Science.gov

Sample records for acoustic bubble spectrometer

  1. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  2. Robust acoustic wave manipulation of bubbly liquids

    NASA Astrophysics Data System (ADS)

    Gumerov, N. A.; Akhatov, I. S.; Ohl, C.-D.; Sametov, S. P.; Khazimullin, M. V.; Gonzalez-Avila, S. R.

    2016-03-01

    Experiments with water-air bubbly liquids when exposed to acoustic fields of frequency ˜100 kHz and intensity below the cavitation threshold demonstrate that bubbles ˜30 μm in diameter can be "pushed" away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.

  3. Acoustically-tuned optical spectrometer

    NASA Technical Reports Server (NTRS)

    Sklar, E.

    1981-01-01

    Lens arrangement corrects for aberrations and gives resolution of 0.7 seconds of arc. In spectrometer, light from telescope is relayed by doublet lens to acoustically tuned optical filter. Selected wavelengths are relayed by triplet lens to charge coupled device camera. Intervening cylindrical lens, tilted at 12 degree angle, corrects for astigmatism and coma introduced by two element birefringent crystal in filter.

  4. The Minnaert Bubble: An Acoustic Approach

    ERIC Educational Resources Information Center

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude; Leroy, Valentin

    2008-01-01

    We propose an "ab initio" introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian…

  5. Acoustic Behavior of Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Prosperetti, Andrea; Oguz, Hasan N.

    1996-01-01

    In a microgravity environment vapor bubbles generated at a boiling surface tend to remain near it for a long time. This affects the boiling heat transfer and in particular promotes an early transition to the highly inefficient film boiling regime. This paper describes the physical basis underlying attempts to remove the bubbles by means of pressure radiation forces.

  6. Acoustic Bubble Removal from Boiling Surfaces

    NASA Technical Reports Server (NTRS)

    Prosperetti, Andrea

    2002-01-01

    The object of the study was the investigation of the forces generated by standing acoustic waves on vapor bubbles, both far and near boundaries. In order to accomplish this objective, in view of the scarcity of publications on the topic, it has been necessary to build an edifice of knowledge about vapor bubbles in sound and flow fields from the ground up, as it were. We have addressed problems of gradually greater difficulty as follows: 1. In the first place, the physics of an stationary isolated bubble subject to a sound field in an unbounded liquid was addressed; 2. The case of bubbles translating in a stationary pressure field was then considered; 3. This was followed by a study of the combined effects of sound and translation, 4. And of a neighboring boundary 5. Finally, a new method to deal with nonspherical bubbles was developed- In addition to the work on vapor bubbles, some studies on gas bubbles were conducted in view of NASA's interest in the phenomenon of sonoluminescence.

  7. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  8. The Minnaert bubble: an acoustic approach

    NASA Astrophysics Data System (ADS)

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude; Leroy, Valentin

    2008-11-01

    We propose an ab initio introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian variables. In unbounded water, the air-water system has a continuum of eigenmodes, some of them correspond to regular Fabry-Pérot resonances. A singular resonance, the lowest one, is shown to coincide with that of Minnaert. In bounded water, the eigenmodes spectrum is discrete, with a finite fundamental frequency. A spectacular quasi-locking of the latter occurs if it happens to exceed the Minnaert frequency, which provides an unforeseen one-bubble alternative version of the famous 'hot chocolate effect'. In the (low) frequency domain in which sound propagation inside the bubble reduces to a simple 'breathing' (i.e. inflation/deflation), the light air bubble can be 'dressed' by the outer water pressure forces, and is turned into the heavy Minnaert bubble. Thanks to this unexpected renormalization process, we demonstrate that the Minnaert bubble definitely behaves like a true harmonic oscillator of the spring-bob type, but with a damping term and a forcing term in apparent disagreement with those commonly admitted in the literature. Finally, we underline the double role played by the water. In order to tell the water motion associated with water compressibility (i.e. the sound) from the simple incompressible accompaniment of the bubble breathing, we introduce a new picture analogous to the electromagnetic radiative picture in Coulomb gauge, which naturally leads us to split the water displacement in an instantaneous and a retarded part. The Minnaert renormalized mass of the dressed bubble is then automatically recovered.

  9. Robust Acoustic Transducers for Bubble Chambers

    NASA Astrophysics Data System (ADS)

    Wells, Jonathan

    2015-04-01

    The PICO collaboration utilizes bubble chambers filled with various superheated liquids as targets for dark matter. Acoustic sensors have proved able to distinguish nuclear recoils from radioactive background on an event-by-event basis. We have recently produced a more robust transducer which should be able to operate for years, rather than months, in the challenging environment of a heated high pressure hydraulic fluid outside these chambers. Indiana University South Bend.

  10. Measurement of Bubble Size Distribution Based on Acoustic Propagation in Bubbly Medium

    NASA Astrophysics Data System (ADS)

    Wu, Xiongjun; Hsiao, Chao-Tsung; Choi, Jin-Keun; Chahine, Georges

    2013-03-01

    Acoustic properties are strongly affected by bubble size distribution in a bubbly medium. Measurement of the acoustic transmission becomes increasingly difficulty as the void fraction of the bubbly medium increases due to strong attenuation, while acoustic reflection can be measured more easily with increasing void fraction. The ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright, an instrument for bubble size measurement that is under development tries to take full advantage of the properties of acoustic propagation in bubbly media to extract bubble size distribution. Properties of both acoustic transmission and reflection in the bubbly medium from a range of short single-frequency bursts of acoustic waves at different frequencies are measured in an effort to deduce the bubble size distribution. With the combination of both acoustic transmission and reflection, assisted with validations from photography, the ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright has the potential to measure bubble size distributions in a wider void fraction range. This work was sponsored by Department of Energy SBIR program

  11. Probing Cell Deformability via Acoustically Actuated Bubbles.

    PubMed

    Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costanzo, Francesco; Huang, Tony Jun

    2016-02-17

    An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis. PMID:26715211

  12. Probing Cell Deformability via Acoustically Actuated Bubbles

    PubMed Central

    Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costanzo, Francesco; Huang, Tony Jun

    2016-01-01

    An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis. PMID:26715211

  13. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  14. LLNL`s acoustic spectrometer

    SciTech Connect

    Baker, J.

    1997-03-17

    This paper describes the development of a frequency sensitive acoustic transducer that operates in the 10 Hz to 10 kHz regime. This device uses modem silicon microfabrication techniques to form mechanical tines that resonate at specified frequencies. This high-sensitivity device is intended for low-power battery powered applications.

  15. Orbital motions of bubbles in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shirota, Minori; Yamashita, Ko; Inamura, Takao

    2012-09-01

    This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion on the wall of a spherical levitator was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging technique. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along an elliptic orbit around the center of mass of the bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force.

  16. Onset of particle trapping and release via acoustic bubbles.

    PubMed

    Chen, Yun; Fang, Zecong; Merritt, Brett; Strack, Dillon; Xu, Jie; Lee, Sungyon

    2016-08-01

    Trapping and sorting of micro-sized objects is one important application of lab on a chip devices, with the use of acoustic bubbles emerging as an effective, non-contact method. Acoustically actuated bubbles are known to exert a secondary radiation force (FSR) on micro-particles and stabilize them on the bubble surface, when this radiation force exceeds the external hydrodynamic forces that act to keep the particles in motion. While the theoretical expression of FSR has been derived by Nyborg decades ago, no direct experimental validation of this force has been performed, and the relationship between FSR and the bubble's ability to trap particles in a given lab on a chip device remains largely empirical. In order to quantify the connection between the bubble oscillation and the resultant FSR, we experimentally measure the amplitude of bubble oscillations that give rise to FSR and observe the trapping and release of a single microsphere in the presence of the mean flow at the corresponding acoustic parameters using an acoustofluidic device. By combining well-developed theories that connect bubble oscillations to the acoustic actuation, we derive the expression for the critical input voltage that leads to particle release into the flow, in good agreement with the experiments. PMID:26805706

  17. Enhanced Condensation of Vapor Bubbles by Acoustic Actuation

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2014-11-01

    The effects of acoustic actuation on enhancement of the condensation rate of vapor bubbles in a liquid pool are investigated experimentally. Vapor bubbles are formed by direct injection into quiescent liquid in a sealed tank under controlled ambient pressure that varies from atmospheric to partial vacuum. The bubbles are injected vertically from a pressurized steam reservoir through nozzles of varying characteristic diameters, and the actuation is applied during different stages of the bubbles formation and advection. It is shown that kHz range acoustic actuation leads to excitation of high-amplitude surface capillary (Faraday) waves at the vapor-liquid interface that significantly increases the condensation rate. The concomitant controlled changes in bubble volume and in the structure of the vapor interface strongly affect bubble advection in the liquid pool. The increase in condensation rate is affected by the surface waves that increase the mixing in the thermal boundary layer surrounding the bubble, and on the advection of the bubble within the pool. High-speed image processing is used to quantitatively measure the scale of the capillary waves and their effect on vapor bubble dynamics at several ambient pressures that affect the global condensation rate.

  18. The acoustic environment of a sonoluminescing bubble

    NASA Astrophysics Data System (ADS)

    Holzfuss, Joachim; Rüggeberg, Matthias; Holt, R. Glynn

    2000-07-01

    A bubble is levitated in water in a cylindrical resonator which is driven by ultrasound. It has been shown that in a certain region of parameter space the bubble is emitting light pulses (sonoluminescence). One of the properties observed is the enormous spatial stability leaving the bubble "pinned" in space allowing it to emit light with a timing of picosecond accuracy. We argue that the observed stability is due to interactions of the bubble with the resonator. A shock wave emitted at collapse time together with a self generated complex sound field, which is experimentally mapped with high resolution, is responsible for the observed effects.

  19. Evidence for liquid phase reactions during single bubble acoustic cavitation.

    PubMed

    Troia, A; Madonna Ripa, D; Lago, S; Spagnolo, R

    2004-07-01

    We extended the recent experiment by Lepoint et al. [Sonochemistry and Sonoluminescence, NATO ASI Series, Series C 524, Kluwer Academic Publishers, Dordrecht/Boston/London, 1999, p. 285], involving a so-called single bubble sonochemistry process, to a three-phase system. We have found experimental evidence that a single cavitating bubble can activate the oxidation of I- ions after the injection of a CCl4 liquid drop in the bubble trapping apparatus. The solvent drop (CCl4 is almost water insoluble) is pushed towards the bubble position and forms a thin film on the bubble surface. When the acoustic pressure drive is increased above 100 kPa, the three-phase system gives rise to a dark filament, indicating the complexation reaction between starch (added to the water phase) and I2. I2 species is the product of surface reactions involving bubble-induced decomposition of CCl4. Further increase of the acoustic drive causes the thin CCl4 film to separate from the bubble and stops I2 production. The study of the chemical activity of this three-phase system could give new advances on dynamics of the bubble collapse. PMID:15157862

  20. An acoustical bubble counter for superheated drop detectors.

    PubMed

    Taylor, Chris; Montvila, Darius; Flynn, David; Brennan, Christopher; d'Errico, Francesco

    2006-01-01

    A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons. PMID:16891351

  1. Acoustic Shielding by Cavitation Bubbles in Shock Wave Lithotripsy (SWL)

    NASA Astrophysics Data System (ADS)

    Pishchalnikov, Yuri A.; McAteer, James A.; Bailey, Michael R.; Pishchalnikova, Irina V.; Williams, James C.; Evan, Andrew P.

    2006-05-01

    Lithotripter pulses (˜7-10 μs) initiate the growth of cavitation bubbles, which collapse hundreds of microseconds later. Since the bubble growth-collapse cycle trails passage of the pulse, and is ˜1000 times shorter than the pulse interval at clinically relevant firing rates, it is not expected that cavitation will affect pulse propagation. However, pressure measurements with a fiber-optic hydrophone (FOPH-500) indicate that bubbles generated by a pulse can, indeed, shield the propagation of the negative tail. Shielding was detected within 1 μs of arrival of the negative wave, contemporaneous with the first observation of expanding bubbles by high-speed camera. Reduced negative pressure was observed at 2 Hz compared to 0.5 Hz firing rate, and in water with a higher content of dissolved gas. We propose that shielding of the negative tail can be attributed to loss of acoustic energy into the expansion of cavitation bubbles.

  2. Bubble-induced acoustic mixing in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Chen, Huaying; Petkovic-Duran, Karolina; Best, Michael; Zhu, Yonggang

    2015-12-01

    Homogeneous and fast mixing of samples at microscale is a critical requirement for successful applications of microfluidics in biochemical analysis, chemical synthesis, drug delivery and nanomaterial synthesis. This paper reports the optimisation of bubble-induced mixing in a microfluidic device in terms of voltage, driving frequency, piezo transducer position and PDMS thickness. The microfluidic device consists of a microwell (with the diameter of 1mm and volume of ~95 nL) with two rectangular bubble traps (400×400μm) on both sides of the well. After the injection of liquid, air bubbles were spontaneously trapped in two rectangular traps. When the frequency of a piezo was equal to the resonance frequency of air bubbles, strong liquid recirculation formed (so called acoustic microstreaming) in the vicinity of the interface of air bubbles and water. The acoustic induced flow of microbeads and mixing of water and fluorescence dye were imaged to study the mixing efficiency. For a given voltage and PDMS thickness, when the piezo was placed on top of the well, the mixing was most vigorous. For a given frequency, the mixing efficiency was directly proportional to the voltage (4-20V) and inversely proportional to the PDMS thickness (0.3-2mm). When the frequency driving the piezo was approaching the resonance frequency of air bubbles, the mixing efficiency was maximal, while when it was far away from the resonance frequency of air bubbles, the mixing efficiency was much lower. This work provides guidance to the design and the application of bubble-induced acoustic mixing in microfluidics.

  3. Micropropulsion by an acoustic bubble for navigating microfluidic spaces.

    PubMed

    Feng, Jian; Yuan, Junqi; Cho, Sung Kwon

    2015-03-21

    This paper describes an underwater micropropulsion principle where a gaseous bubble trapped in a suspended microchannel and oscillated by external acoustic excitation generates a propelling force. The propelling swimmer is designed and microfabricated from parylene on the microscale (the equivalent diameter of the cylindrical bubble is around 60 μm) using microphotolithography. The propulsion mechanism is studied and verified by computational fluid dynamics (CFD) simulations as well as experiments. The acoustically excited and thus periodically oscillating bubble generates alternating flows of intake and discharge through an opening of the microchannel. As the Reynolds number of oscillating flow increases, the difference between the intake and discharge flows becomes significant enough to generate a net flow (microstreaming flow) and a propulsion force against the channel. As the size of the device is reduced, however, the Reynolds number is also reduced. To maintain the Reynolds number in a certain range and thus generate a strong propulsion force in the fabricated device, the oscillation amplitude of the bubble is maximized (resonated) and the oscillation frequency is set high (over 10 kHz). Propelling motions by a single bubble as well as an array of bubbles are achieved on the microscale. In addition, the microswimmer demonstrates payload carrying. This propulsion mechanism may be applied to microswimmers that navigate microfluidic environments and possibly narrow passages in human bodies to perform biosensing, drug delivery, imaging, and microsurgery. PMID:25650274

  4. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors

    PubMed Central

    Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L). PMID:27294937

  5. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors.

    PubMed

    Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L). PMID:27294937

  6. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    NASA Astrophysics Data System (ADS)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  7. An acoustic dielectric and mechanical spectrometer.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-06-21

    In this report, the dielectric constant of glycerol solutions (0-70% (w/w)) and the mechanical transitions of poly(2-hydroxylethyl methacrylate-co-methacrylic acid) films (600-800 nm, 1.5-10 mol% cross-linker) have been investigated by the magnetic acoustic resonance sensor (MARS), which is an electrode-free acoustic sensor and operates over a continuous frequency spectrum (6-200 MHz). When a glycerol solution was loaded, the response of the MARS decayed exponentially as the operating frequency was increased. The decay rate against frequency as a function of the glycerol concentration reflects the change of the dielectric property of the glycerol solutions. In addition, mechanical relaxation of the poly(2-hydroxylethyl methacrylate-co-methacrylic acid) film has been observed on the MARS and the corresponding viscoelastic transition frequency has been estimated. The viscoelastic transition frequency increased as the polymer was more highly cross-linked. The MARS system behaved as a dielectric and mechanical spectrometer, monitoring the electrical and mechanical properties of viscoelastic materials or on the solid-liquid interfaces simultaneously, which has prospective application in studies of biomaterials, molecular interactions and drug deliveries. PMID:22573065

  8. Controlled permeation of cell membrane by single bubble acoustic cavitation.

    PubMed

    Zhou, Y; Yang, K; Cui, J; Ye, J Y; Deng, C X

    2012-01-10

    Sonoporation is the membrane disruption generated by ultrasound and has been exploited as a non-viral strategy for drug and gene delivery. Acoustic cavitation of microbubbles has been recognized to play an important role in sonoporation. However, due to the lack of adequate techniques for precise control of cavitation activities and real-time assessment of the resulting sub-micron process of sonoporation, limited knowledge has been available regarding the detail processes and correlation of cavitation with membrane disruption at the single cell level. In the current study, we developed a combined approach including optical, acoustical, and electrophysiological techniques to enable synchronized manipulation, imaging, and measurement of cavitation of single bubbles and the resulting cell membrane disruption in real-time. Using a self-focused femtosecond laser and high frequency ultrasound (7.44MHz) pulses, a single microbubble was generated and positioned at a desired distance from the membrane of a Xenopus oocyte. Cavitation of the bubble was achieved by applying a low frequency (1.5MHz) ultrasound pulse (duration 13.3 or 40μs) to induce bubble collapse. Disruption of the cell membrane was assessed by the increase in the transmembrane current (TMC) of the cell under voltage clamp. Simultaneous high-speed bright field imaging of cavitation and measurements of the TMC were obtained to correlate the ultrasound-generated bubble activities with the cell membrane poration. The change in membrane permeability was directly associated with the formation of a sub-micrometer pore from a local membrane rupture generated by bubble collapse or bubble compression depending on ultrasound amplitude and duration. The impact of the bubble collapse on membrane permeation decreased rapidly with increasing distance (D) between the bubble (diameter d) and the cell membrane. The effective range of cavitation impact on membrane poration was determined to be D/d=0.75. The maximum mean

  9. Comment on "Acoustical observation of bubble oscillations induced by bubble popping"

    NASA Astrophysics Data System (ADS)

    Blanc, É.; Ollivier, F.; Antkowiak, A.; Wunenburger, R.

    2015-03-01

    We have reproduced the experiment of acoustic monitoring of spontaneous popping of single soap bubbles standing in air reported by Ding et al. [2aa Phys. Rev. E 75, 041601 (2007), 10.1103/PhysRevE.75.041601]. By using a single microphone and two different signal acquisition systems recording in parallel the signal at the microphone output, among them the system used by Ding et al., we have experimentally evidenced that the acoustic precursors of bubble popping events detected by Ding et al. actually result from an acausal artifact of the signal processing performed by their acquisition system which lies outside of its prescribed working frequency range. No acoustic precursor of popping could be evidenced with the microphone used in these experiments, whose sensitivity is 1 V Pa-1 and frequency range is 500 Hz-100 kHz.

  10. Blowing Polymer Bubbles in an Acoustic Levitator

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1985-01-01

    In new manufacturing process, small gas-filled polymer shells made by injecting gas directly into acoustically levitated prepolymer drops. New process allows sufficient time for precise control of shell geometry. Applications foreseen in fabrication of deuterium/tritium-filled fusion targets and in pharmaceutical coatings. New process also useful in glass blowing and blow molding.

  11. Bubble dynamics under acoustic excitation with multiple frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, Y. N.; Zhang, Y. N.; Li, S. C.

    2015-01-01

    Because of its magnificent mechanical and chemical effects, acoustic cavitation plays an important role in a broad range of biomedical, chemical and mechanical engineering problems. Particularly, irradiation of the multiple frequency acoustic wave could enhance the effects of cavitation. The advantages of employment of multi-frequency ultrasonic field include decreasing the cavitation thresholds, promoting cavitation nuclei generation, increasing the mass transfer and improving energy efficiency. Therefore, multi-frequency ultrasonic systems are employed in a variety of applications, e.g., to enhance the intensity of sonoluminenscence, to increase efficiency of sonochemical reaction, to improve the accuracy of ultrasound imaging and the efficiency of tissue ablation. Compared to single-frequency systems, a lot of new features of bubble dynamics exist in multi-frequency systems, such as special properties of oscillating bubbles, unique resonances in the bubble response curves, and unusual chaotic behaviours. In present paper, the underlying mechanisms of the cavitation effects under multi-frequency acoustical excitation are also briefly introduced.

  12. The Dynamics of Vapor Bubbles in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    1999-01-01

    In spite of a superficial similarity with gas bubbles, the intimate coupling between dynamical and thermal processes confers to oscillating vapor bubbles some unique characteristics. This paper examines numerically the validity of some asymptotic-theory predictions such as the existence of two resonant radii and a limit size for a given sound amplitude and frequency. It is found that a small vapor bubble in a sound field of sufficient amplitude grows quickly through resonance and continues to grow thereafter at a very slow rate, seemingly indefinitely. Resonance phenomena therefore play a role for a few cycles at most, and reaching a limit size-if one exists at all-is found to require far more than several tens of thousands of cycles. It is also found that some small bubbles may grow or collapse depending on the phase of the sound field. The model accounts in detail for the thermo-fluid-mechanic processes in the vapor. In the second part of the paper, an approximate formulation valid for bubbles small with respect to the thermal penetration length in the vapor is derived and its accuracy examined, The present findings have implications for acoustically enhanced boiling heat transfer and other special applications such as boiling in microgravity.

  13. Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2014-01-01

    In this work, energy analysis of an oscillating isolated spherical bubble in water irradiated by an ultrasonic wave has been theoretically studied for various conditions of acoustic amplitude, ultrasound frequency, static pressure and liquid temperature in order to explain the effects of these key parameters on both sonochemistry and sonoluminescence. The Keller-Miksis equation for the temporal variation of the bubble radius in compressible and viscous medium has been employed as a dynamics model. The numerical calculations showed that the rate of energy accumulation, dE/dt, increased linearly with increasing acoustic amplitude in the range of 1.5-3.0 atm and decreased sharply with increasing frequency in the range 200-1000 kHz. There exists an optimal static pressure at which the power w is highest. This optimum shifts toward a higher value as the acoustic amplitude increases. The energy of the bubble slightly increases with the increase in liquid temperature from 10 to 60 °C. The results of this study should be a helpful means to explain a variety of experimental observations conducted in the field of sonochemistry and sonoluminescence concerning the effects of operational parameters. PMID:23683796

  14. Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency.

    PubMed

    Zhang, Yuning; Du, Xiaoze; Xian, Haizhen; Wu, Yulin

    2015-03-01

    Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency is theoretically investigated. The critical bubble radii dividing stable and unstable regions of bubbles under dual-frequency acoustic excitation are strongly affected by the amplitudes of dual-frequency acoustic excitation rather than the frequencies of dual-frequency excitation. The limitation of the proposed model is also discussed with demonstrating examples. PMID:25164271

  15. Acoustic resonance frequency locked photoacoustic spectrometer

    DOEpatents

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  16. Acoustic resonance phase locked photoacoustic spectrometer

    DOEpatents

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-08-19

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.

  17. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles. PMID:22087995

  18. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.

    PubMed

    Kang, Shih-Tsung; Huang, Yi-Luan; Yeh, Chih-Kuang

    2014-03-01

    This study investigated the manipulation of bubbles generated by acoustic droplet vaporization (ADV) under clinically relevant flow conditions. Optical microscopy and high-frequency ultrasound imaging were used to observe bubbles generated by 2-MHz ultrasound pulses at different time points after the onset of ADV. The dependence of the bubble population on droplet concentration, flow velocity, fluid viscosity and acoustic parameters, including acoustic pressure, pulse duration and pulse repetition frequency, was investigated. The results indicated that post-ADV bubble growth spontaneously driven by air permeation markedly affected the bubble population after insonation. The bubbles can grow to a stable equilibrium diameter as great as twice the original diameter in 0.5-1 s, as predicted by the theoretical calculation. The growth trend is independent of flow velocity, but dependent on fluid viscosity and droplet concentration, which directly influence the rate of gas uptake by bubbles and the rate of gas exchange across the wall of the semipermeable tube containing the bubbles and, hence, the gas content of the host medium. Varying the acoustic pressure does not markedly change the formation of bubbles as long as the ADV thresholds of most droplets are reached. Varying pulse duration and pulse repetition frequency markedly reduces the number of bubbles. Lengthening pulse duration favors the production of large bubbles, but reduces the total number of bubbles. Increasing the PRF interestingly provides superior performance in bubble disruption. These results also suggest that an ADV bubble population cannot be assessed simply on the basis of initial droplet size or enhancement of imaging contrast by the bubbles. Determining the optimal acoustic parameters requires careful consideration of their impact on the bubble population produced for different application scenarios. PMID:24433748

  19. 2-D steering and propelling of acoustic bubble-powered microswimmers.

    PubMed

    Feng, Jian; Yuan, Junqi; Cho, Sung Kwon

    2016-06-21

    This paper describes bi-directional (linear and rotational) propelling and 2-D steering of acoustic bubble-powered microswimmers that are achieved in a centimeter-scale pool (beyond chip level scale). The core structure of a microswimmer is a microtube with one end open in which a gaseous bubble is trapped. The swimmer is propelled by microstreaming flows that are generated when the trapped bubble is oscillated by an external acoustic wave. The bubble oscillation and thus propelling force are highly dependent on the frequency of the acoustic wave and the bubble length. This dependence is experimentally studied by measuring the resonance behaviors of the testing pool and bubble using a laser Doppler vibrometer (LDV) and by evaluating the generated streaming flows. The key idea in the present 2-D steering is to utilize this dependence. Multiple bubbles with different lengths are mounted on a single microswimmer with a variety of arrangements. By controlling the frequency of the acoustic wave, only frequency-matched bubbles can strongly oscillate and generate strong propulsion. By arranging multiple bubbles of different lengths in parallel but with their openings opposite and switching the frequency of the acoustic wave, bi-directionally linear propelling motions are successfully achieved. The propelling forces are calculated by a CFD analysis using the Ansys Fluent® package. For bi-directional rotations, a similar method but with diagonal arrangement of bubbles on a rectangular swimmer is also applied. The rotation can be easily reversed when the frequency of the acoustic wave is switched. For 2-D steering, short bubbles are aligned perpendicular to long bubbles. It is successfully demonstrated that the microswimmer navigates through a T-junction channel under full control with and without carrying a payload. During the navigation, the frequency is the main control input to select and resonate targeted bubbles. All of these operations are achieved by a single

  20. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy

    PubMed Central

    Maeda, Kazuki; Colonius, Tim; Kreider, Wayne; Maxwell, Adam; Cunitz, Bryan; Bailey, Michael

    2016-01-01

    A combined modeling and experimental study of acoustic cavitation bubbles that are initiated by focused ultrasound waves is reported. Focused ultrasound waves of frequency 335 kHz and peak negative pressure 8 MPa are generated in a water tank by a piezoelectric transducer to initiate cavitation. The resulting pressure field is obtained by direct numerical simulation (DNS) and used to simulate single bubble oscillation. The characteristics of cavitation bubbles observed by high-speed photography qualitatively agree withs the simulation result. Finally, bubble clouds are captured using acoustic B-mode imaging that works in synchronization with high-speed photography. PMID:27087826

  1. Quantification of optison bubble size and lifetime during sonication dominant role of secondary cavitation bubbles causing acoustic bioeffects.

    PubMed

    Kamaev, Pavel P; Hutcheson, Joshua D; Wilson, Michelle L; Prausnitz, Mark R

    2004-04-01

    Acoustic cavitation has been shown to deliver molecules into viable cells, which is of interest for drug and gene delivery applications. To address mechanisms of these acoustic bioeffects, this work measured the lifetime of albumin-stabilized cavitation bubbles (Optison) and correlated it with desirable (intracellular uptake of molecules) and undesirable (loss of cell viability) bioeffects. Optison was exposed to 500 kHz ultrasound (acoustic pressures of 0.6-3.0 MPa and energy exposures of 0.2-200 J/cm2) either with or without the presence of DU145 prostate cancer cells (10(6) cells/ml) bathed in calcein, a cell-impermeant tracer molecule. Bubble lifetime was determined using a Coulter counter and flow cytometer, while bioeffects were evaluated by flow cytometry. The lifetime of Optison cavitation nuclei was found to decrease and bioeffects (molecular uptake and loss of cell viability) were found to increase with increasing acoustic energy exposure. These bioeffects correlated well with the disappearance of bubbles, suggesting that contrast agent destruction either directly or indirectly affected cells, probably involving unstabilized cavitation nuclei created upon the destruction of Optison. Because Optison solutions presonicated to destroy all detectable bubbles also caused significant bioeffects, the indirect mechanism involving secondary cavitation bubbles is more likely. PMID:15101659

  2. Acoustic bubble: Controlled and selective micropropulsion and chemical waveform generator

    NASA Astrophysics Data System (ADS)

    Ahmed, Daniel

    The physics governing swimming at the microscale---where viscous forces dominate over inertial---is distinctly different than that at the macroscale. Devices capable of finely controlled swimming at the microscale could enable bold ideas such as targeted drug delivery, non-invasive microsurgery, and precise materials assembly. Progress has already been made towards such artificial microswimmers using several means of actuation: chemical reactions and applied magnetic, electric or acoustic fields. However, the prevailing goal of selective actuation of a single microswimmer from within a group, the first step towards collaborative, guided action by a group of swimmers, has so far not been achieved. Here I present a new class of microswimmer that accomplishes for the first time selective actuation (Chapter 1). The swimmer design eschews the commonly-held design paradigm that microswimmers must use non-reciprocal motion to achieve propulsion; instead, the swimmer is propelled by oscillatory motion of an air bubble trapped within the swimmer's polymer body. This oscillatory motion is driven by a low-power biocompatible acoustic field to the ambient liquid, with meaningful swimmer propulsion occurring only at resonance frequencies of the bubble. This acoustically-powered microswimmer performs controllable rapid translational and rotational motion even in highly viscous liquid. By using a group of swimmers each with a different bubble size (and thus different resonance frequencies) selective actuation of a single swimmer from among the group can be readily achieved. Cellular response to chemical microenvironments depends on the spatiotemporal characteristics of the stimulus, which is central to many biological processes including gene expression, cell migration, differentiation, apoptosis, and intercellular signaling. To date, studies have been limited to digital (or step) chemical stimulation with little control over the temporal counterparts. Microfluidic approaches

  3. Study of bubble behavior in weightlessness (effects of thermal gradient and acoustic stationary wave) (M-16)

    NASA Technical Reports Server (NTRS)

    Azuma, H.

    1993-01-01

    The aim of this experiment is to understand how bubbles behave in a thermal gradient and acoustic stationary wave under microgravity. In microgravity, bubble or bubbles in a liquid will not rise upward as they do on Earth but will rest where they are formed because there exists no gravity-induced buoyancy. We are interested in how bubbles move and in the mechanisms which support the movement. We will try two ways to make bubbles migrate. The first experiment concerns behavior of bubbles in a thermal gradient. It is well known than an effect of surface tension which is masked by gravity on the ground becomes dominant in microgravity. The surface tension on the side of the bubble at a lower temperature is stronger than at a higher temperature. The bubble migrates toward the higher temperature side due to the surface tension difference. The migration speed depends on the so-called Marangoni number, which is a function of the temperature difference, the bubble diameter, liquid viscosity, and thermal diffusivity. At present, some experimental data about migration speeds in liquids with very small Marangoni numbers were obtained in space experiments, but cases of large Marangoni number are rarely obtained. In our experiment a couple of bubbles are to be injected into a cell filled with silicon oil, and the temperature gradient is to be made gradually in the cell by a heater and a cooler. We will be able to determine migration speeds in a very wide range of Marangoni numbers, as well as study interactions between the bubbles. We will observe bubble movements affected by hydrodynamical and thermal interactions, the two kinds of interactions which occur simultaneously. These observation data will be useful for analyzing the interactions as well as understanding the behavior of particles or drops in materials processing. The second experiment concerns bubble movement in an acoustic stationary wave. It is known that a bubble in a stationary wave moves toward the node or the

  4. Acoustic wave propagation in air-bubble curtains in water. Part 1. History and theory

    SciTech Connect

    Domenico, S.N.

    1982-03-01

    Air bubbles in water increase the compressibility several orders of magnitude above that in bubble-free water, thereby greatly reducing the velocity and increasing attenuation of acoustic waves. Currently, air bubble curtains are used to prevent damage of submerged structures (e.g., dams) by shock waves from submarine explosives. Also, air-bubble curtains are used to reduce damage to water-filler tanks in which metals are formed by explosives. Published results of laboratory experiments confirm theoretic velocity and attenuation functions and demonstrate that these quantities are dependent principally upon frequency, bubble size, and fractional volume of air. 31 references.

  5. Acoustic studies for alpha background rejection in dark matter bubble chamber detectors

    SciTech Connect

    Bou-Cabo, M.; Felis, I.; Ardid, M.; Collaboration: COUPP Collaboration

    2013-08-08

    COUPP (Chicagoland Observatory for Underground Particle Physics) is an experiment with bubble chambers able to detect dark matter directly either with Spin-Dependent or with Spin-Independent interactions. The target material is a superheated liquid (usually CF3I) that can be bubble nucleated due to nuclear recoils produced by elastic collisions of dark matter particles. The bubble growth inside the chamber is accompanied with an acoustic signature. The acoustic technique has been successfully used to have a good alpha discrimination (about 99%). In this paper, we present different studies and results related with the characterization of the acoustic properties of the detector and the different phenomena involved in the acoustic measurements of the bubble growth, such as sound generation, sound transmission and optimization of piezoelectric transducers.

  6. An acoustic levitation technique for the study of nonlinear oscillations of gas bubbles in liquids

    NASA Astrophysics Data System (ADS)

    Young, D. A.; Crum, L. A.

    1983-08-01

    A technique of acoustic levitation was developed for the study of individual gas bubbles in a liquid. Isopropyl alcohol and a mixture of glycerine and water (33-1/3% glycerine by volume) were the two liquids used in this research. Bubbles were levitated near the acoustic pressure antinode of an acoustic wave in the range of 20-22 kHz. Measurements were made of the levitation number as a function of the normalized radius of the bubbles. The levitation number is the ratio of the hydrostatic pressure gradient to the acoustic pressure gradient. These values were then compared to a nonlinear theory. Results were very much in agreement except for the region near the n=2 harmonic. An explanation for the discrepancy between theory and experiment appears to lie in the polytropic exponent associated with the gas in the interior of the bubble.

  7. A model of the interaction of bubbles and solid particles under acoustic excitation

    NASA Astrophysics Data System (ADS)

    Hay, Todd Allen

    The Lagrangian formalism utilized by Ilinskii, Hamilton and Zabolotskaya [J. Acoust. Soc. Am. 121, 786-795 (2007)] to derive equations for the radial and translational motion of interacting bubbles is extended here to obtain a model for the dynamics of interacting bubbles and elastic particles. The bubbles and particles are assumed to be spherical but are otherwise free to pulsate and translate. The model is accurate to fifth order in terms of a nondimensional expansion parameter R/d, where R is a characteristic radius and d is a characteristic distance between neighboring bubbles or particles. The bubbles and particles may be of nonuniform size, the particles elastic or rigid, and external acoustic sources are included to an order consistent with the accuracy of the model. Although the liquid is assumed initially to be incompressible, corrections accounting for finite liquid compressibility are developed to first order in the acoustic Mach number for a cluster of bubbles and particles, and to second order in the acoustic Mach number for a single bubble. For a bubble-particle pair consideration is also given to truncation of the model at fifth order in R/d via automated derivation of the model equations to arbitrary order. Numerical simulation results are presented to demonstrate the effects of key parameters such as particle density and size, liquid compressibility, particle elasticity and model order on the dynamics of single bubbles, pairs of bubbles, bubble-particle pairs and clusters of bubbles and particles under both free response conditions and sinusoidal or shock wave excitation.

  8. Observations of clustering inside oceanic bubble clouds and the effect on short-range acoustic propagation.

    PubMed

    Weber, Thomas C

    2008-11-01

    It has recently been shown [Weber, T. C. et al. (2007). "Acoustic propagation through clustered bubble clouds," IEEE J. Ocean. Eng. 32, 513-523] that gas bubble clustering plays a role in determining the acoustic field characteristics of bubbly fluids. In particular, it has been shown that clustering changes the bubble-induced attenuation as well as the ping-to-ping variability in the acoustic field. The degree to which bubble clustering exists in nature, however, is unknown. This paper describes a method for quantifying bubble clustering using a high frequency (400 kHz) multibeam sonar, and reports on observations of near-surface bubble clustering during a storm (14.6 m/s wind speed) in the Gulf of Maine. The multibeam sonar data are analyzed to estimate the pair correlation function, a measure of bubble clustering. In order to account for clustering in the mean acoustic field, a modification to the effective medium wave number is made. With this modification, the multibeam sonar observations are used to predict the effect of clustering on the attenuation of the mean field for short-range propagation (1 m) at frequencies between 10 and 350 kHz. Results for this specific case show that clustering can cause the attenuation to change by 20%-80% over this frequency range. PMID:19045766

  9. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2013-05-01

    Numerical simulation of chemical reactions inside an isolated spherical bubble of oxygen has been performed for various ambient bubble radii at different frequencies and acoustic amplitudes to study the effects of these two parameters on the range of ambient radius for an active bubble in sonochemical reactions. The employed model combines the dynamic of bubble collapse with the chemical kinetics of single cavitation bubble. Results from this model were compared with some experimental results presented in the literature and good apparent trends between them were observed. The numerical calculations of this study showed that there always exists an optimal ambient bubble radius at which the production of oxidizing species at the end of the bubble collapse attained their upper limit. It was shown that the range of ambient radius for an active bubble increased with increasing acoustic amplitude and decreased with increasing ultrasound frequency. The optimal ambient radius decreased with increasing frequency. Analysis of curves showing optimal ambient radius versus acoustic amplitude for different ultrasonic frequencies indicated that for 200 and 300kHz, the optimal ambient radius increased linearly with increasing acoustic amplitude up to 3atm. However, slight minima of optimal radius were observed for the curves obtained at 500 and 1000kHz. PMID:23187064

  10. Condition of resonant break-up of gas bubbles by an acoustic wave in liquid

    NASA Astrophysics Data System (ADS)

    Vanovskiy, V. V.; Petrov, A. G.

    2016-07-01

    The linear theory of damping of radial vibrations of a bubble in a liquid is constructed by taking into account the key dissipative mechanisms: thermal, viscous, and acoustic. The basic approximation of homobaricity made helps to obtain the results in a convenient and simple form. The results obtained for damping are used further in the description of the forced resonant oscillations of a bubble in an acoustic wave with the frequency equal to the eigenfrequency of the radial oscillation mode and twice as high as the frequency of the deformation oscillation mode (resonance 2:2:1). It is shown that the amplitude of deformation oscillations, which is reasonably large for breaking, is developed at a relatively small pressure amplitude of the exciting acoustic wave, and subharmonics arise in the acoustic-emission spectrum. The condition of bubble break-up is obtained for a fast and slow start of the acoustic wave.

  11. Characterization of acoustic emissions resulting from particle collision with a stationary bubble.

    PubMed

    Zhang, Wen; Spencer, Steven J; Coghill, Peter

    2013-05-01

    The present work characterizes the acoustic emissions resulting from the collision of a particle driven under gravity with a captive bubble. Conventional methods to investigate the bubble particle collision interaction model measure a descriptive parameter known as the collision time. During such a collision, particle impact may cause a strong deformation and a following oscillation of the bubble-particle interface generates detectable passive acoustic emissions (AE). Experiments and models presented show that the AE frequency monotonically decreases with the particle radius and is independent of the impact velocity, whereas the AE amplitude has a more complicated relationship with impact parameters. PMID:23654360

  12. Contributions to the acoustic excitation of bubbles released from a nozzle.

    PubMed

    Czerski, Helen; Deane, Grant B

    2010-11-01

    It has recently been demonstrated that air bubbles released from a nozzle are excited into volume mode oscillations by the collapse of the neck of air formed at the moment of bubble detachment. A pulse of sound is caused by these breathing mode oscillations, and the sound of air-entraining flows is made up of many such pulses emitted as bubbles are created. This paper is an elaboration on a JASA-EL paper, which examined the acoustical excitation of bubbles released from a nozzle. Here, further details of the collapse of a neck of air formed at the moment of bubble formation and its implications for the emission of sound by newly formed bubbles are presented. The role of fluid surface tension was studied using high-speed photography and found to be consistent with a simple model for neck collapse. A re-entrant fluid jet forms inside the bubble just after detachment, and its role in acoustic excitation is assessed. It is found that for slowly-grown bubbles the jet does make a noticeable difference to the total volume decrease during neck collapse, but that it is not a dominant effect in the overall acoustic excitation. PMID:21110560

  13. Oscillating bubble concentration and its size distribution using acoustic emission spectra.

    PubMed

    Avvaru, Balasubrahmanyam; Pandit, Aniruddha B

    2009-01-01

    New method has been proposed for the estimation of size and number density distribution of oscillating bubbles in a sonochemical reactor using acoustic emission spectra measurements. Bubble size distribution has been determined using Minnaert's equation [M. Minnaert, On musical air bubbles and sound of running water, Philanthr. Mag. 16 (1933) 235], i.e., size of oscillating bubble is inversely related to the frequency of its volume oscillations. Decomposition of the pressure signal measured by the hydrophone in frequency domain of FFT spectrum and then inverse FFT reconstruction of the signal at each frequency level has been carried out to get the information about each of the bubble/cavity oscillation event. The number mean radius of the bubble size is calculated to be in the range of 50-80 microm and it was not found to vary much with the spatial distribution of acoustic field strength of the ultrasound processor used in the work. However, the number density of the oscillating bubbles and the nature of the distribution were found to vary in different horizontal planes away from the driving transducer surface in the ultrasonic bath. A separate set of experiments on erosion assessment studies were carried out using a thin aluminium foil, revealing a phenomena of active region of oscillating bubbles at antinodal points of the stationary waves, identical to the information provided by the acoustic emission spectra at the same location in the ultrasonic bath. PMID:18752981

  14. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy

    NASA Astrophysics Data System (ADS)

    Maeda, Kazuki; Kreider, Wayne; Maxwell, Adam; Cunitz, Bryan; Colonius, Tim; Bailey, Michael

    2015-12-01

    Cavitation bubbles initiated by focused ultrasound waves are investigated through experiments and modeling. Pulses of focused ultrasound with a frequency of 335 kHz and a peak negative pressure of 8 MPa is generated in a water tank by a piezoelectric transducer to initiate cavitation. The pressure field is modeled by solving the Euler equations and used to simulate single bubble oscillation. The characteristics of cavitation bubbles observed by highspeed photography qualitatively agree with the simulation results. Finally, bubble clouds are captured using acoustic B-mode imaging that works synchronized with high-speed photography.

  15. Nonlinear activity of acoustically driven gas bubble near a rigid boundary

    SciTech Connect

    Maksimov, Alexey

    2015-10-28

    The presence of a boundary can produce considerable changes in the oscillation amplitude of the bubble and its scattered echo. The present study fills a gap in the literature, in that it is concerned theoretically with the bubble activity at relatively small distances from the rigid boundary. It was shown that the bi-spherical coordinates provide separation of variables and are more suitable for analysis of the dynamics of these constrained bubbles. Explicit formulas have been derived which describe the dependence of the bubble emission near a rigid wall on its size and the separation distance between the bubble and the boundary. As applications, time reversal technique for gas leakage detection and radiation forces that are induced by an acoustic wave on a constrained bubble were analyzed.

  16. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model.

    PubMed

    Buogo, Silvano; Cannelli, Giovanni B

    2002-06-01

    The growth, collapse, and rebound of a vapor bubble generated by an underwater spark is studied by means of high-speed cinematography, simultaneously acquiring the emitted acoustic signature. Video recordings show that the growth and collapse phases are nearly symmetrical during the first two or three cycles, the bubble shape being approximately spherical. After 2-3 cycles the bubble behavior changes from a collapsing/rebounding regime with sound-emitting implosions to a pulsating regime with no implosions. The motion of the bubble wall during the first collapses was found to be consistent with the Rayleigh model of a cavity in an incompressible liquid, with the inclusion of a vapor pressure term at constant temperature within each bubble cycle. An estimate of the pressure inside the bubble is obtained measuring the collapse time and maximum radius, and the amount of energy converted into acoustical energy upon each implosion is deduced. The resulting value of acoustic efficiency was found to be in agreement with measurements based on the emitted acoustic pulse. PMID:12083190

  17. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2014-01-01

    Formation of highly reactive species such as OH, H, HO2 and H2O2 due to transient collapse of cavitation bubbles is the primary mechanism of sonochemical reaction. The crucial parameters influencing the formation of radicals are the temperature and pressure achieved in the bubble during the strong collapse. Experimental determinations estimated a temperature of about 5000 K and pressure of several hundreds of MPa within the collapsing bubble. In this theoretical investigation, computer simulations of chemical reactions occurring in an O2-bubble oscillating in water irradiated by an ultrasonic wave have been performed for diverse combinations of various parameters such as ultrasound frequency (20-1000 kHz), acoustic amplitude (up to 0.3 MPa), static pressure (0.03-0.3 MPa) and liquid temperature (283-333 K). The aim of this series of computations is to correlate the production of OH radicals to the temperature and pressure achieved in the bubble during the strong collapse. The employed model combines the dynamic of bubble collapse in acoustical field with the chemical kinetics of single bubble. The results of the numerical simulations revealed that the main oxidant created in an O2 bubble is OH radical. The computer simulations clearly showed the existence of an optimum bubble temperature of about 5200±200 K and pressure of about 250±20 MPa. The predicted value of the bubble temperature for the production of OH radicals is in excellent agreement with that furnished by the experiments. The existence of an optimum bubble temperature and pressure in collapsing bubbles results from the competitions between the reactions of production and those of consumption of OH radicals at high temperatures. PMID:23769748

  18. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.

