Science.gov

Sample records for acoustic cavitation threshold

  1. Effect of dilute polymer additives on the acoustic cavitation threshold of water

    SciTech Connect

    Crum, L.A.; Brosey, J.E.

    1984-02-01

    Measurements are presented of the variation of the acoustic cavitation threshold of water with concentration of the polymer additives polyethylene oxide and guar gum. It was found that small amounts of these additives could significantly increase the cavitation threshold. A theoretical model, based upon nucleation of a gas bubble from a Harvey-type crevice in a mote or solid particle, is developed that gives good agreement with the measurements. The applicability of this approach to an explanation of cavitation index reduction in flow-generated or confined jet cavitation, when polymer additives are introduced, is discussed.

  2. Toward a reference ultrasonic cavitation vessel: Part 2--investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field.

    PubMed

    Hodnett, Mark; Zeqiri, Bajram

    2008-08-01

    As part of an ongoing project to establish a reference facility for acoustic cavitation at the National Physical Laboratory (NPL), carefully controlled studies on a 25 kHz, 1.8 kW cylindrical vessel are described. Using a patented high-frequency acoustic emission detection method and a sonar hydrophone, results are presented of the spatial variation of inertial acoustic cavitation with increasing peak-negative pressure. Results show that at low operating levels, inertial acoustic cavitation is restricted to, and is strongly localized on, the vessel axis. At intermediate power settings, inertial acoustic cavitation also occurs close to the vessel walls, and at higher settings, a complex spatial variation is seen that is not apparent in measurements of the 25 kHz driving field alone. At selected vessel locations, a systematic investigation of the inertial cavitation threshold is described. This was carried out by making simultaneous measurements of the peak-negative pressures leading to inertial cavitation and the resultant MHz-frequency emissions, and indicates an inertial cavitation threshold of 101 kPa +/- 14% (estimated expanded uncertainty). However, an intermediate threshold at 84 kPa +/- 14% (estimated expanded uncertainty) is also seen. The results are discussed alongside theoretical predictions and recent experimental findings.

  3. A comparison of acoustic cavitation detection thresholds measured with piezo-electric and fiber-optic hydrophone sensors.

    PubMed

    Bull, Victoria; Civale, John; Rivens, Ian; Ter Haar, Gail

    2013-12-01

    A Fabry-Perot interferometer fiber-optic hydrophone (FOH) was investigated for use as an acoustic cavitation detector and compared with a piezo-ceramic passive cavitation detector (PCD). Both detectors were used to measure negative pressure thresholds for broadband emissions in 3% agar and ex vivo bovine liver simultaneously. FOH-detected half- and fourth-harmonic emissions were also studied. Three thresholds were defined and investigated: (i) onset of cavitation; (ii) 100% probability of cavitation; and (iii) a time-integrated threshold where broadband signals integrated over a 3-s exposure duration, averaged over 5-10 repeat exposures, become statistically significantly greater than noise. The statistical sensitiviy of FOH broadband detection was low compared with that of the PCD (0.43/0.31 in agar/liver). FOH-detected fourth-harmonic data agreed best with PCD broadband (sensitivity: 0.95/0.94, specificity: 0.89/0.76 in agar/liver). The FOH has potential as a cavitation detector, particularly in applications where space is limited or during magnetic resonance-guided studies.

  4. Acoustic cavitation movies

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence A.

    2003-04-01

    Acoustic cavitation is a phenomenon that occurs on microsecond time scales and micron length scales, yet, it has many macroscopic manifestations. Accordingly, it is often difficult, at least for the author, to form realistic physical descriptions of the specific mechanisms through which it expresses itself in our macroscopic world. For example, there are still many who believe that cavitation erosion is due to the shock wave that is emitted by bubble implosion, rather than the liquid jet created on asymmetric collapse...and they may be right. Over the years, the author has accumulated a number of movies and high-speed photographs of cavitation activity, which he uses to form his own visual references. In the time allotted, he will show a number of these movies and photographs and discuss their relevance to existing technological problems. A limited number of CDs containing the presented materials will be available to interested individuals. [Work supported in part by the NIH, USAMRMC, and the ONR.

  5. Thresholds for cavitation produced in water by pulsed ultrasound.

    PubMed

    Atchley, A A; Frizzell, L A; Apfel, R E; Holland, C K; Madanshetty, S; Roy, R A

    1988-09-01

    The threshold for transient cavitation produced in water by pulsed ultrasound was measured as a function of pulse duration and pulse repetition frequency at both 0.98 and 2.30 MHz. The cavitation events were detected with a passive acoustic technique which relies upon the scattering of the irradiation field by the bubble clouds associated with the events. The results indicate that the threshold is independent of pulse duration and acoustic frequency for pulses longer than approximately 10 acoustic cycles. The threshold increases for shorter pulses. The cavitation events are likely to be associated with bubble clouds rather than single bubbles.

  6. Exploring the Acoustic Parameter Space in Ultrasound Therapy: Defining the Threshold for Cavitational Effects

    NASA Astrophysics Data System (ADS)

    Kieran, Kathleen; Hall, Timothy L.; Parsons, Jessica E.; Wolf, J. Stuart; Fowlkes, J. Brian; Cain, Charles A.; Roberts, William W.

