated with the urban boundary layer. This talk presents experiments with the model boundary conditions for simulations that were done to support two Department of Energy observational programs involving the Salt Lake City basin. The Chemical/Biological Non-proliferation Program (CBNP) is concerned with the effects of buildings on influencing dispersion patterns in urban environments. The Vertical Transport and Mixing Program (VTMX) investigating mixing mechanisms in the stable boundary layer and how they are influenced by the channeling caused by drainage flows or by obstacles such as building complexes. Both of these programs are investigating the turbulent mixing caused by building complexes and other urban obstacles.
Stable boundary conditions for Cartesian grid calculations
NASA Technical Reports Server (NTRS)
Berger, M. J.; Leveque, R. J.
1990-01-01
The inviscid Euler equations in complicated geometries are solved using a Cartesian grid. This requires solid wall boundary conditions in the irregular grid cells near the boundary. Since these cells may be orders of magnitude smaller than the regular grid cells, stability is a primary concern. An approach to this problem is presented and its use is illustrated.
Implementation of a Compressor Face Boundary Condition Based on Small Disturbances
NASA Technical Reports Server (NTRS)
Slater, John W.; Paynter, Gerald C.
2000-01-01
A compressor-face boundary condition that models the unsteady interactions of acoustic and convective velocity disturbances with a compressor has been implemented into a three-dimensional computational fluid dynamics code. Locally one-dimensional characteristics along with a small-disturbance model are used to compute the acoustic response as a function of the local stagger angle and the strength and direction of the disturbance. Simulations of the inviscid flow in a straight duct, a duct coupled to a compressor, and a supersonic inlet demonstrate the behavior of the boundary condition in relation to existing boundary conditions. Comparisons with experimental data show a large improvement in accuracy over existing boundary conditions in the ability to predict the reflected disturbance from the interaction of an acoustic disturbance with a compressor.
Boundary Conditions for Jet Flow Computations
NASA Technical Reports Server (NTRS)
Hayder, M. E.; Turkel, E.
1994-01-01
Ongoing activities are focused on capturing the sound source in a supersonic jet through careful large eddy simulation (LES). One issue that is addressed is the effect of the boundary conditions, both inflow and outflow, on the predicted flow fluctuations, which represent the sound source. In this study, we examine the accuracy of several boundary conditions to determine their suitability for computations of time-dependent flows. Various boundary conditions are used to compute the flow field of a laminar axisymmetric jet excited at the inflow by a disturbance given by the corresponding eigenfunction of the linearized stability equations. We solve the full time dependent Navier-Stokes equations by a high order numerical scheme. For very small excitations, the computed growth of the modes closely corresponds to that predicted by the linear theory. We then vary the excitation level to see the effect of the boundary conditions in the nonlinear flow regime.
Experiments on initial and boundary conditions
NASA Technical Reports Server (NTRS)
Moretti, G.
1980-01-01
Effects of three different models for the treatment of subsonic boundary conditions, applied to the problem of flow in a channel with a bump, are discussed. A preliminary discussion of the numerical treatment of the corners is presented.
Multireflection boundary conditions for lattice Boltzmann models.
Ginzburg, Irina; d'Humières, Dominique
2003-12-01
We present a general framework for several previously introduced boundary conditions for lattice Boltzmann models, such as the bounce-back rule and the linear and quadratic interpolations. The objectives are twofold: first to give theoretical tools to study the existing link-type boundary conditions and their corresponding accuracy; second to design boundary conditions for general flows which are third-order kinetic accurate. Using these new boundary conditions, Couette and Poiseuille flows are exact solutions of the lattice Boltzmann models for a Reynolds number Re=0 (Stokes limit) for arbitrary inclination with the lattice directions. Numerical comparisons are given for Stokes flows in periodic arrays of spheres and cylinders, linear periodic array of cylinders between moving plates, and for Navier-Stokes flows in periodic arrays of cylinders for Re<200. These results show a significant improvement of the overall accuracy when using the linear interpolations instead of the bounce-back reflection (up to an order of magnitude on the hydrodynamics fields). Further improvement is achieved with the new multireflection boundary conditions, reaching a level of accuracy close to the quasianalytical reference solutions, even for rather modest grid resolutions and few points in the narrowest channels. More important, the pressure and velocity fields in the vicinity of the obstacles are much smoother with multireflection than with the other boundary conditions. Finally the good stability of these schemes is highlighted by some simulations of moving obstacles: a cylinder between flat walls and a sphere in a cylinder. PMID:14754343
On High-Order Radiation Boundary Conditions
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1995-01-01
In this paper we develop the theory of high-order radiation boundary conditions for wave propagation problems. In particular, we study the convergence of sequences of time-local approximate conditions to the exact boundary condition, and subsequently estimate the error in the solutions obtained using these approximations. We show that for finite times the Pade approximants proposed by Engquist and Majda lead to exponential convergence if the solution is smooth, but that good long-time error estimates cannot hold for spatially local conditions. Applications in fluid dynamics are also discussed.
Influence of Spanwise Boundary Conditions on Slat Noise Simulations
NASA Technical Reports Server (NTRS)
Lockard, David P.; Choudhari, Meelan M.; Buning, Pieter G.
2015-01-01
The slat noise from the 30P/30N high-lift system is being investigated through computational fluid dynamics simulations with the OVERFLOW code in conjunction with a Ffowcs Williams-Hawkings acoustics solver. In the present study, two different spanwise grids are being used to investigate the effect of the spanwise extent and periodicity on the near-field unsteady structures and radiated noise. The baseline grid with periodic boundary conditions has a short span equal to 1/9th of the stowed chord, whereas the other, longer span grid adds stretched grids on both sides of the core, baseline grid to allow inviscid surface boundary conditions at both ends. The results indicate that the near-field mean statistics obtained using the two grids are similar to each other, as are the directivity and spectral shapes of the radiated noise. However, periodicity forces all acoustic waves with less than one wavelength across the span to be two-dimensional, without any variation in the span. The spanwise coherence of the acoustic waves is what is needed to make estimates of the noise that would be radiated from realistic span lengths. Simulations with periodic conditions need spans of at least six slat chords to allow spanwise variation in the low-frequencies associated with the peak of broadband slat noise. Even then, the full influence of the periodicity is unclear, so employing grids with a fine, central region and highly stretched meshes that go to slip walls may be a more efficient means of capturing the spanwise decorrelation of low-frequency acoustic phenomena.
Boundary conditions for the gravitational field
NASA Astrophysics Data System (ADS)
Winicour, Jeffrey
2012-06-01
A review of the treatment of boundaries in general relativity is presented with the emphasis on application to the formulations of Einstein's equations used in numerical relativity. At present, it is known how to treat boundaries in the harmonic formulation of Einstein's equations and a tetrad formulation of the Einstein-Bianchi system. However, a universal approach valid for other formulations is not in hand. In particular, there is no satisfactory boundary theory for the 3+1 formulations which have been highly successful in binary black hole simulation. I discuss the underlying problems that make the initial-boundary-value problem much more complicated than the Cauchy problem. I review the progress that has been made and the important open questions that remain. Science is a differential equation. Religion is a boundary condition. (Alan Turing, quoted in J D Barrow, ‘Theories of Everything’)
MBTS Boundary Conditions in Continuous Systems
NASA Astrophysics Data System (ADS)
Benesh, G. A.; Haydock, Roger
2015-03-01
Boundary conditions imposed on a local system that is joined to a larger substrate system often introduce unphysical reflections that affect eigenstate energies, densities of states, and charge densities. These problems are common in both atomic cluster and surface slab calculations. Solutions of the Schrodinger equation for the physical system do not possess such reflections; these wave functions carry current smoothly across the (artificial) boundary between the local system and the underlying medium. Previously, Haydock and Nex derived a non-reflecting boundary condition for discrete systems [Phys. Rev. B 75, 205121 (2006)]. Solutions satisfying this maximal breaking of time-reversal symmetry (MBTS) boundary condition carry current away from the boundary at a maximal rate--in much the same way as the exact wave functions for the physical system. The MBTS boundary condition has proved useful in discrete systems for constructing densities of states and other distributions from moments or continued fractions. The MBTS approach has now been extended to studies employing continuous spatial wave functions, including surface slab calculations and model systems. Results are compared with free slab calculations, embedding calculations, and experiment.
Improving Boundary Conditions for Electronic Structure Calculations
NASA Astrophysics Data System (ADS)
Benesh, G. A.; Haydock, Roger
Boundary conditions imposed on a local system joined to a much larger substrate system routinely introduce unphysical reflections that affect the calculation of electronic properties such as energies, charge densities, and densities of states. These problems persist in atomic cluster, slab, and supercell calculations alike. However, wave functions in real, physical systems do not reflect at artificial boundaries. Instead, they carry current smoothly across the surface separating the local system from the underlying medium. Haydock and Nex have derived a non-reflecting boundary condition that works well for discrete systems [Phys. Rev. B 75, 205121 (2006)]. Solutions satisfying their maximal breaking of time-reversal symmetry (MBTS) boundary condition carry current away from the boundary at a maximal rate--in much the same way as exact wave functions in physical systems. The MBTS approach has now been extended to studies employing continuous basis functions. In model systems, MBTS boundary conditions work well for calculating wave functions, eigenenergies, and densities of states. Results are reported for an Al(001) surface. Comparisons are made with slab calculations, embedding calculations, and experiment.
Velocity boundary conditions at a tokamak resistive wall
Strauss, H. R.
2014-03-15
Velocity boundary conditions appropriate for magnetohydrodynamic simulations have been controversial recently. A comparison of numerical simulations of sideways wall force in disruptions is presented for Dirichlet, Neumann, Robin, and DEBS boundary conditions. It is shown that all the boundary conditions give qualitatively similar results. It is shown that Dirichlet boundary conditions are valid in the small Larmor radius limit of electromagnetic sheath boundary conditions.
Transition in a Supersonic Boundary-Layer Due to Roughness and Acoustic Disturbances
NASA Technical Reports Server (NTRS)
Balakumar, P.
2003-01-01
The transition process induced by the interaction of an isolated roughness with acoustic disturbances in the free stream is numerically investigated for a boundary layer over a flat plate with a blunted leading edge at a free stream Mach number of 3.5. The roughness is assumed to be of Gaussian shape and the acoustic disturbances are introduced as boundary condition at the outer field. The governing equations are solved using the 5'h-rder accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third- order total-variation-diminishing (TVD) Runge- Kutta scheme for time integration. The steady field induced by the two and three-dimensional roughness is also computed. The flow field induced by two-dimensional roughness exhibits different characteristics depending on the roughness heights. At small roughness heights the flow passes smoothly over the roughness, at moderate heights the flow separates downstream of the roughness and at larger roughness heights the flow separates upstream and downstream of the roughness. Computations also show that disturbances inside the boundary layer is due to the direct interaction of the acoustic waves and isolated roughness plays a minor role in generating instability waves.
Anchored boundary conditions for locally isostatic networks
NASA Astrophysics Data System (ADS)
Theran, Louis; Nixon, Anthony; Ross, Elissa; Sadjadi, Mahdi; Servatius, Brigitte; Thorpe, M. F.
2015-11-01
Finite pieces of locally isostatic networks have a large number of floppy modes because of missing constraints at the surface. Here we show that by imposing suitable boundary conditions at the surface the network can be rendered effectively isostatic. We refer to these as anchored boundary conditions. An important example is formed by a two-dimensional network of corner sharing triangles, which is the focus of this paper. Another way of rendering such networks isostatic is by adding an external wire along which all unpinned vertices can slide (sliding boundary conditions). This approach also allows for the incorporation of boundaries associated with internal holes and complex sample geometries, which are illustrated with examples. The recent synthesis of bilayers of vitreous silica has provided impetus for this work. Experimental results from the imaging of finite pieces at the atomic level need such boundary conditions, if the observed structure is to be computer refined so that the interior atoms have the perception of being in an infinite isostatic environment.
Time-domain implementation of an impedance boundary condition with boundary layer correction
NASA Astrophysics Data System (ADS)
Brambley, E. J.; Gabard, G.
2016-09-01
A time-domain boundary condition is derived that accounts for the acoustic impedance of a thin boundary layer over an impedance boundary, based on the asymptotic frequency-domain boundary condition of Brambley (2011) [25]. A finite-difference reference implementation of this condition is presented and carefully validated against both an analytic solution and a discrete dispersion analysis for a simple test case. The discrete dispersion analysis enables the distinction between real physical instabilities and artificial numerical instabilities. The cause of the latter is suggested to be a combination of the real physical instabilities present and the aliasing and artificial zero group velocity of finite-difference schemes. It is suggested that these are general properties of any numerical discretization of an unstable system. Existing numerical filters are found to be inadequate to remove these artificial instabilities as they have a too wide pass band. The properties of numerical filters required to address this issue are discussed and a number of selective filters are presented that may prove useful in general. These filters are capable of removing only the artificial numerical instabilities, allowing the reference implementation to correctly reproduce the stability properties of the analytic solution.
NASA Astrophysics Data System (ADS)
Jena, D. P.; Panigrahi, S. N.
2016-03-01
Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.
Boundary conditions in tunneling via quantum hydrodynamics
NASA Technical Reports Server (NTRS)
Nassar, Antonio B.
1993-01-01
Via the hydrodynamical formulation of quantum mechanics, an approach to the problem of tunneling through sharp-edged potential barriers is developed. Above all, it is shown how more general boundary conditions follow from the continuity of mass, momentum, and energy.
How good is the impedance boundary condition?
NASA Technical Reports Server (NTRS)
Lee, Shung-Wu; Gee, W.
1987-01-01
The impedance boundary condition (IBC) is often used in scattering problems involving material-coated conducting bodies. It is shown that for some commonly encountered coating configurations, the value of the impedance varies significantly as functions of the incident angle and polarization. Hence, the use of IBC in a rigorously formulated problem may affect the accuracy of the final solution.
Boundary conditions in Chebyshev and Legendre methods
NASA Technical Reports Server (NTRS)
Canuto, C.
1984-01-01
Two different ways of treating non-Dirichlet boundary conditions in Chebyshev and Legendre collocation methods are discussed for second order differential problems. An error analysis is provided. The effect of preconditioning the corresponding spectral operators by finite difference matrices is also investigated.
Transition in a Supersonic Boundary Layer due to Acoustic Disturbances
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam
2004-01-01
The boundary layer receptivity process due to the interaction of three-dimensional slow and fast acoustic disturbances with a blunted flat plate is numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 106/inch. The computations are performed with and without two-dimensional isolated roughness element located near the leading edge. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The simulations showed that the linear instability waves are generated very close to the leading edge. The wavelength of the disturbances inside the boundary layer first increases gradually and becomes longer than the wavelength for the instability waves within a short distance from the leading edge. The wavelength then decreases gradually and merges with the wavelength for the Tollmien_Schlichting wave. The initial amplitudes of the instability waves near the neutral points, the receptivity coefficients, are about 1.20 and 0.07 times the amplitude of the free-stream disturbances for the slow and the fast waves respectively. It was also revealed that small isolated roughness element does not enhance the receptivity process for the given nose bluntness.
Transition in a Supersonic Boundary Layer Due to Acoustic Disturbances
NASA Technical Reports Server (NTRS)
Balakumar, P.
2005-01-01
The boundary layer receptivity process due to the interaction of three-dimensional slow and fast acoustic disturbances with a blunted flat plate is numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 10(exp 6)/inch. The computations are performed with and without two-dimensional isolated roughness element located near the leading edge. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using the fifth-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The simulations showed that the linear instability waves are generated very close to the leading edge. The wavelength of the disturbances inside the boundary layer first increases gradually and becomes longer than the wavelength for the instability waves within a short distance from the leading edge. The wavelength then decreases gradually and merges with the wavelength for the Tollmien-Schlichting wave. The initial amplitudes of the instability waves near the neutral points, the receptivity coefficients, are about 1.20 and 0.07 times the amplitude of the free-stream disturbances for the slow and the fast waves respectively. It was also revealed that small isolated roughness element does not enhance the receptivity process for the given nose bluntness.
Low density gas dynamic wall boundary conditions
NASA Technical Reports Server (NTRS)
Collins, F. G.
1986-01-01
Low density nozzles or large expansion ratio nozzles used in space experience rarefaction effects near their exit in the form of velocity slip and temperature jump at the walls. In addition, the boundary layers become very thick and there is a very strong viscous/inviscid interaction. For these reasons no existing design technique has been found to accurately predict the nozzle flow properties up to the nozzle exit. The objective of this investigation was to examine the slip boundary conditions and formulate them in a form appropriate for use with a full Navier-Stokes numerical code. The viscous/inviscid interaction would automatically be accounted for by using a compressible Navier-Stokes code. Through examination of the interaction of molecules with solid surfaces, a model for the distribution function of the reflected molecules has been determined and this distribution function has been used to develop a new slip boundary condition that can be shown to yield more realistic surface boundary conditions.
The effect of boundaries on the ion acoustic beam-plasma instability in experiment and simulation
Rapson, Christopher; Grulke, Olaf; Matyash, Konstantin; Klinger, Thomas
2014-05-15
The ion acoustic beam-plasma instability is known to excite strong solitary waves near the Earth's bow shock. Using a double plasma experiment, tightly coupled with a 1-dimensional particle-in-cell simulation, the results presented here show that this instability is critically sensitive to the experimental conditions. Boundary effects, which do not have any counterpart in space or in most simulations, unavoidably excite parasitic instabilities. Potential fluctuations from these instabilities lead to an increase of the beam temperature which reduces the growth rate such that non-linear effects leading to solitary waves are less likely to be observed. Furthermore, the increased temperature modifies the range of beam velocities for which an ion acoustic beam plasma instability is observed.
Spatial periodic boundary condition for MODFLOW.
Laattoe, Tariq; Post, Vincent E A; Werner, Adrian D
2014-01-01
Small-scale hyporheic zone (HZ) models often use a spatial periodic boundary (SPB) pair to simulate an infinite repetition of bedforms. SPB's are common features of commercially available multiphysics modeling packages. MODFLOW's lack of this boundary type has precluded it from being effectively utilized in this area of HZ research. We present a method to implement the SPB in MODFLOW by development of the appropriate block-centered finite-difference expressions. The implementation is analogous to MODFLOW's general head boundary package. The difference is that the terms on the right hand side of the solution equations must be updated with each iteration. Consequently, models that implement the SPB converge best with solvers that perform both inner and outer iterations. The correct functioning of the SPB condition in MODFLOW is verified by two examples. This boundary condition allows users to build HZ-bedform models in MODFLOW, facilitating further research using related codes such as MT3DMS and PHT3D. PMID:23808416
Symmetry boundary condition in dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Pal, Souvik; Lan, Chuanjin; Li, Zhen; Hirleman, E. Daniel; Ma, Yanbao
2015-07-01
Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one quarter of the systems. However, such simulations are not yet possible due to a lack of schemes to treat symmetric boundaries in DPD. In this study, we propose a numerical scheme for the implementation of the symmetric boundary condition (SBC) in both dissipative particle dynamics (DPD) and multibody dissipative particle dynamics (MDPD) using a combined ghost particles and specular reflection (CGPSR) method. We validate our scheme in four different configurations. The results demonstrate that our scheme can accurately reproduce the system properties, such as velocity, density and meniscus shapes of a full system with numerical simulations of a subsystem. Using a symmetric boundary condition for one half of the system, we demonstrate about 50% computation time saving in both DPD and MDPD. This approach for symmetric boundary treatment can be also applied to other coarse-grained particle methods such as Brownian and Langevin Dynamics to significantly reduce computation time.
Schiffter, Heiko; Lee, Geoffrey
2007-09-01
The suitability of a single droplet drying acoustic levitator as a model for the spray drying of aqueous, pharmaceutically-relevant solutes used to produce protein-loaded particles has been examined. The acoustic levitator was initially evaluated by measuring the drying rates of droplets of pure water in dependence of drying-air temperature and flow rate. The measured drying rates were higher than those predicted by boundary layer theory because of the effects of primary acoustic streaming. Sherwood numbers of 2.6, 3.6, and 4.4 at drying-air temperatures of 25 degrees C, 40 degrees C, and 60 degrees C were determined, respectively. Acoustic levitation theory could predict the measured drying rates and Sherwood numbers only when a forced-convection drying-air stream was used to neuralize the retarding effect of secondary acoustic streaming on evaporation rate. At still higher drying-air flow rates, the Ranz-Marshall correlation accurately predicts Sherwood number, provided a stable droplet position in the standing acoustic wave is maintained. The measured Sherwood numbers and droplet Reynolds numbers show that experiments performed in the levitator in still air are taking place effectively under conditions of substantial forced convection. The similitude of these values to those occurring in spray dryers is fortuitous for the suitability of the acoustic levitator as a droplet evaporation model for spray drying. PMID:17582811
NASA Astrophysics Data System (ADS)
Erhard, Klaus; Potthast, Roland
2003-10-01
We employ the point source method (PSM) for the reconstruction of some field u on parts of a domain Omega from the Cauchy data for the field on the boundary partialOmega of the domain. Then, the boundary condition for a perfectly conducting inclusion or a sound-soft object in Omega can be used to find the location and shape of the inhomogeneity. The results show that we can detect perfectly conducting inclusions in impedance tomography from the voltages for one injected current. For acoustic scattering a sound-soft object is found from the knowledge of one (total) field and its normal derivative on partialOmega. The work redesigns the PSM, which was first proposed in the framework of inverse scattering, to solve inverse boundary value problems. Numerical examples are provided for impedance tomography and the sound-soft acoustic boundary value problem.
An immersed boundary computational model for acoustic scattering problems with complex geometries.
Sun, Xiaofeng; Jiang, Yongsong; Liang, An; Jing, Xiaodong
2012-11-01
An immersed boundary computational model is presented in order to deal with the acoustic scattering problem by complex geometries, in which the wall boundary condition is treated as a direct body force determined by satisfying the non-penetrating boundary condition. Two distinct discretized grids are used to discrete the fluid domain and immersed boundary, respectively. The immersed boundaries are represented by Lagrangian points and the direct body force determined on these points is applied on the neighboring Eulerian points. The coupling between the Lagrangian points and Euler points is linked by a discrete delta function. The linearized Euler equations are spatially discretized with a fourth-order dispersion-relation-preserving scheme and temporal integrated with a low-dissipation and low-dispersion Runge-Kutta scheme. A perfectly matched layer technique is applied to absorb out-going waves and in-going waves in the immersed bodies. Several benchmark problems for computational aeroacoustic solvers are performed to validate the present method. PMID:23145603
Integrable open boundary conditions for XXC models
NASA Astrophysics Data System (ADS)
Arnaudon, Daniel; Maassarani, Ziad
1998-10-01
The XXC models are multistate generalizations of the well known spin-½ XXZ model. These integrable models share a common underlying su(2) structure. We derive integrable open boundary conditions for the hierarchy of conserved quantities of the XXC models . Due to lack of crossing unitarity of the R-matrix, we develop specific methods to prove integrability. The symmetry of the spectrum is determined.
Magnetohydrodynamic boundary conditions for global models
NASA Technical Reports Server (NTRS)
Forbes, T. G.
1988-01-01
Boundary conditions in the ionosphere and the upstream solar wind are important in determining the dynamics of global magnetohydrodynamic models of the magnetosphere. It is generally recognized that the orientation of the magnetic field in the upstream solar wind strongly modulates the rate of energy input into the magnetosphere by magnetic reconnection. However, other aspects of the upstream boundary conditions may determine whether the reconnection occurs in a patchy manner, as in flux transfer events, or in a global manner, as in the Paschmann et al. (1979) events. Ionospheric boundary conditions should also affect the reconnection process. For example, ionospheric line-tying can cause x-line motion in the outer magnetosphere. If it is assumed that auroras occur on field lines mapping to x-lines, then auroral motions are different than the local convective motion of the plasma in which they occur. Global magnetohydrodynamic models which incorporate both magnetospheric reconnection and ionospheric convection could be used to investigate the effect of reconnection and convection upon dayside and nightside auroral motions during the course of a magnetic substorm.
Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)
NASA Technical Reports Server (NTRS)
Balakumar, P.
2015-01-01
Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.
Beyond the no-slip boundary condition.
Brenner, Howard
2011-10-01
This paper offers a simple macroscopic approach to the question of the slip boundary condition to be imposed upon the tangential component of the fluid velocity at a solid boundary. Plausible reasons are advanced for believing that it is the energy equation rather than the momentum equation that determines the correct fluid-mechanical boundary condition. The scheme resulting therefrom furnishes the following general, near-equilibrium linear constitutive relation for the slip velocity of mass along a relatively flat wall bounding a single-component gas or liquid: (v(m))(slip)=-α∂lnρ/∂s|(wall), where α and ρ are, respectively, the fluid's thermometric diffusivity and mass density, while the length δs refers to distance measured along the wall in the direction in which the slip or creep occurs. This constitutive relation is shown to agree with experimental data for gases and liquids undergoing thermal creep or pressure-driven viscous creep at solid surfaces. PMID:22181263
Failure of the Ingard-Myers boundary condition for a lined duct: an experimental investigation.
Renou, Ygaäl; Aurégan, Yves
2011-07-01
This paper deals with experimental investigation of the lined wall boundary condition in flow duct applications such as aircraft engine systems or automobile mufflers. A first experiment, based on a microphone array located in the liner test section, is carried out in order to extract the axial wavenumbers with the help of an "high-accurate" singular value decomposition Prony-like algorithm. The experimental axial wavenumbers are then used to provide the lined wall impedance for both downstream and upstream acoustic propagation by means of a straightforward impedance education method involving the classical Ingard-Myers boundary condition. The results show that the Ingard-Myers boundary condition fails to predict with accuracy the acoustic behavior in a lined duct with flow. An effective lined wall impedance, valid whatever the direction of acoustic propagation, can be suitably found from experimental axial wavenumbers and a modified version of the Ingard-Myers condition with the form inspired from a previous theoretical study [Aurégan et al., J. Acoust. Soc. Am. 109, 59-64 (2001)]. In a second experiment, the scattering matrix of the liner test section is measured and is then compared to the predicted scattering matrix using the multimodal approach and the lined wall impedances previously deduced. A large discrepancy is observed between the measured and the predicted scattering coefficients that confirms the poor accuracy provided from the Ingard-Myers boundary condition widely used in lined duct applications. PMID:21786877
Open Boundary Conditions for Dissipative MHD
Meier, E T
2011-11-10
In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.
Some observations on boundary conditions for numerical conservation laws
NASA Technical Reports Server (NTRS)
Kamowitz, David
1988-01-01
Four choices of outflow boundary conditions are considered for numerical conservation laws. All four methods are stable for linear problems, for which examples are presented where either a boundary layer forms or the numerical scheme, together with the boundary condition, is unstable due to the formation of a reflected shock. A simple heuristic argument is presented for determining the suitability of the boundary condition.
Compressible turbulent channel flow with impedance boundary conditions
NASA Astrophysics Data System (ADS)
Scalo, Carlo; Bodart, Julien; Lele, Sanjiva
2014-11-01
We have performed large-eddy simulations of compressible turbulent channel flow at one bulk Reynolds number, Reb = 6900, for bulk Mach numbers Mb = 0.05, 0.2, 0.5, with linear acoustic impedance boundary conditions (IBCs). The IBCs are formulated in the time domain following Fung and Ju (2004) and coupled with a Navier-Stokes solver. The impedance model adopted is a three-parameter Helmholtz oscillator with resonant frequency tuned to the outer layer eddies. The IBC's resistance, R, has been varied in the range, R = 0.01, 0.10, 1.00. Tuned IBCs result in a noticeable drag increase for sufficiently high Mb and/or low R, exceeding 300% for Mb = 0.5 and R = 0.01, and thus represents a promising passive control technique for delaying boundary layer separation and/or enhancing wall heat transfer. Alterations to the turbulent flow structure are confined to the first 15% of the boundary layer thickness where the classical buffer-layer coherent vortical structures are replaced by an array of Kelvin-Helmholtz-like rollers. The non-zero asymptotic value of the Reynolds shear stress gradient at the wall results in the disappearance of the viscous sublayer and very early departure of the mean velocity profiles from the law of the wall.
Boundary conditions and consistency of effective theories
Polonyi, Janos; Siwek, Alicja
2010-04-15
Effective theories are nonlocal at the scale of the eliminated heavy particles modes. The gradient expansion, which represents such nonlocality, must be truncated to have treatable models. This step leads to the proliferation of the degrees of freedom, which renders the identification of the states of the effective theory nontrivial. Furthermore, it generates nondefinite metric in the Fock space, which in turn endangers the unitarity of the effective theory. It is shown that imposing a generalized Kubo-Martin-Schwinger boundary conditions for the new degrees of freedom leads to reflection positivity for a wide class of Euclidean effective theories, thereby these lead to acceptable theories when extended to real-time.
Compressible turbulent channel flow with impedance boundary conditions
NASA Astrophysics Data System (ADS)
Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.
2015-03-01
We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with
A New Boundary Condition for Computer Simulations of Interfacial Systems
Wong, Ka-Yiu; Pettitt, Bernard M.; Montgomery, B.
2000-08-18
A new boundary condition for computer simulations of interfacial systems is presented. The simulation box used in this boundary condition is the asymmetric unit of space group Pb, and it contains only one interface. Compared to the simulation box using common periodic boundary conditions which contains two interfaces, the number of particles in the simulation is reduced by half. This boundary condition was tested against common periodic boundary conditions in molecular dynamic simulations of liquid water interacting with hydroxylated silica surfaces. It yielded results essentially identical to periodic boundary condition and consumed less CPU time for comparable statistics.
A new boundary condition for computer simulations of interfacial systems
NASA Astrophysics Data System (ADS)
Wong, Ka-Yiu; Pettitt, B. Montgomery
2000-08-01
A new boundary condition for computer simulations of interfacial systems is presented. The simulation box used in this boundary condition is the asymmetric unit of space group Pb, and it contains only one interface. Compared to the simulation box using common periodic boundary conditions which contains two interfaces, the number of particles in the simulation is reduced by half. This boundary condition was tested against common periodic boundary conditions in molecular dynamic simulations of liquid water interacting with hydroxylated silica surfaces. It yielded results essentially identical to periodic boundary condition and consumed less CPU time for comparable statistics.
Interpreting Underwater Acoustic Images of the Upper Ocean Boundary Layer
ERIC Educational Resources Information Center
Ulloa, Marco J.
2007-01-01
A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of…
NASA Astrophysics Data System (ADS)
Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro
2012-05-01
Direct finite difference fluid simulation of acoustic streaming on the fine-meshed three-dimensiona model by graphics processing unit (GPU)-oriented calculation array is discussed. Airflows due to the acoustic traveling wave are induced when an intense sound field is generated in a gap between a bending transducer and a reflector. Calculation results showed good agreement with the measurements in the pressure distribution. In addition to that, several flow-vortices were observed near the boundary of the reflector and the transducer, which have been often discussed in acoustic tube near the boundary, and have never been observed in the calculation in the ultrasonic air pump of this type.
Slip boundary conditions over curved surfaces.
Guo, Lin; Chen, Shiyi; Robbins, Mark O
2016-01-01
Molecular dynamics simulations are used to investigate the influence of surface curvature on the slip boundary condition for a simple fluid. The slip length is measured for flows in planar and cylindrical geometries with a range of wall-fluid interactions. As wall curvature increases, the slip length decreases dramatically for closely packed surfaces and increases for sparse ones. The magnitude of the changes depends on the crystallographic orientation and differs for flow along and perpendicular to the direction of curvature. These different patterns of behavior are related to the curvature-induced variation in the ratio of the spacing between fluid atoms to the spacing between minima in the potential from the solid surface. The results are consistent with a microscopic theory for the viscous friction between fluid and wall that expresses the slip length in terms of the lateral response of the fluid to the wall potential and the characteristic decay time of this response. PMID:26871153
Slip boundary conditions over curved surfaces
NASA Astrophysics Data System (ADS)
Guo, Lin; Chen, Shiyi; Robbins, Mark O.
2016-01-01
Molecular dynamics simulations are used to investigate the influence of surface curvature on the slip boundary condition for a simple fluid. The slip length is measured for flows in planar and cylindrical geometries with a range of wall-fluid interactions. As wall curvature increases, the slip length decreases dramatically for closely packed surfaces and increases for sparse ones. The magnitude of the changes depends on the crystallographic orientation and differs for flow along and perpendicular to the direction of curvature. These different patterns of behavior are related to the curvature-induced variation in the ratio of the spacing between fluid atoms to the spacing between minima in the potential from the solid surface. The results are consistent with a microscopic theory for the viscous friction between fluid and wall that expresses the slip length in terms of the lateral response of the fluid to the wall potential and the characteristic decay time of this response.
Towards Arbitrary Accuracy Inviscid Surface Boundary Conditions
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Hixon, Ray
2002-01-01
Inviscid nonlinear surface boundary conditions are currently limited to third order accuracy in time for non-moving surfaces and actually reduce to first order in time when the surfaces move. For steady-state calculations it may be possible to achieve higher accuracy in space, but high accuracy in time is required for efficient simulation of multiscale unsteady phenomena. A surprisingly simple technique is shown here that can be used to correct the normal pressure derivatives of the flow at a surface on a Cartesian grid so that arbitrarily high order time accuracy is achieved in idealized cases. This work demonstrates that nonlinear high order time accuracy at a solid surface is possible and desirable, but it also shows that the current practice of only correcting the pressure is inadequate.
Strength function under the absorbing boundary condition
NASA Astrophysics Data System (ADS)
Iwasaki, M.; Otani, R.; Ito, M.
2014-12-01
The strength function of the linear response by the external field is calculated in the formalism of the absorbing boundary condition (ABC). The dipole excitation of a schematic two-body system is treated in the present study. The extended completeness relation, which is assumed on the analogy of the formulation in the complex scaling method (CSM), is applied to the calculation of the strength function. The calculation of the strength function is successful in the present formalism and hence, the extended completeness relation seems to work well in the ABC formalism. The contributions from the resonance and the non-resonant continuum is also analyzed according to the decomposition of the energy levels in the extended completeness relation.
Diffraction for a Neumann boundary condition
Lafitte, O.
1997-11-01
Let 0 be a bounded open set in R{sup n} and P be a constant coefficient operator of order 2 in R{sup n} x R{sub t} such that (P, {Omega}{sup c}) admits a strictly diffractive point. We calculate in this paper the principal symbol of the operator K transforming {partial_derivative}{sub n}u into u/{sub {partial_derivative}{Omega}} for a solution u of Pu = 0 in the neighborhood of a strictly diffractive point {rho}{sub 0} for (P, {Omega}{sup c}). We deduce from this calculation the principal symbol of the wave diffracted by a strictly convex analytic obstacle with a Neumann boundary condition. This result is used to calculate the electromagnetic wave diffracted by a perfectly conducting body. 7 refs., 2 figs.
Boundary regularized integral equation formulation of the Helmholtz equation in acoustics.
Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y C
2015-01-01
A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals. PMID:26064591
Conformal counterterms and boundary conditions for open strings
de Beer, W.
1988-03-15
It is explained how Neumann boundary conditions still lead to the mixed boundary conditions required to calculate the functional determinants in the Polyakov model. Neumann boundary conditions on the conformal factor are obtained, thereby negating the need for a finite counterterm in the quantum bare action.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Pates, Carl S., III
1994-01-01
A coupled boundary element (BEM)-finite element (FEM) approach is presented to accurately model structure-acoustic interaction systems. The boundary element method is first applied to interior, two and three-dimensional acoustic domains with complex geometry configurations. Boundary element results are very accurate when compared with limited exact solutions. Structure-interaction problems are then analyzed with the coupled FEM-BEM method, where the finite element method models the structure and the boundary element method models the interior acoustic domain. The coupled analysis is compared with exact and experimental results for a simplistic model. Composite panels are analyzed and compared with isotropic results. The coupled method is then extended for random excitation. Random excitation results are compared with uncoupled results for isotropic and composite panels.
On the nonlinear Schrodinger equation with nonzero boundary conditions
NASA Astrophysics Data System (ADS)
Fagerstrom, Emily
This thesis is concerned with the study of the nonlinear Schrodinger (NLS) equation, which is important both from a physical and a mathematical point of view. In physics, it is a universal model for the evolutions of weakly nonlinear dispersive wave trains. As such it appears in many physical contexts, such as optics, acoustics, plasmas, biology, etc. Mathematically, it is a completely integrable, infinite-dimensional Hamiltonian system, and possesses a surprisingly rich structure. This equation has been extensively studied in the last 50 years, but many important questions are still open. In particular, this thesis contains the following original contributions: NLS with real spectral singularities. First, the focusing NLS equation is considered with decaying initial conditions. This situation has been studied extensively before, but the assumption is almost always made that the scattering coefficients have no real zeros, and thus the scattering data had no poles on the real axis. However, it is easy to produce example potentials with this behavior. For example, by modifying parameters in Satsuma-Yajima's sech potential, or by choosing a "box" potential with a particular area, one can obtain corresponding scattering entries with real zeros. The inverse scattering transform can be implemented by formulating the modified Jost eigenfunctions and the scattering data as a Riemann Hilbert problem. But it can also be formulated by using integral kernels. Doing so produces the Gelf'and-Levitan-Marchenko (GLM) equations. Solving these integral equations requires integrating an expression containing the reflection coefficient over the real axis. Under the usual assumption, the reflection coefficient has no poles on the real axis. In general, the integration contour cannot be deformed to avoid poles, because the reflection coefficient may not admit analytic extension off the real axis. Here it is shown that the GLM equations may be (uniquely) solved using a principal value
Homogenized boundary conditions and resonance effects in Faraday cages
Hewitt, I. J.
2016-01-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775
Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions
NASA Technical Reports Server (NTRS)
Hodge, Steve L.; Zorumski, William E.; Watson, Willie R.
1995-01-01
The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary condition. The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure of the matrix makes direct solution techniques impractical; as a result, a nonstationary iterative technique is used for its solution. The theory behind the nonstationary technique is reviewed, and numerical results are presented for radiation from both a point source and a planar acoustic source. The solutions with the nonlocal boundary conditions are invariant to the location of the computational boundary, and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus provide a means of minimizing the size of three-dimensional computational domains.
NASA Astrophysics Data System (ADS)
Wang, Y.; Shu, C.; Yang, L. M.
2016-02-01
A boundary condition-enforced-immersed boundary-lattice Boltzmann flux solver is proposed in this work for effective simulation of thermal flows with Neumann boundary conditions. In this method, two auxiliary layers of Lagrangian points are introduced and respectively placed inside and outside of the solid body, on which the temperature corrections (related to the heat source) are set as unknowns. To effectively consider the fluid-boundary interaction, these unknowns are expressed as algebraic summations of the temperature correction on Eulerian points, which are in turn obtained from biased distributions of unknown temperature corrections on the immersed boundary. By enforcing the temperature gradient at the solid boundary being equal to that approximated by the corrected temperature field, a set of algebraic equations are formed and solved to obtain all the unknowns simultaneously. They are then distributed biasedly to the inner region of the auxiliary layer so that the diffusion from the smooth delta function can be reduced substantially. In addition, the solutions of the flow and temperature fields are obtained by the thermal lattice Boltzmann flux solver with the second order of accuracy. The proposed method is well validated through its applications to simulate several benchmarks of natural, forced and mixed convection problems. It has been demonstrated that the present solver has about 1.724 order of accuracy and the error between the present result and theoretical value for the temperature gradient on the solid surface is in the order of 10-13, which indicates that the proposed method is able to satisfy the Neumann boundary condition accurately.
Improvement in separation characteristics of protein precipitates by acoustic conditioning.
Hoare, M; Titchener, N J; Foster, P R
1987-01-01
The effect of acoustic conditioning on the particle size distribution of isoelectric and calcium-ion-precipitated soya protein has been examined in low-residence-time chambers. In a previous study a beat frequency of 5 Hz obtained using a dual-source system of opposing vibrators was determined as giving optimal improvement in particle-settling characteristics for isoelectric soya protein precipitate. In this study the effect of amplitude of vibration, a measure of acoustic power input, and residence time of acoustic conditioning has been examined. Acoustic power input changed the flow pattern in the conditioning chamber from laminar streamline flow to a well-mixed, turbulent pattern. Such a mixing effect promoted the rapid aggregation of fine particles, a process that was modeled on the basis of orthokinetically controlled collisions. The rate of removal of fine particles due to acoustic conditioning was shown to be proportional to a mixing effect that was related to the acoustic power dissipated per unit volume. The consequences of fine-particle aggregation on the centrifugal recovery of the precipitate are discussed. PMID:18561125
Room Acoustic Conditions of Performers in AN Old Opera House
NASA Astrophysics Data System (ADS)
IANNACE, GINO; IANNIELLO, CARMINE; MAFFEI, LUIGI; ROMANO, ROSARIO
2000-04-01
Proposed objective criteria related to the acoustic conditions for instrumentalists and singers have not received a sufficiently wide consent yet. In spite of this situation, it is the opinion of the authors that the measurement of existing criteria is useful for analysis and comparison. This paper reports the results of various acoustic measurements carried out in the Teatro di San Carlo, Naples-Italy, with the aim of obtaining objective information about its acoustics for performers. A first set of measurements was carried out when the theater was fitted for a symphonic concert and a second one when it was fitted for an opera performance.
Artificial Boundary Conditions Based on the Difference Potentials Method
NASA Technical Reports Server (NTRS)
Tsynkov, Semyon V.
1996-01-01
While numerically solving a problem initially formulated on an unbounded domain, one typically truncates this domain, which necessitates setting the artificial boundary conditions (ABC's) at the newly formed external boundary. The issue of setting the ABC's appears to be most significant in many areas of scientific computing, for example, in problems originating from acoustics, electrodynamics, solid mechanics, and fluid dynamics. In particular, in computational fluid dynamics (where external problems present a wide class of practically important formulations) the proper treatment of external boundaries may have a profound impact on the overall quality and performance of numerical algorithms. Most of the currently used techniques for setting the ABC's can basically be classified into two groups. The methods from the first group (global ABC's) usually provide high accuracy and robustness of the numerical procedure but often appear to be fairly cumbersome and (computationally) expensive. The methods from the second group (local ABC's) are, as a rule, algorithmically simple, numerically cheap, and geometrically universal; however, they usually lack accuracy of computations. In this paper we first present a survey and provide a comparative assessment of different existing methods for constructing the ABC's. Then, we describe a relatively new ABC's technique of ours and review the corresponding results. This new technique, in our opinion, is currently one of the most promising in the field. It enables one to construct such ABC's that combine the advantages relevant to the two aforementioned classes of existing methods. Our approach is based on application of the difference potentials method attributable to V. S. Ryaben'kii. This approach allows us to obtain highly accurate ABC's in the form of certain (nonlocal) boundary operator equations. The operators involved are analogous to the pseudodifferential boundary projections first introduced by A. P. Calderon and then
Generalized Flows Satisfying Spatial Boundary Conditions
NASA Astrophysics Data System (ADS)
Buffoni, B.
2012-09-01
In a region D in {{R}^2} or {{R}^3}, the classical Euler equation for the regular motion of an inviscid and incompressible fluid of constant density is given by partial_t v+(v\\cdot nabla_x)v=-nabla_x p, div_x v=0, where v( t, x) is the velocity of the particle located at {xin D} at time t and {p(t,x)in{R}} is the pressure. Solutions v and p to the Euler equation can be obtained by solving \\{begin{array}{l} nabla_x\\{partial_tφ(t,x,a) + p(t,x)+(1/2)|nabla_xφ(t,x,a)|^2 \\}=0 at a=kappa(t,x),\\ v(t,x)=nabla_x φ(t,x,a) at a=kappa(t,x), \\ partial_tkappa(t,x)+(v\\cdotnabla_x)kappa(t,x)=0, \\ div_x v(t,x)=0, . quadquadquadquadquad(0.1) where φ:{R}× D× {R}^l→{R} and kappa:{R}× D → {R}^l are additional unknown mappings ( l ≥ 1 is prescribed). The third equation in the system says that {kappain{R}^l} is convected by the flow and the second one that {φ} can be interpreted as some kind of velocity potential. However vorticity is not precluded thanks to the dependence on a. With the additional condition κ(0, x) = x on D (and thus l = 2 or 3), this formulation was developed by Brenier (Commun Pure Appl Math 52:411-452, 1999) in his Eulerian-Lagrangian variational approach to the Euler equation. He considered generalized flows that do not cross {partial D} and that carry each "particle" at time t = 0 at a prescribed location at time t = T > 0, that is, κ( T, x) is prescribed in D for all {xin D}. We are concerned with flows that are periodic in time and with prescribed flux through each point of the boundary {partial D} of the bounded region D (a two- or three-dimensional straight pipe). More precisely, the boundary condition is on the flux through {partial D} of particles labelled by each value of κ at each point of {partial D}. One of the main novelties is the introduction of a prescribed "generalized" Bernoulli's function {H:{R}^l→ {R}}, namely, we add to (0.1) the requirement that partial_tφ(t,x,a) +p(t,x)+(1/2)|nabla_xφ(t,x,a)|^2=H(a) at a
A Smoothed Boundary Condition for Reducing Nonphysical Field Effects
NASA Technical Reports Server (NTRS)
Smith, Arlynn W.; Parks, Joseph W., Jr.; Haralson, Joe N., II; Brennan, Kevin F.