    PubMed

    Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F

    2015-09-01

    The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial. PMID:25800984

  19. The penetration of acoustic cavitation bubbles into micrometer-scale cavities.

    PubMed

    Vaidya, Haresh Anant; Ertunç, Özgür; Lichtenegger, Thomas; Delgado, Antonio; Skupin, Andreas

    2016-04-01

    The penetration of acoustically induced cavitation bubbles in micrometer-scale cavities is investigated experimentally by means of high-speed photography and acoustic measurements. Micrometer-scale cavities of different dimensions (width=40 μm, 80 μm, 10 mm and depth=50 μm) are designed to replicate the cross section of microvias in a PCB. The aim here is to present a method for enhancing mass transfer due to the penetration of bubbles in such narrow geometries under the action of ultrasound. The micrometer-scale cavities are placed in a test-cell filled with water and subjected to an ultrasound excitation at 75 kHz. A cavitation bubble cluster is generated at the mouth of the cavity which acts as a continuous source of bubbles that penetrate into the cavity. The radial oscillation characteristics and translation of these bubbles are investigated in detail here. It is observed that the bubbles arrange themselves into streamer-like structures inside the cavity. Parameters such as bubble population and size distribution and their correlation with the phase of the incident ultrasound radiation are investigated in detail here. This provides a valuable insight into the dynamics of bubbles in narrow confined spaces. Mass transfer investigations show that fresh liquid can be continuously introduced in the cavities under the action of ultrasound. Our findings may have important consequences in optimizing the filling processes for microvias with high aspect ratios. PMID:26763751

  20. Improvements to the methods used to measure bubble attenuation using an underwater acoustical resonator.

    PubMed

    Czerski, Helen; Vagle, Svein; Farmer, David M; Hall-Patch, Nick

    2011-11-01

    Active acoustic techniques are commonly used to measure oceanic bubble size distributions, by inverting the bulk acoustical properties of the water (usually the attenuation) to infer the bubble population. Acoustical resonators have previously been used to determine attenuation over a wide range of frequencies (10-200 kHz) in a single measurement, corresponding to the simultaneous measurement of a wide range of bubble sizes (20-300 μm radii). However, there is now also considerable interest in acquiring measurements of bubbles with radii smaller than 16 μm, since these are thought to be important for ocean optics and as tracers for near-surface flow. To extend the bubble population measurement to smaller radii, it is necessary to extend the attenuation measurements to higher frequencies. Although the principles of resonator operation do not change as the frequency increases, the assumptions previously made during the spectral analysis may no longer be valid. In order to improve the methods used to calculate attenuation from acoustical resonator outputs, a more complete analysis of the resonator operation is presented here than has been published previously. This approach allows for robust attenuation measurements over a much wider frequency range and enables accurate measurements from lower-quality spectral peaks. PMID:22088016

  1. Validation of an approximate model for the thermal behavior in acoustically driven bubbles.

    PubMed

    Stricker, Laura; Prosperetti, Andrea; Lohse, Detlef

    2011-11-01

    The chemical production of radicals inside acoustically driven bubbles is determined by the local temperature inside the bubbles. Therefore, modeling of chemical reaction rates in bubbles requires an accurate evaluation of the temperature field and the heat exchange with the liquid. The aim of the present work is to compare a detailed partial differential equation model in which the temperature field is spatially resolved with an ordinary differential equation model in which the bubble contents are assumed to have a uniform average temperature and the heat exchanges are modeled by means of a boundary layer approximation. The two models show good agreement in the range of pressure amplitudes in which the bubble is spherically stable. PMID:22087996

  2. Translational motion of two interacting bubbles in a strong acoustic field.

    PubMed

    Doinikov, A A

    2001-08-01

    Using the Lagrangian formalism, equations of radial and translational motions of two coupled spherical gas bubbles have been derived up to terms of third order in the inverse distance between the bubbles. The equations of radial pulsations were then modified, for the purpose of allowing for effects of liquid compressibility, using Keller-Miksis' approach, and the equations of translation were added by viscous forces in the form of the Levich drag. This model was then used in a numerical investigation of the translational motion of two small, driven well below resonance, bubbles in strong acoustic fields with pressure amplitudes exceeding 1 bar. It has been found that, if the forcing is strong enough, the bubbles form a bound pair with a steady spacing rather than collide and coalesce, as classical Bjerknes theory predicts. Moreover, the viscous forces cause skewness in the system, which results in self-propulsion of the bubble pair. The latter travels as a unit along the center line in a direction that is determined by the ratio of the initial bubble radii. The results obtained are of immediate interest for understanding and modeling collective bubble phenomena in strong fields, such as acoustic cavitation streamers. PMID:11497693

  3. Orbital revolution of a pair of bubbles in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shirota, Minori; Yamashita, Kou; Inamura, Takao

    2011-11-01

    This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging; the cyclic bubble oscillation was appeared to slow down by capturing images at the framing rate close to the forcing frequency. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along a circular orbit around the center of mass of the orbiting two bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force. The angular velocity of orbital revolution increases linearly with the increase in Bjerknes force.

  4. Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water.

    PubMed

    Simão, André G; Guimarães, Luiz G

    2016-01-01

    The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert's period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium. PMID:27331803

  5. Quantum Analogies in the Interaction between Acoustic Waves and Bubble Clouds

    NASA Astrophysics Data System (ADS)

    Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Analogies between quantum mechanical and acoustical propagation phenomena have a great interest in academic research due to their ability to shed light on some complex quantum effects, which are impossible to visualize directly in the macroscopic world. In this talk, we describe a number of these analogies concerning the acoustic behavior of bubble clouds. Firstly, we show that the structure of the collective oscillation modes of a spherical bubble cloud resembles that of the atomic orbitals of a hydrogen atom. Secondly, we present an analogy between some perturbation methods used in quantum-electrodynamics and the computation of the acoustic response of the randomly distributed bubble cloud by considering the contribution to the total scattered pressure of the multiple scattering paths that take place inside the clouds. As an application of this analogy, we obtain the scattering cross-section of a diluted cloud, which remarkably mimics the quantum scattering of an neutron wave when passing through an atomic nucleus. Finally, we numerically reproduce the behavior of an electron in a covalent bond between two hydrogen atoms by simulating the acoustic wave propagation through two neighboring spherical bubble assemblages. Funded by the Spanish Ministry of Economy and Competitiveness through Grants DPI2011-28356-C03-01 and DPI2011-28356-C03-02.

  6. Determination of the Accommodation Coefficient Using Vapor/gas Bubble Dynamics in an Acoustic Field

    NASA Technical Reports Server (NTRS)

    Gumerov, Nail A.; Hsiao, Chao-Tsung; Goumilevski, Alexei G.; Allen, Jeff (Technical Monitor)

    2001-01-01

    Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or "accommodation" coefficient, Beta, which is a property of the interface. Existing measurement techniques for Beta are complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of Beta for a wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic field strongly depends on the value of Beta. It is known that near the saturation temperature, small vapor bubbles grow under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective measurement technique of Beta. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measurement of Beta can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and conditions which can be efficiently used for measurements of Beta. Measurements of Beta can be performed in both reduced and normal gravity environments.

  7. Acoustic monitoring of gas emissions from the seafloor. Part I: quantifying the volumetric flow of bubbles

    NASA Astrophysics Data System (ADS)

    Leblond, Isabelle; Scalabrin, Carla; Berger, Laurent

    2014-09-01

    Three decades of continuous ocean exploration have led us to identify subsurface fluid related processes as a key phenomenon in marine earth science research. The number of seep areas located on the seafloor has been constantly increasing with the use of multi-scale imagery techniques. Due to recent advances in transducer technology and computer processing, multibeam echosounders are now commonly used to detect submarine gas seeps escaping from the seafloor into the water column. A growing number of en- route surveys shows that sites of gas emissions escaping from the seafloor are much more numerous than previously thought. Estimating the temporal variability of the gas flow rate and volumes escaping from the seafloor has thus become a challenge of relevant interest which could be addressed by sea-floor continuous acoustic monitoring. Here, we investigate the feasibility of estimating the volumetric flow rates of gas emissions from horizontal backscattered acoustic signals. Different models based on the acoustic backscattering theory of bubbles are presented. The forward volume backscattering strength and the inversion volumetric flow rate solutions were validated with acoustic measurements from artificial gas flow rates generated in controlled sea-water tank experiments. A sensitivity analysis was carried out to investigate the behavior of the 120-kHz forward solution with respect to model input parameters (horizontal distance between transducer and bubble stream, bubble size distribution and ascent rate). The most sensitive parameter was found to be the distance of the bubble stream which can affect the volume backscattering strength by 20 dB within the horizontal range of 0-200 m. Results were used to derive the detection probability of a bubble stream for a given volume backscattering strength threshold according to different bubble flow rates and horizontal distance.

  8. Dynamics of soap bubble bursting and its implications to volcano acoustics

    NASA Astrophysics Data System (ADS)

    Vidal, V.; Ripepe, M.; Divoux, T.; Legrand, D.; Géminard, J.-C.; Melo, F.

    2010-04-01

    In order to assess the physical mechanisms at stake when giant gas bubbles burst at the top of a magma conduit, laboratory experiments have been performed. An overpressurized gas cavity is initially closed by a thin liquid film, which suddenly bursts. The acoustic signal produced by the bursting is investigated. The key result is that the amplitude and energy of the acoustic signal strongly depend on the film rupture time. As the rupture time is uncontrolled in the experiments and in the field, the measurement of the acoustic excess pressure in the atmosphere, alone, cannot provide any information on the overpressure inside the bubble before explosion. This could explain the low energy partitioning between infrasound, seismic and explosive dynamics often observed on volcanoes.

  9. Equations of spatial hydrodynamic interaction of weakly nonspherical gas bubbles in liquid in an acoustic field

    NASA Astrophysics Data System (ADS)

    Davletshin, A. I.; Khalitova, T. F.

    2016-01-01

    A mathematical model of spatial hydrodynamic interaction of gas bubbles in liquid in an acoustic field taking into account small deformations of their surfaces is proposed. It is a system of ordinary differential equations of the second order in radii of the bubbles, the position vectors of their centers and the amplitudes of deviation of their shape from the spherical one in the form of spherical harmonics. The equations derived are of the first order of accuracy in A / R and of the fourth order in R / D, where R is the characteristic radius of the bubbles, A is the amplitude of characteristic deviation of their surface from the spherical one in the form of spherical harmonics, D is the characteristic distance between bubbles. The derivation of the equations is carried out by the method of spherical functions with the use of the Bernoulli integral, the kinematic and dynamic boundary conditions on the surface of the bubbles. The effects of viscosity and compressibility of the liquid are considered approximately, the gas in the bubbles is assumed homobaric.

  10. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    PubMed Central

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-01-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process. PMID:26223474

  11. Resolving size distributions of bubbles with radii less than 30 μm with optical and acoustical methods

    NASA Astrophysics Data System (ADS)

    Czerski, H.; Twardowski, M.; Zhang, X.; Vagle, S.

    2011-07-01

    Many studies have investigated bubble size distributions in the ocean, but the measured size range does not normally extend to bubbles with a radius below 20 μm. Bubbles smaller than this are thought to have a significant effect on the optical properties of the ocean, potentially affecting remotely sensed measurements of ocean color and the optical detection of particulates and dissolved matter. Such optical data are becoming the major source of oceanic information about algal blooms, primary productivity, sediment loading and the spread of pollutants. The challenges associated with measuring these bubbles are difficulty of calibrating sensors with independent bubble size measurements and lack of knowledge about the organic coating on the bubbles. This paper describes simultaneous oceanic measurements of these small bubbles using independent optical and acoustical techniques. These measurements agree well, and an investigation of the bubble coating parameters was made. Both the optical and acoustical properties of bubbles are affected by this organic coating, and a comparison of these measurements narrows down the choice of possible coating parameters. Our results suggest that the bubbles measured in this study were likely to have a coating with a thickness of 10 nm and a refractive index of 1.18, and that the coating thickness is the more important parameter for optical inversions. The research described here is the first attempt to constrain these parameters in the ocean using two independent techniques and suggests that further studies of this type could result in significant insight into oceanic bubble coatings.

  12. Passive acoustic derived bubble flux and applications to natural gas seepage in the Mackenzie Delta, NWT, Canada and Coal Oil Point, CA

    NASA Astrophysics Data System (ADS)

    Culling, D.; Leifer, I.; Dallimore, S.; Alcala, K.

    2012-12-01

    Methane is a prominent greenhouse gas that escapes naturally from thermogenic reservoirs as seepage from marine and lacustrine biogenic sources as bubble ebullition. Geologic methane emissions are critically important contributors to the global methane budget however, few quantitative flux measurements are available for shallow waters. This gap in knowledge is critical as in these settings gas can easily transit as bubbles through the water column and directly influence global atmospheric budgets. Video and active acoustic (sonar) measurements of bubble flux have spatial limitations requiring predictable bubble emission location. Passive acoustics are less affected by these limitations, in addition, they can provide data in water too shallow for effective sonar bubble observations. Lab tests were undertaken to quantify the acoustic signature of bubbles formed in non-cohesive sediments. specifically focusing on mechanisms that complicate interpretation of acoustic data. Lab tests then were compared to field data to provide measurement calibration/validation. The principles behind the acoustic analysis method are based on the Minnaert equation, which relates a bubble radius and acoustic frequency. Bubble size and the resultant acoustic frequency from known flows and capillary tube diameters are well documented; however changing sediment pathways adds to the complexity of bubble formation and the resultant bubble acoustic signal. These complex signals were investigated in a lab tank with a thick, cohesive fine-grained sediment bed, through which bubbles produced by a syringe pump migrated to the sediment-water interface. Then, the resultant bubbles were diverted into clear water and measured from high speed, high definition video, while the acoustic signature of bubble formation was recorded concurrently by a hydrophone. Bubble formation is influenced by currents, which shifts the acoustical signal towards a higher frequency with a more complex pattern than the

  13. An experimental study on resonance of oscillating air/vapor bubbles in water using a two-frequency acoustic apparatus

    NASA Astrophysics Data System (ADS)

    Ohsaka, K.

    2003-05-01

    A two-frequency acoustic apparatus is employed to study the growth behavior of vapor-saturated bubbles driven in a volumetric mode. A unique feature of the apparatus is its capability of trapping a bubble by an ultrasonic standing wave while independently driving it into oscillations by a second lower-frequency acoustic wave. It is observed that the growing vapor bubbles exhibit a periodic shape transition between the volumetric and shape modes due to resonant coupling. In order to explain this observation, we performed an experimental investigation on resonant coupling of air bubbles and obtained the following results: First, the induced shape oscillations are actually a mixed mode that contains the volume component, thus, vapor bubbles can grow while they exhibit shape oscillations. Second, the acoustically levitated bubbles are deformed and therefore, degeneracy in resonant frequency is partially removed. As a result, the vapor bubbles exhibit the shape oscillations in both the axisymmetric mode and asymmetric (three-dimensional) modes. Nonlinear effects in addition to the frequency shift and split due to deformation creates overlapping of the coupling ranges for different modes, which leads to the continuous shape oscillations above a certain bubble radius as the bubble grows.

  14. Reply to "Comment on `Acoustical observation of bubble oscillations induced by bubble popping' "

    NASA Astrophysics Data System (ADS)

    Ding, Junqi

    2015-03-01

    We reported on the sound pressure generated by aqueous foam bursts in our paper [Ding et al., Phys. Rev. E 75, 041601 (2007), 10.1103/PhysRevE.75.041601]. Blanc et al., [Phys. Rev. E 91, 036401 (2015), 10.1103/PhysRevE.91.036401] found that sound from one of three mechanisms of bubble burst (the prepopping) actually results from an acausal artifact of the signal processing performed by their acquisition system which lies outside of its prescribed working frequency range. We examined the same hardware used in our paper and found that the frequency range is not the cause of the artifact. The prepopping sound was a result from a built-in finite impulse response filter of analog-to-digital converters in the Brüel & Kjær data acquisition system.

  15. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2004-06-01

    Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, and many others. Some recent results on a "blinking bubble" micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da Vinci's observation of the non-rectlinear ascent of buoyant bubbles and justifies the name Leonardo's paradox recently attributed to this phenomenon.

  16. Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena.

    PubMed

    Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel

    2016-04-01

    The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials. PMID:27106317

  17. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature

    PubMed Central

    Gâteau, Jérôme; Marsac, Laurent; Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickaël; Fink, Mathias

    2010-01-01

    Brain treatment through the skull with High Intensity Focused Ultrasound (HIFU) can be achieved with multichannel arrays and adaptive focusing techniques such as time-reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from CT images. This non-invasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time-reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97%±1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step by step bubble generation, the electronic steering capabilities of the array through the skull were improved. PMID:19770084

  18. Two-Bubble Acoustic Tweezing Cytometry for Biomechanical Probing and Stimulation of Cells

    PubMed Central

    Chen, Di; Sun, Yubing; Gudur, Madhu S.R.; Hsiao, Yi-Sing; Wu, Ziqi; Fu, Jianping; Deng, Cheri X.

    2015-01-01

    The study of mechanotransduction relies on tools that are capable of applying mechanical forces to elicit and assess cellular responses. Here we report a new (to our knowledge) technique, called two-bubble acoustic tweezing cytometry (TB-ATC), for generating spatiotemporally controlled subcellular mechanical forces on live cells by acoustic actuation of paired microbubbles targeted to the cell adhesion receptor integrin. By measuring the ultrasound-induced activities of cell-bound microbubbles and the actin cytoskeleton contractile force responses, we determine that TB-ATC elicits mechanoresponsive cellular changes via cyclic, paired displacements of integrin-bound microbubbles driven by the attractive secondary acoustic radiation force (sARF) between the bubbles in an ultrasound field. We demonstrate the feasibility of dual-mode TB-ATC for both subcellular probing and mechanical stimulation. By exploiting the robust and unique interaction of ultrasound with microbubbles, TB-ATC provides distinct advantages for experimentation and quantification of applied forces and cellular responses for biomechanical probing and stimulation of cells. PMID:25564850

  19. Two-bubble acoustic tweezing cytometry for biomechanical probing and stimulation of cells.

    PubMed

    Chen, Di; Sun, Yubing; Gudur, Madhu S R; Hsiao, Yi-Sing; Wu, Ziqi; Fu, Jianping; Deng, Cheri X

    2015-01-01

    The study of mechanotransduction relies on tools that are capable of applying mechanical forces to elicit and assess cellular responses. Here we report a new (to our knowledge) technique, called two-bubble acoustic tweezing cytometry (TB-ATC), for generating spatiotemporally controlled subcellular mechanical forces on live cells by acoustic actuation of paired microbubbles targeted to the cell adhesion receptor integrin. By measuring the ultrasound-induced activities of cell-bound microbubbles and the actin cytoskeleton contractile force responses, we determine that TB-ATC elicits mechanoresponsive cellular changes via cyclic, paired displacements of integrin-bound microbubbles driven by the attractive secondary acoustic radiation force (sARF) between the bubbles in an ultrasound field. We demonstrate the feasibility of dual-mode TB-ATC for both subcellular probing and mechanical stimulation. By exploiting the robust and unique interaction of ultrasound with microbubbles, TB-ATC provides distinct advantages for experimentation and quantification of applied forces and cellular responses for biomechanical probing and stimulation of cells. PMID:25564850

  20. The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Zhang, Yuning; Li, Shengcai

    2016-03-01

    The secondary Bjerknes force is one of the essential mechanisms of mutual interactions between bubbles oscillating in a sound field. The dual-frequency acoustic excitation has been applied in several fields such as sonochemistry, biomedicine and material engineering. In this paper, the secondary Bjerknes force under dual-frequency excitation is investigated both analytically and numerically within a large parameter zone. The unique characteristics (i.e., the complicated patterns of the parameter zone for sign change and the combination resonances) of the secondary Bjerknes force under dual-frequency excitation are revealed. Moreover, the influence of several parameters (e.g., the pressure amplitude, the bubble distance and the phase difference between sound waves) on the secondary Bjerknes force is also investigated numerically. PMID:26584991

  1. Sound scattering from rough bubbly ocean surface based on modified sea surface acoustic simulator and consideration of various incident angles and sub-surface bubbles' radii

    NASA Astrophysics Data System (ADS)

    Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi

    2016-08-01

    The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.

  2. Acoustic-optic spectrometer. 1: Noise contributions and system consideration

    NASA Technical Reports Server (NTRS)

    Chin, G.

    1984-01-01

    An acousto-optic spectrometer (AOS) used as an IF spectrometer to a heterodyne receiver is modeled as a total power multi-channel integrating receiver. Systematic noise contributions common to all total power, time integrating receivers, as well as noise terms unique to the use of optical elements and photo-detectors in an AOS are identified and discussed. In addition, degradation of signal-to-noise ratio of an unbalanced Dicke receiver compared to a balanced Dicke receiver is found to be due to gain calibration processing and is not an instrumental effect.

  3. Bubbles trapped at the coupling surface of the treatment head significantly reduce acoustic energy delivered in shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Pishchalnikov, Yuri A.; McAteer, James A.; Pishchalnikova, Irina V.; Beard, Spencer; Williams, James C.; Bailey, Michael R.

    2006-05-01

    The coupling efficiency of a "dry head" electromagnetic lithotripter (Dornier Compact Delta) was studied in vitro. A fiber-optic probe hydrophone (FOPH-500) was positioned in a test tank filled with degassed water. The tank was coupled through a semi-transparent latex membrane to the water-filled cushion of the lithotripter head, so that bubbles (air pockets) trapped between the two coupling surfaces could be easily observed and photographed. When gel was applied to both the latex membrane and the water cushion, numerous bubbles (some several millimeters in diameter) could be seen at the coupling interface. Hydrophone measurements in the geometric focus of the lithotripter showed that the acoustic pressure could be two times lower when bubbles were present than when they were manually removed. In our in vitro design, trapped bubbles could be easily observed and therefore removed from the acoustic path. However, during patient treatment with a dry-head lithotripter one cannot see whether bubbles are trapped against the skin. This study provides a demonstration of the dramatic effect that trapped bubbles can have on the amount of acoustic energy actually delivered for treatment.

  4. Gaseous bubble oscillations in anisotropic non-Newtonian fluids under influence of high-frequency acoustic field

    NASA Astrophysics Data System (ADS)

    Golykh, R. N.

    2016-06-01

    Progress of technology and medicine dictates the ever-increasing requirements (heat resistance, corrosion resistance, strength properties, impregnating ability, etc.) for non-Newtonian fluids and materials produced on their basis (epoxy resin, coating materials, liquid crystals, etc.). Materials with improved properties obtaining is possible by modification of their physicochemical structure. One of the most promising approaches to the restructuring of non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations. The efficiency of cavitation in non-Newtonian fluid is determined by dynamics of gaseous bubble. Today, bubble dynamics in isotropic non-Newtonian fluids, in which cavitation bubble shape remains spherical, is most full investigated, because the problem reduces to ordinary differential equation for spherical bubble radius. However, gaseous bubble in anisotropic fluids which are most wide kind of non-Newtonian fluids (due to orientation of macromolecules) deviates from spherical shape due to viscosity dependence on shear rate direction. Therefore, the paper presents the mathematical model of gaseous bubble dynamics in anisotropic non-Newtonian fluids. The model is based on general equations for anisotropic non-Newtonian fluid flow. The equations are solved by asymptotic decomposition of fluid flow parameters. It allowed evaluating bubble size and shape evolution depending on rheological properties of liquid and acoustic field characteristics.

  5. The role of large bubbles detected from acoustic measurements on the dynamics of Erta 'Ale lava lake (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Bouche, E.; Vergniolle, S.; Staudacher, T.; Nercessian, A.; Delmont, J.-C.; Frogneux, M.; Cartault, F.; Le Pichon, A.

    2010-06-01

    The activity at the surface of the lava lake on Erta 'Ale volcano (Ethiopia) shows that large bubbles are regularly breaking at a fixed position on the lava lake. This is also where the small lava fountains are sometimes produced. Since this location is likely to be directly above the volcanic conduit feeding the lava lake, we have done continuous measurements between March 22 and 26, 2003 to understand the degassing of a volcano in permanent activity. The bubble size has been first estimated from videos, which once combined with the acoustic pressure, can constrain the source of the sound. The gas volume and overpressure stayed roughly constant, between 36-700 m3 and 4 × 103-1.8 × 104 Pa, respectively. Simultaneous thermal measurements showed regular peaks, which occurred when the crust was broken by a large bubble, hence gave a direct indication on the typical return time between the bubbles (1 h). These spherical cap bubbles had a high Reynolds number, 4600-20000, therefore a wake, periodically unstable, formed and detached from the bubble bottom. The bubbly wake, if the detachment occurs close to the surface, can explain the duration of lava fountains, measured on the videos. The periodic arrival of bubbly wakes, which mostly detach from the driving spherical cap within the lava lake, could explain the absence of cooling at Erta 'Ale, Erebus (Antartica), Villarica (Chile) and Nyiragongo (Democratic Republic of Congo) without invoking a convective downflow of magma in the conduit, as previously done.

  6. Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles.

    PubMed

    Xie, Yuliang; Zhao, Chenglong; Zhao, Yanhui; Li, Sixing; Rufo, Joseph; Yang, Shikuan; Guo, Feng; Huang, Tony Jun

    2013-05-01

    We present a programmable, biocompatible technique for dynamically concentrating and patterning particles and cells in a microfluidic device. Since our technique utilizes opto-thermally generated, acoustically activated, surface bubbles, we name it "optoacoustic tweezers". The optoacoustic tweezers are capable of concentrating particles/cells at any prescribed locations in a microfluidic chamber without the use of permanent structures, rendering it particularly useful for the formation of flexible, complex cell patterns. Additionally, this technique has demonstrated excellent biocompatibility and can be conveniently integrated with other microfluidic units. In our experiments, micro-bubbles were generated by focusing a 405 nm diode laser onto a gold-coated glass chamber. By properly tuning the laser, we demonstrate precise control over the position and size of the generated bubbles. Acoustic waves were then applied to activate the surface bubbles, causing them to oscillate at an optimized frequency. The resulting acoustic radiation force allowed us to locally trap particles/cells, including 15 μm polystyrene beads and HeLa cells, around each bubble. Cell-adhesion tests were also conducted after cell concentrating to confirm the biocompatibility of this technique. PMID:23511348

  7. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics.

    PubMed

    Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny

    2016-05-01

    Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers. PMID:26831341

  8. Dynamics of two interacting hydrogen bubbles in liquid aluminum under the influence of a strong acoustic field

    NASA Astrophysics Data System (ADS)

    Lebon, Gerard S. B.; Pericleous, Koulis; Tzanakis, Iakovos; Eskin, Dmitry G.

    2015-10-01

    Ultrasonic melt processing significantly improves the properties of metallic materials. However, this promising technology has not been successfully transferred to the industry because of difficulties in treating large volumes of melt. To circumvent these difficulties, a fundamental understanding of the efficiency of ultrasonic treatment of liquid metals is required. In this endeavor, the dynamics of two interacting hydrogen bubbles in liquid aluminum are studied to determine the effect of a strong acoustic field on their behavior. It is shown that coalescence readily occurs at low frequencies in the range of 16 to 20 kHz; forcing frequencies at these values are likely to promote degassing. Emitted acoustic pressures from relatively isolated bubbles that resonate with the driving frequency are in the megapascal range and these cavitation shock waves are presumed to promote grain refinement by disrupting the growth of the solidification front.

  9. The condition of the resonant break-up of a gas bubble subjected to an acoustic wave in liquid

    NASA Astrophysics Data System (ADS)

    Vanovskiy, V. V.; Petrov, A. G.

    2015-12-01

    The problem of a gas bubble break-up in liquid is considered in the conditions of the frequencies resonance of the radial and nth axially symmetric deformational mode 2:1. The nonlinear energy transfer between the modes is described using an efficient Krylov-Bogolyubov averaging technique. It is shown that the deformational mode magnitude can be some orders larger than the radial mode magnitude which is damped by the thermal, viscous and acoustic dissipation. The estimative criterion of bubble break-up is obtained in the cases of slow and fast acoustic wave start. The obtained pressure magnitudes in the wave for break-up are very small and the mechanism can have strong medical and technical applications.

  10. Mass spectrometric sampling of a liquid surface by nanoliter droplet generation from bursting bubbles and focused acoustic pulses: application to studies of interfacial chemistry.

    PubMed

    Thomas, Daniel A; Wang, Lingtao; Goh, Byoungsook; Kim, Eun Sok; Beauchamp, J L

    2015-03-17

    The complex chemistry occurring at the interface between liquid and vapor phases contributes significantly to the dynamics and evolution of numerous chemical systems of interest, ranging from damage to the human lung surfactant layer to the aging of atmospheric aerosols. This work presents two methodologies to eject droplets from a liquid water surface and analyze them via mass spectrometry. In bursting bubble ionization (BBI), droplet ejection is achieved via the formation of a jet following bubble rupture at the surface of a liquid to yield 250 μm diameter droplets (10 nL volume). In interfacial sampling by an acoustic transducer (ISAT), droplets are produced by focusing pulsed piezoelectric transducer-generated acoustic waves at the surface of a liquid, resulting in the ejection of droplets of 100 μm in diameter (500 pL volume). In both experimental methodologies, ejected droplets are aspirated into the inlet of the mass spectrometer, resulting in the facile formation of gas-phase ions. We demonstrate the ability of this technique to readily generate spectra of surface-active analytes, and we compare the spectra to those obtained by electrospray ionization. Charge measurements indicate that the ejected droplets are near-neutral (<0.1% of the Rayleigh limit), suggesting that gas-phase ion generation occurs in the heated transfer capillary of the instrument in a mechanism similar to thermospray or sonic spray ionization. Finally, we present the oxidation of oleic acid by ozone as an initial demonstration of the ability of ISAT-MS to monitor heterogeneous chemistry occurring at a planar water/air interface. PMID:25699657

  11. The utilization of bubble detector technology in the development of a Combination Area Neutron Spectrometer (CANS)

    SciTech Connect

    Buckner, M.A.; Sims, C.S.

    1991-01-01

    The compact and relatively inexpensive Combination Area Neutron Spectrometer (CANS) should provide neutron spectral capabilities heretofore available only via complex set-ups and time-consuming, painstaking calculations. Some of its strong points include the measurement of neutron fluence and the need for only a single algorithm, with a single solution, regardless of the spectra. Because fluence, a real quantity, is the foundation of dose equivalent determination, the results of CANS should endure the winds of change accompanying the definition of dose equivalent and its consorted conversion conventions. It is also hoped that personnel applications may be realized in miniature version of CANS, the Personal Neutron Dosemeter/Spectrometer (PENDOSE). 6 refs., 3 figs.

  12. Effect of charge on the dynamics of an acoustically forced bubble

    NASA Astrophysics Data System (ADS)

    Hongray, Thotreithem; Ashok, B.; Balakrishnan, J.

    2014-06-01

    The effect of charge on the dynamics of a gas bubble undergoing forced oscillations in a liquid due to incidence of an ultrasonic wave is theoretically investigated. The limiting values of the possible charge a bubble may physically carry are obtained. The presence of charge influences the regime in which the bubble's radial oscillations fall. The extremal compressive and expansive dimensions of the bubble are also studied as a function of the amplitude of the driving pressure. It is shown that the limiting value of the bubble charge is dictated both by the minimal value reachable of the bubble radius as well as the amplitude of the driving ultrasonic pressure wave. A non-dimensional ratio ζ is defined that is a comparative measure of the extremal values the bubble can expand or contract to, and we find the existence of an unstable regime for ζ as a function of the driving pressure amplitude, Ps. This unstable regime is gradually suppressed with increasing bubble size. The Blake and the upper transient pressure thresholds for the system are then discussed.

  13. An In Vitro Study of the Correlation Between Bubble Distribution, Acoustic Emission, and Cell Damage by Contrast Ultrasound

    PubMed Central

    Fowlkes, J. Brian; Miller, Douglas L.

    2009-01-01

    The objective of this study was to investigate the influences of total exposure duration and pulse-to-pulse bubble distribution on contrast-mediated cell damage. Murine macrophage cells were grown as monolayers on thin polyester sheets. Contrast agent microbubbles were attached to these cells by incubation. Focused ultrasound exposures (Pr = 2 MPa) were implemented at a frequency of 2.25 MHz with 46 cycle pulses and pulse repetition frequencies (PRF) of 1 kHz, 500 Hz, 100 Hz, and 10 Hz in a degassed water bath at 10 or 100 pulses. A 1 MHz receive transducer measured the scattered signal. The frequency spectrum was normalized to a control spectrum from linear scatterers. Photomicrographs were captured before, during, and after exposure at a frame rate of 2000 fps and a pixel resolution of 960 × 720. Results clearly show that cell death is increased, up to 60%, by increasing total exposure duration from 0 ms to 100 ms. There was an increasing difference in cell damage between a 10-pulse exposure and a 100-pulse exposure with increasing PRF. The greatest change in damage occurred at 1000 Hz PRF with a 53% increase between 10-pulse and 100-pulse exposures. For each pulse from 0 to 10, an overlay of the 2 μm bubble count with corresponding emission shows consistent behavior in its pulse-to-pulse changes, indicating a correlation between acoustic emission, bubble distribution, and cell damage. PMID:19411217

  14. A dynamic pressure view cell for acoustic stimulation of fluids—Micro-bubble generation and fluid movement in porous media

    NASA Astrophysics Data System (ADS)

    Stewart, Robert A.; Shaw, J. M.

    2015-09-01

    The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest.

  15. A dynamic pressure view cell for acoustic stimulation of fluids--Micro-bubble generation and fluid movement in porous media.

    PubMed

    Stewart, Robert A; Shaw, J M

    2015-09-01

    The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest. PMID:26429474

  16. Boundary conditions for simulations of oscillating bubbles using the non-linear acoustic approximation

    NASA Astrophysics Data System (ADS)

    King, J. R. C.; Ziolkowski, A. M.; Ruffert, M.

    2015-03-01

    We have developed a new boundary condition for finite volume simulations of oscillating bubbles. Our method uses an approximation to the motion outside the domain, based on the solution at the domain boundary. We then use this approximation to apply boundary conditions by defining incoming characteristic waves at the domain boundary. Our boundary condition is applicable in regions where the motion is close to spherically symmetric. We have tested our method on a range of one- and two-dimensional test cases. Results show good agreement with previous studies. The method allows simulations of oscillating bubbles for long run times (5 ×105 time steps with a CFL number of 0.8) on highly truncated domains, in which the boundary condition may be applied within 0.1% of the maximum bubble radius. Conservation errors due to the boundary conditions are found to be of the order of 0.1% after 105 time steps. The method significantly reduces the computational cost of fixed grid finite volume simulations of oscillating bubbles. Two-dimensional results demonstrate that highly asymmetric bubble features, such as surface instabilities and the formation of jets, may be captured on a small domain using this boundary condition.

  17. Can diving-induced tissue nitrogen supersaturation increase the chance of acoustically driven bubble growth in marine mammals?

    PubMed

    Houser, D S; Howard, R; Ridgway, S

    2001-11-21

    The potential for acoustically mediated causes of stranding in cetaceans (whales and dolphins) is of increasing concern given recent stranding events associated with anthropogenic acoustic activity. We examine a potentially debilitating non-auditory mechanism called rectified diffusion. Rectified diffusion causes gas bubble growth, which in an insonified animal may produce emboli, tissue separation and high, localized pressure in nervous tissue. Using the results of a dolphin dive study and a model of rectified diffusion for low-frequency exposure, we demonstrate that the diving behavior of cetaceans prior to an intense acoustic exposure may increase the chance of rectified diffusion. Specifically, deep diving and slow ascent/descent speed contributes to increased gas-tissue saturation, a condition that amplifies the likelihood of rectified diffusion. The depth of lung collapse limits nitrogen uptake per dive and the surface interval duration influences the amount of nitrogen washout from tissues between dives. Model results suggest that low-frequency rectified diffusion models need to be advanced, that the diving behavior of marine mammals of concern needs to be investigated to identify at-risk animals, and that more intensive studies of gas dynamics within diving marine mammals should be undertaken. PMID:11894990

  18. Bubble diagnostics

    DOEpatents

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  19. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: Example of a high-order Bessel beam of quasi-standing waves

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves’ amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  20. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  1. Deformation of biological cells in the acoustic field of an oscillating bubble

    NASA Astrophysics Data System (ADS)

    Zinin, Pavel V.; Allen, John S., III

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin , Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA , (c) the relative change in the area has a maximum at frequency fK˜(1)/(2π)KA/(ρa3) , where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1) . For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency fK ; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).

  2. Deformation of biological cells in the acoustic field of an oscillating bubble.

    PubMed

    Zinin, Pavel V; Allen, John S

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin, Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell's oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell's shell deforms due to a change in the shell area this oscillation depends on the surface area modulus K{A} , (c) the relative change in the area has a maximum at frequency f{K} approximately 1/2pi square root[K{A}(rhoa;{3})] , where a is the cell's radius and rho is its density. It was predicted that deformation of the cell wall at the frequency f{K} is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1). For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency f{K} however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers). PMID:19391781

  3. Deformation of biological cells in the acoustic field of an oscillating bubble

    PubMed Central

    Zinin, Pavel V.; Allen, John S.

    2009-01-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin et al., Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA, (c) the relative change in the area has a maximum at frequency fK∼12πKA/(ρa3), where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E. coli in which the quality factor of natural vibrations is less than 1 (Q < 1). For bacteria with high value quality factors (Q > 1), the area deformation has a strong peak near a resonance frequency fK; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers). PMID:19391781

  4. Bubble Manipulation by Self Organization of Bubbles inside Ultrasonic Wave

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Koganezawa, Masato

    2005-06-01

    Microbubble manipulation using ultrasonic waves is a promising technology in the fields of future medicine and biotechnology. For example, it is considered that bubble trapping using ultrasonic waves may play an important role in drug or gene delivery systems in order to trap the drugs or genes in the diseased tissue. Usually, when bubbles are designed so that they carry payloads, such as drug or gene, they tend to be harder than free bubbles. These hard bubbles receive a small acoustic radiation force, which is not sufficient for bubble manipulation. In this paper, a novel method of microbubble manipulation using ultrasonic waves is proposed. This method uses seed bubbles in order to manipulate target bubbles. When the seed bubbles are introduced into the ultrasonic wave field, they start to oscillate to produce a bubble aggregation of a certain size. Then the target bubbles are introduced, the target bubbles attach around the seed bubbles producing a bubble mass with bilayers (inner layer: seed bubbles, outer layer: target bubbles). The target bubbles are manipulated as a bilayered bubble mass. Basic experiments are carried out using polyvinyl chloride (PVC) shell bubbles. No target bubbles are trapped when only the target bubbles are introduced. However, they are trapped if the seed bubbles are introduced in advance.

  5. The dynamics of histotripsy bubbles

    NASA Astrophysics Data System (ADS)

    Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.

    2011-09-01

    Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.

  6. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2015-01-01

    Central events of ultrasonic action are the bubbles of cavitation that can be considered as powered microreactors within which high-energy chemistry occurs. This work presents the results of a comprehensive numerical assessment of frequency and saturating gases effects on single bubble sonochemistry. Computer simulations of chemical reactions occurring inside a bubble oscillating in liquid water irradiated by an ultrasonic wave have been performed for a wide range of ultrasonic frequencies (213-1100kHz) under different saturating gases (O2, air, N2 and H2). For O2 and H2 bubbles, reactions mechanism consisting in 25 reversible chemical reactions were proposed for studying the internal bubble-chemistry whereas 73 reversible reactions were taken into account for air and N2 bubbles. The numerical simulations have indicated that radicals such as OH, H, HO2 and O are created in the bubble during the strong collapse. In all cases, hydroxyl radical (OH) is the main oxidant created in the bubble. The production rate of the oxidants decreases as the driving ultrasonic frequency increases. The production rate of OH radical followed the order O2>air>N2>H2 and the order becomes more remarkable at higher ultrasonic frequencies. The effect of ultrasonic frequency on single bubble sonochemistry was attributed to its significant impact on the cavitation process whereas the effects of gases were attributed to the nature of the chemistry produced in the bubble at the strong collapse. It was concluded that, in addition to the gas solubility, the nature of the internal bubble chemistry is another parameter of a paramount importance that controls the overall sonochemical activity in aqueous solutions. PMID:25112684

  7. Acoustic cavitation bubbles in the kidney induced by focused shock waves in extracorporeal shock wave lithotripsy (ESWL)

    NASA Astrophysics Data System (ADS)

    Kuwahara, M.; Ioritani, N.; Kambe, K.; Taguchi, K.; Saito, T.; Igarashi, M.; Shirai, S.; Orikasa, S.; Takayama, K.

    1990-07-01

    On an ultrasonic imaging system a hyperechoic region was observed in a focal area of fucused shock waves in the dog kidney. This study was performed to learn whether cavitation bubbles are responsible for this hyperechoic region. The ultrasonic images in water of varying temperatures were not markedly different. In the flowing stream of distilled water, the stream was demonstrated as a hyperechoic region only with a mixture of air bubbles. Streams of 5%-50% glucose solutions were also demonstrated as a hyperechoic region. However, such concentration changes in living tissue, as well as thermal changes, are hardly thought to be induced. The holographic interferometry showed that the cavitation bubbles remained for more than 500 msec. in the focal area in water. This finding indicate that the bubble can remain for longer period than previously supposed. These results support the contentions that cavitation bubbles are responsible for the hyperechoic region in the kidney in situ.

  8. Theoretical model of ice nucleation induced by acoustic cavitation. Part 1: Pressure and temperature profiles around a single bubble.

    PubMed

    Cogné, C; Labouret, S; Peczalski, R; Louisnard, O; Baillon, F; Espitalier, F

    2016-03-01

    This paper deals with the inertial cavitation of a single gas bubble in a liquid submitted to an ultrasonic wave. The aim was to calculate accurately the pressure and temperature at the bubble wall and in the liquid adjacent to the wall just before and just after the collapse. Two different approaches were proposed for modeling the heat transfer between the ambient liquid and the gas: the simplified approach (A) with liquid acting as perfect heat sink, the rigorous approach (B) with liquid acting as a normal heat conducting medium. The time profiles of the bubble radius, gas temperature, interface temperature and pressure corresponding to the above models were compared and important differences were observed excepted for the bubble size. The exact pressure and temperature distributions in the liquid corresponding to the second model (B) were also presented. These profiles are necessary for the prediction of any physical phenomena occurring around the cavitation bubble, with possible applications to sono-crystallization. PMID:26044460

  9. Novel Acoustic Loading of a Mass Spectrometer: Toward Next-Generation High-Throughput MS Screening.

    PubMed

    Sinclair, Ian; Stearns, Rick; Pringle, Steven; Wingfield, Jonathan; Datwani, Sammy; Hall, Eric; Ghislain, Luke; Majlof, Lars; Bachman, Martin

    2016-02-01

    High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry. PMID:26721821

  10. Effect of direct bubble-bubble interactions on linear-wave propagation in bubbly liquids

    NASA Astrophysics Data System (ADS)

    Fuster, D.; Conoir, J. M.; Colonius, T.

    2014-12-01

    We study the influence of bubble-bubble interactions on the propagation of linear acoustic waves in bubbly liquids. Using the full model proposed by Fuster and Colonius [J. Fluid Mech. 688, 253 (2011), 10.1017/jfm.2011.380], numerical simulations reveal that direct bubble-bubble interactions have an appreciable effect for frequencies above the natural resonance frequency of the average size bubble. Based on the new results, a modification of the classical wave propagation theory is proposed. The results obtained are in good agreement with previously reported experimental data where the classical linear theory systematically overpredicts the effective attenuation and phase velocity.

  11. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).