    2007-05-01

    Focused ultrasound energy is capable of noninvasively, nonthermally ablating tissue. However, the relative contributions of thermal and cavitational effects in the therapeutic use of ultrasound are poorly understood. We sought to identify the ultrasound parameter space within which tissue can be ablated by solely mechanical means (cavitation), without a significant thermal component. Methods: Ultrasound energy (750 kHz, 20 microsecond pulses) was applied sequentially in a 3×3 grid configuration to the cortical tissue of ex vivo porcine kidneys submerged in degassed water. While maintaining constant energy density, intensity (0.11-211 kW/cm2) and duty cycle (0.04%-CW) were varied widely. A thermocouple co-localized with the center of each grid provided continuous temperature measurements. Following ablations, the kidneys were examined grossly and histologically. Results: Ablated tissue was classified into one of four discrete morphologic categories: blanched (firm, pale, desiccated tissue), disrupted (cavity containing thin, isochromatic liquid; no blanching), mixed blanched/disrupted (cavity containing pale, thick liquid; minimal blanching), and no grossly visible effect. Morphologically similar lesions clustered together within the ultrasound parameter space. Disrupted lesions had significantly lower maximal temperatures (44.2 °C) than desiccated (67.5 °C; p<0.0001) or mixed (59.4 °C; p<0.0001) lesions. Conclusions: In an ex vivo model, we have defined the ultrasound parameters within which mechanical tissue ablation, with minimal thermal components, is possible. Future research in vivo is directed toward optimizing the parameters for cavitational tissue ablation, and better understanding the impact of tissue perfusion on lesion generation and intralesional temperature rise.

  7. The effect of static pressure on the inertial cavitation threshold.

    PubMed

    Bader, Kenneth B; Raymond, Jason L; Mobley, Joel; Church, Charles C; Felipe Gaitan, D

    2012-08-01

    The amplitude of the acoustic pressure required to nucleate a gas or vapor bubble in a fluid, and to have that bubble undergo an inertial collapse, is termed the inertial cavitation threshold. The magnitude of the inertial cavitation threshold is typically limited by mechanisms other than homogeneous nucleation such that the theoretical maximum is never achieved. However, the onset of inertial cavitation can be suppressed by increasing the static pressure of the fluid. The inertial cavitation threshold was measured in ultrapure water at static pressures up to 30 MPa (300 bars) by exciting a radially symmetric standing wave field in a spherical resonator driven at a resonant frequency of 25.5 kHz. The threshold was found to increase linearly with the static pressure; an exponentially decaying temperature dependence was also found. The nature and properties of the nucleating mechanisms were investigated by comparing the measured thresholds to an independent analysis of the particulate content and available models for nucleation.

  8. Enhancing acoustic cavitation using artificial crevice bubbles.

    PubMed

    Zijlstra, Aaldert; Fernandez Rivas, David; Gardeniers, Han J G E; Versluis, Michel; Lohse, Detlef

    2015-02-01

    We study the response of pre-defined cavitation nuclei driven continuously in the kHz regime (80, 100 and 200 kHz). The nuclei consist of stabilized gaspockets in cylindrical pits of 30 μm diameter etched in silicon or glass substrates. It is found that above an acoustic pressure threshold the dynamics of the liquid-gas meniscus switches from a stable drum-like vibration to expansion and deformation, frequently resulting in detachment of microbubbles. Just above this threshold small bubbles are continuously and intermittently ejected. At elevated input powers bubble detachment becomes more frequent and cavitation bubble clouds are formed and remain in the vicinity of the pit bubble. Surprisingly, the resulting loss of gas does not lead to deactivation of the pit which can be explained by a rectified gas diffusion process.

  9. Static and Transient Cavitation Threshold Measurements for Mercury

    SciTech Connect

    Moraga, F.; Taleyarkhan, R.P.

    1999-11-14

    Transient and static cavitation thresholds for mercury as a function of the cover gas (helium or air), and pressure are reported. Both static and transient cavitation onset pressure thresholds increase linearly with cover gas pressure. Additionally, the cavitation thresholds as a function of dissolved gases were also measured and are reported.

  10. Inertial cavitation threshold of nested microbubbles.

    PubMed

    Wallace, N; Dicker, S; Lewin, Peter; Wrenn, S P

    2015-04-01

    Cavitation of ultrasound contrast agents (UCAs) promotes both beneficial and detrimental bioeffects in vivo (Radhakrishnan et al., 2013) [1]. The ability to determine the inertial cavitation threshold of UCA microbubbles has potential application in contrast imaging, development of therapeutic agents, and evaluation of localized effects on the body (Ammi et al., 2006) [2]. This study evaluates a novel UCA and its inertial cavitation behavior as determined by a home built cavitation detection system. Two 2.25 MHz transducers are placed at a 90° angle to one another where one transducer is driven by a high voltage pulser and the other transducer receives the signal from the oscillating microbubble. The sample chamber is placed in the overlap of the focal region of the two transducers where the microbubbles are exposed to a pulser signal consisting of 600 pulse trains per experiment at a pulse repetition frequency of 5 Hz where each train has four pulses of four cycles. The formulation being analyzed is comprised of an SF6 microbubble coated by a DSPC PEG-3000 monolayer nested within a poly-lactic acid (PLA) spherical shell. The effect of varying shell diameters and microbubble concentration on cavitation threshold profile for peak negative pressures ranging from 50 kPa to 2 MPa are presented and discussed in this paper. The nesting shell decreases inertial cavitation events from 97.96% for an un-nested microbubble to 19.09% for the same microbubbles nested within a 2.53 μm shell. As shell diameter decreases, the percentage of inertially cavitating microbubbles also decreases. For nesting formulations with average outer capsule diameters of 20.52, 14.95, 9.95, 5.55, 2.53, and 1.95 μm, the percentage of sample destroyed at 1 MPa was 51.02, 38.94, 33.25, 25.27, 19.09, and 5.37% respectively.