1997-01-01
In this paper, we examine the problem associated with abruptly mixing boundary conditions in the context of a two-dimensional semiconductor device simulator. Explicitly, this paper addresses the transition between an ohmic-type Dirichlet condition and a passivated Neumann boundary. In the traditional setting, the details or the transition between the two boundary types are not addressed and an abrupt transition is assumed. Subsequently, the calculated observables (most notably the potential) exhibit discontinuous derivatives near the surface at the point where the boundary type switches. This paper proposes an alternative condition which models the progression between the two boundary types through the use of a finite length, smoothed boundary whereby the numerical discontinuities are eliminated. The physical and mathematical basis for this smoothed boundary condition is discussed and examples of the technique's implementation given. It is found that the proposed boundary condition is numerically efficient and can be implemented in pre-existing device simulators with relative ease.
Long-time behaviour of absorbing boundary conditions
NASA Technical Reports Server (NTRS)
Engquist, B.; Halpern, L.
1990-01-01
A new class of computational far-field boundary conditions for hyperbolic partial differential equations was recently introduced by the authors. These boundary conditions combine properties of absorbing conditions for transient solutions and properties of far-field conditions for steady states. This paper analyses the properties of the wave equation coupled with these new boundary conditions: well-posedness, dissipativity and convergence in time.
NASA Astrophysics Data System (ADS)
Deryabin, M. S.; Kasyanov, D. A.; Kurin, V. V.; Garasyov, M. A.
2016-05-01
We show that a significant energy redistribution occurs in the spectrum of reflected nonlinear waves, when an intense acoustic beam is reflected from an acoustically soft boundary, which manifests itself at short wave distances from a reflecting boundary. This effect leads to the appearance of extrema in the distributions of the amplitude and intensity of the field of the reflected acoustic beam near the reflecting boundary. The results of physical experiments are confirmed by numerical modeling of the process of transformation of nonlinear waves reflected from an acoustically soft boundary. Numerical modeling was performed by means of the Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation.
NASA Astrophysics Data System (ADS)
Deryabin, M. S.; Kasyanov, D. A.; Kurin, V. V.; Garasyov, M. A.
2016-06-01
We show that a significant energy redistribution occurs in the spectrum of reflected nonlinear waves, when an intense acoustic beam is reflected from an acoustically soft boundary, which manifests itself at short wave distances from a reflecting boundary. This effect leads to the appearance of extrema in the distributions of the amplitude and intensity of the field of the reflected acoustic beam near the reflecting boundary. The results of physical experiments are confirmed by numerical modeling of the process of transformation of nonlinear waves reflected from an acoustically soft boundary. Numerical modeling was performed by means of the Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation.
NASA Astrophysics Data System (ADS)
Bennewitz, John William
This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The
Eutectic growth under acoustic levitation conditions
NASA Astrophysics Data System (ADS)
Xie, W. J.; Cao, C. D.; Lü, Y. J.; Wei, B.
2002-12-01
Samples of Pb-Sn eutectic alloy with a high density of 8.5×103 kg/m3 are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of ``lamellas-broken lamellas-dendrites.'' This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface.
Eutectic growth under acoustic levitation conditions.
Xie, W J; Cao, C D; Lü, Y J; Wei, B
2002-12-01
Samples of Pb-Sn eutectic alloy with a high density of 8.5 x 10(3) kg/m(3) are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of "lamellas-broken lamellas-dendrites." This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface. PMID:12513291
Absorbing boundary conditions for second-order hyperbolic equations
NASA Technical Reports Server (NTRS)
Jiang, Hong; Wong, Yau Shu
1989-01-01
A uniform approach to construct absorbing artificial boundary conditions for second-order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a pseudodifferential operator that annihilates travelling waves. It is obtained through the dispersion relation of the differential equation by requiring that the initial-boundary value problem admits the wave solutions travelling in one direction only. Local approximation of this global boundary condition yields an nth-order differential operator. It is shown that the best approximations must be in the canonical forms which can be factorized into first-order operators. These boundary conditions are perfectly absorbing for wave packets propagating at certain group velocities. A hierarchy of absorbing boundary conditions is derived for transonic small perturbation equations of unsteady flows. These examples illustrate that the absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the numerical experiments.
Absorbing boundary conditions for second-order hyperbolic equations
NASA Technical Reports Server (NTRS)
Jiang, Hong; Wong, Yau Shu
1990-01-01
A uniform approach to construct absorbing artificial boundary conditions for second-order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a pseudodifferential operator that annihilates travelling waves. It is obtained through the dispersion relation of the differential equation by requiring that the initial-boundary value problem admits the wave solutions travelling in one direction only. Local approximation of this global boundary condition yields an nth-order differential operator. It is shown that the best approximations must be in the canonical forms which can be factorized into first-order operators. These boundary conditions are perfectly absorbing for wave packets propagating at certain group velocities. A hierarchy of absorbing boundary conditions is derived for transonic small perturbation equations of unsteady flows. These examples illustrate that the absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the numerical experiments.
Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances
NASA Technical Reports Server (NTRS)
Balakumar, P.
2013-01-01
Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.
Lateral boundary conditions for the Klein-Gordon-Fock equation
NASA Astrophysics Data System (ADS)
Tulenov, Kanat S.; Dauitbek, Dostilek
2016-08-01
In this paper we consider an initial-boundary value problem for the Klein-Gordon-Fock equation. We prove the uniqueness of the solution and find lateral boundary conditions for the Klein-Gordon-Fock equation.
Effective surface and boundary conditions for heterogeneous surfaces with mixed boundary conditions
NASA Astrophysics Data System (ADS)
Guo, Jianwei; Veran-Tissoires, Stéphanie; Quintard, Michel
2016-01-01
To deal with multi-scale problems involving transport from a heterogeneous and rough surface characterized by a mixed boundary condition, an effective surface theory is developed, which replaces the original surface by a homogeneous and smooth surface with specific boundary conditions. A typical example corresponds to a laminar flow over a soluble salt medium which contains insoluble material. To develop the concept of effective surface, a multi-domain decomposition approach is applied. In this framework, velocity and concentration at micro-scale are estimated with an asymptotic expansion of deviation terms with respect to macro-scale velocity and concentration fields. Closure problems for the deviations are obtained and used to define the effective surface position and the related boundary conditions. The evolution of some effective properties and the impact of surface geometry, Péclet, Schmidt and Damköhler numbers are investigated. Finally, comparisons are made between the numerical results obtained with the effective models and those from direct numerical simulations with the original rough surface, for two kinds of configurations.
Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows
NASA Technical Reports Server (NTRS)
Slater, John W.
2002-01-01
Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.
Acoustic Receptivity of Mach 4.5 Boundary Layer with Leading- Edge Bluntness
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.; Balakumar, Ponnampalam
2007-01-01
Boundary layer receptivity to two-dimensional slow and fast acoustic waves is investigated by solving Navier-Stokes equations for Mach 4.5 flow over a flat plate with a finite-thickness leading edge. Higher order spatial and temporal schemes are employed to obtain the solution whereby the flat-plate leading edge region is resolved by providing a sufficiently refined grid. The results show that the instability waves are generated in the leading edge region and that the boundary-layer is much more receptive to slow acoustic waves (by almost a factor of 20) as compared to the fast waves. Hence, this leading-edge receptivity mechanism is expected to be more relevant in the transition process for high Mach number flows where second mode instability is dominant. Computations are performed to investigate the effect of leading-edge thickness and it is found that bluntness tends to stabilize the boundary layer. Furthermore, the relative significance of fast acoustic waves is enhanced in the presence of bluntness. The effect of acoustic wave incidence angle is also studied and it is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases by more than a factor of 4 when the incidence angle is increased from 0 to 45 deg. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle.
Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam
2012-01-01
Boundary-layer receptivity and stability of Mach 6 flow over smooth and rough 7 half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances are considered. The effects of two-dimensional isolated and distributed roughness on the receptivity and stability are also simulated. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. An isolated two-dimensional roughness element of height h/delta =1/4 did not produce any difference in the receptivity or in the stability of the boundary layer. Distributed roughness elements produced a small decrease in the receptivity coefficient and also stabilized the boundary layer by small amounts.
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Webb, Jay C.
1994-01-01
In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The
Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations
NASA Astrophysics Data System (ADS)
Ehrlacher, V.; Ortner, C.; Shapeev, A. V.
2016-06-01
Numerical simulations of crystal defects are necessarily restricted to finite computational domains, supplying artificial boundary conditions that emulate the effect of embedding the defect in an effectively infinite crystalline environment. This work develops a rigorous framework within which the accuracy of different types of boundary conditions can be precisely assessed. We formulate the equilibration of crystal defects as variational problems in a discrete energy space and establish qualitatively sharp regularity estimates for minimisers. Using this foundation we then present rigorous error estimates for (i) a truncation method (Dirichlet boundary conditions), (ii) periodic boundary conditions, (iii) boundary conditions from linear elasticity, and (iv) boundary conditions from nonlinear elasticity. Numerical results confirm the sharpness of the analysis.
Najafi-Yazdi, A; Mongeau, L
2012-09-15
The Lattice Boltzmann Method (LBM) is a well established computational tool for fluid flow simulations. This method has been recently utilized for low Mach number computational aeroacoustics. Robust and nonreflective boundary conditions, similar to those used in Navier-Stokes solvers, are needed for LBM-based aeroacoustics simulations. The goal of the present study was to develop an absorbing boundary condition based on the perfectly matched layer (PML) concept for LBM. The derivation of formulations for both two and three dimensional problems are presented. The macroscopic behavior of the new formulation is discussed. The new formulation was tested using benchmark acoustic problems. The perfectly matched layer concept appears to be very well suited for LBM, and yielded very low acoustic reflection factor. PMID:23526050
Najafi-Yazdi, A.; Mongeau, L.
2012-01-01
The Lattice Boltzmann Method (LBM) is a well established computational tool for fluid flow simulations. This method has been recently utilized for low Mach number computational aeroacoustics. Robust and nonreflective boundary conditions, similar to those used in Navier-Stokes solvers, are needed for LBM-based aeroacoustics simulations. The goal of the present study was to develop an absorbing boundary condition based on the perfectly matched layer (PML) concept for LBM. The derivation of formulations for both two and three dimensional problems are presented. The macroscopic behavior of the new formulation is discussed. The new formulation was tested using benchmark acoustic problems. The perfectly matched layer concept appears to be very well suited for LBM, and yielded very low acoustic reflection factor. PMID:23526050
On the boundary conditions in slope stability analysis
NASA Astrophysics Data System (ADS)
Chugh, Ashok K.
2003-09-01
Boundary conditions can affect computed factor of safety results in two- and three-dimensional stability analyses of slopes. Commonly used boundary conditions in two- and three-dimensional slope stability analyses via limit-equilibrium and continuum-mechanics based solution procedures are described. A sample problem is included to illustrate the importance of boundary conditions in slope stability analyses. The sample problem is solved using two- and three-dimensional numerical models commonly used in engineering practice.
Absorbing boundary conditions for relativistic quantum mechanics equations
Antoine, X.; Sater, J.; Fillion-Gourdeau, F.; Bandrauk, A.D.
2014-11-15
This paper is devoted to the derivation of absorbing boundary conditions for the Klein–Gordon and Dirac equations modeling quantum and relativistic particles subject to classical electromagnetic fields. Microlocal analysis is the main ingredient in the derivation of these boundary conditions, which are obtained in the form of pseudo-differential equations. Basic numerical schemes are derived and analyzed to illustrate the accuracy of the derived boundary conditions.
Divergence Boundary Conditions for Vector Helmholtz Equations with Divergence Constraints
NASA Technical Reports Server (NTRS)
Kangro, Urve; Nicolaides, Roy
1997-01-01
The idea of replacing a divergence constraint by a divergence boundary condition is investigated. The connections between the formulations are considered in detail. It is shown that the most common methods of using divergence boundary conditions do not always work properly. Necessary and sufficient conditions for the equivalence of the formulations are given.
New boundary conditions for the c=-2 ghost system
Creutzig, Thomas; Quella, Thomas; Schomerus, Volker
2008-01-15
We investigate a novel boundary condition for the bc system with central charge c=-2. Its boundary state is constructed and tested in detail. It appears to give rise to the first example of a local logarithmic boundary sector within a bulk theory whose Virasoro zero modes are diagonalizable.
Simulation of boundary conditions for testing of masonry shear walls
NASA Astrophysics Data System (ADS)
Salmanpour, Amir Hosein; Mojsilović, Nebojša
2015-12-01
This paper is focused on the simulation of the fixed-ends boundary conditions in shear testing of unreinforced masonry walls. Two different approaches to simulate the fixed-ends boundary conditions, i.e. the static and kinematic approaches, are introduced, and their validity is discussed with the help of our own recent experimental data. It is shown that the static approach can result in unrealistic boundary conditions, and it is not a proper way to simulate the fixed-ends boundary conditions.
Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers
NASA Technical Reports Server (NTRS)
Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.
2016-01-01
Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.
Receptivity of Hypersonic Boundary Layers Due to Acoustic Disturbances over Blunt Cone
NASA Technical Reports Server (NTRS)
Kara, K.; Balakumar, P.; Kandil, O. A.
2007-01-01
The transition process induced by the interaction of acoustic disturbances in the free-stream with boundary layers over a 5-degree straight cone and a wedge with blunt tips is numerically investigated at a free-stream Mach number of 6.0. To compute the shock and the interaction of shock with the instability waves the Navier-Stokes equations are solved in axisymmetric coordinates. The governing equations are solved using the 5th -order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. After the mean flow field is computed, acoustic disturbances are introduced at the outer boundary of the computational domain and unsteady simulations are performed. Generation and evolution of instability waves and the receptivity of boundary layer to slow and fast acoustic waves are investigated. The mean flow data are compared with the experimental results. The results show that the instability waves are generated near the leading edge and the non-parallel effects are stronger near the nose region for the flow over the cone than that over a wedge. It is also found that the boundary layer is much more receptive to slow acoustic wave (by almost a factor of 67) as compared to the fast wave.
Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.
2013-06-10
The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification of three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.
Effect of Far-Field Boundary Conditions on Boundary-Layer Transition
NASA Technical Reports Server (NTRS)
Bertolotti, Fabio P.; Joslin, Ronald D.
1994-01-01
The effect of far-field boundary conditions on the evolution of a finite-amplitude two-dimensional wave in the Blasius boundary layer is assessed. With the use of the parabolized stability equations (PSE) theory for the numerical computations, either asymptotic, Dirichlet, Neumann or mixed boundary conditions are imposed at various distances from the wall. The results indicate that asymptotic and mixed boundary conditions yield the most accurate mean-flow distortion and unsteady instability modes in comparison with the results obtained with either Dirichlet or Neumann conditions.
Effect of Far-Field Boundary Conditions on Boundary-Layer Transition
NASA Technical Reports Server (NTRS)
Bertolotti, Fabio P.; Joslin, Ronald D.
1995-01-01
The effect of far-field boundary conditions on the evolution of a finite-amplitude two-dimensional wave in the Blasius boundary layer is assessed. With the use of the parabolized stability equations (PSE) theory for the numerical computations, either asymptotic, Dirichlet, Neumann or mixed boundary conditions are imposed at various distances from the wall. The results indicate that asymptotic and mixed boundary conditions yield the most accurate mean-flow distortion and unsteady instability modes in comparison with the results obtained with either Dirichlet or Neumann conditions.
The influence of the boundary conditions on longitudinal wave propagation in a viscoelastic medium.
Eskandari, Hani; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert
2009-07-01
In this paper, the effect of the boundary conditions and excitation dimensions on the speed of longitudinal waves in a medium is investigated. It is shown that with appropriate boundary conditions, a low-speed longitudinal wave can be generated in the medium which can be tracked by standard pulse-echo ultrasound motion tracking techniques. Three different cases of boundary conditions are explored in which the longitudinal wave speed in an incompressible material can be as high as the acoustic wave speed or as low as the shear wave speed. It is shown that the displacement spectrum can be used to estimate the wave speed in a viscoelastic medium. Numerical simulations with 3D viscoelastic finite element models and experiments on tissue-mimicking phantoms are performed to validate the theory. PMID:19502703
Numerical boundary condition procedure for the transonic axisymmetric inverse problem
NASA Technical Reports Server (NTRS)
Shankar, V.
1981-01-01
Two types of boundary condition procedures for the axisymmetric inverse problem are described. One is a Neumann type boundary condition (analogous to the analysis problem) and the other is a Dirichlet type boundary conditon, both requiring special treatments to make the inverse scheme numerically stable. The dummy point concept is utilized in implementing both. Results indicate the Dirichlet type inverse boundary condition is more robust and conceptually simpler to implement than the Neumann type procedure. A few results demonstrating the powerful capability of the newly developed inverse method that can handle both shocked as well as shockless body design are included.
Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities
NASA Astrophysics Data System (ADS)
Ward, G. P.; Lovelock, R. K.; Murray, A. R. J.; Hibbins, A. P.; Sambles, J. R.; Smith, J. D.
2015-07-01
We explore the slit-width dependence of the resonant transmission of sound in air through both a slit array formed of aluminum slats and a single open-ended slit cavity in an aluminum plate. Our experimental results accord well with Lord Rayleigh's theory concerning how thin viscous and thermal boundary layers at a slit's walls affect the acoustic wave across the whole slit cavity. By measuring accurately the frequencies of the Fabry-Perot-like cavity resonances, we find a significant 5% reduction in the effective speed of sound through the slits when an individual viscous boundary layer occupies only 5% of the total slit width. Importantly, this effect is true for any airborne slit cavity, with the reduction being achieved despite the slit width being on a far larger scale than an individual boundary layer's thickness. This work demonstrates that the recent prevalent loss-free treatment of narrow slit cavities within acoustic metamaterials is unrealistic.
NASA Astrophysics Data System (ADS)
Mimura, Masakazu; Tamazaki, Daisuke; Yamane, Takashi; Kando, Hajime
2012-07-01
In this paper, we describe a new boundary acoustic wave structure employing multilayered metal electrodes with a high-density metal and a low-density metal. By using this structure, such as Pt/Al/Pt, the electromechanical coupling coefficient (k2) and temperature coefficient of frequency (TCF) of the boundary acoustic wave can be changed. We theoretically studied the dependence of the energy distribution of the boundary wave on the position of the total electrode gravity center when the electrode layer structure is changed. It was experimentally confirmed that k2 and TCF can be changed simultaneously. By using this structure, we developed a novel filter with good electrical characteristics, and a very small variation of the filter characteristic with temperature (almost zero TCF) was successfully realized.
NASA Technical Reports Server (NTRS)
Schopper, M. R.
1982-01-01
The hot-wire anemometer amplitude data contained in the 1977 report of P. J. Shapiro entitled, ""The Influence of Sound Upon Laminar Boundary'' were reevaluated. Because the low-Reynolds number boundary layer disturbance data were misinterpreted, an effort was made to improve the corresponding disturbance growth rate curves. The data are modeled as the sum of upstream and downstream propagating acoustic waves and a wave representing the Tollmien-Schlichting (TS) wave. The amplitude and phase velocity of the latter wave were then adjusted so that the total signal reasonably matched the amplitude and phase angle hot-wire data along the plate laminar boundary layer. The revised rates show growth occurring further upstream than Shapiro found. It appears that the premature growth is due to the adverse pressure gradient created by the shape of the plate. Basic elements of sound propagation in ducts and the experimental and theoretical acoustic-stability literature are reviewed.
Finite difference time domain implementation of surface impedance boundary conditions
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.
1991-01-01
Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In the finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Here, two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a two dimensional demonstration. Extensions to three dimensions should be straightforward.
Periodic Boundary Conditions in the ALEGRA Finite Element Code
AIDUN,JOHN B.; ROBINSON,ALLEN C.; WEATHERBY,JOE R.
1999-11-01
This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given.
NASA Technical Reports Server (NTRS)
Choudhari, Meelan
1994-01-01
The Goldstein-Ruban theory has been extended within the framework of Zavol'skii et al. to study the acoustic receptivity of compressible boundary layers. We consider the receptivity produced in a region of localized, small-amplitude variation in the surface temperature and compare it with the receptivity that is induced through a similar mechanism by a variation in the suction velocity at the surface. It is found that the orientation of the acoustic wave can have a significant impact on the receptivity process, with the maximum receptivity at a given sound-pressure level being produced by upstream oriented acoustic waves. At sufficiently low Mach numbers, the variation of receptivity with the acoustic-wave orientation can be predicted analytically and is the same for both surface suction and surface heating. However, as a result of the acoustic refraction across the mean boundary layer, the above dependence can become rather complex and, also, dependent on the type of surface nonuniformity. The results also suggest that the receptivity caused by temperature nonuniformities may turn out to be more significant than that produced by the mean-flow perturbations associated with strip suction.
Accurate boundary conditions for exterior problems in gas dynamics
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Hariharan, S. I.
1988-01-01
The numerical solution of exterior problems is typically accomplished by introducing an artificial, far field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.
Accurate boundary conditions for exterior problems in gas dynamics
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Hariharan, S. I.
1988-01-01
The numerical solution of exterior problems is typically accomplished by introducing an artificial, far-field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far-field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.
A Advanced Boundary Element Formulation for Acoustic Radiation and Scattering in Three Dimensions.
NASA Astrophysics Data System (ADS)
Soenarko, Benjamin
A computational method is presented for determining acoustic fields produced by arbitrary shaped three-dimensional bodies. The formulation includes both radiation and scattering problems. In particular an isoparametric element formulation is introduced in which both the surface geometry and the acoustic variables on the surface of the body are represented by second order shape functions within the local coordinate system. A general result for the surface velocity potential and the exterior field is derived. This result is applicable to non-smooth bodies, i.e. it includes the case where the surface may have a non-unique normal (e.g. at the edge of a cube). Test cases are shown involving spherical, cylindrical and cubical geometry for both radiation and scattering problems. The present formulation is also extended to include half-space problems in which the effect of the reflected wave from an infinite plane is taken into account. By selecting an appropriate Green's function, the surface integral over the plane is nullified; thus all the computational efforts can be performed only on the radiating or scattering body at issue and thereby greatly simplify the solution. A special formulation involving axisymmetric bodies and boundary conditions is also presented. For this special case, the surface integrals are reduced to line integrals and an integral over the angle of revolution. The integration over the angle is performed partly analytically in terms of elliptic integrals and partly numerically using simple Gaussian quadrature formula. Since the rest of the integrals involve only line integrals along the generator of the body, any discretization scheme can be easily obtained to achieve a desired degree of accuracy in evaluating these integrals.
Daeva, S.G.; Setukha, A.V.
2015-03-10
A numerical method for solving a problem of diffraction of acoustic waves by system of solid and thin objects based on the reduction the problem to a boundary integral equation in which the integral is understood in the sense of finite Hadamard value is proposed. To solve this equation we applied piecewise constant approximations and collocation methods numerical scheme. The difference between the constructed scheme and earlier known is in obtaining approximate analytical expressions to appearing system of linear equations coefficients by separating the main part of the kernel integral operator. The proposed numerical scheme is tested on the solution of the model problem of diffraction of an acoustic wave by inelastic sphere.
NASA Technical Reports Server (NTRS)
Kachanov, Y. S.; Kozlov, V. V.; Levchenko, V. Y.
1985-01-01
A low-turbulence subsonic wind tunnel was used to study the influence of acoustic disturbances on the development of small sinusoidal oscillations (Tollmien-Schlichting waves) which constitute the initial phase of turbulent transition. It is found that acoustic waves propagating opposite to the flow generate vibrations of the model (plate) in the flow. Neither the plate vibrations nor the acoustic field itself have any appreciable influence on the stability of the laminar boundary layer. The influence of an acoustic field on laminar boundary layer disturbances is limited to the generation of Tollmien-Schlichting waves at the leading-edge of the plate.
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei
2013-04-01
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.
Breaking integrability at the boundary: the sine-Gordon model with Robin boundary conditions
NASA Astrophysics Data System (ADS)
Arthur, Robert; Dorey, Patrick; Parini, Robert
2016-04-01
We explore boundary scattering in the sine-Gordon model with a non-integrable family of Robin boundary conditions. The soliton content of the field after collision is analysed using a numerical implementation of the direct scattering problem associated with the inverse scattering method. We find that an antikink may be reflected into various combinations of an antikink, a kink, and one or more breathers, depending on the values of the initial antikink velocity and a parameter associated with the boundary condition. In addition we observe regions with an intricate resonance structure arising from the creation of an intermediate breather whose recollision with the boundary is highly dependent on the breather phase.
Boundary condition effects on maximum groundwater withdrawal in coastal aquifers.
Lu, Chunhui; Chen, Yiming; Luo, Jian
2012-01-01
Prevention of sea water intrusion in coastal aquifers subject to groundwater withdrawal requires optimization of well pumping rates to maximize the water supply while avoiding sea water intrusion. Boundary conditions and the aquifer domain size have significant influences on simulating flow and concentration fields and estimating maximum pumping rates. In this study, an analytical solution is derived based on the potential-flow theory for evaluating maximum groundwater pumping rates in a domain with a constant hydraulic head landward boundary. An empirical correction factor, which was introduced by Pool and Carrera (2011) to account for mixing in the case with a constant recharge rate boundary condition, is found also applicable for the case with a constant hydraulic head boundary condition, and therefore greatly improves the usefulness of the sharp-interface analytical solution. Comparing with the solution for a constant recharge rate boundary, we find that a constant hydraulic head boundary often yields larger estimations of the maximum pumping rate and when the domain size is five times greater than the distance between the well and the coastline, the effect of setting different landward boundary conditions becomes insignificant with a relative difference between two solutions less than 2.5%. These findings can serve as a preliminary guidance for conducting numerical simulations and designing tank-scale laboratory experiments for studying groundwater withdrawal problems in coastal aquifers with minimized boundary condition effects. PMID:22050244
Electrodynamic boundary conditions for planar arrays of thin magnetic elements
Lisenkov, Ivan; Tyberkevych, Vasyl; Slavin, Andrei; Nikitov, Sergei
2015-08-24
Approximate electrodynamic boundary conditions are derived for an array of dipolarly coupled magnetic elements. It is assumed that the elements' thickness is small compared to the wavelength of an electromagnetic wave in a free space. The boundary conditions relate electric and magnetic fields existing at the top and bottom sides of the array through the averaged uniform dynamic magnetization of the array. This dynamic magnetization is determined by the collective dynamic eigen-excitations (spin wave modes) of the array and is found using the external magnetic susceptibility tensor. The problem of oblique scattering of a plane electromagnetic wave on the array is considered to illustrate the use of the derived boundary conditions.
Improved Boundary Conditions for Cell-centered Difference Schemes
NASA Technical Reports Server (NTRS)
VanderWijngaart, Rob F.; Klopfer, Goetz H.; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
Cell-centered finite-volume (CCFV) schemes have certain attractive properties for the solution of the equations governing compressible fluid flow. Among others, they provide a natural vehicle for specifying flux conditions at the boundaries of the physical domain. Unfortunately, they lead to slow convergence for numerical programs utilizing them. In this report a method for investigating and improving the convergence of CCFV schemes is presented, which focuses on the effect of the numerical boundary conditions. The key to the method is the computation of the spectral radius of the iteration matrix of the entire demoralized system of equations, not just of the interior point scheme or the boundary conditions.
Large Eddy Simulation in a Channel with Exit Boundary Conditions
NASA Technical Reports Server (NTRS)
Cziesla, T.; Braun, H.; Biswas, G.; Mitra, N. K.
1996-01-01
The influence of the exit boundary conditions (vanishing first derivative of the velocity components and constant pressure) on the large eddy simulation of the fully developed turbulent channel flow has been investigated for equidistant and stretched grids at the channel exit. Results show that the chosen exit boundary conditions introduce some small disturbance which is mostly damped by the grid stretching. The difference between the fully developed turbulent channel flow obtained with LES with periodicity condition and the inlet and exit and the LES with fully developed flow at the inlet and the exit boundary condition is less than 10% for equidistant grids and less than 5% for the case grid stretching. The chosen boundary condition is of interest because it may be used in complex flows with backflow at exit.
Internal gravity-shear waves in the atmospheric boundary layer from acoustic remote sensing data
NASA Astrophysics Data System (ADS)
Lyulyukin, V. S.; Kallistratova, M. A.; Kouznetsov, R. D.; Kuznetsov, D. D.; Chunchuzov, I. P.; Chirokova, G. Yu.
2015-03-01
The year-round continuous remote sounding of the atmospheric boundary layer (ABL) by means of the Doppler acoustic radar (sodar) LATAN-3 has been performed at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, since 2008. A visual analysis of sodar echograms for four years revealed a large number of wavelike patterns in the intensity field of a scattered sound signal. Similar patterns were occasionally identified before in sodar, radar, and lidar sounding data. These patterns in the form of quasi-periodic inclined stripes, or cat's eyes, arise under stable stratification and significant vertical wind shears and result from the loss of the dynamic stability of the flow. In the foreign literature, these patterns, which we call internal gravity-shear waves, are often associated with Kelvin-Helmholtz waves. In the present paper, sodar echograms are classified according to the presence or absence of wavelike patterns, and a statistical analysis of the frequency of their occurrence by the year and season was performed. A relationship between the occurrence of the patterns and wind shear and between the wave length and amplitude was investigated. The criteria for the identification of gravity-shear waves, meteorological conditions of their excitation, and issues related to their observations were discussed.
Acoustic Receptivity of a Blasius Boundary Layer with 2-D and Oblique Surface Waviness
NASA Technical Reports Server (NTRS)
King, Rudolph A.; Breuer, Kenneth S.
2000-01-01
An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional (2-D) and oblique (3-D) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well defined wavenumber spectrum with fundamental wavenumber k (sub w). A planar downstream traveling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to k (sub ts) = k (sub w). The range of acoustic forcing levels, epsilon, and roughness heights, DELTA h, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination epsilon dot DELTA h resulted in subsequent nonlinear development of the Tollmien-Schlichting (T-S) wave. This study provided the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the 2-D and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber a,, and measuring the T-S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.
NASA Astrophysics Data System (ADS)
Kwon, K.; Loh, B.-G.; Lee, D.-R.
2007-12-01
Acoustic streaming patterns, velocity fields, which is induced by a cylindrical ultrasonic exciter vibrating at 28.4kHz in an open physical boundaries, is analytically and experimentally investigated using Particle Imaging Velocimetry (PIV). Induced acoustic streaming patterns and velocity fields for the gaps of 18mm at which the irrotational tangential velocity becomes a maximum, resulting in a substantial increase in the acoustic streaming velocity and pronounced visualization of streaming patterns between the vibrator and quiescent glass plate are presented. The overall air flow patterns at the gaps of 24, 30, 36mm are similar to the gap of 18 mm but as the gap increases the frequency of occurrence and irregularity of vortices in the gap appear to increase. The symmetric definite steady circular flow with local vortices is observed. The maximum streaming velocity measured stands at 0.16 cm/s with a vibration amplitude of 50 micrometers. Theoretical analysis indicates that the pattern of air flow in the gap is determined by the top and bottom limiting velocities induced by acoustic streaming within the Stokes boundary layer and that the streaming pattern is symmetrical with respect to the center axis of the vibrator by reason of symmetry. The comparison between the experimental data and the theoretical estimation based on Nyborg and Jackson is performed.
Boundary-element shape sensitivity analysis for thermal problems with nonlinear boundary conditions
NASA Technical Reports Server (NTRS)
Kane, James H.; Wang, Hua
1991-01-01
Implicit differentiation of the discretized boundary integral equations governing the conduction of heat in solid objects subjected to nonlinear boundary conditions is shown to generate an accurate and economical approach for the computation of shape sensitivities for this class of problems. This approach involves the employment of analytical derivatives of boundary-element kernel functions with respect to shape design variables. A formulation is presented that can consistently account for both temperature-dependent convection and radiation boundary conditions. Several iterative strategies are presented for the solution of the resulting sets of nonlinear equations and the computational performances examined in detail. Multizone analysis and zone condensation strategies are demonstrated to provide substantive computational economies in this process for models with either localized nonlinear boundary conditions or regions of geometric insensitivity to design variables. A series of nonlinear example problems are presented that have closed-form solutions.
Two Baryons with Twisted Boundary Conditions
Briceno, Raul; Davoudi, Zohreh; Luu, Thomas; Savage, Martin
2014-04-01
The quantization condition for two particle systems with arbitrary number of two-body open coupled-channels, spin and masses in a finite cubic volume is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is fully relativistic and holds for all momenta below inelastic thresholds and is exact up to exponential volume corrections that are governed by m{sub {pi}} L, where m{sub {pi}} is the pion mass and L is the spatial extent of my box. Its implication for the studies of coupled-channel baryon-baryon systems is discussed, and the necessary tools for implementing the formalism are review.
NASA Technical Reports Server (NTRS)
Hu, Fang Q.; Manthey, Joe L.
1997-01-01
Accurate numerical non-reflecting boundary conditions are important in all the proposed benchmark problems of the Second Workshop. Recently, a new absorbing boundary condition has been developed using Perfectly Matched Layer (PML) equations for the Euler equations. In this approach, a region with a width of a few grid points is introduced adjacent to the non-reflecting boundaries. In the added region, Perfectly Matched Layer equations are constructed and applied so that the out-going waves are absorbed inside the layer with little reflection to the interior domain. It will be demonstrated in the present paper that the proposed absorbing boundary condition is quite general and versatile, applicable to radiation boundaries as well as inflow and outflow boundaries. It is also easy to implement. The emphasis of the paper will be on the application of the PML absorbing boundary condition to problems in Categories 1, 2, and 3. In Category 1, solutions of problems 1 and 2 are presented. Both problems are solved using a multi-domain polar grid system. Perfectly Matched Layer equations for a circular boundary are constructed and their effectiveness assessed. In Category 2, solutions of problem 2 are presented. Here, in addition to the radiation boundary conditions at the far field in the axisymmetric coordinate system, the inflow boundary condition at the duct inlet is also dealt with using the proposed Perfectly Match Layer equations. At the inlet, a PML domain is introduced in which the incident duct mode is simulated while the waves reflected from the open end of the duct are absorbed at the same time. In Category 3, solutions of all three problems are presented. Again, the PML absorbing boundary condition is used at the inflow boundary so that the incoming vorticity wave is simulated while the outgoing acoustic waves are absorbed with very little numerical reflection. All the problems are solved using central difference schemes for spatial discretizations and the
Acoustical conditions of typical classrooms in Hong Kong
NASA Astrophysics Data System (ADS)
Li, Kai Ming; Lam, Coriolanus C. L.
2005-04-01
This paper presents measurement results of the acoustical environments of local schools in Hong Kong. In the measurements, several acoustical aspects that affect verbal communication in classrooms have been studied. These conditions include outdoor and indoor ambient noise levels, signal-to-noise ratios, reverberation time and the speech transmission index. Typical classrooms in many different schools and other higher-education institutions have been selected in the present study. Experimental results are compared with such national standards as USA (ANSI S 12.60 V 2002), Australian/New Zealand (AS/NZS 2107:2000), China (GB/T 15508 V 1995) and other national and industrial standards. This study will form the basis of devising acceptable standards for use in Hong Kong. [Work supported by the Research Grants Council of the SAR Government, the Research Committee of the Hong Kong Polytechnic University and Architectural Services Department of the Hong Kong SAR Government.
Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones
NASA Astrophysics Data System (ADS)
Desjouy, C.; Ollivier, S.; Marsden, O.; Dragna, D.; Blanc-Benon, P.
2015-10-01
The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular - also called Von Neumann - regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.
Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones
Desjouy, C. Ollivier, S.; Dragna, D.; Blanc-Benon, P.; Marsden, O.
2015-10-28
The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – also called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.
Effect of boundary conditions on thermal plume growth
NASA Astrophysics Data System (ADS)
Kondrashov, A.; Sboev, I.; Rybkin, K.
2016-07-01
We have investigated the influence of boundary conditions on the growth rate of convective plumes. Temperature and rate fields were studied in a rectangular convective cell heated by a spot heater. The results of the full-scale test were compared with the numerical data calculated using the ANSYS CFX software package. The relationship between the heat plume growth rate and heat boundary conditions, the width and height of the cell, size of heater for different kinds of liquid was established.
Absorbing Boundary Conditions For Optical Pulses In Dispersive, Nonlinear Materials
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Kwak, Dochan (Technical Monitor)
1995-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that provides absorbing boundary conditions for optical pulses in dispersive, nonlinear materials. A new numerical absorber at the boundaries has been developed that is responsive to the spectral content of the pulse. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of "light bullet" like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. Comparisons will be shown of calculations that use the standard boundary conditions and the new ones.
The Fokker-Planck Equation with Absorbing Boundary Conditions
NASA Astrophysics Data System (ADS)
Hwang, Hyung Ju; Jang, Juhi; Velázquez, Juan J. L.
2014-10-01
We study the initial-boundary value problem for the Fokker-Planck equation in an interval with absorbing boundary conditions. We develop a theory of well-posedness of classical solutions for the problem. We also prove that the resulting solutions decay exponentially for long times. To prove these results we obtain several crucial estimates, which include hypoellipticity away from the singular set for the Fokker-Planck equation with absorbing boundary conditions, as well as the Hölder continuity of the solutions up to the singular set.
A novel periodic boundary condition for computational hemodynamics studies.
Bahramian, Fereshteh; Mohammadi, Hadi
2014-07-01
In computational fluid dynamics models for hemodynamics applications, boundary conditions remain one of the major issues in obtaining accurate fluid flow predictions. For major cardiovascular models, the realistic boundary conditions are not available. In order to address this issue, the whole computational domain needs to be modeled, which is practically impossible. For simulating fully developed turbulent flows using the large eddy simulation and dynamic numerical solution methods, which are very popular in hemodynamics studies, periodic boundary conditions are suitable. This is mainly because the computational domain can be reduced considerably. In this study, a novel periodic boundary condition is proposed, which is based on mass flow condition. The proposed boundary condition is applied on a square duct for the sake of validation. The mass-based condition was shown to obtain the solution in 15% less time. As such, the mass-based condition has two decisive advantages: first, the solution for a given Reynolds number can be obtained in a single simulation because of the direct specification of the mass flow, and second, simulations can be made more quickly. PMID:25015666
Scattering through a straight quantum waveguide with combined boundary conditions
Briet, Ph. Soccorsi, E.; Dittrich, J.
2014-11-15
Scattering through a straight two-dimensional quantum waveguide R×(0,d) with Dirichlet boundary conditions on (R{sub −}{sup *}×(y=0))∪(R{sub +}{sup *}×(y=d)) and Neumann boundary condition on (R{sub −}{sup *}×(y=d))∪(R{sub +}{sup *}×(y=0)) is considered using stationary scattering theory. The existence of a matching conditions solution at x = 0 is proved. The use of stationary scattering theory is justified showing its relation to the wave packets motion. As an illustration, the matching conditions are also solved numerically and the transition probabilities are shown.
Formation of an interphase boundary under highly nonequilibrium conditions
Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.
2007-12-15
The results of comparison studies of the CdTe-CdS interphase boundary in Au/CdTe/CdS sandwich structures synthesized on a substrate of artificial fluorophlogopite mica in highly nonequilibrium conditions (with a substrate temperature T{sub s} = 125 K) and in quasi-equilibrium conditions (T{sub s} > 720 K) are reported. The X-ray diffraction patterns and a capacitance-voltage characteristic are also reported. It is shown that highly nonequilibrium conditions allow synthesis of structures with excellent crystalline quality and with an interphase boundary that is no worse than in the structures grown under equilibrium conditions.
Belyaev, Mikhail A.; Stone, James M.; Rafikov, Roman R.
2012-11-20
Disk accretion onto a weakly magnetized central object, e.g., a star, is inevitably accompanied by the formation of a boundary layer near the surface, in which matter slows down from the highly supersonic orbital velocity of the disk to the rotational velocity of the star. We perform high-resolution two-dimensional hydrodynamical simulations in the equatorial plane of an astrophysical boundary layer with the goal of exploring the dynamics of non-axisymmetric structures that form there. We generically find that the supersonic shear in the boundary layer excites non-axisymmetric quasi-stationary acoustic modes that are trapped between the surface of the star and a Lindblad resonance in the disk. These modes rotate in a prograde fashion, are stable for hundreds of orbital periods, and have a pattern speed that is less than and of the order of the rotational velocity at the inner edge of the disk. The origin of these intrinsically global modes is intimately related to the operation of a corotation amplifier in the system. Dissipation of acoustic modes in weak shocks provides a universal mechanism for angular momentum and mass transport even in purely hydrodynamic (i.e., non-magnetized) boundary layers. We discuss the possible implications of these trapped modes for explaining the variability seen in accreting compact objects.
Optimizing acoustical conditions for speech intelligibility in classrooms
NASA Astrophysics Data System (ADS)
Yang, Wonyoung
High speech intelligibility is imperative in classrooms where verbal communication is critical. However, the optimal acoustical conditions to achieve a high degree of speech intelligibility have previously been investigated with inconsistent results, and practical room-acoustical solutions to optimize the acoustical conditions for speech intelligibility have not been developed. This experimental study validated auralization for speech-intelligibility testing, investigated the optimal reverberation for speech intelligibility for both normal and hearing-impaired listeners using more realistic room-acoustical models, and proposed an optimal sound-control design for speech intelligibility based on the findings. The auralization technique was used to perform subjective speech-intelligibility tests. The validation study, comparing auralization results with those of real classroom speech-intelligibility tests, found that if the room to be auralized is not very absorptive or noisy, speech-intelligibility tests using auralization are valid. The speech-intelligibility tests were done in two different auralized sound fields---approximately diffuse and non-diffuse---using the Modified Rhyme Test and both normal and hearing-impaired listeners. A hybrid room-acoustical prediction program was used throughout the work, and it and a 1/8 scale-model classroom were used to evaluate the effects of ceiling barriers and reflectors. For both subject groups, in approximately diffuse sound fields, when the speech source was closer to the listener than the noise source, the optimal reverberation time was zero. When the noise source was closer to the listener than the speech source, the optimal reverberation time was 0.4 s (with another peak at 0.0 s) with relative output power levels of the speech and noise sources SNS = 5 dB, and 0.8 s with SNS = 0 dB. In non-diffuse sound fields, when the noise source was between the speaker and the listener, the optimal reverberation time was 0.6 s with
Nonlinear activity of acoustically driven gas bubble near a rigid boundary
Maksimov, Alexey
2015-10-28
The presence of a boundary can produce considerable changes in the oscillation amplitude of the bubble and its scattered echo. The present study fills a gap in the literature, in that it is concerned theoretically with the bubble activity at relatively small distances from the rigid boundary. It was shown that the bi-spherical coordinates provide separation of variables and are more suitable for analysis of the dynamics of these constrained bubbles. Explicit formulas have been derived which describe the dependence of the bubble emission near a rigid wall on its size and the separation distance between the bubble and the boundary. As applications, time reversal technique for gas leakage detection and radiation forces that are induced by an acoustic wave on a constrained bubble were analyzed.
Classification of heart valve condition using acoustic measurements
Clark, G.
1994-11-15
Prosthetic heart valves and the many great strides in valve design have been responsible for extending the life spans of many people with serious heart conditions. Even though the prosthetic valves are extremely reliable, they are eventually susceptible to long-term fatigue and structural failure effects expected from mechanical devices operating over long periods of time. The purpose of our work is to classify the condition of in vivo Bjork-Shiley Convexo-Concave (BSCC) heart valves by processing acoustic measurements of heart valve sounds. The structural failures of interest for Bscc valves is called single leg separation (SLS). SLS can occur if the outlet strut cracks and separates from the main structure of the valve. We measure acoustic opening and closing sounds (waveforms) using high sensitivity contact microphones on the patient`s thorax. For our analysis, we focus our processing and classification efforts on the opening sounds because they yield direct information about outlet strut condition with minimal distortion caused by energy radiated from the valve disc.