    PubMed

    Rosselló, J M; Dellavale, D; Bonetto, F J

    2015-01-01

    In the present work, stable clusters made of multiple sonoluminescent bubbles are experimentally and theoretically studied. Argon bubbles were acoustically generated and trapped using bi-frequency driving within a cylindrical chamber filled with a sulfuric acid aqueous solution (SA85w/w). The intensity of the acoustic pressure field was strong enough to sustain, during several minutes, a large number of positionally and spatially fixed (without pseudo-orbits) sonoluminescent bubbles over an ellipsoidally-shaped tridimensional array. The dimensions of the ellipsoids were studied as a function of the amplitude of the applied low-frequency acoustic pressure (PAc(LF)) and the static pressure in the fluid (P0). In order to explain the size and shape of the bubble clusters, we performed a series of numerical simulations of the hydrodynamic forces acting over the bubbles. In both cases the observed experimental behavior was in excellent agreement with the numerical results. The simulations revealed that the positionally stable region, mainly determined by the null primary Bjerknes force (F→Bj), is defined as the outer perimeter of an axisymmetric ellipsoidal cluster centered in the acoustic field antinode. The role of the high-frequency component of the pressure field and the influence of the secondary Bjerknes force are discussed. We also investigate the effect of a change in the concentration of dissolved gas on the positional and spatial instabilities through the cluster dimensions. The experimental and numerical results presented in this paper are potentially useful for further understanding and modeling numerous current research topics regarding multi-bubble phenomena, e.g. forces acting on the bubbles in multi-frequency acoustic fields, transient acoustic cavitation, bubble interactions, structure formation processes, atomic and molecular emissions of equal bubbles and nonlinear or unsteady acoustic pressure fields in bubbly media. PMID:24974006

  12. Experimental and numerical insights into seismo-acoustic signals generated during the expansion of rising and bursting large gas bubbles in low-viscosity magmas

    NASA Astrophysics Data System (ADS)

    Lane, Stephen; Corder, Steven; James, Michael

    2010-05-01

    Strombolian activity produces gas-rich, magma-poor eruptions suggesting the separation and concentration of volcanic gases within the plumbing system. These gases are assumed to rise as relatively large bubble rafts or individual 'slug' bubbles that can cause detectable seismic activity on interaction with conduit geometry. Rising within the magma column, a gas bubble must expand appreciably in order to maintain magma-static pressure, for instance volume would increase by a factor of c. 200 for a 1 km rise to the magma-atmosphere interface. For a near-conduit-filling gas slug this expansion is one-dimensional (i.e. length-wise) and increases in rate non-linearly on approach to the surface. As they ascend, small gas slugs can expand sufficiently rapidly to maintain approximate magma-static pressure, but large gas slugs become dynamically overpressured. In laboratory experiments, these unsteady flows of gas and liquid generate pressure changes measurable below the gas phase. They also cause apparatus motion that does not apparently relate directly to these changes. Computational fluid dynamic (CFD) simulation of experiments reproduces the pressure changes within the liquid and allows visualisation of the viscous shear force exerted on the conduit wall around and above the slug as it rises and expands. CFD simulations at volcanic scale then give estimates of the various force contributions that could occur in the natural system. During the experiments, pressure change driven by slug expansion and burst was also measured in the ambient atmosphere above the upper liquid surface. We present experimental evidence of a range of burst processes that depend on the degree of gas overpressure in the slug. These processes range from the quiescent formation of a relatively long-lived liquid film that bursts some time after the gas slug has reached the liquid surface, through complex transitional behaviour where the meniscus detaches from the tube walls to form a bubble, to

  13. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  14. Sonochemistry and bubble dynamics.

    PubMed

    Mettin, Robert; Cairós, Carlos; Troia, Adriano

    2015-07-01

    The details of bubble behaviour in chemically active cavitation are still not sufficiently well understood. Here we report on experimental high-speed observations of acoustically driven single-bubble and few-bubble systems with the aim of clarification of the connection of their dynamics with chemical activity. Our experiment realises the sonochemical isomerization reaction of maleic acid to fumaric acid, mediated by bromine radicals, in a bubble trap set-up. The main result is that the reaction product can only be observed in a parameter regime where a small bubble cluster occurs, while a single trapped bubble stays passive. Evaluations of individual bubble dynamics for both cases are given in form of radius-time data and numerical fits to a bubble model. A conclusion is that a sufficiently strong collapse has to be accompanied by non-spherical bubble dynamics for the reaction to occur, and that the reason appears to be an efficient mixing of liquid and gas phase. This finding corroborates previous observations and literature reports on high liquid phase sonochemical activity under distinct parameter conditions than strong sonoluminescence emissions. PMID:25194210

  15. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  16. Bubble levitation and translation under single-bubble sonoluminescence conditions.

    PubMed

    Matula, Thomas J

    2003-08-01

    Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles. PMID:12942960

  17. Numerical investigation of bubble nonlinear dynamics characteristics

    SciTech Connect

    Shi, Jie Yang, Desen; Shi, Shengguo; Hu, Bo; Zhang, Haoyang; Jiang, Wei

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  18. Numerical investigation of bubble nonlinear dynamics characteristics

    NASA Astrophysics Data System (ADS)

    Shi, Jie; Yang, Desen; Zhang, Haoyang; Shi, Shengguo; Jiang, Wei; Hu, Bo

    2015-10-01

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  19. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter.

    PubMed

    Zhou, Yufeng; Zhong, Pei

    2006-06-01

    A theoretical model for the propagation of shock wave from an axisymmetric reflector was developed by modifying the initial conditions for the conventional solution of a nonlinear parabolic wave equation (i.e., the Khokhlov-Zabolotskaya-Kuznestsov equation). The ellipsoidal reflector of an HM-3 lithotripter is modeled equivalently as a self-focusing spherically distributed pressure source. The pressure wave form generated by the spark discharge of the HM-3 electrode was measured by a fiber optic probe hydrophone and used as source conditions in the numerical calculation. The simulated pressure wave forms, accounting for the effects of diffraction, nonlinearity, and thermoviscous absorption in wave propagation and focusing, were compared with the measured results and a reasonably good agreement was found. Furthermore, the primary characteristics in the pressure wave forms produced by different reflector geometries, such as that produced by a reflector insert, can also be predicted by this model. It is interesting to note that when the interpulse delay time calculated by linear geometric model is less than about 1.5 micros, two pulses from the reflector insert and the uncovered bottom of the original HM-3 reflector will merge together. Coupling the simulated pressure wave form with the Gilmore model was carried out to evaluate the effect of reflector geometry on resultant bubble dynamics in a lithotripter field. Altogether, the equivalent reflector model was found to provide a useful tool for the prediction of pressure wave form generated in a lithotripter field. This model may be used to guide the design optimization of reflector geometries for improving the performance and safety of clinical lithotripters. PMID:16838506

  20. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter

    PubMed Central

    Zhou, Yufeng; Zhong, Pei

    2007-01-01

    A theoretical model for the propagation of shock wave from an axisymmetric reflector was developed by modifying the initial conditions for the conventional solution of a nonlinear parabolic wave equation (i.e., the Khokhlov–Zabolotskaya–Kuznestsov equation). The ellipsoidal reflector of an HM-3 lithotripter is modeled equivalently as a self-focusing spherically distributed pressure source. The pressure wave form generated by the spark discharge of the HM-3 electrode was measured by a fiber optic probe hydrophone and used as source conditions in the numerical calculation. The simulated pressure wave forms, accounting for the effects of diffraction, nonlinearity, and thermoviscous absorption in wave propagation and focusing, were compared with the measured results and a reasonably good agreement was found. Furthermore, the primary characteristics in the pressure wave forms produced by different reflector geometries, such as that produced by a reflector insert, can also be predicted by this model. It is interesting to note that when the interpulse delay time calculated by linear geometric model is less than about 1.5 μs, two pulses from the reflector insert and the uncovered bottom of the original HM-3 reflector will merge together. Coupling the simulated pressure wave form with the Gilmore model was carried out to evaluate the effect of reflector geometry on resultant bubble dynamics in a lithotripter field. Altogether, the equivalent reflector model was found to provide a useful tool for the prediction of pressure wave form generated in a lithotripter field. This model may be used to guide the design optimization of reflector geometries for improving the performance and safety of clinical lithotripters. PMID:16838506

  1. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Vogel, A.; Noack, J.; Chapyak, E.J.; Godwin, R.P.

    1999-06-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored by time-resolved photography and numerical simulations. The growth-collapse period of cylindrical bubbles of large aspect ratio (length:diameter {approximately}20) differs only slightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble size and energy even for aspherical bubbles. The change of the oscillation period of bubbles near solid walls and elastic (tissue-like) boundaries relative to that of isolated spherical bubbles is also investigated.

  2. Acoustic Amplification in the Far Infrared Focal Plane Assembly of the Composite Infrared Spectrometer (CIRS) for the Cassini Mission to Saturn

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.; Crooke, Julie

    1998-01-01

    The Composite Infrared Spectrometer (CIRS) of the Cassini mission to Saturn has two interferometers covering the far infrared FIR and mid infrared, MIR wavelength region. The FIR is a polarizing Michelson interferometer which presents a collimated output beam to the FIR focal plane. The focal plane consists of a parabolic focus mirror and an analyzer grid, which splits the output beams into transmitted and reflected components. The two polarizations are focussed onto two thermopile detectors; each consisting of a gold black foil welded to the top of two bismuth pyramids. The gold black is 30 microns thick, and the weld area is approximately 2 microns in diameter. The detectors are extremely fragile and the weld can be broken with a miniscule amount of airflow. The detectors consistently passed acoustic testing to qualification levels that simulated the launch environment of the Titan IV launch vehicle. However, they experienced a 50% failure rate when installed in the focal plane assembly during instrument level acoustic tests. A test focal plane was developed with small pressure transducers in the nominal detector locations. These tests indicated over 10 dB of acoustic amplification in the focal plane within the instrument during testing. New techniques were developed to allow testing of the focal plane without over testing the instrument, and modifications were made the focal plane assembly to successfully attenuate the amplification.

  3. Neutron detection via bubble chambers.

    PubMed

    Jordan, D V; Ely, J H; Peurrung, A J; Bond, L J; Collar, J I; Flake, M; Knopf, M A; Pitts, W K; Shaver, M; Sonnenschein, A; Smart, J E; Todd, L C

    2005-01-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography. PMID:16005238

  4. Stable Multibubble Sonoluminescence Bubble Patterns

    SciTech Connect

    Posakony, Gerald J.; Greenwood, Lawrence R.; Ahmed, Salahuddin

    2006-06-30

    Multibubble standing wave patterns can be generated from a flat piezoceramic transducer element propagating into water. By adding a second transducer positioned at 90 degrees from the transducer generating the standing wave, a 3-dimensional volume of stable single bubbles can be established. Further, the addition of the second transducer stabilizes the bubble pattern so that individual bubbles may be studied. The size of the bubbles and the separation of the standing waves depend on the frequency of operation. Two transducers, operating at frequencies above 500 kHz, provided the most graphic results for the configuration used in this study. At these frequencies stable bubbles exhibit a bright sonoluminescence pattern. Whereas stable SBSL is well-known, stable MBSL has not been previously reported. This paper includes discussions of the acoustic responses, standing wave patterns, and pictorial results of the separation of individual bubble of sonoluminescence in a multibubble sonoluminescence environment.

  5. Bubble dielectrophoresis

    NASA Technical Reports Server (NTRS)

    Jones, T. B.; Bliss, G. W.

    1977-01-01

    The theoretical principles related to bubble dielectrophoresis are examined, taking into account the polarization force, aspects of bubble deformation, the electrostatic bubble levitation theorem, and the equation of motion. The measurement of the dielectrophoretic force on static and dynamic bubbles represents a convenient experimental method for the study of the general problem of dielectrophoresis. The experiments reported include static-force measurements, static-levitation experiments, and dynamic-force measurements.

  6. Bubble dynamics in drinks

    NASA Astrophysics Data System (ADS)

    Broučková, Zuzana; Trávníček, Zdeněk; Šafařík, Pavel

    2014-03-01

    This study introduces two physical effects known from beverages: the effect of sinking bubbles and the hot chocolate sound effect. The paper presents two simple "kitchen" experiments. The first and second effects are indicated by means of a flow visualization and microphone measurement, respectively. To quantify the second (acoustic) effect, sound records are analyzed using time-frequency signal processing, and the obtained power spectra and spectrograms are discussed.

  7. Recalcitrant bubbles

    PubMed Central

    Shanahan, Martin E. R.; Sefiane, Khellil

    2014-01-01

    We demonstrate that thermocapillary forces may drive bubbles against liquid flow in ‘anomalous' mixtures. Unlike ‘ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just ‘downstream' of the minimum in surface tension. The exponential trend for bubbles in ‘anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles). PMID:24740256

  8. Manipulating bubbles with secondary Bjerknes forces

    SciTech Connect

    Lanoy, Maxime; Derec, Caroline; Leroy, Valentin; Tourin, Arnaud

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  9. Design and Characterization of a High-power Laser-induced Acoustic Desorption (LIAD) Probe Coupled with a Fourier-transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Shea, Ryan C.; Habicht, Steven C.; Vaughn, Weldon E.; Kenttämaa, Hilkka I.

    2008-01-01

    We report here the construction and characterization of a high-power laser-induced acoustic desorption (LIAD) probe designed for Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometers to facilitate analysis of non-volatile, thermally labile compounds. This “next generation” LIAD probe offers significant improvements in sensitivity and desorption efficiency for analytes with larger molecular weights via the use of higher laser irradiances. Unlike the previous probes which utilized a power limiting optical fiber to transmit the laser pulses through the probe, this probe employs a set of mirrors and a focusing lens. At the end of the probe, the energy from the laser pulses propagates through a thin metal foil as an acoustic wave, resulting in desorption of neutral molecules from the opposite side of the foil. Following desorption, the molecules can be ionized by electron impact or chemical ionization. Almost an order of magnitude greater power density (up to 5.0 × 109 W/cm2) is achievable on the backside of the foil with the high-power LIAD probe compared to the earlier LIAD probes (maximum power density ~9.0 × 108 W/cm2). The use of higher laser irradiances is demonstrated not to cause fragmentation of the analyte. The use of higher laser irradiances increases sensitivity since it results in the evaporation of a greater number of molecules per laser pulse. Measurement of the average velocities of LIAD evaporated molecules demonstrates that higher laser irradiances do not correlate with higher velocities of the gaseous analyte molecules. PMID:17319645

  10. Observation of Microhollows Produced by Bubble Cloud Cavitation

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Miwa, Takashi

    2012-07-01

    When an ultrasonic wave with sound pressure less than the threshold level of bubble destruction irradiates microbubbles, the microbubbles aggregate by an acoustic radiation force and form bubble clouds. The cavitation of bubble clouds produces a large number of microhollows (microdips) on the flow channel wall. In this study, microhollow production by bubble cloud cavitation is evaluated using a blood vessel phantom made of N-isopropylacrylamide (NIPA) gel. Microbubble dynamics in bubble cloud cavitation is observed by a microscope with a short pulse light emitted diode (LED) light source. Microhollows produced on the flow channel wall are evaluated by a confocal laser microscope with a water immersion objective. It is observed that a mass of low-density bubbles (bubble mist) is formed by bubble cloud cavitation. The spatial correlation between the bubble mist and the microhollows shows the importance of the bubble mist in microhollow production by bubble cloud cavitation.

  11. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Godwin, R.P.; Chapyak, E.J.; Noack, J.; Vogel, A.

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  12. Improving acoustic determinations of the Boltzmann constant with mass spectrometer measurements of the molar mass of argon

    NASA Astrophysics Data System (ADS)

    Yang, Inseok; Pitre, Laurent; Moldover, Michael R.; Zhang, Jintao; Feng, Xiaojuan; Seog Kim, Jin

    2015-10-01

    We determined accurate values of ratios among the average molar masses MAr of 9 argon samples using two completely-independent techniques: (1) mass spectrometry and (2) measured ratios of acoustic resonance frequencies. The two techniques yielded mutually consistent ratios (RMS deviation of 0.16   ×   10-6 MAr from the expected correlation) for the 9 samples of highly-purified, commercially-purchased argon with values of MAr spanning a range of 2   ×   10-6 MAr. Among the 9 argon samples, two were traceable to recent, accurate, argon-based measurements of the Boltzmann constant kB using primary acoustic gas thermometers (AGT). Additionally we determined our absolute values of MAr traceable to two, completely-independent, isotopic-reference standards; one standard was prepared gravimetrically at KRISS in 2006; the other standard was isotopically-enriched 40Ar that was used during NIST’s 1988 measurement of kB and was sent to NIM for this research. The absolute values of MAr determined using the KRISS standard have the relative standard uncertainty ur(MAr)  =  0.70   ×   10-6 (Uncertainties here are one standard uncertainty.); they agree with values of MAr determined at NIM using an AGT within the uncertainty of the comparison ur(MAr)  =  0.93   ×   10-6. If our measurements of MAr are accepted, the difference between two, recent, argon-based, AGT measurements of kB decreases from (2.77   ±   1.43)  ×  10-6 kB to (0.16   ±   1.28)  ×  10-6 kB. This decrease enables the calculation of a meaningful, weighted average value of kB with a uncertainty ur(kB)  ≈  0.6   ×   10-6.

  13. Experimental investigations of the internal energy of molecules evaporated via laser-induced acoustic desorption into a Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Shea, Ryan C; Petzold, Christopher J; Liu, Ji-Ang; Kenttämaa, Hilkka I

    2007-03-01

    The internal energy of neutral gas-phase organic and biomolecules, evaporated by means of laser-induced acoustic desorption (LIAD) into a Fourier transform ion cyclotron resonance mass spectrometer, was investigated through several experimental approaches. The desorbed molecules were demonstrated not to undergo degradation during the desorption process by collecting LIAD-evaporated molecules and subjecting them to analysis by electrospray ionization/quadrupole ion trap mass spectrometry. Previously established gas-phase basicity values were remeasured for LIAD-evaporated organic molecules and biomolecules with the use of the bracketing method. No endothermic reactions were observed. The remeasured basicity values are in close agreement with the values reported in the literature. The amount of internal energy deposited during LIAD is concluded to be less than a few kilocalories per mole. Chemical ionization with a series of proton-transfer reagents was employed to obtain a breakdown curve for a protonated dipeptide, Val-Pro, evaporated by LIAD. Comparison of this breakdown curve with a previously published analogous curve obtained by using substrate-assisted laser desorption (SALD) to evaporate the peptide suggests that the molecules evaporated via LIAD have a similar internal energy as those evaporated via SALD. PMID:17263513

  14. Bubble, Bubble, Toil and Trouble.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  15. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  16. Exploring Bubbles

    NASA Astrophysics Data System (ADS)

    O'Geary, Melissa A.

    Bubbles provide an enjoyable and festive medium through which to teach many concepts within the science topics of light, color, chemistry, force, air pressure, electricity, buoyancy, floating, density, among many others. In order to determine the nature of children's engagement within a museum setting and the learning opportunities of playing with bubbles, I went to a children's interactive museum located in a metropolitan city in the Northeastern part of the United States.

  17. Deformed bubbles in inhomogeneous ultrasonic fields

    NASA Astrophysics Data System (ADS)

    Zaleski, Stéphane; Popinet, Stéphane

    1998-11-01

    We study numerically a bubble undergoing expansions and contractions under an ultrasonic acoustic field. The bubble deforms under the influence of intrinsic instabilities as well as inhomogeneities in the pressure field. Interface kinematics through connected marker chains, with cut-cell reconstructions are used to solve the Navier-Stokes equations in axisymmetric geometry. A series of embedded grids is used to follow large expansions and contractions. Test cases involve a bubble oscillating at a variable distance from a solid wall as well as a levitating bubble subject to a net force (the Bjerknes force). The numerical scheme is able to follow relatively small bubbles down to 3 μm, in the sonoluminescence regime. The Rayleigh-Taylor instability predicted in that regime is reproduced. Larger, millimeter size bubbles may also be followed. In that case the numerical results show a typical jet formation analogous to the experimental observations of Lauterborn. Preliminary observations of jet velocities are made and compared to experiment.

  18. Bubble cloud dynamics in a high-pressure spherical resonator

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip Andrew

    A bubble cloud is a population of bubbles confined to a region within a fluid. Bubble clouds play a large role in a variety of naturally occurring phenomena and man-made applications (e.g., ocean noise, cavitation damage, sonoluminescence, ultrasonic cleaning, drug delivery, lithotripsy). It is important, therefore, to understand the behavior of bubble clouds so that their effects may be enhanced or diminished as desired. This work explores and characterizes the properties of bubble clouds nucleated inside a high-pressure spherical acoustic resonator, in connection with recent interest in acoustic inertial confinement fusion (acoustic ICF). A laser system was developed to repeatably nucleate a cloud of bubbles inside the resonator. The resulting events were then observed, primarily with schlieren imaging methods. Preliminary studies of the bubble cloud dynamics showed the sensitivity of the initial cloud to nucleation parameters including the phase of nucleation, the laser energy, and the acoustic power. After many acoustic cycles, some bubble clouds are observed to evolve into a tight cluster. The formation of these clusters correlates with initial bubble distributions which have a large cloud interaction parameter, β. Cluster dynamics are seen to be largely driven by reconverging shock waves from previous collapses reflected from the resonator's interior surface. Initial expansion of the cluster boundary is on the order of 8 mm/µs and the maximum radius approaches 3 mm. Shock pressures are estimated to be > 10 GPa at a radius of 100 µm using weak shock theory.

  19. Passive Underwater Noise Attenuation Using Large Encapsulated Air Bubbles.

    PubMed

    Lee, Kevin M; Wochner, Mark S; Wilson, Preston S

    2016-01-01

    Measurements demonstrating low-frequency underwater sound attenuation using arrays of large, tethered, stationary encapsulated bubbles to surround a sound source were compared with various effective medium models for the acoustic dispersion relationship in bubbly liquids. Good agreement was observed between measurements for the large bubbles (on the order of 10 cm) at frequencies below 1 kHz and a model originally intended to describe the acoustic behavior of ultrasound contrast agents. The primary goal is to use the model for designing encapsulated-bubble-based underwater noise abatement systems and to reduce uncertainty in system performance. PMID:26611010

  20. Tiny Bubbles.

    ERIC Educational Resources Information Center

    Kim, Hy

    1985-01-01

    A simple oxygen-collecting device (easily constructed from glass jars and a lid) can show bubbles released by water plants during photosynthesis. Suggestions are given for: (1) testing the collected gas; (2) using various carbon dioxide sources; and (3) measuring respiration. (DH)

  1. Leverage bubble

    NASA Astrophysics Data System (ADS)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  2. Models of cylindrical bubble pulsation

    PubMed Central

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  3. Observation of a Sonoluminescing Bubble Using a Stroboscope

    NASA Astrophysics Data System (ADS)

    Kozuka, Teruyuki; Hatanaka, Shin-ichi; Tuziuti, Toru; Yasui, Kyuichi; Mitome, Hideto

    2000-05-01

    A method to observe sonoluminescing bubble motion has been studied. By a single flash of a stroboscope much shorter than the acoustic cycle, a charge coupled device (CCD) camera captures an instantaneous image of the bubble, which includes the dancing condition. Changing the flash timing of the stroboscope slowly made it possible to observe periodical expansion and contraction of the bubble. It is clarified that the bubble size and the phase at the time the bubble collapses changes according to the amplitude of sound pressure.

  4. Modeling bubble dynamics and radical kinetics in ultrasound induced microalgal cell disruption.

    PubMed

    Wang, Meng; Yuan, Wenqiao

    2016-01-01

    Microalgal cell disruption induced by acoustic cavitation was simulated through solving the bubble dynamics in an acoustical field and their radial kinetics (chemical kinetics of radical species) occurring in the bubble during its oscillation, as well as calculating the bubble wall pressure at the collapse point. Modeling results indicated that increasing ultrasonic intensity led to a substantial increase in the number of bubbles formed during acoustic cavitation, however, the pressure generated when the bubbles collapsed decreased. Therefore, cumulative collapse pressure (CCP) of bubbles was used to quantify acoustic disruption of a freshwater alga, Scenedesmus dimorphus, and a marine alga, Nannochloropsis oculata and compare with experimental results. The strong correlations between CCP and the intracellular lipid fluorescence density, chlorophyll-a fluorescence density, and cell particle/debris concentration were found, which suggests that the developed models could accurately predict acoustic cell disruption, and can be utilized in the scale up and optimization of the process. PMID:26384877

  5. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi

    2006-09-01

    Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 micros. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W. PMID:16571378

  6. Single Bubble Sonoluminescence in Low Gravity and Optical Radiation Pressure Positioning of the Bubble

    NASA Technical Reports Server (NTRS)

    Thiessen, D. B.; Young, J. E.; Marr-Lyon, M. J.; Richardson, S. L.; Breckon, C. D.; Douthit, S. G.; Jian, P. S.; Torruellas, W. E.; Marston, P. L.

    1999-01-01

    Several groups of researchers have demonstrated that high frequency sound in water may be used to cause the regular repeated compression and luminescence of a small bubble of gas in a flask. The phenomenon is known as single bubble sonoluminescence (SBSL). It is potentially important because light emitted by the bubble appears to be associated with a significant concentration of energy within the volume of the bubble. Unfortunately, the detailed physical mechanisms causing the radiation of light by oscillating bubbles are poorly understood and there is some evidence that carrying out experiments in a weightless environment may provide helpful clues. In addition, the radiation pressure of laser beams on the bubble may provide a way of simulating weightless experiments in the laboratory. The standard model of SBSL attributes the light emission to heating within the bubble by a spherically imploding shock wave to achieve temperatures of 50,000 K or greater. In an alternative model, the emission is attributed to the impact of a jet of water which is required to span the bubble and the formation of the jet is linked to the buoyancy of the bubble. The coupling between buoyancy and jet formation is a consequence of the displacement of the bubble from a velocity node (pressure antinode) of the standing acoustic wave that drives the radial bubble oscillations. One objective of this grant is to understand SBSL emission in reduced buoyancy on KC-135 parabolic flights. To optimize the design of those experiments and for other reasons which will help resolve the role of buoyancy, laboratory experiments are planned in simulated low gravity in which the radiation pressure of laser light will be used to position the bubble at the acoustic velocity node of the ultrasonic standing wave. Laser light will also be used to push the bubble away from the velocity node, increasing the effective buoyancy. The original experiments on the optical levitation and radiation pressure on bubbles

  7. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  8. Bubbles with shock waves and ultrasound: a review.

    PubMed

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-01

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead. PMID:26442143

  9. Bubble bath soap poisoning

    MedlinePlus

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  10. Discrete Bubble Modeling for Cavitation Bubbles

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Keun; Chahine, Georges; Hsiao, Chao-Tsung

    2007-03-01

    Dynaflow, Inc. has conducted extensive studies on non-spherical bubble dynamics and interactions with solid and free boundaries, vortical flow structures, and other bubbles. From these studies, emerged a simplified Surface Averaged Pressure (SAP) spherical bubble dynamics model and a Lagrangian bubble tracking scheme. In this SAP scheme, the pressure and velocity of the surrounding flow field are averaged on the bubble surface, and then used for the bubble motion and volume dynamics calculations. This model is implemented using the Fluent User Defined Function (UDF) as Discrete Bubble Model (DBM). The Bubble dynamics portion can be solved using an incompressible liquid modified Rayleigh-Plesset equation or a compressible liquid modified Gilmore equation. The Discrete Bubble Model is a very suitable tool for the studies on cavitation inception of foils and turbo machinery, bubble nuclei effects, noise from the bubbles, and can be used in many practical problems in industrial and naval applications associated with flows in pipes, jets, pumps, propellers, ships, and the ocean. Applications to propeller cavitation, wake signatures of waterjet propelled ships, bubble-wake interactions, modeling of cavitating jets, and bubble entrainments around a ship will be presented.

  11. Disproportionate emission of bubble streams with killer whale biphonic calls: perspectives on production and function.

    PubMed

    Bowles, Ann E; Grebner, Dawn M; Musser, Whitney B; Nash, Juliette S; Crance, Jessica L

    2015-02-01

    Stereotyped pulsed calls were attributed to 11 killer whales (Orcinus orca) with and without synchronous bubble streams in three datasets collected from two facilities from 1993 to 2012. Calls with and without synchronous bubble streams and divergent overlapping high frequency components ("biphonic" vs "monophonic") were compared. Subjects produced bubbles significantly more often when calls had divergent high frequency components. However, acoustic features in one biphonic call shared by five subjects provided little evidence for an acoustic effect of synchronous bubble flow. Disproportionate bubbling supported other evidence that biphonic calls form a distinct category, but suggested a function in short-range communication. PMID:25698045

  12. BEM-based numerical study of three-dimensional compressible bubble dynamics in stokes flow

    NASA Astrophysics Data System (ADS)

    Abramova, O. A.; Akhatov, I. Sh.; Gumerov, N. A.; Itkulova, Yu. A.

    2014-09-01

    The dynamics of compressible gas bubbles in a viscous shear flow and an acoustic field at low Reynolds numbers is studied. The numerical approach is based on the boundary element method (BEM), which is effective as applied to the three-dimensional simulation of bubble deformation. However, the application of the conventional BEM to compressible bubble dynamics faces difficulties caused by the degeneration of the resulting algebraic system. Additional relations based on the Lorentz reciprocity principle are used to cope with this problem. Test computations of the dynamics of a single bubble and bubble clusters in acoustic fields and shear flows are presented.

  13. Neutron Detection via Bubble Chambers

    SciTech Connect

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  14. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  15. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  16. Using sound to study bubble coalescence.

    PubMed

    Kracht, W; Finch, J A

    2009-04-01

    Frothers are surfactants used in flotation to aid generation of small bubbles, an effect attributed to coalescence prevention. Studying coalescence at the moment of bubble creation is a challenge because events occur over a time frame of milliseconds. This communication introduces a novel acoustic technique to study coalescence as bubbles are generated at a capillary. The sound signal was linked to bubble formation and coalescence events using high-speed cinematography. The technique has the resolution to detect events that occur within 1-2 ms. The results show that for common flotation frothers and n-alcohols (C(4)-C(8)) coalescence prevention is not simply related to surface activity. A total stress model is used to give a qualitative explanation to the action observed. Results for salt (sodium chloride) are included for comparison. PMID:19128806

  17. Energy Measurement of Bubble Bursting Based on Vibration Signals

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Bo; Zhang, Jian-Run; Li, Pu; Le, Van-Quynh

    2012-06-01

    An experimental study of the energy of bubble bursting at the surface of a high-viscosity liquid on a cantilever beam is reported. The sudden bursting event of a bubble at the liquid surface can cause a vibration of the cantilever beam besides the acoustic wave and jet wave. The peaks of the vibration signal from the beam slightly lag the peaks of the acoustic signal, and the energy transferred to the vibration is larger than that transferred to the acoustic wave. The amplitude of the jet wave depends on the thickness of the liquid film and the size of the bubble. The results of the investigation can be used to understand the dynamic characteristics of bubble bursting.

  18. Bubble nonlinear dynamics and stimulated scattering process

    NASA Astrophysics Data System (ADS)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  19. On thermonuclear processes in cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Nigmatulin, R. I.; Lahey, R. T., Jr.; Taleyarkhan, R. P.; West, C. D.; Block, R. C.

    2014-09-01

    The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical cavitation cluster ˜ 10-2 m in diameter is produced of spherical bubbles at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles effectuate volume oscillations with sharp collapses during the compression stage. At the final stages of collapse, the bubble cluster emits 2.5 MeV D-D fusion neutron pulses at a rate of ˜ 2000 per second. The neutron yield is ˜ 10^5 s -1. In parallel, tritium nuclei are produced at the same yield. It is shown numerically that, for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles, which focus energy on the centers of the bubbles. When these shock waves reflect from the centers of the bubbles, extreme conditions of temperature ( ˜ 10^8 K) and density ( ˜ 10^4 kg m -3) arise in a (nano)spherical region ( ˜ 10-7 m in size) that last for ˜ 10-12 s, during which time about ten D-D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result in our experiments is that it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) D-acetone ( C3D6O) vapor (as compared, for example, to deuterated water D2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of 'bubble fusion' has been subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics - Uspekhi) journal, is

  20. Laboratory comparisons of acoustic and optical sensors for microbubble measurement

    NASA Technical Reports Server (NTRS)

    Su, Ming Yang; Todoroff, Douglas; Cartmill, John

    1994-01-01

    This paper presents the results of a recent comparison between three microbubble size spectrum measurement systems. These systems are the light-scattering bubble counter, the photographic bubble-imaging system, and the acoustic resonator array. Good agreement was formed among these three systems over the bubble size range appropriate for each system.

  1. The terminal velocity of a bubble in an oscillating flow.

    SciTech Connect

    Torczynski, John Robert; Kraynik, Andrew Michael; Romero, Louis Anthony

    2010-11-01

    A bubble in an acoustic field experiences a net 'Bjerknes' force from the nonlinear coupling of its radial oscillations with the oscillating buoyancy force. It is typically assumed that the bubble's net terminal velocity can be found by considering a spherical bubble with the imposed 'Bjerknes stresses'. We have analyzed the motion of such a bubble using a rigorous perturbation approach and found that one must include a term involving an effective mass flux through the bubble that arises from the time average of the second-order nonlinear terms in the kinematic boundary condition. The importance of this term is governed by the dimensionless parameter {alpha} = R{sup 2} {phi}/R{sup 2} {phi} {nu}.-{nu}, where R is the bubble radius, {phi} is the driving frequency, and {nu} is the liquid kinematic viscosity. If {alpha} is large, this term is unimportant, but if {alpha} is small, this term is the dominant factor in determining the terminal velocity.

  2. Hysteresis of inertial cavitation activity induced by fluctuating bubble size distribution.

    PubMed

    Muleki Seya, Pauline; Desjouy, Cyril; Béra, Jean-Christophe; Inserra, Claude

    2015-11-01

    Amongst the variety of complex phenomena encountered in nonlinear physics, a hysteretic effect can be expected on ultrasound cavitation due to the intrinsic nonlinearity of bubble dynamics. When applying successive ultrasound shots for increasing and decreasing acoustic intensities, a hysteretic behaviour is experimentally observed on inertial cavitation activity, with a loop area sensitive to the inertial cavitation threshold. To get a better insight of the phenomena underlying this hysteretic effect, the evolution of the bubble size distribution is studied numerically by implementing rectified diffusion, fragmentation process, rising and dissolution of bubbles from an initial bubble size distribution. When applying increasing and decreasing acoustic intensities, the numerical distribution exhibits asymmetry in bubble number and distribution. The resulting inertial cavitation activity is assessed through the numerical broadband noise of the emitted acoustic radiation of the bubble cloud dynamics. This approach allows obtaining qualitatively the observed hysteretic effect and its interest in terms of control is discussed. PMID:26186844

  3. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  4. Cavitation inception by the backscattering of pressure waves from a bubble interface

    NASA Astrophysics Data System (ADS)

    Takahira, Hiroyuki; Ogasawara, Toshiyuki; Mori, Naoto; Tanaka, Moe

    2015-10-01

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t0 to a characteristic time of wave propagation tS, η = t0/ts, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  5. Multidimensional spectrometer

    SciTech Connect

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  6. Preheating in bubble collisions

    SciTech Connect

    Zhang Jun; Piao Yunsong

    2010-08-15

    In a landscape with metastable minima, the bubbles will inevitably nucleate. We show that when the bubbles collide, due to the dramatic oscillation of the field at the collision region, the energy deposited in the bubble walls can be efficiently released by the explosive production of the particles. In this sense, the collision of bubbles is actually highly inelastic. The cosmological implications of this result are discussed.

  7. Beer tapping: dynamics of bubbles after impact

    NASA Astrophysics Data System (ADS)

    Mantič-Lugo, V.; Cayron, A.; Brun, P.-T.; Gallaire, F.

    2015-12-01

    Beer tapping is a well known prank where a bottle of beer is impacted from the top by a solid object, usually another bottle, leading to a sudden foam overflow. A description of the shock-driven bubble dynamics leading to foaming is presented based on an experimental and numerical study evoking the following physical picture. First, the solid impact produces a sudden downwards acceleration of the bottle creating a strong depression in the liquid bulk. The existing bubbles undergo a strong expansion and a sudden contraction ending in their collapse and fragmentation into a large amount of small bubbles. Second, the bubble clouds present a large surface area to volume ratio, enhancing the CO2 diffusion from the supersaturated liquid, hence growing rapidly and depleting the CO2. The clouds of bubbles migrate upwards in the form of plumes pulling the surrounding liquid with them and eventually resulting in the foam overflow. The sudden pressure drop that triggers the bubble dynamics with a collapse and oscillations is modelled by the Rayleigh-Plesset equation. The bubble dynamics from impact to collapse occurs over a time (tb ≃ 800 μs) much larger than the acoustic time scale of the liquid bulk (tac = 2H/c ≃ 80 μs), for the experimental container of height H = 6 cm and a speed of sound around c ≃ 1500 m/s. This scale separation, together with the comparison of numerical and experimental results, suggests that the pressure drop is controlled by two parameters: the acceleration of the container and the distance from the bubble to the free surface.

  8. Experimental Investigations of the Internal Energy of Molecules Evaporated via Laser-induced Acoustic Desorption into a Fourier-transform Ion Cyclotron Resonance Mass Spectrometer (LIAD/FT-ICR)

    PubMed Central

    Shea, Ryan C.; Petzold, Christopher J.; Liu, Ji-ang; Kenttämaa, Hilkka I.

    2008-01-01

    The internal energy of neutral gas-phase organic and biomolecules, evaporated by means of laser-induced acoustic desorption (LIAD) into a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR), was investigated through several experimental approaches. The desorbed molecules were demonstrated not to undergo degradation during the desorption process by collecting LIAD-evaporated molecules and subjecting them to analysis by electrospray ionization/quadrupole ion trap mass spectrometry. Previously established gas-phase basicity (GB) values were remeasured for LIAD-evaporated organic molecules and biomolecules with the use of the bracketing method. No endothermic reactions were observed. The remeasured basicity values are in close agreement with the values reported in the literature. The amount of internal energy deposited during LIAD is concluded to be less than a few kcal/mol. Chemical ionization with a series of proton transfer reagents was employed to obtain a breakdown curve for a protonated dipeptide, val-pro, evaporated by LIAD. Comparison of this breakdown curve with a previously published analogous curve obtained by using substrate-assisted laser desorption (SALD) to evaporate the peptide suggests that the molecules evaporated via LIAD have less internal energy than those evaporated via SALD. PMID:17263513

  9. The size of active bubbles for the production of hydrogen in sonochemical reaction field.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid

    2016-09-01

    The sonication of aqueous solution generates microscopic cavitation bubbles that may growth and violently collapse to produce highly reactive species (i.e. OH, HO2 and H2O2), hydrogen and emit light, sonoluminescence. The bubble size is a key parameter that influences the chemical activity of the system. This wok aims to study theoretically the size of active bubbles for the production of hydrogen in ultrasonic cavitation field in water using a single bubble sonochemistry model. The effect of several parameters such as frequency of ultrasound, acoustic intensity and liquid temperature on the range of sonochemically active bubbles for the production of hydrogen was clarified. The numerical simulation results showed that the size of active bubbles is an interval which includes an optimum value at which the production rate of H2 is maximal. It was shown that the range of ambient radius for an active bubble as well as the optimum bubble radius for the production of hydrogen increased with increasing acoustic intensity and decreased with increasing ultrasound frequency and bulk liquid temperature. It was found that the range of ambient bubble radius dependence of the operational conditions followed the same trend as those reported experimentally for sonoluminescing bubbles. Comparison with literature data showed a good agreement between the theoretical determined optimum bubble sizes for the production of hydrogen and the experimental reported sizes for sonoluminescing bubbles. PMID:27150777

  10. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  11. Vapor bubble generation around gold nano-particles and its application to damaging of cells.

    PubMed

    Kitz, M; Preisser, S; Wetterwald, A; Jaeger, M; Thalmann, G N; Frenz, M

    2011-01-01

    We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage. PMID:21339875

  12. Acoustically enhanced heat transport.

    PubMed

    Ang, Kar M; Yeo, Leslie Y; Friend, James R; Hung, Yew Mun; Tan, Ming K

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10(6) Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ∼ 10(-9) m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ∼ 10(-8) m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10(-8) m with 10(6) Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation. PMID:26827343

  13. Acoustically enhanced heat transport

    NASA Astrophysics Data System (ADS)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  14. The effect of nearby bubbles on array gain.

    PubMed

    Culver, R Lee; Park, J Daniel; Leighton, Timothy G; Coles, David G H

    2011-12-01

    The coherent processing of signals from multiple hydrophones in an array offers improvements in angular resolution and signal-to-noise ratio. When the array is steered in a particular direction, the signals arriving from that direction are added in phase, and any signals arriving from other directions are not. Array gain (AG) is a measure of how much the signal arriving from the steering direction is amplified relative to signals arriving from all other directions. The subject of this paper is the manner in which the AG of an acoustic array operating in water that contains air bubbles is affected by scattering from nearby bubbles. The effects of bubbles on acoustic attenuation and dispersion are considered separately from their effects on AG. Acoustic measurements made in bubbly water using the AB Wood tank at the Institute of Sound and Vibration Research, University of Southampton, in June 2008 show that as bubble density increases, relative phase shifts in individual hydrophone signals increase and signal correlation among the hydrophones is reduced. A theory and numerical simulation linking bubble density at the hydrophone to the AG is in good agreement with the measurements up to the point where multiple scattering becomes important. PMID:22225039

  15. Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor.

    PubMed

    Servant, G; Caltagirone, J P; Gérard, A; Laborde, J L; Hita, A

    2000-10-01

    The use of high frequency ultrasound in chemical systems is of major interest to optimize chemical procedures. Characterization of an open air 477 kHz ultrasound reactor shows that, because of the collapse of transient cavitation bubbles and pulsation of stable cavitation bubbles, chemical reactions are enhanced. Numerical modelling is undertaken to determine the spatio-temporal evolution of cavitation bubbles. The calculus of the emergence of cavitation bubbles due to the acoustic driving (by taking into account interactions between the sound field and bubbles' distribution) gives a cartography of bubbles' emergence within the reactor. Computation of their motion induced by the pressure gradients occurring in the reactor show that they migrate to the pressure nodes. Computed bubbles levitation sites gives a cartography of the chemical activity of ultrasound. Modelling of stable cavitation bubbles' motion induced by the motion of the liquid gives some insight on degassing phenomena. PMID:11062879

  16. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  17. Numerical Simulation of Bubble Formation in Co-Flowing Mercury

    SciTech Connect

    Abdou, Ashraf A; Wendel, Mark W; Felde, David K; Riemer, Bernie

    2008-01-01

    In this work, we present computational fluid dynamics (CFD) simulations of helium bubble formation and detachment at a submerged needle in stagnant and co-flowing mercury. Since mercury is opaque, visualization of internal gas bubbles was done with proton radiography (pRad) at the Los Alamos Neutron Science Center (LANSCE2). The acoustic waves emitted at the time of detachment and during subsequent oscillations of the bubble were recorded with a microphone. The Volume of Fluid (VOF) model was used to simulate the unsteady two-phase flow of gas injection in mercury. The VOF model is validated by comparing detailed bubble sizes and shapes at various stages of the bubble growth and detachment, with the experimental measurements at different gas flow rates and mercury velocities. The experimental and computational results show a two-stage bubble formation. The first stage involves growing bubble around the needle, and the second follows as the buoyancy overcomes wall adhesion. The comparison of predicted and measured bubble sizes and shapes at various stages of the bubble growth and detachment is in good agreement.

  18. Detecting dark matter with scintillating bubble chambers

    NASA Astrophysics Data System (ADS)

    Zhang, Jianjie; Dahl, C. Eric; Jin, Miaotianzi; Baxter, Daniel

    2016-03-01

    Threshold based direct WIMP dark matter detectors such as the superheated bubble chambers developed by the PICO experiment have demonstrated excellent electron-recoil and alpha discrimination, excellent scalability, ease of change of target fluid, and low cost. However, the nuclear-recoil like backgrounds have been a limiting factor in their dark matter sensitivity. We present a new type of detector, the scintillating bubble chamber, which reads out the scintillation pulse of the scattering events as well as the pressure, temperature, acoustic traces, and bubble images as a conventional bubble chamber does. The event energy provides additional handle to discriminate against the nuclear-recoil like backgrounds. Liquid xenon is chosen as the target fluid in our prototyping detector for its high scintillation yield and suitable vapor pressure which simplifies detector complexity. The detector can be used as an R&D tool to study the backgrounds present in the current PICO bubble chambers or as a prototype for standalone dark matter detectors in the future. Supported by DOE Grant DE-SC0012161.