  11. Influence of Microbubble Size on Postexcitation Collapse Thresholds for Single Ultrasound Contrast Agents Using Double Passive Cavitation Detection

    PubMed Central

    Gauthier, Marianne; King, Daniel A.; O'Brien, William D.

    2014-01-01

    For the first time, and using an acoustical method, it has been shown experimentally that the inertial cavitation threshold pressure of an albumin-shelled microbubble is significantly correlated with its initial size. PMID:23661121

  12. Impact of acoustic cavitation on food emulsions.

    PubMed

    Krasulya, Olga; Bogush, Vladimir; Trishina, Victoria; Potoroko, Irina; Khmelev, Sergey; Sivashanmugam, Palani; Anandan, Sambandam

    2016-05-01

    The work explores the experimental and theoretical aspects of emulsification capability of ultrasound to deliver stable emulsions of sunflower oil in water and meat sausages. In order to determine optimal parameters for direct ultrasonic emulsification of food emulsions, a model was developed based on the stability of emulsion droplets in acoustic cavitation field. The study is further extended to investigate the ultrasound induced changes to the inherent properties of raw materials under the experimental conditions of sono-emulsification.

  13. Impact of acoustic cavitation on food emulsions.

    PubMed

    Krasulya, Olga; Bogush, Vladimir; Trishina, Victoria; Potoroko, Irina; Khmelev, Sergey; Sivashanmugam, Palani; Anandan, Sambandam

    2016-05-01

    The work explores the experimental and theoretical aspects of emulsification capability of ultrasound to deliver stable emulsions of sunflower oil in water and meat sausages. In order to determine optimal parameters for direct ultrasonic emulsification of food emulsions, a model was developed based on the stability of emulsion droplets in acoustic cavitation field. The study is further extended to investigate the ultrasound induced changes to the inherent properties of raw materials under the experimental conditions of sono-emulsification. PMID:26603612

  14. RECENT APPLICATIONS OF THE GREENSPAN AND TSCHIEGG DATA ON NEUTRON INDUCED CAVITATION THRESHOLDS

    SciTech Connect

    West, Colin D

    2007-03-01

    In 1967 Greenspan and Tschiegg published a paper on radiation induced acoustic cavitation. They researched the thresholds for cavitation induced in various liquids by fast neutrons, {alpha}-decay recoils and fission fragments. It turns out that these data can be used to verify predictions of a more recent theory of radiation induced cavitation nucleation. In 1979, in a report to their sponsor (The Office of Naval Research) they published new details of their results on neutron induced cavitation thresholds, including tables of the thresholds at different temperatures for various liquids. They were also some fission fragment results, but none of the {alpha}-decay recoil data. By that time Greenspan had evidently retired while I had left the field of cavitation research and did not know of the existence of their report [which also contains the only published record of some cavitation threshold measurements made by West and Howlett at Harwell, England]. Later still, in 1982, Greenspan and Tschiegg published the graphical data--but not the tables--in a more easily accessible form. In the late 1990s I revisited the problem of calculating radiation induced cavitation thresholds. There was interest in this because the Spallation Neutron Source (SNS) project, then just beginning, planned to use a liquid mercury target to produce intense bursts of neutrons when irradiated by a pulsed, high energy proton beam. It was known that the pressure waves produced by local heating when the proton pulse struck the target could, upon reflection at the walls of the mercury container, give rise to very high, although brief, negative pressure waves in the mercury. There was concern that cavitation might result and, if it did, might lead to undesirable effects. With the encouragement of the SNS target team this author managed further to develop an earlier method of calculating the threshold for such cavitation, and the SNS project kindly provided funding to publish the work in two ORNL

  15. Histotripsy-Induced Cavitation Cloud Initiation Thresholds in Tissues of Different Mechanical Properties

    PubMed Central

    Vlaisavljevich, Eli; Maxwell, Adam; Warnez, Matthew; Johnsen, Eric; Cain, Charles A.; Xu, Zhen

    2014-01-01

    Histotripsy is an ultrasound ablation method that depends on the initiation and maintenance of a cavitation bubble cloud to fractionate soft tissue. This paper studies how tissue properties impact the pressure threshold to initiate the cavitation bubble cloud. Our previous study showed that shock scattering off one or more initial bubbles, expanded to sufficient size in the focus, plays an important role in initiating a dense cavitation cloud. In this process, the shock scattering causes the positive pressure phase to be inverted, resulting in a scattered wave that has the opposite polarity of the incident shock. The inverted shock is superimposed on the incident negative pressure phase to form extremely high negative pressures, resulting in a dense cavitation cloud growing toward the transducer. We hypothesize that increased tissue stiffness impedes the expansion of initial bubbles, reducing the scattered tensile pressure, and thus requiring higher initial intensities for cloud initiation. To test this hypothesis, 5-cycle histotripsy pulses at pulse repetition frequencies (PRFs) of 10, 100, or 1000 Hz were applied by a 1-MHz transducer focused inside mechanically tunable tissue-mimicking agarose phantoms and various ex vivo porcine tissues covering a range of Young’s moduli. The threshold to initiate a cavitation cloud and resulting bubble expansion were recorded using acoustic backscatter detection and optical imaging. In both phantoms and ex vivo tissue, results demonstrated a higher cavitation cloud initiation threshold for tissues of higher Young’s modulus. Results also demonstrated a decrease in bubble expansion in phantoms of higher Young’s modulus. These results support our hypothesis, improve our understanding of the effect of histotripsy in tissues with different mechanical properties, and provide a rational basis to tailor acoustic parameters for fractionation of specific tissues. PMID:24474139

  16. Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties.