A hybrid absorbing boundary condition for frequency-domain finite-difference modelling
NASA Astrophysics Data System (ADS)
Ren, Zhiming; Liu, Yang
2013-10-01
Liu and Sen (2010 Geophysics 75 A1-6 2012 Geophys. Prospect. 60 1114-32) proposed an efficient hybrid scheme to significantly absorb boundary reflections for acoustic and elastic wave modelling in the time domain. In this paper, we extend the hybrid absorbing boundary condition (ABC) into the frequency domain and develop specific strategies for regular-grid and staggered-grid modelling, respectively. Numerical modelling tests of acoustic, visco-acoustic, elastic and vertically transversely isotropic (VTI) equations show significant absorptions for frequency-domain modelling. The modelling results of the Marmousi model and the salt model also demonstrate the effectiveness of the hybrid ABC. For elastic modelling, the hybrid Higdon ABC and the hybrid Clayton and Engquist (CE) ABC are implemented, respectively. Numerical simulations show that the hybrid Higdon ABC gets better absorption than the hybrid CE ABC, especially for S-waves. We further compare the hybrid ABC with the classical perfectly matched layer (PML). Results show that the two ABCs cost the same computation time and memory space for the same absorption width. However, the hybrid ABC is more effective than the PML for the same small absorption width and the absorption effects of the two ABCs gradually become similar when the absorption width is increased.
Asymptotic boundary conditions for dissipative waves: General theory
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Asymptotic boundary conditions for dissipative waves - General theory
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1991-01-01
An outstanding issue in computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Pressure boundary conditions for incompressible flow using unstructured meshes
Mathur, S.R.; Murthy, J.Y.
1997-10-01
A large variety of industrial problems require the specification of pressure boundary conditions. In many industrial pipe flows, for example, the mass flow rate is not known a priori; the flow is driven by a specified pressure difference between inlet and outlet. This article presents a numerical method for computing incompressible flows with given pressure boundary conditions. Unstructured meshes composed of arbitrary polyhedra are considered in a cell-centered, co-located pressure-velocity formulation. The SIMPLE algorithm of Patankar and Spalding is extended to develop correction equations for boundary static pressure and boundary mass flux through an added-dissipation scheme. The procedure is validated against published benchmarks and shown to perform satisfactorily.
Derivation and application of a class of generalized boundary conditions
NASA Technical Reports Server (NTRS)
Senior, Thomas B. A.; Volakis, John L.
1989-01-01
Boundary conditions involving higher order derivatives are presented for simulating surfaces whose reflection coefficients are known analytically, numerically, or experimentally. Procedures for determining the coefficients of the derivatives are discussed, along with the effect of displacing the surface where the boundary conditions are applied. Provided the coefficients satisfy a duality relation, equivalent forms of the boundary conditions involving tangential field components are deduced, and these provide the natural extension to nonplanar surfaces. As an illustration, the simulation of metal-backed uniform and three-layer dielectric coatings is given. It is shown that fourth order conditions are capable of providing an accurate simulation for uniform coating at least a quarter of a wavelength in thickness.
DNS of Turbulent Boundary Layers under Highenthalpy Conditions
NASA Astrophysics Data System (ADS)
Duan, Lian; Martín, Pino
2010-11-01
To study real-gas effects and turbulence-chemistry interaction, direct numerical simulations (DNS) of hypersonic boundary layers are conducted under typical hypersonic conditions. We consider the boundary layer on a lifting-body consisting of a flat plate at an angle of attack, which flies at altitude 30km with a Mach number 21. Two different inclined angles, 35^o and 8^o, are considered,representing blunt and slender bodies. Both noncatalytic and supercatalytic wall conditions are considered. The DNS data are studied to assess the validity of Morkovin's hypothesis, the strong Reynolds analogy, as well as the behaviors of turbulence structures under high-enthalpy conditions.Relative to low-enthalpy conditions [1], significant differences in typical scalings are observed. [4pt] [1] L. Duan and I. Beekman and M. P. Mart'in, Direct numerical simulation of hypersonic turbulent boundary layers. Part 2: Effect of temperature, J. Fluid Mech. 655 (2010), 419-445.
Boundary conditions for free interfaces with the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Bogner, Simon; Ammer, Regina; Rüde, Ulrich
2015-09-01
In this paper we analyze the boundary treatment of the lattice Boltzmann method (LBM) for simulating 3D flows with free surfaces. The widely used free surface boundary condition of Körner et al. [27] is shown to be first order accurate. The article presents a new free surface boundary scheme that is suitable for second order accurate simulations based on the LBM. The new method takes into account the free surface position and its orientation with respect to the computational lattice. Numerical experiments confirm the theoretical findings and illustrate the different behavior of the original method and the new method.
Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.
Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing
2014-01-01
The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993
Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance
Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing
2014-01-01
The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993
Ambarzumyan's theorem for the quasi-periodic boundary conditions
NASA Astrophysics Data System (ADS)
Kıraç, Alp Arslan
2015-10-01
We obtain the classical Ambarzumyan's theorem for the Sturm-Liouville operators Lt(q) with qin L1[0,1] and quasi-periodic boundary conditions, tin [0,2π ) , when there is not any additional condition on the potential q.
NASA Astrophysics Data System (ADS)
Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin
2015-11-01
Animals have evolved flexible wings and fins to efficiently and quietly propel themselves through the air and water. The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates three essential features: the fluid mechanics, the elastic structural response, and the noise generation. This study focuses on the development, validation, and demonstration of a transient, two-dimensional acoustic boundary element solver accelerated by a fast multipole algorithm. The resulting acoustic solver is used to characterize the acoustic signature produced by a vortex street advecting over a NACA 0012 airfoil, which is representative of vortex-body interactions that occur in schools of swimming fish. Both 2S and 2P canonical vortex streets generated by fish are investigated over the range of Strouhal number 0 . 2 < St < 0 . 4 , and the acoustic signature of the airfoil is quantified. This study provides the first estimate of the noise signature of a school of swimming fish. Lehigh University CORE Grant.
Magnetization boundary conditions at a ferromagnetic interface of finite thickness.
Kruglyak, V V; Gorobets, O Yu; Gorobets, Yu I; Kuchko, A N
2014-10-01
We develop a systematic approach to derive boundary conditions at an interface between two ferromagnetic materials in the continuous medium approximation. The approach treats the interface as a two-sublattice material, although the final equations connect magnetizations outside of the interface and therefore do not explicitly depend on its structure. Instead, the boundary conditions are defined in terms of some average properties of the interface, which may also have a finite thickness. In addition to the interface anisotropy and symmetric exchange coupling, this approach allows us to take into account coupling resulting from inversion symmetry breaking in the vicinity of the interface, such as the Dzyaloshinskii-Moriya antisymmetric exchange interaction. In the case of negligible interface anisotropy and Dzyaloshinskii-Moriya exchange parameters, the derived boundary conditions represent a generalization of those proposed earlier by Barnaś and Mills and are therefore named 'generalized Barnaś-Mills boundary conditions'. We demonstrate how one could use the boundary conditions to extract parameters of the interface via fitting of appropriate experimental data. The developed theory could be applied to modeling of both linear and non-linear spin waves, including exchange, dipole-exchange, magnetostatic, and retarded modes, as well as to calculations of non-uniform equilibrium micromagnetic configurations near the interface, with a direct impact on the research in magnonics and micromagnetism. PMID:25219663
Kac boundary conditions of the logarithmic minimal models
NASA Astrophysics Data System (ADS)
Pearce, Paul A.; Tartaglia, Elena; Couvreur, Romain
2015-01-01
We develop further the implementation and analysis of Kac boundary conditions in the general logarithmic minimal models { {LM}}(p,p\\prime) with 1 ⩽ p < p‧ and p, p‧ coprime. Specifically, working in a strip geometry, we consider the (r, s) Kac boundary conditions. These boundary conditions are organized into infinitely extended Kac tables labeled by the Kac labels r, s = 1, 2, 3, …. They are conjugate to Virasoro Kac representations with conformal dimensions Δr, s given by the usual Kac formula. On a finite strip of width N, built from a square lattice, the associated integrable boundary conditions are constructed by acting on the vacuum (1, 1) boundary with an s-type seam of width s - 1 columns and an r-type seam of width ρ - 1 columns. The r-type seam contains an arbitrary boundary field ξ. While the usual fusion construction of the r-type seam relies on the existence of Wenzl-Jones projectors restricting its application to r ⩽ ρ < p‧, this limitation was recently removed by Pearce et al who further conjectured that the conformal boundary conditions labeled by r are realized, in particular, for ρ=ρ(r)=\\lfloor \\frac{rp\\prime}{p}\\rfloor . In this paper, we confirm this conjecture by performing extensive numerics on the commuting double row transfer matrices and their associated quantum Hamiltonian chains. Letting [x] denote the fractional part, we fix the boundary field to the specialized values ξ=\\fracπ{2} if [\\fracρ{p\\prime}]=0 and ξ=[\\fracρ p}{p\\prime}]\\frac{π{2} otherwise. For these boundary conditions, we obtain the Kac conformal weights Δr, s by numerically extrapolating the finite-size corrections to the lowest eigenvalue of the quantum Hamiltonians out to sizes N ⩽ 32 - ρ - s. Additionally, by solving local inversion relations, we obtain general analytic expressions for the boundary free energies allowing for more accurate estimates of the conformal data. This paper is dedicated to Jean-Bernard Zuber on the occassion
Modeling sea-water intrusion with open boundary conditions
Padilla, F.; Cruz-Sanjulian, J.
1997-07-01
The present study concerns the application of a new numerical approach to describe the fresh-water/sea-water relationships in coastal aquifers. Essentially, a solution to the partial differential equation governing the regional motion of a phreatic surface and the resulting interface between fresh water and salt water is analyzed by a Galerkin finite-element formulation. A single-phase steady numerical model was applied to approximate, with simple triangular elements, the regional behavior of a coastal aquifer under appropriate sinks, sources, Neumann, outflow face, and open boundary conditions. On the one hand, outflow open boundaries at the coastline were not treated with other classical boundary conditions, but instead with a formal numerical approach for open boundaries inspired in this particular case by the Dupuit approximation of horizontal outflow at the boundary. The solution to this numerical model, together with the Ghyben-Herzberg principle, allows the correct simulation of fresh-water heads and the position of the salt-water interface for a steeply sloping coast. Although the solutions were precise and do not present classical numerical oscillations, this approach requires a previous solution with Dirichlet boundary conditions at the coastline in order to find a good convergence of the solution algorithm. On the other hand, the same precise results were obtained with a more restrictive open boundary condition, similar in a way to the outflow face approach, which required less computer time, did not need a prior numerical solution and could be extended to different coastline conditions. The steady-state problem was solved for different hypothetical coastal aquifers and fresh-water usage through three types of numerical tests.
Experiments on hypersonic boundary layer transition on blunt cones with acoustic-absorption coating
NASA Astrophysics Data System (ADS)
Shiplyuk, A.; Lukashevich, S.; Bountin, D.; Maslov, A.; Knaus, H.
2012-01-01
The laminar-turbulent transition is studied experimentally on a cone with an acoustic-absorption coating and with different nose bluntness in a high-speed flow. The acoustic-absorption coating is a felt metal sheet with a random microstructure. Experiments were carried out on a 1-meter length 7 degree cone at free-stream Mach number M = 8 and zero angle of attack. Locations of the laminar-turbulent transition are detected using heat flux distributions registered by calorimeter sensors. In addition, boundary layer pulsations are measured by means of ultrafast heat flux sensors. It is shown that the laminar-turbulent transition is caused by the second-mode instability, and the laminar run extends as the bluntness is increased. The porous coating effectively suppresses this instability for all tested bluntness values and 1.3-1.85 times extends the laminar run.
Lenhart, S. |; Protopopescu, V.; Yong, J.
1997-12-31
The authors apply optimal control techniques to find approximate solutions to an inverse problem for the acoustic wave equation. The inverse problem (assumed here to have a solution) is to determine the boundary reflection coefficient from partial measurements of the acoustic signal. The sought reflection coefficient is treated as a control and the goal--quantified by an approximate functional--is to drive the model solution close to the experimental data by adjusting this coefficient. The problem is solved by finding the optimal control that minimizes the approximate functional. Then by driving the cost of the control to zero one proves that the corresponding sequence of optimal controls represents a converging sequence of estimates for the solution of the inverse problem. Compared to classical regularization methods (e.g., Tikhonov coupled with optimization schemes), their approach yields: (1) a systematic procedure to solve inverse problems of identification type and (ii) an explicit expression for the approximations of the solution.
Critical effects of downstream boundary conditions on vortex breakdown
NASA Technical Reports Server (NTRS)
Kandil, Osama; Kandil, Hamdy A.; Liu, C. H.
1992-01-01
The unsteady, compressible, full Navier-Stokes (NS) equations are used to study the critical effects of the downstream boundary conditions on the supersonic vortex breakdown. The present study is applied to two supersonic vortex breakdown cases. In the first case, quasi-axisymmetric supersonic swirling flow is considered in a configured circular duct, and in the second case, quasi-axisymmetric supersonic swirling jet, that is issued from a nozzle into a supersonic jet of lower Mach number, is considered. For the configured duct flow, four different types of downstream boundary conditions are used, and for the swirling jet flow from the nozzle, two types of downstream boundary conditions are used. The solutions are time accurate which are obtained using an implicit, upwind, flux-difference splitting, finite-volume scheme.
Boundary conditions and the simulation of low Mach number flows
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Lorenz, Jens
1993-01-01
The problem of accurately computing low Mach number flows, with the specific intent of studying the interaction of sound waves with incompressible flow structures, such as concentrations of vorticity is considered. This is a multiple time (and/or space) scales problem, leading to various difficulties in the design of numerical methods. Concentration is on one of these difficulties - the development of boundary conditions at artificial boundaries which allow sound waves and vortices to radiate to the far field. Nonlinear model equations are derived based on assumptions about the scaling of the variables. Then these are linearized about a uniform flow and exact boundary conditions are systematically derived using transform methods. Finally, useful approximations to the exact conditions which are valid for small Mach number and small viscosity are computed.
Quarks with Twisted Boundary Conditions in the Epsilon Regime
Thomas Mehen; Brian C. Tiburzi
2005-05-01
We study the effects of twisted boundary conditions on the quark fields in the epsilon regime of chiral perturbation theory. We consider the SU(2){sub L} x SU(2){sub R} chiral theory with non-degenerate quarks and the SU(3){sub L} x SU(3){sub R} chiral theory with massless up and down quarks and massive strange quarks. The partition function and condensate are derived for each theory. Because flavor-neutral Goldstone bosons are unaffected by twisted boundary conditions chiral symmetry is still restored in finite volumes. The dependence of the condensate on the twisting parameters can be used to extract the pion decay constant from simulations in the epsilon regime. The relative contribution to the partition function from sectors of different topological charge is numerically insensitive to twisted boundary conditions.
Boundary conditions on internal three-body wave functions
Mitchell, Kevin A.; Littlejohn, Robert G.
1999-10-01
For a three-body system, a quantum wave function {Psi}{sub m}{sup {ell}} with definite {ell} and m quantum numbers may be expressed in terms of an internal wave function {chi}{sub k}{sup {ell}} which is a function of three internal coordinates. This article provides necessary and sufficient constraints on {chi}{sub k}{sup {ell}} to ensure that the external wave function {Psi}{sub k}{sup {ell}} is analytic. These constraints effectively amount to boundary conditions on {chi}{sub k}{sup {ell}} and its derivatives at the boundary of the internal space. Such conditions find similarities in the (planar) two-body problem where the wave function (to lowest order) has the form r{sup |m|} at the origin. We expect the boundary conditions to prove useful for constructing singularity free three-body basis sets for the case of nonvanishing angular momentum.
Viscosity in molecular dynamics with periodic boundary conditions
NASA Astrophysics Data System (ADS)
Viscardy, S.; Gaspard, P.
2003-10-01
We report a study of viscosity by the method of Helfand moment in systems with periodic boundary conditions. We propose a new definition of Helfand moment which takes into account the minimum image convention used in molecular dynamics with periodic boundary conditions. Our Helfand-moment method is equivalent to the method based on the Green-Kubo formula and is not affected by ambiguities due to the periodic boundary conditions. Moreover, in hard-ball systems, our method is equivalent to that developed by Alder, Gass, and Wainwright [J. Chem. Phys. 53, 3813 (1970)]. We apply and verify our method in a fluid composed of N⩾2 hard disks in elastic collisions. We show that the viscosity coefficients already take values in good agreement with Enskog’s theory for N=2 hard disks in a hexagonal geometry.
Viscosity in molecular dynamics with periodic boundary conditions.
Viscardy, S; Gaspard, P
2003-10-01
We report a study of viscosity by the method of Helfand moment in systems with periodic boundary conditions. We propose a new definition of Helfand moment which takes into account the minimum image convention used in molecular dynamics with periodic boundary conditions. Our Helfand-moment method is equivalent to the method based on the Green-Kubo formula and is not affected by ambiguities due to the periodic boundary conditions. Moreover, in hard-ball systems, our method is equivalent to that developed by Alder, Gass, and Wainwright [J. Chem. Phys. 53, 3813 (1970)]. We apply and verify our method in a fluid composed of N> or =2 hard disks in elastic collisions. We show that the viscosity coefficients already take values in good agreement with Enskog's theory for N=2 hard disks in a hexagonal geometry. PMID:14682933
A multigrid fluid pressure solver handling separating solid boundary conditions.
Chentanez, Nuttapong; Müller-Fischer, Matthias
2012-08-01
We present a multigrid method for solving the linear complementarity problem (LCP) resulting from discretizing the Poisson equation subject to separating solid boundary conditions in an Eulerian liquid simulation’s pressure projection step. The method requires only a few small changes to a multigrid solver for linear systems. Our generalized solver is fast enough to handle 3D liquid simulations with separating boundary conditions in practical domain sizes. Previous methods could only handle relatively small 2D domains in reasonable time, because they used expensive quadratic programming (QP) solvers. We demonstrate our technique in several practical scenarios, including nonaxis-aligned containers and moving solids in which the omission of separating boundary conditions results in disturbing artifacts of liquid sticking to solids. Our measurements show, that the convergence rate of our LCP solver is close to that of a standard multigrid solver. PMID:22411885
Analysis of the boundary conditions of the spline filter
NASA Astrophysics Data System (ADS)
Tong, Mingsi; Zhang, Hao; Ott, Daniel; Zhao, Xuezeng; Song, John
2015-09-01
The spline filter is a standard linear profile filter recommended by ISO/TS 16610-22 (2006). The main advantage of the spline filter is that no end-effects occur as a result of the filter. The ISO standard also provides the tension parameter β =0.625 24 to make the transmission characteristic of the spline filter approximately similar to the Gaussian filter. However, when the tension parameter β is not zero, end-effects appear. To resolve this problem, we analyze 14 different combinations of boundary conditions of the spline filter and propose a set of new boundary conditions in this paper. The new boundary conditions can provide satisfactory end portions of the output form without end-effects for the spline filter while still maintaining the value of β =0.625 24 .
Magnetization boundary conditions at a ferromagnetic interface of finite thickness
NASA Astrophysics Data System (ADS)
Kruglyak, V. V.; Gorobets, O. Yu; Gorobets, Yu I.; Kuchko, A. N.
2014-10-01
We develop a systematic approach to derive boundary conditions at an interface between two ferromagnetic materials in the continuous medium approximation. The approach treats the interface as a two-sublattice material, although the final equations connect magnetizations outside of the interface and therefore do not explicitly depend on its structure. Instead, the boundary conditions are defined in terms of some average properties of the interface, which may also have a finite thickness. In addition to the interface anisotropy and symmetric exchange coupling, this approach allows us to take into account coupling resulting from inversion symmetry breaking in the vicinity of the interface, such as the Dzyaloshinskii-Moriya antisymmetric exchange interaction. In the case of negligible interface anisotropy and Dzyaloshinskii-Moriya exchange parameters, the derived boundary conditions represent a generalization of those proposed earlier by Barnaś and Mills and are therefore named ‘generalized Barnaś-Mills boundary conditions’. We demonstrate how one could use the boundary conditions to extract parameters of the interface via fitting of appropriate experimental data. The developed theory could be applied to modeling of both linear and non-linear spin waves, including exchange, dipole-exchange, magnetostatic, and retarded modes, as well as to calculations of non-uniform equilibrium micromagnetic configurations near the interface, with a direct impact on the research in magnonics and micromagnetism.
Transport synthetic acceleration with opposing reflecting boundary conditions
Zika, M.R.; Adams, M.L.
2000-02-01
The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iterating on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.
Orbiter Boundary Layer Transition Stability Modeling at Flight Entry Conditions
NASA Technical Reports Server (NTRS)
Bartkowicz, Matt; Johnson, Heath; Candler, Graham; Campbell, Charles H.
2009-01-01
State of the art boundary layer stability modeling capabilities are increasingly seeing application to entry flight vehicles. With the advent of user friendly and robust implementations of two-dimensional chemical nonequilibrium stability modeling with the STABL/PSE-CHEM software, the need for flight data to calibrate such analyses capabilities becomes more critical. Recent efforts to perform entry flight testing with the Orbiter geometry related to entry aerothermodynamics and boundary layer transition is allowing for a heightened focus on the Orbiter configuration. A significant advancement in the state of the art can likely be achieved by establishing a basis of understanding for the occurrence of boundary layer transition on the Orbiter due to discrete protruding gap fillers and the nominal distributed roughness of the actual thermal protection system. Recent success in demonstrating centerline two-dimensional stability modeling on the centerline of the Orbiter at flight entry conditions provides a starting point for additional investigations. The more detailed paper will include smooth Orbiter configuration boundary layer stability results for several typical orbiter entry conditions. In addition, the numerical modeling approach for establishing the mean laminar flow will be reviewed and the method for determining boundary layer disturbance growth will be overviewed. In addition, if actual Orbiter TPS surface data obtained via digital surface scans become available, it may be possible to investigate the effects of an as-flown flight configuration on boundary layer transition compared to a smooth CAD reference.
Maxwell boundary condition and velocity dependent accommodation coefficient
Struchtrup, Henning
2013-11-15
A modification of Maxwell's boundary condition for the Boltzmann equation is developed that allows to incorporate velocity dependent accommodation coefficients into the microscopic description. As a first example, it is suggested to consider the wall-particle interaction as a thermally activated process with three parameters. A simplified averaging procedure leads to jump and slip boundary conditions for hydrodynamics. Coefficients for velocity slip, temperature jump, and thermal transpiration flow are identified and compared with those resulting from the original Maxwell model and the Cercignani-Lampis model. An extension of the model leads to temperature dependent slip and jump coefficients.
Quantum communication through a spin ring with twisted boundary conditions
NASA Astrophysics Data System (ADS)
Bose, S.; Jin, B.-Q.; Korepin, V. E.
2005-08-01
We investigate quantum communication between the sites of a spin ring with twisted boundary conditions. Such boundary conditions can be achieved by a magnetic flux through the ring. We find that a nonzero twist can improve communication through finite odd-numbered rings and enable high-fidelity multiparty quantum communication through spin rings (working near perfectly for rings of five and seven spins). We show that in certain cases, the twist results in the complete blockage of quantum-information flow to a certain site of the ring. This effect can be exploited to interface and entangle a flux qubit and a spin qubit without embedding the latter in a magnetic field.
Intermediate boundary conditions for LOD, ADI and approximate factorization methods
NASA Technical Reports Server (NTRS)
Leveque, R. J.
1985-01-01
A general approach to determining the correct intermediate boundary conditions for dimensional splitting methods is presented. The intermediate solution U is viewed as a second order accurate approximation to a modified equation. Deriving the modified equation and using the relationship between this equation and the original equation allows us to determine the correct boundary conditions for U*. This technique is illustrated by applying it to locally one dimensional (LOD) and alternating direction implicit (ADI) methods for the heat equation in two and three space dimensions. The approximate factorization method is considered in slightly more generality.
Thermodynamically admissible boundary conditions for the regularized 13 moment equations
NASA Astrophysics Data System (ADS)
Rana, Anirudh Singh; Struchtrup, Henning
2016-02-01
A phenomenological approach to the boundary conditions for linearized R13 equations is derived using the second law of thermodynamics. The phenomenological coefficients appearing in the boundary conditions are calculated by comparing the slip, jump, and thermal creep coefficients with linearized Boltzmann solutions for Maxwell's accommodation model for different values of the accommodation coefficient. For this, the linearized R13 equations are solved for viscous slip, thermal creep, and temperature jump problems and the results are compared to the solutions of the linearized Boltzmann equation. The influence of different collision models (hard-sphere, Bhatnagar-Gross-Krook, and Maxwell molecules) and accommodation coefficients on the phenomenological coefficients is studied.
Boundary conditions in a meshless staggered particle code
Libersky, L.D.; Randles, P.W.
1998-07-01
A meshless method utilizing two sets of particles and generalized boundary conditions is introduced. Companion sets of particles, one carrying velocity and the other carrying stress, are employed to reduce the undesirable effects of colocation of all field variables and increase accuracy. Boundary conditions implemented within this staggered framework include contact, stress-free, stress, velocity, and symmetry constraints. Several test problems are used to evaluate the method. Of particular importance is the motion of stress particles relative to velocity particles in higher dimensions. Early results show promise, but difficulties remain that must be overcome if the staggered technique is to be successful.
Exact Solution of Quadratic Fermionic Hamiltonians for Arbitrary Boundary Conditions.
Alase, Abhijeet; Cobanera, Emilio; Ortiz, Gerardo; Viola, Lorenza
2016-08-12
We present a procedure for exactly diagonalizing finite-range quadratic fermionic Hamiltonians with arbitrary boundary conditions in one of D dimensions, and periodic in the remaining D-1. The key is a Hamiltonian-dependent separation of the bulk from the boundary. By combining information from the two, we identify a matrix function that fully characterizes the solutions, and may be used to construct an efficiently computable indicator of bulk-boundary correspondence. As an illustration, we show how our approach correctly describes the zero-energy Majorana modes of a time-reversal-invariant s-wave two-band superconductor in a Josephson ring configuration, and predicts that a fractional 4π-periodic Josephson effect can only be observed in phases hosting an odd number of Majorana pairs per boundary. PMID:27563986
Exact Solution of Quadratic Fermionic Hamiltonians for Arbitrary Boundary Conditions
NASA Astrophysics Data System (ADS)
Alase, Abhijeet; Cobanera, Emilio; Ortiz, Gerardo; Viola, Lorenza
2016-08-01
We present a procedure for exactly diagonalizing finite-range quadratic fermionic Hamiltonians with arbitrary boundary conditions in one of D dimensions, and periodic in the remaining D -1 . The key is a Hamiltonian-dependent separation of the bulk from the boundary. By combining information from the two, we identify a matrix function that fully characterizes the solutions, and may be used to construct an efficiently computable indicator of bulk-boundary correspondence. As an illustration, we show how our approach correctly describes the zero-energy Majorana modes of a time-reversal-invariant s -wave two-band superconductor in a Josephson ring configuration, and predicts that a fractional 4 π -periodic Josephson effect can only be observed in phases hosting an odd number of Majorana pairs per boundary.
Burton-Miller-type singular boundary method for acoustic radiation and scattering
NASA Astrophysics Data System (ADS)
Fu, Zhuo-Jia; Chen, Wen; Gu, Yan
2014-08-01
This paper proposes the singular boundary method (SBM) in conjunction with Burton and Miller's formulation for acoustic radiation and scattering. The SBM is a strong-form collocation boundary discretization technique using the singular fundamental solutions, which is mathematically simple, easy-to-program, meshless and introduces the concept of source intensity factors (SIFs) to eliminate the singularities of the fundamental solutions. Therefore, it avoids singular numerical integrals in the boundary element method (BEM) and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions (MFS). In the present method, we derive the SIFs of exterior Helmholtz equation by means of the SIFs of exterior Laplace equation owing to the same order of singularities between the Laplace and Helmholtz fundamental solutions. In conjunction with the Burton-Miller formulation, the SBM enhances the quality of the solution, particularly in the vicinity of the corresponding interior eigenfrequencies. Numerical illustrations demonstrate efficiency and accuracy of the present scheme on some benchmark examples under 2D and 3D unbounded domains in comparison with the analytical solutions, the boundary element solutions and Dirichlet-to-Neumann finite element solutions.
Fatigue crack damage detection using subharmonic component with nonlinear boundary condition
NASA Astrophysics Data System (ADS)
Wu, Weiliang; Shen, Yanfeng; Qu, Wenzhong; Xiao, Li; Giurgiutiu, Victor
2015-03-01
In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come from the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from
Fatigue crack damage detection using subharmonic component with nonlinear boundary condition
Wu, Weiliang Qu, Wenzhong E-mail: xiaoli6401@126.com; Xiao, Li E-mail: xiaoli6401@126.com; Shen, Yanfeng Giurgiutiu, Victor
2015-03-31
In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come from the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from
NASA Astrophysics Data System (ADS)
Gélat, P.; ter Haar, G.; Saffari, N.
2014-04-01
High intensity focused ultrasound (HIFU) enables highly localised, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more established treatment modalities such as resection, chemotherapy and ionising radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element (BE) approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. Dissipative mechanisms inside the propagating medium have since been implemented, together with a complex surface impedance condition at the surface of the ribs. A reformulation of the boundary element equations as a constrained optimisation problem was carried out to determine the complex surface velocities of a multi-element HIFU array which generated the acoustic pressure field that best fitted a required acoustic pressure distribution in a least-squares sense. This was done whilst ensuring that an acoustic dose rate parameter at the surface of the ribs was kept below a specified threshold. The methodology was tested at an
NASA Technical Reports Server (NTRS)
Pates, Carl S., III
1991-01-01
A boundary element formulation, along with detailed solution procedure for determining the acoustic field inside a three-dimensional, rectangular duct is presented in this paper. The results of classical and boundary element solutions are compared for a typical rectangular duct by restricting the input frequency in such a way that only plane wave propagation is possible. The effect of changing the type and number of discrete boundary elements on the computed sound pressure levels inside the duct is also presented.
Acoustic characteristics of phonation in “wet voice” conditions
Murugappan, Shanmugam; Boyce, Suzanne; Khosla, Sid; Kelchner, Lisa; Gutmark, Ephraim
2010-01-01
A perceptible change in phonation characteristics after a swallow has long been considered evidence that food and∕or drink material has entered the laryngeal vestibule and is on the surface of the vocal folds as they vibrate. The current paper investigates the acoustic characteristics of phonation when liquid material is present on the vocal folds, using ex vivo porcine larynges as a model. Consistent with instrumental examinations of swallowing disorders or dysphagia in humans, three liquids of different Varibar viscosity (“thin liquid,” “nectar,” and “honey”) were studied at constant volume. The presence of materials on the folds during phonation was generally found to suppress the higher frequency harmonics and generate intermittent additional frequencies in the low and high end of the acoustic spectrum. Perturbation measures showed a higher percentage of jitter and shimmer when liquid material was present on the folds during phonation, but they were unable to differentiate statistically between the three fluid conditions. The finite correlation dimension and positive Lyapunov exponent measures indicated that the presence of materials on the vocal folds excited a chaotic system. Further, these measures were able to reliably differentiate between the baseline and different types of liquid on the vocal folds. PMID:20370039
Computation of dispersion curves for embedded waveguides using a dashpot boundary condition.
Gravenkamp, Hauke; Birk, Carolin; Song, Chongmin
2014-03-01
In this paper a numerical approach is presented to compute dispersion curves for solid waveguides coupled to an infinite medium. The derivation is based on the scaled boundary finite element method that has been developed previously for waveguides with stress-free surfaces. The effect of the surrounding medium is accounted for by introducing a dashpot boundary condition at the interface between the waveguide and the adjoining medium. The damping coefficients are derived from the acoustic impedances of the surrounding medium. Results are validated using an improved implementation of an absorbing region. Since no discretization of the surrounding medium is required for the dashpot approach, the required number of degrees of freedom is typically 10 to 50 times smaller compared to the absorbing region. When compared to other finite element based results presented in the literature, the number of degrees of freedom can be reduced by as much as a factor of 4000. PMID:24606256
Transparent boundary conditions for iterative high-order parabolic equations
NASA Astrophysics Data System (ADS)
Petrov, P. S.; Ehrhardt, M.
2016-05-01
Recently a new approach to the construction of high-order parabolic approximations for the Helmholtz equation was developed. These approximations have the form of the system of iterative parabolic equations, where the solution of the n-th equation is used as an input term for the (n + 1)-th equation. In this study the transparent boundary conditions for such systems of coupled parabolic equations are derived. The existence and uniqueness of the solution of the initial boundary value problem for the system of iterative parabolic equations with the derived boundary conditions are proved. The well-posedness of this problem is also established and an unconditionally stable finite difference scheme for its solution is proposed.
A Robust Absorbing Boundary Condition for Compressible Flows
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; orgenson, Philip C. E.
2005-01-01
An absorbing non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented with theoretical proof. This paper is a continuation and improvement of a previous paper by the author. The absorbing NRBC technique is based on a first principle of non reflecting, which contains the essential physics that a plane wave solution of the Euler equations remains intact across the boundary. The technique is theoretically shown to work for a large class of finite volume approaches. When combined with the hyperbolic conservation laws, the NRBC is simple, robust and truly multi-dimensional; no additional implementation is needed except the prescribed physical boundary conditions. Several numerical examples in multi-dimensional spaces using two different finite volume schemes are illustrated to demonstrate its robustness in practical computations. Limitations and remedies of the technique are also discussed.
Boundary conditions for the Boltzmann equation for rough walls
NASA Astrophysics Data System (ADS)
Brull, Stéphane; Charrier, Pierre
2014-12-01
In some applications, rarefied gases have to considered in a domain whose boundary presents some nanoscale roughness. That is why, we have considered (Brull,2014) a new derivation of boundary conditions for the Boltzmann equation, where the wall present some nanoscale roughness. In this paper, the interaction between the gas and the wall is represented by a kinetic equation defined in a surface layer at the scale of the nanometer close to the wall. The boundary conditions are obtained from a formal asymptotic expansion and are describded by a scattering kernel satisfying classical properties (non-negativeness, normalization, reciprocity). Finally, we present some numerical simulations of scattering diagrams showing the importance of the consideration of roughness for small scales in the model.
Curvature boundary condition for a moving contact line
NASA Astrophysics Data System (ADS)
Luo, J.; Hu, X. Y.; Adams, N. A.
2016-04-01
Effective wall boundary conditions are very important for simulating multi-phase flows involving a moving contact line. In this paper we present a curvature boundary condition to circumvent the difficulties of previous approaches on explicitly imposing the contact angle and with respect to mass-loss artifacts near the wall boundary. While employing the asymptotic theory of Cox for imposing an effective curvature directly at the wall surface, the present method avoids a mismatch between the exact and the numerical contact angles. Test simulations on drop spreading and multi-phase flow in a channel show that the present method achieves grid-convergent results and ensures mass conservation, and delivers good agreement with theoretical, numerical and experimental data.
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam; King, Rudolph A.
2011-01-01
The receptivity and interaction of stationary and traveling crossflow instability of three-dimensional supersonic boundary layers over a swept biconvex wing with a blunt leading edge are numerically investigated for a freestream Mach number of 3. The steady and unsteady flow fields are obtained by solving the full Navier-Stokes equations. The receptivity of the boundary layer to surface roughness, freestream acoustic waves, and freestream vorticity waves are numerically investigated. The initial amplitudes of the stationary vortices generated by 1 micron roughness elements is about 2000 times larger than the initial amplitudes of the traveling disturbances generated by vortical disturbances. The interaction of stationary and traveling disturbances was investigated by solving the equations with both surface roughness and vortical disturbances. When the initial amplitudes of the stationary disturbances are large compared to the traveling disturbances, the stationary vortex dominates the perturbation field. When the amplitudes are comparable, the traveling vortex prevails and the stationary vortex is suppressed.
NASA Astrophysics Data System (ADS)
Arias-Ramirez, Walter; Olson, Britton; Wolf, William; Lawrence Livermore National Laboratory Team; University of Campinas Team
2015-11-01
The suitability of a continuing forcing immersed boundary method (IBM) combined with a high-order finite difference method is examined on several acoustic scattering problems. A suite of two-dimensional numerical simulations of canonical cases are conducted with the aim of analyzing the error behavior associated with the IBM, through wave reflection, wave diffraction, and the shock-boundary layer interaction phenomena. The compressible Navier-Stokes equations are solved using the Miranda code developed at Lawrence Livermore National Laboratory. Comparison of analytical solution against numerical results is shown for different flow parameters. Preliminary results indicate that the continuing forcing approach has the largest error in wave reflection compared to analytical solution. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Multicomponent Gas Diffusion and an Appropriate Momentum Boundary Condition
NASA Technical Reports Server (NTRS)
Noever, David A.
1994-01-01
Multicomponent gas diffusion is reviewed with particular emphasis on gas flows near solid boundaries-the so-called Kramers-Kistemaker effect. The aim is to derive an appropriate momentum boundary condition which governs many gaseous species diffusing together. The many species' generalization of the traditional single gas condition, either as slip or stick (no-slip), is not obvious, particularly for technologically important cases of lower gas pressures and very dissimilar molecular weight gases. No convincing theoretical case exists for why two gases should interact with solid boundaries equally but in opposite flow directions, such that the total gas flow exactly vanishes. ln this way, the multicomponent no-slip boundary requires careful treatment The approaches discussed here generally adopt a microscopic model for gas-solid contact. The method has the advantage that the mathematics remain tractable and hence experimentally testable. Two new proposals are put forward, the first building in some molecular collision physics, the second drawing on a detailed view of surface diffusion which does not unphysically extrapolate bulk gas properties to govern the adsorbed molecules. The outcome is a better accounting of previously anomalous experiments. Models predict novel slip conditions appearing even for the case of equal molecular weight components. These approaches become particularly significant in view of a conceptual contradiction found to arise in previous derivations of the appropriate boundary conditions. The analogous case of three gases, one of which is uniformly distributed and hence non-diffusing, presents a further refinement which gives unexpected flow reversals near solid boundaries. This case is investigated alone and for aggregating gas species near their condensation point. In addition to predicting new physics, this investigation carries practical implications for controlling vapor diffusion in the growth of crystals used in medical diagnosis (e
Dirac operator on a disk with global boundary conditions
Falomir, H.; Gamboa Saravi, R.E.; Santangelo, E.M.
1998-01-01
We compute the functional determinant for a Dirac operator in the presence of an Abelian gauge field on a bidimensional disk, under global boundary conditions of the type introduced by Atiyah{endash}Patodi{endash}Singer. We also discuss the connection between our result and the index theorem. {copyright} {ital 1998 American Institute of Physics.}
Investigation of Boundary Conditions for Flexible Multibody Spacecraft Dynamics
NASA Technical Reports Server (NTRS)
MacLean, John R.; Huynh, An; Quiocho, Leslie J.
2007-01-01
In support of both the Space Shuttle and International Space Station programs, a set of generic multibody dynamics algorithms integrated within the Trick simulation environment have addressed the variety of on-orbit manipulator simulation requirements for engineering analysis, procedures development and crew familiarization/training at the NASA Johnson Space Center (JSC). Enhancements to these dynamics algorithms are now being driven by a new set of Constellation program requirements for flexible multibody spacecraft simulation. One particular issue that has been discussed within the NASA community is the assumption of cantilever-type flexible body boundary conditions. This assumption has been commonly utilized within manipulator multibody dynamics formulations as it simplifies the computation of relative motion for articulated flexible topologies. Moreover, its use for modeling of space-based manipulators such as the Shuttle Remote Manipulator System (SRMS) and Space Station Remote Manipulator System (SSRMS) has been extensively validated against flight data. For more general flexible spacecraft applications, however, the assumption of cantilever-type boundary conditions may not be sufficient. This paper describes the boundary condition assumptions that were used in the original formulation, demonstrates that this formulation can be augmented to accommodate systems in which the assumption of cantilever boundary conditions no longer applies, and verifies the approach through comparison with an independent model previously validated against experimental hardware test data from a spacecraft flexible dynamics emulator.
Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.
1998-01-01
A multiblock Navier-Stokes analysis code for turbomachinery has been modified to allow analysis of multistage turbomachines. A steady averaging-plane approach was used to pass information between blade rows. Characteristic boundary conditions written in terms of perturbations about the mean flow from the neighboring blade row were used to allow close spacing between the blade rows without forcing the flow to be axisymmetric. In this report the multiblock code is described briefly and the characteristic boundary conditions and the averaging-plane implementation are described in detail. Two approaches for averaging the flow properties are also described. A two-dimensional turbine stator case was used to compare the characteristic boundary conditions with standard axisymmetric boundary conditions. Differences were apparent but small in this low-speed case. The two-stage fuel turbine used on the space shuttle main engines was then analyzed using a three-dimensional averaging-plane approach. Computed surface pressure distributions on the stator blades and endwalls and computed distributions of blade surface heat transfer coefficient on three blades showed very good agreement with experimental data from two tests.
Poroelastic modeling of seismic boundary conditions across a fracture.
Nakagawa, Seiji; Schoenberg, Michael A
2007-08-01
Permeability of a fracture can affect how the fracture interacts with seismic waves. To examine this effect, a simple mathematical model that describes the poroelastic nature of wave-fracture interaction is useful. In this paper, a set of boundary conditions is presented which relate wave-induced particle velocity (or displacement) and stress including fluid pressure across a compliant, fluid-bearing fracture. These conditions are derived by modeling a fracture as a thin porous layer with increased compliance and finite permeability. Assuming a small layer thickness, the boundary conditions can be derived by integrating the governing equations of poroelastic wave propagation. A finite jump in the stress and velocity across a fracture is expressed as a function of the stress and velocity at the boundaries. Further simplification for a thin fracture yields a set of characteristic parameters that control the seismic response of single fractures with a wide range of mechanical and hydraulic properties. These boundary conditions have potential applications in simplifying numerical models such as finite-difference and finite-element methods to compute seismic wave scattering off nonplanar (e.g., curved and intersecting) fractures. PMID:17672634
Outer boundary conditions for evolving cool white dwarfs
NASA Astrophysics Data System (ADS)
Rohrmann, R. D.; Althaus, L. G.; García-Berro, E.; Córsico, A. H.; Miller Bertolami, M. M.
2012-10-01
Context. White dwarf evolution is essentially a gravothermal cooling process, which, for cool white dwarfs, depends on the treatment of the outer boundary conditions. Aims: We provide detailed outer boundary conditions that are appropriate to computing the evolution of cool white dwarfs by employing detailed nongray model atmospheres for pure hydrogen composition. We also explore the impact on the white dwarf cooling times of different assumptions for energy transfer in the atmosphere of cool white dwarfs. Methods: Detailed nongray model atmospheres were computed by considering nonideal effects in the gas equation of state and chemical equilibrium, collision-induced absorption from molecules, and the Lyman α quasi-molecular opacity. We explored the impact of outer boundary conditions provided by updated model atmospheres on the cooling times of 0.60 and 0.90 M⊙ white dwarf sequences. Results: Our results show that the use of detailed outer boundary conditions becomes relevant for effective temperatures lower than 5800 K for sequences with 0.60 M⊙ and 6100 K with 0.90 M⊙. Detailed model atmospheres predict ages that are up to ≈10% shorter at log (L/L⊙) = -4 when compared with the ages derived using Eddington-like approximations at τRoss = 2/3. We also analyze the effects of various assumptions and physical processes that are relevant in the calculation of outer boundary conditions. In particular, we find that the Lyα red wing absorption does not substantially affect the evolution of white dwarfs. Conclusions: White dwarf cooling timescales are sensitive to the surface boundary conditions for Teff ≲ 6000 K. Interestingly enough, nongray effects have few consequences on these cooling times at observable luminosities. In fact, collision-induced absorption processes, which significantly affect the spectra and colors of old white dwarfs with hydrogen-rich atmospheres, have no noticeable effects on their cooling rates, except throughout the Rosseland mean
A novel formulation for Neumann inflow boundary conditions in biomechanics.
Gravemeier, Volker; Comerford, Andrew; Yoshihara, Lena; Ismail, Mahmoud; Wall, Wolfgang A
2012-05-01
Neumann boundary conditions prescribing the total momentum flux at inflow boundaries of biomechanical problems are proposed in this study. This approach enables the simultaneous application of velocity/flow rate and pressure curves at inflow boundaries. As the basic numerical method, a residual-based variational multiscale (or stabilized) finite element method is presented. The focus of the numerical examples in this work is on respiratory flows with complete flow reversals. However, the proposed formulation is just as well suited for cardiovascular flow problems with partial retrograde flow. Instabilities, which were reported for such problems in the literature, are resolved by the present approach without requiring the additional consideration of a Lagrange multiplier technique. The suitability of the approach is demonstrated for two respiratory flow examples, a rather simple tube and complex tracheobronchial airways (up to the fourth generation, segmented from end-expiratory CT images). For the latter example, the boundary conditions are generated from mechanical ventilation data obtained from an intensive care unit patient suffering from acute lung injury. For the tube, analytical pressure profiles can be replicated, and for the tracheobronchial airways, a correct distribution of the prescribed total momentum flux at the inflow boundary into velocity and pressure part is observed. PMID:25099458
Internal friction and boundary conditions in lossy fluid seabeds
Deane, G.B.