  19. Bubble Velocities in Slowly Sheared Bubble Rafts

    NASA Astrophysics Data System (ADS)

    Dennin, Michael

    2004-03-01

    Many complex fluids, such as foams, emulsions, colloids, and granular matter, exhibit interesting flow behavior when subjected to slow, steady rates of strain. The flow is characterized by irregular fluctuations in the stress with corresponding nonlinear rearrangements of the individual particles. We focus on the flow behavior of a model two-dimensional system: bubble rafts. Bubble rafts consist of a single layer of soap bubbles floating on the surface of a liquid subphase, usually a soap-water solution. The bubbles are sheared using a Couette geometry, i.e. concentric cylinders. We rotate the outer cylinder at a constant rate and measure the motions of individual bubbles and the stress on the inner cylinder. We will report on the velocity profiles of the bubbles averaged over long-times and averaged over individual stress events. The long-time average velocities are well described by continuum models for fluids with the one surprising feature that there exists a critical radius at which the shear-rate is discontinuous. The individual profiles are highly nonlinear and strongly correlated with the stress fluctuations. We will discuss a number of interesting questions. Can the average profiles be understood in a simple way given the individual velocities? Is there a clear "classification" for the individual profiles, or are they purely random? What sets the critical radius for a given set of flow conditions?

  20. Consistency in statistical moments as a test for bubble cloud clustering.

    PubMed

    Weber, Thomas C; Lyons, Anthony P; Bradley, David L

    2011-11-01

    Frequency dependent measurements of attenuation and/or sound speed through clouds of gas bubbles in liquids are often inverted to find the bubble size distribution and the void fraction of gas. The inversions are often done using an effective medium theory as a forward model under the assumption that the bubble positions are Poisson distributed (i.e., statistically independent). Under circumstances in which single scattering does not adequately describe the pressure field, the assumption of independence in position can yield large errors when clustering is present, leading to errors in the inverted bubble size distribution. It is difficult, however, to determine the existence of clustering in bubble clouds without the use of specialized acoustic or optical imaging equipment. A method is described here in which the existence of bubble clustering can be identified by examining the consistency between the first two statistical moments of multiple frequency acoustic measurements. PMID:22088013

  1. Analysis of spark-induced bubble experiments using CALE

    SciTech Connect

    Simonson, S.C. III; McAllister, S.W.

    1993-10-01

    Calculations were made using the 2-D hydrodynamics code CALE of underwater bubble oscillations and collapse for two situations of interest in the development of underwater acoustic sources. The first is the case of a single bubble to which energy is added to prolong oscillations. The second is the case of a three-bubble array, which typifies one end element in a linear array. Comparisons were made with a series of experiments with spark-induced bubbles carried out at Tetra Corp. The bubbles were made at a depth of 64 cm with periods of about 400 {mu}s. Onedimensional calculations were used to study single bubbles. The 1-D results showed that energy needs to be added at a precise phase in order to promote bubble re-excitation. The experiments showed evidence of losses caused by interaction with the relatively large electrodes upon collapse, leading to a 50 percent reduction in amplitude and period of the second oscillation. When a second discharge was made at the end of the first o on, the next osculation had 80 percent of the amplitude of the first. This can be interpreted either as formation of a new bubble, or as pumping the previous bubble, both occurring in a disturbed environment. Two-dimensional calculations were used to study the three-bubble array. The 2-D results showed significant interaction between the central and side bubbles, leading to jetting. For the particular combination of size and spacing used, jetting occurred in the third oscillation of the bubbles.

  2. Electrowetting of soap bubbles

    NASA Astrophysics Data System (ADS)

    Arscott, Steve

    2013-07-01

    A proof-of-concept demonstration of the electrowetting-on-dielectric of a sessile soap bubble is reported here. The bubbles are generated using a commercial soap bubble mixture—the surfaces are composed of highly doped, commercial silicon wafers covered with nanometer thick films of Teflon®. Voltages less than 40 V are sufficient to observe the modification of the bubble shape and the apparent bubble contact angle. Such observations open the way to inter alia the possibility of bubble-transport, as opposed to droplet-transport, in fluidic microsystems (e.g., laboratory-on-a-chip)—the potential gains in terms of volume, speed, and surface/volume ratio are non-negligible.

  3. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  4. Seamount acoustic scattering

    NASA Astrophysics Data System (ADS)

    Boehlert, George W.

    The cover of the March 1 issue of Eos showed a time series of acoustic scattering above Southeast Hancock Seamount (29°48‧N, 178°05‧E) on July 17-18, 1984. In a comment on that cover Martin Hovland (Eos, August 2, p. 760) argued that gas or “other far reaching causes” may be involved in the observed acoustic signals. He favors a hypothesis that acoustic scattering observed above a seeping pockmark in the North Sea is a combination of bubbles, stable microbubbles, and pelagic organisms and infers that this may be a more general phenomenon and indeed plays a role in the attraction of organisms to seamounts

  5. A method for predicting the number of active bubbles in sonochemical reactors.

    PubMed

    Merouani, Slimane; Ferkous, Hamza; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2015-01-01

    Knowledge of the number of active bubbles in acoustic cavitation field is very important for the prediction of the performance of ultrasonic reactors toward most chemical processes induced by ultrasound. The literature in this field is scarce, probably due to the complicated nature of the phenomena. We introduce here a relatively simple semi-empirical method for predicting the number of active bubbles in an acoustic cavitation field. By coupling the bubble dynamics in an acoustical field with chemical kinetics occurring in the bubble during oscillation, the amount of the radical species OH and HO2 and molecular H2O2 released by a single bubble was estimated. Knowing that the H2O2 measured experimentally during sonication of water comes from the recombination of hydroxyl (OH) and perhydroxyl (HO2) radicals in the liquid phase and assuming that in sonochemistry applications, the cavitation is transient and the bubble fragments at the first collapse, the number of bubbles formed per unit time per unit volume is then easily determined using material balances for H2O2, OH and HO2 in the liquid phase. The effect of ultrasonic frequency on the number of active bubbles was examined. It was shown that increasing ultrasonic frequency leads to a substantial increase in the number of bubbles formed in the reactor. PMID:25127247

  6. Prospects for bubble fusion

    SciTech Connect

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  7. Multiaperture Spectrometer

    NASA Technical Reports Server (NTRS)

    Schindler, Rudolf A.; Pagano, Robert J.; O'Callaghan, Fred G.

    1991-01-01

    Proposed multiaperture spectrometer containing single grating provides high spectral resolution over broad spectrum. Produces parallel line images, each of which highly spectrally resolved display of intensity vs. wavelength in wavelength band of one of orders of spectrum produced by grating. Advantages; convenient two-dimensional spectral image, fewer components, and greater efficiency.

  8. Spectrometer gun

    DOEpatents

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  9. Spectrometer gun

    DOEpatents

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  10. Electrochemical 'bubble swarm' enhancement of ultrasonic surface cleaning.

    PubMed

    Birkin, P R; Offin, D G; Vian, C J B; Leighton, T G

    2015-09-01

    An investigation of surface cleaning using a swarm of gas bubbles within an acoustically activated stream is presented. Electrolysis of water at Pt microwires (100 μm diameter) to produce both hydrogen and oxygen bubbles is shown to enhance the extent of ultrasonic surface cleaning in a free flowing water stream containing an electrolyte (0.1 M Na2SO4) and low surfactant concentration (2 mM SDS). The surfactant was employed to allow control of the average size of the bubble population within the swarm. The electrochemical bubble swarm (EBS) is shown to perturb acoustic transmission through the stream. To optimise the cleaning process both the ultrasonic field and the electrochemical current are pulsed and synchronized but with different duty cycles. Cleaning action is demonstrated on structured surfaces (porcine skin and finger mimics) loaded with fluorescent particles. This action is shown to be significantly enhanced compared to that found with an inherent bubble population produced by the flow and acoustic regime alone under the same conditions. PMID:26234563

  11. The effect of viscosity, applied frequency and driven pressure on the laser induced bubble luminescence in water-sulfuric acid mixtures

    NASA Astrophysics Data System (ADS)

    Sadighi-Bonabi, Rasoul; Alijan Farzad Lahiji, Faezeh; Razeghi, Fatemeh

    2016-06-01

    Production and oscillation of sonoluminescence bubbles by laser pulse in the presence of acoustic field in water and different concentrations of sulfuric acid are investigated. In the presence of acoustic field, the laser causes variable speed of sound, surface tension and density; and the host liquid acts as a compressible one and strongly affects the bubble's dynamics equations. The effect of various concentrations of sulfuric acid as a host liquid on the oscillation of bubble radius, bubble wall velocity and bubble interior temperature is studied. Furthermore, the effect of applied frequency on LI-SCBL in the presence of the acoustic field is investigated and an optimum sound wave frequency for the bubble oscillation and bubble interior temperature in pure water and SA is introduced. Based on the modification of RP equation, by applying the optimum frequency, the results indicate that the maximum bubble radius for LI-SCBL in the presence of the acoustic field is increased up to 7 ×10-4 m as this article presents, which is more than 40% improvement. This amount results in interior temperature of more than three times, from almost 5000 K in the previous works to almost 16 000 K in the present report. This is very similar to the experimental measurements for bubble radius induced by laser. Furthermore, the effects of driving pressure amplitudes on the bubble radius, the bubble interior temperature and the bubble wall velocity in different host liquids and in optimum frequency are investigated.

  12. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall

    NASA Astrophysics Data System (ADS)

    Suslov, Sergey A.; Ooi, Andrew; Manasseh, Richard

    2012-06-01

    The nonlinear dynamic behavior of microscopic bubbles near a rigid wall is investigated. Oscillations are driven by the ultrasonic pressure field that arises in various biomedical applications such as ultrasound imaging or targeted drug delivery. It is known that, when bubbles approach a blood-vessel wall, their linear dynamic response is modified. This modification may be very useful for real-time detection of bubbles that have found targets; in future therapeutic technologies, it may be useful for controlled release of medical agents encapsulating microbubbles. In this paper, the nonlinear response of microbubbles near a wall is studied. The Keller-Miksis-Parlitz equation is adopted, but modified to account for the presence of a rigid wall. This base model describes the time evolution of the bubble surface, which is assumed to remain spherical, and accounts for the effect of acoustic radiation losses owing to liquid compressibility in the momentum conservation. Two situations are considered: the base case of an isolated bubble in an unbounded medium, and a bubble near a rigid wall. In the latter case, the wall influence is modeled by including a symmetrically oscillating image bubble. The bubble dynamics is traced using a numerical solution of the model equation. Subsequently, Floquet theory is used to accurately detect the bifurcation point where bubble oscillations stop following the driving ultrasound frequency and undergo period-changing bifurcations. Of particular interest is the detection of the subcritical period-tripling and -quadrupling transition. The parametric bifurcation maps are obtained as functions of nondimensional parameters representing the bubble radius, the frequency and pressure amplitude of the driving ultrasound field, and the distance from the wall. It is shown that the presence of the wall generally stabilises the bubble dynamics, so that much larger values of the pressure amplitude are needed to generate nonlinear responses. Thus, a

  13. Gases in Tektite Bubbles.

    PubMed

    O'keefe, J A; Lowman, P D; Dunning, K L

    1962-07-20

    Spectroscopic analysis of light produced by electrodeless discharge in a tektite bubble showed the main gases in the bubble to be neon, helium, and oxygen. The neon and helium have probably diffused in from the atmosphere, while the oxygen may be atmospheric gas incorporated in the tektite during its formation. PMID:17801113

  14. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  15. Clustering in bubbly liquids

    NASA Astrophysics Data System (ADS)

    Figueroa, Bernardo; Zenit, Roberto

    2004-11-01

    We are conducting experiments to determine the amount of clustering that occurs when small gas bubbles ascend in clean water. In particular, we are interested in flows for which the liquid motion around the bubbles can be described, with a certain degree of accuracy, using potential flow theory. This model is applicable for the case of bubbly liquids in which the Reynolds number is large and the Weber number is small. To clearly observe the formation of bubble clusters we propose the use of a Hele-Shaw-type channel. In this thin channel the bubbles cannot overlap in the depth direction, therefore the identification of bubble clusters cannot be misinterpreted. Direct video image analysis is performed to calculate the velocity and size of the bubbles, as well as the formation of clusters. Although the walls do affect the motion of the bubbles, the clustering phenomena does occur and has the same qualitative behavior as in fully three-dimensional flows. A series of preliminary measurements are presented. A brief discussion of our plans to perform PIV measurements to obtain the liquid velocity fields is also presented.

  16. Cost versus Enrollment Bubbles

    ERIC Educational Resources Information Center

    Vedder, Richard K.; Gillen, Andrew

    2011-01-01

    The defining characteristic of a bubble is unsustainable growth that eventually reverses. Bubbles typically arise when uncertainty leads to unsustainable trends, and the authors argue that there are two areas in which higher education has experienced what appear to be unsustainable trends, namely, college costs (the costs to students, parents, and…

  17. Let Them Blow Bubbles.

    ERIC Educational Resources Information Center

    Korenic, Eileen

    1988-01-01

    Describes a series of activities and demonstrations involving the science of soap bubbles. Starts with a recipe for bubble solution and gives instructions for several activities on topics such as density, interference colors, optics, static electricity, and galaxy formation. Contains some background information to help explain some of the effects.…

  18. Atmospheric-pressure microplasma in dielectrophoresis-driven bubbles for optical emission spectroscopy.

    PubMed

    Fan, Shih-Kang; Shen, Yan-Ting; Tsai, Ling-Pin; Hsu, Cheng-Che; Ko, Fu-Hsiang; Cheng, Yu-Ting

    2012-10-01

    The manipulation of bubbles and the ignition of microplasma within a 200 nL bubble at atmospheric pressure and in an inert silicone oil environment were achieved. Driven by dielectrophoresis (DEP), bubble generation, transportation, mixing, splitting, and expelling were demonstrated. This process facilitated the preparation of various bubbles with tuneable gas compositions. Different gas bubbles, including air, argon (Ar), helium (He), and Ar/He mixtures, were manipulated and ignited to the plasma state by dielectric barrier discharge (DBD) within a 50 μm-high gap between parallel plates. Moving and splitting the atmospheric-pressure microplasma in different gas bubbles were achieved by DEP. The excited light of the microplasma was recorded by an optical spectrometer for the optical emission spectroscopy (OES) analyses. The characteristic peaks of air, Ar, and He were observed in the DEP-driven microplasma. With the capability to manipulate bubbles and microplasma, this platform could be used for gas analyses in the future. PMID:22878730

  19. The Action of Pressure-Radiation Forces on Pulsating Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Oguz, N.; Prosperetti, A.

    2001-01-01

    The action of pressure-radiation (or Bjerknes) forces on gas bubbles is well understood. This paper studies the analogous phenomenon for vapor bubbles, about which much less is known. A possible practical application is the removal of boiling bubbles from the neighborhood of a heated surface in the case of a downward facing surface or in the absence of gravity. For this reason, the case of a bubble near a plane rigid surface is considered in detail. It is shown that, when the acoustic wave fronts are parallel to the surface, the bubble remains trapped due to secondary Bjerknes force caused by an "image bubble." When the wave fronts are perpendicular to the surface, on the other hand, the bubble can be made to slide laterally.

  20. Model for the dynamics of two interacting axisymmetric spherical bubbles undergoing small shape oscillations.

    PubMed

    Kurihara, Eru; Hay, Todd A; Ilinskii, Yurii A; Zabolotskaya, Evgenia A; Hamilton, Mark F

    2011-11-01

    Interaction between acoustically driven or laser-generated bubbles causes the bubble surfaces to deform. Dynamical equations describing the motion of two translating, nominally spherical bubbles undergoing small shape oscillations in a viscous liquid are derived using Lagrangian mechanics. Deformation of the bubble surfaces is taken into account by including quadrupole and octupole perturbations in the spherical-harmonic expansion of the boundary conditions on the bubbles. Quadratic terms in the quadrupole and octupole amplitudes are retained, and surface tension and shear viscosity are included in a consistent manner. A set of eight coupled second-order ordinary differential equations is obtained. Simulation results, obtained by numerical integration of the model equations, exhibit qualitative agreement with experimental observations by predicting the formation of liquid jets. Simulations also suggest that bubble-bubble interactions act to enhance surface mode instability. PMID:22088009

  1. Cloud cavitation induced by shock-bubble interaction in a viscoelastic solid

    NASA Astrophysics Data System (ADS)

    Oguri, Ryota; Ando, Keita

    2015-12-01

    We experimentally study a shock-bubble interaction problem in a viscoelastic solid, which is relevant to shock wave lithotripsy. A gas bubble is produced by focusing an infrared laser pulse into gelatin. A spherical shock is then created, through rapid expansion of plasma that results from the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gelatin under tension that results from acoustic impedance mismatching at the bubble wall. Namely, the shock reflects at the bubble interface as a rarefaction wave, which induces the nucleation of cavitation bubbles as a result of rupturing the gelatin.

  2. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  3. Nucleus factory on cavitation bubble for amyloid β fibril

    NASA Astrophysics Data System (ADS)

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-02-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability.

  4. Nucleus factory on cavitation bubble for amyloid β fibril

    PubMed Central

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-01-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability. PMID:26912021

  5. Nucleus factory on cavitation bubble for amyloid β fibril.

    PubMed

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-01-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability. PMID:26912021

  6. The Bubbling Galactic Disk

    NASA Astrophysics Data System (ADS)

    Churchwell, E.; Povich, M. S.; Allen, D.; Taylor, M. G.; Meade, M. R.; Babler, B. L.; Indebetouw, R.; Watson, C.; Whitney, B. A.; Wolfire, M. G.; Bania, T. M.; Benjamin, R. A.; Clemens, D. P.; Cohen, M.; Cyganowski, C. J.; Jackson, J. M.; Kobulnicky, H. A.; Mathis, J. S.; Mercer, E. P.; Stolovy, S. R.; Uzpen, B.; Watson, D. F.; Wolff, M. J.

    2006-10-01

    A visual examination of the images from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) has revealed 322 partial and closed rings that we propose represent partially or fully enclosed three-dimensional bubbles. We argue that the bubbles are primarily formed by hot young stars in massive star formation regions. We have found an average of about 1.5 bubbles per square degree. About 25% of the bubbles coincide with known radio H II regions, and about 13% enclose known star clusters. It appears that B4-B9 stars (too cool to produce detectable radio H II regions) probably produce about three-quarters of the bubbles in our sample, and the remainder are produced by young O-B3 stars that produce detectable radio H II regions. Some of the bubbles may be the outer edges of H II regions where PAH spectral features are excited and may not be dynamically formed by stellar winds. Only three of the bubbles are identified as known SNRs. No bubbles coincide with known planetary nebulae or W-R stars in the GLIMPSE survey area. The bubbles are small. The distribution of angular diameters peaks between 1' and 3' with over 98% having angular diameters less than 10' and 88% less than 4'. Almost 90% have shell thicknesses between 0.2 and 0.4 of their outer radii. Bubble shell thickness increases approximately linearly with shell radius. The eccentricities are rather large, peaking between 0.6 and 0.7; about 65% have eccentricities between 0.55 and 0.85.

  7. Bubbles, Bubbles: Integrated Investigations with Floating Spheres

    ERIC Educational Resources Information Center

    Reeder, Stacy

    2007-01-01

    In this article, the author describes integrated science and mathematics activities developed for fourth-grade students to explore and investigate three-dimensional geometric shapes, Bernoulli's principle, estimation, and art with and through bubbles. Students were engaged in thinking and reflection on the questions their teachers asked and were…

  8. The Spectrometer

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  9. Radial oscillation of a gas bubble in a fluid as a problem in canonical perturbation theory

    NASA Astrophysics Data System (ADS)

    Stephens, James

    2006-11-01

    The oscillation of a gas bubble is in a fluid is of interest in many areas of physics and technology. Lord Rayleigh treated the pressure developed in the collapse of cavitation bubbles and developed an expression for the collapse period. Minnaert developed a harmonic oscillator approximation to bubble oscillation in his study of the sound produced by running water. Besides recent interest in bubble oscillation in connection to sonoluminescence, an understanding of oscillating bubbles is of important to oceanographers studying the sound spectrum produced by water waves, geophysicists employing air guns as acoustic probes, mechanical engineers concerned with erosion of turbine blades, and military engineers concerned with the acoustic signatures developed by the propeller screws of ships and submarines. For the oceanographer, Minnaert's approximation is useful, for the latter two examples, Lord Rayleigh's analysis is appropriate. For the case of the airgun, a period of twice Rayleigh's period for the ``total collapse'' of the cavitation bubble is often cited as a good approximation for the period of an air bubble ejected from an air gun port, typically at ˜2000 psi), however for the geophysical example, numerical integration is employed from the outset to determine the dynamics of the bubble and the emitted acoustic energy. On the one hand, a bubble can be treated as a harmonic oscillator in the small amplitude regime, whereas even in the relatively moderate pressure regime characteristic of air guns the oscillation is strongly nonlinear and amplitude dependent. Is it possible to develop an analytic approximation that affords insight into the behavior of a bubble beyond the harmonic approximation of Minnaert? In this spirit, the free radial oscillation of a gas bubble in a fluid is treated as a problem in canonical perturbation theory. Several orders of the expansion are determined in order to explore the dependence of the oscillation frequency with bubble amplitude

  10. The Investigation of the Effects of Gravity on Single Bubble Sonoluminescence

    NASA Technical Reports Server (NTRS)

    Dzikowicz, Ben; Thiessen, David B.; Marston, Philip

    2000-01-01

    In single bubble following it's rapid collapse each cycle of oscillation of an ultrasonic field. Since widely varying length and time scales affect the bubble dynamics and optical emission processes, it is difficult to anticipate the importance of the effects of gravity present for observations on earth. Our bubble is driven in an acoustically resonating cavity at it's first harmonic mode. The acoustical radiation pressure (Bjerknes force) will then keep it suspended in the center near the pressure antinode. When driven in a region where the diffusive processes balance the bubble it acts in a nonlinear but regular way, emitting a short (approx. 200ps) burst of light each acoustic cycle. Balancing the Bjerknes force with buoyancy, as in, we can see that the bubble should be displaced from the velocity node approximately 20m at normal gravity. Therefore, water flows past the bubble at the time of collapse. Gravitation also changes the ambient pressure at the bubble's location, as Delta.P = rho.g.h this gives a change of approximately -0.5% in our experiment when going from 1.8g to 0g. Studies of ambient pressure changes were also done in order to assess these effects. Inside a pressure sealed chamber a spherical glass cell is filled with distilled water which has been degassed to 120mmHg. A bubble is then trapped in the center and driven by a piezoelectric transducer at 32.2kHz attached to the side of the cell. An optical system is then set up to take strobbed video images along and light emission data simultaneously. Temperature, pressure, drive voltage, and listener voltage are also monitored. PMT output in Volts The radii of the bubbles for both experiment s are fit using the Rayleigh-Plesset equation and the acoustic drive amplitude and the ambient bubble radius are found. There is little change in the acoustic drive amplitude as we expect, since we are not varying the drive voltage. However. the ambient bubble radius goes up considerably. These changes

  11. Quantification of methane bubbles ebullition in freshwater reservoirs of temperate zone using sonar working with 120 kHz frequency

    NASA Astrophysics Data System (ADS)

    Frouzova, Jaroslava; Tuser, Michal; Stanovsky, Petr

    2014-05-01

    During hydroacoustic vertical surveys of fish, an indispensable amount of gas bubbles have been observed rising from the bottom towards the water surface. Unfortunately, the gas ebullition essentially interferes with acoustic detection of fish, thereby biasing an estimate of fish quantity. First, to distinguish between fish and bubble echo, comparing acoustic properties of the echoes (e.g. echo shape, echo width, or phase deviation) seemed to be inapplicable. Nevertheless, the difference in the movement 'behavior' (i.e., direction and speed), looks more promising, but it is necessary to obtain the exact position of a sound beam. Furthermore, in case of shallow waters where a horizontally-oriented beam is usually deployed, the method for distinguishing fish and bubbles with the movement behavior is possible, but more complicated to apply due to the boat motion and a different bubble crossing through a beam (i.e. altering position not in a range domain, but in a phase domain of the beam). Second, when gas bubbles are recognized, a functional regression model of acoustic response to the bubble size can be used to estimate size and volume distribution of bubbles. The experiment with man-made methane bubbles was performed to learn the dependence of acoustic response to the bubble size, and a regression model was created

  12. Tribonucleation of bubbles

    PubMed Central

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2014-01-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for “writing with bubbles,” i.e., creating controlled patterns of microscopic bubbles. PMID:24982169

  13. Nature of the `extreme conditions` in single sonoluminescing bubbles

    SciTech Connect

    Lepoint-Mullie, F.; De Pauw, D.; Lepoint, T.; Supiot, P.; Avni, R. |

    1996-07-25

    A plasma diagnostics analysis is reported which looks at the experimental spectrum of the sonoluminescence emitted by a single argon bubble oscillating nonlinearly in an acoustic field. Under the hypothesis that the bubble is mainly filled with Ar atoms able to participate in the plasma, an order-of-magnitude estimation of the electron density (N{sub e}) associated with the intracavity medium gives N{sub e} = 10{sup 25} m{sup -3}, with an electronic temperature estimated to be about 20000 K, perhaps more. This analysis suggests that the conditions at the root of single-bubble sonoluminescence are highly energy charged and may be compatible with a sparklike process. The plasma developed inside the argon bubble is assumed to be in local thermodynamic equilibrium. 26 refs., 4 figs.

  14. On the influence of stochastic pulsations of a bubble on its translational motion

    NASA Astrophysics Data System (ADS)

    Melnikov, N. P.

    2016-06-01

    This communication is devoted to theoretical analysis of the dynamics of a solitary cavitation bubble pulsating in a compressible viscous liquid under the action of a nonuniform acoustic field. The system of two nonlinear ordinary second-order differential equations is integrated numerically. In the range of acoustic field parameters corresponding to the principal resonance region, the bubble performs large-scale spatial oscillations. It is shown that in a very small range of initial radii, the bubble stops its oscillatory motion due to stochastic pulsations and is expelled into the region of the acoustic-pressure block. Therefore, stochastic pulsations of the bubble radically change the form of the solution to the system of the above-mentioned equations.

  15. Oscillatory Dynamics of Single Bubbles and Agglomeration in a Sound Field in Microgravity

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Trinh, Eugene H.; Depew, Jon; Asaki, Thomas J.

    1994-01-01

    A dual-frequency acoustic levitator containing water was developed for studying bubble and drop dynamics in low gravity. It was flown on USML-1 where it was used in the Glovebox facility. High frequency (21 or 63 kHz) ultrasonic waves were modulated by low frequencies to excite shape oscillations on bubbles and oil drops ultrasonically trapped in the water. Bubble diameters were typically close to 1 cm or larger. When such large bubbles are acoustically trapped on the Earth, the acoustic radiation pressure needed to overcome buoyancy tends to shift the natural frequency for quadrupole (n = 2) oscillations above the prediction of Lamb's equation. In low gravity, a much weaker trapping force was used and measurements of n = 2 and 3 mode frequencies were closer to the ideal case. Other video observations in low gravity include: (i) the transient reappearance of a bulge where a small bubble has coalesced with a large one, (ii) observations of the dynamics of bubbles coated by oil indicating that shape oscillations can shift a coated bubble away from the oil-water interface of the coating giving a centering of the core, and (iii) the agglomeration of bubbles induced by the sound field.

  16. Significance of viscoelastic effects on the rising of a bubble and bubble-to-bubble interaction

    NASA Astrophysics Data System (ADS)

    Fernandez, Arturo

    2011-11-01

    Numerical results for the rising of a bubble and the interaction between two bubbles in non-Newtonian fluids will be discussed. The computations are carried out using a multiscale method combining front-tracking with Brownian dynamics simulations. The evaluation of the material properties for the non-Newtonian fluid will be discussed firstly. The results from the computations of a single bubble show how elastic effects modify the deformation and rising of the bubble by pulling the tail of it. The relationship between the strength of the elastic forces and the discontinuity in the bubble terminal velocity, when plotted versus bubble volume, is also observed in the computations. The bubble-to-bubble interaction is dominated not only by elastic effects but also by the shear-thinning caused by the leading bubble, which leads the trailing bubble to accelerate faster and coalesce with the leading bubble.

  17. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  18. Micro Dynamics of Pulsed Laser Induced Bubbles in Dusty Plasma Liquids

    SciTech Connect

    Teng, L.-W.; Tsai, C.-Y.; Tseng, Y.-P.; I Lin

    2008-09-07

    We experimentally study the micro dynamics of the laser induced plasma bubble in a dusty plasma liquid formed by negatively charged dust particles suspended in a low pressure rf Ar glow discharge. The plume from the ablation of the suspended dust particles pushes away dust particle and generates a dust-free plasma bubble. It then travels downward. The spatio-temporal evolution of the dust density fluctuation surrounding the bubble is monitored by directly tracking dust motion through optical video microscopy. The micro dynamics of the bubble associated dust acoustic type solitary oscillation in the wake field is investigated and discussed.

  19. Aerator Combined With Bubble Remover

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.

    1993-01-01

    System produces bubble-free oxygen-saturated water. Bubble remover consists of outer solid-walled tube and inner hydrophobic, porous tube. Air bubbles pass from water in outer tube into inner tube, where sucked away. Developed for long-term aquaculture projects in space. Also applicable to terrestrial equipment in which entrained bubbles dry membranes or give rise to cavitation in pumps.

  20. Numerical and physical modelling of bubbly flow phenomena

    NASA Astrophysics Data System (ADS)

    Sangani, A. S.

    1991-01-01

    The objective of this study is to develop theoretical tools -- analytical as well as numerical -- for understanding how the flows of bubbly liquids are affected by its microstructure, i.e., the detailed spatial, size, and velocity distribution of bubbles, and how the microstructure, in turn, is affected by the flow. This report describes the progress made to date on the several problems that are being studied. The first problem is concerned with the molecular-dynamics type simulations of monodispersed bubbly liquids under equilibrium and homogeneous conditions and their application to slightly inhomogeneous flows. The Reynolds number is large and the Weber and Froud numbers are small in these simulations. The second problem is concerned with the simulations of flows of bubbly liquids undergoing small amplitude oscillatory motion. Both the cases of bubbles with rigid (due to impurities) and stress-free interfaces are examined. The results are related to the added mass, Basset, and viscous drag coefficients. The third problem is concerned with the acoustic wave propagation in bubbly liquids at frequencies above natural frequency of the bubbles. The second problem is completed as of this writing. Work on the other two problems is currently in progress. A summary of the work to be carried out during the period 1/91 to 6/92 is given in the last section.

  1. Can airborne ultrasound monitor bubble size in chocolate?

    NASA Astrophysics Data System (ADS)

    Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.

    2014-04-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.

  2. What's in a Bubble?

    ERIC Educational Resources Information Center

    Saunderson, Megan

    2000-01-01

    Describes a unit on detergents and bubbles that establishes an interest in the properties of materials and focuses on active learning involving both hands- and minds-on learning rather than passive learning. (ASK)

  3. Blowing magnetic skyrmion bubbles

    NASA Astrophysics Data System (ADS)

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M. Benjamin; Fradin, Frank Y.; Pearson, John E.; Tserkovnyak, Yaroslav; Wang, Kang L.; Heinonen, Olle; te Velthuis, Suzanne G. E.; Hoffmann, Axel

    2015-07-01

    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally “blow” magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics.

  4. Chemistry in Soap Bubbles.

    ERIC Educational Resources Information Center

    Lee, Albert W. M.; Wong, A.; Lee, H. W.; Lee, H. Y.; Zhou, Ning-Huai

    2002-01-01

    Describes a laboratory experiment in which common chemical gases are trapped inside soap bubbles. Examines the physical and chemical properties of the gases such as relative density and combustion. (Author/MM)

  5. MASS SPECTROMETER

    DOEpatents

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  6. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Fumiya; Ando, Keita

    2015-11-01

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh-Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh-Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

  7. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    SciTech Connect

    Hamaguchi, Fumiya; Ando, Keita

    2015-11-15

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

  8. Bubble coalescence in magmas

    NASA Technical Reports Server (NTRS)

    Herd, Richard A.; Pinkerton, Harry

    1993-01-01

    The most important factors governing the nature of volcanic eruptions are the primary volatile contents, the ways in which volatiles exsolve, and how the resulting bubbles grow and interact. In this contribution we assess the importance of bubble coalescence. The degree of coalescence in alkali basalts has been measured using Image Analysis techniques and it is suggested to be a process of considerable importance. Binary coalescence events occur every few minutes in basaltic melts with vesicularities greater than around 35 percent.

  9. Sounds of marine seeps: a study of bubble activity near a rigid boundary.

    PubMed

    Maksimov, A O; Burov, B A; Salomatin, A S; Chernykh, D V

    2014-09-01

    A passive acoustic method for detecting environmentally dangerous gas leaks from pipelines and methane naturally leaking from the seabed has been investigated. Gas escape involves the formation and release of bubbles of different sizes. Each bubble emits a sound at a specific frequency. Determination of the bubble radius from the frequency of its signature passive acoustic emission by use of so-called Minnaert formula has a restricted area of applicability near the seabed. The point is that the inertial mass and the damping constant of the birthing bubble are markedly different from those of a free bubble. The theoretical model for the bubble volume oscillations near the seabed has been proposed and an analytical solution has been derived. It was shown that the bispherical coordinates provide separation of variables and are more suitable for analysis of the volume oscillations of these constrained bubbles. Explicit formulas have been derived, which describe the dependence of the bubble emission near a rigid wall on its size and the separation distance between the bubble and the boundary. PMID:25190382

  10. Clustering in Bubble Suspensions

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto

    2000-11-01

    A monidisperse bubble suspension is studied experimentally for the limit in which the Weber number is small and the Reynolds number is large. For this regime the suspension can be modeled using potential flow theory to describe the dynamics of the interstitial fluid. Complete theoretical descriptions have been composed (Spelt and Sangani, 1998) to model the behavior of these suspensions. Bubble clustering is a natural instability that arises from the potential flow considerations, in which bubbles tend to align in horizontal rafts as they move upwards. The appearance of bubble clusters was recently corroborated experimentally by Zenit et al. (2000), who found that although clusters did appear, their strength was not as strong as the predictions. Experiments involving gravity driven shear flows are used to explain the nature of the clustering observed in these type of flows. Balances of the bubble phase pressure (in terms of a calculated diffusion coefficient) and the Maxwell pressure (from the potential flow description) are presented to predict the stability of the bubble suspension. The predictions are compared with experimental results.

  11. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles

    PubMed Central

    Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2011-01-01

    Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses. PMID:22088027

  12. Cavitation inception by the backscattering of pressure waves from a bubble interface

    SciTech Connect

    Takahira, Hiroyuki Ogasawara, Toshiyuki Mori, Naoto Tanaka, Moe

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  13. Alaskan river environmental acoustics

    NASA Astrophysics Data System (ADS)

    Dahl, Peter H.; Pfisterer, Carl; Geiger, Harold J.

    2005-04-01

    Sonars are used by the Alaska Department of Fish and Game (ADF&G) to obtain daily and hourly estimates of at least four species of migratory salmon during their seasonal migration which lasts from June to beginning of September. Suspended sediments associated with a river's sediment load is an important issue for ADF&G's sonar operations. Acoustically, the suspended sediments are a source of both volume reverberation and excess attenuation beyond that expected in fresh water. Each can impact daily protocols for fish enumeration via sonar. In this talk, results from an environmental acoustic study conducted in the Kenai River (June 1999) using 420 kHz and 200 kHz side looking sonars, and in the Yukon River (July 2001) using a 120 kHz side looking sonar, are discussed. Estimates of the volume scattering coefficient and attenuation are related to total suspended sediments. The relative impact of bubble scattering and sediment scattering is also discussed.

  14. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  15. Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles

    PubMed Central

    Fernandez Rivas, David; Verhaagen, Bram; Seddon, James R. T.; Zijlstra, Aaldert G.; Jiang, Lei-Meng; van der Sluis, Luc W. M.; Versluis, Michel; Lohse, Detlef; Gardeniers, Han J. G. E.

    2012-01-01

    We present an ultrasonic device with the ability to locally remove deposited layers from a glass slide in a controlled and rapid manner. The cleaning takes place as the result of cavitating bubbles near the deposited layers and not due to acoustic streaming. The bubbles are ejected from air-filled cavities micromachined in a silicon surface, which, when vibrated ultrasonically at a frequency of 200 kHz, generate a stream of bubbles that travel to the layer deposited on an opposing glass slide. Depending on the pressure amplitude, the bubble clouds ejected from the micropits attain different shapes as a result of complex bubble interaction forces, leading to distinct shapes of the cleaned areas. We have determined the removal rates for several inorganic and organic materials and obtained an improved efficiency in cleaning when compared to conventional cleaning equipment. We also provide values of the force the bubbles are able to exert on an atomic force microscope tip. PMID:23964308

  16. Small-scale effects of underwater bubble clouds on ocean reflectance: 3-D modeling results.

    PubMed

    Piskozub, Jacek; Stramski, Dariusz; Terrill, Eric; Melville, W Kendall

    2009-07-01

    We examined the effect of individual bubble clouds on remote-sensing reflectance of the ocean with a 3-D Monte Carlo model of radiative transfer. The concentrations and size distribution of bubbles were defined based on acoustical measurements of bubbles in the surface ocean. The light scattering properties of bubbles for various void fractions were calculated using Mie scattering theory. We show how the spatial pattern, magnitude, and spectral behavior of remote-sensing reflectance produced by modeled bubble clouds change due to variations in their geometric and optical properties as well as the background optical properties of the ambient water. We also determined that for realistic sizes of bubble clouds, a plane-parallel horizontally homogeneous geometry (1-D radiative transfer model) is inadequate for modeling water-leaving radiance above the cloud. PMID:19582089

  17. A two-dimensional nonlinear model for the generation of stable cavitation bubbles.

    PubMed

    Vanhille, Christian

    2016-07-01

    Bubbles appear by acoustic cavitation in a liquid when rarefaction pressures attain a specific threshold value in a liquid. Once they are created, the stable cavitation bubbles oscillate nonlinearly and affect the ultrasonic field. Here we present a model developed for the study of bubble generation in a liquid contained in a two-dimensional cavity in which a standing ultrasonic field is established. The model considers dissipation and dispersion due to the bubbles. It also assumes that both the ultrasonic field and the bubble oscillations are nonlinear. The numerical experiments predict where the bubbles are generated from a population of nuclei distributed in the liquid and show how they affect the ultrasonic field. PMID:26964990

  18. Spectra of single-bubble sonoluminescence in water and glycerin-water mixtures

    NASA Astrophysics Data System (ADS)

    Gaitan, D. Felipe; Atchley, Anthony A.; Lewia, S. D.; Carlson, J. T.; Maruyama, X. K.; Moran, Michael; Sweider, Darren

    1996-07-01

    A single gas bubble, acoustically levitated in a standing-wave field and oscillating under the action of that field, can emit pulses of blue-white light with duration less than 50 ps. Measurements of the spectrum of this picosecond sonoluminescence with a scanning monochrometer are reported for air bubbles levitated in water and in glycerin-water mixtures. While the spectrum has been reported previously by others for air bubbles in water, the spectrum for air bubbles in water-glycerin mixtures has not. Expected emission lines from glycerin were conspicuously absent, suggesting a different mechanism for light production in single-bubble sonoluminescence. Other conclusions are the spectrum for air bubbles in water is consistent with that previously reported, the radiated energy decreases as the glycerin concentration increases, and the peak of the spectrum appears to shift to longer wavelengths for the water-glycerin mixtures.

  19. Molecular dynamics simulations of bubble nucleation in dark matter detectors

    NASA Astrophysics Data System (ADS)

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958), 10.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α -particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.

  20. Molecular dynamics simulations of bubble nucleation in dark matter detectors.

    PubMed

    Denzel, Philipp; Diemand, Jürg; Angélil, Raymond

    2016-01-01

    Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes. PMID:26871185

  1. Nonintrusive Monitoring and Control of Metallurgical Processes by Acoustic Measurements

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Ling; Khajavi, Leili Tafaghodi; Barati, Mansoor

    2011-06-01

    The feasibility of developing a new online monitoring technique based on the characteristic acoustic response of gas bubbles in a liquid has been investigated. The method is intended to monitor the chemistry of the liquid through its relation to the bubble sound frequency. A low-temperature model consisting of water and alcohol mixtures was established, and the frequency of bubbles rising under varying concentrations of methanol was measured. It was shown that the frequency of the sound created by bubble pulsation varies with the percentage of alcohol in water. The frequency drops sharply with the increase in methanol content up to 20 wt pct, after which the decreases is gradual. Surface tension seems to be a critical liquid property affecting the sound frequency through its two-fold effects on the bubble size and the pulsation domain. The dependence between the frequency and the liquid composition suggests the feasibility of developing an acoustic-based technique for process control purposes.

  2. Colliding with a crunching bubble

    SciTech Connect

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  3. Turbulent bubbly flow

    NASA Astrophysics Data System (ADS)

    van den Berg, Thomas H.; Luther, Stefan; Mazzitelli, Irene M.; Rensen, Judith M.; Toschi, Federico; Lohse, Detlef

    The effect of bubbles on fully developed turbulent flow is investigated numerically and experimentally, summarizing the results of our previous papers (Mazzitelli et al., 2003, Physics of Fluids15, L5. and Journal of Fluid Mechanics488, 283; Rensen, J. et al. 2005, Journal of Fluid Mechanics538, 153). On the numerical side, we simulate Navier Stokes turbulence with a Taylor Reynolds number of Re?˜60, a large large-scale forcing, and periodic boundary conditions. The point-like bubbles follow their Lagrangian paths and act as point forces on the flow. As a consequence, the spectral slope is less steep as compared to the Kolmogorov case. The slope decrease is identified as a lift force effect. On the experimental side, we do hot-film anemometry in a turbulent water channel with Re? ˜ 200 in which we have injected small bubbles up to a volume percentage of 3%. Here the challenge is to disentangle the bubble spikes from the hot-film velocity signal. To achieve this goal, we have developed a pattern recognition scheme. Furthermore, we injected microbubbles up to a volume percentage of 0.3%. Both in the counter flowing situation with small bubbles and in the co-flow situation with microbubbles, we obtain a less spectral slope, in agreement with the numerical result.

  4. Bubbles of Metamorphosis

    NASA Astrophysics Data System (ADS)

    Prakash, Manu

    2011-11-01

    Metamorphosis presents a puzzling challenge where, triggered by a signal, an organism abruptly transforms its entire shape and form. Here I describe the role of physical fluid dynamic processes during pupal metamorphosis in flies. During early stages of pupation of third instar larvae into adult flies, a physical gas bubble nucleates at a precise temporal and spatial location, as part of the normal developmental program in Diptera. Although its existence has been known for the last 100 years, the origin and control of this ``cavitation'' event has remained completely mysterious. Where does the driving negative pressure for bubble nucleation come from? How is the location of the bubble nucleation site encoded in the pupae? How do molecular processes control such a physical event? What is the role of this bubble during development? Via developing in-vivo imaging techniques, direct bio-physical measurements in live insect pupal structures and physical modeling, here I elucidate the physical mechanism for appearance and disappearance of this bubble and predict the site of nucleation and its exact timing. This new physical insight into the process of metamorphosis also allows us to understand the inherent design of pupal shell architectures in various species of insects. Milton Award, Harvard Society of Fellows; Terman Fellowship, Stanford

  5. Plasma in sonoluminescing bubble.

    PubMed

    An, Yu

    2006-12-22

    With the new accommodation coefficient of water vapor evaluated by molecular dynamics model, the maximum temperature of a sonoluminescing bubble calculated with the full partial differential equations easily reaches few tens of thousands degrees. Though at this temperature the gas is weakly ionized (10% or less), the gas density inside a sonoluminescing bubble at the moment of the bubble's flashing is so high that there still forms a dense plasma. The light emission of the bubble is calculated by the plasma model which is compared with that by the bremsstrahlung (electron-ion, electron-neutral atom) and recombination model. The calculation by the two models shows that for the relatively low maximum temperature (< 30,000 K) of the bubble, the pulse width is independent of the wavelength and the spectrum deviates the black body radiation type; while for the relatively high maximum temperature (approximately 60,000 K), the pulse width is dependent of the wavelength and the spectrum is an almost perfect black body radiation spectrum. The maximum temperature calculated by the gas dynamics equations is much higher than the temperature fitted by the black body radiation formula. PMID:16797657

  6. A Bubble Bursts

    NASA Technical Reports Server (NTRS)

    2005-01-01

    RCW 79 is seen in the southern Milky Way, 17,200 light-years from Earth in the constellation Centaurus. The bubble is 70-light years in diameter, and probably took about one million years to form from the radiation and winds of hot young stars.

    The balloon of gas and dust is an example of stimulated star formation. Such stars are born when the hot bubble expands into the interstellar gas and dust around it. RCW 79 has spawned at least two groups of new stars along the edge of the large bubble. Some are visible inside the small bubble in the lower left corner. Another group of baby stars appears near the opening at the top.

    NASA's Spitzer Space Telescope easily detects infrared light from the dust particles in RCW 79. The young stars within RCW 79 radiate ultraviolet light that excites molecules of dust within the bubble. This causes the dust grains to emit infrared light that is detected by Spitzer and seen here as the extended red features.