    PubMed

    Vlaisavljevich, Eli; Maxwell, Adam; Warnez, Matthew; Johnsen, Eric; Cain, Charles A; Xu, Zhen

    2014-02-01

    Histotripsy is an ultrasound ablation method that depends on the initiation and maintenance of a cavitation bubble cloud to fractionate soft tissue. This paper studies how tissue properties impact the pressure threshold to initiate the cavitation bubble cloud. Our previous study showed that shock scattering off one or more initial bubbles, expanded to sufficient size in the focus, plays an important role in initiating a dense cavitation cloud. In this process, the shock scattering causes the positive pressure phase to be inverted, resulting in a scattered wave that has the opposite polarity of the incident shock. The inverted shock is superimposed on the incident negative pressure phase to form extremely high negative pressures, resulting in a dense cavitation cloud growing toward the transducer. We hypothesize that increased tissue stiffness impedes the expansion of initial bubbles, reducing the scattered tensile pressure, and thus requiring higher initial intensities for cloud initiation. To test this hypothesis, 5-cycle histotripsy pulses at pulse repetition frequencies (PRFs) of 10, 100, or 1000 Hz were applied by a 1-MHz transducer focused inside mechanically tunable tissue-mimicking agarose phantoms and various ex vivo porcine tissues covering a range of Young's moduli. The threshold to initiate a cavitation cloud and resulting bubble expansion were recorded using acoustic backscatter detection and optical imaging. In both phantoms and ex vivo tissue, results demonstrated a higher cavitation cloud initiation threshold for tissues of higher Young's modulus. Results also demonstrated a decrease in bubble expansion in phantoms of higher Young's modulus. These results support our hypothesis, improve our understanding of the effect of histotripsy in tissues with different mechanical properties, and provide a rational basis to tailor acoustic parameters for fractionation of specific tissues.

  17. Mechanism of low-threshold hypersonic cavitation stimulated by broadband laser pump.

    PubMed

    Bunkin, N F; Lobeyev, A V; Lyakhov, G A; Ninham, B W

    1999-08-01

    A low threshold acoustic cavitation regime was observed for the excitation of hypersonic waves due to a stimulated Brillouin scattering (SBS) mechanism, when the optical pump lies within the uv frequency range. Cavitation occurs if the optical pump bandwidth Delta(+)>Omega(0), where Omega(0) is the Stokes frequency shift (the hypersonic frequency). In the opposite case (Delta(+)cavitation does not occur despite the fact that the hypersonic wave intensity is much higher. The effect is associated with the stimulation of a broad frequency spectrum of hypersonic pressure in a field provided by the broadband optical pump. In contrast, for a monochromatic optical pump, the hypersonic wave is of single-frequency character. Induction of cavitation at the low intensities of acoustic pressure is attributed to nanobubbles of fixed size that occur in the liquid. The resonant frequency of the nanobubbles coincides with the frequency of some spectral component of hypersound present in the broadband SBS process. That conclusion is reinforced by the further observation that at the same intensity of broadband pumping the cavitation vanishes after degassing the liquid. In parallel experiments on four-photon polarization Rayleigh wing spectroscopy, it was also demonstrated that spectral lines exist in ordinary (not degassed) water, which can be ascribed to resonances of radial vibrations of nanobubbles. Those lines are absent in the degassed water spectrum.

  18. Acoustic cavitation generated by an extracorporeal shockwave lithotripter.

    PubMed

    Coleman, A J; Saunders, J E; Crum, L A; Dyson, M

    1987-02-01

    Evidence is presented of acoustic cavitation generated by a Dornier extracorporeal shockwave lithotripter. Using x-ray film, thin aluminum sheets, and relatively thick metal plates as targets, evidence of liquid jet impacts associated with cavitation bubble collapse was observed. The jet impact was violent enough to puncture thin foils and deform metal plates. Furthermore, numerous jet impacts were generated over a volume of greater than 200 cm3. It is likely that such violent cavitation will also occur in tissue, and observed biological effects (e.g. renal calculus disintegration and tissue trauma) may be related to cavitation damage.

  19. Experimental determination of cavitation thresholds in liquid water and mercury

    SciTech Connect

    Taleyarkhan, R.P.; Gulec, K.; West, C.D.; Haines, J.

    1998-09-01

    It is well-known that fluids (like solids) will break apart or form voids when put under sufficient tension. The present study has been motivated by the need to evaluate the impact of fluid cavitation in spallation neutron source target systems, more specifically for the proposed 1-MW Spallation Neutron Source (SNS) project, which is being designed in collaboration between Oak Ridge National Laboratory (ORNL), Los Alamos National Laboratory, Lawrence Berkeley National Laboratory, Brookhaven National Laboratory, and Argonne National Laboratory. Indeed, results of SNS-specific simulations have indicated that the onset of cavitation could play a very significant role in reducing imposed stresses in structural components of the SNS. In general, the cavitation of fluids is target systems is important to consider for a variety of reasons. Its occurrence can have significant impact on heat transfer, pressure pulse generation, fluid jetting on to structures, surface erosion, stresses induced in enclosures, etc. Therefore, it is important to evaluate the threshold pressure under which the fluid in tension will undergo cavitation. Another major aspect concerns the possible onset of cavitation in an oscillating pressure field; i.e., one would need to know if fluids such as mercury and water will cavitate if the imposed tensile pressure in the fluid is of short duration. If indeed it takes sufficiently long for cavitation bubbles to nucleate, then it would be possible to disregard the complexities involved with addressing cavitation-related issues. This paper provides an overview of preliminary work done to date to derive information on cavitation onset in a relatively static and in a high-frequency environment.