1997-01-01
There are two distinct mechanisms associated with compressional wave absorption in lossy media, internal relaxation and internal friction. For the special case of propagation in an homogeneous, unbounded medium, both mechanisms can be modeled by adopting the convention of a complex sound speed and are, in this sense, equivalent. For the more realistic case of propagation in a stratified medium, the convention of complex sound speed does not give a correct description for losses which modify the linearized equation of motion, such as internal friction. In the presence of boundaries, internal friction can be modeled by the introduction of a complex quiescent density in addition to complex sound speed. Propagation models which use complex sound speed only in the presence of boundaries make the tacit assumption that seafloor losses are caused by internal relaxations only. A solution is developed for propagation in a lossy Pekeris channel where absorption in the lower fluid is caused by internal friction. The example that has been considered yields a sound level 3 dB less than the standard description over a 50-km path. {copyright} {ital 1997 Acoustical Society of America.}
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Floryan, J. M.
2008-04-01
A fully implicit, spectral algorithm for the analysis of moving boundary problem is described. The algorithm is based on the concept of immersed boundary conditions (IBC), i.e., the computational domain is fixed while the time dependent physical domain is submerged inside the computational domain, and is described in the context of the diffusion-type problems. The physical conditions along the edges of the physical domain are treated as internal constraints. The method eliminates the need for adaptive grid generation that follows evolution of the physical domain and provides sharp resolution of the location of the boundary. Various tests confirm the spectral accuracy in space and the first- and second-order accuracy in time. The computational cost advantage of the IBC method as compared with the more traditional algorithm based on the mapping concept is demonstrated.
Nonlinear Stefan problem with convective boundary condition in Storm's materials
NASA Astrophysics Data System (ADS)
Briozzo, Adriana C.; Natale, Maria F.
2016-04-01
We consider a nonlinear one-dimensional Stefan problem for a semi-infinite material x > 0, with phase change temperature T f . We assume that the heat capacity and the thermal conductivity satisfy a Storm's condition, and we assume a convective boundary condition at the fixed face x = 0. A unique explicit solution of similarity type is obtained. Moreover, asymptotic behavior of the solution when {h→ + ∞} is studied.
Zhang, Honghu
2006-04-01
The acoustical radiosity method is a computationally expensive acoustical simulation algorithm that assumes an enclosure with ideal diffuse reflecting boundaries. Miles observed that for such an enclosure, the sound energy decay of every point on the boundaries will gradually converge to exponential manner with a uniform decay rate. Therefore, the ratio of radiosity between every pair of points on the boundaries will converge to a constant, and the radiosity across the boundaries will approach a fixed distribution during the sound decay process, where radiosity is defined as the acoustic power per unit area leaving (or being received by) a point on a boundary. We call this phenomenon the "relaxation" of the sound field. In this paper, we study the relaxation in rooms of different shapes with different boundary absorptions. Criteria based on the relaxation of the sound field are proposed to terminate the costly and unnecessary radiosity computation in the later phase, which can then be replaced by a fast regression step to speed up the acoustical radiosity simulation. PMID:16642833
On the Huygens absorbing boundary conditions for electromagnetics
Berenger, Jean-Pierre
2007-09-10
A new absorbing boundary condition (ABC) is presented for the solution of Maxwell equations in unbounded spaces. Called the Huygens ABC, this condition is a generalization of two previously published ABCs, namely the multiple absorbing surfaces (MAS) and the re-radiating boundary condition (rRBC). The properties of the Huygens ABC are derived theoretically in continuous spaces and in the finite-difference (FDTD) discretized space. A solution is proposed to render the Huygens ABC effective for the absorption of evanescent waves. Numerical experiments with the FDTD method show that the effectiveness of the Huygens ABC is close to that of the PML ABC in some realistic problems of numerical electromagnetics. It is also shown in the paper that a combination of the Huygens ABC with the PML ABC is very well suited to the solution of some particular problems.
Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.
Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin
2015-01-01
We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735
Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation
Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin
2015-01-01
We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735
Assignment of boundary conditions in embedded ground water flow models
Leake, S.A.
1998-01-01
Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger-scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger.scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.
Pan, Wenxiao; Bao, Jie; Tartakovsky, Alexandre M.
2014-02-15
Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel Continuous Boundary Force (CBF) method is proposed for solving the Navier-Stokes equations subject to Robin boundary condition. In the CBF method, the Robin boundary condition at boundary is replaced by the homogeneous Neumann boundary condition at the boundary and a volumetric force term added to the momentum conservation equation. Smoothed Particle Hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two-dimensional and three-dimensional flows in domains bounded by flat and curved boundaries subject to various forms of the Robin boundary condition. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite element method. Taken the no-slip boundary condition as a special case of slip boundary condition, we demonstrate that the SPH-CBF method describes accurately both no-slip and slip conditions.
NASA Astrophysics Data System (ADS)
Träuble, Markus; Kirchner, Carolina Nunes; Wittstock, Gunther
2007-12-01
The use of the boundary element method (BEM) in simulating steady-state experiments of scanning electrochemical microscopy in feedback mode and in generation-collection mode using complex three dimensional geometries has been shown in previous papers. In the context of generation-collection mode experiments, catalytic reaction mechanisms of immobilized enzymes are of great interest. Due to the catalytic reaction behaviour, which can be described by nonlinear Michaelis-Menten kinetics, the modelling of such systems results in solving a diffusion equation with nonlinear boundary conditions. In this article it is described how such nonlinear reaction mechanisms can be treated with the BEM.
NASA Astrophysics Data System (ADS)
Jung, Narina; Seo, Hae Won; Yoo, Chun Sang
2015-12-01
Two-dimensional (2-D) characteristic boundary conditions (CBC) based on the characteristic analysis are formulated for the lattice Boltzmann methods (LBM). In this approach, the classical locally-one dimensional inviscid (LODI) relations are improved by recovering multi-dimensional effects on flows at open boundaries. The 2-D CBC are extended to a general subsonic flow configuration in the LBM and the effects of the transverse terms are clarified. From the vortex convection and vortex shedding problems, it is verified that the improved CBC shows better performance in accuracy compared to the conventional CBC approaches.
Flux change in viscous laminar flow under oscillating boundary condition
NASA Astrophysics Data System (ADS)
Ueda, R.; Mikada, H.; Goto, T.; Takekawa, J.
2012-12-01
The behavior of interstitial fluid is one of major interest in earth sciences in terms of the exploitation of water resources, the initiation of earthquakes, enhanced oil recovery (EOR), etc. Seismic waves are often known to increase the flux of interstitial fluid but the relationship between the flux and propagating seismic waves have not been well investigated in the past, although seismic stimulation has been applied in the oil industry for enhanced oil recovery (EOR). Many observations indicated that seismic waves could stimulate the oil production due to lowering of apparent viscosity coefficient, to the coalescence and/or the dispersion of droplets of a phase in multiphase fluids. However, the detailed mechanism of seismic stimulation has not been fully understood, either. In this study, We attempt to understand the mechanism of the flux change in viscous laminar flow under oscillating boundary condition for the simulation of interstitial flow. Here, we analyze a monophase flow in a pore throat. We first assume a Hagen-Poiseuille flow of incompressible fluid through a pore-throat in a porous medium. We adopt the Lattice Boltzmann method (LBM) in which the motion of fluid is simulated through the variation of velocity distribution function representing the distribution of discrete particle velocities. We use an improved incompressible LBKG model (d2q9i) proposed in Zou et. al. (1995) to accurately accommodate the boundary conditions of pressure and velocity in the Hagen-Poiseuille flow. We also use an half-way bounce back boundary condition as the velocity boundary condition. Also, we assume a uniform pressure (density) difference between inlet and outlet flow, and the density difference could initiate the flow in our simulation. The oscillating boundary condition is given by the body force acting on fluid particles. In this simulation, we found that the flux change is negligible under small amplitude of oscillation in both horizontal and vertical directions
Nondestructive evaluation of ceramic candle filter with various boundary conditions
Chen, H.L.; Kiriakidis, A.C.
2005-06-01
Nondestructive evaluation (NDE) using a dynamic characterization technique was conducted to study ceramic candle filters. Ceramic candle filters are hollow cylindrical structures made of porous ceramic materials used to protect gas turbine in coal-fired power plants. Deterioration and failure of ceramic filters occurs after being exposed to high-temperature and high-pressure operational environment over a period of time. This paper focuses on the development of an NDE method that can predict the in-situ structural stiffness of the candle filters while still being attached to the plenum. A combination of laboratory testing, theoretical analysis, and finite element method (FEM) simulations are presented. The candle filters were tested using a laser vibrometer/accelerometer setup with variable boundary restraints. A variable end-restraint Timoshenko beam equation was derived to determine the dynamic response of the candle filters with simulated in-situ boundary conditions. Results from the FEM simulation were verified with the analysis to determine the stiffness degradation of the candle filters as well as the boundary conditions. Results from this study show that the vibration characteristics can be used effectively to evaluate both the structural stiffness and the in-situ boundary restraints of the ceramic candle filters during field inspections.
MULTIRESOLUTION REPRESENTATION OF OPERATORS WITH BOUNDARY CONDITIONS ON SIMPLE DOMAINS
Beylkin, Gregory; Fann, George I; Harrison, Robert J; Kurcz, Christopher E; Monzon, Lucas A
2011-01-01
We develop a multiresolution representation of a class of integral operators satisfying boundary conditions on simple domains in order to construct fast algorithms for their application. We also elucidate some delicate theoretical issues related to the construction of periodic Green s functions for Poisson s equation. By applying the method of images to the non-standard form of the free space operator, we obtain lattice sums that converge absolutely on all scales, except possibly on the coarsest scale. On the coarsest scale the lattice sums may be only conditionally convergent and, thus, allow for some freedom in their definition. We use the limit of square partial sums as a definition of the limit and obtain a systematic, simple approach to the construction (in any dimension) of periodized operators with sparse non-standard forms. We illustrate the results on several examples in dimensions one and three: the Hilbert transform, the projector on divergence free functions, the non-oscillatory Helmholtz Green s function and the Poisson operator. Remarkably, the limit of square partial sums yields a periodic Poisson Green s function which is not a convolution. Using a short sum of decaying Gaussians to approximate periodic Green s functions, we arrive at fast algorithms for their application. We further show that the results obtained for operators with periodic boundary conditions extend to operators with Dirichlet, Neumann, or mixed boundary conditions.
Seo, Jung Hee; Mittal, Rajat
2010-01-01
A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129
Hyporheic exchange controlled by dynamic hydrologic boundary conditions
NASA Astrophysics Data System (ADS)
Schmadel, Noah M.; Ward, Adam S.; Lowry, Christopher S.; Malzone, Jonathan M.
2016-05-01
The relative roles of dynamic hydrologic forcing and geomorphology as controls on the timescales and magnitudes of stream-aquifer exchange and hyporheic flow paths are unknown but required for management of stream corridors. We developed a comprehensive framework relating diel hydrologic fluctuations to hyporheic exchange in the absence of geomorphic complexity. We simulated groundwater flow through an aquifer bounded by a straight stream and hillslope and under time-varying boundary conditions. We found that diel fluctuations can produce hyporheic flow path lengths and residence times that span orders of magnitude. With these results, hyporheic flow path residence times and lengths can be predicted from the timing and magnitude of diel fluctuations and valley slope. Finally, we demonstrated that dynamic hydrologic boundary conditions can produce spatial and temporal scales of hyporheic flow paths equivalent to those driven by many well-studied geomorphic features, indicating that these controls must be considered together in future efforts of upscaling to stream networks.
New boundary conditions for AdS3
NASA Astrophysics Data System (ADS)
Compère, Geoffrey; Song, Wei; Strominger, Andrew
2013-05-01
New chiral boundary conditions are found for quantum gravity with matter on AdS3. The associated asymptotic symmetry group is generated by a single right-moving U(1) Kac-Moody-Virasoro algebra with {c_R}={3ℓ}/2G . The Kac-Moody zero mode generates global left-moving translations and equals, for a BTZ black hole, the sum of the total mass and spin. The level is positive about the global vacuum and negative in the black hole sector, corresponding to ergosphere formation. Realizations arising in Chern-Simons gravity and string theory are analyzed. The new boundary conditions are shown to naturally arise for warped AdS3 in the limit that the warp parameter is taken to zero.
Bond chaos in spin glasses revealed through thermal boundary conditions
NASA Astrophysics Data System (ADS)
Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut G.
2016-06-01
Spin glasses have competing interactions that lead to a rough energy landscape which is highly susceptible to small perturbations. These chaotic effects strongly affect numerical simulations and, as such, gaining a deeper understanding of chaos in spin glasses is of much importance. The use of thermal boundary conditions is an effective approach to study chaotic phenomena. Here we generalize population annealing Monte Carlo, combined with thermal boundary conditions, to study bond chaos due to small perturbations in the spin-spin couplings of the three-dimensional Edwards-Anderson Ising spin glass. We show that bond and temperature-induced chaos share the same scaling exponents and that bond chaos is stronger than temperature chaos.
A Boundary Condition for Simulation of Flow Over Porous Surfaces
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Bonhaus, Daryl L.; Vatsa, Veer N.; Bauer, Steven X. S.; Tinetti, Ana F.
2001-01-01
A new boundary condition is presented.for simulating the flow over passively porous surfaces. The model builds on the prior work of R.H. Bush to eliminate the need for constructing grid within an underlying plenum, thereby simplifying the numerical modeling of passively porous flow control systems and reducing computation cost. Code experts.for two structured-grid.flow solvers, TLNS3D and CFL3D. and one unstructured solver, USM3Dns, collaborated with an experimental porosity expert to develop the model and implement it into their respective codes. Results presented,for the three codes on a slender forebody with circumferential porosity and a wing with leading-edge porosity demonstrate a good agreement with experimental data and a remarkable ability to predict the aggregate aerodynamic effects of surface porosity with a simple boundary condition.
Revisiting Johnson and Jackson boundary conditions for granular flows
Li, Tingwen; Benyahia, Sofiane
2012-07-01
In this article, we revisit Johnson and Jackson boundary conditions for granular flows. The oblique collision between a particle and a flat wall is analyzed by adopting the classic rigid-body theory and a more realistic semianalytical model. Based on the kinetic granular theory, the input parameter for the partial-slip boundary conditions, specularity coefficient, which is not measurable in experiments, is then interpreted as a function of the particle-wall restitution coefficient, the frictional coefficient, and the normalized slip velocity at the wall. An analytical expression for the specularity coefficient is suggested for a flat, frictional surface with a low frictional coefficient. The procedure for determining the specularity coefficient for a more general problem is outlined, and a working approximation is provided.
Zhao, Shan; Wei, G. W.
2010-01-01
SUMMARY High-order central finite difference schemes encounter great difficulties in implementing complex boundary conditions. This paper introduces the matched interface and boundary (MIB) method as a novel boundary scheme to treat various general boundary conditions in arbitrarily high-order central finite difference schemes. To attain arbitrarily high order, the MIB method accurately extends the solution beyond the boundary by repeatedly enforcing only the original set of boundary conditions. The proposed approach is extensively validated via boundary value problems, initial-boundary value problems, eigenvalue problems, and high-order differential equations. Successful implementations are given to not only Dirichlet, Neumann, and Robin boundary conditions, but also more general ones, such as multiple boundary conditions in high-order differential equations and time-dependent boundary conditions in evolution equations. Detailed stability analysis of the MIB method is carried out. The MIB method is shown to be able to deliver high-order accuracy, while maintaining the same or similar stability conditions of the standard high-order central difference approximations. The application of the proposed MIB method to the boundary treatment of other non-standard high-order methods is also considered. PMID:20485574
Entropy of bosonic open string and boundary conditions
NASA Astrophysics Data System (ADS)
Abdalla, M. C. B.; Graça, E. L.; Vancea, I. V.
2002-05-01
The entropy of the states associated to the solutions of the equations of motion of the bosonic open string with combinations of Neumann and Dirichlet boundary conditions is given. Also, the entropy of the string in the states Ai>=αi-10> and φa>=αa- 10> that describe the massless fields on the world-volume of the /Dp-brane is computed.
Stability analysis of intermediate boundary conditions in approximate factorization schemes
NASA Technical Reports Server (NTRS)
South, J. C., Jr.; Hafez, M. M.; Gottlieb, D.
1986-01-01
The paper discusses the role of the intermediate boundary condition in the AF2 scheme used by Holst for simulation of the transonic full potential equation. It is shown that the treatment suggested by Holst led to a restriction on the time step and ways to overcome this restriction are suggested. The discussion is based on the theory developed by Gustafsson, Kreiss, and Sundstrom and also on the von Neumann method.
Probabilistic flood hazard mapping: effects of uncertain boundary conditions
NASA Astrophysics Data System (ADS)
Domeneghetti, A.; Vorogushyn, S.; Castellarin, A.; Merz, B.; Brath, A.
2013-08-01
Comprehensive flood risk assessment studies should quantify the global uncertainty in flood hazard estimation, for instance by mapping inundation extents together with their confidence intervals. This appears of particular importance in the case of flood hazard assessments along dike-protected reaches, where the possibility of occurrence of dike failures may considerably enhance the uncertainty. We present a methodology to derive probabilistic flood maps in dike-protected flood prone areas, where several sources of uncertainty are taken into account. In particular, this paper focuses on a 50 km reach of River Po (Italy) and three major sources of uncertainty in hydraulic modelling and flood mapping: uncertainties in the (i) upstream and (ii) downstream boundary conditions, and (iii) uncertainties in dike failures. Uncertainties in the definition of upstream boundary conditions (i.e. design-hydrographs) are assessed through a copula-based bivariate analysis of flood peaks and volumes. Uncertainties in the definition of downstream boundary conditions are characterised by uncertainty in the rating curve with confidence intervals which reflect discharge measurement and interpolation errors. The effects of uncertainties in boundary conditions and randomness of dike failures are assessed by means of the Inundation Hazard Assessment Model (IHAM), a recently proposed hybrid probabilistic-deterministic model that considers three different dike failure mechanisms: overtopping, piping and micro-instability due to seepage. The results of the study show that the IHAM-based analysis enables probabilistic flood hazard mapping and provides decision-makers with a fundamental piece of information for devising and implementing flood risk mitigation strategies in the presence of various sources of uncertainty.
Some results for the primitive equations with physical boundary conditions
NASA Astrophysics Data System (ADS)
Evans, Lawrence Christopher; Gastler, Robert
2013-12-01
In this paper, we consider the (simplified) 3-dimensional primitive equations with physical boundary conditions. We show that the equations with constant forcing have a bounded absorbing ball in the H 1-norm and that a solution to the unforced equations has its H 1-norm decay to 0. From this, we argue that there exists an invariant measure (on H 1) for the equations under random kick-forcing.
Slarti: A boundary condition editor for a coupled climate model
NASA Astrophysics Data System (ADS)
Mickelson, S. A.; Jacob, R. L.; Pierrehumbert, R.
2006-12-01
One of the largest barriers to making climate models more flexible is the difficulty in creating new boundary conditions, especially for "deep time" paleoclimate cases where continents are in different positions. Climate models consist of several mutually-interacting component models and the boundary conditions must be consistent between them. We have developed a program called Slarti which uses a Graphical User Interface and a set of consistency rules to aid researchers in creating new, consistent, boundary condition files for the Fast Ocean Atmosphere Model (FOAM). Users can start from existing mask, topography, or bathymetry data or can build a "world" entirely from scratch (e.g. a single island continent). Once a case has been started, users can modify mask, vegetation, bathymetry, topography, and river flow fields by drawing new data through a "paint" interface. Users activate a synchronization button which goes through the fields to eliminate inconsistencies. When the changes are complete and save is selected, Slarti creates all the necessary files for an initial run of FOAM. The data is edited at the highest resolution (the ocean-land surface in FOAM) and then interpolated to the atmosphere resolution. Slarti was implemented in Java to maintain portability across platforms. We also relied heavily on Java Swing components to create the interface. This allowed us to create an object-oriented interface that could be used on many different systems. Since Slarti allows users to visualize their changes, they are able to see areas that may cause problems when the model is ran. Some examples would be lakes from the river flow field and narrow trenches within the bathymetry. Through different checks and options available through its interface, Slarti makes the process of creating new boundary conditions for FOAM easier and faster while reducing the chance for user errors.
Artificial Boundary Conditions for Computation of Oscillating External Flows
NASA Technical Reports Server (NTRS)
Tsynkov, S. V.
1996-01-01
In this paper, we propose a new technique for the numerical treatment of external flow problems with oscillatory behavior of the solution in time. Specifically, we consider the case of unbounded compressible viscous plane flow past a finite body (airfoil). Oscillations of the flow in time may be caused by the time-periodic injection of fluid into the boundary layer, which in accordance with experimental data, may essentially increase the performance of the airfoil. To conduct the actual computations, we have to somehow restrict the original unbounded domain, that is, to introduce an artificial (external) boundary and to further consider only a finite computational domain. Consequently, we will need to formulate some artificial boundary conditions (ABC's) at the introduced external boundary. The ABC's we are aiming to obtain must meet a fundamental requirement. One should be able to uniquely complement the solution calculated inside the finite computational domain to its infinite exterior so that the original problem is solved within the desired accuracy. Our construction of such ABC's for oscillating flows is based on an essential assumption: the Navier-Stokes equations can be linearized in the far field against the free-stream back- ground. To actually compute the ABC's, we represent the far-field solution as a Fourier series in time and then apply the Difference Potentials Method (DPM) of V. S. Ryaben'kii. This paper contains a general theoretical description of the algorithm for setting the DPM-based ABC's for time-periodic external flows. Based on our experience in implementing analogous ABC's for steady-state problems (a simpler case), we expect that these boundary conditions will become an effective tool for constructing robust numerical methods to calculate oscillatory flows.
Shear rupture under constant normal stiffness boundary conditions
NASA Astrophysics Data System (ADS)
Bewick, R. P.; Kaiser, P. K.; Bawden, W. F.
2014-11-01
A grain based Distinct Element Method and its embedded Grain Based Method are used to simulate the fracturing processes leading to shear rupture zone creation in a calibrated massive (non-jointed) brittle rock specimen deformed in direct shear under constant normal stiffness boundary conditions. Under these boundary conditions, shear rupture zone creation relative to the shear stress versus applied horizontal displacement (load-displacement) curve occurs pre-peak, before the maximum peak shear strength is reached. This is found to be the result of a normal stress feedback process caused by the imposed shear displacement which couples increases in normal stress, due to rupture zone dilation, with shear stress, producing a complex normal-shear stress-path that reaches and then follows the rock's yield (strength) envelope. While the yield envelope is followed, the shear strength increases further and shear stress oscillations (repeated stress drops followed by re-strengthening periods) in the load-displacement curves occur due to fracture creation as the rupture zone geometry smoothens. Once the maximum peak strength is reached (after a series of shear stress oscillations) the largest stress drops occur as the ultimate or residual shear strength is approached. The simulation results provide insight into the fracturing process during rupture zone creation and improve the understanding of the shear stress versus applied horizontal displacement response, as well as the stick-slip behaviour of shear rupture zones that are being created under constant normal stiffness boundary conditions.
Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine
Ziminsky, Willy Steve; Krull, Anthony Wayne; Healy, Timothy Andrew , Yilmaz, Ertan
2011-05-17
A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.
Permeable wall boundary conditions for transonic airfoil design
NASA Astrophysics Data System (ADS)
Leonard, O.; van den Braembussche, R.
This paper describes a method for the design of airfoils with prescribed Mach number or static pressure distribution along both the suction and pressure sides. The method consists of an iterative procedure, in which the final geometry is obtained through successive modifications of an existing shape. Each modification is computed by solving the Euler equations using permeable wall boundary conditions, in which the required Mach number distribution can be imposed on the airfoil wall. Since the classical slip condition is no longer imposed, the resulting flow is not tangent to the wall. A new geometry is created using this normal velocity component and a transpiration method.
Solitons induced by boundary conditions from the Boussinesq equation
NASA Technical Reports Server (NTRS)
Chou, Ru Ling; Chu, C. K.
1990-01-01
The behavior of solitons induced by boundary excitation is investigated at various time-dependent conditions and different unperturbed water depths, using the Korteweg-de Vries (KdV) equation. Then, solitons induced from Boussinesq equations under similar conditions were studied, making it possible to remove the restriction in the KdV equation and to treat soliton head-on collisions (as well as overtaking collisions) and reflections. It is found that the results obtained from the KdV and the Boussinesq equations are in good agreement.
High Energy Boundary Conditions for a Cartesian Mesh Euler Solver
NASA Technical Reports Server (NTRS)
Pandya, Shishir A.; Murman, Scott M.; Aftosmis, Michael J.
2004-01-01
Inlets and exhaust nozzles are often omitted or fared over in aerodynamic simulations of aircraft due to the complexities involving in the modeling of engine details such as complex geometry and flow physics. However, the assumption is often improper as inlet or plume flows have a substantial effect on vehicle aerodynamics. A tool for specifying inlet and exhaust plume conditions through the use of high-energy boundary conditions in an established inviscid flow solver is presented. The effects of the plume on the flow fields near the inlet and plume are discussed.
NASA Astrophysics Data System (ADS)
Jaensch, S.; Sovardi, C.; Polifke, W.
2016-06-01
The accurate simulation of compressible flows requires the appropriate modeling of the reflection of acoustic waves at the boundaries. In the present study we discuss time domain impedance boundary conditions (TDIBC). The formulation proposed allows to impose a desired reflection coefficient at the inflow and outflow boundaries. Our formulation is an extension of the well known Navier-Stokes characteristic boundary conditions. The frequency dependent reflections at the boundaries are implemented with a state-space model in the time domain. We provide a comprehensive discussion on how such state-space models can be constructed and interpreted. This discussion shows that the state-space description allows a robust and flexible implementation. It allows to consider complex reflection coefficients and account for non-constant CFD time steps in a straight forward manner. Furthermore, we prove analytically and demonstrate numerically that the formulation proposed is consistent, i.e. the formulation ensures that the flow simulation exhibits the reflection coefficient imposed accurately, as long as the waves impinging on the boundary are plane, and it prohibits drift of the mean flow variables. Finally, the boundary conditions are tested successfully for laminar and turbulent flows.
Inflow/Outflow Boundary Conditions with Application to FUN3D
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee
2011-01-01
Several boundary conditions that allow subsonic and supersonic flow into and out of the computational domain are discussed. These boundary conditions are demonstrated in the FUN3D computational fluid dynamics (CFD) code which solves the three-dimensional Navier-Stokes equations on unstructured computational meshes. The boundary conditions are enforced through determination of the flux contribution at the boundary to the solution residual. The boundary conditions are implemented in an implicit form where the Jacobian contribution of the boundary condition is included and is exact. All of the flows are governed by the calorically perfect gas thermodynamic equations. Three problems are used to assess these boundary conditions. Solution residual convergence to machine zero precision occurred for all cases. The converged solution boundary state is compared with the requested boundary state for several levels of mesh densities. The boundary values converged to the requested boundary condition with approximately second-order accuracy for all of the cases.
Distributed acoustic fibre optic sensors for condition monitoring of pipelines
NASA Astrophysics Data System (ADS)
Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina
2016-05-01
Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.
Immersed boundary conditions method for computational fluid dynamics problems
NASA Astrophysics Data System (ADS)
Husain, Syed Zahid
This dissertation presents implicit spectrally-accurate algorithms based on the concept of immersed boundary conditions (IBC) for solving a range of computational fluid dynamics (CFD) problems where the physical domains involve boundary irregularities. Both fixed and moving irregularities are considered with particular emphasis placed on the two-dimensional moving boundary problems. The physical model problems considered are comprised of the Laplace operator, the biharmonic operator and the Navier-Stokes equations, and thus cover the most commonly encountered types of operators in CFD analyses. The IBC algorithm uses a fixed and regular computational domain with flow domain immersed inside the computational domain. Boundary conditions along the edges of the time-dependent flow domain enter the algorithm in the form of internal constraints. Spectral spatial discretization for two-dimensional problems is based on Fourier expansions in the stream-wise direction and Chebyshev expansions in the normal-to-the-wall direction. Up to fourth-order implicit temporal discretization methods have been implemented. The IBC algorithm is shown to deliver the theoretically predicted accuracy in both time and space. Construction of the boundary constraints in the IBC algorithm provides degrees of freedom in excess of that required to formulate a closed system of algebraic equations. The 'classical IBC formulation' works by retaining number boundary constraints that are just sufficient to form a closed system of equations. The use of additional boundary constraints leads to the 'over-determined formulation' of the IBC algorithm. Over-determined systems are explored in order to improve the accuracy of the IBC method and to expand its applicability to more extreme geometries. Standard direct over-determined solvers based on evaluation of pseudo-inverses of the complete coefficient matrices have been tested on three model problems, namely, the Laplace equation, the biharmonic equation
Equilibration and generalized Gibbs ensemble for hard wall boundary conditions
NASA Astrophysics Data System (ADS)
Goldstein, Garry; Andrei, Natan
2015-10-01
In this work we present an analysis of a quench for the repulsive Lieb-Liniger gas confined to a large box with hard wall boundary conditions. We study the time average of local correlation functions and show that both the quench action approach and the generalized Gibbs ensemble formalism are applicable for the long-time average of local correlation functions. We find that the time average of the system corresponds to an eigenstate of the Lieb-Liniger Hamiltonian and that this eigenstate is related to an eigenstate of a Lieb-Liniger Hamiltonian with periodic boundary conditions on an interval of twice the length and with twice as many particles (a doubled system). We further show that local operators with support far away from the boundaries of the hard wall have the same expectation values with respect to this eigenstate as corresponding operators for the doubled system. We present an example of a quench where the gas is initially confined in several moving traps and then released into a bigger container, an approximate description of the Newton's cradle experiment. We calculate the time average of various correlation functions for long times after the quench.
Electrostatics of solvated systems in periodic boundary conditions
NASA Astrophysics Data System (ADS)
Andreussi, Oliviero; Marzari, Nicola
2014-12-01
Continuum solvation methods can provide an accurate and inexpensive embedding of quantum simulations in liquid or complex dielectric environments. Notwithstanding a long history and manifold applications to isolated systems in open boundary conditions, their extension to materials simulations, typically entailing periodic boundary conditions, is very recent, and special care is needed to address correctly the electrostatic terms. We discuss here how periodic boundary corrections developed for systems in vacuum should be modified to take into account solvent effects, using as a general framework the self-consistent continuum solvation model developed within plane-wave density-functional theory [O. Andreussi et al., J. Chem. Phys. 136, 064102 (2012), 10.1063/1.3676407]. A comprehensive discussion of real- and reciprocal-space corrective approaches is presented, together with an assessment of their ability to remove electrostatic interactions between periodic replicas. Numerical results for zero- and two-dimensional charged systems highlight the effectiveness of the different suggestions, and underline the importance of a proper treatment of electrostatic interactions in first-principles studies of charged systems in solution.
Study on plate silencer with general boundary conditions
NASA Astrophysics Data System (ADS)
Liu, Gongmin; Zhao, Xiaochen; Zhang, Wenping; Li, Shuaijun
2014-09-01
A plate silencer consists of an expansion chamber with two side-branch rigid cavities covered by plates. Previous studies showed that, in a duct, the introduction of simply supported or clamped plates into an air conveying system could achieve broadband quieting from low to medium frequencies. In this study, analytical formulation is extended to the plate silencer with general boundary conditions. A set of static beam functions, which are a combination of sine series and third-order polynomial, is employed as the trial functions of the plate vibration velocity. Greens function and Kirchhoff-Helmholtz integral are used to solve the sound radiation in the duct and the cavity, and then the vibration velocity of the plate is obtained. Having obtained the vibration velocity, the pressure perturbations induced by the plate oscillation and the transmission loss are found. Optimization is carried out in order to obtain the widest stopband. The transmission loss calculated by the analytical method agrees closely with the result of the finite element method simulation. Further studies with regard to the plate under several different classical boundary conditions based on the validated model show that a clamped-free plate silencer has the worst stopband. Attempts to release the boundary restriction of the plate are also made to study its effect on sound reflection. Results show that a softer end for a clamped-clamped plate silencer helps increase the optimal bandwidth, while the same treatment for simply supported plate silencer will result in performance degradation.
Boundary conditions towards realistic simulation of jet engine noise
NASA Astrophysics Data System (ADS)
Dhamankar, Nitin S.
Strict noise regulations at major airports and increasing environmental concerns have made prediction and attenuation of jet noise an active research topic. Large eddy simulation coupled with computational aeroacoustics has the potential to be a significant research tool for this problem. With the emergence of petascale computer clusters, it is now computationally feasible to include the nozzle geometry in jet noise simulations. In high Reynolds number experiments on jet noise, the turbulent boundary layer on the inner surface of the nozzle separates into a turbulent free shear layer. Inclusion of a nozzle with turbulent inlet conditions is necessary to simulate this phenomenon realistically. This will allow a reasonable comparison of numerically computed noise levels with the experimental results. Two viscous wall boundary conditions are implemented for modeling the nozzle walls. A characteristic-based approach is compared with a computationally cheaper, extrapolation-based formulation. In viscous flow over a circular cylinder under two different regimes, excellent agreement is observed between the results of the two approaches. The results agree reasonably well with reference experimental and numerical results. Both the boundary conditions are thus found to be appropriate, the extrapolation-based formulation having an edge with its low cost. This is followed with the crucial step of generation of a turbulent boundary layer inside the nozzle. A digital filter-based turbulent inflow condition, extended in a new way to non-uniform curvilinear grids is implemented to achieve this. A zero pressure gradient flat plate turbulent boundary layer is simulated at a high Reynolds number to show that the method is capable of producing sustained turbulence. The length of the adjustment region necessary for synthetic inlet turbulence to recover from modeling errors is estimated. A low Reynolds number jet simulation including a round nozzle geometry is performed and the method
Applying twisted boundary conditions for few-body nuclear systems
NASA Astrophysics Data System (ADS)
Körber, Christopher; Luu, Thomas
2016-05-01
We describe and implement twisted boundary conditions for the deuteron and triton systems within finite volumes using the nuclear lattice EFT formalism. We investigate the finite-volume dependence of these systems with different twist angles. We demonstrate how various finite-volume information can be used to improve calculations of binding energies in such a framework. Our results suggests that with appropriate twisting of boundaries, infinite-volume binding energies can be reliably extracted from calculations using modest volume sizes with cubic length L ≈8 -14 fm. Of particular importance is our derivation and numerical verification of three-body analogs of "i-periodic" twist angles that eliminate the leading-order finite-volume effects to the three-body binding energy.
Functions with constant Laplacian satisfying homogeneous Robin boundary conditions
NASA Astrophysics Data System (ADS)
Keady, Grant; McNabb, Alex
1993-01-01
The authors study properties of real-valued functions u defined over {Omega}, a simply-connected domain in RN for which the Laplacian of u is constant in {Omega}, and which satisfy, on the boundary of {Omega}, the Robin boundary condition u+{beta}({partial}u/{partial}n)=0. Here n is the outward normal and {beta}[≥]0. When N=2 and {beta}=0, this is the classical St Venant torsion problem, but the concern in this paper is with N[≥]2 and {beta}[≥]0. Results concerning the magnitude um and location zm of the maximum value of u, and estimates for the functional S{beta}={int}{Omega}u, and the maxima pm and qm of |{nabla}u| and |{partial}u/{partial}n|, respectively, are established using comparison theorems and variational arguments.
Structural Anisotropy in Polar Fluids Subjected to Periodic Boundary Conditions
2011-01-01
A heuristic model based on dielectric continuum theory for the long-range solvation free energy of a dipolar system possessing periodic boundary conditions (PBCs) is presented. The predictions of the model are compared to simulation results for Stockmayer fluids simulated using three different cell geometries. The boundary effects induced by the PBCs are shown to lead to anisotropies in the apparent dielectric constant and the long-range solvation free energy of as much as 50%. However, the sum of all of the anisotropic energy contributions yields a value that is very close to the isotropic one derived from dielectric continuum theory, leading to a total system energy close to the dielectric value. It is finally shown that the leading-order contribution to the energetic and structural anisotropy is significantly smaller in the noncubic simulation cell geometries compared to when using a cubic simulation cell. PMID:22303290
Three dimensional dynamics of rotating structures under mixed boundary conditions
NASA Astrophysics Data System (ADS)
Bediz, Bekir; Romero, L. A.; Ozdoganlar, O. Burak
2015-12-01
This paper presents the spectral-Tchebychev (ST) technique for solution of three dimensional (3D) dynamics of rotating structures. In particular, structures that exhibit coupled dynamic response require a 3D modeling approach to capture their dynamic behavior. Rotational motions further complicate this behavior, inducing coriolis, centrifugal softening, and (nonlinear) stress-stiffening effects. Therefore, a 3D solution approach is needed to accurately capture the rotational dynamics. The presented 3D-ST technique provides a fast-converging and precise solution approach for rotational dynamics of structures with complex geometries and mixed boundary conditions. Specifically, unlike finite elements techniques, the presented technique uses a series expansion approach considering distributed-parameter system equations: The integral boundary value problem for rotating structures is discretized using the spectral-Tchebychev approach. To simplify the domain of the structures, cross-sectional and rotational transformations are applied to problems with curved cross-section and pretwisted geometry. The nonlinear terms included in the integral boundary value problem are linearized around an equilibrium solution using the quasi-static method. As a result, mass, damping, and stiffness matrices, as well as a forcing vector, are obtained for a given rotating structure. Several case studies are then performed to demonstrate the application and effectiveness of the 3D-ST solution. For each problem, the natural frequencies and modes shapes from the 3D-ST solution are compared to those from the literature (when available) and to those from a commercial finite elements software. The case studies include rotating/spinning parallelepipeds under free and mixed boundary conditions, and a cantilevered pretwisted beam (i.e., rotating blade) with an airfoil geometry rotating on a hub. It is seen that the natural frequencies and mode shapes from the 3D-ST technique differ from those from the
The dielectric boundary condition for the embedded curved boundary (ECB) method
Hewwitt, D. W., LLNL
1998-01-26
A new version of ECB has been completed that allows nonuniform grid spacing and a new dieledric boundary condition. ECB was developed to retain the simplicity and speed of an orthogonal mesh while capturing much of the fidelity of adaptive, unstructured finite element meshes. Codes based on orthogonal meshes are easy to work with and lead to well-posed elliptic and parabolic problems that are comparatively easy to solve. Generally, othogonal mesh representations lead to banded matrices while unstructured representations lead to more complicated sparse matrices. Recent advances in adapting banded linear systems to massively parallel computers reinforce our opinion that iterative field solutions utilizing banded matrix methods will continue to be competitive. Unfortunately, the underlying ``stair-step`` boundary representation in simple orthogonal mesh (and recent Adaptive Mesh Refinement) applications is inadequate. With ECB, the curved boundary is represented by piece-wise-linear representations of curved internal boundaries embedded into the orthogonal mesh- we build better, but not more, coefficients in the vicinity of these boundaries-and we use the surplus free energy on more ambitious physics models. ECB structures are constructed out of the superposition of analytically prescribed building blocks. In 2-D, we presently use a POLY4 (linear boundaries defined by 4 end points), an ANNULUS, (center, inner & outer radii, starting & stopping angle), a ROUND (starting point & angle, stopping point & angle, fillet radius). A link-list AIRFOIL has also been constructed. In the ECB scheme, we first find each intercept of the structure boundary with an I or J grid line is assigned an index K. We store the actual z,y value at the intercept, and the slope of the boundary at that intercept, in arrays whose index K is associated with the corresponding mesh point just inside the structure. In 2-D, a point just outside a structure may have up to 4 intercepts associated with it
Receptivity of hypersonic boundary layer due to fast-slow acoustics interaction
NASA Astrophysics Data System (ADS)
Gao, Jun; Luo, Ji-Sheng; Wu, Xue-Song
2015-12-01
The objective of receptivity is to investigate the mechanisms by which external disturbances generate unstable waves. In hypersonic boundary layers, a new receptivity process is revealed, which is that fast and slow acoustics through nonlinear interaction can excite the second mode near the lower-branch of the second mode. They can generate a sum-frequency disturbance though nonlinear interaction, which can excite the second mode. This receptivity process is generated by the nonlinear interaction and the nonparallel nature of the boundary layer. The receptivity coefficient is sensitive to the wavenumber difference between the sum-frequency disturbance and the lower-branch second mode. When the wavenumber difference is zero, the receptivity coefficient is maximum. The receptivity coefficient decreases with the increase of the wavenumber difference. It is also found that the evolution of the sum-frequency disturbance grows linearly in the beginning. It indicates that the forced term generated by the sum-frequency disturbance resonates with the second mode.
NASA Technical Reports Server (NTRS)
Hu, Fang Q.; Pizzo, Michelle E.; Nark, Douglas M.
2016-01-01
Based on the time domain boundary integral equation formulation of the linear convective wave equation, a computational tool dubbed Time Domain Fast Acoustic Scattering Toolkit (TD-FAST) has recently been under development. The time domain approach has a distinct advantage that the solutions at all frequencies are obtained in a single computation. In this paper, the formulation of the integral equation, as well as its stabilization by the Burton-Miller type reformulation, is extended to cases of a constant mean flow in an arbitrary direction. In addition, a "Source Surface" is also introduced in the formulation that can be employed to encapsulate regions of noise sources and to facilitate coupling with CFD simulations. This is particularly useful for applications where the noise sources are not easily described by analytical source terms. Numerical examples are presented to assess the accuracy of the formulation, including a computation of noise shielding by a thin barrier motivated by recent Historical Baseline F31A31 open rotor noise shielding experiments. Furthermore, spatial resolution requirements of the time domain boundary element method are also assessed using point per wavelength metrics. It is found that, using only constant basis functions and high-order quadrature for surface integration, relative errors of less than 2% may be obtained when the surface spatial resolution is 5 points-per-wavelength (PPW) or 25 points-per-wavelength squared (PPW2).
Krylov subspace iterative methods for boundary element method based near-field acoustic holography.
Valdivia, Nicolas; Williams, Earl G
2005-02-01
The reconstruction of the acoustic field for general surfaces is obtained from the solution of a matrix system that results from a boundary integral equation discretized using boundary element methods. The solution to the resultant matrix system is obtained using iterative regularization methods that counteract the effect of noise on the measurements. These methods will not require the calculation of the singular value decomposition, which can be expensive when the matrix system is considerably large. Krylov subspace methods are iterative methods that have the phenomena known as "semi-convergence," i.e., the optimal regularization solution is obtained after a few iterations. If the iteration is not stopped, the method converges to a solution that generally is totally corrupted by errors on the measurements. For these methods the number of iterations play the role of the regularization parameter. We will focus our attention to the study of the regularizing properties from the Krylov subspace methods like conjugate gradients, least squares QR and the recently proposed Hybrid method. A discussion and comparison of the available stopping rules will be included. A vibrating plate is considered as an example to validate our results. PMID:15759691
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Ng, Lian; Streett, Craig
1995-01-01
The boundary layer receptivity to free-stream acoustic waves in the presence of localized surface disturbances is studied for the case of incompressible Falkner-Skan flows with adverse pressure gradients. These boundary layers are unstable to both viscous and inviscid (i.e., inflectional) modes, and the finite Reynolds number extension of the Goldstein-Ruban theory provides a convenient method to compare the efficiency of the localized receptivity processes in these two cases. The value of the efficiency function related to the receptivity caused by localized distortions in surface geometry is relatively insensitive to the type of instability mechanism, provided that the same reference length scale is used to normalize the efficiency function for each type of instability. In contrast, when the receptivity is induced by variations in wall suction velocity or in wall admittance distribution, the magnitudes of the related efficiency functions, as well as the resulting coupling coefficients, are smaller for inflectional (i.e., Rayleigh) modes than for the viscous Tollmien-Schlichting waves. The reduced levels of receptivity can be attributed mainly to the shorter wavelengths and higher frequencies of the inflectional modes. Because the most critical band of frequencies shifts toward higher values, the overall efficiency of the wall suction- and the wall admittance-induced receptivity decreases with an increase in the adverse pressure gradient.
Towards Multiphase Periodic Boundary Conditions with Flow Rate Constraint
NASA Astrophysics Data System (ADS)
Sawko, Robert; Thompson, Chris P.
2011-09-01
This paper presents the development of a solver for a two-phase, stratified flow with periodic boundary conditions. Governing equations are supplemented with a specification of constant mass fluxes for each phase. The method allows an estimate steady state phase fraction and pressure drop in the streamwise direction. The analytical solution for two-phase laminar flow is presented and serves as a validation of the numerical technique. For turbulent conditions, Reynolds-Averaged Navier-Stokes equations are employed and closed with a two-equation model. Experimental data is taken as a reference for the purpose of validation. In both flow conditions the method delivers accurate results although in the case of turbulent flow it requires the specification of interfacial viscosity showing that a direct generalisation of two-equation model is unsatisfactory. Further research avenues are outlined.