  7. BLOWING COSMIC BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image reveals an expanding shell of glowing gas surrounding a hot, massive star in our Milky Way Galaxy. This shell is being shaped by strong stellar winds of material and radiation produced by the bright star at the left, which is 10 to 20 times more massive than our Sun. These fierce winds are sculpting the surrounding material - composed of gas and dust - into the curve-shaped bubble. Astronomers have dubbed it the Bubble Nebula (NGC 7635). The nebula is 10 light-years across, more than twice the distance from Earth to the nearest star. Only part of the bubble is visible in this image. The glowing gas in the lower right-hand corner is a dense region of material that is getting blasted by radiation from the Bubble Nebula's massive star. The radiation is eating into the gas, creating finger-like features. This interaction also heats up the gas, causing it to glow. Scientists study the Bubble Nebula to understand how hot stars interact with the surrounding material. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  8. The Dueling Bubble Experiment

    NASA Astrophysics Data System (ADS)

    Roy, Anshuman; Borrell, Marcos; Felts, John; Leal, Gary; Hirsa, Amir

    2007-11-01

    When two drops or bubbles are brought into close proximity to each other, the thin film of the fluid between them drains as they are squeezed together. If the film becomes thin enough that intermolecular forces of attraction overwhelm capillary forces, the drops/bubbles coalesce and the time it takes for this to happen, starting from the point of apparent contact is referred to as the drainage time. One practical version of this scenario occurs during the formation of foams, when the thin film forms between gas bubbles that are growing in volume with time. We performed an experimental study that is intended to mimic this process in which the two drops (or bubbles) in the size range of 50-100 microns diameter are created by oozing a liquid/gas out of two capillaries of diameter less than 100 microns directly facing each other and immersed in a second fluid. We present measurements of drainage times for the cases of very low viscosity ratios PDMS drops in Castor oil (less than 0.05) and bubbles of air in PDMS, and highlight the differences that arise in part due to the different boundary conditions for thin film drainage for liquid-liquid versus gas-liquid systems, and in part due to the different Hamaker constants for the two systems.

  9. Optical sensing for characterization of bubble plumes from methane seeps

    NASA Astrophysics Data System (ADS)

    Pizarro, O.; Camilli, R.; Whelan, J.

    2004-12-01

    Methane seeps are potentially a key contributor to atmospheric methane and to the global greenhouse gas budget. Improved estimates of methane flux from ocean floor seeps is required to understand the magnitude and characteristics of this contribution to the carbon cycle. % State of the art In steady, slow seeps a large portion of the gas is dissolved and oxidized before reaching the surface. However, in high-intensity methane seeps the bubble density, speed and size are such that a significant fraction of the gas can reach the atmosphere. Dissolved methane can be measured fairly reliably at the sea surface with traditional equilibration techniques. New types of in-situ chemical sensors can quantify dissolved methane deeper in the water column. Quantifying methane within the water column in the free gas phase (i.e., in the form of bubbles) remains a challenging problem. Current approaches rely either on indirect acoustic methods or direct collection of bubbles. Acoustic methods have the disadvantage of requiring extensive calibration, and can fail to distinguish the bubble signal from other sources of acoustic noise. Gas-capture techniques are mechanically complex, have a surface expression that introduces some noise, and can potentially alias episodic events. %how slow ? In both cases the fine scale structure such as herogeneity of the bubbling plume is lost. % Proposed We propose a vision-based system to detect and track bubble plumes. High speed optical imagery is propenables precise measurements of the motion of bubbles through a process involving identification of the individual bubbles (and rejection of other particles). Additional image processing steps are then used to estimate each bubble's volume and velocity. These are then integrated to produce an estimate of volumetric flux rate. This technique can also reveal fine scale variabilities in the spatial and temporal structure within the plume. %We discuss sensing configurations based on a stereo setup and

  10. Shape Oscillations of Bubbles in Water Driven by Modulated Ultrasonic Radiation Pressure and Applications to Interfacial Dynamics

    NASA Astrophysics Data System (ADS)

    Asaki, Thomas James

    1995-01-01

    Acoustic levitation techniques were used for static and dynamic studies of single air bubbles in aqueous solutions. Bubble sizes ranged from 0.3 to 6 mm in radius. The static position of a bubble, determined by the balance between the buoyant and acoustic forces, agrees well with existing theory. Measured bubble aspect ratios are a nonmonotonic increasing function of bubble size and agree well with an improved expression based on the radiation stress tensor. Small amplitude normal mode shape oscillations were induced by modulation of the acoustic radiation pressure and were detected by optical pseudo-extinction and optical interferometry techniques. Driven oscillation frequencies for bubbles in clean water agree well with Lamb theory although significant frequency shifts occur for bubbles of large aspect ratio (_sp{~ }{>}1.3). An improved asymptotic expansion, important for bubbles in fluids and for liquid drops in air, was obtained for the complex free decay frequency. The free decay of quadrupole shape oscillations was measured for nearly spherical bubbles (aspect ratio ~ 1.01) in clean water, clean salt water, sea water, and in the presence of surfactants. Bubbles in clean solutions exhibit behavior indicative of an ideal clean interface. Frequency shifts and excess damping were observed for bubbles in sea water, in aqueous solutions of Triton X-100, and for a bubble coated with the insoluble surfactant stearic acid. The damping and frequency exhibit nonmonotonic behavior with respect to interfacial surfactant coverage; maxima occur at coverages which do not significantly affect the surface tension. At large coverages the damping is increased and the frequency is reduced relative to theoretical expectations for a clean ideal interface at constant surface tension. These results are in qualitative agreement with theories incorporating interfacial viscoelastic effects and with planar-surface capillary ripple experiments which also exhibit maxima in the damping as a

  11. LET dependence of bubbles evaporation pulses in superheated emulsion detectors

    NASA Astrophysics Data System (ADS)

    Di Fulvio, Angela; Huang, Jean; Staib, Lawrence; d'Errico, Francesco

    2015-06-01

    Superheated emulsion detectors are suspensions of metastable liquid droplets in a compliant inert medium. Upon interaction with ionizing radiation, the droplets evaporate, generating visible bubbles. Bubble expansion associated with the boiling of the droplets is accompanied by pressure pulses in both the sonic and ultrasonic frequency range. In this work, we analyzed the signal generated by bubble evaporation in the frequency and time domain. We used octafluoropropane (R-218) based emulsions, sensitive to both photons and neutrons. The frequency content of the detected pulses appears to extend well into the hundreds of kHz, beyond the range used in commercial devices to count bubbles as they are formed (typically 1-10 kHz). Kilohertz components characterize the early part of the waveforms, potentially containing information about the energetics of the explosive bubble initial growth phase. The power spectral density of the acoustic signal produced by neutron-induced evaporation shows a characteristic frequency pattern in the 200-400 kHz range, which is not observed when bubbles evaporate upon gamma ray-induced irradiation. For practical applications, detection of ultrasonic pulses associated with the boiling of the superheated drops can be exploited as a fast readout method, negligibly affected by mechanical ambient noise.

  12. On the acoustic properties of vaporized submicron perfluorocarbon droplets.

    PubMed

    Reznik, Nikita; Lajoinie, Guillaume; Shpak, Oleksandr; Gelderblom, Erik C; Williams, Ross; de Jong, Nico; Versluis, Michel; Burns, Peter N

    2014-06-01

    The acoustic characteristics of microbubbles created from vaporized submicron perfluorocarbon droplets with fluorosurfactant coating are examined. Utilizing ultra-high-speed optical imaging, the acoustic response of individual microbubbles to low-intensity diagnostic ultrasound was observed on clinically relevant time scales of hundreds of milliseconds after vaporization. It was found that the vaporized droplets oscillate non-linearly and exhibit a resonant bubble size shift and increased damping relative to uncoated gas bubbles due to the presence of coating material. Unlike the commercially available lipid-coated ultrasound contrast agents, which may exhibit compression-only behavior, vaporized droplets may exhibit expansion-dominated oscillations. It was further observed that the non-linearity of the acoustic response of the bubbles was comparable to that of SonoVue microbubbles. These results suggest that vaporized submicron perfluorocarbon droplets possess the acoustic characteristics necessary for their potential use as ultrasound contrast agents in clinical practice. PMID:24462162

  13. Bubbles from nothing

    SciTech Connect

    Blanco-Pillado, Jose J.; Ramadhan, Handhika S.; Shlaer, Benjamin E-mail: handhika@cosmos.phy.tufts.edu

    2012-01-01

    Within the framework of flux compactifications, we construct an instanton describing the quantum creation of an open universe from nothing. The solution has many features in common with the smooth 6d bubble of nothing solutions discussed recently, where the spacetime is described by a 4d compactification of a 6d Einstein-Maxwell theory on S{sup 2} stabilized by flux. The four-dimensional description of this instanton reduces to that of Hawking and Turok. The choice of parameters uniquely determines all future evolution, which we additionally find to be stable against bubble of nothing instabilities.

  14. Heated Gas Bubbles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Fluid Physics is study of the motion of fluids and the effects of such motion. When a liquid is heated from the bottom to the boiling point in Earth's microgravity, small bubbles of heated gas form near the bottom of the container and are carried to the top of the liquid by gravity-driven convective flows. In the same setup in microgravity, the lack of convection and buoyancy allows the heated gas bubbles to grow larger and remain attached to the container's bottom for a significantly longer period.

  15. Radial oscillation of a gas bubble in a fluid as a problem in canonical perturbation theory

    NASA Astrophysics Data System (ADS)

    Stephens, James

    2005-11-01

    The oscillation of a gas bubble is in a fluid is of interest in many areas of physics and technology. Lord Rayleigh treated the pressure developed in the collapse of cavitation bubbles and developed an expression for the collapse period. Minnaert developed a harmonic oscillator approximation to bubble oscillation in his study of the sound produced by running water. Oscillating bubbles are important to oceanographers studying the sound spectrum produced by water waves, geophysicists employing air guns as acoustic probes, mechanical engineers concerned with erosion of turbine blades, and military engineers concerned with the acoustic signatures developed by the propeller screws of ships and submarines. For the oceanographer, Minnaert's approximation is useful, for the latter two examples, Lord Rayleigh's analysis is appropriate. On the one hand, a bubble can be treated as a harmonic oscillator in the small amplitude regime, whereas even in the relatively moderate pressure regime characteristic of air guns the oscillation is strongly nonlinear and amplitude dependent. Is it possible to develop an analytic approximation that affords insight into the behavior of a bubble beyond the harmonic approximation of Minnaert? In this spirit, the free radial oscillation of a gas bubble in a fluid is treated as a problem in canonical perturbation theory. Several orders of the expansion are determined in order to explore the dependence of the oscillation frequency with bubble amplitude. The expansion to second order is inverted to express the time dependence of the oscillation.

  16. Mechanics of collapsing cavitation bubbles.

    PubMed

    van Wijngaarden, Leen

    2016-03-01

    A brief survey is given of the dynamical phenomena accompanying the collapse of cavitation bubbles. The discussion includes shock waves, microjets and the various ways in which collapsing bubbles produce damage. PMID:25890856

  17. Evaluation and interpretation of bubble size distributions in pulsed megasonic fields

    NASA Astrophysics Data System (ADS)

    Hauptmann, M.; Struyf, H.; De Gendt, S.; Glorieux, C.; Brems, S.

    2013-05-01

    The occurrence of acoustic cavitation is incorporating a multitude of interdependent effects that strongly depend on the bubble size. Therefore, bubble size control would be beneficial for biological and industrial processes that rely on acoustic cavitation. A pulsed acoustic field can result in bubble size control and the repeated dissolution and reactivation ("recycling") of potentially active bubbles. As a consequence, a pulsed field can strongly enhance cavitation activity. In this paper, we present a modified methodology for the evaluation of the active bubble size distribution by means of a combination of cavitation noise measurements and ultrasonic pulsing. The key component of this modified methodology is the definition of an upper size limit, below which bubbles—in between subsequent pulses—have to dissolve, in order to be sustainably recycled. This upper limit makes it possible to explain and link the enhancement of cavitation activity to a bubble size distribution. The experimentally determined bubble size distributions for different power densities are interpreted in the frame of numerical calculations of the oscillatory responses of the bubbles to the intermittent driving sound field. The distributions are found to be shaped by the size dependent interplay between bubble pulsations, rectified diffusion, coalescence, and the development of parametrically amplified shape instabilities. Also, a phenomenological reactivation-deactivation model is proposed to explain and quantify the observed enhancement of cavitation activity under pulsed, with respect to continuous sonication. In this model, the pulse-duration determines the magnitude of the reactivation of partially dissolved bubbles and the deactivation of activated bubbles by coalescence. It is shown that the subsequent recycling of previously active bubbles leads to an accumulation of cavitation activity, which saturates after a certain number of pulses. The model is fitted to the experimental

  18. Fluid Dynamics of Bubbly Liquids

    NASA Technical Reports Server (NTRS)

    Tsang, Y. H.; Koch, D. L.; Zenit, R.; Sangani, A.; Kushch, V. I.; Spelt, P. D. M.; Hoffman, M.; Nahra, H.; Fritz, C.; Dolesh, R.

    2002-01-01

    Experiments have been performed to study the average flow properties of inertially dominated bubbly liquids which may be described by a novel analysis. Bubbles with high Reynolds number and low Weber number may produce a fluid velocity disturbance that can be approximated by a potential flow. We studied the behavior of suspensions of bubbles of about 1.5 mm diameter in vertical and inclined channels. The suspension was produced using a bank of 900 glass capillaries with inner diameter of about 100 microns in a quasi-steady fashion. In addition, salt was added to the suspension to prevent bubble-bubble coalescence. As a result, a nearly monodisperse suspension of bubble was produced. By increasing the inclination angle, we were able to explore an increasing amount of shear to buoyancy motion. A pipe flow experiment with the liquid being recirculated is under construction. This will provide an even larger range of shear to buoyancy motion. We are planning a microgravity experiment in which a bubble suspension is subjected to shearing in a couette cell in the absence of a buoyancy-driven relative motion of the two phases. By employing a single-wire, hot film anemometer, we were able to obtain the liquid velocity fluctuations. The shear stress at the wall was measured using a hot film probe flush mounted on the wall. The gas volume fraction, bubble velocity, and bubble velocity fluctuations were measured using a homemade, dual impedance probe. In addition, we also employed a high-speed camera to obtain the bubble size distribution and bubble shape in a dilute suspension. A rapid decrease in bubble velocity for a dilute bubble suspension is attributed to the effects of bubble-wall collisions. The more gradual decrease of bubble velocity as gas volume fraction increases, due to subsequent hindering of bubble motion, is in qualitative agreement with the predictions of Spelt and Sangani for the effects of potential-flow bubble-bubble interactions on the mean velocity. The

  19. Characterization of Acoustic Droplet Vaporization Using MRI

    NASA Astrophysics Data System (ADS)

    Li, David; Allen, Steven; Hernandez-Garcia, Luis; Bull, Joseph

    2013-11-01

    Acoustic droplet vaporization (ADV) is the selective vaporization of liquid droplets to form larger gas bubbles. The ADV process is currently being researched for biomedical applications such as gas embolotherapy, drug delivery, and phase-change contrast agents. In this study an albumin encapsulated dodecafluoropentane (DDFP, CAS: 678-26-2) microdroplet suspension was vaporized using a single element focused (f/2, D = 19 mm) 3.5 MHz transducer (Panametrics A321S, Olympus, Waltham, MA). The resulting DDFP bubble clouds were imaged using both bright field microscopy and MRI (Varian 7T, Agilent Technologies Inc., Santa Clara, CA). Field distortions due to DDFP bubble generation were characterized against the bright field images as a function of acoustic power and bubble cloud size. Experimentally a direct correlation between bubble cloud dimensions generated and field distortions seen in the MRI was observed. Additionally, MR velocimetry was used to measure the flow field resulting from ADV. The field distortions due to the bubbles were further characterized by modeling Maxwell's equations using COMSOL (COMSOL Inc., Burlington, MA). The ability to characterize ADV with alternative imaging modalities may prove useful in further development of ADV based biomedical therapies.

  20. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  1. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites.

    PubMed

    Jordt, Anne; Zelenka, Claudius; von Deimling, Jens Schneider; Koch, Reinhard; Köser, Kevin

    2015-01-01

    Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information. PMID:26690168

  2. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites

    PubMed Central

    Jordt, Anne; Zelenka, Claudius; Schneider von Deimling, Jens; Koch, Reinhard; Köser, Kevin

    2015-01-01

    Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information. PMID:26690168

  3. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  4. DNS studies of bubbly flows

    NASA Astrophysics Data System (ADS)

    Tryggvason, Gretar; Esmaeeli, Asghar; Biswas, Souvik

    2004-11-01

    Recent stuies of bubbly flows, using direct numerical simulations, are discussed. The goal of this study is to examine the collective behavior of many bubbles as the rise Reynolds number is increased and and a single bubble rises unsteadily, as well as to examine the motion of bubbles in channels. A front-tracking/finite volume method is used to fully resolve all flow scales, including the bubbles and the flow around them. Two cases are simulated, for one the bubbles remain nearly spherical and for the other case the bubbles are deformable and wobble. The wobbly bubbles remains relatively uniformly distributed and are not susceptible to the streaming instability found by Bunner and Tryggvason (2003) for deformable bubbles at lower rise Reynolds numbers. The more spherical bubbles, on the other hand, form transients ``rafts'' somewhat similar to those seen in potential flow simulation of many bubbles. For channel flow we compare results from direct numerical simulations of bubbly flow with prediction of the steady-state two-fluid model of Antal, Lahey, and Flaherty (1991). The simulations are done assuming a two-dimensional system and the model coefficients are adjusted slightly to match the data for upflow. The results generally agree reasonably well, even though the simulated void fraction is considerably higher than the one assumed in the derivation of the model. Research supported by DOE.

  5. Cohesion of Bubbles in Foam

    ERIC Educational Resources Information Center

    Ross, Sydney

    1978-01-01

    The free-energy change, or binding energy, of an idealized bubble cluster is calculated on the basis of one mole of gas, and on the basis of a single bubble going from sphere to polyhedron. Some new relations of bubble geometry are developed in the course of the calculation. (BB)

  6. The Onset of Resonance-Controlled Instability in Spherical Bubble Oscillations

    NASA Technical Reports Server (NTRS)

    Holt, R. Glynn; Gaitan, D. Felipe

    1996-01-01

    Single bubble dynamics are investigated using acoustic techniques for isolation and manipulation. The goal of the investigations is to understand the dynamic origin of the various phenomena that bubbles exhibit: light emission, enhanced mass transport, chaotic and quasiperiodic oscillations, and translations. Once understood, acoustically manipulated bubbles can serve as platforms for materials effects on free surfaces, using surfactants to alter surface rheology and observing how that affects both dynamics and also mass transport. The effects of gravity on the problem will be shown to be significant. The first set of observations from 1g experimentation are presented. These observations are of the onset conditions for instability of the spherical shape of the bubble. For the size range 55-90 microns in diameter we observe instability governed by resonant mode coupling, which is significantly affected by the buoyant force and its effects.

  7. Effect of surfactants on the rate of growth of an air bubble by rectified diffusion.

    PubMed

    Lee, Judy; Kentish, Sandra; Ashokkumar, Muthupandian

    2005-08-01

    The rectified diffusion growth of a single air bubble levitated in an acoustic field (frequency = 22.35 kHz) in water and in aqueous solutions containing surfactants (sodium dodecyl sulfate and sodium dodecylbenzene sulfonate) was investigated. As reported by Crum (J. Acoust. Soc. Am. 1980, 68, 203), the presence of surfactants at the bubble/liquid interface enhanced the growth rate of the bubble by rectified diffusion. It is suggested in this paper that in addition to the effect of surfactants on the surface tension and interfacial resistance to mass transfer, the effect of surface rheological properties may also contribute to the cause of the enhancement observed in the bubble growth rate. PMID:16852840

  8. Double Bubble? No Trouble!

    ERIC Educational Resources Information Center

    Shaw, Mike I.; Smith, Greg F.

    1995-01-01

    Describes a soap-solution activity involving formation of bubbles encasing the students that requires only readily available materials and can be adapted easily for use with various grade levels. Discusses student learning outcomes including qualitative and quantitative observations and the concept of surface tension. (JRH)

  9. Oscillations of soap bubbles

    NASA Astrophysics Data System (ADS)

    Kornek, U.; Müller, F.; Harth, K.; Hahn, A.; Ganesan, S.; Tobiska, L.; Stannarius, R.

    2010-07-01

    Oscillations of droplets or bubbles of a confined fluid in a fluid environment are found in various situations in everyday life, in technological processing and in natural phenomena on different length scales. Air bubbles in liquids or liquid droplets in air are well-known examples. Soap bubbles represent a particularly simple, beautiful and attractive system to study the dynamics of a closed gas volume embedded in the same or a different gas. Their dynamics is governed by the densities and viscosities of the gases and by the film tension. Dynamic equations describing their oscillations under simplifying assumptions have been well known since the beginning of the 20th century. Both analytical description and numerical modeling have made considerable progress since then, but quantitative experiments have been lacking so far. On the other hand, a soap bubble represents an easily manageable paradigm for the study of oscillations of fluid spheres. We use a technique to create axisymmetric initial non-equilibrium states, and we observe damped oscillations into equilibrium by means of a fast video camera. Symmetries of the oscillations, frequencies and damping rates of the eigenmodes as well as the coupling of modes are analyzed. They are compared to analytical models from the literature and to numerical calculations from the literature and this work.

  10. The Bubble N10

    NASA Astrophysics Data System (ADS)

    Gama, D.; Lepine, J.; Wu, Y.; Yuan, J.

    2014-10-01

    We studied the environment surrounding the infrared bubble N10 in molecular and infrared emission. There is an HII region at the center of this bubble. We investigated J=1-0 transitions of molecules ^{12}CO, ^{13}CO and C^{18}O towards N10. This object was detected by GLIMPSE, a survey carried out between 3.6 and 8.0 μ m. We also analyzed the emission at 24 μ m, corresponding to the emission of hot dust, with a contribution of small grains heated by nearby O stars. Besides, the contribution at 8 μ m is dominated by PAHs (polycyclic aromatic hydrocarbons) excited by radiation from the PDRs of bubbles. In the case of N10, it is proposed that the excess at 4.5 μ m IRAC band indicate an outflow, a signature of early stages of massive star formation. This object was the target of observations at the PMO 13.7 m radio telescope. The bubble N10 presents clumps, from which we can derive physical features through the observed parameters. We also intended to discuss the evolutionary stage of the clumps and their distribution. It can lead us to understand the triggered star formation scenario in this region.

  11. The Liberal Arts Bubble

    ERIC Educational Resources Information Center

    Agresto, John

    2011-01-01

    The author expresses his doubt that the general higher education bubble will burst anytime soon. Although tuition, student housing, and book costs have all increased substantially, he believes it is still likely that the federal government will continue to pour billions into higher education, largely because Americans have been persuaded that it…

  12. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  13. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  14. Measurements of fast neutrons by bubble detectors

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Leal, B.; Martınez, H.; Rangel, J.; Reyes, P. G.

    2013-07-01

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / μSv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ μSv, 0093 b/μSv, 0.14 b/μSv, 0.17 b/μSv, 0051 b/μSv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90° this was done for a certain number of shots. In both cases, the standard response is reported (Dose in μSv) for each of the six detectors representing an energy range, this response is given by the expression Ri = Bi / Si where Bi is the number of bubbles formed in each and the detector sensitivity (Si) is given for each detector in (b / μSv). Also, reported for both cases, the detected neutron flux (n cm-2), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 μSv fields mixed neutron and gamma, and pulsed generated fusion devices.

  15. Measurements of fast neutrons by bubble detectors

    SciTech Connect

    Castillo, F.; Martinez, H.; Leal, B.; Rangel, J.; Reyes, P. G.

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  16. Bubbly Little Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this processed Spitzer Space Telescope image, baby star HH 46/47 can be seen blowing two massive 'bubbles.' The star is 1,140 light-years away from Earth.

    The infant star can be seen as a white spot toward the center of the Spitzer image. The two bubbles are shown as hollow elliptical shells of bluish-green material extending from the star. Wisps of green in the image reveal warm molecular hydrogen gas, while the bluish tints are formed by starlight scattered by surrounding dust.

    These bubbles formed when powerful jets of gas, traveling at 200 to 300 kilometers per second, or about 120 to 190 miles per second, smashed into the cosmic cloud of gas and dust that surrounds HH 46/47. The red specks at the end of each bubble show the presence of hot sulfur and iron gas where the star's narrow jets are currently crashing head-on into the cosmic cloud's gas and dust material.

    Whenever astronomers observe a star, or snap a stellar portrait, through the lens of any telescope, they know that what they are seeing is slightly blurred. To clear up the blurring in Spitzer images, astronomers at the Jet Propulsion Laboratory developed an image processing technique for Spitzer called Hi-Res deconvolution.

    This process reduces blurring and makes the image sharper and cleaner, enabling astronomers to see the emissions around forming stars in greater detail. When scientists applied this image processing technique to the Spitzer image of HH 46/47, they were able to see winds from the star and jets of gas that are carving the celestial bubbles.

    This infrared image is a three-color composite, with data at 3.6 microns represented in blue, 4.5 and 5.8 microns shown in green, and 24 microns represented as red.

  17. Optical scattering methods applicable to drops and bubbles

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.

    1990-01-01

    An overview of optical scattering properties of drops and bubbles is presented. The properties lead to unconventional methods for optically monitoring the size or shape of a scatterer and are applicable to acoustically levitated objects. Several of the methods are applicable to the detection and measurement of small amplitude oscillations. Relevant optical phenomena include: (1) rainbows; (2) diffraction catastrophes from spheroids; (3) critical angle scattering; (4) effects of coatings; (5) glory scattering; and (6) optical levitation.

  18. Ring Bubbles of Dolphins

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since

  19. Gas bubbles in marine mud-How small are they?

    NASA Astrophysics Data System (ADS)

    Reed, Allen H.; Briggs, Kevin B.

    2003-10-01

    Free gas in marine mud poses a challenging problem in the realm of ocean acoustics as it readily attenuates (i.e., scatters or absorbs) energy, such that objects lying below the gassy sediment are acoustically masked. Gas-laden sediments were located in 10- to 120-m water depth adjacent to the South Pass of the Mississippi River in East Bay using a 12-kHz transducer and the Acoustic Sediment Classification System. Several cores were collected in this region for physical property measurements. Some of the cores were x-rayed on medical and industrial computed tomography (CT) scanners. Volumetric CT images were used to locate gas bubbles, determine shapes and sizes to within the limits of the CT resolution. Free gas in the East Bay sediments was relegated to worm tubes as well as isolated pockets as was the case in Eckernförde Bay sediments [Abegg and Anderson, Mar. Geol. 137, 137-147 (1997)]. The primary significance of the present work is that gas bubbles have been determined to exist in the tens of μm size range, which is significantly smaller than the smallest bubbles that were previously resolved with medical CT (~440 μm) with NRL's HD-500 micro-CT System. [Work supported by ONR and NRL.

  20. High Speed Imaging of Bubble Clouds Generated in Pulsed Ultrasound Cavitational Therapy—Histotripsy

    PubMed Central

    Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L.; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J. Brian; Cain, Charles A.

    2009-01-01

    Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (<20 μs), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: 1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; 2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and 3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions. PMID:18019247

  1. Acousto-optic spectrometer for radio astronomy

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1980-01-01

    A prototype acousto-optic spectrometer which uses a discrete bulk acoustic wave Itek Bragg cell, 5 mW Helium Neon laser, and a 1024 element Reticon charge coupled photodiode array is described. The analog signals from the photodiode array are digitized, added, and stored in a very high speed custom built multiplexer board which allows synchronous detection of weak signals to be performed. The experiment is controlled and the data are displayed and stored with an LSI-2 microcomputer system with dual floppy discs. The performance of the prototype acousto-optic spectrometer obtained from initial tests is reported.

  2. Rheology of dense bubble suspensions

    NASA Astrophysics Data System (ADS)

    Kang, Sang-Yoon; Sangani, Ashok S.; Tsao, Heng-Kwong; Koch, Donald L.

    1997-06-01

    The rheological behavior of rapidly sheared bubble suspensions is examined through numerical simulations and kinetic theory. The limiting case of spherical bubbles at large Reynolds number Re and small Weber number We is examined in detail. Here, Re=ργa2/μ and We=ργ2a3/s, a being the bubble radius, γ the imposed shear, s the interfacial tension, and μ and ρ, respectively, the viscosity and density of the liquid. The bubbles are assumed to undergo elastic bounces when they come into contact; coalescence can be prevented in practice by addition of salt or surface-active impurities. The numerical simulations account for the interactions among bubbles which are assumed to be dominated by the potential flow of the liquid caused by the motion of the bubbles and the shear-induced collision of the bubbles. A kinetic theory based on Grad's moment method is used to predict the distribution function for the bubble velocities and the stress in the suspension. The hydrodynamic interactions are incorporated in this theory only through their influence on the virtual mass and viscous dissipation in the suspension. It is shown that this theory provides reasonable predictions for the bubble-phase pressure and viscosity determined from simulations including the detailed potential flow interactions. A striking result of this study is that the variance of the bubble velocity can become large compared with (γa)2 in the limit of large Reynolds number. This implies that the disperse-phase pressure and viscosity associated with the fluctuating motion of the bubbles is quite significant. To determine whether this prediction is reasonable even in the presence of nonlinear drag forces induced by bubble deformation, we perform simulations in which the bubbles are subject to an empirical drag law and show that the bubble velocity variance can be as large as 15γ2a2.

  3. Dynamic features of a laser-induced cavitation bubble near a solid boundary.

    PubMed

    Yang, Yuan Xiang; Wang, Qian Xi; Keat, T S

    2013-07-01

    This paper deals with detailed features of bubble dynamics near a solid boundary. The cavitation bubble was created by using a Q-switched Nd: YAG laser pulse and observed using a high-speed camera (up to 100,000 frames per second). A hydrophone system was employed to monitor the acoustic signals generated by the transient pressure impulses and estimate the bubble oscillation periods. Experimental observations were carried out for bubbles with various maximum expanded radius Rmax (between 1.0mm and 1.6mm) and stand-off distances, ds (defined as the distance between the solid boundary and the bubble center at inception) of 0.4≤γ≤3.0, and γ=ds/Rmax. The existence of a solid boundary created asymmetry in the flow field and forced the bubble to collapse non-spherically, which finally brought forth the jet impact phenomenon. The dimensionless first and second oscillation periods were dependent on γ. A series of expansion and collapse of the bubble with cascading loss of energy were observed after the bubble had been generated. This study revealed that most bubbles lost about two-thirds of the total energy from the first maximum expansion to the second maximum expansion. PMID:23411165

  4. Use of an ultrasonic reflectance technique to examine bubble size changes in dough

    NASA Astrophysics Data System (ADS)

    Strybulevych, A.; Leroy, V.; Shum, A. L.; Koksel, H. F.; Scanlon, M. G.; Page, J. H.

    2012-12-01

    Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.

  5. Bubble Pulse Cancelation in the Time-Frequency Domain Using Warping Operators

    NASA Astrophysics Data System (ADS)

    Niu, Hai-Qiang; Zhang, Ren-He; Li, Zheng-Lin; Guo, Yong-Gang; He, Li

    2013-08-01

    The received shock waves produced by explosive charges are often polluted by bubble pulses in underwater acoustic experiments. A method based on warping operators is proposed to cancel the bubble pulses in the time-frequency domain. This is applied to the explosive data collected during the Yellow Sea experiment in November 2000. The original received signal is first transformed into a warped signal by warping operators. Then, the warped signal is analyzed in the time-frequency domain. Due to the different features between the shock waves and the bubble pulses in the time-frequency domain for the warped signal, the bubble pulses can be easily filtered out. Furthermore, the shock waves in the original time domain can be retrieved by the inverse warping transformation. The autocorrelation functions and the time-frequency representation show that the bubble pulses can be canceled effectively.

  6. Dramatic effect of superfluidity on the collapse of 4He vapor bubbles

    NASA Astrophysics Data System (ADS)

    Qu, An; Trimeche, A.; Jacquier, Ph.; Grucker, J.

    2016-05-01

    The lifetime of cavitation bubbles produced by an acoustic wave focused in liquid helium-4 is investigated. This lifetime is found to be different by orders of magnitude depending on whether the liquid is superfluid or not. We show that if the liquid is in the superfluid state, the bubble lifetime is well explained by a purely mechanical model, corresponding to the so-called Rayleigh regime. In the normal state, the Rayleigh-Plesset regime applies, in which heat diffusion plays a crucial role and dramatically increases the bubble lifetime.

  7. Interaction between shock wave and single inertial bubbles near an elastic boundary

    NASA Astrophysics Data System (ADS)

    Sankin, G. N.; Zhong, P.

    2006-10-01

    The interaction of laser-generated single inertial bubbles (collapse time=121μs ) near a silicon rubber membrane with a shock wave ( 55MPa in peak pressure and 1.7μs in compressive pulse duration) is investigated. The interaction leads to directional, forced asymmetric collapse of the bubble with microjet formation toward the surface. Maximum jet penetration into the membrane is produced during the bubble collapse phase with optimal shock wave arrival time and stand-off distance. Such interaction may provide a unique acoustic means for in vivo microinjection, applicable to targeted delivery of macromolecules and gene vectors to biological tissues.

  8. Interaction between shock wave and single inertial bubbles near an elastic boundary.

    PubMed

    Sankin, G N; Zhong, P

    2006-10-01

    The interaction of laser-generated single inertial bubbles (collapse time = 121 mus) near a silicon rubber membrane with a shock wave (55 MPa in peak pressure and 1.7 mus in compressive pulse duration) is investigated. The interaction leads to directional, forced asymmetric collapse of the bubble with microjet formation toward the surface. Maximum jet penetration into the membrane is produced during the bubble collapse phase with optimal shock wave arrival time and stand-off distance. Such interaction may provide a unique acoustic means for in vivo microinjection, applicable to targeted delivery of macromolecules and gene vectors to biological tissues. PMID:17155170

  9. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    SciTech Connect

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T. Jr.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting

  10. Can bubbles sink ships?

    NASA Astrophysics Data System (ADS)

    Hueschen, Michael A.

    2010-02-01

    I investigate the interplay between the buoyancy force and the upwelling (or drag) force which act on a floating object when bubbles are rising through a body of water. Bubbles reduce the buoyant force by reducing the density of the water, but if they entrain an upwelling flow of water as they rise, they can produce a large upward drag force on the floating object. In an upwelling flow, our model ship (density=0.94 g/cm3) floats in a foam whose density is only 0.75 g/cm3. Comparing results with and without upwelling currents is an interesting demonstration and has real-world applications to ships in the ocean.

  11. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  12. A three dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels

    PubMed Central

    Hosseinkhah, N.; Hynynen, K.

    2012-01-01

    Ultrasound contrast agents inside a microvessel, when driven by ultrasound, oscillate and induce mechanical stresses on the vessel wall. These mechanical stresses can produce beneficial therapeutic effects but also induce vessel rupture if the stresses are too high. Therefore, it is important to use sufficiently low pressure amplitudes to avoid rupturing the vessels while still inducing the desired therapeutic effects. In this work, we developed a comprehensive three dimensional model of a confined microbubble inside a vessel while considering the bubble shell properties, blood viscosity, vessel wall curvature and the mechanical properties of the vessel wall. Two bubble models with the assumption of a spherical symmetric bubble and a simple asymmetrical bubble were simulated. This work was validated with previous experimental results and enabled us to evaluate the microbubbles’ behaviour and the resulting mechanical stresses induced on the vessel walls. In this study the fluid shear and circumferential stresses were evaluated as indicators of the mechanical stresses. The effects of acoustical parameters, vessel viscoelasticity and rigidity, vessel/bubble size and off-center bubbles on bubble behaviour and stresses on the vessel were investigated. The fluid shear and circumferential stresses acting on the vessel varied with time and location. As the frequency changed, the microbubble oscillated with the highest amplitude at its resonance frequency which was different from the resonance frequency of an unbound bubble. The bubble resonance frequency increased as the rigidity of a flexible vessel increased. The fluid shear and circumferential stresses peaked at frequencies above the bubble’s resonance frequency. The more rigid the vessels were, the more damped the bubble oscillations. The synergistic effect of acoustic frequency and vessel elasticity had also been investigated, since the circumferential stress showed either an increasing trend or a decreasing one

  13. Magnetic bubble domain memories

    NASA Technical Reports Server (NTRS)

    Ypma, J. E.

    1974-01-01

    Some attractive features of Bubble Domain Memory and its relation to existing technologies are discussed. Two promising applications are block access mass memory and tape recorder replacement. The required chip capabilities for these uses are listed, and the specifications for a block access mass memory designed to fit between core and HPT disk are presented. A feasibility model for a tape recorder replacement is introduced.

  14. Slurry bubble column hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids

  15. Mechanisms of gas bubble retention

    SciTech Connect

    Gauglitz, P.A.; Mahoney, L.A.; Mendoza, D.P.; Miller, M.C.

    1994-09-01

    Retention and episodic release of flammable gases are critical safety concerns regarding double-shell tanks (DSTs) containing waste slurries. Previous investigations have concluded that gas bubbles are retained by the slurry that has settled at the bottom of the DST. However, the mechanisms responsible for the retention of these bubbles are not well understood. In addition, the presence of retained gas bubbles is expected to affect the physical properties of the sludge, but essentially no literature data are available to assess the effect of these bubbles. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The objectives of this study are to elucidate the mechanisms contributing to gas bubble retention and release from sludge such as is in Tank 241-SY-101, understand how the bubbles affect the physical properties of the sludge, develop correlations of these physical properties to include in computer models, and collect experimental data on the physical properties of simulated sludges with bubbles. This report presents a theory and experimental observations of bubble retention in simulated sludge and gives correlations and new data on the effect of gas bubbles on sludge yield strength.

  16. Direct visualization of microalgae rupture by ultrasound-driven bubbles

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Harun, Irina; Pouliopoulos, Antonis; Choi, James J.; Hellgardt, Klaus; Garbin, Valeria

    2015-11-01

    Cell rupture induced by ultrasound is central to applications in biotechnology. For instance, cell disruption is required in the production of biofuels from microalgae (unicellular species of algae). Ultrasound-induced cavitation, bubble collapse and jetting are exploited to induce sufficiently large viscous stresses to cause rupture of the cell membranes. It has recently been shown that seeding the flow with bubbles that act as cavitation nuclei significantly reduces the energy cost for cell processing. However, a fundamental understanding of the conditions for rupture of microalgae in the complex flow fields generated by ultrasound-driven bubbles is currently lacking. We perform high-speed video microscopy to visualize the miscroscale details of the interaction of Chlamydomonas reinhardtii , microalgae of about 10 μm in size, with ultrasound-driven microbubbles of 2-200 μm in diameter. We investigate the efficiency of cell rupture depending on ultrasound frequency and pressure amplitude (from 10 kPa up to 1 MPa), and the resulting bubble dynamics regimes. In particular we compare the efficiency of membrane rupture in the acoustic microstreaming flow induced by linear oscillations, with the case of violent bubble collapse and jetting. V.G. acknowledges partial support from the European Commission (FP7-PEOPLE-2013-CIG), Grant No. 618333.

  17. Bubble size distribution under saltwater and freshwater breaking waves

    NASA Astrophysics Data System (ADS)

    Cartmill, John W.; Yang Su, Ming

    1993-11-01

    The chemical composition of salt water profoundly alters the process of microbubble formation and must be accounted for in extrapolating freshwater results to the ocean environment. Results are presented of the measurement of bubble size distributions generated by breaking waves in both freshwater and saltwater laboratory tanks. Bubble radii in the range of 34-1200 μ m were measured by an acoustic resonator at various positions and depths in a large-scale wave tank at Oregon State University. This experiment represents the first attempt to measure bubbles produced by breaking waves at this large scale in a saltwater tank. Mechanically generated wave groups, with maximum wave height of 4 ft, were used to produce breaking waves and bubble plumes comparable in scale with moderate ocean waves. During the experiment salt was added to bring the salinity of the water to 30%. This salinity alters the nature of the bubbles produced and their subsequent evolution. An order of magnitude increase in the number density over the entire size range was observed for salt water vs. fresh water.

  18. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  19. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers. PMID:25839273

  20. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... 177. Battista RA. Gamma knife radiosurgery for vestibular schwannoma. Otolaryngol Clin North Am . 2009;42:635-654. ...

  1. Bioeffects due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  2. In Search of the Big Bubble

    ERIC Educational Resources Information Center

    Simoson, Andrew; Wentzky, Bethany

    2011-01-01

    Freely rising air bubbles in water sometimes assume the shape of a spherical cap, a shape also known as the "big bubble". Is it possible to find some objective function involving a combination of a bubble's attributes for which the big bubble is the optimal shape? Following the basic idea of the definite integral, we define a bubble's surface as…

  3. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  4. Noise reduction by the application of an air-bubble curtain in offshore pile driving

    NASA Astrophysics Data System (ADS)

    Tsouvalas, A.; Metrikine, A. V.

    2016-06-01

    Underwater noise pollution is a by-product of marine industrial operations. In particular, the noise generated when a foundation pile is driven into the soil with an impact hammer is considered to be harmful for the aquatic species. In an attempt to reduce the ecological footprint, several noise mitigation techniques have been investigated. Among the various solutions proposed, the air-bubble curtain is often applied due to its efficacy in noise reduction. In this paper, a model is proposed for the investigation of the sound reduction during marine piling when an air-bubble curtain is placed around the pile. The model consists of the pile, the surrounding water and soil media, and the air-bubble curtain which is positioned at a certain distance from the pile surface. The solution approach is semi-analytical and is based on the dynamic sub-structuring technique and the modal decomposition method. Two main results of the paper can be distinguished. First, a new model is proposed that can be used for predictions of the noise levels in a computationally efficient manner. Second, an analysis is presented of the principal mechanisms that are responsible for the noise reduction due to the application of the air-bubble curtain in marine piling. The understanding of these mechanisms turns to be crucial for the exploitation of the maximum efficiency of the system. It is shown that the principal mechanism of noise reduction depends strongly on the frequency content of the radiated sound and the characteristics of the bubbly medium. For piles of large diameter which radiate most of the acoustic energy at relatively low frequencies, the noise reduction is mainly attributed to the mismatch of the acoustic impedances between the seawater and the bubbly layer. On the contrary, for smaller piles and when the radiated acoustic energy is concentrated at frequencies close to, or higher than, the resonance frequency of the air bubbles, the sound absorption within the bubbly layer

  5. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics. PMID:26486337

  6. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  7. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer. respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  8. Bubble measuring instrument and method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  9. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  10. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting. distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receive, the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  11. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method.

    PubMed

    Kobayashi, Kazumichi; Kodama, Tetsuya; Takahira, Hiroyuki

    2011-10-01

    In the case of extracorporeal shock wave lithotripsy (ESWL), a shock wave-bubble interaction inevitably occurs near the focusing point of stones, resulting in stone fragmentation and subsequent tissue damage. Because shock wave-bubble interactions are high-speed phenomena occurring in tissue consisting of various media with different acoustic impedance values, numerical analysis is an effective method for elucidating the mechanism of these interactions. However, the mechanism has not been examined in detail because, at present, numerical simulations capable of incorporating the acoustic impedance of various tissues do not exist. Here, we show that the improved ghost fluid method (IGFM) can treat shock wave-bubble interactions in various media. Nonspherical bubble collapse near a rigid or soft tissue boundary (stone, liver, gelatin and fat) was analyzed. The reflection wave of an incident shock wave at a tissue boundary was the primary cause for the acceleration or deceleration of bubble collapse. The impulse that was obtained from the temporal evolution of pressure created by the bubble collapse increased the downward velocity of the boundary and caused subsequent boundary deformation. Results of this study showed that the IGFM is a useful method for analyzing the shock wave-bubble interaction near various tissues with different acoustic impedance. PMID:21918295

  12. Compact Infrared Spectrometers

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2009-01-01

    Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.

  13. A bubbling bolt

    NASA Astrophysics Data System (ADS)

    Bossard, Guillaume; Katmadas, Stefanos

    2014-07-01

    We present a new solvable system, solving the equations of five-dimensional ungauged = 1 supergravity coupled to vector multiplets, that allows for non-extremal solutions and reduces to a known system when restricted to the floating brane Ansatz. A two-centre globally hyperbolic smooth geometry is obtained as a solution to this system, describing a bubble linking a Gibbons-Hawking centre to a charged bolt. However this solution turns out to violate the BPS bound, and we show that its generalisation to an arbitrary number of Gibbons-Hawking centres never admits a spin structure.