  20. Mechanoluminescence and sonoluminescence from acoustic cavitation

    NASA Astrophysics Data System (ADS)

    Eddingsaas, Nathan C.

    The intense shock wave launched from collapsing bubbles during the sonication of slurries allows for the study of chemical and physical events that occur when a solid is stressed or fractured. One such event is mechanoluminescence (ML): light produced by any mechanical action on a solid. ML has been studied for over 400 years, but much is still not known about it because the emission is inherently weak. Sonicating slurries of mechanoluminescent crystals (such as sucrose, sodium chloride, resorcinol, m-aminophenol, or coumarin) in long chain alkanes has produced very bright ML, up to 1,000 fold more intense than from manual grinding. The large increase in intensity has revealed a number of new emitting species including C2, CH, CO, CO+, CO2+, H, and He+, many of which have not been reported from ML before. In addition, the emission products show that gas phase reactions are occurring within the plasma generated from the ML discharge. The intense ML induced by acoustic cavitation allowed the plasma to be characterized in terms of heavy atom temperature of ˜400 K, electron density of 1014 cm-1, and electron energy of ˜3.5 eV. These conditions are very similar to other highly reactive microdischarges. To further extend the knowledge of the conditions generated within a cloud of cavitating bubbles, multi-bubble sonoluminescence (MBSL) of sulfuric acid has been studied. The MBSL spectrum from 95 wt % H2SO 4 consists of a broad continuum extending into the UV with SO and Ar emission lines also observed. The Ar lines were used to determine an effective emission temperature of ˜8,000 K, which is substantially greater than in other low vapor pressure systems (e.g., silicone oil, where MBSL emission temperature is only ˜5,000 K). The observation of Ar lines at this temperature also indicates that a hot plasma core is probably generated during multi-bubble cavitation in sulfuric acid. In addition, the effect of solution composition was studied by varying the acid

  1. Investigations of the Cavitation and Damage Thresholds of Histotripsy and Applications in Targeted Tissue Ablation

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli

    Histotripsy is a noninvasive ultrasound therapy that controls acoustic cavitation to mechanically fractionate soft tissue. This dissertation investigates the physical thresholds to initiate cavitation and produce tissue damage in histotripsy and factors affecting these thresholds in order to develop novel strategies for targeted tissue ablation. In the first part of this dissertation, the effects of tissue properties on histotripsy cavitation thresholds and damage thresholds were investigated. Results demonstrated that the histotripsy shock scattering threshold using multi-cycle pulses increases in stiffer tissues, while the histotripsy intrinsic threshold using single-cycle pulses is independent of tissue stiffness. Further, the intrinsic threshold slightly decreases with lower frequencies and significantly decreases with increasing temperature. The effects of tissue properties on the susceptibility to histotripsy-induced tissue damage were also investigated, demonstrating that stiffer tissues are more resistant to histotripsy. Two strategies were investigated for increasing the effectiveness of histotripsy for the treatment of stiffer tissues, with results showing that thermal preconditioning may be used to alter tissue susceptibility to histotripsy and that lower frequency treatments may increase the efficiency of histotripsy tissue ablation due to enhanced bubble expansion. In the second part of this dissertation, the feasibility of using histotripsy for targeted liver ablation was investigated in an intact in vivo porcine model, with results demonstrating that histotripsy was capable of non-invasively creating precise lesions throughout the entire liver. Additionally, a tissue selective ablation approach was developed, where histotripsy completely fractionated the liver tissue surrounding the major hepatic vessels and gallbladder while being self-limited at the boundaries of these critical structures. Finally, the long-term effects of histotripsy liver

  2. Visualization of acoustic cavitation effects on suspended calcite crystals.

    PubMed

    Wagterveld, R M; Boels, L; Mayer, M J; Witkamp, G J

    2011-01-01

    The acoustic cavitation (42,080 Hz, 7.1 W cm(-2) or 17 W) effects on suspended calcite crystals, sized between 5 and 50 μm, have been visualized for the first time using high speed photography. High speed recordings with a duration of 1 s containing up to 300,000 frames per second, revealed the effect of cluster and streamer cavitation on several calcite crystals. Cavitation clusters, evolved from cavitation inception and collapse, caused attrition, disruption of aggregates and deagglomeration, whereas streamer cavitation was observed to cause deagglomeration only. Cavitation on the surface gave the crystals momentum. However, it is shown that breakage of accelerated crystals by interparticle collisions is unrealistic because of their small sizes and low velocities. Crystals that were accelerated by bubble expansion, subsequently experienced a deceleration much stronger than expected from drag forces, upon bubble collapse. Experiments with pre-dried crystals seemed to support the current theory on bubble nucleation through the presence of pre-existing gas pockets. However, experiments with fully wetted crystals also showed the nucleation of bubbles on the crystal surface. Although microjet impingement on the crystal surface could not be directly visualized with high speed photography, scanning electron microscopy (SEM) analysis of irradiated calcite seeds showed deep circular indentations. It was suggested that these indentations might be caused by shockwave induced jet impingement. Furthermore, the appearance of voluminous fragments with large planes of fracture indicated that acoustic cavitation can also cause the breakage of single crystal structures.