Livshits, Gideon I.
2014-02-15
Superpotentials offer a direct means of calculating conserved charges associated with the asymptotic symmetries of space-time. Yet superpotentials have been plagued with inconsistencies, resulting in nonphysical or incongruent values for the mass, angular momentum, and energy loss due to radiation. The approach of Regge and Teitelboim, aimed at a clear Hamiltonian formulation with a boundary, and its extension to the Lagrangian formulation by Julia and Silva have resolved these issues, and have resulted in a consistent, well-defined and unique variational equation for the superpotential, thereby placing it on a firm footing. A hallmark solution of this equation is the KBL superpotential obtained from the first-order Lovelock Lagrangian. Nevertheless, here we show that these formulations are still insufficient for Lovelock Lagrangians of higher orders. We present a paradox, whereby the choice of fields affects the superpotential for equivalent on-shell dynamics. We offer two solutions to this paradox: either the original Lagrangian must be effectively renormalized, or that boundary conditions must be imposed, so that space-time be asymptotically maximally symmetric. Non-metricity is central to this paradox, and we show how quadratic non-metricity in the bulk of space-time contributes to the conserved charges on the boundary, where it vanishes identically. This is a realization of the gravitational Higgs mechanism, proposed by Percacci, where the non-metricity is the analogue of the Goldstone boson.
NASA Astrophysics Data System (ADS)
Livshits, Gideon I.
2014-02-01
Superpotentials offer a direct means of calculating conserved charges associated with the asymptotic symmetries of space-time. Yet superpotentials have been plagued with inconsistencies, resulting in nonphysical or incongruent values for the mass, angular momentum, and energy loss due to radiation. The approach of Regge and Teitelboim, aimed at a clear Hamiltonian formulation with a boundary, and its extension to the Lagrangian formulation by Julia and Silva have resolved these issues, and have resulted in a consistent, well-defined and unique variational equation for the superpotential, thereby placing it on a firm footing. A hallmark solution of this equation is the KBL superpotential obtained from the first-order Lovelock Lagrangian. Nevertheless, here we show that these formulations are still insufficient for Lovelock Lagrangians of higher orders. We present a paradox, whereby the choice of fields affects the superpotential for equivalent on-shell dynamics. We offer two solutions to this paradox: either the original Lagrangian must be effectively renormalized, or that boundary conditions must be imposed, so that space-time be asymptotically maximally symmetric. Non-metricity is central to this paradox, and we show how quadratic non-metricity in the bulk of space-time contributes to the conserved charges on the boundary, where it vanishes identically. This is a realization of the gravitational Higgs mechanism, proposed by Percacci, where the non-metricity is the analogue of the Goldstone boson.
Reflecting boundary conditions for graded p-n junctions
NASA Technical Reports Server (NTRS)
Schacham, S. E.
1990-01-01
In a graded junction, the formalism for handling reflecting boundary conditions must be modified. Since a significant drift term is present, zero recombination velocity at the surface does not imply a zero excess carrier gradient but rather zero overall flux. A model for analyzing p-n junctions fabricated by implantation or diffusion is presented, assuming the dominant recombination mechanism in the graded region is Auger. The model enables optimization of diode design. By proper selection of parameters, mainly by reducing surface concentration or by increasing the steepness of the dopant profile, it is possible to drastically reduce the saturation current generated by the graded region.
Proceedings for the ICASE Workshop on Heterogeneous Boundary Conditions
NASA Technical Reports Server (NTRS)
Perkins, A. Louise; Scroggs, Jeffrey S.
1991-01-01
Domain Decomposition is a complex problem with many interesting aspects. The choice of decomposition can be made based on many different criteria, and the choice of interface of internal boundary conditions are numerous. The various regions under study may have different dynamical balances, indicating that different physical processes are dominating the flow in these regions. This conference was called in recognition of the need to more clearly define the nature of these complex problems. This proceedings is a collection of the presentations and the discussion groups.
General rule for boundary conditions from the action principle
NASA Astrophysics Data System (ADS)
Steiner, Roee
2016-03-01
We construct models where initial and boundary conditions can be found from the fundamental rules of physics, without the need to assume them, they will be derived from the action principle. Those constraints are established from physical viewpoint, and it is not in the form of Lagrange multipliers. We show some examples from the past and some new examples that can be useful, where constraint can be obtained from the action principle. Those actions represent physical models. We show that it is possible to use our rule to get those constraints directly.
Reconnection properties in collisionless plasma with open boundary conditions
Sun, H. E.; Ma, Z. W.; Huang, J.
2014-07-15
Collisionless magnetic reconnection in a Harris current sheet with different initial thicknesses is investigated using a 21/2 -D Darwin particle-in-cell simulation with the magnetosonic open boundary condition. It is found that the thicknesses of the ion dissipation region and the reconnection current sheet, when the reconnection rate E{sub r} reaches its first peak, are independent of the initial thickness of the current sheet; while the peak reconnection rate depends on it. The peak reconnection rate increases with decrease of the current sheet thickness as E{sub r}∼a{sup −1/2}, where a is the initial current sheet half-thickness.
Numerical solutions of telegraph equations with the Dirichlet boundary condition
NASA Astrophysics Data System (ADS)
Ashyralyev, Allaberen; Turkcan, Kadriye Tuba; Koksal, Mehmet Emir
2016-08-01
In this study, the Cauchy problem for telegraph equations in a Hilbert space is considered. Stability estimates for the solution of this problem are presented. The third order of accuracy difference scheme is constructed for approximate solutions of the problem. Stability estimates for the solution of this difference scheme are established. As a test problem to support theoretical results, one-dimensional telegraph equation with the Dirichlet boundary condition is considered. Numerical solutions of this equation are obtained by first, second and third order of accuracy difference schemes.
Bound states on the lattice with partially twisted boundary conditions
NASA Astrophysics Data System (ADS)
Agadjanov, D.; Guo, F.-K.; Ríos, G.; Rusetsky, A.
2015-01-01
We propose a method to study the nature of exotic hadrons by determining the wave function renormalization constant Z from lattice simulations. It is shown that, instead of studying the volume-dependence of the spectrum, one may investigate the dependence of the spectrum on the twisting angle, imposing twisted boundary conditions on the fermion fields on the lattice. In certain cases, e.g., the case of the DK bound state which is addressed in detail, it is demonstrated that the partial twisting is equivalent to the full twisting up to exponentially small corrections.
Hawking radiation, covariant boundary conditions, and vacuum states
Banerjee, Rabin; Kulkarni, Shailesh
2009-04-15
The basic characteristics of the covariant chiral current
Hawking radiation, effective actions and covariant boundary conditions
NASA Astrophysics Data System (ADS)
Banerjee, Rabin; Kulkarni, Shailesh
2008-01-01
From an appropriate expression for the effective action, the Hawking radiation from charged black holes is derived, using only covariant boundary conditions at the event horizon. The connection of our approach with the Unruh vacuum and the recent analysis [S.P. Robinson, F. Wilczek, Phys. Rev. Lett. 95 (2005) 011303, arxiv:gr-qc/0502074; S. Iso, H. Umetsu, F. Wilczek, Phys. Rev. Lett. 96 (2006) 151302, arxiv:hep-th/0602146; R. Banerjee, S. Kulkarni, arxiv:arXiv: 0707.2449 [hep-th
Analytical solutions with Generalized Impedance Boundary Conditions (GIBC)
NASA Technical Reports Server (NTRS)
Syed, H. H.; Volakis, John L.
1991-01-01
Rigorous uniform geometrical theory of diffraction (UTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. In particular, ray solutions are obtained which remain valid in the transition region and reduce uniformly to those in the deep lit and shadow regions. These involve new transition functions in place of the usual Fock-type integrals, characteristics to the impedance cylinder. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder. The diffraction coefficients for the convex cylinder are obtained via a generalization of the corresponding ones for the circular cylinder.
Implementation of a Blowing Boundary Condition in the LAURA Code
NASA Technical Reports Server (NTRS)
Thompson, Richard a.; Gnoffo, Peter A.
2008-01-01
Preliminary steps toward modeling a coupled ablation problem using a finite-volume Navier-Stokes code (LAURA) are presented in this paper. Implementation of a surface boundary condition with mass transfer (blowing) is described followed by verification and validation through comparisons with analytic results and experimental data. Application of the code to a carbon-nosetip ablation problem is demonstrated and the results are compared with previously published data. It is concluded that the code and coupled procedure are suitable to support further ablation analyses and studies.
Magnetospheric conditions near the equatorial footpoints of proton isotropy boundaries
NASA Astrophysics Data System (ADS)
Sergeev, V. A.; Chernyaev, I. A.; Angelopoulos, V.; Ganushkina, N. Y.
2015-12-01
Data from a cluster of three THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft during February-March 2009 frequently provide an opportunity to construct local data-adaptive magnetospheric models, which are suitable for the accurate mapping along the magnetic field lines at distances of 6-9 Re in the nightside magnetosphere. This allows us to map the isotropy boundaries (IBs) of 30 and 80 keV protons observed by low-altitude NOAA POES (Polar Orbiting Environmental Satellites) to the equatorial magnetosphere (to find the projected isotropy boundary, PIB) and study the magnetospheric conditions, particularly to evaluate the ratio KIB (Rc/rc; the magnetic field curvature radius to the particle gyroradius) in the neutral sheet at that point. Special care is taken to control the factors which influence the accuracy of the adaptive models and mapping. Data indicate that better accuracy of an adaptive model is achieved when the PIB distance from the closest spacecraft is as small as 1-2 Re. For this group of most accurate predictions, the spread of KIB values is still large (from 4 to 32), with the median value KIB ~13 being larger than the critical value Kcr ~ 8 expected at the inner boundary of nonadiabatic angular scattering in the current sheet. It appears that two different mechanisms may contribute to form the isotropy boundary. The group with K ~ [4,12] is most likely formed by current sheet scattering, whereas the group having KIB ~ [12,32] could be formed by the resonant scattering of low-energy protons by the electromagnetic ion-cyclotron (EMIC) waves. The energy dependence of the upper K limit and close proximity of the latter event to the plasmapause locations support this conclusion. We also discuss other reasons why the K ~ 8 criterion for isotropization may fail to work, as well as a possible relationship between the two scattering mechanisms.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
1990-01-01
The feasibility of predicting interior noise due to random acoustic or turbulent boundary layer excitation was investigated in experiments in which a statistical energy analysis model (VAPEPS) was used to analyze measurements of the acceleration response and sound transmission of flat aluminum, lucite, and graphite/epoxy plates exposed to random acoustic or turbulent boundary layer excitation. The noise reduction of the plate, when backed by a shallow cavity and excited by a turbulent boundary layer, was predicted using a simplified theory based on the assumption of adiabatic compression of the fluid in the cavity. The predicted plate acceleration response was used as input in the noise reduction prediction. Reasonable agreement was found between the predictions and the measured noise reduction in the frequency range 315-1000 Hz.
An experiment of rainfall infiltration under different boundary conditions
NASA Astrophysics Data System (ADS)
Hao, Shuang; Tong, Fuguo; Xue, Song
2016-04-01
Rainfall infiltration is a two-phase flow of water and gas, which should be simulated through solving the nonlinear governing equations of gas and water flow. In order to avoid the three main problems, such as convergence, numerical stability and computational efficiency in the solution of the nonlinear governing equations, Richard equation was usually used to simulate rainfall infiltration when the effect of gas phase could be ignored. The purpose of this work is to study the effect of boundary condition on rainfall infiltration, and to know in which cases Richard equation is available for the simulation of rainfall infiltration. The sample of soil has a height of 1200 mm. It is tightly enclosed in a toughened glass sleeve. The gas pressure is equal to the atmospheric pressure on the top surface of the model. The gas tight of its bottom can be controlled by a tap to simulate two different gas boundary conditions, permeable boundary and impermeable boundary. When the bottom of the model is not gas tight, the water infiltration rate is entirely bigger than gas tight. There is a big difference over the long time of rainfall that infiltration rate tends to be stable to 0.05cm/min when permeable but it is only 0.002cm/min when impermeable. The dramatic contrast reflects that gas paly a hindered part during rainfall infiltration. In addition, the gas pressure is obviously lower when the model is not gas tight. Although the pore gas pressure rise a little bit when water block gas, it is still same with atmospheric pressure all time. The situation is different when gas tight, the pore gas pressure increases sharply in the early stage and stable to a higher value, such as 10cm gas pressure on 67cm depth. Therefore, people basically negate the correlation between gas pressure and rainfall infiltration rate, but the evidence points out that the effect of gas pressure is in a significant position and Richard equations are not accurate under gas impermeable condition.
A dispersive boundary condition for microstrip component analysis using the FD-TD method
NASA Astrophysics Data System (ADS)
Bi, Zhiqiang; Wu, Keli; Wu, Chen; Litva, John
1992-04-01
A dispersive absorbing boundary condition (DBC) is presented, which allows the dispersion characteristics of waves to be used as a criterion for designing absorbing boundary conditions. Its absorbing quality is superior to that of the presently used Mur's first order boundary condition for microstrip component analysis, and, as well, its implementation is much simpler when compared to that of the 'super boundary condition' treatment. Due to the significant performance improvement of the new boundary condition, the memory requirement can be reduced greatly when applying this boundary condition to microstrip component analysis.
Role of the basin boundary conditions in gravity wave turbulence
NASA Astrophysics Data System (ADS)
Berhanu, Michael; Deike, Luc; Miquel, Benjamin; Gutierrez, Pablo; Jamin, Timothee; Semin, Benoit; Falcon, Eric; Bonnefoy, Felicien
2015-11-01
Gravity wave turbulence is studied in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. The wave field properties depend strongly on these boundary conditions. Unidirectional waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4. We have also studied freely decaying gravity wave turbulence in the closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonlinear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, nonlinear and dissipative time scales to test the time scale separation. Using the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated experimentally for the first time.
Complex Wall Boundary Conditions for Modeling Combustion in Catalytic Channels
NASA Astrophysics Data System (ADS)
Zhu, Huayang; Jackson, Gregory
2000-11-01
Monolith catalytic reactors for exothermic oxidation are being used in automobile exhaust clean-up and ultra-low emissions combustion systems. The reactors present a unique coupling between mass, heat, and momentum transport in a channel flow configuration. The use of porous catalytic coatings along the channel wall presents a complex boundary condition when modeled with the two-dimensional channel flow. This current work presents a 2-D transient model for predicting the performance of catalytic combustion systems for methane oxidation on Pd catalysts. The model solves the 2-D compressible transport equations for momentum, species, and energy, which are solved with a porous washcoat model for the wall boundary conditions. A time-splitting algorithm is used to separate the stiff chemical reactions from the convective/diffusive equations for the channel flow. A detailed surface chemistry mechanism is incorporated for the catalytic wall model and is used to predict transient ignition and steady-state conversion of CH4-air flows in the catalytic reactor.
A whisker sensor: role of geometry and boundary conditions
NASA Astrophysics Data System (ADS)
Hans, Hendrik; Valdivia Y Alvarado, Pablo; Thekoodan, Dilip; Jianmin, Miao; Triantafyllou, Michael
2011-11-01
Harbor seal whiskers are currently being studied for their role in sensing and tracking of the fluid structures left in wakes. Seal whiskers are exposed to incoming flows and are subject to self-induced vibrations. The whisker's unusual geometry is thought to reduce these self-induced disturbances and facilitate a stable reference for wake sensing. An experimental platform was designed to measure flow-induced displacements and vibrations at the base of whisker-like models. Four different whisker-like models (scale: 3x) were towed at different speeds down a towing tank and base displacements in the direction of motion and in the perpendicular axis were measured. Each model incorporated a particular geometrical feature found in harbor seal whiskers. Three different visco-elastic supports were used to mimic various boundary conditions at the base of the whisker models. The effects of geometrical features and boundary conditions on measured base vibrations at three relevant Reynolds numbers are discussed. The material properties of a model's base influence its sensitivity. When compared to a circular cylinder model, whisker models show almost no sign of VIV.
Spatial heterogeneity of ocean surface boundary conditions under sea ice
NASA Astrophysics Data System (ADS)
Barthélemy, Antoine; Fichefet, Thierry; Goosse, Hugues
2016-06-01
The high heterogeneity of sea ice properties implies that its effects on the ocean are spatially variable at horizontal scales as small as a few meters. Previous studies have shown that taking this variability into account in models could be required to simulate adequately mixed layer processes and the upper ocean temperature and salinity structures. Although many advanced sea ice models include a subgrid-scale ice thickness distribution, potentially providing heterogeneous surface boundary conditions, the information is lost in the coupling with a unique ocean grid cell underneath. The present paper provides a thorough examination of boundary conditions at the ocean surface in the NEMO-LIM model, which can be used as a guideline for studies implementing subgrid-scale ocean vertical mixing schemes. Freshwater, salt, solar heat and non-solar heat fluxes are examined, as well as the norm of the surface stress. All of the thermohaline fluxes vary considerably between the open water and ice fractions of grid cells. To a lesser extent, this is also the case for the surface stress. Moreover, the salt fluxes in both hemispheres and the solar heat fluxes in the Arctic show a dependence on the ice thickness category, with more intense fluxes for thinner ice, which promotes further subgrid-scale heterogeneity. Our analysis also points out biases in the simulated open water fraction and in the ice thickness distribution, which should be investigated in more details in order to ensure that the latter is used to the best advantage.
Boundary conditions on the vapor liquid interface at strong condensation
NASA Astrophysics Data System (ADS)
Kryukov, A. P.; Levashov, V. Yu.
2016-07-01
The problem of the formulation of boundary conditions on the vapor-liquid interface is considered. The different approaches to this problem and their difficulties are discussed. Usually, a quasi-equilibrium scheme is used. At sufficiently large deviations from thermodynamic equilibrium, a molecular kinetics approach should be used for the description of the vapor flow at condensation. The formulation of the boundary conditions at the vapor liquid interface to solve the Boltzmann kinetic equation for the distribution of molecules by velocity is a sophisticated problem. It appears that molecular dynamics simulation (MDS) can be used to provide this solution at the interface. The specific problems occur in the realization of MDS on large time and space scales. Some of these problems, and a hierarchy of continuum, kinetic and molecular dynamic time scales, are discussed in the paper. A description of strong condensation at the kinetic level is presented for the steady one-dimensional problem. A formula is provided for the calculation of the limiting condensation coefficient. It is shown that as the condensation coefficient approaches the limiting value, the vapor pressure rises significantly. The results of the corresponding calculations for the Mach number and temperature at different vapor flows are demonstrated. As a result of the application of the molecular kinetics method and molecular dynamics simulation to the problem of the determination of argon condensation coefficients in the range of temperatures of vapor and liquid ratio 1.0-4.0, it is concluded that the condensation coefficient is close to unity.
Sharp acoustic boundaries across an altitudinal avian hybrid zone despite asymmetric introgression.
Halfwerk, W; Dingle, C; Brinkhuizen, D M; Poelstra, J W; Komdeur, J; Slabbekoorn, H
2016-07-01
Birdsong is a sexually selected trait that could play an important evolutionary role when related taxa come into secondary contact. Many songbird species, however, learn their songs through copying one or more tutors, which complicates the evolutionary outcome of such contact. Two subspecies of a presumed vocal learner, the grey-breasted wood-wren (Henicorhina leucophrys), replace each other altitudinally across the western slope of the Ecuadorian Andes. These subspecies are morphologically very similar, but show striking differences in their song. We examined variation in acoustic traits and genetic composition across the altitudinal range covered by both subspecies and between two allopatric populations. The acoustic boundary between the subspecies was found to be highly abrupt across a narrow elevational range with virtually no evidence of song convergence. Mixed singing and use of hetero-subspecific song occurred in the contact zone and was biased towards the use of leucophrys song types. Hetero-subspecific song copying by hilaris and not by leucophrys reflected a previously found asymmetric pattern of response to song playback. Using amplified fragment length polymorphisms (AFLP) markers, we detected hybridization in the contact zone and asymmetric introgression in parapatric populations, with more leucophrys alleles present in hilaris populations than vice versa. This pattern may be a trail of introgression due to upslope displacement of leucophrys by hilaris. Our data suggest that song learning may impact speciation and hybridization in contrasting ways at different spatial scales: although learning may speed up population divergence in songs, thereby enhancing assortative mating and reducing gene flow, it may at a local level also lead to the copying of heterospecific songs, therefore allowing some level of hybridization and introgression. PMID:27037611
Limited condition dependence of male acoustic signals in the grasshopper Chorthippus biguttulus
Franzke, Alexandra; Reinhold, Klaus
2012-01-01
In many animal species, male acoustic signals serve to attract a mate and therefore often play a major role for male mating success. Male body condition is likely to be correlated with male acoustic signal traits, which signal male quality and provide choosy females indirect benefits. Environmental factors such as food quantity or quality can influence male body condition and therefore possibly lead to condition-dependent changes in the attractiveness of acoustic signals. Here, we test whether stressing food plants influences acoustic signal traits of males via condition-dependent expression of these traits. We examined four male song characteristics, which are vital for mate choice in females of the grasshopper Chorthippus biguttulus. Only one of the examined acoustic traits, loudness, was significantly altered by changing body condition because of drought- and moisture-related stress of food plants. No condition dependence could be observed for syllable to pause ratio, gap duration within syllables, and onset accentuation. We suggest that food plant stress and therefore food plant quality led to shifts in loudness of male grasshopper songs via body condition changes. The other three examined acoustic traits of males do not reflect male body condition induced by food plant quality. PMID:22957192
NASA Technical Reports Server (NTRS)
Maestrello, L.; Grosveld, F. W.
1991-01-01
The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.
Theory of a curved planar waveguide with Robin boundary conditions.
Olendski, O; Mikhailovska, L
2010-03-01
A model of a thin straight strip with a uniformly curved section and with boundary requirements zeroing at the edges a linear superposition of the wave function and its normal derivative (Robin boundary condition) is analyzed theoretically within the framework of the linear Schrödinger equation and is applied to the study of the processes in the bent magnetic multilayers, superconducting films and metallic ferrite-filled waveguides. In particular, subband thresholds of the straight and curved parts of the film are calculated and analyzed as a function of the Robin parameter 1/Lambda , with Lambda being an extrapolation length entering Robin boundary condition. For the arbitrary Robin coefficients which are equal on the opposite interfaces of the strip and for all bend parameters the lowest-mode energy of the continuously curved duct is always smaller than its straight counterpart. Accordingly, the bound state below the fundamental propagation threshold of the straight arms always exists as a result of the bend. In terms of the superconductivity language it means an increased critical temperature of the curved film compared to its straight counterpart. Localized-level dependence on the parameters of the curve is investigated with its energy decreasing with increasing bend angle and decreasing bend radius. Conditions of the bound-state existence for the different Robin parameters on the opposite edges are analyzed too; in particular, it is shown that the bound state below the first transverse threshold of the straight arm always exists if the inner extrapolation length is not larger than the outer one. In the opposite case there is a range of the bend parameters where the curved film cannot trap the wave and form the localized mode; for example, for the fixed bend radius the bound state emerges from the continuum at some nonzero bend angle that depends on the difference of the two lengths Lambda at the opposite interfaces. Various transport properties of the film
NASA Astrophysics Data System (ADS)
Cai, Jian; Modest, Michael F.
2016-01-01
In simulations of periodic or symmetric geometries, computational domains are reduced by imaginary boundaries that present the symmetry conditions. In Photon Monte Carlo methods, this is achieved by imposing specular reflective boundary conditions for the radiative intensity. In this work, a similar specular reflective boundary condition is developed for Discrete Ordinate Methods. The effectiveness of the new boundary condition is demonstrated by multiple numerical examples including plane symmetry and axisymmetry.
Unsteady Squeezing Flow of Carbon Nanotubes with Convective Boundary Conditions
Hayat, Tasawar; Muhammad, Khursheed; Farooq, Muhammad; Alsaedi, Ahmad
2016-01-01
Unsteady flow of nanofluids squeezed between two parallel plates is discussed in the presence of viscous dissipation. Heat transfer phenomenon is disclosed via convective boundary conditions. Carbon nanotubes (single-wall and multi-wall) are used as nanoparticles which are homogeneously distributed in the base fluid (water). A system of non-linear differential equations for the flow is obtained by utilizing similarity transformations through the conservation laws. Influence of various emerging parameters on the velocity and temperature profiles are sketched graphically and discussed comprehensively. Analyses of skin fraction coefficient and Nusselt number are also elaborated numerically. It is found out that velocity is smaller for squeezing parameter in the case of multi-wall carbon nanotubes when compared with single-wall carbon nanotubes. PMID:27149208
Equilibrium iron isotope fractionation at core-mantle boundary conditions.
Polyakov, Veniamin B
2009-02-13
The equilibrium iron isotope fractionation between lower mantle minerals and metallic iron at core-mantle boundary conditions can be evaluated from the high-pressure 57Fe partial vibrational density of states determined by synchrotron inelastic nuclear resonant x-ray scattering spectroscopy using a diamond anvil. Ferropericlase [(Mg,Fe)O] and (Fe,Mg)SiO3- post-perovskite are enriched in heavy iron isotopes relative to metallic iron at ultrahigh pressures, as opposed to the equilibrium iron isotope fractionation between these compounds at low pressure. The enrichment of Earth and Moon basalts in heavy iron isotopes relative to those from Mars and asteroid Vesta can be explained by the equilibrium iron isotope fractionation during the segregation of Earth's core and the assumption that Earth was already differentiated before the Moon-forming "giant impact." PMID:19213913
Unsteady Squeezing Flow of Carbon Nanotubes with Convective Boundary Conditions.
Hayat, Tasawar; Muhammad, Khursheed; Farooq, Muhammad; Alsaedi, Ahmad
2016-01-01
Unsteady flow of nanofluids squeezed between two parallel plates is discussed in the presence of viscous dissipation. Heat transfer phenomenon is disclosed via convective boundary conditions. Carbon nanotubes (single-wall and multi-wall) are used as nanoparticles which are homogeneously distributed in the base fluid (water). A system of non-linear differential equations for the flow is obtained by utilizing similarity transformations through the conservation laws. Influence of various emerging parameters on the velocity and temperature profiles are sketched graphically and discussed comprehensively. Analyses of skin fraction coefficient and Nusselt number are also elaborated numerically. It is found out that velocity is smaller for squeezing parameter in the case of multi-wall carbon nanotubes when compared with single-wall carbon nanotubes. PMID:27149208
Dynamic behaviour of thin composite plates for different boundary conditions
Sprintu, Iuliana E-mail: rotaruconstantin@yahoo.com; Rotaru, Constantin E-mail: rotaruconstantin@yahoo.com
2014-12-10
In the context of composite materials technology, which is increasingly present in industry, this article covers a topic of great interest and theoretical and practical importance. Given the complex design of fiber-reinforced materials and their heterogeneous nature, mathematical modeling of the mechanical response under different external stresses is very difficult to address in the absence of simplifying assumptions. In most structural applications, composite structures can be idealized as beams, plates, or shells. The analysis is reduced from a three-dimensional elasticity problem to a oneor two-dimensional problem, based on certain simplifying assumptions that can be made because the structure is thin. This paper aims to validate a mathematical model illustrating how thin rectangular orthotropic plates respond to the actual load. Thus, from the theory of thin plates, new analytical solutions are proposed corresponding to orthotropic rectangular plates having different boundary conditions. The proposed analytical solutions are considered both for solving equation orthotropic rectangular plates and for modal analysis.
On combined source solutions for bodies with impedance boundary conditions
NASA Astrophysics Data System (ADS)
Rogers, J. R.
1985-04-01
Studies conducted by Rogers (1984, 1983) regarding impedance boundary condition (IBC) integral equations have been mainly concerned with the spurious interior resonance problem associated with electromagnetic solutions exterior to a closed surface. Specifically, exterior radiation and scattering solutions of the IBC electric and magnetic field integral equations (EFIE and MFI) have nonunique solutions at the interior resonant frequencies of a perfectly conducting cavity having the same shape as the impedance target. In the present investigation, examples are presented of numerical solutions to the IBC combined source integral equation for scattering from impedance spheres. The presented results demonstrate that the IBC combined source integral equation (CSIE) is effective in eliminating the spurious solutions which occur in the electric and magnetic field integral equations.
Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes
NASA Astrophysics Data System (ADS)
Sokhan, Vladimir P.; Nicholson, David; Quirke, Nicholas
2002-11-01
Steady-state Poiseuille flow of a simple fluid in carbon nanopores under a gravitylike force is simulated using a realistic empirical many-body potential model for carbon. Building on our previous study of slit carbon nanopores we show that fluid flow in a nanotube is also characterized by a large slip length. By analyzing temporal profiles of the velocity components of particles colliding with the wall we obtain values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall and, for the first time, propose slip boundary conditions for smooth continuum surfaces such that they are equivalent in adsorption, diffusion, and fluid flow properties to fully dynamic atomistic models.
Boundary conditions for star matter and other periodic fermionic systems
NASA Astrophysics Data System (ADS)
Gulminelli, F.; Furuta, T.; Juillet, O.; Leclercq, C.
2011-12-01
Bulk fermionic matter, as can be notably found in supernova matter and neutrons stars, is subject to correlations of infinite range due to the antisymmetrization of the N-body wave function, which cannot be explicitly accounted for in a practical simulation. This problem is usually addressed in condensed matter physics by means of the so-called twist averaged boundary condition method. A different ansatz based on the localized Wannier representation has been proposed in the context of antisymmetrized molecular dynamics. In this paper we work out the formal relation between the two approaches. We show that, while the two coincide when working with exact eigenstates of the N-body Hamiltonian, differences appear in the case of variational approaches, which are currently used for the description of stellar matter. Some model applications with fermionic molecular dynamics are shown.
Charged dopants in semiconductor nanowires under partially periodic boundary conditions
NASA Astrophysics Data System (ADS)
Chan, Tzu-Liang; Zhang, S. B.; Chelikowsky, James R.
2011-06-01
We develop a one-dimensional, periodic real-space formalism for examining the electronic structure of charged nanowires from first principles. The formalism removes spurious electrostatic interactions between charged unit cells by appropriately specifying a boundary condition for the Kohn-Sham equation. The resultant total energy of the charged system remains finite, and a Madelung-type correction is unnecessary. We demonstrate our scheme by examining the ionization energy of P-doped Si<110> nanowires. We find that there is an effective repulsion between charged P dopants along the nanowire owing to the repulsive interaction of the induced surface charge between adjacent periodic cells. This repulsive interaction decays exponentially with unit cell size instead of a power law behavior assumed in typical charged calculations.
Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures
NASA Astrophysics Data System (ADS)
Nizkaya, Tatiana V.; Asmolov, Evgeny S.; Vinogradova, Olga I.
2014-10-01
Superhydrophobic Cassie textures with trapped gas bubbles reduce drag, by generating large effective slip, which is important for a variety of applications that involve a manipulation of liquids at the small scale. Here we discuss how the dissipation in the gas phase of textures modifies their friction properties. We propose an operator method, which allows us to map the flow in the gas subphase to a local slip boundary condition at the liquid-gas interface. The determined uniquely local slip length depends on the viscosity contrast and underlying topography, and can be immediately used to evaluate an effective slip of the texture. Besides superlubricating Cassie surfaces, our approach is valid for rough surfaces impregnated by a low-viscosity "lubricant," and even for Wenzel textures, where a liquid follows the surface relief. These results provide a framework for the rational design of textured surfaces for numerous applications.
Simulating flight boundary conditions for orbiter payload modal survey
NASA Technical Reports Server (NTRS)
Chung, Y. T.; Sernaker, M. L.; Peebles, J. H.
1993-01-01
An approach to simulate the characteristics of the payload/orbiter interfaces for the payload modal survey was developed. The flexure designed for this approach is required to provide adequate stiffness separation in the free and constrained interface degrees of freedom to closely resemble the flight boundary condition. Payloads will behave linearly and demonstrate similar modal effective mass distribution and load path as the flight if the flexure fixture is used for the payload modal survey. The potential non-linearities caused by the trunnion slippage during the conventional fixed base modal survey may be eliminated. Consequently, the effort to correlate the test and analysis models can be significantly reduced. An example is given to illustrate the selection and the sensitivity of the flexure stiffness. The advantages of using flexure fixtures for the modal survey and for the analytical model verification are also demonstrated.
Global Discrete Artificial Boundary Conditions for Time-Dependent Wave Propagation
NASA Technical Reports Server (NTRS)
Ryabenkii, V. S.; Tsynkov, S. V.; Turchaninov, V. I.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
We construct global artificial boundary conditions (ABCs) for the numerical simulation of wave processes on unbounded domains using a special non-deteriorating algorithm that has been developed previously for the long-term computation of wave-radiation solutions. The ABCs are obtained directly for the discrete formulation of the problem; in so doing, neither a rational approximation of 'non-reflecting kernels,' nor discretization of the continuous boundary conditions is required. The extent of temporal nonlocality of the new ABCs appears fixed and limited; in addition, the ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adaptation needed and no accuracy loss induced. The non-deteriorating algorithm, which is the core of the new ABCs is inherently three-dimensional, it guarantees temporally uniform grid convergence of the solution driven by a continuously operating source on arbitrarily long time intervals, and provides unimprovable linear computational complexity with respect to the grid dimension. The algorithm is based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions in odd-dimension spaces, It can, in fact, be built as a modification on top of any consistent and stable finite-difference scheme, making its grid convergence uniform in time and at the same time keeping the rate of convergence the same as that of the non-modified scheme. In the paper, we delineate the construction of the global lacunae-based ABCs in the framework of a discretized wave equation. The ABCs are obtained for the most general formulation of the problem that involves radiation of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering aircraft). We also present systematic numerical results that corroborate the theoretical design properties of the ABCs' algorithm.
Condition of resonant break-up of gas bubbles by an acoustic wave in liquid
NASA Astrophysics Data System (ADS)
Vanovskiy, V. V.; Petrov, A. G.
2016-07-01
The linear theory of damping of radial vibrations of a bubble in a liquid is constructed by taking into account the key dissipative mechanisms: thermal, viscous, and acoustic. The basic approximation of homobaricity made helps to obtain the results in a convenient and simple form. The results obtained for damping are used further in the description of the forced resonant oscillations of a bubble in an acoustic wave with the frequency equal to the eigenfrequency of the radial oscillation mode and twice as high as the frequency of the deformation oscillation mode (resonance 2:2:1). It is shown that the amplitude of deformation oscillations, which is reasonably large for breaking, is developed at a relatively small pressure amplitude of the exciting acoustic wave, and subharmonics arise in the acoustic-emission spectrum. The condition of bubble break-up is obtained for a fast and slow start of the acoustic wave.
Towed body measurements of flow noise from a turbulent boundary layer under sea conditions.
Abshagen, J; Nejedl, V
2014-02-01
Results from an underwater experiment under sea conditions on flow noise beneath a flat-plate turbulent boundary layer are presented. The measurements were performed with a towed body at towing speeds U=2.3,…,6.1 m/s and depths h=-150,…,-100 m. Flow noise is measured with a linear array of equally spaced hydrophones (Δx=70 mm) that is orientated in streamwise direction and embedded within a laterally attached flat plate. In order to separate flow noise from ocean ambient noise and other acoustical noise sources wavenumber-frequency filtering is applied. The (nondimensionalized) spectral power density of flow noise Φ(ω) ⟨U∞⟩/ (⟨δ(∗)⟩ (1/2ρ ⟨U∞⟩)(2)) is found to scale like (ω⟨δ(∗)⟩/⟨U∞⟩)(-4.3) in a wide frequency range at higher towing speeds. Here, ω, ⟨δ(∗)⟩, and ⟨U∞⟩ denote frequency, boundary layer displacement thickness, and potential flow velocity in the array region, respectively. Potential flow velocity is estimated from numerical simulations around a symmetrical, two-dimensional body with a semi-elliptical nose. Evidence is given that a χ(2)-(Tsallis) superstatistics provides a reasonable representation of the probability distribution function of flow noise at higher towing speeds. PMID:25234873
Pensala, Tuomas; Ylilammi, Markku
2009-08-01
Zinc-oxide-based thin-film bulk acoustic wave (BAW) resonators operating at 932 MHz are investigated with respect to variation of dimensions of a boundary frame spurious mode suppression structure. A plate wave dispersion-based semi-2-D model and a 2-D finite element method are used to predict the eigenmode spectrum of the resonators to explain the detailed behavior. The models show how the boundary frame method changes the eigenmodes and their coupling to the driving electrical field via the modification of the mechanical boundary condition and leads to emergence of a flat-amplitude piston mode and suppression of spurious modes. Narrow band suppression of a single mode with a nonoptimal boundary frame is observed. Reduction of the effective electromechanical coupling coefficient k2eff as a function of the boundary width is observed and predicted by both models. The simple semi-2-D plate model is shown to predict the device behavior very well, and the 2-D finite element method results are shown to coincide with them with some additional effects. Breaking the resonator behavior down to eigenmodes, which are not directly observable in measurements, by the models, yields insight into the physics of the device operation. PMID:19686989
NASA Astrophysics Data System (ADS)
Plessix, René-Édouard; Pérez Solano, Carlos A.
2015-06-01
In presence of large wavelength-scale shear-velocity variations in the Earth, acoustic waveform inversion may not be sufficient even when inverting long-offset data to retrieve the long-to-intermediate wavelengths of the compressional velocity. An acoustic modelling does not always correctly represent the compressional/primary waves when tuning effects and energy conversion between compressional and shear waves occur. Elastic waveform inversion with land data is challenging not only because of its computational cost but also due to the presence of the very energetic ground roll. To avoid inverting the ground roll and focus the inversion on the body waves recorded at long offsets, we propose to modify the surface boundary conditions in the elastic modelling. Zeroing the normal derivatives of the shear stress components parallel to the surface instead of the shear stress components themselves as with the free-surface boundary conditions leads to an elastic modelling that does not generate ground roll. These modified elastic surface conditions allow us to invert the seismic data that have been pre-processed to remove the ground roll as we do in acoustic waveform inversion. In this way, the inversion can focus on the retrieval of the long-to-intermediate wavelengths of the compressional velocity and we can apply the standard frequency continuation approach without having to process out the ground roll in the (elastic) synthetic data. An analysis of the modified surface conditions based on a plane wave decomposition shows that the reflection coefficients at the surface do not depend on incident angles and earth parameters. With a not too high shear-to-compressional (S-to-P) velocity ratio at the surface, the PP-reflection coefficients are close to the ones with the free-surface conditions, but with a high ratio they differ significantly. The approximation is then valid when the (S-to-P) velocity ratio is not too high at the surface in the actual Earth. Based on some
NASA Astrophysics Data System (ADS)
Zhang, Qi; Bodony, Daniel
2013-11-01
Acoustic liners are effective reducers of jet exhaust and core noise and work by converting acoustic-bound energy into non-radiating, vorticity-bound energy through scattering, viscous, and non-linear processes. Modern liners are designed using highly-calibrated semi-empirical models that will not be effective for expected parameter spaces on future aircraft. The primary model limitation occurs when a turbulent boundary layer (TBL) grazes the liner; there are no physics-based methods for predicting the sound-liner interaction. We thus utilize direct numerical simulations to study the interaction of a Mach 0.5 zero pressure gradient TBL with a cavity-backed circular orifice under acoustic excitation. Acoustic field frequencies span the energy-containing range within the TBL and amplitudes range from 6 to 40 dB above the turbulent fluctuations. Impedance predictions are in agreement with NASA Langley-measured data and the simulation databases are analyzed in detail. A physics-based reduced-order model is proposed that connects the turbulence-vorticity-acoustic interaction and its accuracy and limitations are discussed. This work is funded by Aeroacoustics Research Consortium.
Flux Based Surface Boundary Conditions for Navier-Stokes Simulations
NASA Astrophysics Data System (ADS)
Fertig, M.; Auweter-Kurtz, M.
2005-02-01
During re-entry high thermal combined with mechanical loads arise at the TPS surface of a re-entry vehicle. Due to low gas density, high Knudsen Numbers arise, which indicate rarefaction effects such as thermo-chemical non-equilibrium as well as temperature and velocity slip. With increasing altitude, local Knudsen Numbers predict the failure of continuum equations starting in the bow shock and at the surface. While local failure of the equations in the shock can be neglected for the determination of surface loads, local failure at the surface is not negligible. The validity of continuum models can be extended by emploing surface boundary equations accounting for temperature and velocity slip. A new flux based model has been developed originating on the Boltzmann Equation. Making use of the Enskog Method perturbed partition functions for a multi-component gas are determined from the Boltzmann Equation. By introduction of the moments of Boltzmann's Equation, Maxwell's Transport Equation can be obtained. Particles approaching the surface are distinguished from particles leaving the surface depending on their molecular velocities. Hence, mass, momentum and energy fluxes to the surface can be determined employing the collisional invariants. Reactive as well as scattering models can be easily introduced in order to compute the fluxes from the surface. Finally, flux differences are balanced with the continuum fluxes from the Navier-Stokes equations. Hence, the model is able to predict temperature and velocity slip at the surface of a re-entry vehicle under rarefied conditions. Moreover, it is valid in the continuum regime as well. The boundary equations are solved fully implicit and fully coupled with the non-equilibrium Navier-Stokes Code URANUS. Results are compared to DSMC simulations for the re-entry of the US Space Shuttle orbiter at high altitudes. Key words: Navier-Stokes; re-entry; slip; non-equilibrium.
NASA Astrophysics Data System (ADS)
The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).
New Bondi-type outgoing boundary condition for the Einstein equations with cosmological constant
NASA Astrophysics Data System (ADS)
He, Xiaokai; Cao, Zhoujian
2015-07-01
In the middle of last century, Bondi and his coworkers proposed an outgoing boundary condition for the Einstein equations. Recently, more and more observations imply that the Einstein equations should include a nonzero cosmological constant. A spacetime with a positive cosmological constant approaches to a de Sitter space asymptotically. Bondi's original boundary condition is not valid for these asymptotically de Sitter spacetimes. But the traditional conformally flat boundary condition excludes the gravitational radiation for the asymptotically de Sitter spacetimes. In this work, a new Bondi-type outgoing boundary condition based on Bondi-Sachs coordinates is considered. With this new boundary condition, the gravitational wave behavior for the asymptotically de Sitter spacetime is similar to the one for the asymptotically Minkowski spacetime. The traditional conformally flat boundary condition falls into a special subclass of the new boundary condition.
Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic
NASA Astrophysics Data System (ADS)
Baatsen, Michiel; van Hinsbergen, Douwe J. J.; von der Heydt, Anna S.; Dijkstra, Henk A.; Sluijs, Appy; Abels, Hemmo A.; Bijl, Peter K.
2016-08-01
Studies on the palaeoclimate and palaeoceanography using numerical model simulations may be considerably dependent on the implemented geographical reconstruction. Because building the palaeogeographic datasets for these models is often a time-consuming and elaborate exercise, palaeoclimate models frequently use reconstructions in which the latest state-of-the-art plate tectonic reconstructions, palaeotopography and -bathymetry, or vegetation have not yet been incorporated. In this paper, we therefore provide a new method to efficiently generate a global geographical reconstruction for the middle-late Eocene. The generalised procedure is also reusable to create reconstructions for other time slices within the Cenozoic, suitable for palaeoclimate modelling. We use a plate-tectonic model to make global masks containing the distribution of land, continental shelves, shallow basins and deep ocean. The use of depth-age relationships for oceanic crust together with adjusted present-day topography gives a first estimate of the global geography at a chosen time frame. This estimate subsequently needs manual editing of areas where existing geological data indicate that the altimetry has changed significantly over time. Certain generic changes (e.g. lowering mountain ranges) can be made relatively easily by defining a set of masks while other features may require a more specific treatment. Since the discussion regarding many of these regions is still ongoing, it is crucial to make it easy for changes to be incorporated without having to redo the entire procedure. In this manner, a complete reconstruction can be made that suffices as a boundary condition for numerical models with a limited effort. This facilitates the interaction between experts in geology and palaeoclimate modelling, keeping reconstructions up to date and improving the consistency between different studies. Moreover, it facilitates model inter-comparison studies and sensitivity tests regarding certain
Shroud boundary condition characterization experiments at the Radiant Heat Facility.