  14. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  15. Effect of bubble size on micro-bubble drag reduction

    NASA Astrophysics Data System (ADS)

    Shen, Xiaochun

    2005-11-01

    The effect of bubble size on micro-bubble drag reduction was investigated experimentally in a high-speed turbulent channel flow of water. A variety of near-wall injection techniques were used to create a bubbly turbulent boundary layer. The resulting wall friction force was measured directly by a floating element force balance. The bubble size was determined from photographic imaging. Using compressed nitrogen to force flow through a slot injector located in the plate beneath the boundary layer of the tunnel test section, a surfactant solution (Triton X-100, 19ppm) and salt water solution (35ppt) generated bubbles of average size between ˜500 microns and ˜200 microns and ˜100 microns, respectively (40 < d^+ < 200). In addition hollow spherical glass beads (˜75 microns (d^+ = 30) and specific gravity 0.18) and previously prepared lipid stabilized gas bubbles of ˜ 30 micron (d^+ =12) were injected. The results indicate that the drag reduction is related strongly to the injected gas volume flux and the static pressure in the boundary layer. Changing bubble size had essentially no influence on the measured friction drag, suggesting that friction drag is not a strong function of bubble size. [Sponsored by the Office of Naval Research.

  16. Experimental technique for observing free oscillation of a spherical gas bubble in highly viscous liquids.

    NASA Astrophysics Data System (ADS)

    Nakajima, Takehiro; Ando, Keita

    2015-11-01

    An experimental technique is developed to observe free oscillations of a spherical gas bubble in highly viscous liquids. It is demonstrated that focusing a nanosecond laser pulse of wavelength 532 nm and energy up to 1.5 mJ leads to the formation of a spherical gaseous bubble, not a vaporous bubble (quickly condensed back to the liquid), whose equilibrium radius is up to 200 microns in glycerin saturated with gases at room temperature. The subsequent free oscillations of the spherical gas bubble is visualized using a high-speed camera. Since the oscillation periods are short enough to ignore bubble translation under gravity and mass transfer out of the bubble, the observed bubble dynamics can be compared to nonlinear and linearized Reyleigh-Plesset-type calculations that account for heat conduction and acoustic radiation as well as the liquid viscosity. In this presentation, we report on the measurements with varying the viscosity and comparisons to the theory to quantify damping mechanisms in the bubble dynamics.

  17. Acoustic imaging in a water filled metallic pipe

    SciTech Connect

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1984-04-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe.

  18. Bubble dynamics and sonoluminescence from helium or xenon in mercury and water.

    PubMed

    Yasui, Kyuichi; Kato, Kazumi

    2012-09-01

    Numerical simulations of bubble pulsation and sonoluminescence (SL) have been performed for helium or xenon bubbles in mercury and water under the experimental conditions of Futakawa et al. [M. Futakawa, T. Naoe, and M. Kawai, in Nonlinear Acoustics-Fundamentals and Applications: 18th International Symposium on Nonlinear Acoustics (ISNA 18), AIP Conf. Proc. No. 1022, edited by B. O. Enflo, C. M. Hedberg, and L. Kari (AIP, New York, 2008), p. 197]. The results of the numerical simulations have revealed that the bubble expansion is much larger in water than in mercury mainly because the density of water is one order of magnitude smaller than that of mercury. The SL intensity is higher in water than that in mercury although the maximum bubble temperature is lower. This is caused by the much larger amount of vapor inside a bubble as the saturated vapor pressure of water is four orders of magnitude larger than that of mercury at room temperature. The SL intensity from xenon is much larger than that from helium due both to lower ionization potential and higher bubble temperature due to lower thermal conductivity. The instantaneous SL power may be as large as 200 W from xenon in water. The maximum temperature inside a xenon bubble in mercury may be as high as about 80 000 K. It is suggested that the maximum pressure in mercury due to shock waves emitted from bubbles increases as the SL intensity increases, although they are not simply correlated in water because the amount of water vapor trapped inside a bubble influences the SL intensity in a complex way. PMID:23031026

  19. Ultrasonic excitation of a bubble inside a deformable tube: implications for ultrasonically induced hemorrhage.

    PubMed

    Miao, Hongyu; Gracewski, Sheryl M; Dalecki, Diane

    2008-10-01

    Various independent investigations indicate that the presence of microbubbles within blood vessels may increase the likelihood of ultrasound-induced hemorrhage. To explore potential damage mechanisms, an axisymmetric coupled finite element and boundary element code was developed and employed to simulate the response of an acoustically excited bubble centered within a deformable tube. As expected, the tube mitigates the expansion of the bubble. The maximum tube dilation and maximum hoop stress were found to occur well before the bubble reached its maximum radius. Therefore, it is not likely that the expanding low pressure bubble pushes the tube wall outward. Instead, simulation results indicate that the tensile portion of the acoustic excitation plays a major role in tube dilation and thus tube rupture. The effects of tube dimensions (tube wall thickness 1-5 microm), material properties (Young's modulus 1-10 MPa), ultrasound frequency (1-10 MHz), and pressure amplitude (0.2-1.0 MPa) on bubble response and tube dilation were investigated. As the tube thickness, tube radius, and acoustic frequency decreased, the maximum hoop stress increased, indicating a higher potential for tube rupture and hemorrhage. PMID:19062875

  20. Ultrasonic excitation of a bubble inside a deformable tube: Implications for ultrasonically induced hemorrhage

    PubMed Central

    Miao, Hongyu; Gracewski, Sheryl M.; Dalecki, Diane

    2008-01-01

    Various independent investigations indicate that the presence of microbubbles within blood vessels may increase the likelihood of ultrasound-induced hemorrhage. To explore potential damage mechanisms, an axisymmetric coupled finite element and boundary element code was developed and employed to simulate the response of an acoustically excited bubble centered within a deformable tube. As expected, the tube mitigates the expansion of the bubble. The maximum tube dilation and maximum hoop stress were found to occur well before the bubble reached its maximum radius. Therefore, it is not likely that the expanding low pressure bubble pushes the tube wall outward. Instead, simulation results indicate that the tensile portion of the acoustic excitation plays a major role in tube dilation and thus tube rupture. The effects of tube dimensions (tube wall thickness 1–5 μm), material properties (Young’s modulus 1–10 MPa), ultrasound frequency (1–10 MHz), and pressure amplitude (0.2–1.0 MPa) on bubble response and tube dilation were investigated. As the tube thickness, tube radius, and acoustic frequency decreased, the maximum hoop stress increased, indicating a higher potential for tube rupture and hemorrhage. PMID:19062875

  1. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1994-01-01

    Two KC-135 flight campaigns have been conducted to date which are specifically dedicated to study bubble formation in microgravity. The first flight was conducted during March 14-18, 1994, and the other during June 20-24, 1994. The results from the June 1994 flight have not been analyzed yet, while the results from the March flight have been partially analyzed. In the first flight three different experiments were performed, one with the specific aim at determining whether or not cavitation can take place during any of the fluid handling procedures adopted in the shuttle bioprocessing experiments. The other experiments were concerned with duplicating some of the procedures that resulted in bubble formation, namely the NCS filling procedure and the needle scratch of a solid surface. The results from this set of experiments suggest that cavitation did not take place during any of the fluid handling procedures. The results clearly indicate that almost all were generated as a result of the breakup of the gas/liquid interface. This was convincingly demonstrated in the scratch tests as well as in the liquid fill tests.

  2. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1996-01-01

    An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.

  3. Optical behavior of surface bubbles

    NASA Astrophysics Data System (ADS)

    Straulino, Samuele; Gambi, Cecilia M. C.; Molesini, Giuseppe

    2015-11-01

    The observation of diamond-like light spots produced by surface bubbles obliquely illuminated is reported. The phenomenon is discussed in terms of geometrical optics, and an explanation is provided attributing the effect to the astigmatism introduced by the deformation of the liquid surface surrounding the bubble. An essential ray tracing program is outlined and used to reconstruct the observed phenomenon numerically.

  4. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.

    PubMed

    Xu, W W; Tzanakis, I; Srirangam, P; Mirihanage, W U; Eskin, D G; Bodey, A J; Lee, P D

    2016-07-01

    Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al-10 wt%Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm(2) and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t)=αt(β), and α=0.0021 &β=0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts. PMID:26964960

  5. Dark matter limits froma 15 kg windowless bubble chamber

    SciTech Connect

    Szydagis, Matthew Mark

    2011-03-01

    The COUPP collaboration has successfully used bubble chambers, a technology previously applied only to high-energy physics experiments, as direct dark matter detectors. It has produced the world's most stringent spin-dependent WIMP limits, and increasingly competitive spin-independent limits. These limits were achieved by capitalizing on an intrinsic rejection of the gamma background that all other direct detection experiments must address through high-density shielding and empirically-determined data cuts. The history of COUPP, including its earliest prototypes and latest results, is briefly discussed in this thesis. The feasibility of a new, windowless bubble chamber concept simpler and more inexpensive in design is discussed here as well. The dark matter limits achieved with a 15 kg windowless chamber, larger than any previous COUPP chamber (2 kg, 4 kg), are presented. Evidence of the greater radiopurity of synthetic quartz compared to natural is presented using the data from this 15 kg device, the first chamber to be made from synthetic quartz. The effective reconstruction of the three-dimensional positions of bubbles in a highly distorted optical field, with ninety-degree bottom lighting similar to cloud chamber lighting, is demonstrated. Another innovation described in this thesis is the use of the sound produced by bubbles recorded by an array of piezoelectric sensors as the primary means of bubble detection. In other COUPP chambers, cameras have been used as the primary trigger. Previous work on bubble acoustic signature differentiation using piezos is built upon in order to further demonstrate the ability to discriminate between alpha- and neutron-induced events.

  6. Effect of surface waves on the secondary Bjerknes force experienced by bubbles in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Doinikov, Alexander A.; Combriat, Thomas; Thibault, Pierre; Marmottant, Philippe

    2016-08-01

    An analytical expression is derived for the secondary Bjerknes force experienced by two cylindrical bubbles in a microfluidic channel with planar elastic walls. The derived expression takes into account that the bubbles generate two types of scattered acoustic waves: bulk waves that propagate in the fluid gap with the speed of sound and Lamb-type surface waves that propagate at the fluid-wall interfaces with a much lower speed than that of the bulk waves. It is shown that the surface waves cause the bubbles to form a bound pair in which the equilibrium interbubble distance is determined by the wavelength of the surface waves, which is much smaller than the acoustic wavelength. Comparison of theoretical and experimental results demonstrates good agreement.

  7. Influence of bubble size on micro-bubble drag reduction

    NASA Astrophysics Data System (ADS)

    Shen, Xiaochun; Ceccio, Steven L.; Perlin, Marc

    2006-09-01

    Micro-bubble drag reduction experiments were conducted in a turbulent water channel flow. Compressed nitrogen was used to force flow through a slot injector located in the plate beneath the boundary layer of the tunnel test section. Gas and bubbly mixtures were injected into a turbulent boundary layer (TBL), and the resulting friction drag was measured downstream of the injector. Injection into tap water, a surfactant solution (Triton X-100, 20 ppm), and a salt-water solution (35 ppt) yielded bubbles of average diameter 476, 322 and 254 μm, respectively. In addition, lipid stabilized gas bubbles (44 μm) were injected into the boundary layer. Thus, bubbles with d + values of 200 to 18 were injected. The results indicate that the measured drag reduction by micro-bubbles in a TBL is related strongly to the injected gas volumetric flow rate and the static pressure in the boundary layer, but is essentially independent of the size of the micro-bubbles over the size range tested.

  8. Interferometric studies of the pressures developed in a liquid during infrared-laser-induced cavitation-bubble oscillation

    NASA Astrophysics Data System (ADS)

    Ward, B.; Emmony, D. C.

    The study of the behaviour of cavitation bubbles close to rigid boundaries is of particular importance because of the associated phenomenon of cavitation erosion which arises from the resulting changes in pressure in the surrounding liquid. In this paper, we present four sequences of Mach-Zehnder interferograms and shadowgraphs of IR-laser-generated bubbles in water for two distinct positions relative to a solid perspex block. Direct optical measurements of the transient pressure distributions in the nearby liquid are made for the initial expansion of the bubbles and around each of their subsequent collapse phases. In addition to the generation of spherical acoustic waves, the pressures developed around the bubble prior to collapse and the formation of a high-speed liquid jet are precisely quantified. Furthermore, calculations of the changes in potential energy of the enclosed vapour are carried out and related to the magnitudes of the energy radiated via acoustic waves.

  9. Acoustically Enhanced Electroplating Being Developed

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2002-01-01

    heating accelerate the deposition of plating in that area and, thus, provide an effect similar to a mask but without the costs of masking. AEEP further improves the plating process by clearing debris and bubbles from the surface by acoustic radiation pressure and acoustic streaming.

  10. The bubble legacy

    NASA Astrophysics Data System (ADS)

    Hecht, Jeff

    2010-05-01

    Imagine an optics company - let's call it JDS Uniphase - with a market capitalization approaching the gross domestic product (GDP) of Ireland. Now imagine it merging with a laser company - say, SDL - that has a stock valuation of 41bn, higher than the GDP of Costa Rica. Finally, imagine a start-up with 109m in venture capital in its pocket but no product to its name (Novalux) turning down an offer of 500m as insufficient. It may be hard to believe, but these tales are true: they occurred in the year 2000 - an era when the laser, fibre-optics and photonics industries were the darlings of the financial world. Such was the madcap nature of that brief period that survivors call it simply "the bubble".

  11. Surface Bubble Nucleation Stability

    NASA Astrophysics Data System (ADS)

    Seddon, James R. T.; Kooij, E. Stefan; Poelsema, Bene; Zandvliet, Harold J. W.; Lohse, Detlef

    2011-02-01

    Recent research has revealed several different techniques for nanoscopic gas nucleation on submerged surfaces, with findings seemingly in contradiction with each other. In response to this, we have systematically investigated the occurrence of surface nanobubbles on a hydrophobized silicon substrate for various different liquid temperatures and gas concentrations, which we controlled independently. We found that nanobubbles occupy a distinct region of this parameter space, occurring for gas concentrations of approximately 100%-110%. Below the nanobubble region we did not detect any gaseous formations on the substrate, whereas micropancakes (micron wide, nanometer high gaseous domains) were found at higher temperatures and gas concentrations. We moreover find that supersaturation of dissolved gases is not a requirement for nucleation of bubbles.

  12. Segregation in water-based stable single-bubble sonoluminescence.

    PubMed

    Levinsen, Mogens T

    2012-01-01

    A long-standing issue in the field of long-time-stable, water-based, single-bubble sonoluminescence has been the close similarity of the spectra to that of blackbody radiation, the question being whether the similarity is just a weird coincidence, with the bubbles being, on the whole, transparent to their own radiation. One mechanism that has been suggested is the generation of a shock or, at least, a compression wave in the gas of the bubble. A footprint of such a wave would be segregation of species. We have investigated spectra from bubbles seeded with various mixtures of helium or neon with xenon or argon using a transformation, specific to our experimental setup and spectrometer, that was shown to allow for a single-parameter characterization of the spectra in some simpler situations. The surprising result of this investigation is that although no trace of segregation is found, the radiation seems to be highly thermalized in all cases. PMID:22400660

  13. Quantitative assessment of reactive oxygen sonochemically generated by cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Miyashita, Takuya; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-07-01

    Acoustic cavitation bubbles can induce not only a thermal bioeffect but also a chemical bioeffect. When cavitation bubbles collapse and oscillate violently, they produce reactive oxygen species (ROS) that cause irreversible changes to the tissue. A sonosensitizer can promote such ROS generation. A treatment method using a sonosensitizer is called sonodynamic treatment. Rose bengal (RB) is one of the sonosensitizers whose in vivo and in vitro studies have been reported. In sonodynamic treatment, it is important to produce ROS at a high efficiency. For the efficient generation of ROS, a triggered high-intensity focused ultrasound (HIFU) sequence has been proposed. In this study, cavitation bubbles were generated in a chamber where RB solution was sealed, and a high-speed camera captured the behavior of these cavitation bubbles. The amount of ROS was also quantified by a potassium iodide (KI) method and compared with high-speed camera pictures to investigate the effectiveness of the triggered HIFU sequence. As a result, ROS could be obtained efficiently by this sequence.

  14. A Study of Cavitation-Ignition Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Jacqmin, David A.

    2005-01-01

    We present the results of an experimental and computational study of the physics and chemistry of cavitation-ignition bubble combustion (CIBC), a process that occurs when combustible gaseous mixtures are ignited by the high temperatures found inside a rapidly collapsing bubble. The CIBC process was modeled using a time-dependent compressible fluid-dynamics code that includes finite-rate chemistry. The model predicts that gas-phase reactions within the bubble produce CO and other gaseous by-products of combustion. In addition, heat and mechanical energy release through a bubble volume-expansion phase are also predicted by the model. We experimentally demonstrate the CIBC process using an ultrasonically excited cavitation flow reactor with various hydrocarbon-air mixtures in liquid water. Low concentrations (< 160 ppm) of carbon monoxide (CO) emissions from the ultrasonic reactor were measured, and found to be proportional to the acoustic excitation power. The results of the model were consistent with the measured experimental results. Based on the experimental findings, the computational model, and previous reports of the "micro-diesel effect" in industrial hydraulic systems, we conclude that CIBC is indeed possible and exists in ultrasonically- and hydrodynamically-induced cavitation. Finally, estimates of the utility of CIBC process as a means of powering an idealized heat engine are also presented.

  15. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  16. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  17. Underwater Acoustics

    NASA Astrophysics Data System (ADS)

    Kuperman, William A.; Roux, Philippe

    It is well underwater established that sound waves, compared to electromagnetic waves, propagate long distances in the ocean. Hence, in the ocean as opposed to air or a vacuum, one uses sound navigation and ranging (SONAR) instead navigation and ranging (SONAR) of radar, acoustic communication instead of radio, and acoustic imaging and tomography instead of microwave or optical imaging or X-ray tomography. Underwater acoustics is the science of sound in water (most commonly in the ocean) and encompasses not only the study of sound propagation, but also the masking of sound signals by interfering phenomenon and signal processing for extracting these signals from interference. This chapter we will present the basics physics of ocean acoustics and then discuss applications.

  18. Constrained Vapor Bubble

    NASA Technical Reports Server (NTRS)

    Huang, J.; Karthikeyan, M.; Plawsky, J.; Wayner, P. C., Jr.

    1999-01-01

    The nonisothermal Constrained Vapor Bubble, CVB, is being studied to enhance the understanding of passive systems controlled by interfacial phenomena. The study is multifaceted: 1) it is a basic scientific study in interfacial phenomena, fluid physics and thermodynamics; 2) it is a basic study in thermal transport; and 3) it is a study of a heat exchanger. The research is synergistic in that CVB research requires a microgravity environment and the space program needs thermal control systems like the CVB. Ground based studies are being done as a precursor to flight experiment. The results demonstrate that experimental techniques for the direct measurement of the fundamental operating parameters (temperature, pressure, and interfacial curvature fields) have been developed. Fluid flow and change-of-phase heat transfer are a function of the temperature field and the vapor bubble shape, which can be measured using an Image Analyzing Interferometer. The CVB for a microgravity environment, has various thin film regions that are of both basic and applied interest. Generically, a CVB is formed by underfilling an evacuated enclosure with a liquid. Classification depends on shape and Bond number. The specific CVB discussed herein was formed in a fused silica cell with inside dimensions of 3x3x40 mm and, therefore, can be viewed as a large version of a micro heat pipe. Since the dimensions are relatively large for a passive system, most of the liquid flow occurs under a small capillary pressure difference. Therefore, we can classify the discussed system as a low capillary pressure system. The studies discussed herein were done in a 1-g environment (Bond Number = 3.6) to obtain experience to design a microgravity experiment for a future NASA flight where low capillary pressure systems should prove more useful. The flight experiment is tentatively scheduled for the year 2000. The SCR was passed on September 16, 1997. The RDR is tentatively scheduled for October, 1998.

  19. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  20. A Experimental Investigation of Acoustic Cavitation in Gaseous Liquids

    NASA Astrophysics Data System (ADS)

    Gaitan, Dario Felipe

    1990-01-01

    High amplitude radial pulsations of a single gas bubble in several glycerine and water mixtures have been observed in an acoustic stationary wave system at acoustic pressure amplitudes as high as 1.5 bars. Using a laser scattering technique, radius-time curves have been obtained experimentally which confirm the absence of surface waves. Measurements of the pulsation amplitude, the timing of the major bubble collapse, and the number of rebounds have been made and compared with the theory. From these data, calculations of the internal gas temperature and pressure during the collapse have been performed. Values of at least 2,000 K and 2,000 bars have been obtained using a sophisticated model of spherically symmetric bubble dynamics. Simultaneously, sonoluminescence (SL), a phenomenon discovered in 1933 and attributed today to the high temperatures and pressures generated during the collapse of the bubbles, were observed as short light pulses occurring once every acoustic period. The light emissions can be seen to originate at the geometric center of the bubble when observed through a microscope. Also, the simultaneity of the light emissions and the collapse of the bubble has been confirmed with the aid of a photomultiplier tube. This is the first recorded observation of SL generated by a single bubble. Comparisons of the measured quantities have been made to those predicted by several models. In addition, the implications of this research on the current understanding of cavitation related phenomena such as rectified diffusion, surface wave excitation and sonoluminescence will be discussed. Some possible future experiments are suggested which could further increase our understanding of cavitation bubble dynamics.

  1. Doughnut-shaped soap bubbles.

    PubMed

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L. It is well known that the sphere is the solution for V=L(3)/6π(2), and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V<αL(3)/6π(2), with α≈0.21, such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V<αL(3)/6π(2) cannot be stable and should not exist in foams, for instance. PMID:26565252

  2. Doughnut-shaped soap bubbles

    NASA Astrophysics Data System (ADS)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 π2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V <α L3/6 π2 , with α ≈0.21 , such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V <α L3/6 π2 cannot be stable and should not exist in foams, for instance.

  3. The electro-acoustic transition process of pulsed corona discharge in conductive water

    NASA Astrophysics Data System (ADS)

    Huang, Yifan; Yan, Hui; Wang, Bingzhe; Zhang, Xuming; Liu, Zhen; Yan, Keping

    2014-06-01

    A pulsed corona discharge in conductive water is studied theoretically and experimentally via pre-discharge analysis, thermodynamic and dynamic processes of a plasma-containing bubble, an acoustic signature and energy partitioning. The total particle density and electron density inside the bubble, internal temperature and pressure, bubble radius and bubble wall Mach number are simulated by solving a set of equations including the ideal gas equation, Rayleigh equation and energy balance equation. The bubble radius is also measured by a high-speed charge-coupled device camera on a homemade experimental device. The acoustic waveforms and their power spectral density are calculated indirectly. By using several diagnostic tools, the electrical parameters of the load, light emission from the plasma and acoustic waveforms are recorded simultaneously. Simulation and experimental results of the bubble radius and acoustic signature agree reasonably well over the range of energy inputs from 5 to 30 J per pulse. Different kinds of terminations or intermediates of the energy transition process are analysed through simulation and experimental data. The electro-acoustic efficiency varies from 0.8% to 1.9%, while most of the discharge energy is consumed by circuit loss, Joule heating and thermal radiation, or is transformed into kinetic energy in the water.

  4. Acoustic waves superimposed on incompressible flows

    NASA Technical Reports Server (NTRS)

    Hodge, Steve

    1990-01-01

    The use of incompressible approximations in deriving solutions to the Lighthill wave equation was investigated for problems where an analytical solution could be found. A particular model problem involves the determination of the sound field of a spherical oscillating bubble in an ideal fluid. It is found that use of incompressible boundary conditions leads to good approximations in the important region of high acoustic wave number.

  5. Numerical studies of the spectrum of low-intensity ultrasound scattered by bubbles

    NASA Astrophysics Data System (ADS)

    Eatock, B. C.; Nishi, R. Y.; Johnston, G. W.

    1985-05-01

    The magnitude of the nonlinear effect in the scattering of ultrasound by nitrogen bubbles in water is examined numerically, for ultrasonic frequencies and amplitudes typical of diagnostic medical devices, to determine the suitability of this effect for the detection of bubbles in blood or tissue for application in decompression research. Numerical solutions of the modified 'Rayleigh' equation, including the effects of acoustic, thermal, and viscous damping, and the dependence of the polytropic exponent on frequency are presented for pulsed ultrasound. For the chosen conditions, it is shown that nonlinear scattering is significant only for the population of bubbles which are smaller than, or close to, resonance size, and primarily for those bubbles that are one-half resonance size.

  6. Modelling acoustic scattering, sound speed, and attenuation in gassy soft marine sediments.

    PubMed

    Mantouka, A; Dogan, H; White, P R; Leighton, T G

    2016-07-01

    A model for nonlinear gas bubble pulsation in marine sediments is presented. This model is then linearized to determine the resonance frequency and the damping terms for linear radial oscillations. The linear model is then used to predict the effects that such bubble pulsations will have on the sound speed and attenuation of acoustic waves propagating in gassy marine sediment. The results are compared for monodisperse populations against the predictions of a model of Anderson and Hampton and, furthermore, the additional abilities of the model introduced in this paper are discussed. These features include the removal of the sign ambiguities in the expressions, the straightforward implementation for acoustic propagation through polydisperse bubble populations, the capability to estimate bubble size distributions through a full acoustic inversion, and the capability to predict nonlinear effects. PMID:27475152

  7. Fuel system bubble dissipation device

    SciTech Connect

    Iseman, W.J.

    1987-11-03

    This patent describes a bubble dissipation device for a fuel system wherein fuel is delivered through a fuel line from a fuel tank to a fuel control with the pressure of the fuel being progressively increased by components including at least one pump stage and an ejector in advance of the pump state. The ejector an ejector casing with a wall defining an elongate tubular flow passage which forms a portion of the fuel line to have all of the fuel flow through the tubular flow passage in flowing from the fuel tank to the fuel control, a nozzle positioned entirely within the tubular flow passage and spaced from the wall to permit fuel flow. The nozzle has an inlet and an outlet with the inlet connected to the pump stage to receive fuel under pressure continuously from the pump stage, a bubble accumulation chamber adjoining and at a level above the ejector casing and operatively connected to the fuel line in advance of the ejector casing. The bubble accumulation chamber is of a size to function as a fuel reservoir and hold an air bubble containing vapor above the level of fuel therein and having an outlet adjacent the bottom thereof operatively connected to the tubular flow passage in the ejector casing at an inlet end, a bubble accumulation chamber inlet above the level of the bubble accumulation chamber outlet whereby fuel can flow through the bubble accumulation chamber from the inlet to the outlet thereof with a bubble in the fuel rising above the fuel level in the bubble accumulation chamber.

  8. Acoustic Droplet Vaporization in Biology and Medicine

    PubMed Central

    Pitt, William G.

    2013-01-01

    This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV) in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU) sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles. PMID:24350267

  9. Nozzle-Free Liquid Microjetting via Homogeneous Bubble Nucleation

    NASA Astrophysics Data System (ADS)

    Lee, Taehwa; Baac, Hyoung Won; Ok, Jong G.; Youn, Hong Seok; Guo, L. Jay

    2015-04-01

    We propose and demonstrate a physical mechanism for producing liquid microjets by taking an optoacoustic approach that can convert light to sound through a carbon-nanotube-coated lens, where light from a pulsed laser is converted to high momentum sound wave. The carbon-nanotube lens can focus high-amplitude sound waves to a microspot of <1 00 μ m near the air-water interface from the water side, leading to microbubbles in water and subsequent microjets into the air. Laser-flash shadowgraphy visualizes two consecutive jets closely correlated with bubble dynamics. Because of the acoustic scattering from the interface, negative pressure amplitudes are significantly increased up to 80 MPa, even allowing homogeneous bubble nucleation. As a demonstration, this nozzle-free approach is applied to inject colored liquid into a tissue-mimicking gel as well as print a material on a glass substrate.

  10. Bubble Growth in Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  11. Partial coalescence of soap bubbles

    NASA Astrophysics Data System (ADS)

    Harris, Daniel M.; Pucci, Giuseppe; Bush, John W. M.

    2015-11-01

    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette and to the coalescence cascade of droplets on a fluid bath.

  12. Effects of Tissue Stiffness, Ultrasound Frequency, and Pressure on Histotripsy-induced Cavitation Bubble Behavior

    PubMed Central

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-01-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 microns. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness causes a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest. PMID:25715732

  13. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T.; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  14. Bubble stimulation efficiency of dinoflagellate bioluminescence.

    PubMed

    Deane, Grant B; Stokes, M Dale; Latz, Michael I

    2016-02-01

    Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors. PMID:26061152

  15. Modeling methane bubble growth in fine-grained muddy aquatic sediments: correlation with sediment properties

    NASA Astrophysics Data System (ADS)

    Katsman, Regina

    2015-04-01

    Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment-water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.

  16. Experimental Study of Shock-Induced Compression and Vortex Generation in the Shock-Bubble Interaction

    NASA Astrophysics Data System (ADS)

    Ranjan, Devesh; Motl, Bradley; Niederhaus, John; Oakley, Jason; Anderson, Mark; Bonazza, Riccardo; Greenough, Jeffrey

    2006-11-01

    Results are presented from experiments studying the interaction of a planar shock wave of strength 1.4 bubble composed of helium. Experiments are performed in a 9.2-m-long vertical shock tube with a square internal cross-section, 0.254 m on a side, equipped with a pneumatically driven retracting bubble injector. The absence of a bubble holder during shock wave passage allows for a cleaner initial condition while avoiding complications associated with holder/shock interaction. As the planar shock passes over the bubble, the intense vortical and nonlinear acoustic phenomena characterized initially by Haas and Sturtevant (J. Fluid. Mech., 1987) are observed, including vortex ring formation, intense mixing, and growth of turbulence-like features. Flow visualizations are obtained using planar laser diagnostics rather than integral measures. The origin and growth of distinctive counter-rotating secondary vortical features are observed in high Mach number experiments. A number of features of the shock bubble interaction are investigated and parameterized with the incident M and the initial density difference. These include the axial and lateral extents of the bubble, the translational velocity of the bubble and associated vortex rings, and the circulation of the vortex rings.

  17. Measuring and modeling the bubble population produced by an underwater explosion.

    PubMed

    Holt, Fred D; Lee Culver, R

    2011-11-01

    Underwater explosions have been studied intensively in the United States since 1941 [e.g., R. H. Cole, Underwater Explosions (Princeton University Press, Princeton, NJ, 1945), pp. 3-13]. Research to date has primarily focused on the initial shock and subsequent pressure waves caused by the oscillations of the "gas-globe" resulting from charge detonation. These phenomena have relatively short timescales (typically less than 2 s). However, after the gas-globe rises through the water column and breaks the surface, there remains behind a cloud of bubbles and perhaps debris from the explosion container which has been markedly less studied. A recent experiment measured the spatial and temporal acoustic response of the bubble cloud resulting from a 13.6 kg PBXN-111 charge detonated at 15.2 m (50 ft) depth. A directional projector was used to propagate linear frequency-modulated (5-65 kHz) and 40 kHz tonal pulses through the bubble cloud. Two hydrophone arrays were positioned so as to measure the energy lost in propagating through the bubble cloud. Three methods have been utilized to invert measurements and estimate the bubble population. The bubble population estimates have been used to develop a model for the bubble population resulting from an underwater explosion. PMID:22088003

  18. Moving single bubble sonoluminescence in phosphoric acid and sulphuric acid solutions.

    PubMed

    Troia, A; Ripa, D Madonna; Spagnolo, R

    2006-04-01

    The phenomenon of sonoluminescence still presents some unsolved aspects. Recently [Y.T. Didenko, K. Suslick, Molecular Emission during Single Bubble Sonoluminescence, Nature 407 (2000) 877-879.], it was found that a single cavitating air bubble in polar aprotic liquids (including formamide and adiponitrile) can produce very strong sonoluminescence while undergoing macroscopic translation movements in the resonator, a condition known as moving single bubble sonoluminescing (MSBSL). Here we describe some experiments conducted in aqueous solutions of phosphoric and sulphuric acid. In these liquid media, it is possible to reproduce MSBSL and luminescence is emitted even if a trapped bubble is subjected to a strong shape instability, named in the literature "jittering phase". When a moving and luminescing bubble was present and the acoustic pressure gradually increased, we observed the generation of a discrete lattice of trapped bubbles. The bubbles in the lattice emit very intense light flashes and can change their position while maintaining the overall spatial distribution in time. Some preliminary results, obtained from Mie-scattering and measurements of relative light intensity, are reported. PMID:16309944

  19. Experimental study of the liquid flow near a single sonoluminescent bubble

    PubMed

    Verraes; Lepoint-Mullie; Lepoint; Longuet-Higgins

    2000-07-01

    Tracers (sulphur particles produced in situ by a bubble itself, fuchsin spots and dust) were used to probe the liquid flows in the neighborhood of single sonoluminescent bubbles maintained in levitation in a resonant acoustic setup. The flows caused by the bubble were distinguished clearly from the streamings (mean Lagrangian velocity: approximately 20 microm/s) associated with resonant cells in the absence of a bubble. The liquid flow due to the presence of the bubble formed around it over a few mm. The radial component of the Lagrangian velocities (maximum value measured: approximately 260 microm/s) of this flow evolved as r(-1) , with r as the distance from the bubble, while the tangential component remained approximately constant (approximately 20 microm/s). In the Appendix by M. S. Longuet-Higgins, a simplified model of microstreaming involving a spherical bubble in translational and radial oscillation gives a qualitative description of the experiments. A fairly good agreement was observed between the experiments and the modeling, which involved a dipole flow enclosed in a Stokeslet. PMID:10923877

  20. Linear Stability Analysis of an Acoustically Vaporized Droplet

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  1. An experimental investigation of acoustic cavitation in gaseous liquids

    NASA Astrophysics Data System (ADS)

    Gaitan, Dario F.; Crum, Lawrence A.

    1990-11-01

    High amplitude radial pulsations of a single bubble in several glycerine and water mixtures were observed in an acoustic stationary wave system at acoustic pressure amplitudes on the order of 150 kPa at 21 to 25 kHz. Sonoluminescence, a phenomenon generally attributed to the high temperatures generated during the collapse of cavitation bubbles, was observed as short light pulses occurring once every acoustic period. These emissions could be seen to originate at the geometric center of the bubble when observed through a microscope. It was observed that the light emissions occurred simultaneously with the bubble collapse. Using a laser scattering technique, experimental radius-time curves were obtained which confirmed the absence of surface waves which are expected at pressure amplitudes above 100 kPa. From these radius-time curves, measurements of the pulsation amplitude, the timing of the major bubble collapse, and the number of rebounds were made and compared with several theories. The implications of this research on the current understanding of cavitation were discussed.

  2. Transient bubbles, bublets and breakup

    NASA Astrophysics Data System (ADS)

    Keen, Giles; Blake, John

    1999-11-01

    The non-spherical nature of the collapse of bubbles has important ramifications in many practical situations such as ultrasonic cleaning, tanning of leather, and underwater explosions. In particular the high speed liquid jet that can thread a collapsing bubble is central to the functional performance. An impressive photographic record of a liquid jet was obtained by Crum using a bubble situated in the vicinity of a platform oscillating vertically at a frequency of 60 Hz. A boundary integral method is used to model this situation and is found to closely mimic some of the observations. However, a slight variation of parameters or a change in the phase of the driving frequency can lead to dramatically different bubble behaviour, a feature also observed by Crum.

  3. Bubble nucleation in stout beers

    NASA Astrophysics Data System (ADS)

    Lee, W. T.; McKechnie, J. S.; Devereux, M. G.

    2011-05-01

    Bubble nucleation in weakly supersaturated solutions of carbon dioxide—such as champagne, sparkling wines, and carbonated beers—is well understood. Bubbles grow and detach from nucleation sites: gas pockets trapped within hollow cellulose fibers. This mechanism appears not to be active in stout beers that are supersaturated solutions of nitrogen and carbon dioxide. In their canned forms these beers require additional technology (widgets) to release the bubbles which will form the head of the beer. We extend the mathematical model of bubble nucleation in carbonated liquids to the case of two gases and show that this nucleation mechanism is active in stout beers, though substantially slower than in carbonated beers and confirm this by observation. A rough calculation suggests that despite the slowness of the process, applying a coating of hollow porous fibers to the inside of a can or bottle could be a potential replacement for widgets.

  4. Partial coalescence of soap bubbles

    NASA Astrophysics Data System (ADS)

    Pucci, G.; Harris, D. M.; Bush, J. W. M.

    2015-06-01

    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette ["Simulations of surfactant effects on the dynamics of coalescing drops and bubbles," Phys. Fluids 27, 012103 (2015)] and to the coalescence cascade of droplets on a fluid bath.

  5. Pulling bubbles from a bath

    NASA Astrophysics Data System (ADS)

    Kao, Justin C. T.; Blakemore, Andrea L.; Hosoi, A. E.

    2010-06-01

    Deposition of bubbles on a wall withdrawn from a liquid bath is a phenomenon observed in many everyday situations—the foam lacing left behind in an emptied glass of beer, for instance. It is also of importance to the many industrial processes where uniformity of coating is desirable. We report work on an idealized version of this situation, the drag-out of a single bubble in Landau-Levich-Derjaguin flow. We find that a well-defined critical wall speed exists, separating the two regimes of bubble persistence at the meniscus and bubble deposition on the moving wall. Experiments show that this transition occurs at Ca∗˜Bo0.73. A similar result is obtained theoretically by balancing viscous stresses and gravity.

  6. Modeling the Local Bubble

    NASA Astrophysics Data System (ADS)

    Cox, D. P.

    Modeling the Local Bubble is one of those activities fraught with danger. It is very easy to be too naive, to fail to consider the dependence of the model on assumptions about the nearby ambient state, or the likelihood of such a structure. It is similarly easy to become so caught up in the details of the vicinity that it is unclear where to begin a necessarily idealized modeling effort. And finally, it is important to remember that the data we have may in some cases be lying to us, and that we have not yet learned to read their facial expressions quite carefully enough. That said, I've tried in this paper to be helpful to those who may wish to take the risks. I surveyed the very most basic stories that the data seem to tell, and pointed out the standard coincidences that may be telling us a lot about what is happening, but may turn out once again to have been just coincidences. I've described 5 distinct conceptions that in one flavor or another pretty well survey the collection of mental images that have so far been carried by those who've attempted models. One may be right, or something entirely different may be more appropriate. It's at least vital to realize that a conception comes first, followed by a simplified model of details. I've also included a long list of questions directed at observers. Some have partial answers, some one wouldn't know today quite how to approach. But it is a list that students of the soft x-ray background, interstellar absorption lines, possible instrumentation, and the heliosphere may wish to review from time to time, just to see whether they can figure out how to be more helpful. There is another list for modelers, things the models must address, however-so-flimsily if necessary, because there are strong observational constraints (and stronger ones coming) on what can and cannot be present in the local ISM. To that I've added a few remarks concerning x-ray emission coming from beyond the Local Bubble, and another few on how x

  7. How does a bubble chamber work?

    SciTech Connect

    Konstantinov, D.; Homsi, W.; Luzuriaga, J.; Su, C.K.; Weilert, M.A.; Maris, H.J.

    1998-11-01

    A charged particle passing through a bubble chamber produces a track of bubbles. The way in which these bubbles are produced has been a matter of some controversy. The authors consider the possibility that in helium and hydrogen bubble chambers the production of bubbles is primarily a mechanical process, rather than a thermal process as has often been assumed. The model the authors propose gives results which are in excellent agreement with experiment.

  8. Bubble gum simulating abdominal calcifications.

    PubMed

    Geller, E; Smergel, E M

    1992-01-01

    CT examination of the abdomens of two children demonstrated sites of high attenuation in the stomach, which were revealed to be bubble gum. Investigation of the CT appearance of samples of chewing gum showed that it consistently has high attenuation (178-345 HU). The attenuation of gum base, which contains calcium carbonate, was 476 HU. In addition, examination of a volunteer who had swallowed bubble gum confirmed the CT appearance. PMID:1523059

  9. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  10. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  11. Interfacial wave dynamics of a drop with an embedded bubble

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.

    2016-02-01

    This article describes how an embedded bubble changes the surface wave of a suspended liquid drop, and how such modifications, if recorded experimentally, can be used to detect voids in typically opaque interior of the fluid. The analysis uses a matrix formalism to predict the frequencies for natural oscillation and the deformation for acoustically induced forced vibration. The theory shows that the embedded cavity causes major shifts in the frequency and amplitude values as well as twofold increase in number of natural modes, indicating multifacetted utility of the results in process diagnostics, material characterizations, and combustion technology.

  12. Bubble-Pen Lithography.

    PubMed

    Lin, Linhan; Peng, Xiaolei; Mao, Zhangming; Li, Wei; Yogeesh, Maruthi N; Rajeeva, Bharath Bangalore; Perillo, Evan P; Dunn, Andrew K; Akinwande, Deji; Zheng, Yuebing

    2016-01-13

    Current lithography techniques, which employ photon, electron, or ion beams to induce chemical or physical reactions for micro/nano-fabrication, have remained challenging in patterning chemically synthesized colloidal particles, which are emerging as building blocks for functional devices. Herein, we develop a new technique - bubble-pen lithography (BPL) - to pattern colloidal particles on substrates using optically controlled microbubbles. Briefly, a single laser beam generates a microbubble at the interface of colloidal suspension and a plasmonic substrate via plasmon-enhanced photothermal effects. The microbubble captures and immobilizes the colloidal particles on the substrate through coordinated actions of Marangoni convection, surface tension, gas pressure, and substrate adhesion. Through directing the laser beam to move the microbubble, we create arbitrary single-particle patterns and particle assemblies with different resolutions and architectures. Furthermore, we have applied BPL to pattern CdSe/ZnS quantum dots on plasmonic substrates and polystyrene (PS) microparticles on two-dimensional (2D) atomic-layer materials. With the low-power operation, arbitrary patterning and applicability to general colloidal particles, BPL will find a wide range of applications in microelectronics, nanophotonics, and nanomedicine. PMID:26678845

  13. The Quadrupole Mass Spectrometer

    ERIC Educational Resources Information Center

    Matheson, E.; Harris, T. J.

    1969-01-01

    Describes the construction and operation of a quadrupole mass spectrometer for experiments in an advanced-teaching laboratory. Discusses the theory of operation of the spectrometer and the factors affecting the resolution. Some examples of mass spectra obtained with this instrument are presented and discussed. (LC)

  14. Differential Moessbauer spectrometer

    SciTech Connect

    Kurinyi, Yu.A.; Grotov, Yu.D.

    1988-07-01

    A spectrometer is described that permits hardware differentiation of spectra with respect to the energy of gamma radiation, specimen temperature, etc. Differentiation is performed by secondary modulation of source motion with subsequent phase-sensitive detection at the harmonics. The spectrometer is CAMAC-compatible and permits simultaneous measurement of the first four harmonics.

  15. A theoretical investigation of the dynamics of single bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Bae, Song-Hyo

    Single bubble Sonoluminescence (SBSL) is a phenomenon involving light emission during the implosion of an oscillating gas bubble immersed in liquid. A new one dimensional HYDRO code (HYDRO-RPI) was developed for the analytical study of sonoluminescence phenomenon, including simulations of the shock waves, local gas temperatures and the spectrum of the light emissions. The accuracy of HYDRO-RPI has been verified against known exact solutions. Comparisons with other numerical methods (i.e., the original artificial viscosity method of von Neumann & Richmyer, Noh's shock following method, and the piecewise-parabolic method of Colella & Woodward) have also demonstrated the advantages of HYDRO-RPI. Using a photon transport model which was introduced into HYDRO- RPI, we obtained results for sonoluminescence (SL) radiation, and the duration of the light emission, which showed good agreement with experimental data [Hiller et al., 1992; Gompf et al., 1997]. The dependence of SL radiation on the acoustic incident pressure and equilibrium bubble size was discussed. We found that an order of magnitude change in SL radiation can occur without appreciable change in the maximum and bulk gas temperature inside the bubble. This is consistent with recent SL experiments performed by Delgadino [1999]. In order to economically investigate the various phenomena involved in SBSL, except those related to the high Mach number regime in the final pico-seconds of a collapsing bubble, a simplified hydrodynamic model (RNLB) based on a modified Rayleigh equation, was also developed and compared with the results of HYDRO-RPI to check for self-consistency. In addition, a method of excitation to achieve much higher gas temperatures, and a stability boundary for SBSL, were discussed. The validity of the numerical results for the stability boundary were assessed against experimental data.

  16. Ultrasonic emissions reveal individual cavitation bubbles in water-stressed wood

    PubMed Central

    Ponomarenko, A.; Vincent, O.; Pietriga, A.; Cochard, H.; Badel, É.; Marmottant, P.

    2014-01-01

    Under drought conditions, the xylem of trees that conducts ascending sap produces ultrasonic emissions whose exact origin is not clear. We introduce a new method to record simultaneously both acoustic events and optical observation of the xylem conduits within slices of wood that were embedded in a transparent material setting a hydric stress. In this article, we resolved the rapid development of all cavitation bubbles and demonstrated that each ultrasound emission was linked to the nucleation of one single bubble, whose acoustic energy is an increasing function of the size of the conduit where nucleation occurred and also of the hydric stress. We modelled these observations by the fact that water columns in conduits store elastic energy and release it into acoustic waves when they are broken by cavitation bubbles. Water columns are thus elastic, and not rigid, ‘wires of water’ set under tension by hydric stresses. Cavitation bubbles are at the origin of an embolism, whose development was followed in our experiments. Such an embolism of sap circulation can result in a fatal condition for living trees. These findings provide new insights for the non-destructive monitoring of embolisms within trees, and suggest a new approach to study porous media under hydric stress. PMID:25056212

  17. FEASTING BLACK HOLE BLOWS BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  18. An audible demonstration of the speed of sound in bubbly liquids

    NASA Astrophysics Data System (ADS)

    Wilson, Preston S.; Roy, Ronald A.