  3. Photoacoustics of disperse systems: Below cavitation threshold

    SciTech Connect

    Egerev, Sergey; Ovchinnikov, Oleg

    2012-05-24

    The paper considers photoacoustic (PA) conversion while irradiating suspensions in extra-small volume probes with laser pulses having small fluence values. Only linear and nonlinear thermooptical laser sound generation regimes were observed. Thus, good repeatability of acoustic signal parameters informative about probe content was achieved. The experiment conducted has shown how one can avoid the decrease of particles detection sensitivity for the thermooptical mode.

  4. Cavitation thresholds of contrast agents in an in vitro human clot model exposed to 120-kHz ultrasound

    PubMed Central

    Gruber, Matthew J.; Bader, Kenneth B.; Holland, Christy K.

    2014-01-01

    Ultrasound contrast agents (UCAs) can be employed to nucleate cavitation to achieve desired bioeffects, such as thrombolysis, in therapeutic ultrasound applications. Effective methods of enhancing thrombolysis with ultrasound have been examined at low frequencies (<1 MHz) and low amplitudes (<0.5 MPa). The objective of this study was to determine cavitation thresholds for two UCAs exposed to 120-kHz ultrasound. A commercial ultrasound contrast agent (Definity®) and echogenic liposomes were investigated to determine the acoustic pressure threshold for ultraharmonic (UH) and broadband (BB) generation using an in vitro flow model perfused with human plasma. Cavitation emissions were detected using two passive receivers over a narrow frequency bandwidth (540–900 kHz) and a broad frequency bandwidth (0.54–1.74 MHz). UH and BB cavitation thresholds occurred at the same acoustic pressure (0.3 ± 0.1 MPa, peak to peak) and were found to depend on the sensitivity of the cavitation detector but not on the nucleating contrast agent or ultrasound duty cycle. PMID:25234874

  5. Observation of cavitation bubbles and acoustic streaming in high intensity ultrasound fields

    NASA Astrophysics Data System (ADS)

    Uemura, Yuuki; Sasaki, Kazuma; Minami, Kyohei; Sato, Toshio; Choi, Pak-Kon; Takeuchi, Shinichi

    2015-07-01

    We observed the behavior of acoustic cavitation by sonochemical luminescence and ultrasound B-mode imaging with ultrasound diagnostic equipment in a standing-wave ultrasound field and focused ultrasound field. Furthermore, in order to investigate the influence of acoustic streaming on acoustic cavitation bubbles, we performed flow analysis of the sound field using particle image velocimetry. We found that acoustic cavitation bubbles are stirred by circulating acoustic streaming and local vortexes occurring in the water tank of the standing-wave ultrasound exposure system. We considered that the acoustic cavitation bubbles are carried away by acoustic streaming due to the high ultrasound pressure in the focused ultrasound field.

  6. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the

  7. Towards a reference cavitating vessel Part III—design and acoustic pressure characterization of a multi-frequency sonoreactor

    NASA Astrophysics Data System (ADS)

    Wang, Lian; Memoli, Gianluca; Hodnett, Mark; Butterworth, Ian; Sarno, Dan; Zeqiri, Bajram

    2015-08-01

    A multi-frequency cavitation vessel (RV-multi) has been commissioned at the National Physical Laboratory (NPL, UK), with the aim of establishing a standard source of acoustic cavitation in water, with reference to which details of the cavitation process can be studied and cavitation measurement techniques evaluated. The vessel is a cylindrical cavity with a maximum capacity up to 17 L, and is designed to work at six frequency ranges, from 21 kHz to 136 kHz, under controlled temperature conditions. This paper discusses the design of RV-multi and reports experiments carried out to establish the reproducibility of the acoustic pressure field established within the vessel and its operating envelope, including sensitivity to aspects such as water depth and temperature. The acoustic field distribution was determined along the radial and depth directions within the vessel using a miniature hydrophone, for two input voltage levels under low power transducer excitation conditions (e.g. below the cavitation threshold). Particular care was taken in determining peak acoustic pressure locations, as these are critical for accompanying cavitation studies. Perturbations of the vessel by the measuring hydrophone were also monitored with a bottom-mounted pressure sensor.

  8. The acoustic emissions of cavitation bubbles in stretched vortices.

    PubMed

    Chang, Natasha A; Ceccio, Steven L

    2011-11-01

    Pairs of unequal strength, counter-rotating vortices were produced in order to examine the inception, dynamics, and acoustic emission of cavitation bubbles in rapidly stretching vortices. The acoustic signatures of these cavitation bubbles were characterized during their inception, growth, and collapse. Growing and collapsing bubbles often produced a sharp, broadband, pop sound. The spectrum of these bubbles, and the peak resonant frequency can generally be related to quiescent flow bubble dynamics and corresponding resonant frequencies. However, some elongated cavitation bubbles produced a short tonal burst, or chirp, with frequencies on the order of a few kilohertz. Theses frequencies are too low to be related to resonant frequencies of a bubble in a quiescent flow. Instead, the frequency content of the acoustic signal during bubble inception and growth is related to the volumetric oscillations of the bubble while it interacted with vortical flow that surrounds the bubble (i.e., the resonant frequency of the vortex-bubble system). A relationship was determined between the observed peak frequency of the oscillations, the highly stretched vortex properties, and the water nuclei content. It was found that different cavitation spectra could relate to different flow and fluid properties and therefore would not scale in the same manner.

  9. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  10. Using acoustic cavitation to enhance chemotherapy of DOX liposomes: experiment in vitro and in vivo.