Suo-Anttila, Jill Marie; Nakos, James Thomas; Gill, Walter
2004-10-01
A series of experiments was performed to better characterize the boundary conditions from an inconel heat source ('shroud') painted with Pyromark black paint. Quantifying uncertainties in this type of experimental setup is crucial to providing information for comparisons with code predictions. The characterization of this boundary condition has applications in many scenarios related to fire simulation experiments performed at Sandia National Laboratories Radiant Heat Facility (RHF). Four phases of experiments were performed. Phase 1 results showed that a nominal 1000 C shroud temperature is repeatable to about 2 C. Repeatability of temperatures at individual points on the shroud show that temperatures do not vary more than 10 C from experiment to experiment. This variation results in a 6% difference in heat flux to a target 4 inches away. IR camera images showed the shroud was not at a uniform temperature, although the control temperature was constant to about {+-}2 C during a test. These images showed that a circular shaped, flat shroud with its edges supported by an insulated plate has a temperature distribution with higher temperatures at the edges and lower temperatures in the center. Differences between the center and edge temperatures were up to 75 C. Phase 3 results showed that thermocouple (TC) bias errors are affected by coupling with the surrounding environment. The magnitude of TC error depends on the environment facing the TC. Phase 4 results were used to estimate correction factors for specific applications (40 and 63-mil diameter, ungrounded junction, mineral insulated, metal-sheathed TCs facing a cold surface). Correction factors of about 3.0-4.5% are recommended for 40 mil diameter TCs and 5.5-7.0% for 63 mil diameter TCs. When mounted on the cold side of the shroud, TCs read lower than the 'true' shroud temperature, and the TC reads high when on the hot side. An alternate method uses the average of a cold side and hot side TC of the same size to
Estimation of the Tool Condition by Applying the Wavelet Transform to Acoustic Emission Signals
Gomez, M. P.; Piotrkowski, R.; Ruzzante, J. E.; D'Attellis, C. E.
2007-03-21
This work follows the search of parameters to evaluate the tool condition in machining processes. The selected sensing technique is acoustic emission and it is applied to a turning process of steel samples. The obtained signals are studied using the wavelet transformation. The tool wear level is quantified as a percentage of the final wear specified by the Standard ISO 3685. The amplitude and relevant scale obtained of acoustic emission signals could be related with the wear level.
NASA Technical Reports Server (NTRS)
Biringen, S.; Cook, C.
1988-01-01
Pressure boundary conditions satisfying the normal momentum equation at solid boundaries with second-order accuracy are developed. Implementation of these conditions in an explicit numerical procedure for the two-dimensional incompressible Navier-Stokes equations enables convergent and accurate solutions for the driven cavity problem provided that the integral constraint of the Neumann boundary condtions is satisfied.
Acoustic properties and durability of liner materials at non-standard atmospheric conditions
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.
1994-01-01
This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.
Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations
NASA Technical Reports Server (NTRS)
Darmofal, David L.
1998-01-01
An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.
Space-Time Correlation of Stable Boundary-Layer, Weak Wind Data from Ground Based Acoustic Sensors
NASA Astrophysics Data System (ADS)
Smoot, A. R.; Thomas, C. K.
2011-12-01
We present data collected using ground based acoustic sensing in order to connect near-surface motions including turbulence and sub-meso modes under stable, weak wind conditions to possible external forcing mechanisms from aloft. Under stable stratification and weak wind conditions the generation of the weak, intermittent turbulence is poorly understood, but critical to understanding and modeling the dispersion and diffusion of pollutants and other trace gases. Recent studies have suggested that the driving processes behind weak wind turbulence may include external forcing on the sub-meso scale. The forcing mechanisms may include gravity waves, 2 dimensional horizontal modes, solitons, or interactions between surface flow and low-level jets. Efforts to detect weak wind, sub-meso scale processes have failed so far due to a lack of sufficient spatial coverage necessary for capturing these events. This research has taken an unconventional observational approach by using a pair of SODAR (Sound Detection And Ranging) units. The SODARs have collected data on short time scales with a significant vertical (15 - 300 meters) and horizontal (200 - 1000 meters) coverage. The experiment took place on Oregon State University's Research Farms located roughly a mile to the east of OSU's campus. The site was chosen for its homogenous terrain which allowed the two SODAR's to be separated across the domain without their measurements being contaminated by influence from surface heterogeneity. The experiment has provided a data set comprised of more than 3 months of semi-continuous SODAR data. By making use of the Multi-resolution Decomposition method we will present results on the space-time correlations of the boundary-layer winds on multiple different time scales. The results will be a significant step towards improving the predictability of weak wind meanderings, identifying scaling parameters for sub-meso scale motions, and help to improve air quality and diffusion models.
Boundary conditions for gas flow problems from anisotropic scattering kernels
NASA Astrophysics Data System (ADS)
To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline
2015-10-01
The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.
Outflow Boundary Conditions for Blood Flow in Arterial Trees
Du, Tao; Hu, Dan; Cai, David
2015-01-01
In the modeling of the pulse wave in the systemic arterial tree, it is necessary to truncate small arterial crowns representing the networks of small arteries and arterioles. Appropriate boundary conditions at the truncation points are required to represent wave reflection effects of the truncated arterial crowns. In this work, we provide a systematic method to extract parameters of the three-element Windkessel model from the impedance of a truncated arterial tree or from experimental measurements of the blood pressure and flow rate at the inlet of the truncated arterial crown. In addition, we propose an improved three-element Windkessel model with a complex capacitance to accurately capture the fundamental-frequency time lag of the reflection wave with respect to the incident wave. Through our numerical simulations of blood flow in a single artery and in a large arterial tree, together with the analysis of the modeling error of the pulse wave in large arteries, we show that both a small truncation radius and the complex capacitance in the improved Windkessel model play an important role in reducing the modeling error, defined as the difference in dynamics induced by the structured tree model and the Windkessel models. PMID:26000782
On stochastic inlet boundary condition for unsteady simulations
NASA Astrophysics Data System (ADS)
Niedoba, P.; Jícha, M.; Čermák, L.
2014-03-01
The paper deals with the stochastic generation of synthesized turbulence, which may be used for a generating of an inlet boundary condition for unsteady simulations, e.g. Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES). Assumptions for the generated turbulence are isotropy and homogeneity. The described method produces a stochastic turbulent velocity field using the synthesis of a finite sum of random Fourier modes. The calculation of individual Fourier modes is based on known energy spectrum of turbulent flow, and some turbulent quantities, e.g. turbulent kinetic energy and turbulent dissipation rate. A division of wave number range of the energy spectrum determines directly the number of Fourier modes, and has a direct impact on accuracy and speed of this calculation. Therefore, this work will examine the influence of the number of Fourier modes on a conservation of the first and second statistical moments of turbulent velocity components, which are prespecified. It is important to ensure a sufficient size of a computational domain, and a sufficient number of cells for meaningful comparative results. Dimensionless parameters characterizing the resolution and size of the computational domain according to a turbulent length scale will be introduced for this purpose. Subsequently, the sufficient values of this parameters will be shown for individual numbers of Fourier modes.
Effect of electromagnetic boundary condition on dynamo actions
NASA Astrophysics Data System (ADS)
Xu, MingTian
2015-04-01
In this paper, based on the mean field dynamo theory, the influence of the electromagnetic boundary condition on the dynamo actions driven by the small scale turbulent flows in a cylindrical vessel is investigated by the integral equation approach. The numerical results show that the increase of the electrical conductivity or magnetic permeability of the walls of the cylindrical vessel can reduce the critical magnetic Reynolds number. Furthermore, the critical magnetic Reynolds number is more sensitive to the varying electrical conductivity of the end wall or magnetic permeability of the side wall. For the anisotropic dynamo which is the mean field model of the Karlsruhe experiment, when the relative electrical conductivity of the side wall or the relative magnetic permeability of the end wall is less than some critical value, the m=1 ( m is the azimuthal wave number) magnetic mode is the dominant mode, otherwise the m=0 mode predominates the excited magnetic field. Therefore, by changing the material of the walls of the cylindrical vessel, one can select the magnetic mode excited by the anisotropic dynamo.
Analytical model of infiltration under constant-concentration boundary conditions
NASA Astrophysics Data System (ADS)
Triadis, D.; Broadbridge, P.
2010-03-01
Known integrable models for 1D flow in unsaturated soil have a rescaled soil water diffusivity that is either constant or proportional to C(C - 1)/(C - Θ)2, where Θ is the degree of saturation and C > 1 is constant. With a wider more realistic range of hydraulic conductivity functions than has been used in this context before, a formal series solution is developed for infiltration, subject to constant-concentration boundary conditions. A readily programmed iteration algorithm, applicable for any value of C, is used to construct many coefficients of the infiltration series without requiring any numerical integration. In particular, for either C - 1 small or 1/C small, several infiltration series coefficients are constructed as formal power series in C - 1 or in 1/C, for which we construct a number of terms explicitly. In the limit as the diffusivity approaches a delta function, the infiltration coefficients are obtained in simpler closed form. All but the sorptivity depend on the form of the conductivity function.
Generalized Radiation Boundary Conditions in Gyrotron Oscillator Modeling
NASA Astrophysics Data System (ADS)
Alberti, S.; Tran, T. M.; Brunner, S.; Braunmueller, F.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.
2015-11-01
A numerical procedure to implement a frequency-independent generalized non-reflecting radiation boundary conditions, GNRBC, based on the Laplace Transform, is described in details and tested successfully on a simple 2 frequency test problem. In the case of non-stationary regimes occurring in gyrotron oscillators, it is shown that the reflection at frequencies significantly separated from the carrier frequency can be effectively suppressed by this method. A detailed analysis shows that this numerical approach can be consistently used only for models in which there is no assumed separation of time scales between the RF field envelope time-evolution and the electron time of flight across the interaction region. The GNRBC has been implemented in a nonlinear time-dependent self-consistent monomode model, TWANGpic, in which there is no time scale separation since the RF field envelope is updated at each integration time step of the electron motion. The illustration of the effectiveness of the GNRBC is made with TWANGpic on a gyrotron for which extensive theoretical and experimental results have been performed.
High Energy Boundary Conditions for a Cartesian Mesh Euler Solver
NASA Technical Reports Server (NTRS)
Pandya, Shishir; Murman, Scott; Aftosmis, Michael
2003-01-01
Inlets and exhaust nozzles are common place in the world of flight. Yet, many aerodynamic simulation packages do not provide a method of modelling such high energy boundaries in the flow field. For the purposes of aerodynamic simulation, inlets and exhausts are often fared over and it is assumed that the flow differences resulting from this assumption are minimal. While this is an adequate assumption for the prediction of lift, the lack of a plume behind the aircraft creates an evacuated base region thus effecting both drag and pitching moment values. In addition, the flow in the base region is often mis-predicted resulting in incorrect base drag. In order to accurately predict these quantities, a method for specifying inlet and exhaust conditions needs to be available in aerodynamic simulation packages. A method for a first approximation of a plume without accounting for chemical reactions is added to the Cartesian mesh based aerodynamic simulation package CART3D. The method consists of 3 steps. In the first step, a components approach where each triangle is assigned a component number is used. Here, a method for marking the inlet or exhaust plane triangles as separate components is discussed. In step two, the flow solver is modified to accept a reference state for the components marked inlet or exhaust. In the third step, the flow solver uses these separated components and the reference state to compute the correct flow condition at that triangle. The present method is implemented in the CART3D package which consists of a set of tools for generating a Cartesian volume mesh from a set of component triangulations. The Euler equations are solved on the resulting unstructured Cartesian mesh. The present methods is implemented in this package and its usefulness is demonstrated with two validation cases. A generic missile body is also presented to show the usefulness of the method on a real world geometry.
A manufactured solution for verifying CFD boundary conditions: part II.
Bond, Ryan Bomar; Ober, Curtis Curry; Knupp, Patrick Michael
2005-01-01
Order-of-accuracy verification is necessary to ensure that software correctly solves a given set of equations. One method to verify the order of accuracy of a code is the method of manufactured solutions. In this study, a manufactured solution has been derived and implemented that allows verification of not only the Euler, Navier-Stokes, and Reynolds-Averaged Navier-Stokes (RANS) equation sets, but also some of their associated boundary conditions (BC's): slip, no-slip (adiabatic and isothermal), and outflow (subsonic, supersonic, and mixed). Order-of-accuracy verification has been performed for the Euler and Navier-Stokes equations and these BC's in a compressible computational fluid dynamics code. All of the results shown are on skewed, non-uniform meshes. RANS results will be presented in a future paper. The observed order of accuracy was lower than the expected order of accuracy in two cases. One of these cases resulted in the identification and correction of a coding mistake in the CHAD gradient correction that was reducing the observed order of accuracy. This mistake would have been undetectable on a Cartesian mesh. During the search for the CHAD gradient correction problem, an unrelated coding mistake was found and corrected. The other case in which the observed order of accuracy was less than expected was a test of the slip BC; although no specific coding or formulation mistakes have yet been identified. After the correction of the identified coding mistakes, all of the aforementioned equation sets and BC's demonstrated the expected (or at least acceptable) order of accuracy except the slip condition.
Boundary Conditions for Aeolian Activity in North American Dune Fields
NASA Astrophysics Data System (ADS)
Halfen, A. F.; Lancaster, N.; Wolfe, S.
2014-12-01
Geomorphic and chronological data for dune fields are evaluated for three contrasting areas of North America: 1) the Prairie-Parkland-Boreal ecozones of the northern Great Plains in Canada; 2) the Central Great Plains of the USA; and 3) the deserts of southwestern USA and northern Mexico. Luminescence and radiocarbon ages for periods of dune accumulation and stability are compared with palaeoenvironment proxies to provide an assessment of the boundary conditions of dune system response to changes in sediment supply, availability, and mobility. Dune fields in the northern Great Plains were formed from sediment originating from glaciofluvial or glaciolacustrine sediments deposited during deglaciation 16-11 ka. Subsequent aeolian deposition occurred in Parkland and Prairie dune fields as a result of mid-Holocene (8-5 ka) and late-Holocene (< 3.5 ka) activity related to drought conditions that reworked pre-existing aeolian sands. In the Central Great Plains, dune fields are closely linked to fluvial sediment sources. Sediment supply was high during deglaciation of the Rocky Mountains and resulted in widespread dune construction 16-10 ka. Multiple periods of Holocene reactivation are recorded and reflect increased sediment availability during drought episodes. Dune fields in the southwestern deserts experienced periods of construction as a result of enhanced supply of sediment from fluvial and lacustrine sources during the period 11.8-8 ka and at multiple intervals during the late Holocene. Despite spatial and temporal gaps in chronometric data as a result of sampling biases, the record from North American dune fields indicates the strong influence of sediment supply on dune construction, with changes in sediment availability as a result of drought episodes resulting in dune field reactivation and reworking of pre-existing sediment.
Global boundary conditions for a Dirac operator on the solid torus
Klimek, Slawomir; McBride, Matt
2011-06-15
We study a Dirac operator subject to Atiayh-Patodi-Singer-like boundary conditions on the solid torus and shows that the corresponding boundary value problem is elliptic in the sense that the Dirac operator has a compact parametrix.
Effect of Insolation Boundary Conditions on Type B Package Internal Temperatures
Hovingh, J; Shah, VL
2002-05-30
The prescription of the initial conditions and the final conditions for a thermal accident for Type B packages are different for differing regulations. This paper presents an analytical method for estimating the effect of the boundary conditions on post-fire peak internal package temperatures. Results are given for several boundary conditions for a Type B drum-type package.
NASA Technical Reports Server (NTRS)
Sajben, Miklos; Freund, Donald D.
1998-01-01
The ability to predict the dynamics of integrated inlet/compressor systems is an important part of designing high-speed propulsion systems. The boundaries of the performance envelope are often defined by undesirable transient phenomena in the inlet (unstart, buzz, etc.) in response to disturbances originated either in the engine or in the atmosphere. Stability margins used to compensate for the inability to accurately predict such processes lead to weight and performance penalties, which translate into a reduction in vehicle range. The prediction of transients in an inlet/compressor system requires either the coupling of two complex, unsteady codes (one for the inlet and one for the engine) or else a reliable characterization of the inlet/compressor interface, by specifying a boundary condition. In the context of engineering development programs, only the second option is viable economically. Computations of unsteady inlet flows invariably rely on simple compressor-face boundary conditions (CFBC's). Currently, customary conditions include choked flow, constant static pressure, constant axial velocity, constant Mach number or constant mass flow per unit area. These conditions are straightforward extensions of practices that are valid for and work well with steady inlet flows. Unfortunately, it is not at all likely that any flow property would stay constant during a complex system transient. At the start of this effort, no experimental observation existed that could be used to formulate of verify any of the CFBC'S. This lack of hard information represented a risk for a development program that has been recognized to be unacceptably large. The goal of the present effort was to generate such data. Disturbances reaching the compressor face in flight may have complex spatial structures and temporal histories. Small amplitude disturbances may be decomposed into acoustic, vorticity and entropy contributions that are uncoupled if the undisturbed flow is uniform. This study
Koukoulas, Triantafillos; Piper, Ben; Theobald, Pete
2013-03-01
The measurement of acoustic pressure at a point in space using optical methods has been the subject of extensive research in airborne acoustics over the last four decades. The main driver is to reliably establish the acoustic pascal, thus allowing the calibration of microphones with standard and non-standard dimensions to be realized in an absolute and direct manner. However, the research work so far has mostly been limited to standing wave tubes. This Letter reports on the development of an optical system capable of measuring acoustic particle velocities in free-field conditions; agreement within less than 0.6 dB was obtained with standard microphone measurements during these initial experiments. PMID:23464122
A Discrete Analysis of Non-reflecting Boundary Conditions for Discontinuous Galerkin Method
NASA Technical Reports Server (NTRS)
Hu, Fang Q.; Atkins, Harold L.
2003-01-01
We present a discrete analysis of non-reflecting boundary conditions for the discontinuous Galerkin method. The boundary conditions considered in this paper include the recently proposed Perfectly Matched Layer absorbing boundary condition for the linearized Euler equation and two non-reflecting boundary conditions based on the characteristic decomposition of the flux on the boundary. The analyses for the three boundary conditions are carried out in a unifled way. In each case, eigensolutions of the discrete system are obtained and applied to compute the numerical reflection coefficients of a specified out-going wave. The dependencies of the reflections at the boundary on the out-going wave angle and frequency as well as the mesh sizes arc? studied. Comparisons with direct numerical simulation results are also presented.
NASA Astrophysics Data System (ADS)
Chu, Yuchuan; Cao, Yong; He, Xiaoming; Luo, Min
2011-11-01
Many of the magnetostatic/electrostatic field problems encountered in aerospace engineering, such as plasma sheath simulation and ion neutralization process in space, are not confined to finite domain and non-interface problems, but characterized as open boundary and interface problems. Asymptotic boundary conditions (ABC) and immersed finite elements (IFE) are relatively new tools to handle open boundaries and interface problems respectively. Compared with the traditional truncation approach, asymptotic boundary conditions need a much smaller domain to achieve the same accuracy. When regular finite element methods are applied to an interface problem, it is necessary to use a body-fitting mesh in order to obtain the optimal convergence rate. However, immersed finite elements possess the same optimal convergence rate on a Cartesian mesh, which is critical to many applications. This paper applies immersed finite element methods and asymptotic boundary conditions to solve an interface problem arising from electric field simulation in composite materials with open boundary. Numerical examples are provided to demonstrate the high global accuracy of the IFE method with ABC based on Cartesian meshes, especially around both interface and boundary. This algorithm uses a much smaller domain than the truncation approach in order to achieve the same accuracy.
NASA Astrophysics Data System (ADS)
Desjouy, Cyril; Ollivier, Sébastien; Marsden, Olivier; Karzova, Maria; Blanc-Benon, Philippe
2016-02-01
The local interactions occurring between incident and reflected shock waves in the vicinity of rigid surfaces are investigated. Both regular and irregular — also called von Neumann — regimes of reflection are studied, via experimental and numerical simulations. Shock waves are produced experimentally with a 20 kV electrical spark source which allows the generation of spherically diverging acoustic shocks. The behaviour of the resulting weak acoustic shocks near rigid boundaries is visualized with a Schlieren optical technique which allows the spatial structure of the shocks to be studied. In particular, the evolution of the Mach stem forming above a flat surface is examined, and its height is observed to be directly linked to the angle of incidence and the pressure amplitude of the incident shock. The propagation of an acoustic shock between two parallel rigid boundaries is also studied. It is shown that the strong interactions between the Mach stems emerging from the two boundaries can lead to a drastic modification of the morphology of the acoustic field in the waveguide. Experimental results are compared to numerical results obtained from high-order finite-difference based simulations of the 2D Navier-Stokes equations. The good agreement between the experimental distribution of the acoustic field and numerical results suggests that numerical simulations are promising as a predictive tool to study nonlinear acoustic propagation of acoustic waves in complex geometrical configurations with rigid boundaries.
NASA Technical Reports Server (NTRS)
Davis, J. E.; Medan, R. T.
1977-01-01
This segment of the POTFAN system is used to generate right hand sides (boundary conditions) of the system of equations associated with the flow field under consideration. These specified flow boundary conditions are encountered in the oblique derivative boundary value problem (boundary value problem of the third kind) and contain the Neumann boundary condition as a special case. Arbitrary angle of attack and/or sideslip and/or rotation rates may be specified, as well as an arbitrary, nonuniform external flow field and the influence of prescribed singularity distributions.
The linking number in systems with Periodic Boundary Conditions
NASA Astrophysics Data System (ADS)
Panagiotou, E.
2015-11-01
Periodic Boundary Conditions (PBC) are often used for the simulation of complex physical systems. Using the Gauss linking number, we define the periodic linking number as a measure of entanglement for two oriented curves in a system employing PBC. In the case of closed chains in PBC, the periodic linking number is an integer topological invariant that depends on a finite number of components in the periodic system. For open chains, the periodic linking number is an infinite series that accounts for all the topological interactions in the periodic system. In this paper we give a rigorous proof that the periodic linking number is defined for the infinite system, i.e., that it converges for one, two, and three PBC models. It gives a real number that varies continuously with the configuration and gives a global measure of the geometric complexity of the system of chains. Similarly, for a single oriented chain, we define the periodic self-linking number and prove that it also is defined for open chains. In addition, we define the cell periodic linking and self-linking numbers giving localizations of the periodic linking numbers. These can be used to give good estimates of the periodic linking numbers in infinite systems. We also define the local periodic linking number associated to chains in the immediate cell neighborhood of a chain in order to study local linking measures in contrast to the global linking measured by the periodic linking numbers. Finally, we study and compare these measures when applied to a PBC model of polyethylene melts.
Investigation of the optimum acoustical conditions for speech using auralization
NASA Astrophysics Data System (ADS)
Yang, Wonyoung; Hodgson, Murray
2001-05-01
Speech intelligibility is mainly affected by reverberation and by signal-to-noise level difference, the difference between the speech-signal and background-noise levels at a receiver. An important question for the design of rooms for speech (e.g., classrooms) is, what are the optimal values of these factors? This question has been studied experimentally and theoretically. Experimental studies found zero optimal reverberation time, but theoretical predictions found nonzero reverberation times. These contradictory results are partly caused by the different ways of accounting for background noise. Background noise sources and their locations inside the room are the most detrimental factors in speech intelligibility. However, noise levels also interact with reverberation in rooms. In this project, two major room-acoustical factors for speech intelligibility were controlled using speech and noise sources of known relative output levels located in a virtual room with known reverberation. Speech intelligibility test signals were played in the virtual room and auralized for listeners. The Modified Rhyme Test (MRT) and babble noise were used to measure subjective speech intelligibility quality. Optimal reverberation times, and the optimal values of other speech intelligibility metrics, for normal-hearing people and for hard-of-hearing people, were identified and compared.
NASA Astrophysics Data System (ADS)
Zhang, Tiangang; Koshizuka, Seiichi; Murotani, Kohei; Shibata, Kazuya; Ishii, Eiji; Ishikawa, Masanori
2016-02-01
The boundary conditions represented by polygons in moving particle semi-implicit (MPS) method (Koshizuka and Oka, Nuclear Science and Engineering, 1996) have been widely used in the industry simulations since it can simply simulate complex geometry with high efficiency. However, the inaccurate particle number density near non-planar wall boundaries dramatically affects the accuracy of simulations. In this paper, we propose an initial boundary particle arrangement technique coupled with the wall weight function method (Zhang et al. Transaction of JSCES, 2015) to improve the particle number density near slopes and curved surfaces with boundary conditions represented by polygons in three dimensions. Two uniform grids are utilized in the proposed technique. The grid points in the first uniform grid are used to construct boundary particles, and the second uniform grid stores the same information as in the work by Zhang et al. The wall weight functions of the grid points in the second uniform grid are calculated by newly constructed boundary particles. The wall weight functions of the fluid particles are interpolated from the values stored on the grid points in the second uniform grid. Because boundary particles are located on the polygons, complex geometries can be accurately represented. The proposed method can dramatically improve the particle number density and maintain the high efficiency. The performance of the previously proposed wall weight function (Zhang et al.) with the boundary particle arrangement technique is verified in comparison with the wall weight function without boundary particle arrangement by investigating two example geometries. The simulations of a water tank with a wedge and a complex geometry show the general applicability of the boundary particle arrangement technique to complex geometries and demonstrate its improvement of the wall weight function near the slopes and curved surfaces.
NASA Astrophysics Data System (ADS)
Itoh, K.; Itoh, S.-I.; Kosuga, Y.; Lesur, M.; Ido, T.
2016-05-01
An analytic model is developed for understanding the abrupt onset of geodesic acoustic mode (GAM) in the presence of chirping energetic-particle-driven GAM (EGAM). This abrupt excitation phenomenon has been observed on LHD plasma. Threshold conditions for the onset of abrupt growth of GAM are derived, and the period doubling phenomenon is explained. The phase relation between the mother mode (EGAM) and the daughter mode (GAM) is also discussed. This result contributes to the understanding of "trigger problems" of laboratory and nature plasmas.
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.; Grosveld, Ferdinand
2007-01-01
The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.
Phase-modulated solitary waves controlled by a boundary condition at the bottom.
Mukherjee, Abhik; Janaki, M S
2014-06-01
A forced Korteweg-de Vries (KdV) equation is derived to describe weakly nonlinear, shallow-water surface wave propagation over nontrivial bottom boundary condition. We show that different functional forms of bottom boundary conditions self-consistently produce different forced KdV equations as the evolution equations for the free surface. Solitary wave solutions have been analytically obtained where phase gets modulated controlled by bottom boundary condition, whereas amplitude remains constant. PMID:25019847
Implementation of C* Boundary Conditions in the Hybrid Monte Carlo Algorithm
NASA Astrophysics Data System (ADS)
Carmona, José Manuel; D'elia, Massimo; Di Giacomo, Adriano; Lucini, Biagio
In the study of QCD dynamics, C* boundary conditions are physically relevant in certain cases. In this paper, we study the implementation of these boundary conditions in the lattice formulation of full QCD with staggered fermions. In particular, we show that the usual even-odd partition trick to avoid the redoubling of the fermion matrix is still valid in this case. We give an explicit implementation of these boundary conditions for the Hybrid Monte Carlo algorithm.
Analysis of boundary conditions for SSME subsonic internal viscous flow analysis
NASA Technical Reports Server (NTRS)
Baker, A. J.
1986-01-01
A study was completed of mathematically proper boundary conditions for unique numerical solution of internal, viscous, subsonic flows in the space shuttle main engine. The study has concentrated on well posed considerations, with emphasis on computational efficiency and numerically stable boundary condition statements. The method of implementing the established boundary conditions is applicable to a wide variety of finite difference and finite element codes, as demonstrated.
Revisit boundary conditions for the self-adjoint angular flux formulation
Wang, Yaqi; Gleicher, Frederick N.
2015-03-01
We revisit the boundary conditions for SAAF. We derived the equivalent parity variational form ready for coding up. The more rigorous approach of evaluating odd parity should be solving the odd parity equation coupled with the even parity. We proposed a symmetric reflecting boundary condition although neither positive definiteness nor even-odd decoupling is achieved. A simple numerical test verifies the validity of these boundary conditions.
Conditions at the downstream boundary for simulations of viscous incompressible flow
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
The proper specification of boundary conditions at artificial boundaries for the simulation of time-dependent fluid flows has long been a matter of controversy. A general theory of asymptotic boundary conditions for dissipative waves is applied to the design of simple, accurate conditions at downstream boundary for incompressible flows. For Reynolds numbers far enough below the critical value for linear stability, a scaling is introduced which greatly simplifies the construction of the asymptotic conditions. Numerical experiments with the nonlinear dynamics of vortical disturbances to plane Poiseuille flow are presented which illustrate the accuracy of our approach. The consequences of directly applying the scalings to the equations are also considered.
An Explicit Time-Domain Hybrid Formulation Based on the Unified Boundary Condition
Madsen, N; Fasenfest, B J; White, D; Stowell, M; Jandhyala, V; Pingenot, J; Champagne, N J; Rockway, J D
2007-02-28
An approach to stabilize the two-surface, time domain FEM/BI hybrid by means of a unified boundary condition is presented. The first-order symplectic finite element formulation [1] is used along with a version of the unified boundary condition of Jin [2] reformulated for Maxwell's first-order equations in time to provide both stability and accuracy over the first-order ABC. Several results are presented to validate the numerical solutions. In particular the dipole in a free-space box is analyzed and compared to the Dirchlet boundary condition of Ziolkowski and Madsen [3] and to a Neuman boundary condition approach.
f(T) Gravity from Holographic Ricci Dark Energy Model with New Boundary Conditions
NASA Astrophysics Data System (ADS)
Huang, Peng; Huang, Yong-Chang; Yuan, Fang-Fang
2013-11-01
Commonly used boundary conditions in reconstructing f(T) gravity from holographic Ricci dark energy (RDE) model are found to cause some problem, we therefore propose new boundary conditions in this paper. By reconstructing f(T) gravity from the RDE with these new boundary conditions, we show that the new ones are better than the present commonly used ones since they can give the physically expected information, which is lost when the commonly used ones are taken in the reconstruction, of the resulting f(T) theory. Thus, the new boundary conditions proposed here are more suitable for the reconstruction of f(T) gravity.
A suitable boundary condition for bounded plasma simulation without sheath resolution
Parker, S.E.; Procassini, R.J.; Birdsall, C.K. ); Cohen, B.I. )
1993-01-01
We have developed a technique that allows for a sheath boundary layer without having to resolve the inherently small space and time scales of the sheath region. We refer to this technique as the logical sheath boundary condition. This boundary condition, when incorporated into a direct-implicit particle code, permits large space- and time-scale simulations of bounded systems, which would otherwise be impractical on current supercomputers. The lack of resolution of the collector sheath potential drop obtained from conventional implicit simulations at moderate values of [omega][sub pe][Delta]t and [Delta]z/[lambda][sup De] provides the motivation for the development of the logical sheath boundary condition. The algorithm for use of the logical sheath boundary condition in a particle simulation is presented. Results from simulations which use the logical sheath boundary condition are shown to compare reasonably well with those from an analytic theory and simulations in which the sheath is resolved.
NASA Astrophysics Data System (ADS)
Novak, Jérôme; Bonazzola, Silvano
2004-06-01
We present a new formulation of the multipolar expansion of an exact boundary condition for the wave equation, which is truncated at the quadrupolar order. Using an auxiliary function, that is the solution of a wave equation on the sphere defining the outer boundary of the numerical grid, the absorbing boundary condition is simply written as a perturbation of the usual Sommerfeld radiation boundary condition. It is very easily implemented using spectral methods in spherical coordinates. Numerical tests of the method show that very good accuracy can be achieved and that this boundary condition has the same efficiency for dipolar and quadrupolar waves as the usual Sommerfeld boundary condition for monopolar ones. This is of particular importance for the simulation of gravitational waves, which have dominant quadrupolar terms, in General Relativity.
NASA Astrophysics Data System (ADS)
Borjan, Z.
2016-09-01
We consider critical Casimir force in the Ising strips with boundary conditions defined by standard normal and ordinary surface universality classes containing also the internal grain boundary. Using exact variational approach of Mikheev and Fisher we have elaborated on behaviors of Casimir amplitudes Δ++(g) , ΔOO(g) and Δ+O(g) , corresponding to normal-normal, ordinary-ordinary and mixed normal-ordinary boundary conditions, respectively, with g as a strength of the grain boundary. Closed analytic results describe Casimir amplitudes Δ++(g) and ΔOO(g) as continuous functions of the grain boundary's strength g, changing the character of the Casimir force from repulsive to attractive and vice versa for certain domains of g. Present results reveal a new type of symmetry between Casimir amplitudes Δ++(g) and ΔOO(g) . Unexpectedly simple constant result for the Casimir amplitude Δ+O(g) = π/12 we have comprehensively interpreted in terms of equilibrium states of the present Ising strip as a complex interacting system comprising two sub-systems. Short-distance expansions of energy density profiles in the vicinity of the grain boundary reveal new distant-wall correction amplitudes that we examined in detail. Analogy of present considerations with earlier more usual short-distance expansions near one of the (N), (O) and (SB) boundaries, as well as close to surfaces with variable boundary conditions refers to the set of scaling dimensions appearing in the present calculations but also to the discovery of the de Gennes-Fisher distant wall correction amplitudes.
Incorporation of a boundary condition to numerical solution of POISSON's equation
Caspi, S.; Helm, M.; Laslett, L.J.
1988-10-01
Two-dimensional and axially-symmetric problems in electrostatics, magnetostatics or potential fluid flow frequently are solved numerically by means of relaxation techniques -- employing, for example, the finite-difference program POISSON. In many such problems, the ''sources'' (charges or currents, vorticity, and regions of permeable material) lie exclusively within a finite closed boundary curve and the relaxation process, in principle, then can be confined to the region interior to such a boundary -- provided that a suitable boundary condition is imposed on the solution at the boundary. This paper is a review and illustration of a computational method that uses a boundary condition of such a nature as to avoid the inaccuracies and more extensive meshes present when, alternatively, a simple Dirichlet or Neumann boundary condition is specified on a somewhat more remote outer boundary. 2 refs., 5 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Goodman, Michael L.
1990-10-01
The Mie series solution for the scattered field of a sphere with an anisotropic impedance boundary condition (IBC) is derived along with the corresponding scattering cross section. Conditions on the impedance that ensure a unique solution for the scattered field are derived. The anisotropic IBC is derived for a material with an anisotropic electric permittivity and a large anisotropic conductivity. For the special case of an isotropic IBC, a method is presented for testing whether any given impedance leads to a unique solution for the scattered field, and it is shown that, for every incident wave frequency and mode number l, there are exactly two values of the impedance for which the scattered field is not unique.
Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2014-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
NASA Astrophysics Data System (ADS)
Esmaili Sikarudi, M. A.; Nikseresht, A. H.
2016-01-01
Smoothed particle hydrodynamics is a robust Lagrangian particle method which is widely used in various applications, from astrophysics to hydrodynamics and heat conduction. It has intrinsic capabilities for simulating large deformation, composites, multiphysics events, and multiphase fluid flows. It is vital to use reliable boundary conditions when boundary value problems like heat conduction or Poisson equation for incompressible flows are solved. Since smoothed particle hydrodynamics is not a boundary fitted grids method, implementation of boundary conditions can be problematic. Many methods have been proposed for enhancing the accuracy of implementation of boundary conditions. In the present study a new approach for facilitating the implementation of Robin and Neumann boundary conditions is proposed and proven to give accurate results. Also there is no need to use complicated preprocessing as in virtual particle method. The new method is compared to an equivalent one dimensional moving least square scheme and it is shown that the present method is less sensitive to particle disorder.
Experimental verification of free-space singular boundary conditions in an invisibility cloak
NASA Astrophysics Data System (ADS)
Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Chen, Huanyang; Zhang, Baile
2016-04-01
A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak.
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
NASA Astrophysics Data System (ADS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-07-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
Green's function of a heat problem with a periodic boundary condition
NASA Astrophysics Data System (ADS)
Erzhanov, Nurzhan E.
2016-08-01
In the paper, a nonlocal initial-boundary value problem for a non-homogeneous one-dimensional heat equation is considered. The domain under consideration is a rectangle. The classical initial condition with respect to t is put. A nonlocal periodic boundary condition by a spatial variable x is put. It is well-known that a solution of problem can be constructed in the form of convergent orthonormal series according to eigenfunctions of a spectral problem for an operator of multiple differentiation with periodic boundary conditions. Therefore Green's function can be also written in the form of an infinite series with respect to trigonometric functions (Fourier series). For classical first and second initial-boundary value problems there also exists a second representation of the Green's function by Jacobi function. In this paper we find the representation of the Green's function of the nonlocal initial-boundary value problem with periodic boundary conditions in the form of series according to exponents.
Acoustic Signal Processing for Pipe Condition Assessment (WaterRF Report 4360)
Unique to prestressed concrete cylinder pipe (PCCP), individual wire breaks create an excitation in the pipe wall that may vary in response to the remaining compression of the pipe core. This project was designed to improve acoustic signal processing for pipe condition assessment...
General Considerations of the Electrostatic Boundary Conditions in Oxide Heterostructures
Higuchi, Takuya
2011-08-19
When the size of materials is comparable to the characteristic length scale of their physical properties, novel functionalities can emerge. For semiconductors, this is exemplified by the 'superlattice' concept of Esaki and Tsu, where the width of the repeated stacking of different semiconductors is comparable to the 'size' of the electrons, resulting in novel confined states now routinely used in opto-electronics. For metals, a good example is magnetic/non-magnetic multilayer films that are thinner than the spin-scattering length, from which giant magnetoresistance (GMR) emerged, used in the read heads of hard disk drives. For transition metal oxides, a similar research program is currently underway, broadly motivated by the vast array of physical properties that they host. This long-standing notion has been recently invigorated by the development of atomic-scale growth and probe techniques, which enables the study of complex oxide heterostructures approaching the precision idealized in Fig. 1(a). Taking the subset of oxides derived from the perovskite crystal structure, the close lattice match across many transition metal oxides presents the opportunity, in principle, to develop a 'universal' heteroepitaxial materials system. Hand-in-hand with the continual improvements in materials control, an increasingly relevant challenge is to understand the consequences of the electrostatic boundary conditions which arise in these structures. The essence of this issue can be seen in Fig. 1(b), where the charge sequence of the sublayer 'stacks' for various representative perovskites is shown in the ionic limit, in the (001) direction. To truly 'universally' incorporate different properties using different materials components, be it magnetism, ferroelectricity, superconductivity, etc., it is necessary to access and join different charge sequences, labelled here in analogy to the designations 'group IV, III-V, II-VI' for semiconductors. As we will review, interfaces between
NASA Astrophysics Data System (ADS)
Kanguzhin, Baltabek; Tokmagambetov, Niyaz
2016-08-01
In this work, we research a boundary inverse problem of spectral analysis of a differential operator with integral boundary conditions in the functional space L2(0, b) where b < ∞. A uniqueness theorem of the inverse boundary problem in L2(0, b) is proved. Note that a boundary inverse problem of spectral analysis is the problem of recovering boundary conditions of the operator by its spectrum and some additional data.
Hydromagnetic conditions near the core-mantle boundary
NASA Technical Reports Server (NTRS)
Backus, George E.
1995-01-01
The main results of the grant were (1) finishing the manuscript of a proof of completeness of the Poincare modes in an incompressible nonviscous fluid corotating with a rigid ellipsoidal boundary, (2) partial completion of a manuscript describing a definition of helicity that resolved questions in the literature about calculating the helicities of vector fields with complicated topologies, and (3) the beginning of a reexamination of the inverse problem of inferring properties of the geomagnetic field B just outside the core-mantle boundary (CMB) from measurements of elements of B at and above the earth's surface. This last work has led to a simple general formalism for linear and nonlinear inverse problems that appears to include all the inversion schemes so far considered for the uniqueness problem in geomagnetic inversion. The technique suggests some new methods for error estimation that form part of this report.
Compressible Navier Stokes Model with Inflow-Outflow Boundary Conditions
NASA Astrophysics Data System (ADS)
Novo, Sébastien
2005-11-01
In the paper [7], author gives a definition of weak solution to the nonsteady Navier Stokes system of equations which describes compressible and isentropic flows in some bounded region Ω with influx of fluid through a part of the boundary ∂Ω. Here, we present a way for proving existence of such solutions in the same situation as in [7] under the sole hypothesis γ > 3/2 for the adiabatic constant.
On the Boundary Condition Between Two Multiplying Media
DOE R&D Accomplishments Database
Friedman, F. L.; Wigner, E. P.
1944-04-19
The transition region between two parts of a pile which have different compositions is investigated. In the case where the moderator is the same in both parts of the pile, it is found that the diffusion constant times thermal neutron density plus diffusion constant times fast neutron density satisfies the usual pile equations everywhere, right to the boundary. More complicated formulae apply in a more general case.
Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization
Murray, Nathan E.
2012-03-12
Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives
Trickle-down boundary conditions in aeolian dune-field pattern formation
NASA Astrophysics Data System (ADS)
Ewing, R. C.; Kocurek, G.
2015-12-01
One the one hand, wind-blown dune-field patterns emerge within the overarching boundary conditions of climate, tectonics and eustasy implying the presence of these signals in the aeolian geomorphic and stratigraphic record. On the other hand, dune-field patterns are a poster-child of self-organization, in which autogenic processes give rise to patterned landscapes despite remarkable differences in the geologic setting (i.e., Earth, Mars and Titan). How important are climate, tectonics and eustasy in aeolian dune field pattern formation? Here we develop the hypothesis that, in terms of pattern development, dune fields evolve largely independent of the direct influence of 'system-scale' boundary conditions, such as climate, tectonics and eustasy. Rather, these boundary conditions set the stage for smaller-scale, faster-evolving 'event-scale' boundary conditions. This 'trickle-down' effect, in which system-scale boundary conditions indirectly influence the event scale boundary conditions provides the uniqueness and richness of dune-field patterned landscapes. The trickle-down effect means that the architecture of the stratigraphic record of dune-field pattern formation archives boundary conditions, which are spatially and temporally removed from the overarching geologic setting. In contrast, the presence of an aeolian stratigraphic record itself, reflects changes in system-scale boundary conditions that drive accumulation and preservation of aeolian strata.
Open boundary conditions for ISPH and their application to micro-flow
NASA Astrophysics Data System (ADS)
Hirschler, Manuel; Kunz, Philip; Huber, Manuel; Hahn, Friedemann; Nieken, Ulrich
2016-02-01
Open boundary conditions for incompressible Smoothed Particle Hydrodynamics (ISPH) are rare. For stable simulations with open boundary conditions, one needs to specify all boundary conditions correctly in the pressure force as well as in the linear equation system for pressure calculation. Especially for homogeneous or non-homogeneous Dirichlet boundary conditions for pressure there exist several possibilities but only a few lead to stable results. However, this isn't trivial for open boundary conditions. We introduce a new approach for open boundary conditions for ISPH to enable stable simulations. In contrast to existing models for weakly-compressible SPH, we can specify open pressure boundary conditions because in ISPH, pressure can be calculated independently of the density. The presented approach is based on the mirror particle approach already introduced for solid wall boundary conditions. Here we divide the mirror axis in several segments with time-dependent positions. We validate the presented approach for the example of Poiseuille flow and flow around a cylinder at different Reynolds numbers and show that we get good agreement with references. Then, we demonstrate that the approach can be applied to free surface flows. Finally, we apply the new approach to micro-flow through a random porous medium with a different number of in- and outlets and demonstrate its benefits.
Technology Transfer Automated Retrieval System (TEKTRAN)
Transient unsaturated horizontal column experiments were conducted with a loam soil, under variable boundary conditions, to obtain added insight on anion exclusion processes that impact nitrate transport in soil. The boundary conditions evaluated were column inlet soil water content, initial soil w...
NASA Technical Reports Server (NTRS)
Chiavassa, G.; Liandrat, J.
1996-01-01
We construct compactly supported wavelet bases satisfying homogeneous boundary conditions on the interval (0,1). The maximum features of multiresolution analysis on the line are retained, including polynomial approximation and tree algorithms. The case of H(sub 0)(sup 1)(0, 1)is detailed, and numerical values, required for the implementation, are provided for the Neumann and Dirichlet boundary conditions.
Near-field/far-field array manifold of an acoustic vector-sensor near a reflecting boundary.
Wu, Yue Ivan; Lau, Siu-Kit; Wong, Kainam Thomas
2016-06-01
The acoustic vector-sensor (a.k.a. the vector hydrophone) is a practical and versatile sound-measurement device, with applications in-room, open-air, or underwater. It consists of three identical uni-axial velocity-sensors in orthogonal orientations, plus a pressure-sensor-all in spatial collocation. Its far-field array manifold [Nehorai and Paldi (1994). IEEE Trans. Signal Process. 42, 2481-2491; Hawkes and Nehorai (2000). IEEE Trans. Signal Process. 48, 2981-2993] has been introduced into the technical field of signal processing about 2 decades ago, and many direction-finding algorithms have since been developed for this acoustic vector-sensor. The above array manifold is subsequently generalized for outside the far field in Wu, Wong, and Lau [(2010). IEEE Trans. Signal Process. 58, 3946-3951], but only if no reflection-boundary is to lie near the acoustic vector-sensor. As for the near-boundary array manifold for the general case of an emitter in the geometric near field, the far field, or anywhere in between-this paper derives and presents that array manifold in terms of signal-processing mathematics. Also derived here is the corresponding Cramér-Rao bound for azimuth-elevation-distance localization of an incident emitter, with the reflected wave shown to play a critical role on account of its constructive or destructive summation with the line-of-sight wave. The implications on source localization are explored, especially with respect to measurement model mismatch in maximum-likelihood direction finding and with regard to the spatial resolution between coexisting emitters. PMID:27369140
NASA Astrophysics Data System (ADS)
Olson, Nathan M.