    2008-10-01

    The speed of sound in a bubbly liquid is strongly dependent upon the volume fraction of the gas phase, the bubble size distribution, and the frequency of the acoustic excitation. At sufficiently low frequencies, the speed of sound depends primarily on the gas volume fraction. This effect can be audibly demonstrated using a one-dimensional acoustic waveguide, in which the flow rate of air bubbles injected into a water-filled tube is varied by the user. The normal modes of the waveguide are excited by the sound of the bubbles being injected into the tube. As the flow rate is varied, the speed of sound varies as well, and hence, the resonance frequencies shift. This can be clearly heard through the use of an amplified hydrophone and the user can create aesthetically pleasing and even musical sounds. In addition, the apparatus can be used to verify a simple mathematical model known as Wood's equation that relates the speed of sound of a bubbly liquid to its void fraction.

  19. A Micro-Opto-Mechanical Photoacoustic Spectrometer

    SciTech Connect

    Kotovsky, J

    2008-10-17

    This report describes progress achieved in a one-year LDRD feasibility study of a Photo Acoustic Spectrometer (PAS). Specifically, this team sought to create an all-optical and very small PhotoAcoustic Spectrometer Sensing system (PASS system). The PASS system includes all the hardware needed within a gas environment to analyze the presence of a large variety of molecules. The all-optical PASS system requires only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the gas environment. These systems can be at any distance from the PASS system as signal loss through the optical fibers is very small. The PASS system is intended to be placed in a small space where gases need to be measured and thus must be very small. The size and all-optical constraints placed on the PASS system demand a new design. The PASS system design includes a novel acoustic chamber, optical sensor, power fiber coupling and sensing fiber coupling. Our collaborators at the Atomic Weapons Establishment (AWE) have proven the capabilities of a complete photoacoustic spectrometer that uses a macro-scale PASS system (first 2 references). It was our goal to miniaturize the PASS system and turn it into an all-optical system to allow for its use in confined spaces that prohibit electrical devices. This goal demanded the study of all the system components, selection of an appropriate optical readout system and the design and integration of the optical sensor to the PASS system. A stretch goal was to fabricate a completed PASS system prototype.

  20. Mechanisms of single bubble cleaning.

    PubMed

    Reuter, Fabian; Mettin, Robert

    2016-03-01

    The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8<γ<3.5, bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γ<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1<γ<1.8, only the second bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by

  1. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water.

    PubMed

    Ferkous, Hamza; Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2015-09-01

    In the present work, comprehensive experimental and numerical investigations of the effects of frequency and acoustic intensity on the sonochemical degradation of naphthol blue black (NBB) in water have been carried out. The experiments have been examined at three frequencies (585, 860 and 1140 kHz) and over a wide range of acoustic intensities. The observed experimental results have been discussed using a more realistic approach that combines the single bubble sonochemistry and the number of active bubbles. The single bubble yield has been predicted using a model that combines the bubble dynamics with chemical kinetics consisting of series of chemical reactions (73 reversible reactions) occurring inside an air bubble during the strong collapse. The experimental results showed that the sonochemical degradation rate of NBB increased substantially with increasing acoustic intensity and decreased with increasing ultrasound frequency. The numerical simulations revealed that NBB degraded mainly through the reaction with hydroxyl radical (OH), which is the dominant oxidant detected in the bubble during collapse. The production rate of OH radical inside a single bubble followed the same trend as that of NBB degradation rate. It increased with increasing acoustic intensity and decreased with increasing frequency. The enhancing effect of acoustic intensity toward the degradation of NBB was attributed to the rise of both the individual chemical bubble yield and the number of active bubbles with increasing acoustic intensity. The reducing effect of frequency was attributed to the sharp decrease in the chemical bubble yield with increasing frequency, which would not compensated by the rise of the number of active bubbles with the increase in ultrasound frequency. PMID:25753313

  2. Spark bubble interaction with a suspended particle

    NASA Astrophysics Data System (ADS)

    Ohl, Siew-Wan; Wu, Di Wei; Klaseboer, Evert; Cheong Khoo, Boo

    2015-12-01

    Cavitation bubble collapse is influenced by nearby surfaces or objects. A bubble near a rigid surface will move towards the surface and collapse with a high speed jet. When a hard particle is suspended near a bubble generated by electric spark, the bubble expands and collapses moving the particle. We found that within a limit of stand-off distance, the particle is propelled away from the bubble as it collapses. At a slightly larger stand-off distance, the bubble collapse causes the particle to move towards the bubble initially before moving away. The bubble does not move the particle if it is placed far away. This conclusion is important for applications such as drug delivery in which the particle is to be propelled away from the collapsing bubble.

  3. Inviscid Partial Coalescence from Bubbles to Drops

    NASA Astrophysics Data System (ADS)

    Zhang, F. H.; Taborek, P.; Burton, J.; Khoo, B. C.; Lim, K. M.; Thoroddsen, S. T.

    2010-11-01

    Coalescence of bubbles (drops) not only coarse the bubble (drop) sizes, but sometimes produces satellite bubbles (droplets), known as partial coalescence. To explore links between the drop and bubble cases, we experimentally study the partial coalescence of pressurized xenon gas bubbles in nano de-ionized water using high-speed video imaging. The size of these satellites relative to their mother bubbles is found to increase with the density ratio of the gas to the liquid. Moreover, sub-satellite bubbles are sometimes observed, whose size is also found to increase with the density ratio, while keeps about one quarter of the primary satellite. The time duration from start of the coalescence to formation of the satellites, scaled by the capillary time, increases with the density ratio too. In addition, as the size ratio of the father bubble to the mother bubble increases moderately, their coalescence proceeds faster and the sub-satellite is prone to form and relatively larger.

  4. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  5. Coupled dynamics of translation and collapse of acoustically driven microbubbles.

    PubMed

    Reddy, Anil J; Szeri, Andrew J

    2002-10-01

    Pressure gradients drive the motion of microbubbles relative to liquids in which they are suspended. Examples include the hydrostatic pressure due to a gravitational field, and the pressure gradients in a sound field, useful for acoustic levitation. In this paper, the equations describing the coupled dynamics of radial oscillation and translation of a microbubble are given. The formulation is based on a recently derived expression for the hydrodynamic force on a bubble of changing size in an incompressible liquid [J. Magnaudet and D. Legendre, Phys. Fluids 10, 550-556 (1998)]. The complex interaction between radial and translation dynamics is best understood by examination of the added momentum associated with the liquid motion caused by the moving bubble. Translation is maximized when the bubble collapses violently. The new theory for coupled collapse and translation dynamics is compared to past experiments and to previous theories for decoupled translation dynamics. Special attention is paid to bubbles of relevance in biomedical applications. PMID:12398441

  6. The Time Evolution of Streamer Discharges in Single and Multiple Bubbles in Water

    NASA Astrophysics Data System (ADS)

    Mujovic, Selman; Groele, Joseph; Foster, John

    2015-09-01

    The interaction of plasma with liquid water lies at the heart of a variety of revisited technological applications ranging from water treatment to wound healing. Plasma ignition and propagation in water, however, is poorly understood. It has been theorized that plasma streamer propagation takes place in microbubbles, namely streamer bubble hopping. In this work, discharge development in single and multiple bubble acoustic systems is investigated using high-speed imaging and emission spectroscopy. Optical filters allow for time resolved measurements of specific chemical species as well. Better understanding of these breakdown processes will guide the construction of an effective plasma water purifier. NSF CBET 1336375.

  7. Influence of bubble size and thermal dissipation on compressive wave attenuation in liquid foams

    NASA Astrophysics Data System (ADS)

    Monloubou, M.; Saint-Jalmes, A.; Dollet, B.; Cantat, I.

    2015-11-01

    Acoustic or blast wave absorption by liquid foams is especially efficient and bubble size or liquid fraction optimization is an important challenge in this context. A resonant behavior of foams has recently been observed, but the main local dissipative process is still unknown. In this paper, we evidence the thermal origin of the dissipation, with an optimal bubble size close to the thermal boundary layer thickness. Using a shock tube, we produce typical pressure variation at time scales of the order of the millisecond, which propagates in the foam in linear and slightly nonlinear regimes.

  8. Bubble nucleation in an explosive micro-bubble actuator

    NASA Astrophysics Data System (ADS)

    van den Broek, D. M.; Elwenspoek, M.

    2008-06-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse. In this paper we take a closer look at the bubble nucleation. The moment of bubble nucleation was determined by both stroboscopic imaging and resistance thermometry. Two nucleation regimes could be distinguished. Several different heater designs were investigated under heat fluxes of hundreds of W mm-2. A close correspondence between current density in the heater and point of nucleation was found. This results in design rules for effective heaters.

  9. Bubble size distribution analysis and control in high frequency ultrasonic cleaning processes

    NASA Astrophysics Data System (ADS)

    Hauptmann, M.; Struyf, H.; Mertens, P.; Heyns, M.; De Gendt, S.; Glorieux, C.; Brems, S.

    2012-12-01

    In the semiconductor industry, the ongoing down-scaling of nanoelectronic elements has lead to an increasing complexity of their fabrication. Hence, the individual fabrication processes become increasingly difficult to handle. To minimize cross-contamination, intermediate surface cleaning and preparation steps are inevitable parts of the semiconductor process chain. Here, one major challenge is the removal of residual nano-particulate contamination resulting from abrasive processes such as polishing and etching. In the past, physical cleaning techniques such as megasonic cleaning have been proposed as suitable solutions. However, the soaring fragility of the smallest structures is constraining the forces of the involved physical removal mechanisms. In the case of "megasonic" cleaning -cleaning with ultrasound in the MHz-domain - the main cleaning action arises from strongly oscillating microbubbles which emerge from the periodically changing tensile strain in the cleaning liquid during sonication. These bubbles grow, oscillate and collapse due to a complex interplay of rectified diffusion, bubble coalescence, non-linear pulsation and the onset of shape instabilities. Hence, the resulting bubble size distribution does not remain static but alternates continuously. Only microbubbles in this distribution that show a high oscillatory response are responsible for the cleaning action. Therefore, the cleaning process efficiency can be improved by keeping the majority of bubbles around their resonance size. In this paper, we propose a method to control and characterize the bubble size distribution by means of "pulsed" sonication and measurements of acoustic cavitation spectra, respectively. We show that the so-obtained bubble size distributions can be related to theoretical predictions of the oscillatory responses of and the onset of shape instabilities for the respective bubbles. We also propose a mechanism to explain the enhancement of both acoustic and cleaning activity

  10. Ethnic diversity deflates price bubbles

    PubMed Central

    Levine, Sheen S.; Apfelbaum, Evan P.; Bernard, Mark; Bartelt, Valerie L.; Zajac, Edward J.; Stark, David

    2014-01-01

    Markets are central to modern society, so their failures can be devastating. Here, we examine a prominent failure: price bubbles. Bubbles emerge when traders err collectively in pricing, causing misfit between market prices and the true values of assets. The causes of such collective errors remain elusive. We propose that bubbles are affected by ethnic homogeneity in the market and can be thwarted by diversity. In homogenous markets, traders place undue confidence in the decisions of others. Less likely to scrutinize others’ decisions, traders are more likely to accept prices that deviate from true values. To test this, we constructed experimental markets in Southeast Asia and North America, where participants traded stocks to earn money. We randomly assigned participants to ethnically homogeneous or diverse markets. We find a marked difference: Across markets and locations, market prices fit true values 58% better in diverse markets. The effect is similar across sites, despite sizeable differences in culture and ethnic composition. Specifically, in homogenous markets, overpricing is higher as traders are more likely to accept speculative prices. Their pricing errors are more correlated than in diverse markets. In addition, when bubbles burst, homogenous markets crash more severely. The findings suggest that price bubbles arise not only from individual errors or financial conditions, but also from the social context of decision making. The evidence may inform public discussion on ethnic diversity: it may be beneficial not only for providing variety in perspectives and skills, but also because diversity facilitates friction that enhances deliberation and upends conformity. PMID:25404313

  11. Bubble migration during hydrate formation

    NASA Astrophysics Data System (ADS)

    Shagapov, V. Sh.; Chiglintseva, A. S.; Rusinov, A. A.

    2015-03-01

    A model of the process of migration of methane bubbles in water under thermobaric conditions of hydrate formation is proposed. The peculiarities of the temperature field evolution, migration rate, and changes in the radius and volume fraction of gas hydrate bubbles are studied. It is shown that, with a constant mass flow of gas from the reservoir bottom, for all parameters of the surfacing gas hydrate disperse system, there is a quasistationary pattern in the form of a "step"-like wave. Depending on the relationship of the initial gas bubble density with the average gas density in the hydrate composition determined by the depth from which bubbles rise to the surface, the final radius of hydrate particles may be larger or smaller than the initial gas bubble radii. It is established that the speed at which gas hydrate inclusions rise to the surface decreases by several times due to an increase in their weight during hydrate formation. The influence of the depth of the water reservoir whose bottom is a gas flow source on the dynamics of hydrate formation is studied.

  12. Capillarity-Driven Bubble Separations

    NASA Astrophysics Data System (ADS)

    Wollman, Andrew; Weislogel, Mark; Dreyer, Michael

    2013-11-01

    Techniques for phase separation in the absence of gravity continue to be sought after 5 decades of space flight. This work focuses on the fundamental problem of gas bubble separation in bubbly flows through open wedge-shaped channel in a microgravity environment. The bubbles appear to rise in the channel and coalesce with the free surface. Forces acting on the bubble are the combined effects of surface tension, wetting conditions, and geometry; not buoyancy. A single dimensionless group is identified that characterizes the bubble behavior and supportive experiments are conducted in a terrestrial laboratory, in a 2.1 second drop tower, and aboard the International Space Station as part of the Capillary Channel Flow (CCF) experiments. The data is organized into regime maps that provide insight on passive phase separations for applications ranging from liquid management aboard spacecraft to lab-on-chip technologies. NASA NNX09AP66A, NASA Oregon Space Grant NNX10AK68H, NASA NNX12AO47A, DLR 50WM0535/0845/1145

  13. Ethnic diversity deflates price bubbles.

    PubMed

    Levine, Sheen S; Apfelbaum, Evan P; Bernard, Mark; Bartelt, Valerie L; Zajac, Edward J; Stark, David

    2014-12-30

    Markets are central to modern society, so their failures can be devastating. Here, we examine a prominent failure: price bubbles. Bubbles emerge when traders err collectively in pricing, causing misfit between market prices and the true values of assets. The causes of such collective errors remain elusive. We propose that bubbles are affected by ethnic homogeneity in the market and can be thwarted by diversity. In homogenous markets, traders place undue confidence in the decisions of others. Less likely to scrutinize others' decisions, traders are more likely to accept prices that deviate from true values. To test this, we constructed experimental markets in Southeast Asia and North America, where participants traded stocks to earn money. We randomly assigned participants to ethnically homogeneous or diverse markets. We find a marked difference: Across markets and locations, market prices fit true values 58% better in diverse markets. The effect is similar across sites, despite sizeable differences in culture and ethnic composition. Specifically, in homogenous markets, overpricing is higher as traders are more likely to accept speculative prices. Their pricing errors are more correlated than in diverse markets. In addition, when bubbles burst, homogenous markets crash more severely. The findings suggest that price bubbles arise not only from individual errors or financial conditions, but also from the social context of decision making. The evidence may inform public discussion on ethnic diversity: it may be beneficial not only for providing variety in perspectives and skills, but also because diversity facilitates friction that enhances deliberation and upends conformity. PMID:25404313

  14. The SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Pakarinen, J.; Papadakis, P.; Sorri, J.; Herzberg, R.-D.; Greenlees, P. T.; Butler, P. A.; Coleman-Smith, P. J.; Cox, D. M.; Cresswell, J. R.; Jones, P.; Julin, R.; Konki, J.; Lazarus, I. H.; Letts, S. C.; Mistry, A.; Page, R. D.; Parr, E.; Pucknell, V. F. E.; Rahkila, P.; Sampson, J.; Sandzelius, M.; Seddon, D. A.; Simpson, J.; Thornhill, J.; Wells, D.

    2014-03-01

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of -rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and -rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyväskylä and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method.

  15. Acoustic analog of a free-electron laser

    SciTech Connect

    Zavtrak, S.T.

    1995-12-31

    As well known, at the present time there are many types of laser the operation of which is based on the stimulated emission of light by an active medium. Lasers are generators of coherent electromagnetic waves in the range from ultraviolet to submillimeters. But acoustic analogs of such devices have not been created up to now in spite of the progress in laser technology. Meanwhile, an acoustic laser could have a lot of interesting applications. Recently a theoretical scheme for an acoustic laser was proposed by the present author. A liquid dielectric with dispersed particles was considered as an active medium. The pumping was created by an oscillating electric field deforming dispersed particle volumes. Different types of oils or distilled water can serve as a liquid dielectric with gas bubbles as dispersed particles. Gas bubbles in water can be created by an electrolysis. The phase bunching of the initially incoherent emitters (gas bubbles) was realized by acoustic radiation forces. This scheme is an analog of the free-electron laser (FEL). It was shown that two types of losses must be overcome for the beginning of a generation. The first type results from the energy dissipation in the active medium and the second one is caused by radiation losses at the boundaries of the resonator. The purposes of this report are: (1) to discuss the analogies between the acoustic laser and FEL; (2) to propose an effective scheme of an acoustic laser with a mechanical pumping (by a piezoelectric emitter of the piston type); (3) to consider the schemes of acoustic lasers with the different types of the resonators (rectangular and cylindrical); (4) to discuss the possibility of the creation of an impact acoustic laser (5) to discuss the experimental works which are planned to be carried out in cooperation with prof. L.A. Crum.

  16. Measurements of near-surface bubble plumes in the open ocean with implications for high-frequency sonar performance.

    PubMed

    Trevorrow, Mark V

    2003-11-01

    This study examines near-surface bubble data obtained with a self-contained 200-kHz inverted echo-sounder deployed at Ocean Station Papa (NE Pacific, 1400 km west of Vancouver Is.) over an 81-day period in the spring of 1996. The instrument operated continuously, recording calibrated volume scattering profiles from near-surface bubbles with 3-s and 30-cm resolution. The data show the frequent occurrence of bubbles organized into vertical, plume-like structures, presumably drawn downwards by turbulence and other near-surface circulations. Average bubble plume penetrations of up to 15 m were observed, with maximum penetrations up to 25 m. Within the plumes, the backscatter cross section exhibited an exponential decay with depth, with e-folding scale in the range 0.5 to 3 m, increasing proportionally to the square of average plume depth. Using standard models for bubble scattering, and incorporating recent acoustic resonator measurements of bubble-size distributions along with actual bubble plume data, high-frequency near-surface sonar performance models were developed. These models show that on a ping-to-ping basis the bubble plume structures can induce significant spatial variations in the reverberation level and path-integrated extinction losses to near-surface targets. PMID:14650004

  17. Microfluidic pinball made of quasi-2D microbubbles: on the collective dynamics of confined bubbles pulsating under ultrasound

    NASA Astrophysics Data System (ADS)

    Mekki-Berrada, Flore; Thibault, Pierre; Marmottant, Philippe

    2014-11-01

    The pulsation properties of air bubbles under ultrasound have received much attention since the development of sonoporation and contrast agents. Spherical bubbles are well known to induce streaming when excited by ultrasound. Here we study how the vibration of very confined bubbles pinned to pits (assuming a quasi-2D ``pancake'' shape) influences the streaming inside a microfluidic channel. For a single bubble, 20 to 70 μm in radius, we observe the well-known parametric instability, giving rise to a shape deformation, and sketch a phase diagram of existence of the surface modes. We also evidence very active out-of-plane fluid circulations located near the bubble that are correlated with the surface modes. In the case of a bubble pair, the interaction results in an additional bipolar surface mode. We demonstrate that a long-range multipolar recirculating flow occurs from a combination of phase-lagged vibration modes. Using a large triangular lattice of these microbubbles, we obtain a unique acoustic bubble ``pinball'' driving fluid and particles in complex paths, the constructive interference between vibration modes leading to the elaborate in-plane microstreaming vortices. This work gives a new insight in bubbles efficiency to trigger local and non-local mixing in laminar flows.

  18. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  19. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  20. Gravity driven flows of bubble suspensions.

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto; Koch, Donald L.; Sangani, Ashok K.

    1999-11-01

    Experiments on vertical and inclined channels were performed to study the behavior of a mono-dispersed bubble suspension for which the dual limit of large Reynolds number and small Weber number is satisfied. A uniform stream of 1.5 mm diameter bubbles is produced by a bank of identical capillaries and coalescence is inhibited by addition of salt to the water. Measurements of the liquid velocity and bubble-probe collision rate are obtained with a hot wire anemometer. The gas volume fraction, bubble velocity, velocity variance and chord length are measured using a dual impedance probe. Image analysis is used to quantify the distributions of bubble size and aspect ratio. For vertical channels the bubble velocity is observed to decrease as the bubble concentration increases in accord with the predictions of Spelt and Sangani (1998). The bubble velocity variance arises largely due to bubble-wall and bubble-bubble collisions. For inclined channels, the strength of the shear flow is controlled by the extent of bubble segregation and the effective viscosity of the bubble phase. The measurements are compared with solutions of the averaged equations of motion for a range of gas volume fractions and channel inclination angles.

  1. Energy spectra in bubbly turbulence

    NASA Astrophysics Data System (ADS)

    Luther, Stefan; van den Berg, Thomas H.; Rensen, Judith; Lohse, Detlef

    2004-11-01

    The energy spectrum of single phase turbulent flow - apart from intermittency corrections - has been known since Kolomogorov 1941, E(k) ∝ k-5/3. How do bubbles modify this spectrum? To answer this question, we inject micro bubbles (radius 100 μm) in fully turbulent flow (Re_λ=200) up to volume concentrations of 0.3 %. Energy spectra and velocity structure functions are measured with hot-film anemometry. Under our experimental conditions, we find an enhancement of energy on small scales confirming numerical predictions by Mazzitelli, Lohse, and Toschi [Phys. Fluids 15, L5 (2003)]. They propose a mechanism in which bubbles are clustering most likely in downflow regions. This clustering is a lift force effect suppressing large vortical structures, while enhancing energy input on small scales.

  2. Bubbles Responding to Ultrasound Pressure

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (435KB, 13-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300162.html.

  3. Composite Spectrometer Prisms

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Rodgers, J. M.

    1985-01-01

    Efficient linear dispersive element for spectrometer instruments achieved using several different glasses in multiple-element prism. Good results obtained in both two-and three-element prisms using variety of different glass materials.

  4. The SLIM spectrometer.

    PubMed

    Cantrell, Kevin M; Ingle, James D

    2003-01-01

    A new spectrometer, here denoted the SLIM (simple, low-power, inexpensive, microcontroller-based) spectrometer, was developed that exploits the small size and low cost of solid-state electronic devices. In this device, light-emitting diodes (LED), single-chip integrated circuit photodetectors, embedded microcontrollers, and batteries replace traditional optoelectronic components, computers, and power supplies. This approach results in complete customizable spectrometers that are considerably less expensive and smaller than traditional instrumentation. The performance of the SLIM spectrometer, configured with a flow cell, was evaluated and compared to that of a commercial spectrophotometer. Thionine was the analyte, and the detection limit was approximately 0.2 microM with a 1.5-mm-path length flow cell. Nonlinearity due to the broad emission profile of the LED light sources is discussed. PMID:12530815

  5. Imaging Fourier transform spectrometer

    SciTech Connect

    Bennett, C.L.

    1993-09-13

    This invention is comprised of an imaging Fourier transform spectrometer having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer.

  6. The imaging spectrometer approach

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1982-01-01

    Two important sensor design drivers are the requirement for spatial registration of the spectral components and the implementation of the advanced multispectral capability, including spectral band width, number of bands and programmability. The dispersive approach, fundamental to the imaging spectrometer concept, achieves these capabilities by utilizing a spectrometer to disperse the spectral content while preserving the spatial identity of the information in the cross-track direction. Area array detectors in the spectrometer focal plane detect and store the spatial and multispectral content for each line of the image. The choice of spectral bands, image IFOV and swath width is implemented by programmed readout of the focal plane. These choices in conjunction with data compression are used to match the output data rate with the telemetry link capability. Progress in the key technologies of optics, focal plane detector arrays, onboard processing, and focal plane cooling supports the viability of the imaging spectrometer approach.

  7. Microbolometer imaging spectrometer.

    PubMed

    Johnson, William R; Hook, Simon J; Shoen, Steven M

    2012-03-01

    Newly developed, high-performance, long-wave- and mid-wave-IR Dyson spectrometers offer a compact, low-distortion, broadband, imaging spectrometer design. The design is further accentuated when coupled to microbolometer array technology. This novel coupling allows radiometric and spectral measurements of high-temperature targets. It also serves to be unique since it allows for the system to be aligned warm. This eliminates the need for cryogenic temperature cycling. Proof of concept results are shown for a spectrometer with a 7.5 to 12.0 μm spectral range and approximately 20 nm per spectral band (~200 bands). Results presented in this Letter show performance for remote hot targets (>200 °C) using an engineering grade spectrometer and IR commercial lens assembly. PMID:22378399

  8. A Simple Raman Spectrometer.

    ERIC Educational Resources Information Center

    Blond, J. P.; Boggett, D. M.

    1980-01-01

    Discusses some basic physical ideas about light scattering and describes a simple Raman spectrometer, a single prism monochromator and a multiplier detector. This discussion is intended for British undergraduate physics students. (HM)

  9. Fourier Transform Spectrometer System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  10. Potential uses of vacuum bubbles in noise and vibration control

    NASA Technical Reports Server (NTRS)

    Ver, Istvan L.

    1989-01-01

    Vacuum bubbles are new acoustic elements which are dynamically more compliant than the gas volume they replace, but which are statically robust. They are made of a thin metallic shell with vacuum in their cavity. Consequently, they pose no danger in terms of contamination or fire hazard. The potential of the vacuum bubble concept for noise and vibration control was assessed with special emphases on spacecraft and aircraft applications. The following potential uses were identified: (1) as a cladding, to reduce sound radiation of vibrating surfaces and the sound excitation of structures, (2) as a screen, to reflect or absorb an incident sound wave, and (3) as a liner, to increase low frequency sound transmission loss of double walls and to increase the low frequency sound attenuation of muffler baffles. It was found that geometric and material parameters must be controlled to a very high accuracy to obtain optimal performance and that performance is highly sensitive to variations in static pressure. Consequently, it was concluded that vacuum bubbles have more potential in spacecraft applications where static pressure is controlled more than in aircraft applications where large fluctuations in static pressure are common.

  11. Holmium laser ablation of cartilage: effects of cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Jansen, Thomas; Oberthur, Thorsten; Delacretaz, Guy P.; Gerber, Bruno E.

    1995-05-01

    The ablation of fresh harvested porcine femur patellar groove cartilage by a 2.12 micrometers Cr:Tm:Ho:YAG laser in clinically used irradiation conditions was studied. Laser pulses were delivered via a 600 micrometers diameter fiber in isotonic saline. Ablation was investigated as a function of the angle of incidence of the delivery fiber with respect to the cartilage surface (0-90 degrees) and of radiant exposure. Laser pulses with energies of 0.5, 1.0 and 1.5 J and a duration of 250 microseconds were used. A constant fiber tip-tissue distance of 1 mm was maintained for all experiments. The dynamics of the induced vapor bubble and of the ablation process was monitored by time resolved flash videography with a 1 microseconds illumination. Acoustic transients were measured with a piezoelectric PVDF needle probe hydrophone. Bubble attachment to the cartilage surface during the collapse phase, leading to the direct exposition of the cartilage surface to the maximal pressure generated, was observed in all investigated irradiation conditions. Maximal pressure transients of up to 200 bars (at 1 mm distance from the collapse center) were measured at the bubble collapse at irradiation angles >= 60 degrees. No significant pressure variation was observed in perpendicular irradiation conditions as a function of radiant exposure. A significant reduction of the induced pressure for irradiation angles

  12. Effect of viscosity on bubble and pressure evolution

    NASA Astrophysics Data System (ADS)

    Visuri, Steven R.; Celliers, Peter M.; Da Silva, Luiz B.; Matthews, Dennis L.

    1997-06-01

    The formation and evolution of acoustic waves and vapor bubbles as a result of laser irradiation have received considerable attention, particularly with respect to angioplasty, thrombolysis, and ophthalmic laser applications. Pressure waves and bubbles have been implicated in undesirable tissue damage yet they can be beneficially utilized while limiting their negative impact. Either planar or spherical pressure waves can be produced through manipulation of irradiation parameters and geometry. An OPO laser emitting approximately 5 ns pulses of visible radiation was delivered through an optical fiber to a cuvette containing dye dissolved in either water or glycerin. Absorption was varied by altering the dye concentration and wavelength of the OPO laser and the spot size was varied by employing multiple sizes of optical fiber. A nitrogen-pumped dye laser with a pulse duration of approximately 5 ns was used as an illumination source. A Mach-Zehnder interferometer technique enabled visualization and quantification of the pressure waves; bubble evolution was monitored with shadowgrams. A comparison was made between experimental and theoretical results for water and glycerin.

  13. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound

    PubMed Central

    Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2011-01-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound. PMID:22088026

  14. Development of an optical microscopy system for automated bubble cloud analysis.

    PubMed

    Wesley, Daniel J; Brittle, Stuart A; Toolan, Daniel T W

    2016-08-01

    Recently, the number of uses of bubbles has begun to increase dramatically, with medicine, biofuel production, and wastewater treatment just some of the industries taking advantage of bubble properties, such as high mass transfer. As a result, more and more focus is being placed on the understanding and control of bubble formation processes and there are currently numerous techniques utilized to facilitate this understanding. Acoustic bubble sizing (ABS) and laser scattering techniques are able to provide information regarding bubble size and size distribution with minimal data processing, a major advantage over current optical-based direct imaging approaches. This paper demonstrates how direct bubble-imaging methods can be improved upon to yield high levels of automation and thus data comparable to ABS and laser scattering. We also discuss the added benefits of the direct imaging approaches and how it is possible to obtain considerable additional information above and beyond that which ABS and laser scattering can supply. This work could easily be exploited by both industrial-scale operations and small-scale laboratory studies, as this straightforward and cost-effective approach is highly transferrable and intuitive to use. PMID:27505394

  15. Single bubble perturbation in cavitation proximity of solid glass: hot spot versus distance.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth; Suslick, Kenneth

    2014-02-28

    A systematic study of the energy loss of a cavitation bubble in a close proximity of a glass surface is introduced for the first time in a low acoustic field (1.2-2.4 bar). Single bubble sonoluminescence (SBSL) is used as a tool to predict the temperature and pressure decrease of bubble (μm) versus surface distance. A glass as a model system is used to imitate the boundary conditions relevant for nano- or micromaterials. SBSL preequilibrated with 5% argon is perturbed by a glass rod with the tip (Z-perturbation) and with the long axis (X-perturbation) at a defined distance. From 2 mm to 500 μm argon-SBSL lines monotonically narrow and the effective emission temperature decreases from 9000 K to 6800 K comparable to multiple bubbles. The electron density decreases by two orders of magnitude in Z-perturbation and is by a factor of two higher in X-perturbation than the unperturbed cavitating bubble. The perturbed single bubble sonoluminescence pressure decreases from 2700 atm to 1200 atm at 2.4 bar. In water new non-SBSL SiO molecular emission lines are observed and OH emission disappears. PMID:24068109

  16. Scaling laws for bubbling bifurcations

    NASA Astrophysics Data System (ADS)

    González-Tokman, Cecilia; Hunt, Brian R.

    2009-11-01

    We establish rigorous scaling laws for the average bursting time for bubbling bifurcations of an invariant manifold, assuming the dynamics within the manifold to be uniformly hyperbolic. This type of global bifurcation appears in nearly synchronized systems, and is conjectured to be typical among those breaking the invariance of an asymptotically stable hyperbolic invariant manifold. We consider bubbling precipitated by generic bifurcations of a fixed point in both symmetric and non-symmetric systems with a codimension one invariant manifold, and discuss their extension to bifurcations of periodic points. We also discuss generalizations to invariant manifolds with higher codimension, and to systems with random noise.

  17. Application of the BINS superheated drop detector spectrometer to the {sup 9}Be(p,xn) neutron energy spectrum determination

    SciTech Connect

    Di Fulvio, A.; Ciolini, R.; Mirzajani, N.; Romei, C.; D'Errico, F.; Bedogni, R.; Esposito, J.; Zafiropoulos, D.; Colautti, P.

    2013-07-18

    In the framework of TRASCO-BNCT project, a Bubble Interactive Neutron Spectrometer (BINS) device was applied to the characterization of the angle-and energy-differential neutron spectra generated by the {sup 9}Be(p,xn)reaction. The BINS spectrometer uses two superheated emulsion detectors, sequentially operated at different temperatures and thus provides a series of six sharp threshold responses, covering the 0.1-10 MeV neutron energy range. Spectrum unfolding of the data was performed by means of MAXED code. The obtained angle, energy-differential spectra were compared with those measured with a Bonner sphere spectrometer, a silicon telescope spectrometer and literature data.

  18. TECHNOLOGY ASSESSMENT OF FINE BUBBLE AERATORS

    EPA Science Inventory

    This technology assessment addresses design and evaluation of fine bubble aeration equipment. It discusses the associated gas transfer theory used as the basis for measuring water and wastewater oxygenation efficiency. Mixing requirements are also discussed. While bubble aeration...

  19. Removal of hydrogen bubbles from nuclear reactors

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1980-01-01

    Method proposed for removing large hydrogen bubbles from nuclear environment uses, in its simplest form, hollow spheres of palladium or platinum. Methods would result in hydrogen bubble being reduced in size without letting more radioactivity outside reactor.

  20. Behavior of Rapidly Sheared Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Sangani, A. S.; Kushch, V. I.; Hoffmann, M.; Nahra, H.; Koch, D. L.; Tsang, Y.

    2002-01-01

    An experiment to be carried out aboard the International Space Station is described. A suspension consisting of millimeter-sized bubbles in water containing some dissolved salt, which prevents bubbles from coalescing, will be sheared in a Couette cylindrical cell. Rotation of the outer cylinder will produce centrifugal force which will tend to accumulate the bubbles near the inner wall. The shearing will enhance collisions among bubbles creating thereby bubble phase pressure that will resist the tendency of the bubbles to accumulate near the inner wall. The bubble volume fraction and velocity profiles will be measured and compared with the theoretical predictions. Ground-based research on measurement of bubble phase properties and flow in vertical channel are described.

  1. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  2. Cavitation bubble generation and control for HIFU transcranial adaptive focusing

    NASA Astrophysics Data System (ADS)

    Gâteau, J.; Marsac, L.; Pernot, M.; Aubry, J.-F.; Tanter, M.; Fink, M.

    2009-04-01

    Brain treatment with High Intensity Focused Ultrasound (HIFU) can be achieved by multichannel arrays through the skull using time-reversal focusing. Such a method requires a reference signal either sent by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull deduced from CT images. This noninvasive computational method allows precise focusing, but is time consuming and suffers from unavoidable modeling errors which reduce the accessible acoustic pressure at the focus in comparison with real experimental time-reversal using an implanted hydrophone. Ex vivo simulations with a half skull immersed in a water tank allow us to reach at low amplitude levels a pressure ratio of 83% of the reference pressure (real time reversal) at 1MHz. Using this method to transcranially focus a pulse signal in an agar gel (model for in vivo bubble formation), we induced a cavitation bubble that generated an ultrasonic wave received by the array. Selecting the 1MHz component, the signal was time reversed and re-emitted, allowing 97%±1.1% of pressure ratio to be restored. To target points in the vicinity of the geometrical focus, electronic steering from the reference signal has been achieved. Skull aberrations severely degrade the accessible pressure while moving away from the focus ( ˜90% at 10mm in the focal plane). Nevertheless, inducing cavitation bubbles close to the limit of the primary accessible zone allowed us to acquire multiple references signal to increase the electronic steering area by 50%.

  3. Silent bubbles - Their effects and detection

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.

    1990-01-01

    This paper discusses the concept of the 'silent bubble' (a phenomenon due to gas phase formation in tissues, which does not lead to frank decompression sickness). Special attention is given to the conditions for silent bubbles formation, the methods of their detecton, and to their pathophysiology. Data relating the gas formation in blood and the symptoms of decompression sickness indicate that the distinction between the silent bubbles and clinical ones is often vague and that a bubble-free decompression never existed.

  4. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Daniele, M.; Renggli, C.; Perugini, D.; De Campos, C.; Hess, K. U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2014-12-01

    Rising bubbles may significantly affect magma mixing paths as has been demonstrated by analogue experiments in the past. Here, bubble-advection experiments are performed for the first time employing natural materials at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears as efficient mechanism to mingle contrasting melt compositions. MicroCT imaging shows bubbles trailing each other and trails of multiple bubbles having converged. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that subsequent bubbles rising are likely to follow the same pathways that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Fundamental implications for the concept of bubble advection in magma mixing are thus a) an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and b) non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a filament. Inside these filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments are likely to have experienced multiple bubbles passing through

  5. Frictional drag reduction by bubble injection

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi

    2014-07-01

    The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

  6. Using micro-3D printing to build acoustically driven microswimmers.

    NASA Astrophysics Data System (ADS)

    Bertin, Nicolas; Stephan, Olivier; Marmottant, Philippe; Spelman, Tamsin; Lauga, Eric; Dyfcom Team; Complex; Biological Fluids Team

    2015-11-01

    With no protection, a micron-sized free air bubble at room temperature in water has a life span shorter than a few tens of seconds. Using two-photon lithography, which is similar to 3D printing at the micron scale, we can build ``armors'' for these bubbles: micro-capsules with an opening to contain the bubble and extend its life to several hours in biological buffer solutions. When excited by an ultrasound transducer, a 20 μm bubble performs large amplitude oscillations in the capsule opening and generates a powerful acoustic streaming flow (velocity up to dozens of mm/s). A collaboration with the Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, is helping us predict the true resonance of these capsules and the full surrounding streaming flow. The present Bubbleboost project aims at creating red blood cell sized capsules (~ 10-20 μm) that can move on their own with a non-contact acoustic excitation for drug delivery applications. Another application of this research is in microfluidics: we are able to fabricate fields of capsules able to generate mixing effects in microchannels, or use the bubble-generated flow to guide passing objects at a junction. ERC Grant Agreement Bubbleboost no. 614655.

  7. Bulk and integrated acousto-optic spectrometers for radio astronomy

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    The development of sensitive heterodyne receivers (front end) in the centimeter and millimeter range, and the construction of sensitive RF spectrometers (back end) enable the spectral lines of interstellar molecules to be detected and identified. A technique was developed which combines acoustic bending of a collimated coherent light beam by a Bragg cell followed by detection by a sensitive array of photodetectors (thus forming an RF acousto-optic spectrometer (AOS). An AOS has wide bandwidth, large number of channels, and high resolution, and is compact, lightweight, and energy efficient. The thrust of receiver development is towards high frequency heterodyne systems, particularly in the millimeter, submillimeter, far infrared, and 10 micron spectral ranges.

  8. Study of cavitation bubble dynamics during Ho:YAG laser lithotripsy by high-speed camera

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yu, Honggang; Devincentis, Dennis

    2016-02-01

    Although laser lithotripsy is now the preferred treatment option for urolithiasis, the mechanism of laser pulse induced calculus damage is still not fully understood. This is because the process of laser pulse induced calculus damage involves quite a few physical and chemical processes and their time-scales are very short (down to sub micro second level). For laser lithotripsy, the laser pulse induced impact by energy flow can be summarized as: Photon energy in the laser pulse --> photon absorption generated heat in the water liquid and vapor (super heat water or plasma effect) --> shock wave (Bow shock, acoustic wave) --> cavitation bubble dynamics (oscillation, and center of bubble movement , super heat water at collapse, sonoluminscence) --> calculus damage and motion (calculus heat up, spallation/melt of stone, breaking of mechanical/chemical bond, debris ejection, and retropulsion of remaining calculus body). Cavitation bubble dynamics is the center piece of the physical processes that links the whole energy flow chain from laser pulse to calculus damage. In this study, cavitation bubble dynamics was investigated by a high-speed camera and a needle hydrophone. A commercialized, pulsed Ho:YAG laser at 2.1 mu;m, StoneLightTM 30, with pulse energy from 0.5J up to 3.0 J, and pulse width from 150 mu;s up to 800 μs, was used as laser pulse source. The fiber used in the investigation is SureFlexTM fiber, Model S-LLF365, a 365 um core diameter fiber. A high-speed camera with frame rate up to 1 million fps was used in this study. The results revealed the cavitation bubble dynamics (oscillation and center of bubble movement) by laser pulse at different energy level and pulse width. More detailed investigation on bubble dynamics by different type of laser, the relationship between cavitation bubble dynamics and calculus damage (fragmentation/dusting) will be conducted as a future study.

  9. Post-Formation Shrinkage and Stabilization of Microfluidic Bubbles in Lipid Solution.

    PubMed

    Shih, Roger; Lee, Abraham P

    2016-03-01

    Medical ultrasound imaging often employs ultrasound contrast agents (UCAs), injectable microbubbles stabilized by shells or membranes. In tissue, the compressible gas cores can strongly scatter acoustic signals, resonate, and emit harmonics. However, bubbles generated by conventional methods have nonuniform sizes, reducing the fraction that resonates with a given transducer. Microfluidic flow-focusing is an alternative production method which generates highly monodisperse bubbles with uniform constituents, enabling more-efficient contrast enhancement than current UCAs. Production size is tunable by adjusting gas pressure and solution flow rate, but solution effects on downstream stable size and lifetime have not been closely examined. This study therefore investigated several solution parameters, including the DSPC/DSPE-PEG2000 lipid ratio, concentration, viscosity, and preparation temperature to determine their effects on stabilization. It was found that bubble lifetime roughly correlated with stable size, which in turn was strongly influenced by primary-lipid-to-emulsifier ratio, analogous to its effects on conventional bubble yield and Langmuir-trough compressibility in existing studies. Raising DSPE-PEG2000 fraction in solution reduced bubble surface area in proportion to its reduction of lipid packing density at low compression in literature. In addition, the surface area was found to increase proportionately with lipid concentration above 2.1 mM. However, viscosities above or below 2.3-3.3 mPa·s seemed to reduce bubble size. Finally, lipid preparation at room temperature led to smaller bubbles compared to preparation near or above the primary lipid's phase transition point. Understanding these effects will further improve on postformation control over microfluidic bubble production, and facilitate size-tuning for optimal contrast enhancement. PMID:26820229

  10. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  11. Impurity bubbles in a BEC

    NASA Astrophysics Data System (ADS)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  12. Electrolysis Bubbles Make Waterflow Visible

    NASA Technical Reports Server (NTRS)

    Schultz, Donald F.

    1990-01-01

    Technique for visualization of three-dimensional flow uses tiny tracer bubbles of hydrogen and oxygen made by electrolysis of water. Strobe-light photography used to capture flow patterns, yielding permanent record that is measured to obtain velocities of particles. Used to measure simulated mixing turbulence in proposed gas-turbine combustor and also used in other water-table flow tests.

  13. Bubble-driven inertial micropump

    NASA Astrophysics Data System (ADS)

    Torniainen, Erik D.; Govyadinov, Alexander N.; Markel, David P.; Kornilovitch, Pavel E.

    2012-12-01

    The fundamental action of the bubble-driven inertial micropump is investigated. The pump has no moving parts and consists of a thermal resistor placed asymmetrically within a straight channel connecting two reservoirs. Using numerical simulations, the net flow is studied as a function of channel geometry, resistor location, vapor bubble strength, fluid viscosity, and surface tension. Two major regimes of behavior are identified: axial and non-axial. In the axial regime, the drive bubble either remains inside the channel, or continues to grow axially when it reaches the reservoir. In the non-axial regime, the bubble grows out of the channel and in all three dimensions while inside the reservoir. The net flow in the axial regime is parabolic with respect to the hydraulic diameter of the channel cross-section, but in the non-axial regime it is not. From numerical modeling, it is determined that the net flow is maximal when the axial regime crosses over to the non-axial regime. To elucidate the basic physical principles of the pump, a phenomenological one-dimensional model is developed and solved. A linear array of micropumps has been built using silicon-SU8 fabrication technology that is used to manufacture thermal inkjet printheads. Semi-continuous pumping across a 2 mm-wide channel has been demonstrated experimentally. Measured net flow with respect to viscosity variation is in excellent agreement with simulation results.