    PubMed

    Zhao, Ying-Zheng; Dai, Dan-Dan; Lu, Cui-Tao; Lv, Hai-Feng; Zhang, Yan; Li, Xing; Li, Wen-Feng; Wu, Yan; Jiang, Lei; Li, Xiao-Kun; Huang, Pin-Tong; Chen, Li-Juan; Lin, Min

    2012-09-01

    Experiments in vitro and in vivo were designed to investigate tumor growth inhibition of chemotherapeutics-loaded liposomes enhanced by acoustic cavitation. Doxorubicin-loaded liposomes (DOX liposomes) were used in experiments to investigate acoustic cavitation mediated effects on cell viability and chemotherapeutic function. The influence of lingering sensitive period after acoustic cavitation on tumor inhibition was also investigated. Animal experiment was carried out to verify the practicability of this technique in vivo. From experiment results, blank phospholipid-based microbubbles (PBM) combined with ultrasound (US) at intensity below 0.3 W/cm² could produce acoustic cavitation which maintained cell viability at high level. Compared with DOX solution, DOX liposomes combined with acoustic cavitation exerted effective tumor inhibition in vitro and in vivo. The lingering sensitive period after acoustic cavitation could also enhance the susceptibility of tumor to chemotherapeutic drugs. DOX liposomes could also exert certain tumor inhibition under preliminary acoustic cavitation. Acoustic cavitation could enhance the absorption efficiency of DOX liposomes, which could be used to reduce DOX adverse effect on normal organs in clinical chemotherapy.

  11. Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system.

    PubMed

    Desjouy, Cyril; Poizat, Adrien; Gilles, Bruno; Inserra, Claude; Bera, Jean-Christophe

    2013-08-01

    Owing to the complex behavior of ultrasound-induced bubble clouds (nucleation, linear and nonlinear oscillations, collapse), acoustic cavitation remains a hardly controllable phenomenon, leading to poorly reproducible ultrasound-based therapies. A better control of the various aspects of cavitation phenomena for in vivo applications is a key requirement to improve emerging ultrasound therapies. Previous publications have reported on systems performing regulation of acoustic cavitation in continuous sonication when applied in vitro, but the main challenge today is to achieve real-time control of cavitation activity in pulsed sonication when used in vivo. The present work aims at developing a system to control acoustic cavitation in a pulsed wave condition using a real-time feedback loop. The experimental setup consists of a water bath in which is submerged a focused transducer (pulsed waves, frequency 550 kHz) used for sonication and a hydrophone used to listen to inertial cavitation. The designed regulation process allows the cavitation activity to be controlled through a 300 μs feedback loop. Without regulation, cavitation exhibits numerous bursts of intense activity and large variations of inertial cavitation level over time. In a regulated regime, the control of inertial cavitation activity within a pulse leads to consistent cavitation levels over time with an enhancement of the reproducibility.

  12. Transient cavitation and acoustic emission produced by different laser lithotripters.

    PubMed

    Zhong, P; Tong, H L; Cocks, F H; Pearle, M S; Preminger, G M

    1998-08-01

    Transient cavitation and shockwave generation produced by pulsed-dye and holmium:YAG laser lithotripters were studied using high-speed photography and acoustic emission measurements. In addition, stone phantoms were used to compare the fragmentation efficiency of various laser and electrohydraulic lithotripters. The pulsed-dye laser, with a wavelength (504 nm) strongly absorbed by most stone materials but not by water, and a short pulse duration of approximately 1 microsec, induces plasma formation on the surface of the target calculi. Subsequently, the rapid expansion of the plasma forms a cavitation bubble, which expands spherically to a maximum size and then collapses violently, leading to strong shockwave generation and microjet impingement, which comprises the primary mechanism for stone fragmentation with short-pulse lasers. In contrast, the holmium laser, with a wavelength (2100 nm) most strongly absorbed by water as well as by all stone materials and a long pulse duration of 250 to 350 microsec, produces an elongated, pear-shaped cavitation bubble at the tip of the optical fiber that forms a vapor channel to conduct the ensuing laser energy to the target stone (Moss effect). The expansion and subsequent collapse of the elongated bubble is asymmetric, resulting in weak shockwave generation and microjet impingement. Thus, stone fragmentation in holmium laser lithotripsy is caused primarily by thermal ablation (drilling effect).

  13. Mechanotransduction of Ultrasound is Frequency Dependent Below the Cavitation Threshold

    PubMed Central

    Louw, Tobias M.; Budhiraja, Gaurav; Viljoen, Hendrik J.; Subramanian, Anuradha

    2013-01-01

    This study provides evidence that low-intensity ultrasound directly affects nuclear processes, and the magnitude of the effect varies with frequency. In particular, we show that the transcriptional induction of first load-inducible genes, which is independent of new protein synthesis, is frequency dependent. Bovine chondrocytes were exposed to low-intensity below the cavitational threshold) ultrasound at 2,5 and 8 MHz. Ultrasound elevated the expression of early response genes c-Fos, c-Jun and c-Myc, maximized at 5 MHz. The phosphorylated ERK inhibitor PD98059 abrogated any increase in c-series gene expression, suggesting that signaling occurs via the MAPPK/ERK pathway. However, phosphorylated ERK levels did not change with ultrasound frequency, indicating that processes downstream of ERK phosphorylation (such as nuclear transport and chromatin reorganization) respond to ultrasound with frequency dependence. A quantitative, biphasic mathematical model based on Biot theory predicted that cytoplasmic and nuclear stress is maximized at 5.2 ± 0.8 MHz for a chondrocyte, confirming experimental measurements. PMID:23562015