2015-11-01
The bounce-back boundary condition in the lattice Boltzmann method distorts curved or inclined boundaries by forcing them to conform to a rectangular grid. This paper proposes a modification that reduces the effect of this discretization on the fluid flow. The modification takes the form of the addition of a type of node that is neither solid nor fluid, called the "sticky node". Sticky nodes are used in all cells that contain both fluid and solid. They are treated like fluid nodes with modified viscosity, body force, and velocity calculation. The method is applied to the LBGK model on a D2Q9 grid, and the accuracy of the method is evaluated using several test cases. Decreased discretization artifacts and decreased sensitivity to grid alignment are demonstrated, compared to the standard link bounce-back boundary condition. The method is computationally efficient, local, and demonstrates good numerical stability.
On solvability of some boundary value problems for a biharmonic equation with periodic conditions
NASA Astrophysics Data System (ADS)
Karachik, Valery V.; Massanov, Saparbay K.; Turmetov, Batirkhan Kh.
2016-08-01
In the paper we study questions about solvability of some boundary value problems with periodic conditions for an inhomogeneous biharmonic equation. The exact conditions for solvability of the problems are found.
Acoustic conditioning of the metropolitan cathedral of Porto Alegre, RS, Brazil
NASA Astrophysics Data System (ADS)
Simoes, Flavio M.; Nabinger, Luciano B.; Ramalho, Aline I.
2002-11-01
In the acoustic study of the Metropolitan Cathedral of Porto Alegre, RS, Brazil, initially background noise and reverberation time were measured. A digital model was built using acoustic simulation software AcustaCadd, applying the values of the measured reverberation time. Then reverberation time, speech intelligibility, and geometric acoustics were analyzed. As a result the Project of Acoustic Conditioning was developed to correct the high reverberation time, by increasing absorption with the installation of 65000 m of panels of glass wool (100 mm, 60 kg/m). Advantage was taken of existing details in the plaster to embed the panels in the walls. Also the volume of the choir and of the lateral balcony to the altar was reduced and the interior of this was covered with the same glass wool. Special care was taken to minimize alterations to the architectural characteristics of the place, because it is a construction of historical importance. The measured values of background noise were also analyzed and appropriate acoustic isolation considered. The final measure of the reverberation time showed an average reduction of 5 seconds and better speech intelligibility, long demanded by the users. [Work supported by FAIR/FUNDATEC, BR; IUCC-US, SP.
NASA Astrophysics Data System (ADS)
Martinez-Carranza, J.; Falaggis, K.; Kozacki, T.; Kujawinska, Malgorzata
2013-05-01
The transport of intensity equation (TIE) describes the relation between the object phase and the intensity distribution in the Fresnel region and can be used as a non-interferometric technique to estimate the phase distribution of an object. A number of techniques have been developed to solve the TIE. In this work we focus on one popular class of Poisson solvers that are based on Fourier and the Multigrid techniques. The aim of this paper is to present an analysis of these types of TIE solvers taking into account the effect of the boundary condition, i.e. the Neumann Boundary Condition (NBC), the Dirichlet Boundary Condition (DBC), and the Periodic Boundary Condition (PBC). This analysis, which depends on the location of an object wave-front in the detector plane, aims to identify the advantages and disadvantage of these kinds of solvers and to provide the rules for choice of the best fitted boundary condition.
Stability of basis property of a periodic problem with nonlocal perturbation of boundary conditions
NASA Astrophysics Data System (ADS)
Imanbaev, Nurlan; Sadybekov, Makhmud
2016-08-01
The present work is the continuation of authors' researchers on stability (instability) of basis property of root vectors of a differential operator with nonlocal perturbation of one of boundary conditions. In this paper a spectral problem for a multiple differentiation operator with an integral perturbation of boundary conditions of one type, which are regular, but not strongly regular, is devoted. For this type of the boundary conditions it is known that the unperturbed problem has an asymptotically simple spectrum, and its system of normalized eigenfunctions creates the Riesz basis. We construct the characteristic determinant of the spectral problem with an integral perturbation of the boundary conditions. It is shown that the Riesz basis property of a system of eigen and adjoint functions is stable with respect to integral perturbations of the boundary condition. In the paper requirements of smoothness to the kernel of the integral perturbation are also reduced (unlike our previous researchers).
Exact finite-size corrections for the spanning-tree model under different boundary conditions
NASA Astrophysics Data System (ADS)
Izmailian, N. Sh.; Kenna, R.
2015-02-01
We express the partition functions of the spanning tree on finite square lattices under five different sets of boundary conditions in terms of a principal partition function with twisted-boundary conditions. Based on these expressions, we derive the exact asymptotic expansions of the logarithm of the partition function for each case. We have also established several groups of identities relating spanning-tree partition functions for the different boundary conditions. We also explain an apparent discrepancy between logarithmic correction terms in the free energy for a two-dimensional spanning-tree model with periodic and free-boundary conditions and conformal field theory predictions. We have obtained corner free energy for the spanning tree under free-boundary conditions in full agreement with conformal field theory predictions.
Evaluation of Far-Field Boundary Conditions for the Gust Response Problem
NASA Technical Reports Server (NTRS)
Scott, James R.; Kreider, Kevin L.; Heminger, John A.
2002-01-01
This paper presents a detailed situ dy of four far-field boundary conditions used in solving the single airfoil gust response problem. The boundary conditions, examined are the partial Sommerfeld radiation condition with only radial derivatives, the full Sommerfeld radiation condition with both radial and tangential derivatives, the Bayliss-Turkel condition of order one, and the Hagstrom-Hariharan condition of order one. The main objectives of the study were to determine which far-field boundary condition was most accurate, which condition was least sensitive to changes in grid. and which condition was best overall in terms of both accuracy and efficiency. Through a systematic study of the flat plate gust response problem, it was determined that the Hagstrom-Hariharan condition was most accurate, the Bayliss-Turkel condition was least sensitive to changes in grid, and Bayliss-Turkel was best in terms of both accuracy and efficiency.
Self-consistently simulation of RF sheath boundary condition in BOUT + + framework
NASA Astrophysics Data System (ADS)
Gui, Bin; Xu, Xueqiao; Xia, Tianyang
2015-11-01
The effect of the RF sheath boundary condition on the edge-localized modes and the turbulent transport is simulated in this work. The work includes two parts. The first part is to calculate the equilibrium radial electric field with RF sheath boundary condition. It is known the thermal sheath or the rectified RF sheath will modify the potential in the SOL region. The modified potential induces addition shear flow in SOL. In this part, the equilibrium radial electric field across the separatrix is calculated by solving the 2D current continuity equation with sheath boundary condition, drifts and viscosity. The second part is applying the sheath boundary condition on the perturbed variables of the six-field two fluid model in BOUT + + framework. The six-field two-fluid model simulates the ELMs and turbulent transport. The sheath boundary condition is applied in this model and it aims to simulate effect of sheath boundary condition on the turbulent transport. It is found the sheath boundary plays as a sink in the plasma and suppresses the local perturbation. Based on this two work, the effect of RF sheath boundary condition on the ELMs and turbulent transport could be self-consistently simulated. Prepared by LLNL under Contract DE-AC52-07NA27344.
A convective-like energy-stable open boundary condition for simulations of incompressible flows
NASA Astrophysics Data System (ADS)
Dong, S.
2015-12-01
We present a new energy-stable open boundary condition, and an associated numerical algorithm, for simulating incompressible flows with outflow/open boundaries. This open boundary condition ensures the energy stability of the system, even when strong vortices or backflows occur at the outflow boundary. Under certain situations it can be reduced to a form that can be analogized to the usual convective boundary condition. One prominent feature of this boundary condition is that it provides a control over the velocity on the outflow/open boundary. This is not available with the other energy-stable open boundary conditions from previous works. Our numerical algorithm treats the proposed open boundary condition based on a rotational velocity-correction type strategy. It gives rise to a Robin-type condition for the discrete pressure and a Robin-type condition for the discrete velocity on the outflow/open boundary, respectively at the pressure and the velocity sub-steps. We present extensive numerical experiments on a canonical wake flow and a jet flow in open domain to test the effectiveness and performance of the method developed herein. Simulation results are compared with the experimental data as well as with other previous simulations to demonstrate the accuracy of the current method. Long-time simulations are performed for a range of Reynolds numbers, at which strong vortices and backflows occur at the outflow/open boundaries. The results show that our method is effective in overcoming the backflow instability, and that it allows for the vortices to discharge from the domain in a fairly natural fashion even at high Reynolds numbers.
Implementation and Effects of Low-Altitude Boundary Conditions in Global Magnetosphere Models
NASA Astrophysics Data System (ADS)
Xi, Sheng
The forecast capabilities of global magnetohydrodynamics (MHD) simulations of geospace are sensitive to the particular specification of low-altitude (inner) boundary conditions. The low-altitude boundary conditions imposed in all global simulations (at least six different models are in active use around the world) are artificial in varying degrees. Consequently, they introduce nonphysical artifacts in the MHD solution. The principle objectives of this thesis are to improve the low-altitude boundary conditions in global magnetospheric MHD models in two ways: 1) by developing and employing Poynting flux-conserving boundary conditions and 2) by including the effects of field-aligned potential drops in the magnetosphere-ionosphere interaction in the boundary specification. The proposed boundary conditions have been implemented in the Lyon-Fedder-Mobarry (LFM) global simulation model. LFM simulation results are diagnosed to qualify the resulting improvements in the solution. The results presented in the dissertation illustrate the nonphysical artifacts introduced near the low-altitude boundary by the currently implemented LFM boundary conditions. It is shown that these artifacts are largely eliminated by flux-conserving boundary conditions, which conserve low-frequency (essentially DC) Poynting flux flowing along magnetic field lines. The field-aligned DC Poynting flux just above the boundary is also shown to be very nearly equal to the ionospheric Joule heating, as it should be if electromagnetic energy is conserved. The effects of field-aligned potential drops attributed to anomalous resistive layers that form at low altitude, in the "gap region" between the inner simulation boundary and the ionosphere, have also been included in the effective boundary condition. The model produces much larger potential drops in regions of upward field-aligned current, which are most prevalent on the dusk side, in contrast with those that occur in downward field-aligned currents that
Fano resonance scatterings in waveguides with impedance boundary conditions.
Xiong, Lei; Bi, Wenping; Aurégan, Yves
2016-02-01
The resonance scattering theory is used to study the sound propagation in a waveguide with a portion of its wall lined by a locally reacting material. The objective is to understand the effects of the mode coupling in the lined portion on the transmission. It is shown that a zero in the transmission is present when a real resonance frequency of the open system, i.e., the lined portion of the waveguide that is coupled to the two semi-infinite rigid ducts, is equal to the incident frequency. This transmission zero occurs as a Fano resonance-due to the excitation of a trapped mode in the open system. The trapped mode is formed by the interferences of two neighbored modes with complex resonance frequencies. It is also linked to the avoided crossing of eigenvalues of these two modes that occurs near an exceptional point (a subject that has attracted much attention in recent years in different physical domains). The real and complex resonance frequencies of the open system are determined by an equivalent eigenvalue problem of matrix Heff, which describes the eigenvalue problem defined in the finite lined portion (scattering region). With the aid of the eigenvalues and eigenfunctions of matrix Heff, the usual acoustic resonance scattering formula can be extended to describe the coupling effects between the scattering region and the rigid parts of the waveguide. PMID:26936558
On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains
NASA Astrophysics Data System (ADS)
Cantrell, Robert Stephen; Cosner, Chris
We study a diffusive logistic equation with nonlinear boundary conditions. The equation arises as a model for a population that grows logistically inside a patch and crosses the patch boundary at a rate that depends on the population density. Specifically, the rate at which the population crosses the boundary is assumed to decrease as the density of the population increases. The model is motivated by empirical work on the Glanville fritillary butterfly. We derive local and global bifurcation results which show that the model can have multiple equilibria and in some parameter ranges can support Allee effects. The analysis leads to eigenvalue problems with nonstandard boundary conditions.
Gonzalez-Lopez, Jennifer; Jansen, Karl; Renner, Dru B.; Shindler, Andrea
2013-02-01
The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to non-perturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit.
Modeling boundary conditions for balanced proliferation in metastatic latency
Taylor, Donald P; Wells, Jakob Z; Savol, Andrej; Chennubhotla, Chakra; Wells, Alan
2013-01-01
Purpose Nearly half of cancer metastases become clinically evident five or more years after primary tumor treatment; thus metastatic cells survived without emerging for extended periods. This dormancy has been explained by at least two countervailing scenarios: cellular quiescence and balanced proliferation; these entail dichotomous mechanistic etiologies. To examine the boundary parameters for balanced proliferation, we performed in silico modeling. Experimental Design To illuminate the balanced proliferation hypothesis, we explored the specific boundary probabilities under which proliferating micrometastases would remain dormant. A two-state Markov chain Monte Carlo model simulated micrometastatic proliferation and death according to stochastic survival probabilities. We varied these probabilities across 100 simulated patients each with 1,000 metastatic deposits and documented whether the micrometastases exceeded one million cells, died out, or remained dormant (survived 1,218 generations). Results The simulations revealed a narrow survival probability window (49.7 – 50.8 percent) that allowed for dormancy across a range of starting cell numbers, and even then for only a small fraction of micrometastases. The majority of micrometastases died out quickly even at survival probabilities that led to rapid emergence of a subset of micrometastases. Within dormant metastases, cell populations depended sensitively on small survival probability increments. Conclusions Metastatic dormancy as explained solely by balanced proliferation is bounded by very tight survival probabilities. Considering the far larger survival variability thought to attend fluxing microenvironments, it is more probable that these micrometastatic nodules undergo at least periods of quiescence rather than exclusively being controlled by balanced proliferation. PMID:23329811
Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.
2003-01-01
Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.
NASA Astrophysics Data System (ADS)
deGroot-Hedlin, C.; Orcutt, J.
- Plans for a hydroacoustic network intended to monitor compliance with the CTBT call for the inclusion of five T-phase stations situated at optimal locations for the detection of seismic phases converted from ocean-borne T phases. We examine factors affecting the sensitivity of land-based stations to the seismic T phase. The acoustic to seismic coupling phenomenon is described by upslope propagation of an acoustic ray impinging at a sloping elastic wedge. We examine acoustic to seismic coupling characteristics for two cases; the first in which the shear velocity of the bottom is greater than the compressional velocity of the fluid (i.e., vp > vs > vw), the second is a weakly elastic solid in which vs<< vw< vp. The former is representative of velocities in solid rock, which might be encountered at volcanic islands; the latter is representative of marine sediments. For the case where vs > vw, we show that acoustic energy couples primarily to shear wave energy, except at very high slope angles. We show that the weakly elastic solid (i.e., vs << vw) behaves nearly like a fluid bottom, with acoustic energy coupling to both P and S waves even at low slope angles.We examine converted T-wave arrivals at northern California seismic stations for two event clusters; one a series of earthquakes near the Hawaiian Islands, the other a series of nuclear tests conducted near the Tuamoto archipelago. Each cluster yielded characteristic arrivals at each station which were consistent from event to event within a cluster, but differed between clusters. The seismic T-phases consisted of both P- and S-wave arrivals, consistent with the conversion of acoustic to seismic energy at a gently sloping sediment-covered seafloor. In general, the amplitudes of the seismic T phases were highest for stations nearest the continental slope, where seafloor slopes are greatest, however noise levels decrease rapidly with increasing distance from the coastline, so that T-wave arrivals were observable
Evaluation of general non-reflecting boundary conditions for industrial CFD applications
NASA Astrophysics Data System (ADS)
Basara, Branislav; Frolov, Sergei; Lidskii, Boris; Posvyanskii, Vladimir
2007-11-01
The importance of having proper boundary conditions for the calculation domain is a known issue in Computational Fluid Dynamics (CFD). In many situations, it is very difficult to define a correct boundary condition. The flow may enter and leave the computational domain at the same time and at the same boundary. In such circumstances, it is important that numerical implementation of boundary conditions enforces certain physical constraints leading to correct results which then ensures a better convergence rate. The aim of this paper is to evaluate recently proposed non-reflecting boundary conditions (Frolov et al., 2001, Advances in Chemical Propulsion) on industrial CFD applications. Derivation of the local non-reflecting boundary conditions at the open boundary is based on finding the solution of linearized Euler equations vanishing at infinity for both incompressible and compressible formulations. This is implemented into the in-house CFD package AVL FIRE and some numerical details will be presented as well. The key applications in this paper are from automotive industry, e.g. an external car aerodynamics, an intake port, etc. The results will show benefits of using effective non-reflecting boundary conditions.
DREAM-3D and the importance of model inputs and boundary conditions
NASA Astrophysics Data System (ADS)
Friedel, Reiner; Tu, Weichao; Cunningham, Gregory; Jorgensen, Anders; Chen, Yue
2015-04-01
Recent work on radiation belt 3D diffusion codes such as the Los Alamos "DREAM-3D" code have demonstrated the ability of such codes to reproduce realistic magnetospheric storm events in the relativistic electron dynamics - as long as sufficient "event-oriented" boundary conditions and code inputs such as wave powers, low energy boundary conditions, background plasma densities, and last closed drift shell (outer boundary) are available. In this talk we will argue that the main limiting factor in our modeling ability is no longer our inability to represent key physical processes that govern the dynamics of the radiation belts (radial, pitch angle and energy diffusion) but rather our limitations in specifying accurate boundary conditions and code inputs. We use here DREAM-3D runs to show the sensitivity of the modeled outcomes to these boundary conditions and inputs, and also discuss alternate "proxy" approaches to obtain the required inputs from other (ground-based) sources.
An implicit-iterative solution of the heat conduction equation with a radiation boundary condition
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, D. M.
1977-01-01
For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.
NASA Astrophysics Data System (ADS)
Lee, Sanghyun; Salgado, Abner J.
2016-09-01
We present a stability analysis for two different rotational pressure correction schemes with open and traction boundary conditions. First, we provide a stability analysis for a rotational version of the grad-div stabilized scheme of [A. Bonito, J.-L. Guermond, and S. Lee. Modified pressure-correction projection methods: Open boundary and variable time stepping. In Numerical Mathematics and Advanced Applications - ENUMATH 2013, volume 103 of Lecture Notes in Computational Science and Engineering, pages 623-631. Springer, 2015]. This scheme turns out to be unconditionally stable, provided the stabilization parameter is suitably chosen. We also establish a conditional stability result for the boundary correction scheme presented in [E. Bansch. A finite element pressure correction scheme for the Navier-Stokes equations with traction boundary condition. Comput. Methods Appl. Mech. Engrg., 279:198-211, 2014]. These results are shown by employing the equivalence between stabilized gauge Uzawa methods and rotational pressure correction schemes with traction boundary conditions.
Sharapov, T F
2014-10-31
We consider an elliptic operator in a multidimensional domain with frequently changing boundary conditions in the case when the homogenized operator contains the Dirichlet boundary condition. We prove the uniform resolvent convergence of the perturbed operator to the homogenized operator and obtain estimates for the rate of convergence. A complete asymptotic expansion is constructed for the resolvent when it acts on sufficiently smooth functions. Bibliography: 41 titles.
Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I
2012-01-01
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688
Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmed I.
2012-01-01
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688
Inverse Lax-Wendroff procedure for numerical boundary conditions of convection-diffusion equations
NASA Astrophysics Data System (ADS)
Lu, Jianfang; Fang, Jinwei; Tan, Sirui; Shu, Chi-Wang; Zhang, Mengping
2016-07-01
We consider numerical boundary conditions for high order finite difference schemes for solving convection-diffusion equations on arbitrary geometry. The two main difficulties for numerical boundary conditions in such situations are: (1) the wide stencil of the high order finite difference operator requires special treatment for a few ghost points near the boundary; (2) the physical boundary may not coincide with grid points in a Cartesian mesh and may intersect with the mesh in an arbitrary fashion. For purely convection equations, the so-called inverse Lax-Wendroff procedure [28], in which we convert the normal derivatives into the time derivatives and tangential derivatives along the physical boundary by using the equations, has been quite successful. In this paper, we extend this methodology to convection-diffusion equations. It turns out that this extension is non-trivial, because totally different boundary treatments are needed for the diffusion-dominated and the convection-dominated regimes. We design a careful combination of the boundary treatments for the two regimes and obtain a stable and accurate boundary condition for general convection-diffusion equations. We provide extensive numerical tests for one- and two-dimensional problems involving both scalar equations and systems, including the compressible Navier-Stokes equations, to demonstrate the good performance of our numerical boundary conditions.
Exploring the Boundary Conditions of the Redundancy Principle
ERIC Educational Resources Information Center
McCrudden, Matthew T.; Hushman, Carolyn J.; Marley, Scott C.
2014-01-01
This experiment investigated whether study of a scientific text and a visual display that contained redundant text segments would affect memory and transfer. The authors randomly assigned 42 students from a university in the southwestern United States in equal numbers to 1 of 2 conditions: (a) a redundant condition, in which participants studied a…
Unified boundary conditions and Casimir forces for fields with arbitrary spin
NASA Astrophysics Data System (ADS)
Bennett, Robert; Stokes, Adam
The electromagnetic Casimir effect is well-known and has been extensively studied for the last half-century. This attractive force between parallel plates arises from the imposition of boundary conditions upon the fluctuating spin-1 photon field, so a natural further question is wether fields of different spin can cause similar forces when confined in the same way. However, so far it has not been clear what the appropriate boundary conditions for physically-confined spinor fields may be. Here we present work that generalises the physically well-motivated electromagnetic boundary conditions to fields of arbitrary spin, thus arriving at physically reasonable boundary conditions and Casimir forces for a selection of interesting fields. For example, the so-called `bag model' boundary conditions from nuclear physics emerge from our generalised boundary condition as a special case, as do the linearised gravity boundary conditions suggested in a remarkable recent proposal concerning possible measurement of gravitonic Casimir forces. Supported by the UK Engineering and Physical Sciences Research Council (EPSRC).
NASA Astrophysics Data System (ADS)
Ramesh, G. K.; Gireesha, B. J.; Gorla, Rama Subba Reddy
2015-08-01
The steady two-dimensional boundary layer flow of a viscous dusty fluid over a stretching sheet with the bottom surface of the sheet heated by convection from a hot fluid is considered. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-Kutta-Fehlberg fourth-fifth order method (RKF45 Method) with the help of MAPLE. The effects of convective Biot number, fluid particle interaction parameter, and Prandtl number on the heat transfer characteristics are discussed. It is found that the temperature of both fluid and dust phase increases with increasing Biot number. A comparative study between the previous published and present results in a limiting sense is found in an excellent agreement.
The PPP model of alternant cyclic polyenes with modified boundary conditions
Bendazzoli, G.L.; Evangelisti, S.
1995-08-15
The extension of the PPP Hamiltonian for alternant cyclic polyenes to noninteger values of the pseudomomentum by imposing modified boundary conditions is discussed in detail. It is shown that a computer program for periodic boundary conditions can be easily adapted to the new boundary conditions. Full CI computations are carried out for some low-lying states of the PPP model of alternant cyclic polyenes (CH){sub N} (N even) at half-filling. The energy values obtained by using periodic (Bloch) and antiperiodic (Moebius) orbitals are used to perform energy extrapolations for N {yields} {infinity}. 38 refs., 2 figs., 5 tabs.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.; Yee, Kane S.
1991-01-01
Surface impedance boundary conditions are used to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be used to avoid using small cells, made necessary by shorter wavelengths in conducting media, throughout the solution volume. A one dimensional implementation is presented for a surface impedance boundary condition for good conductors in the Finite Difference Time Domain (FDTD) technique. In order to illustrate the FDTD surface impedance boundary condition, a planar air-lossy dielectric interface is considered.
Multiple Boundary Condition Tests (MBCT) for verification of large space structures
NASA Technical Reports Server (NTRS)
Wada, B. K.; Kuo, C. P.; Glaser, R. J.
1986-01-01
The Multiple Boundary Condition Tests (MBCT) approach is evaluated and recent modifications are described. For the application of MBCT, 12 different boundary conditions are selected and the results of applying MBCT in conjunction with a nonlinear formulation are indicated schematically. It is concluded that the nonlinear formulation enhances the ability to implement the MBCT test approach on large space structures which cannot be ground tested without the artificial boundary conditions incorporated in MBCT. In addition, it leads to significant improvements in the convergence to the correct solution.
Ion boundary conditions in semi-infinite fluid models of electron beam-plasma interaction
Levko, Dmitry
2014-10-15
The modified Bohm criterion is derived for the plasma consisting of the monoenergetic electron beam and thermal electrons. This criterion allows us to define the accurate ion boundary conditions for semi-infinite collisionless fluid models of electron beam–plasma interaction. In the absence of electron beam, these boundary conditions give the classical sheath parameters. When the monoenergetic electron beam propagates through the plasma, the fluid model with proposed boundary conditions gives the results, which are in qualitative agreement with the results obtained earlier in M. Sharifian and B. Shokri, Phys. Plasmas 14, 093503 (2007). However, dynamics and parameters of the plasma sheath are different.
Geomagnetic Secular Variation Prediction with Thermal Heterogeneous Boundary Conditions
NASA Technical Reports Server (NTRS)
Kuang, Weijia; Tangborn, Andrew; Jiang, Weiyuan
2011-01-01
It has long been conjectured that thermal heterogeneity at the core-mantle boundary (CMB) affects the geodynamo substantially. The observed two pairs of steady and strong magnetic flux lobes near the Polar Regions and the low secular variation in the Pacific over the past 400 years (and perhaps longer) are likely the consequences of this CMB thermal heterogeneity. There are several studies on the impact of the thermal heterogeneity with numerical geodynamo simulations. However, direct correlation between the numerical results and the observations is found very difficult, except qualitative comparisons of certain features in the radial component of the magnetic field at the CMB. This makes it difficult to assess accurately the impact of thermal heterogeneity on the geodynamo and the geomagnetic secular variation. We revisit this problem with our MoSST_DAS system in which geomagnetic data are assimilated with our geodynamo model to predict geomagnetic secular variations. In this study, we implement a heterogeneous heat flux across the CMB that is chosen based on the seismic tomography of the lowermost mantle. The amplitude of the heat flux (relative to the mean heat flux across the CMB) varies in the simulation. With these assimilation studies, we will examine the influences of the heterogeneity on the forecast accuracies, e.g. the accuracies as functions of the heterogeneity amplitude. With these, we could be able to assess the model errors to the true core state, and thus the thermal heterogeneity in geodynamo modeling.
Casimir force in the rotor model with twisted boundary conditions.
Bergknoff, Jonathan; Dantchev, Daniel; Rudnick, Joseph
2011-10-01
We investigate the three-dimensional lattice XY model with nearest neighbor interaction. The vector order parameter of this system lies on the vertices of a cubic lattice, which is embedded in a system with a film geometry. The orientations of the vectors are fixed at the two opposite sides of the film. The angle between the vectors at the two boundaries is α where 0≤α≤π. We make use of the mean field approximation to study the mean length and orientation of the vector order parameter throughout the film--and the Casimir force it generates--as a function of the temperature T, the angle α, and the thickness L of the system. Among the results of that calculation are a Casimir force that depends in a continuous way on both the parameter α and the temperature and that can be attractive or repulsive. In particular, by varying α and/or T one controls both the sign and the magnitude of the Casimir force in a reversible way. Furthermore, for the case α=π, we discover an additional phase transition occurring only in the finite system associated with the variation of the orientations of the vectors. PMID:22181114
Boundary conditions for General Relativity on AdS3 and the KdV hierarchy
NASA Astrophysics Data System (ADS)
Pérez, Alfredo; Tempo, David; Troncoso, Ricardo
2016-06-01
It is shown that General Relativity with negative cosmological constant in three spacetime dimensions admits a new family of boundary conditions being labeled by a nonnegative integer k. Gravitational excitations are then described by "boundary gravitons" that fulfill the equations of the k-th element of the KdV hierarchy. In particular, k = 0 corresponds to the Brown-Henneaux boundary conditions so that excitations are described by chiral movers. In the case of k = 1, the boundary gravitons fulfill the KdV equation and the asymptotic symmetry algebra turns out to be infinite-dimensional, abelian and devoid of central extensions. The latter feature also holds for the remaining cases that describe the hierarchy ( k > 1). Our boundary conditions then provide a gravitational dual of two noninteracting left and right KdV movers, and hence, boundary gravitons possess anisotropic Lifshitz scaling with dynamical exponent z = 2 k + 1. Remarkably, despite spacetimes solving the field equations are locally AdS, they possess anisotropic scaling being induced by the choice of boundary conditions. As an application, the entropy of a rotating BTZ black hole is precisely recovered from a suitable generalization of the Cardy formula that is compatible with the anisotropic scaling of the chiral KdV movers at the boundary, in which the energy of AdS spacetime with our boundary conditions depends on z and plays the role of the central charge. The extension of our boundary conditions to the case of higher spin gravity and its link with different classes of integrable systems is also briefly addressed.
Numerical Simulation of Time-Dependent Wave Propagation Using Nonreflective Boundary Conditions
NASA Astrophysics Data System (ADS)
Ionescu, D.; Muehlhaus, H.
2003-12-01
Solving numerically the wave equation for modelling wave propagation on an unbounded domain with complex geometry requires a truncation of the domain, to fit the infinite region on a finite computer. Minimizing the amount of spurious reflections requires in many cases the introduction of an artificial boundary and of associated nonreflecting boundary conditions. Here, a question arises, namely which boundary condition guarantees that the solution of the time dependent problem inside the artificial boundary coincides with the solution of the original problem in the infinite region. Recent investigations have shown that the accuracy and performance of numerical algorithms and the interpretation of the results critically depend on the proper treatment of external boundaries. Despite the computational speed of finite difference schemes and the robustness of finite elements in handling complex geometries the resulting numerical error consists of two independent contributions: the discretization error of the numerical method used and the spurious reflection generated at the artificial boundary. This spurious contribution travels back and substantially degrades the accuracy of the solution everywhere in the computational domain. Unless both error components are reduced systematically, the numerical solution does not converge to the solution of the original problem in the infinite region. In the present study we present and discuss absorbing boundary condition techniques for the time-dependent scalar wave equation in three spatial dimensions. In particular, exact conditions that annihilate wave harmonics on a spherical artificial boundary up to a given order are obtained and subsequently applied in numerical simulations by employing a finite differences implementation.
Solution of Poisson's Equation with Global, Local and Nonlocal Boundary Conditions
ERIC Educational Resources Information Center
Aliev, Nihan; Jahanshahi, Mohammad
2002-01-01
Boundary value problems (BVPs) for partial differential equations are common in mathematical physics. The differential equation is often considered in simple and symmetric regions, such as a circle, cube, cylinder, etc., with global and separable boundary conditions. In this paper and other works of the authors, a general method is used for the…
A Boundary Mixture Approach to Violations of Conditional Independence
ERIC Educational Resources Information Center
Braeken, Johan
2011-01-01
Conditional independence is a fundamental principle in latent variable modeling and item response theory. Violations of this principle, commonly known as local item dependencies, are put in a test information perspective, and sharp bounds on these violations are defined. A modeling approach is proposed that makes use of a mixture representation of…
NASA Astrophysics Data System (ADS)
Dyson, Rodger William, Jr.
1999-10-01
Finding the sources of noise generation in a turbofan propulsion system requires a computational tool that has sufficient fidelity to simulate steep gradients in the flow field and sufficient efficiency to run on today's computer systems. The goal of this dissertation was to develop an automated code generator for the creation of software that numerically solves the linearized Euler equations on Cartesian grids in three dimensional spatial domains containing bodies with complex shapes. It is based upon the recently developed Modified Expansion Solution Approximation (MESA) series of explicit finite-difference schemes that provide spectral-like resolution with extraordinary efficiency. The accuracy of these methods can, in theory, be arbritarily high in both space and time, without the significant inefficiences of Runge- Kutta based schemes. The complexity of coding these schemes was, however, very high, resulting in code that could not compile or took so long to write in FORTRAN that they were rendered impractical. Therefore, a tool in Mathematica was developed that could automatically code the MESA schemes into FORTRAN and the MESA schemes themselves were reformulated into a very simple form-making them practical to use without automation or very powerful with it. A method for automatically creating the MESA propagation schemes and their FORTRAN code in two and three spatial dimensions is shown with up to 29th order accuracy in space and time. Also, a method for treating solid wall boundaries in two dimensions is shown with up to 11th order accuracy on grid aligned boundaries and with up to 2nd order accuracy on generalized boundaries. Finally, an automated method for parallelizing these approaches on large scale parallel computers with near perfect scalability is presented. All these methods are combined to form a turnkey code generation tool in Mathematica that once provided the CAD geometry file can automatically simulate the acoustical physics by replacing the
Generalized adjoint consistent treatment of wall boundary conditions for compressible flows
NASA Astrophysics Data System (ADS)
Hartmann, Ralf; Leicht, Tobias
2015-11-01
In this article, we revisit the adjoint consistency analysis of Discontinuous Galerkin discretizations of the compressible Euler and Navier-Stokes equations with application to the Reynolds-averaged Navier-Stokes and k- ω turbulence equations. Here, particular emphasis is laid on the discretization of wall boundary conditions. While previously only one specific combination of discretizations of wall boundary conditions and of aerodynamic force coefficients has been shown to give an adjoint consistent discretization, in this article we generalize this analysis and provide a discretization of the force coefficients for any consistent discretization of wall boundary conditions. Furthermore, we demonstrate that a related evaluation of the cp- and cf-distributions is required. The freedom gained in choosing the discretization of boundary conditions without loosing adjoint consistency is used to devise a new adjoint consistent discretization including numerical fluxes on the wall boundary which is more robust than the adjoint consistent discretization known up to now. While this work is presented in the framework of Discontinuous Galerkin discretizations, the insight gained is also applicable to (and thus valuable for) other discretization schemes. In particular, the discretization of integral quantities, like the drag, lift and moment coefficients, as well as the discretization of local quantities at the wall like surface pressure and skin friction should follow as closely as possible the discretization of the flow equations and boundary conditions at the wall boundary.
A new package for simulating periodic boundary conditions in MODFLOW and SEAWAT
NASA Astrophysics Data System (ADS)
Post, V. E. A.
2011-11-01
Modeling of coastal groundwater systems is a challenging problem due to their highly dynamic boundary conditions and the coupling between the equations for groundwater flow and solute transport. A growing number of publications on aquifers subject to tides have demonstrated various modeling approaches, ranging from analytical solutions to comprehensive numerical models. The United States Geological Survey code SEAWAT has been a popular choice in studies of this type. Although SEAWAT allows the incorporation of time-variant boundary conditions, the implementation of tidal boundaries is not straightforward, especially when a seepage face develops during falling tide. Here, a new package is presented, called the periodic boundary condition (PBC) package, that can be incorporated into MODFLOW and SEAWAT to overcome the difficulties encountered with tidal boundaries. It dynamically updates the boundary conditions for head and concentration during the simulation depending on a user-defined tidal signal and allows for the development of a seepage face. The package has been verified by comparing it to four different published models of tidally influenced groundwater systems of varying complexity. Excellent agreement was obtained in all cases. The new package is an important extension to the existing capabilities of MODFLOW and SEAWAT with respect to simulating periodic boundary conditions.
Boundary conditions on faster-than-light transportation systems
NASA Technical Reports Server (NTRS)
Bennett, Gary L.; Knowles, H. B.
1993-01-01
In order to be consistent with current physical theories, any proposal of a faster-than light (FTL) transportation system must satisfy several critical conditions. It must predict the mass, space, and time dimensional changes predicted by relativity physics when velocity falls below the speed of light. It must also not violate causality, and remain consistent with quantum physics in the limit of microscopic systems. It is also essential that the proposal conserve energy.
Boundary conditions of the lattice Boltzmann method for convection-diffusion equations
NASA Astrophysics Data System (ADS)
Huang, Juntao; Yong, Wen-An
2015-11-01
In this paper, we employ an asymptotic analysis technique and construct two boundary schemes accompanying the lattice Boltzmann method for convection-diffusion equations with general Robin boundary conditions. One scheme is for straight boundaries, with the boundary points locating at any distance from the lattice nodes, and has second-order accuracy. The other is for curved boundaries, has only first-order accuracy and is much simpler than the existing schemes. Unlike those in the literature, our schemes involve only the current lattice node. Such a "single-node" boundary schemes are highly desirable for problems with complex geometries. The two schemes are validated numerically with a number of examples. The numerical results show the utility of the constructed schemes and very well support our theoretical predications.
Boundary Conditions and the Aeolian Sediment State of the Olympia Undae Dune Field, Mars
NASA Astrophysics Data System (ADS)
Middlebrook, W.; Ewing, R. C.; Ayoub, F.; Bridges, N. T.; Smith, I.; Spiga, A.
2015-05-01
We evaluate the boundary conditions in Olympia Undae. We map two and three dimensional dune parameters from two locations proximal and distal to Planum Boreum and constrain sediment fluxes. We compare our results with a mesoscale atmospheric model.
On a regular problem for an elliptic-parabolic equation with a potential boundary condition
NASA Astrophysics Data System (ADS)
Arepova, Gauhar
2016-08-01
In this paper, we construct a lateral boundary condition for an elliptic-parabolic equation in a finite domain. Theorem on existence and uniqueness of a solution of the considered problem is proved by method of theory potential.
Influence of Boundary Conditions on Simulated U.S. Air Quality
One of the key inputs to regional-scale photochemical models frequently used in air quality planning and forecasting applications are chemical boundary conditions representing background pollutant concentrations originating outside the regional modeling domain. A number of studie...
NASA Astrophysics Data System (ADS)
Hübler, G.; Parrish, D. D.; Aikin, K. C.; Oltmans, S. J.; Johnson, B. J.; Ives, M.; Thouret, V.; Nédélec, P.; Cammas, J.; Team, A.
2009-12-01
Most detailed photochemical modeling must be carried out at regional or air basin scales in order to achieve the spatial resolution and detailed treatment of the chemical mechanisms required for realistic treatment of local air quality. Consequently these models must define upwind boundary conditions at the edge of the model domain. Uncertainty in the appropriate boundary conditions contributes significantly to the overall uncertainty of the photochemical modeling in California. Here we will investigate the available data sets to define to the extent possible the average summertime oceanic boundary conditions, the variability about that average, and the horizontal and vertical variability of the boundary conditions. The data sets considered will include ozone sondes launched from Trinidad Head CA, ozone and carbon monoxide profiles measured by MOZAIC aircraft flights into 4 west coast US cities, and the many chemical species measured on four aircraft flights conducted during the CARB-ARCTAS campaign during summer 2008
Shifted periodic boundary conditions for simulations of wall-bounded turbulent flows
NASA Astrophysics Data System (ADS)
Munters, Wim; Meneveau, Charles; Meyers, Johan
2016-02-01
In wall-bounded turbulent flow simulations, periodic boundary conditions combined with insufficiently long domains lead to persistent spanwise locking of large-scale turbulent structures. This leads to statistical inhomogeneities of 10%-15% that persist in time averages of 60 eddy turnover times and more. We propose a shifted periodic boundary condition that eliminates this effect without the need for excessive streamwise domain lengths. The method is tested based on a set of direct numerical simulations of a turbulent channel flow, and large-eddy simulations of a high Reynolds number rough-wall half-channel flow. The method is very useful for precursor simulations that generate inlet conditions for simulations that are spatially inhomogeneous, but require statistically homogeneous inlet boundary conditions in the spanwise direction. The method's advantages are illustrated for the simulation of a developing wind-farm boundary layer.
NASA Technical Reports Server (NTRS)
Beam, R. M.; Warming, R. F.; Yee, H. C.
1981-01-01
Implicit, noniterative, finite difference schemes were recently developed by several authors for multidimensional systems of nonlinear hyperbolic partial differential equations. When applied to linear model equations with periodic boundary conditions those schemes are unconditionally stable (A-stable). As applied in practice the algorithms often face a severe time step restriction. A major source of the difficulty is the treatment of the numerical boundary conditions. One conjecture was that unconditional stability requires implicit numerical boundary conditions. An apparent counter example was the space time extrapolation considered by Gustafsson, Kreiss, and Sunstrom. Spatial (implicit) and space time (explicit) extrapolation using normal mode analysis for a finite and infinite number of spatial mesh intervals are examined. The results indicate that for unconditional stability with a finite number of spatial mesh intervals, the numerical boundary conditions must be implicit.
Invariance of decay rate with respect to boundary conditions in thermoelastic Timoshenko systems
NASA Astrophysics Data System (ADS)
Alves, M. S.; Jorge Silva, M. A.; Ma, T. F.; Muñoz Rivera, J. E.
2016-06-01
This paper is mainly concerned with the polynomial stability of a thermoelastic Timoshenko system recently introduced by Almeida Júnior et al. (Z Angew Math Phys 65(6):1233-1249, 2014) that proved, in the general case when equal wave speeds are not assumed, different polynomial decay rates depending on the boundary conditions, namely, optimal rate {t^{-1/2}} for mixed Dirichlet-Neumann boundary condition and rate {t^{-1/4}} for full Dirichlet boundary condition. Here, our main achievement is to prove the same polynomial decay rate {t^{-1/2}} (corresponding to the optimal one) independently of the boundary conditions, which improves the existing literature on the subject. As a complementary result, we also prove that the system is exponentially stable under equal wave speeds assumption. The technique employed here can probably be applied to other kind of thermoelastic systems.
X. Z. Tang
2000-12-18
Subtleties of implementing the standard perfectly conducting wall boundary condition in a general toroidal geometry are clarified for a mixed scalar magnetic field representation. An iterative scheme based on Ohm's law is given.
Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations
Li, Tingwen; Benyahia, Sofiane
2013-10-01
Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. In this study, a model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (AIChE Journal, 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of 2-D numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient.
PRESBC: pressure boundary conditions for the K-FIX code. Supplement III
Travis, J.R.; Rivard, W.C.
1980-07-01
Recommended pressure boundary condition modifications are described for the computer code K-FIX, which has been published in the report LA-NUREG-6623 and released to the National Energy Software Center in April 1977.
Integrabilities of the long-range t-J models with twisted boundary conditions
Liu, J.T.; Wang, D.F.
1997-02-01
The integrability of the one-dimensional long-range supersymmetric t-J model has previously been established for both open systems and those closed by periodic boundary conditions through explicit construction of its integrals of motion. Recently the system has been extended to include the effect of magnetic flux, which gives rise to a closed chain with twisted boundary conditions. While the t-J model with twisted boundary conditions has been solved for the ground state and full energy spectrum, proof of its integrability has so far been lacking. In this paper we extend the proof of integrability of the long-range supersymmetric t-J model and its SU(m{vert_bar}n) generalization to include the case of twisted boundary conditions. {copyright} {ital 1997} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Valentín, D.; Presas, A.; Egusquiza, E.; Valero, C.
2014-03-01
The dynamic response of submerged and confined disk-like structures is of interest in the flied of hydraulic machinery, especially in hydraulic turbine runners. This response is difficult to be estimated with accuracy due to the strong influence of the boundary conditions. Small radial gaps as well as short axial distances to rigid surfaces greatly modify the dynamic response because the fact of the added mass and damping effects. Moreover, the effect of the shaft coupling is also important for certain mode-shapes of the structure. In the present study, the influence of the added mass effect and boundary conditions on the dynamic behavior of a submerged disk attached to a shaft is evaluated through experimental tests and structural- acoustic coupling numerical simulations. For the experimentation, a test rig has been developed. It consists of a confined disk attached to a shaft inside a cylindrical container full of water. The disk can be fixed at different axial positions along the shaft. Piezoelectric patches are used to excite the disk and the response is measured with submersible accelerometers. For each configuration tested, the natural frequencies of the disk and the shaft are studied. Numerical results have been compared with experimental results.