  14. Affirmative Discrimination and the Bubble

    ERIC Educational Resources Information Center

    Clegg, Roger

    2011-01-01

    In this essay, the author discusses how affirmative action contributed to an unnatural rise in enrollments in college. In considering the higher education bubble, he makes the case that as the opposition to preferences continues to build, the momentum of this trend will only increase as funding shrinks. He offers some tentative answers to a series…

  15. The Coming Law School Bubble

    ERIC Educational Resources Information Center

    Krauss, Michael I.

    2011-01-01

    In this article, the author explains how forty years of politicized hiring in the law schools has left its destructive mark. The results are potentially catastrophic: Market forces and internal law school policies may be combining to produce a legal education bubble the likes of which the country has never seen. (Contains 11 footnotes.)

  16. Breaking waves, turbulence and bubbles

    NASA Astrophysics Data System (ADS)

    Gemmrich, Johannes; Vagle, Svein; Thomson, Jim

    2014-05-01

    The air-sea fluxes of heat, momentum, and gases are to a large extent affected by wave-induced turbulence in the near-surface ocean layer, and are generally increased over the fluxes in a law-of-the-wall type boundary layer. However, air-bubbles generated during the wave breaking process may affect the density stratification and in turn reduce turbulence intensity in the near-surface layer. The turbulence field beneath surface waves is rather complex and provides great challenges for detailed observations. We obtained high resolution near-surface velocity profiles, bubble cloud measurements and video recordings of the breaking activity in a coastal strait. Conditions ranged from moderate to strong wind forcing with wind speed ranging from 5 m/s to 20 m/s. Estimates of the dissipation rates of turbulence kinetic energy are calculated from the in-situ velocity measurements. We find dissipation rates, fluctuating by more than two orders of magnitude, are closely linked to the air-fraction associated with micro-bubbles. Combining these turbulence estimates and the bubble cloud characteristics we infer differences in the strength of wave breaking and its effect on wave-induced mixing and air-sea exchange processes.

  17. LRL 25-inch Bubble Chamber

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Gow, J. D.; Barrera, F.; Eckman, G.; Shand, J.; Watt, R.; Norgren, D.; Hernandez, H. P.

    1964-07-08

    The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system.

  18. Bubble dynamics, two-phase flow, and boiling heat transfer in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Chung, Jacob N.

    1994-01-01

    The two-phase bubbly flow and boiling heat transfer in microgravity represents a substantial challenge to scientists and engineers and yet there is an urgent need to seek fundamental understanding in this area for future spacecraft design and space missions. At Washington State University, we have successfully designed, built and tested a 2.1 second drop tower with an innovation airbag deceleration system. Microgravity boiling experiments performed in our 0.6 second Drop Tower produced data flow visualizations that agree with published results and also provide some new understanding concerning flow boiling and microgravity bubble behavior. On the analytical and numerical work, the edge effects of finite divergent electrode plates on the forces experienced by bubbles were investigated. Boiling in a concentric cylinder microgravity and an electric field was numerically predicted. We also completed a feasibility study for microgravity boiling in an acoustic field.

  19. Tiny Bubbles in my BEC

    SciTech Connect

    Blinova, Alina A.

    2012-08-01

    Ultracold atomic gases provide a unique way for exploring many-body quantum phenomena that are inaccessible to conventional low-temperature experiments. Nearly two decades ago the Bose-Einstein condensate (BEC) - an ultracold gas of bosons in which almost all bosons occupy the same single-particle state - became experimentally feasible. Because a BEC exhibits superfluid properties, it can provide insights into the behavior of low-temperature helium liquids. We describe the case of a single distinguishable atom (an impurity) embedded in a BEC and strongly coupled to the BEC bosons. Depending on the strength of impurity-boson and boson-boson interactions, the impurity self-localizes into two fundamentally distinct regimes. The impurity atom can behave as a tightly localized 'polaron,' akin to an electron in a dielectric crystal, or as a 'bubble,' an analog to an electron bubble in superfluid helium. We obtain the ground state wavefunctions of the impurity and BEC by numerically solving the two coupled Gross-Pitaevskii equations that characterize the system. We employ the methods of imaginary time propagation and conjugate gradient descent. By appropriately varying the impurity-boson and boson-boson interaction strengths, we focus on the polaron to bubble crossover. Our results confirm analytical predictions for the polaron limit and uncover properties of the bubble regime. With these results we characterize the polaron to bubble crossover. We also summarize our findings in a phase diagram of the BEC-impurity system, which can be used as a guide in future experiments.

  20. Acoustic and manual measurements of methane ebullition in peatlands

    NASA Astrophysics Data System (ADS)

    Varner, R. K.; Palace, M. W.; Lennartz, J. M.; Wik, M.; Crill, P. M.; Ewing, S. A.; Harden, J. W.; Turetsky, M. R.

    2013-12-01

    Controls on the magnitude and frequency of methane (CH4) release through ebullition (bubbling) in water saturated ecosystems such as bogs, fens and lakes are important to both the atmospheric and ecosystems science community. In order to understand the response of these ecosystems to future climate forcing, we need to systematically monitor ebullition from these ecosystems over many seasons and across a multitude of landscape morphologies. We have developed and field tested an inexpensive array of sampling/monitoring instruments to identify the frequency and magnitude of bubbling events which allows us to correlate bubble data with potential drivers such as changes in hydrostatic pressure, wind and temperature. The instrument consists of a nested, inverted funnel design with a hydrophone for detecting bubbles that rise through the peat. The design offers a way to sample the gas collected in the funnels to determine the concentration of CH4. Laboratory calibration of the instrument resulted in an equation that relates frequency of bubbles hitting the hydrophone with bubble volume. Audio data was recorded continuously using a digital audio recorder attached to two ebullition sensors and could be deployed remotely for up to 20 days. Time, fundamental frequency, and estimated bubble size were determined using MATLAB code. Manual bubble flux measurements were also made for comparison to the acoustically sensed ebullition. Instruments were deployed in summers 2011-2013 at a temperate fen (Sallie's Fen, NH, USA) and a subarctic mire (Stordalen, Abisko, Sweden). We also recorded ebullition at two locations in subarctic Alaska (APEX Research Site, Fairbanks, AK and Innoko National Wildlife Refuge) during summer 2011. Ebullition was observed at all sites with highest daily rates in fen versus bog sites. Observed distributions of bubble events correlate with published models of ebullition based on peat density.

  1. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  2. Tissue differentiation using laser-induced shock waves by detection of acoustic transients through an optical wave-guide

    NASA Astrophysics Data System (ADS)

    Tschepe, Johannes; Ahrens, Thomas; Helfmann, Juergen; Mueller, Gerhard J.; Gapontsev, Valentin P.

    1993-05-01

    Some physical phenomena which occur during the fragmentation of calculi by laser induced optical break down are presented. With in vitro experiments it could be shown that the energy of the laser induced plasma and of the cavitation bubble (induced by the plasma) depends by the nature of the tissue. The laser induced plasma and the cavitation bubble generate shock waves. These sound waves are transferred via the laser fiber and detected with a piezo- electrical sensor at the proximal end. The acoustic signal contains information on the potential energy of the bubble, which depends on the energy of the plasma. The possibility of measuring the energy dependent acoustic transients allows to distinguish between hard and soft tissue and by this it is suitable for controlling the laser lithotripsy process. The transmission of acoustic transients through silica glass fibers is investigated by theoretical calculations. It shows the feasibility of silica glass fibers as an acoustic wave guide.

  3. Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor.

    PubMed

    Dogan, Hakan; Popov, Viktor

    2016-05-01

    We investigate the acoustic wave propagation in bubbly liquid inside a pilot sonochemical reactor which aims to produce antibacterial medical textile fabrics by coating the textile with ZnO or CuO nanoparticles. Computational models on acoustic propagation are developed in order to aid the design procedures. The acoustic pressure wave propagation in the sonoreactor is simulated by solving the Helmholtz equation using a meshless numerical method. The paper implements both the state-of-the-art linear model and a nonlinear wave propagation model recently introduced by Louisnard (2012), and presents a novel iterative solution procedure for the nonlinear propagation model which can be implemented using any numerical method and/or programming tool. Comparative results regarding both the linear and the nonlinear wave propagation are shown. Effects of bubble size distribution and bubble volume fraction on the acoustic wave propagation are discussed in detail. The simulations demonstrate that the nonlinear model successfully captures the realistic spatial distribution of the cavitation zones and the associated acoustic pressure amplitudes. PMID:26611813

  4. Model for the dynamics of a spherical bubble undergoing small shape oscillations between parallel soft elastic layers.

    PubMed

    Hay, Todd A; Ilinskii, Yurii A; Zabolotskaya, Evgenia A; Hamilton, Mark F

    2013-08-01

    A model is developed for a pulsating and translating gas bubble immersed in liquid in a channel formed by two soft, thin elastic parallel layers having densities equal to that of the surrounding liquid and small, but finite, shear moduli. The bubble is nominally spherical but free to undergo small shape deformations. Shear strain in the elastic layers is estimated in a way which is valid for short, transient excitations of the system. Coupled nonlinear second-order differential equations are obtained for the shape and position of the bubble, and numerical integration of an expression for the liquid velocity at the layer interfaces yields an estimate of the elastic layer displacement. Numerical integration of the dynamical equations reveals behavior consistent with laboratory observations of acoustically excited bubbles in ex vivo vessels reported by Chen et al. [Phys. Rev. Lett. 106, 034301 (2011) and Ultrasound Med. Biol. 37, 2139-2148 (2011)]. PMID:23927185

  5. Resonances, radiation pressure and optical scattering phenomena of drops and bubbles

    NASA Technical Reports Server (NTRS)

    Marston, P. L.; Goosby, S. G.; Langley, D. S.; Loporto-Arione, S. E.

    1982-01-01

    Acoustic levitation and the response of fluid spheres to spherical harmonic projections of the radiation pressure are described. Simplified discussions of the projections are given. A relationship between the tangential radiation stress and the Konstantinov effect is introduced and fundamental streaming patterns for drops are predicted. Experiments on the forced shape oscillation of drops are described and photographs of drop fission are displayed. Photographs of critical angle and glory scattering by bubbles and rainbow scattering by drops are displayed.

  6. The Short Time Scale Events of Acoustic Droplet Vaporization

    NASA Astrophysics Data System (ADS)

    Li, David S.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Bull, Joseph L.

    2012-11-01

    The conversion of a liquid microdroplets to gas bubbles initiated by an acoustic pulse, known as acoustic droplet vaporization (ADV), has been proposed as a method to selectively generate gas emboli for therapeutic purposes (gas embolotherapy), specifically for vascularized tumors. In this study we focused on the first 10 microseconds of the ADV process, namely the gas nucleation site formation and bubble evolution. BSA encapsulated dodecafluoropentane (CAS: 678-26-2) microdroplets were isolated at the bottom of a degassed water bath held at 37°C. Microdroplets, diameters ranging from 5-65 microns, were vaporized using a single pulse (4-16 cycles) from a 7.5 MHz focused single element transducer ranging from 2-5 MPa peak negative pressure and images of the vaporization process were recorded using an ultra-high speed camera (SIM802, Specialised Imaging Ltd). It was observed that typically two gas nuclei were formed in series with one another on axis with ultrasound pulse. However, relative positioning of the nucleation sites within the droplet depended on droplet diameter. Additionally, depending on acoustic parameters the bubble could deform into a toroidal shape. Such dynamics could suggest acoustic parameters that may result in tissue damage. This work is supported by NIH grant R01EB006476.

  7. Dark Matter Search Results from the PICO-60 CF$_3$I Bubble Chamber

    DOE PAGESBeta

    Amole, C.; Ardid, M.; Asner, D. M.; Baxter, D.; Behnke, E.; Bhattacharjee, P.; Borsodi, H.; Bou-Cabo, M.; Brice, S. J.; Broemmelsiek, D.; et al

    2016-03-01

    We reported new data from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF3I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 live-days, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C3F8 bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timing behaviors inconsistent withmore » those expected from a dark matter signal. We found these behaviors allow for analysis cuts to remove all background events while retaining 48.2%of the exposure. Stringent limits on WIMPs interacting via spin-dependent proton and spin-independent processes are set, and the interpretation of the DAMA/LIBRA modulation signal as dark matter interacting with iodine nuclei is ruled out.« less

  8. Dark Matter Search Results from the PICO-60 CF$_3$I Bubble Chamber

    SciTech Connect

    Amole, C.

    2015-10-26

    We reported new data from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF3I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 live-days, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C3F8 bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timing behaviors inconsistent with those expected from a dark matter signal. We found these behaviors allow for analysis cuts to remove all background events while retaining 48.2%of the exposure. Stringent limits on WIMPs interacting via spin-dependent proton and spin-independent processes are set, and the interpretation of the DAMA/LIBRA modulation signal as dark matter interacting with iodine nuclei is ruled out.

  9. Dark matter search results from the PICO-60 CF3 I bubble chamber

    NASA Astrophysics Data System (ADS)

    Amole, C.; Ardid, M.; Asner, D. M.; Baxter, D.; Behnke, E.; Bhattacharjee, P.; Borsodi, H.; Bou-Cabo, M.; Brice, S. J.; Broemmelsiek, D.; Clark, K.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Dahl, C. E.; Daley, S.; Das, M.; Debris, F.; Dhungana, N.; Fallows, S.; Farine, J.; Felis, I.; Filgas, R.; Girard, F.; Giroux, G.; Grandison, A.; Hai, M.; Hall, J.; Harris, O.; Jin, M.; Krauss, C. B.; Lafrenière, M.; Laurin, M.; Lawson, I.; Levine, I.; Lippincott, W. H.; Mann, E.; Maurya, D.; Mitra, P.; Neilson, R.; Noble, A. J.; Plante, A.; Podviianiuk, R. B.; Priya, S.; Ramberg, E.; Robinson, A. E.; Rucinski, R.; Ruschman, M.; Scallon, O.; Seth, S.; Simon, P.; Sonnenschein, A.; Štekl, I.; Vázquez-Jáuregui, E.; Wells, J.; Wichoski, U.; Zacek, V.; Zhang, J.; Shkrob, I. A.; PICO Collaboration

    2016-03-01

    New data are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF3 I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 livedays, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C3 F8 bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timing behaviors inconsistent with those expected from a dark matter signal. These behaviors allow for analysis cuts to remove all background events while retaining 48.2% of the exposure. Stringent limits on weakly interacting massive particles interacting via spin-dependent proton and spin-independent processes are set, and most interpretations of the DAMA/LIBRA modulation signal as dark matter interacting with iodine nuclei are ruled out.

  10. Electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1973-01-01

    An electron-proton spectrometer was designed to measure the geomagnetically trapped radiation in a geostationary orbit at 6.6 earth radii in the outer radiation belt. This instrument is to be flown on the Applications Technology Satellite-F (ATS-F). The electron-proton spectrometer consists of two permanent magnet surface barrier detector arrays and associated electronics capable of selecting and detecting electrons in three energy ranges: (1) 30-50 keV, (2) 150-200 keV, and (3) 500 keV and protons in three energy ranges. The electron-proton spectrometer has the capability of measuring the fluxes of electrons and protons in various directions with respect to the magnetic field lines running through the satellite. One magnet detector array system is implemented to scan between EME north and south through west, sampling the directional flux in 15 steps. The other magnet-detector array system is fixed looking toward EME east.

  11. Compact Grism Spectrometer

    NASA Astrophysics Data System (ADS)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  12. Conditions for static bubbles in viscoplastic fluids

    NASA Astrophysics Data System (ADS)

    Dubash, Neville; Frigaard, Ian

    2004-12-01

    We consider the slow motion of a gas bubble in a cylindrical column filled with a viscoplastic fluid, modeled here as a Herschel-Bulkley fluid. Because of the yield stress of the fluid, it is possible that a bubble will remain trapped in the fluid indefinitely. We adapt Prager's two variational principles to our problem. From these variational principles we develop two general stopping conditions, i.e., for a given bubble we can calculate a critical Bingham number above which the bubble will not move. The first condition is derived by bounding the velocity field and the second condition by bounding the stress field. We illustrate these conditions by considering specific bubble shapes, e.g., axisymmetric bubbles. We also develop a condition for bubble motion.

  13. Broad band waveguide spectrometer

    DOEpatents

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  14. The Apollo Alpha Spectrometer.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

    1973-01-01

    Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

  15. Comparison of imaging spectrometers

    SciTech Connect

    Bennett, C

    2000-01-09

    Realistic signal to noise performance estimates for the various types of instruments being considered for NGST are compared, based on the point source detection values quoted in the available ISIM final reports. The corresponding sensitivity of the various types of spectrometers operating in a full field imaging mode, for both emission line objects and broad spectral distribution objects, is computed and displayed. For the purpose of seeing the earliest galaxies, or the faintest possible emission line sources, the imaging Fourier transform spectrometer emerges superior to all others, by orders of magnitude in speed.

  16. Visualization of ultrasound induced cavitation bubbles using the synchrotron x-ray Analyzer Based Imaging technique

    NASA Astrophysics Data System (ADS)

    Izadifar, Zahra; Belev, George; Izadifar, Mohammad; Izadifar, Zohreh; Chapman, Dean

    2014-12-01

    Observing cavitation bubbles deep within tissue is very difficult. The development of a method for probing cavitation, irrespective of its location in tissues, would improve the efficiency and application of ultrasound in the clinic. A synchrotron x-ray imaging technique, which is capable of detecting cavitation bubbles induced in water by a sonochemistry system, is reported here; this could possibly be extended to the study of therapeutic ultrasound in tissues. The two different x-ray imaging techniques of Analyzer Based Imaging (ABI) and phase contrast imaging (PCI) were examined in order to detect ultrasound induced cavitation bubbles. Cavitation was not observed by PCI, however it was detectable with ABI. Acoustic cavitation was imaged at six different acoustic power levels and six different locations through the acoustic beam in water at a fixed power level. The results indicate the potential utility of this technique for cavitation studies in tissues, but it is time consuming. This may be improved by optimizing the imaging method.

  17. Generation of Bubbly Suspensions in Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hoffmann, Monica I.; Hussey, Sam; Bell, Kimberly R.

    2000-01-01

    Generation of a uniform monodisperse bubbly suspension in low gravity is a rather difficult task because bubbles do not detach as easily as on Earth. Under microgravity, the buoyancy force is not present to detach the bubbles as they are formed from the nozzles. One way to detach the bubbles is to establish a detaching force that helps their detachment from the orifice. The drag force, established by flowing a liquid in a cross or co-flow configuration with respect to the nozzle direction, provides this additional force and helps detach the bubbles as they are being formed. This paper is concerned with studying the generation of a bubbly suspension in low gravity in support of a flight definition experiment titled "Behavior of Rapidly Sheared Bubbly Suspension." Generation of a bubbly suspension, composed of 2 and 3 mm diameter bubbles with a standard deviation <10% of the bubble diameter, was identified as one of the most important engineering/science issues associated with the flight definition experiment. This paper summarizes the low gravity experiments that were conducted to explore various ways of making the suspension. Two approaches were investigated. The first was to generate the suspension via a chemical reaction between the continuous and dispersed phases using effervescent material, whereas the second considered the direct injection of air into the continuous phase. The results showed that the reaction method did not produce the desired bubble size distribution compared to the direct injection of bubbles. However, direct injection of air into the continuous phase (aqueous salt solution) resulted in uniform bubble-diameter distribution with acceptable bubble-diameter standard deviation.

  18. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  19. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  20. Correlation of shape and size of methane bubbles in fine-grained muddy aquatic sediments with sediment fracture toughness

    NASA Astrophysics Data System (ADS)

    Katsman, Regina

    2015-01-01

    Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to-volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment-water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.

  1. Shape stability and violent collapse of microbubbles interacting with acoustic waves and shocks

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael Louis

    This dissertation elucidates the effect of nonspherical perturbations on the energy-focusing properties of bubble collapses driven by acoustic and shock wave forcing. First, the influence of acoustic forcing on shape stability is explored and two models of bubble breakup---one based on perturbation analysis and the other based on numerical solution of the Laplace equation---are compared, showing remarkably good agreement. The Laplace equation for axisymmetric geometry is solved through use of a Boundary Integral Method that can efficiently model highly deformed; even toroidal bubble geometries. This model is based on the work of previous researchers but is significantly augmented for our purposes to simulate extremely violent, acoustically-driven collapses. Our numerical model based on the Boundary Integral Method is then used to explore the effect of shape stability on energy concentration in the bubble interior by comparing the peak temperatures and pressures of spherical to nonspherical bubble collapses. It is demonstrated that for very intense collapses, nonspherical bubbles do not focus the energy as efficiently as spherical collapses due to the conversion of some of the incident acoustic energy into kinetic energy of a liquid jet that pierces the bubble near the point of minimum volume. This is clarified by a calculation of the (gas) thermal equivalent of this liquid kinetic energy. Finally, the effect of shock wave forcing on bubbles is analyzed in the vicinity of a rigid boundary. Through calculation of quantities such as kinetic energy and Kelvin impulse of the surrounding liquid, the physics of shock-bubble interaction near a wall is illuminated. A key finding is that reflection of the incident shock wave enhances the intensity of bubble collapse in the near region due to constructive interference between the incident and reflected shock waves. Conversely, destructive interference suppresses the intensity of such collapses further away from the surface

  2. Estimation of mechanical properties of gelatin using a microbubble under acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Shirota, Eriko; Ando, Keita

    2015-12-01

    This paper is concerned with observations of the translation of a microbubble (80 μm or 137 μm in radius) in a viscoelastic medium (3 w% gelatin), which is induced by acoustic radiation force originating from 1 MHz focused ultrasound. An optical system using a high-speed camera was designed to visualize the bubble translation and deformation. If the bubble remains its spherical shape under the sonication, the bubble translation we observed can be described by theory based on the Voigt model for linear viscoelastic solids; mechanical properties of the gelatin are calculated from measurements of the terminal displacement under the sonication.

  3. Etiology of gas bubble disease

    SciTech Connect

    Bouck, G.R.

    1980-11-01

    Gas bubble disease is a noninfectious, physically induced process caused by uncompensated hyperbaric pressure of total dissolved gases. When pressure compensation is inadequate, dissolved gases may form emboli (in blood) and emphysema (in tissues). The resulting abnormal physical presence of gases can block blood vessels (hemostasis) or tear tissues, and may result in death. Population mortality is generally skewed, in that the median time to death occurs well before the average time to death. Judged from mortality curves, three stages occur in gas bubble disease: (1) a period of gas pressure equilibrium, nonlethal cavitation, and increasing morbidity; (2) a period of rapid and heavy mortality; and (3) a period of protracted survival, despite lesions, and dysfunction that eventually terminates in total mortality. Safe limits for gas supersaturation depend on species tolerance and on factors that differ among hatcheries and rivers, between continuous and intermittent exposures, and across ranges of temperature and salinity.

  4. Mass Spectrometers in Space!

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, William B.

    2012-01-01

    Exploration of our solar system over several decades has benefitted greatly from the sensitive chemical analyses offered by spaceflight mass spectrometers. When dealing with an unknown environment, the broadband detection capabilities of mass analyzers have proven extremely valuable in determining the composition and thereby the basic nature of space environments, including the outer reaches of Earth s atmosphere, interplanetary space, the Moon, and the planets and their satellites. Numerous mass analyzer types, including quadrupole, monopole, sector, ion trap, and time-of-flight have been incorporated in flight instruments and delivered robotically to a variety of planetary environments. All such instruments went through a rigorous process of application-specific development, often including significant miniaturization, testing, and qualification for the space environment. Upcoming missions to Mars and opportunities for missions to Venus, Europa, Saturn, Titan, asteroids, and comets provide new challenges for flight mass spectrometers that push to state of the art in fundamental analytical technique. The Sample Analysis at Mars (SAM) investigation on the recently-launch Mars Science Laboratory (MSL) rover mission incorporates a quadrupole analyzer to support direct evolved gas as well as gas chromatograph-based analysis of martian rocks and atmosphere, seeking signs of a past or present habitable environment. A next-generation linear ion trap mass spectrometer, using both electron impact and laser ionization, is being incorporated into the Mars Organic Molecule Analyzer (MOMA) instrument, which will be flown to Mars in 2018. These and other mass spectrometers and mission concepts at various stages of development will be described.

  5. Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Understanding the global atmospheric changes is difficult with today's current technology. However, with high resolution and nearly continuous observations from a satellite, it's possible to transform our understanding of the atmosphere. To enable the next generation of atmospheric science, a new class of orbiting atmospheric sensors is being developed. The foundation of this advanced concept is the Fourier Transform Spectrometer, or FTS.

  6. Cyclotrons as mass spectrometers

    SciTech Connect

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures.

  7. Bubble-Induced Cave Collapse

    PubMed Central

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned “natural” instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a “collapse”. We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088

  8. Bubble-induced cave collapse.

    PubMed

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088

  9. Dynamics of shock waves and cavitation bubbles in bilinear elastic-plastic media, and the implications to short-pulsed laser surgery

    NASA Astrophysics Data System (ADS)

    Brujan, E.-A.

    2005-01-01

    The dynamics of shock waves and cavitation bubbles generated by short laser pulses in water and elastic-plastic media were investigated theoretically in order to get a better understanding of their role in short-pulsed laser surgery. Numerical simulations were performed using a spherical model of bubble dynamics which include the elastic-plastic behaviour of the medium surrounding the bubble, compressibility, viscosity, density and surface tension. Breakdown in water produces a monopolar acoustic signal characterized by a compressive wave. Breakdown in an elastic-plastic medium produces a bipolar acoustic signal, with a leading positive compression wave and a trailing negative tensile wave. The calculations revealed that consideration of the tissue elasticity is essential to describe the bipolar shape of the shock wave emitted during optical breakdown. The elastic-plastic response of the medium surrounding the bubble leads to a significant decrease of the maximum size of the cavitation bubble and pressure amplitude of the shock wave emitted during bubble collapse, and shortening of the oscillation period of the bubble. The results are discussed with respect to collateral damage in short-pulsed laser surgery.

  10. Unsteady thermocapillary migration of bubbles

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Balasubramaniam, R.

    1988-01-01

    Upon the introduction of a gas bubble into a liquid possessing a uniform thermal gradient, an unsteady thermo-capillary flow begins. Ultimately, the bubble attains a constant velocity. This theoretical analysis focuses upon the transient period for a bubble in a microgravity environment and is restricted to situations wherein the flow is sufficiently slow such that inertial terms in the Navier-Stokes equation and convective terms in the energy equation may be safely neglected (i.e., both Reynolds and Marangoni numbers are small). The resulting linear equations were solved analytically in the Laplace domain with the Prandtl number of the liquid as a parameter; inversion was accomplished numerically using a standard IMSL routine. In the asymptotic long-time limit, the theory agrees with the steady-state theory of Young, Goldstein, and Block. The theory predicts that more than 90 percent of the terminal steady velocity is achieved when the smallest dimensionless time, i.e., the one based upon the largest time scale-viscous or thermal-equals unity.

  11. ORIGIN OF THE FERMI BUBBLE

    SciTech Connect

    Cheng, K.-S.; Chernyshov, D. O.; Dogiel, V. A.; Ko, C.-M.; Ip, W.-H.

    2011-04-10

    Fermi has discovered two giant gamma-ray-emitting bubbles that extend nearly 10 kpc in diameter north and south of the Galactic center. The existence of the bubbles was first evidenced in X-rays detected by ROSAT and later WMAP detected an excess of radio signals at the location of the gamma-ray bubbles. We propose that periodic star capture processes by the galactic supermassive black hole, Sgr A*, with a capture rate 3 x 10{sup -5} yr{sup -1} and energy release {approx}3 x 10{sup 52} erg per capture can produce very hot plasma {approx}10 keV with a wind velocity {approx}10{sup 8} cm s{sup -1} injected into the halo and heat up the halo gas to {approx}1 keV, which produces thermal X-rays. The periodic injection of hot plasma can produce shocks in the halo and accelerate electrons to {approx}TeV, which produce radio emission via synchrotron radiation and gamma rays via inverse Compton scattering with the relic and the galactic soft photons.

  12. Soap bubbles in paintings: Art and science

    NASA Astrophysics Data System (ADS)

    Behroozi, F.

    2008-12-01

    Soap bubbles became popular in 17th century paintings and prints primarily as a metaphor for the impermanence and fragility of life. The Dancing Couple (1663) by the Dutch painter Jan Steen is a good example which, among many other symbols, shows a young boy blowing soap bubbles. In the 18th century the French painter Jean-Simeon Chardin used soap bubbles not only as metaphor but also to express a sense of play and wonder. In his most famous painting, Soap Bubbles (1733/1734) a translucent and quavering soap bubble takes center stage. Chardin's contemporary Charles Van Loo painted his Soap Bubbles (1764) after seeing Chardin's work. In both paintings the soap bubbles have a hint of color and show two bright reflection spots. We discuss the physics involved and explain how keenly the painters have observed the interaction of light and soap bubbles. We show that the two reflection spots on the soap bubbles are images of the light source, one real and one virtual, formed by the curved surface of the bubble. The faint colors are due to thin film interference effects.

  13. Low-Cost Process for Silicon Purification with Bubble Adsorption in Al-Si Melt

    NASA Astrophysics Data System (ADS)

    Yu, Wenzhou; Ma, Wenhui; Lv, Guoqiang; Ren, Yongsheng; Dai, Yongnian; Morita, Kazuki

    2014-08-01

    The primary silicon and Al-Si alloy have been separated in hypereutectic Al-Si melt by the electromagnetic stirring and directional solidification processes. During the electromagnetic separation process, the behavior of a hydrogen bubble in Al-Si melt has been discussed. Furthermore, the bubble adsorption effect for the Si purification has been revealed. The results show that the bubble cavity formed in the lower part of the sample by pulling it up. The scanning electron microscope along with energy dispersive spectrometer (SEM-EDS) analysis indicated that a lot of impurities were adsorbed onto the surface of the bubble cavity that may be beneficial for the Si purification. By decreasing the pulling-up rates, the size of the bubble cavity in Al-Si alloy increased, which results in the decreasing of the impurity contents in primary silicon. In this work, the impurity content in primary silicon is 10.8 ppmw, which is obviously improved compared with the 777.57 ppmw in metallurgical silicon. It is a low-cost technology that will be a potential route for the Si purification.

  14. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  15. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  16. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  17. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  18. Influence of the liquid viscosity on the formation of bubble structures in a 20kHz field.

    PubMed

    Salinas, V; Vargas, Y; Louisnard, O; Gaete, L

    2015-01-01

    The cavitation field in a cylindrical vessel bottom-insonified by a 19.7kHz large area transducer is studied experimentally. By adding controlled amounts of Poly-Ethylene Glycol (PEG) to water, the viscosity of the liquid is varied between one- and nine-fold the viscosity of pure water. For each liquid, and for various displacement amplitudes of the transducer, the liquid is imaged by a high-speed camera and the acoustic field is measured along the symmetry axis. For low driving amplitudes, only a spherical cap bubble structure appears on the transducer, growing with amplitude, and the axial acoustic pressure field displays a standing-wave shape. Above some threshold amplitude of the transducer, a flare-like structure starts to build up, involving bubbles strongly expelled from the transducer surface, and the axial pressure profile becomes almost monotonic. Increasing more the driving amplitude, the structure extends in height, and the pressure profile remains monotonic but decreases its global amplitude. This behavior is similar for all the water-PEG mixtures used, but the threshold for structure formation increases with the viscosity of the liquid. The images of the bubble structures are interpreted and correlated to the measured acoustic pressure profiles. The appearance of traveling waves near the transducer, produced by the strong energy dissipated by inertial bubbles, is conjectured to be a key mechanism accompanying the sudden appearance of the flare-like structure. PMID:25082762

  19. Acoustic droplet vaporization for diagnostic and therapeutic applications

    NASA Astrophysics Data System (ADS)

    Kripfgans, Oliver Daniel

    A technology, termed Acoustic Droplet Vaporization (ADV), is developed whereby superheated droplets are caused to vaporize by application of an ultrasonic field. The droplet emulsion (90% <6 um diameter) is made by mixing saline, albumin, and perfluorocarbon at high speed. It has been observed that an acoustic pressure threshold exists above which the droplets vaporize into bubbles approximately 25-times the original droplet diameter. For frequencies between 1.5 and 8 MHz, the threshold decreases from 4.5 to 0.75 MPa peak rarefactional pressure. The single pulse efficiency of ADV has been measured as 26%. This technology might be useful for tissue occlusion in cancer treatment as well as for aberration correction in acoustic imaging. To demonstrate these potential applications, gas bubbles were made in vivo in animal models by ADV. It was found that ADV could be used to temporarily form large gas bubbles (>30 um) in vivo, which at large number density occluded targeted tissues and reduced the blood flow by 34%. Alternatively, for a very sparse droplet population, gas bubbles could serve as potential point beacons for phase aberration correction given their backscatter amplitudes of 24 dB above tissue background. Other possible applications include drug delivery, indicator for cryo therapy, pressure/radiation beacons, hyperthermia, and cavitation nuclei. ADV of individual droplets showed that during acoustic irradiation, droplets perform dipole-type oscillations and that such oscillations increased in amplitude with acoustic intensity. Smaller droplets required more acoustic intensity for vaporization than larger droplets; however, independent of droplet diameter, a maximum oscillation amplitude of 1.3 um, was required. This threshold corresponds to a Reynolds number of ˜5 x 104. Vaporization started either as a spot on the axis of oscillation close to a pole of the droplet, or homogeneously throughout the droplet's imaged cross-section. It is concluded that

  20. BUBBLE DYNAMICS AT GAS-EVOLVING ELECTRODES

    SciTech Connect

    Sides, Paul J.

    1980-12-01

    Nucleation of bubbles, their growth by diffusion of dissolved gas to the bubble surface and by coalescence, and their detachment from the electrode are all very fast phenomena; furthermore, electrolytically generated bubbles range in size from ten to a few hundred microns; therefore, magnification and high speed cinematography are required to observe bubbles and the phenomena of their growth on the electrode surface. Viewing the action from the front side (the surface on which the bubbles form) is complicated because the most important events occur close to the surface and are obscured by other bubbles passing between the camera and the electrode; therefore, oxygen was evolved on a transparent tin oxide "window" electrode and the events were viewed from the backside. The movies showed that coalescence of bubbles is very important for determining the size of bubbles and in the chain of transport processes; growth by diffusion and by coalescence proceeds in series and parallel; coalescing bubbles cause significant fluid motion close to the electrode; bubbles can leave and reattach; and bubbles evolve in a cycle of growth by diffusion and different modes of coalescence. An analytical solution for the primary potential and current distribution around a spherical bubble in contact with a plane electrode is presented. Zero at the contact point, the current density reaches only one percent of its undisturbed value at 30 percent of the radius from that point and goes through a shallow maximum two radii away. The solution obtained for spherical bubbles is shown to apply for the small bubbles of electrolytic processes. The incremental resistance in ohms caused by sparse arrays of bubbles is given by {Delta}R = 1.352 af/kS where f is the void fraction of gas in the bubble layer, a is the bubble layer thickness, k is the conductivity of gas free electrolyte, and S is the electrode area. A densely populated gas bubble layer on an electrode was modeled as a hexagonal array of

  1. Ostwald ripening in multiple-bubble nuclei

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Suzuki, Masaru; Inaoka, Hajime; Ito, Nobuyasu

    2014-12-01

    The Ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 × 106 Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as t-x with scaling exponent x. As the initial temperature increases, the exponent changes from x = 3/2 to 1, which implies that the growth of bubbles changes from interface-limited (the t1/2 law) to diffusion-limited (the t1/3 law) growth.

  2. Microfluidics with compound ``bubble-drops''

    NASA Astrophysics Data System (ADS)

    Khan, Saif A.; Duraiswamy, Suhanya

    2008-11-01

    ``Bubble-drops'' are compound fluid particles comprising a gas bubble and liquid drop that flow as a single fluid object through another immiscible liquid in a microchannel network. These fluid particles represent discrete multiphase `quanta', and expand the sphere of application of droplet microfluidics to inter-phase phenomena. We present here a simple method to generate monodisperse bubble-drop trains in microfabricated channel networks. The difference in drag force exerted on flowing bubbles and drops by the immiscible carrier liquid implies different translational speeds, thus providing the driving force for bubble-drop formation. We outline the criteria for stable generation and analyze factors influencing bubble-drop dynamics. We will also highlight several applications in chemical and biological synthesis and screening.

  3. Bernoulli Suction Effect on Soap Bubble Blowing?

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  4. Mechanism of bubble detachment from vibrating walls

    SciTech Connect

    Kim, Dongjun; Park, Jun Kwon Kang, Kwan Hyoung; Kang, In Seok

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  5. Arrested Bubble Rise in a Narrow Tube

    NASA Astrophysics Data System (ADS)

    Lamstaes, Catherine; Eggers, Jens

    2016-06-01

    If a long air bubble is placed inside a vertical tube closed at the top it can rise by displacing the fluid above it. However, Bretherton found that if the tube radius, R, is smaller than a critical value Rc=0.918 ℓ_c , where ℓ_c=√{γ /ρ g} is the capillary length, there is no solution corresponding to steady rise. Experimentally, the bubble rise appears to have stopped altogether. Here we explain this observation by studying the unsteady bubble motion for Rbubble and the tube goes to zero in limit of large t like t^{-4/5} , leading to a rapid slow-down of the bubble's mean speed U ∝ t^{-2} . As a result, the total bubble rise in infinite time remains very small, giving the appearance of arrested motion.

  6. Mechanics of Bubbles in Sludges and Slurries

    SciTech Connect

    Gauglitz, Phillip A; Terrones, Guillermo; Rossen, William R

    2001-12-31

    The Hanford Site has 177 underground waste storage tanks that are known to retain and release bubbles composed of flammable gases. Characterizing and understanding the behavior of these bubbles is important for the safety issues associated with the flammable gases for both ongoing waste storage and future waste-retrieval operations. The retained bubbles are known to respond to small barometric pressure changes, though in a complex manner with unusual hysteresis occurring in some tanks in the relationship between bubble volume and pressure, or V-P hysteresis. With careful analysis, information on the volume of retained gas and the interactions of the waste and the bubbles can be determined. The overall objective of this study is to create a better understanding of the mechanics of bubbles retained in high-level waste sludges and slurries. Significant advancements have been made in all the major areas of basic theoretical and experimental method development.

  7. Smartphone spectrometer for colorimetric biosensing.

    PubMed

    Wang, Yi; Liu, Xiaohu; Chen, Peng; Tran, Nhung Thi; Zhang, Jinling; Chia, Wei Sheng; Boujday, Souhir; Liedberg, Bo

    2016-05-23

    We report on a smartphone spectrometer for colorimetric biosensing applications. The spectrometer relies on a sample cell with an integrated grating substrate, and the smartphone's built-in light-emitting diode flash and camera. The feasibility of the smartphone spectrometer is demonstrated for detection of glucose and human cardiac troponin I, the latter in conjunction with peptide-functionalized gold nanoparticles. PMID:27163736

  8. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  9. Simulation of the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Cox, D. M.; Konki, J.; Greenlees, P. T.; Hauschild, K.; Herzberg, R.-D.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J.

    2015-06-01

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations.

  10. Detailed Jet Dynamics in a Collapsing Bubble

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2015-12-01

    We present detailed visualizations of the micro-jet forming inside an aspherically collapsing cavitation bubble near a free surface. The high-quality visualizations of large and strongly deformed bubbles disclose so far unseen features of the dynamics inside the bubble, such as a mushroom-like flattened jet-tip, crown formation and micro-droplets. We also find that jetting near a free surface reduces the collapse time relative to the Rayleigh time.

  11. Collapse of vacuum bubbles in a vacuum

    SciTech Connect

    Ng, Kin-Wang; Wang, Shang-Yung

    2011-02-15

    We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications for the creation of a baby universe in the laboratory, the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and the inflationary physics.

  12. Bubble, Drop and Particle Unit (BDPU)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes the following articles entitled: (1) Oscillatory Thermocapillary Instability; (2) Thermocapillary Convection in Multilayer Systems; (3) Bubble and Drop Interaction with Solidification Front; (4) A Liquid Electrohydrodynamics Experiment; (5) Boiling on Small Plate Heaters under Microgravity and a Comparison with Earth Gravity; (6) Thermocapillary Migration and Interactions of Bubbles and Drops; and (7) Nonlinear Surface Tension Driven Bubble Migration

  13. Buoyancy Driven Shear Flows of Bubble Suspensions

    NASA Astrophysics Data System (ADS)

    Hill, R. J.; Zenit, R.; Chellppannair, T.; Koch, D. L.; Spelt, P. D. M.; Sangani, A.

    1998-11-01

    In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1 and Re >> 1 , so that the bubbles are relatively undeformed and the flow is inviscid and approximately irrotational. Nitrogen is introduced through an array of capillaries at the base of a .2x.02x2 m channel filled with an aqueous electrolyte solution (0.06 molL-1 MgSO_4). The rising bubbles generate a unidirectional shear flow, where the denser suspension at the lower surface of the channel falls, while the less dense suspension at the upper surface rises. Hot-film anemometry is used to measure the resulting gas volume fraction and fluid velocity profiles. The bubble collision rate with the sensor is related to the gas volume fraction and the mean and variance of the bubble velocity using an experimentally measured collision surface area for the sensor. Bubble collisions with the sensor are identified by the characteristic slope of the hot-film anemometer signal when bubbles collide with the sensor. It is observed that the steady shear flow develops a bubble phase pressure gradient across the channel gap as the bubbles interchange momentum through direct collisions. The discrete phase presssure gradient balances the buoyancy force driving bubbles toward the upper surface resulting in a steady void fraction profile across the gap width. The strength of the shear flow is controlled by the extent of bubble segregation and by the effective viscosity of the bubble phase. The measurements are compared with solutions of the averaged equations of motion (Kang et al. 1997; Spelt and Sangani, 1998), for a range of gas volume fractions and channel inclination angles.

  14. Bursting the bubble of melt inclusions

    USGS Publications Warehouse

    Lowenstern, Jacob B.

    2015-01-01

    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  15. Imaging Fourier Transform Spectrometer

    SciTech Connect

    Bennett, C.L.; Carter, M.R.; Fields, D.J.; Hernandez, J.

    1993-04-14

    The operating principles of an Imaging Fourier Transform Spectrometer (IFTS) are discussed. The advantages and disadvantages of such instruments with respect to alternative imaging spectrometers are discussed. The primary advantages of the IFTS are the capacity to acquire more than an order of magnitude more spectral channels than alternative systems with more than an order of magnitude greater etendue than for alternative systems. The primary disadvantage of IFTS, or FTS in general, is the sensitivity to temporal fluctuations, either random or periodic. Data from the IRIFTS (ir IFTS) prototype instrument, sensitive in the infrared, are presented having a spectral sensitivity of 0.01 absorbance units, a spectral resolution of 6 cm{sup {minus}1} over the range 0 to 7899 cm{sup {minus}1}, and a spatial resolution of 2.5 mr.

  16. FAST NEUTRON SPECTROMETER

    DOEpatents

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  17. The Composite Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Calcutt, Simon; Taylor, Fredric; Ade, Peter; Kunde, Virgil; Jennings, Donald

    1992-01-01

    The Composite Infrared Spectrometer (CIRS) is a remote sensing instrument to be flown on the Cassini orbiter. It contains two Fourier transform spectrometers covering wavelengths of 7-1000 microns. The instrument is expected to have higher spectral resolution, smaller field of view, and better signal-to-noise performance than its counterpart, IRIS, on the Voyager missions. These improvements allow the study of the variability of the composition and temperature of the atmospheres of both Saturn and Titan with latitude, longitude and height, as well as allowing the possibility of discovery of previously undetected chemical species in these atmospheres. The long wavelengths accessible to CIRS allow sounding deeper into both atmospheres than was possible with IRIS.

  18. Surface Plasmon Based Spectrometer

    NASA Astrophysics Data System (ADS)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  19. Ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Inventor); Clay, D. R.; Goldstein, B. E.; Goldstein, R.

    1984-01-01

    An ion mass spectrometer is described which detects and indicates the characteristics of ions received over a wide angle, and which indicates the mass to charge ratio, the energy, and the direction of each detected ion. The spectrometer includes a magnetic analyzer having a sector magnet that passes ions received over a wide angle, and an electrostatic analyzer positioned to receive ions passing through the magnetic analyzer. The electrostatic analyzer includes a two dimensional ion sensor at one wall of the analyzer chamber, that senses not only the lengthwise position of the detected ion to indicate its mass to charge ratio, but also detects the ion position along the width of the chamber to indicate the direction in which the ion was traveling.

  20. Some problems of the theory of bubble growth and condensation in bubble chambers

    NASA Technical Reports Server (NTRS)

    Tkachev, L. G.

    1988-01-01

    This work is an attempt to explain the reasons for the discrepancies between the theoretical and experimental values of bubble growth rate in an overheated liquid, and to provide a brief formulation of the main premises of the theory on bubble growth in liquid before making a critical analysis. To simplify the problem, the floating upward of bubbles is not discussed; moreover, the study is based on the results of the theory of the behavior of fixed bubbles.