Kang, Shih-Tsung; Huang, Yi-Luan; Yeh, Chih-Kuang
2014-03-01
This study investigated the manipulation of bubbles generated by acoustic droplet vaporization (ADV) under clinically relevant flow conditions. Optical microscopy and high-frequency ultrasound imaging were used to observe bubbles generated by 2-MHz ultrasound pulses at different time points after the onset of ADV. The dependence of the bubble population on droplet concentration, flow velocity, fluid viscosity and acoustic parameters, including acoustic pressure, pulse duration and pulse repetition frequency, was investigated. The results indicated that post-ADV bubble growth spontaneously driven by air permeation markedly affected the bubble population after insonation. The bubbles can grow to a stable equilibrium diameter as great as twice the original diameter in 0.5-1 s, as predicted by the theoretical calculation. The growth trend is independent of flow velocity, but dependent on fluid viscosity and droplet concentration, which directly influence the rate of gas uptake by bubbles and the rate of gas exchange across the wall of the semipermeable tube containing the bubbles and, hence, the gas content of the host medium. Varying the acoustic pressure does not markedly change the formation of bubbles as long as the ADV thresholds of most droplets are reached. Varying pulse duration and pulse repetition frequency markedly reduces the number of bubbles. Lengthening pulse duration favors the production of large bubbles, but reduces the total number of bubbles. Increasing the PRF interestingly provides superior performance in bubble disruption. These results also suggest that an ADV bubble population cannot be assessed simply on the basis of initial droplet size or enhancement of imaging contrast by the bubbles. Determining the optimal acoustic parameters requires careful consideration of their impact on the bubble population produced for different application scenarios. PMID:24433748
A bridging technique to analyze the influence of boundary conditions on instability patterns
Hu Heng; Damil, Noureddine; Potier-Ferry, Michel
2011-05-10
In this paper, we present a new numerical technique that permits to analyse the effect of boundary conditions on the appearance of instability patterns. Envelope equations of Landau-Ginzburg type are classically used to predict pattern formation, but it is not easy to associate boundary conditions for these macroscopic models. Indeed, envelope equations ignore boundary layers that can be important, for instance in cases where the instability starts first near the boundary. In this work, the full model is considered close to the boundary, an envelope equation in the core and they are bridged by the Arlequin method . Simulation results are presented for the problem of buckling of long beams lying on a non-linear elastic foundation.
Kinematics and shear heat pattern of ductile simple shear zones with `slip boundary condition'
NASA Astrophysics Data System (ADS)
Mulchrone, Kieran F.; Mukherjee, Soumyajit
2016-04-01
Extrusion by Poiseuille flow and simple shear of hot lower crust has been deciphered from large hot orogens, and partial-slip boundary condition has been encountered in analogue models. Shear heat and velocity profiles are deduced from a simplified form of Navier-Stokes equation for simple shear together with extrusive Poiseuille flow and slip boundary condition for Newtonian viscous rheology. A higher velocity at the upper boundary of the shear zone promotes higher slip velocity at the lower boundary. The other parameters that affect the slip are viscosity and thickness of the shear zone and the resultant pressure gradient that drives extrusion. In the partial-slip case, depending on flow parameters (resultant pressure gradient, density and viscosity) and thickness of the shear zone, the velocity profiles can curve and indicate opposite shear senses. The corresponding shear heat profiles can indicate temperature maximum inside shear zones near either boundaries of the shear zone, or equidistant from them.
Unsteady Validation of a Mean Flow Boundary Condition for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Hixon, R.; Zhen, F.; Nallasamy, M.; Sawyer, S>
2004-01-01
In this work, a previously developed mean flow boundary condition will be validated for unsteady flows. The test cases will be several reference benchmark flows consisting of vortical gusts convecting in a uniform mean flow, as well as the more realistic case of a vortical gust impinging on a loaded 2D cascade. The results will verify that the mean flow boundary condition both imposes the desired mean flow as well as having little or no effect on the instantaneous unsteady solution.
NASA Technical Reports Server (NTRS)
Wada, B. K.; Kuo, C.-P.; Glaser, R. J.
1986-01-01
A major challenge to the structural dynamicist is to validate mathematical models of large space structures which cannot be ground tested because of its size and/or flexibility. The paper presents a Multiple Boundary Condition Test (MBCT) approach which allows a systematic validation of the mathematical model by performing a number of ground tests on a large structure with variable boundary conditions. A numerical simulation is presented which illustrates the validity of the MBCT including some of the potential limitations.
NASA Astrophysics Data System (ADS)
Gasymov, E. A.; Guseinova, A. O.; Gasanova, U. N.
2016-07-01
One of the methods for solving mixed problems is the classical separation of variables (the Fourier method). If the boundary conditions of the mixed problem are irregular, this method, generally speaking, is not applicable. In the present paper, a generalized separation of variables and a way of application of this method to solving some mixed problems with irregular boundary conditions are proposed. Analytical representation of the solution to this irregular mixed problem is obtained.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.; Yee, Kane S.
1991-01-01
Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media, throughout the solution volume. A 1-D implementation for a surface impedance boundary condition for good conductors in the Finite Difference Time Domain (FDTD) technique.
Sobolev type equations of time-fractional order with periodical boundary conditions
NASA Astrophysics Data System (ADS)
Plekhanova, Marina
2016-08-01
The existence of a unique local solution for a class of time-fractional Sobolev type partial differential equations endowed by the Cauchy initial conditions and periodical with respect to every spatial variable boundary conditions on a parallelepiped is proved. General results are applied to study of the unique solvability for the initial boundary value problem to Benjamin-Bona-Mahony-Burgers and Allair partial differential equations.
A hybrid FEM-BEM unified boundary condition with sub-cycling for electromagnetic radiation
Fasenfest, B; White, D; Stowell, M; Rieben, R; Sharpe, R; Madsen, N; Rockway, J; Champagne, N J; Jandhyala, V; Pingenot, J
2006-01-12
Hybrid solutions to time-domain electromagnetic problems offer many advantages when solving open-region scattering or radiation problems. Hybrid formulations use a finite-element or finite-difference discretization for the features of interest, then bound this region with a layer of planar boundary elements. The use of volume discretization allows for intricate features and many changes in material within the structure, while the boundary-elements provide a highly accurate radiating boundary condition. This concept has been implemented previously, using the boundary elements to set the E-field, H-field, or both for an FDTD grid, for example in [1][2][3], or as a mixed boundary condition for the second order wave equation solved by finite elements [4]. Further study has focused on using fast methods, such as the Plane Wave Time Domain method [3][4] to accelerate the BEM calculations. This paper details a hybrid solver using the coupled first-order equations for the E and H fields in the finite-element region. This formulation is explicit, with a restriction on the time step for stability. When this time step is used in conjunction with the boundary elements forming either a inhomogeneous Dirichlet or Neuman boundary condition on the finite-element mesh, late time instabilities occur. To combat this, a Unified Boundary Condition (UBC), similar to the one in [4] for the second-order wave equation, is used. Even when this UBC is used, the late time instabilities are merely delayed if standard testing in time is used. However, the late time instabilities can be removed by replacing centroid based time interpolation with quadrature point based time interpolation for the boundary elements, or by sub-cycling the boundary element portion of the formulation. This sub-cycling, used in [3] for FDTD to reduce complexity, is shown here to improve stability and overall accuracy of the technique.
ALmost EXact boundary conditions for transient Schrödinger-Poisson system
NASA Astrophysics Data System (ADS)
Bian, Lei; Pang, Gang; Tang, Shaoqiang; Arnold, Anton
2016-05-01
For the Schrödinger-Poisson system, we propose an ALmost EXact (ALEX) boundary condition to treat accurately the numerical boundaries. Being local in both space and time, the ALEX boundary conditions are demonstrated to be effective in suppressing spurious numerical reflections. Together with the Crank-Nicolson scheme, we simulate a resonant tunneling diode. The algorithm produces numerical results in excellent agreement with those in Mennemann et al. [1], yet at a much reduced complexity. Primary peaks in wave function profile appear as a consequence of quantum resonance, and should be considered in selecting the cut-off wave number for numerical simulations.
Research of a boundary condition quantifiable correction method in the assembly homogenization
Peng, L. H.; Liu, Z. H.; Zhao, J.; Li, W. H.
2012-07-01
The methods and codes currently used in assembly homogenization calculation mostly adopt the reflection boundary conditions. The influences of real boundary conditions on the assembly homogenized parameters were analyzed. They were summarized into four quantifiable effects, and then the mathematical expressions could be got by linearization hypothesis. Through the calculation of a test model, it had been found that the result was close to transport calculation result when considering four boundary quantifiable effects. This method would greatly improve the precision of a core design code which using the assembly homogenization methods, but without much increase of the computing time. (authors)
A stable penalty method for the compressible Navier-Stokes equations. 1: Open boundary conditions
NASA Technical Reports Server (NTRS)
Hesthaven, J. S.; Gottlieb, D.
1994-01-01
The purpose of this paper is to present asymptotically stable open boundary conditions for the numerical approximation of the compressible Navier-Stokes equations in three spatial dimensions. The treatment uses the conservation form of the Navier-Stokes equations and utilizes linearization and localization at the boundaries based on these variables. The proposed boundary conditions are applied through a penalty procedure, thus ensuring correct behavior of the scheme as the Reynolds number tends to infinity. The versatility of this method is demonstrated for the problem of a compressible flow past a circular cylinder.
A method for implementing Dirichlet and third-type boundary conditions in PTRW simulations
NASA Astrophysics Data System (ADS)
Koch, J.; Nowak, W.
2014-02-01
We present an efficient and accurate numerical method for implementing Dirichlet boundary conditions in particle tracking random walk (PTRW) simulations of advective-dispersive transport. This is a challenge, because defining concentrations for Dirichlet boundary conditions requires invoking control volumes of some kind, which are not natural to the Lagrangian-based PTRW concept. Our method performs a Galerkin projection of PTRW-based particle densities onto control volumes that discretize the boundary. Thus, we obtain concentration values at the boundary condition and can control the particle release rates such that the prescribed boundary values are met. This allows for complex-shaped internal and external boundaries, where concentration values are fixed to prescribed values. Third-type boundary conditions can be addressed as well. We test and illustrate the properties and behavior of our method in a series of test cases. The results are benchmarked against the conceptually related semianalytical method MASST (multiple analytical source superposition technique) and to those of a finite element method (FEM). While MASST is restricted to uniform velocity fields due to the underlying analytical solutions, FEM is limited in heterogeneous velocity fields at large Péclet numbers by numerical dispersion in the feasible discretization range. The results demonstrate that our proposed method performs better than the other methods in both regimes.
NASA Astrophysics Data System (ADS)
Renardy, M.
1986-02-01
Steady flows of viscoelastic fluids can not be uniquely determined by imposing boundary conditions only for the velocities as in the Newtonian case. The reason for this is that the fluids have memory, and therefore the flow inside the domain is affected by what happened before the fluid entered the domain. This leads to the need for extra boundary conditions at an inflow boundary. The nature of these inflow boundary conditions has not been analyzed previously, and it is certainly dependent on the constitutive law. In this paper, we look at the special case of differential constitutive relations with a single relaxation mode. We consider steady transverse flows across a strip which are small perturbations of a flow with constant velocity. It turns out that in this case two extra inflow boundary conditions are required in two dimensions, and four in three dimensions. This is what would be expected from an analysis of characteristics, but it contradicts the belief of many rheologists that it is possible to prescribe the extra stress at an inflow boundary. The problem studied here is of potential relevance for numerical simulations of steady flows. Many of the flows currently simulated are on infinite domains. Numerically, these domains are truncated, and on the inflow boundary of the truncated domain people usually prescribe the extra stress. According to the analysis in this paper, this is an overdetermined problem, and therefore errors must be expected from this procedure.
Derivation of generalized transition/boundary conditions for planar multiple-layer structures
NASA Technical Reports Server (NTRS)
Ricoy, M. A.; Volakis, J. L.
1990-01-01
Infinite-order generalized impedance boundary conditions (GIBCs) and generalized sheet transition conditions (GSTCs) for planar multilayer configurations are developed via the Taylor series expansion method. The conditions are derived in a matrix product form where each matrix corresponds to a specific layer. An overall composite boundary/transition condition is obtained by making finite-order approximations to the elements of each matrix for the cases of 'low-contrast' and 'high-contrast' material layers. The accuracy of the truncated boundary conditions is examined by comparing their implied reflection and transmission coefficients with the corresponding exact coefficients. Design curves are also given which relate the maximum order of the conditions required to simulate a coating or layer of specific thickness and contrast. Expressions are then derived for the reflection and transmission coefficients of the GIBC/GSTC sheets, and these are compared to exact coefficients to demonstrate the validity of the derived GIBCs/GSTCs.
Analytical solutions with Generalized Impedance Boundary Conditions (GIBC)
NASA Technical Reports Server (NTRS)
Ricoy, Mark A.; Volakis, John L.
1990-01-01
The diffraction by a material discontinuity in a thick dielectric/ferrite layer is considered by modeling the layer as a distributed current sheet obeying generalized sheet transition conditions (GSTC's). The sheet currents are then formulated and solved via the standard dual integral equation approach. This yields the diffracted field in terms of unknown constants which underscore the non-uniqueness of the GSTC current sheet representation. The constants are dependent on the geometry and properties of the discontinuity and are determined by enforcing field continuity across the material junction. This requires the field internal to the slab which are determined from the external ones via analytic continuity. Results are given which validate the solution and demonstrate the importance of the constants.
NASA Technical Reports Server (NTRS)
Appleby, Matthew; Zhu, Dongming; Morscher, Gregory
2015-01-01
Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.
Aerodynamic and acoustic behavior of a YF-12 inlet at static conditions
NASA Technical Reports Server (NTRS)
Bangert, L. H.; Feltz, E. P.; Godby, L. A.; Miller, L. D.
1981-01-01
An aeroacoustic test program to determine the cause of YF-12 inlet noise suppression was performed with a YF-12 aircraft at ground static conditions. Data obtained over a wide range of engine speeds and inlet configurations are reported. Acoustic measurements were made in the far field and aerodynamic and acoustic measurements were made inside the inlet. The J-58 test engine was removed from the aircraft and tested separately with a bellmouth inlet. The far field noise level was significantly lower for the YF-12 inlet than for the bellmouth inlet at engine speeds above 5500 rpm. There was no evidence that noise suppression was caused by flow choking. Multiple pure tones were reduced and the spectral peak near the blade passing frequency disappeared in the region of the spike support struts at engine speeds between 6000 and 6600 rpm.
NASA Astrophysics Data System (ADS)
Pan, Wenxiao; Bao, Jie; Tartakovsky, Alexandre
2013-11-01
A Continuous Boundary Force (CBF) method was developed for implementing Robin (Navier) boundary condition (BC) that can describe no-slip or slip conditions (slip length from zero to infinity) at the fluid-solid interface. In the CBF method the Robin BC is replaced by a homogeneous Neumann BC and an additional volumetric source term in the governing momentum equation. The formulation is derived based on an approximation of the sharp boundary with a diffuse interface of finite thickness, across which the BC is reformulated by means of a smoothed characteristic function. The CBF method is easy to be implemented in Lagrangian particle-based methods. We first implemented it in smoothed particle hydrodynamics (SPH) to solve numerically the Navier-Stokes equations subject to spatial-independent or dependent Robin BC in two and three dimensions. The numerical accuracy and convergence is examined through comparisons with the corresponding finite difference or finite element solutions. The CBF method is further implemented in smoothed dissipative particle dynamics (SDPD), a mesoscale scheme, for modeling slip flows commonly existent in micro/nano channels and microfluidic devices. The authors acknowledge the funding support by the ASCR Program of the Office of Science, U.S. Department of Energy.
Nightingale, Kathryn R.; Church, Charles C.; Harris, Gerald; Wear, Keith A.; Bailey, Michael R.; Carson, Paul L.; Jiang, Hui; Sandstrom, Kurt L.; Szabo, Thomas L.; Ziskin, Marvin C.
2016-01-01
The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term “conditionally” is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. PMID:26112617
An energy absorbing far-field boundary condition for the elastic wave equation
Petersson, N A; Sjogreen, B
2008-07-15
The authors present an energy absorbing non-reflecting boundary condition of Clayton-Engquist type for the elastic wave equation together with a discretization which is stable for any ratio of compressional to shear wave speed. They prove stability for a second order accurate finite-difference discretization of the elastic wave equation in three space dimensions together with a discretization of the proposed non-reflecting boundary condition. The stability proof is based on a discrete energy estimate and is valid for heterogeneous materials. The proof includes all six boundaries of the computational domain where special discretizations are needed at the edges and corners. The stability proof holds also when a free surface boundary condition is imposed on some sides of the computational domain.
a Simple Algorithm to Enforce Dirichlet Boundary Conditions in Complex Geometries
NASA Astrophysics Data System (ADS)
Huber, Christian; Dufek, Josef; Chopard, Bastien
We present a new algorithm to implement Dirichlet boundary conditions for diffusive processes in arbitrarily complex geometries. In this approach, the boundary conditions around the diffusing object is replaced by the fictitious phase transition of a pure substance where the energy cost of the phase transition largely overwhelms the amount of energy stored in the system. The computing cost of this treatment of the boundary condition is independent of the topology of the boundary. Moreover, the implementation of this new approach is straightforward and follows naturally from enthalpy-based numerical methods. This algorithm is compatible with a wide variety of discretization methods, finite differences, finite volume, lattice Boltzmann methods and finite elements, to cite a few. We show, here, using both lattice Boltzmann and finite-volume methods that our model is in excellent agreement with analytical solutions for high symmetry geometries. We also illustrate the advantages of the algorithm to handle more complex geometries.
A far-field non-reflecting boundary condition for two-dimensional wake flows
NASA Technical Reports Server (NTRS)
Danowitz, Jeffrey S.; Abarbanel, Saul A.; Turkel, Eli
1995-01-01
Far-field boundary conditions for external flow problems have been developed based upon long-wave perturbations of linearized flow equations about a steady state far field solution. The boundary improves convergence to steady state in single-grid temporal integration schemes using both regular-time-stepping and local-time-stepping. The far-field boundary may be near the trailing edge of the body which significantly reduces the number of grid points, and therefore the computational time, in the numerical calculation. In addition the solution produced is smoother in the far-field than when using extrapolation conditions. The boundary condition maintains the convergence rate to steady state in schemes utilizing multigrid acceleration.
Nonreflecting far-field boundary conditions for unsteady transonic flow computation
NASA Technical Reports Server (NTRS)
Kwak, D.
1980-01-01
The approximate nonreflecting far-field boundary condition, as proposed by Engquist and Majda, is implemented in the computer code LTRAN2. This code solves the implicit finite-difference representation of the small disturbance equations for unsteady transonic flows about airfoils. The nonreflecting boundary condition and the description of the algorithm for implementing these conditions in LTRAN2 are discussed. Various cases are computed and compared with results from the older, more conventional procedures. One concludes that the nonreflecting far-field boundary approximation allows the far-field boundary to be located closer to the airfoil; this permits a decrease in the computer time required to obtain the solution through the use of fewer mesh points.
Nonreflecting Far-Field Boundary Conditions for Unsteady Transonic Flow Computation
NASA Technical Reports Server (NTRS)
Kwak, D.
1981-01-01
The approximate nonreflecting far-field boundary condition, as proposed by Engquisi and Majda, is implemented In the computer code LTRAN2. This code solves the Implicit finite-difference representation of the small-disturbance equations for unsteady transonic flows about airfoils. The nonreflecting boundary condition and the description of the algorithm for Implementing these conditions In LTRAN2 tire discussed. Various cases re computed and compared with results from the older, more conventional procedures. One concludes that the nonreflecting far-field boundary approximation allows the far-field boundary to be located closer to the airfoil; this permits a decrease in the computer lime required to obtain the solution through the use of fewer mesh points.
Fluid flow in nanopores: An examination of hydrodynamic boundary conditions
NASA Astrophysics Data System (ADS)
Sokhan, V. P.; Nicholson, D.; Quirke, N.
2001-08-01
Steady-state Poiseuille flow of a simple fluid in carbon slit pores under a gravity-like force is simulated using a realistic empirical many-body potential model for carbon. In this work we focus on the small Knudsen number regime, where the macroscopic equations are applicable, and simulate different wetting conditions by varying the strength of fluid-wall interactions. We show that fluid flow in a carbon pore is characterized by a large slip length even in the strongly wetting case, contrary to the predictions of Tolstoi's theory. When the surface density of wall atoms is reduced to values typical of a van der Waals solid, the streaming velocity profile vanishes at the wall, in accordance with earlier findings. From the velocity profiles we have calculated the slip length and by analyzing temporal profiles of the velocity components of particles colliding with the wall we obtained values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall.
A direct approach to finding unknown boundary conditions in steady heat conduction
NASA Technical Reports Server (NTRS)
Martin, Thomas J.; Dulikravich, George S.
1993-01-01
The capability of the boundary element method (BEM) in determining thermal boundary conditions on surfaces of a conducting solid where such quantities are unknown was demonstrated. The method uses a non-iterative direct approach in solving what is usually called the inverse heat conduction problem (IHCP). Given any over-specified thermal boundary conditions such as a combination of temperature and heat flux on a surface where such data is readily available, the algorithm computes the temperature field within the object and any unknown thermal boundary conditions on surfaces where thermal boundary values are unavailable. A two-dimensional, steady-state BEM program was developed and was tested on several simple geometries where the analytic solution was known. Results obtained with the BEM were in excellent agreement with the analytic values. The algorithm is highly flexible in treating complex geometries, mixed thermal boundary conditions, and temperature-dependent material properties and is presently being extended to three-dimensional and unsteady heat conduction problems. The accuracy and reliability of this technique was very good but tended to deteriorate when the known surface conditions were only slightly over-specified and far from the inaccessible surface.
NASA Astrophysics Data System (ADS)
Grobbelaar-Van Dalsen, Marié
2015-02-01
In this article, we are concerned with the polynomial stabilization of a two-dimensional thermoelastic Mindlin-Timoshenko plate model with no mechanical damping. The model is subject to Dirichlet boundary conditions on the elastic as well as the thermal variables. The work complements our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 64:1305-1325, 2013) on the polynomial stabilization of a Mindlin-Timoshenko model in a radially symmetric domain under Dirichlet boundary conditions on the displacement and thermal variables and free boundary conditions on the shear angle variables. In particular, our aim is to investigate the effect of the Dirichlet boundary conditions on all the variables on the polynomial decay rate of the model. By once more applying a frequency domain method in which we make critical use of an inequality for the trace of Sobolev functions on the boundary of a bounded, open connected set we show that the decay is slower than in the model considered in the cited work. A comparison of our result with our polynomial decay result for a magnetoelastic Mindlin-Timoshenko model subject to Dirichlet boundary conditions on the elastic variables in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) also indicates a correlation between the robustness of the coupling between parabolic and hyperbolic dynamics and the polynomial decay rate in the two models.
NASA Astrophysics Data System (ADS)
Yakushev, Evgeniy
2013-04-01
Climate Change affects oxygen depletion and leads to spreading of the bottom areas with hypoxic and anoxic conditions in the coastal areas of the seas and inland waters. This work aimed in estimation of a role of changes of redox conditions in the biogeochemical structure there. We use a 1-dimensional C-N-P-Si-O-S-Mn-Fe vertical transport-reaction model describing the water column, bottom boundary layer and benthic boundary layer with biogeochemical block simulating redox conditions changeability. A biogeochemical block is based on ROLM (RedOx Layer Model), that was constructed to simulate basic features of the water column biogeochemical structure changes in oxic, anoxic and changeable conditions (Yakushev et al., 2007). Organic matter formation and decay, reduction and oxidation of species of nitrogen, sulfur, manganese, iron, and the transformation of phosphorus species are parameterized in the model. ROLM includes a simplified ecological model with phytoplankton, zooplankton, aerobic autotrophic and heterotrophic bacteria, anaerobic autotrophic and heterotrophic bacteria. We simulate changes in the parameters distributions and fluxes connected with the vertical displacement of redox interface from the sediments to the water.
Molecular theory of hydrodynamic boundary conditions in nanofluidics.
Kobryn, Alexander E; Kovalenko, Andriy
2008-10-01
Motivated by the fundamental questions raised by the most recent experimental achievements in nanofluidics, we propose the first-ever derivation and calculation of the hydrodynamic slip length from the first principles of statistical mechanics, namely, a combination of linear response theory and equilibrium molecular theory of solvation. The slip length derived is related to the fluid organization near the solid surface, as governed by the solid-liquid interaction. In the wide range of shear rates and surface-liquid interactions, the slip length is expressed in terms of the Green-Kubo-Nakano relations as a function of the anisotropic inhomogeneous time-correlation function of density fluctuations of the liquid in contact with the surface. The time dependence of the correlation function is factored out by treating it in the hydrodynamic limit. The spatially inhomogeneous two-body correlation function is represented in the Kirkwood-type approximation as a product of the three-dimensional density distributions of interaction sites of the liquid near the surface and the site-site pair correlations of the bulk liquid. The presented treatment generalizes the phenomenological definition of the friction coefficient (as well as the slip length) to a tensor quantity, which reflects an anisotropic nature of an ordered crystalline or nanopatterned surface. This enables theoretical prediction of friction forces acting aslant to the liquid flow direction for such surfaces. We derive generic analytical expressions for the liquid-surface friction coefficient (and slip length) for an arbitrary surface-liquid interaction potential. We further illustrate it by numerical calculations for a laminar flow of nine different molecular liquids, including water, at ambient conditions in contact with the (100) face-centered cubic cell surface of gold, copper, and nickel modeled by using optimized potential for liquid simulation models for liquids and the Steele potential for crystalline
A general approach for high order absorbing boundary conditions for the Helmholtz equation
NASA Astrophysics Data System (ADS)
Zarmi, Asaf; Turkel, Eli
2013-06-01
When solving a scattering problem in an unbounded space, one needs to implement the Sommerfeld condition as a boundary condition at infinity, to ensure no energy penetrates the system. In practice, solving a scattering problem involves truncating the region and implementing a boundary condition on an artificial outer boundary. Bayliss, Gunzburger and Turkel (BGT) suggested an Absorbing Boundary Condition (ABC) as a sequence of operators aimed at annihilating elements from the solution's series representation. Their method was practical only up to a second order condition. Later, Hagstrom and Hariharan (HH) suggested a method which used auxiliary functions and enabled implementation of higher order conditions. We compare various absorbing boundary conditions (ABCs) and introduce a new method to construct high order ABCs, generalizing the HH method. We then derive from this general method ABCs based on different series representations of the solution to the Helmholtz equation - in polar, elliptical and spherical coordinates. Some of these ABCs are generalizations of previously constructed ABCs and some are new. These new ABCs produce accurate solutions to the Helmholtz equation, which are much less dependent on the various parameters of the problem, such as the value of k, or the eccentricity of the ellipse. In addition to constructing new ABCs, our general method sheds light on the connection between various ABCs. Computations are presented to verify the high accuracy of these new ABCs.
NASA Technical Reports Server (NTRS)
Kwak, D.
1981-01-01
Various nonreflecting far-field boundary condition procedures are compared by implementing them in the computer code LTRAN2. This code solves the implicit finite-difference representation of the small-disturbance equations for transonic flows about airfoils. The first- and second-approximate nonreflecting conditions, as proposed by Engquist and Majda, are compared with the condition derived from the full-characteristic equation. The far-field boundary conditions and the description of the algorithm for implementing these conditions in LTRAN2 are discussed. Various cases are computed and compared with results from the older, more conventional procedures. One concludes that the full-characteristic equation produces the most effective results, thus allowing the far-field boundary to be located closer to the airfoil; this decreases the computer time required to obtain the solution because fewer mesh points are required.
Derivation and application of a class of generalized impedance boundary conditions, part 2
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Senior, T. B. A.; Jin, J.-M.
1989-01-01
Boundary conditions involving higher order derivatives are presented by simulating surfaces whose reflection coefficients are known analytically, numerically, or experimentally. Procedures for determining the coefficients of the derivatives are discussed, along with the effect of displacing the surface where the boundary conditions are applied. Provided the coefficients satisfy a duality relation, equivalent forms of the boundary conditions involving tangential field components are deduced, and these provide the natural extension to non-planar surfaces. As an illustration, the simulation of metal-backed uniform and three-layer dielectric coatings is given. It is shown that fourth order conditions are capable of providing an accurate simulation for the uniform coating at least a quarter of a wavelength in thickness. Provided, though, some compromise in accuracy is acceptable, it is also shown that a third order condition may be sufficient for practical purposes when simulating uniform coatings.
NASA Astrophysics Data System (ADS)
Basu, Sukanta; Holtslag, Albert; Wiel, Bas; Moene, Arnold; Steeneveld, Gert-Jan
2008-03-01
In single column and large-eddy simulation studies of the atmospheric boundary layer, surface sensible heat flux is often used as a boundary condition. In this paper, we delineate the fundamental shortcomings of such a boundary condition in the context of stable boundary layer modelling and simulation. Using an analytical approach, we are able to show that for reliable model results of the stable boundary layer accurate surface temperature prescription or prediction is needed. As such, the use of surface heat flux as a boundary condition should be avoided in stable conditions.
NASA Astrophysics Data System (ADS)
Gibbs, Jeremy A.; Fedorovich, Evgeni; Shapiro, Alan
2015-02-01
Two formulations of the surface thermal boundary condition commonly employed in numerical modelling of atmospheric stably stratified surface-layer flows are evaluated using analytical considerations and observational data from the Cabauw site in the Netherlands. The first condition is stated in terms of the surface heat flux and the second is stated in terms of the vertical potential temperature difference. The similarity relationships used to relate the flux and the difference are based on conventional log-linear expressions for vertical profiles of wind velocity and potential temperature. The heat-flux formulation results in two physically meaningful values for the friction velocity with no obvious criteria available to choose between solutions. Both solutions can be obtained numerically, which casts doubt on discarding one of the solutions as was previously suggested based on stability arguments. This solution ambiguity problem is identified as the key issue of the heat-flux condition formulation. In addition, the agreement between the temperature difference evaluated from similarity solutions and their measurement-derived counterparts from the Cabauw dataset appears to be very poor. Extra caution should be paid to the iterative procedures used in the model algorithms realizing the heat-flux condition as they could often provide only partial solutions for the friction velocity and associated temperature difference. Using temperature difference as the lower boundary condition bypasses the ambiguity problem and provides physically meaningful values of heat flux for a broader range of stability condition in terms of the flux Richardson number. However, the agreement between solutions and observations of the heat flux is again rather poor. In general, there is a great need for practicable similarity relationships capable of treating the vertical turbulent transport of momentum and heat under conditions of strong stratification in the surface layer.
NASA Technical Reports Server (NTRS)
Tezduyar, T. E.; Liou, J.
1991-01-01
Downstream boundary conditions equivalent to the homogeneous form of the natural boundary conditions associated with the velocity-pressure formulation of the Navier-Stokes equations are derived for the vorticity-stream function formulation of two-dimensional incompressible flows. Of particular interest are the zero normal and shear stress conditions at a downstream boundary.
Nair, N V; Shanker, B; Kempel, L
2012-09-01
Boundary integral equations (BIEs) find applications in problems ranging from sonar to medical diagnostics. The two ingredients of the BIE solution technique are (1) representation of the domain and (2) design of approximation spaces to represent physical quantities on the domain. These, in concert, affect accuracy and convergence of the simulation. This paper presents a framework that permits the development of a scheme for refinement (of size and order) in both geometry and function representations. Further, this permits flexibility in the types of basis functions that can be used. Capabilities of the proposed framework are shown via a number of numerical examples. PMID:22978854
Surface flow boundary conditions in modeling land subsidence due to fluid withdrawal.
Baú, Domenico; Ferronato, Massimiliano; Gambolati, Giuseppe; Teatini, Pietro
2004-01-01
Land subsidence due to subsurface fluid (water, gas, oil) withdrawal is often predicted by either finite element or finite difference numerical models based on coupled poroelastic theory, where the soil is represented as a semi-infinite medium bounded by the traction-free (ground) surface. One of the variables playing a most important role on the final outcome is the flow condition used on the traction-free boundary, which may be assumed as either permeable or impermeable. Although occasionally justified, the assumption of no-flow surface seems to be in general rather unrealistic. A permeable boundary where the fluid pressure is fixed to the external atmospheric pressure appears to be more appropriate. This paper addresses the response, in terms of land subsidence, obtained with a coupled poroelastic finite element model that simulates a distributed pumping from a horizontal aquifer confined between two relatively impervious layers, and takes either a permeable boundary surface, i.e., constant hydraulic potential, or an impermeable boundary, i.e., a zero Neumann flow condition. The analysis reveals that land subsidence is rather sensitive to the flow condition implemented on the traction-free boundary. In general, the no-flow condition leads to an overestimate of the predicted ground surface settlement, which could even be 1 order of magnitude larger than that obtained with the permeable boundary. PMID:15318774
Moist turbulent Rayleigh-Bénard convection with Neumann and Dirichlet boundary conditions
NASA Astrophysics Data System (ADS)
Weidauer, Thomas; Schumacher, Jörg
2012-07-01
Turbulent Rayleigh-Bénard convection with phase changes in an extended layer between two parallel impermeable planes is studied by means of three-dimensional direct numerical simulations for Rayleigh numbers between 104 and 1.5 × 107 and for Prandtl number Pr = 0.7. Two different sets of boundary conditions of temperature and total water content are compared: imposed constant amplitudes which translate into Dirichlet boundary conditions for the scalar field fluctuations about the quiescent diffusive equilibrium and constant imposed flux boundary conditions that result in Neumann boundary conditions. Moist turbulent convection is in the conditionally unstable regime throughout this study for which unsaturated air parcels are stably and saturated air parcels unstably stratified. A direct comparison of both sets of boundary conditions with the same parameters requires to start the turbulence simulations out of differently saturated equilibrium states. Similar to dry Rayleigh-Bénard convection the differences in the turbulent velocity fluctuations, the cloud cover, and the convective buoyancy flux decrease across the layer with increasing Rayleigh number. At the highest Rayleigh numbers the system is found in a two-layer regime, a dry cloudless and stably stratified layer with low turbulence level below a fully saturated and cloudy turbulent one which equals a classical Rayleigh-Bénard convection layer. Both are separated by a strong inversion that gets increasingly narrower for growing Rayleigh number.
Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic-Acoustic Modes and Boundary Flows
Xu, X Q; Belli, E; Bodi, K; Candy, J; Chang, C S; Cohen, B I; Cohen, R H; Colella, P; Dimits, A M; Dorr, M R; Gao, Z; Hittinger, J A; Ko, S; Krasheninnikov, S; McKee, G R; Nevins, W M; Rognlien, T D; Snyder, P B; Suh, J; Umansky, M V
2008-09-18
We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following: (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST q-scans and experimental measurements of the scaling of the GAM amplitude with edge q{sub 95} in the absence of obvious evidence that there is a strong q dependence of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation, and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and flow characteristics qualitatively like those observed in experiments.
The unified method: II. NLS on the half-line with t-periodic boundary conditions
NASA Astrophysics Data System (ADS)
Lenells, J.; Fokas, A. S.
2012-05-01
Boundary value problems for integrable nonlinear evolution PDEs formulated on the half-line can be analyzed by the unified method introduced by one of the authors and used extensively in the literature. The implementation of this general method to this particular class of problems yields the solution in terms of the unique solution of a matrix Riemann-Hilbert problem formulated in the complex k-plane (the Fourier plane), which has a jump matrix with explicit (x, t)-dependence involving four scalar functions of k, called spectral functions. Two of these functions depend on the initial data, whereas the other two depend on all boundary values. The most difficult step of the new method is the characterization of the latter two spectral functions in terms of the given initial and boundary data, i.e. the elimination of the unknown boundary values. For certain boundary conditions, called linearizable, this can be achieved by simply using algebraic manipulations. Here, we first present an effective characterization of the spectral functions in terms of the given initial and boundary data for the general case of non-linearizable boundary conditions. This characterization is based on the analysis of the so-called global relation and on the introduction of the so-called Gelfand-Levitan-Marchenko representations of the eigenfunctions defining the spectral functions. We then concentrate on the physically significant case of t-periodic Dirichlet boundary data. After presenting certain heuristic arguments which suggest that the Neumann boundary values become periodic as t → ∞, we show that for the case of the NLS with a sine-wave as Dirichlet data, the asymptotics of the Neumann boundary values can be computed explicitly at least up to third order in a perturbative expansion and indeed at least up to this order are asymptotically periodic.
Dron, Olivier; Aider, Jean-Luc
2013-09-01
It is well-known that particles can be focused at mid-height of a micro-channel using Acoustic Radiation Force (ARF) tuned at the resonance frequency (h=λ/2). The resonance condition is a strong limitation to the use of acoustophoresis (particles manipulation using acoustic force) in many applications. In this study we show that it is possible to focus the particles anywhere along the height of a micro-channel just by varying the acoustic frequency, in contradiction with the resonance condition. This result has been thoroughly checked experimentally. The different physical properties as well as wall materials have been changed. The wall materials is finally the only critical parameters. One of the specificity of the micro-channel is the thickness of the carrier and reflector layer. A preliminary analysis of the experimental results suggests that the acoustic focusing beyond the classic resonance condition can be explained in the framework of the multilayered resonator proposed by Hill [1]. Nevertheless, further numerical studies are needed in order to confirm and fully understand how the acoustic pressure node can be moved over the entire height of the micro channel by varying the acoustic frequency. Despite some uncertainties about the origin of the phenomenon, it is robust and can be used for improved acoustic sorting or manipulation of particles or biological cells in confined set-ups. PMID:23628114
Asymptotic Analysis of a Slightly Rarefied Gas with Nonlocal Boundary Conditions
NASA Astrophysics Data System (ADS)
Caflisch, Russel E.; Lombardo, Maria Carmela; Sammartino, Marco
2011-05-01
In this paper nonlocal boundary conditions for the Navier-Stokes equations are derived, starting from the Boltzmann equation in the limit for the Knudsen number being vanishingly small. In the same spirit of (Lombardo et al. in J. Stat. Phys. 130:69-82, 2008) where a nonlocal Poisson scattering kernel was introduced, a gaussian scattering kernel which models nonlocal interactions between the gas molecules and the wall boundary is proposed. It is proved to satisfy the global mass conservation and a generalized reciprocity relation. The asymptotic expansion of the boundary-value problem for the Boltzmann equation, provides, in the continuum limit, the Navier-Stokes equations associated with a class of nonlocal boundary conditions of the type used in turbulence modeling.
Moment model and boundary conditions for energy transport in the phonon gas
NASA Astrophysics Data System (ADS)
Fryer, Michael J.; Struchtrup, Henning
2014-09-01
Heat transfer in solids is modeled in the framework of kinetic theory of the phonon gas. The microscopic description of the phonon gas relies on the phonon Boltzmann equation and the Callaway model for phonon-phonon interaction. A simple model for phonon interaction with crystal boundaries, similar to the Maxwell boundary conditions in classical kinetic theory, is proposed. Macroscopic transport equation for an arbitrary set of moments is developed and closed by means of Grad's moment method. Boundary conditions for the macroscopic equations are derived from the microscopic model and the Grad closure. As example, sets with 4, 9, 16, and 25 moments are considered and solved analytically for one-dimensional heat transfer and Poiseuille flow of phonons. The results show the influence of Knudsen number on phonon drag at solid boundaries. The appearance of Knudsen layers reduces the net heat conductivity of solids in rarefied phonon regimes.
Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH
NASA Astrophysics Data System (ADS)
Leroy, A.; Violeau, D.; Ferrand, M.; Kassiotis, C.
2014-03-01
This work aims at improving the 2-D incompressible SPH model (ISPH) by adapting it to the unified semi-analytical wall boundary conditions proposed by Ferrand et al. [10]. The ISPH algorithm considered is as proposed by Lind et al. [25], based on the projection method with a divergence-free velocity field and using a stabilising procedure based on particle shifting. However, we consider an extension of this model to Reynolds-Averaged Navier-Stokes equations based on the k-ɛ turbulent closure model, as done in [10]. The discrete SPH operators are modified by the new description of the wall boundary conditions. In particular, a boundary term appears in the Laplacian operator, which makes it possible to accurately impose a von Neumann pressure wall boundary condition that corresponds to impermeability. The shifting and free-surface detection algorithms have also been adapted to the new boundary conditions. Moreover, a new way to compute the wall renormalisation factor in the frame of the unified semi-analytical boundary conditions is proposed in order to decrease the computational time. We present several verifications to the present approach, including a lid-driven cavity, a water column collapsing on a wedge and a periodic schematic fish-pass. Our results are compared to Finite Volumes methods, using Volume of Fluids in the case of free-surface flows. We briefly investigate the convergence of the method and prove its ability to model complex free-surface and turbulent flows. The results are generally improved when compared to a weakly compressible SPH model with the same boundary conditions, especially in terms of pressure prediction.
Heat transfer analysis in the flow of Walters' B fluid with a convective boundary condition
NASA Astrophysics Data System (ADS)
Hayat, T.; Sadia, Asad; Mustafa, M.; Hamed, H. Alsulami
2014-08-01
Radiative heat transfer in the steady two-dimensional flow of Walters' B fluid with a non-uniform heat source/sink is investigated. An incompressible fluid is bounded by a stretching porous surface. The convective boundary condition is used for the thermal boundary layer problem. The relevant equations are first simplified under usual boundary layer assumptions and then transformed into a similar form by suitable transformations. Explicit series solutions of velocity and temperature are derived by the homotopy analysis method (HAM). The dimensionless velocity and temperature gradients at the wall are calculated and discussed.
Spectrum of one BVP with discontinuities and spectral parameter in the boundary conditions
NASA Astrophysics Data System (ADS)
Aydemir, K.; Mukhtarov, O. Sh.; Olǧar, H.
2016-04-01
The aim this of paper is to investigate the spectral problem for the equation -(pu')'(x) + q(x)u(x) = λu(x), under eigen-dependent boundary conditions and supplementary transmission conditions at finite number interior points. By modifying some techniques of classical Sturm-Liouville theory and suggesting own approaches we esthabilish some properties of the eigenvalues and eigenfunction.
First results using TWINS-derived ion temperature boundary conditions in CRCM
NASA Astrophysics Data System (ADS)
Elfritz, J. G.; Keesee, A. M.; Buzulukova, N.; Fok, M.-C.; Scime, E. E.
2014-05-01
We have integrated dynamic, spatiotemporally resolved ion temperature boundary conditions into the Comprehensive Ring Current Model (CRCM), which are based on 2-D equatorial maps derived from the Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) energetic neutral atom (ENA) data. The high-speed stream-driven event on 22 July 2009 is simulated and compared against an identical simulation using a statistically derived boundary condition model. ENA-derived temperatures allow users to include event-specific observations associated with a dynamic plasma sheet. This method also provides temperatures in the important region between geosynchronous orbit and the plasma sheet, a region which existing empirical models exclude. We find that the spatial and energy distributions of ring current flux and pressure have sensitive dependence on boundary conditions during this event. The coupling of boundary conditions to the time history of the convection field strength also plays an important role by throttling the influence of the boundary plasma on the inner magnetosphere. Simulated moments and spectra from our simulations are compared with remotely imaged ion temperatures from TWINS and also in situ energy spectra and temperature moments from Time History of Events and Macroscale Interactions during Substorms-D. Storm time dusk-dawn asymmetries consistent with observational data, such as Zhang et al. (2006), are reproduced well when CRCM is provided with the event-specific boundary model. A hot localized structure observed by TWINS at geosynchronous midnight during a strong northward interplanetary magnetic field interval is also reproduced with this boundary model, whereas the empirical boundary model fails to yield this feature.
On a Non-Reflecting Boundary Condition for Hyperbolic Conservation Laws
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2003-01-01
A non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented. The technique is based on the hyperbolicity of the Euler equation system and the first principle of plane (simple) wave propagation. The NRBC is simple and effective, provided the numerical scheme maintains locally a C(sup 1) continuous solution at the boundary. Several numerical examples in ID, 2D and 3D space are illustrated to demonstrate its robustness in practical computations.
On a Non-Reflecting Boundary Condition for Hyperbolic Conservation Laws
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2003-01-01
A non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented. The technique is based on the first principle of non-reflecting, plane wave propagation and the hyperbolicity of the Euler equation system. The NRBC is simple and effective, provided the numerical scheme maintains locally a C(sup 1) continuous solution at the boundary. Several numerical examples in 1D, 2D, and 3D space are illustrated to demonstrate its robustness in practical computations.
Direct Numerical Simulations of Turbulent Boundary Layers Over A Circular Aperture
NASA Astrophysics Data System (ADS)
Zhang, Qi; Bodony, Daniel
2012-11-01
Motivated by the use of acoustic liners to reduce jet engine and aircraft noise, we use direct numerical simulation to study the interaction of a turbulent Mach 0.5 boundary layer with a circular aperture connected to a honeycomb cavity under acoustic excitation. The geometry and flow conditions correspond to experiments conducted at NASA Langley. The hole, whose diameter is on the order of the boundary layer's momentum thickness, interacts with the boundary layer in qualitatively different ways depending on the acoustic forcing amplitude. The influence of the hole on the boundary layer is quantified under a range of acoustic excitations and the details of the hole/boundary layer interaction will be presented. The acoustic impedance of the hole is determined, compared to experimentally educed values, and related to the dynamics of the hole/boundary layer interaction. These analyses will be helpful for improved understanding and low-order models of aircraft acoustic liners at realistic operating conditions.