  14. Processing of Microalgae: Acoustic Cavitation and Hydrothermal Conversion

    NASA Astrophysics Data System (ADS)

    Greenly, Justin Michael

    The production of energy dense fuels from renewable algal biomass feedstocks -- if sustainably developed at a sufficiently large scale -- may reduce the consumption of petroleum from fossil fuels and provide many environmental benefits. Achieving economic feasibility has several technical engineering challenges that arise from dilute concentration of growing algae in aqueous media, small cell sizes, and durable cell walls. For microalgae to be a sustainable source of biofuels and co-products, efficient fractionation and conversion of the cellular contents is necessary. Research was carried out to address two processing options for efficient microalgae biofuel production: 1. Ultrasonic cavitation for cell disruption and 2. Hydrothermal conversion of a model algal triglyceride. 1. Ultrasonic cell disruption, which relies on cavitating bubbles in the suspension to produce damaging shock waves, was investigated experimentally over a range of concentrations and species types. A few seconds of high intensity sonication at fixed frequency yielded significant cell disruption, even for the more durable cells. At longer exposure times, effectiveness was seen to decline and was attributed, using acoustic measurements, to ultrasonic power attenuation in the ensuing cloud of cavitating bubbles. Processing at higher cell concentrations slowed cell disintegration marginally, but increased the effectiveness of dissipating ultrasonic energy. A theoretical study effectively predicted optimal conditions for a variety of parameters that were inaccessible in this experimental investigation. In that study, single bubble collapse was modeled to identify operating conditions that would increase cavitation, and thus cell disruption. Simulations were conducted by varying frequency and pressure amplitude of the ultrasound wave, and initial bubble size. The simulation results indicated that low frequency, high sound wave amplitudes, and small initial bubble size generate the highest shock

  15. Activating Molecules, Ions, and Solid Particles with Acoustic Cavitation

    PubMed Central

    Pflieger, Rachel; Chave, Tony; Virot, Matthieu; Nikitenko, Sergey I.

    2014-01-01

    The chemical and physical effects of ultrasound arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of microbubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species and to the emission of light, named sonoluminescence. In this manuscript, we describe the techniques allowing study of extreme intrabubble conditions and chemical reactivity of acoustic cavitation in solutions. The analysis of sonoluminescence spectra of water sparged with noble gases provides evidence for nonequilibrium plasma formation. The photons and the "hot" particles generated by cavitation bubbles enable to excite the non-volatile species in solutions increasing their chemical reactivity. For example the mechanism of ultrabright sonoluminescence of uranyl ions in acidic solutions varies with uranium concentration: sonophotoluminescence dominates in diluted solutions, and collisional excitation contributes at higher uranium concentration. Secondary sonochemical products may arise from chemically active species that are formed inside the bubble, but then diffuse into the liquid phase and react with solution precursors to form a variety of products. For instance, the sonochemical reduction of Pt(IV) in pure water provides an innovative synthetic route for monodispersed nanoparticles of metallic platinum without any templates or capping agents. Many studies reveal the advantages of ultrasound to activate the divided solids. In general, the mechanical effects of ultrasound strongly contribute in heterogeneous systems in addition to chemical effects. In particular, the sonolysis of PuO2 powder in pure water yields stable colloids of plutonium due to both effects. PMID:24747272

  16. Correlation between microbubble-induced acoustic cavitation and hemolysis in vitro

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Bing; Liu, Zheng; Guo, Xia-Sheng; Zhang, Dong

    2011-02-01

    Microbubbles promise to enhance the efficiency of ultrasound-mediated drug delivery and gene therapy by taking advantage of artificial cavitation nuclei. The purpose of this study is to examine the ultrasound-induced hemolysis in the application of drug delivery in the presence of microbubbles. To achieve this goal, human red blood cells mixed with microbubbles were exposed to 1-MHz pulsed ultrasound. The hemolysis level was measured by a flow cytometry, and the cavitation dose was detected by a passive cavitation detecting system. The results demonstrate that larger cavitation dose would be generated with the increase of acoustic pressure, which might give rise to the enhancement of hemolysis. Besides the experimental observations, the acoustic pressure dependence of the radial oscillation of microbubble was theoretically estimated. The comparison between the experimental and calculation results indicates that the hemolysis should be highly correlated to the acoustic cavitation.

  17. The Role of Acoustic Cavitation in Ultrasound-triggered Drug Release from Echogenic Liposomes

    NASA Astrophysics Data System (ADS)

    Kopechek, Jonathan A.

    Cardiovascular disease (CVD) is the leading cause of death in the United States and globally. CVD-related mortality, including coronary heart disease, heart failure, or stroke, generally occurs due to atherosclerosis, a condition in which plaques build up within arterial walls, potentially causing blockage or rupture. Targeted therapies are needed to achieve more effective treatments. Echogenic liposomes (ELIP), which consist of a lipid membrane surrounding an aqueous core, have been developed to encapsulate a therapeutic agent and/or gas bubbles for targeted delivery and ultrasound image enhancement. Under certain conditions ultrasound can cause nonlinear bubble growth and collapse, known as "cavitation." Cavitation activity has been associated with enhanced drug delivery across cellular membranes. However, the mechanisms of ultrasound-mediated drug release from ELIP have not been previously investigated. Thus, the objective of this dissertation is to elucidate the role of acoustic cavitation in ultrasound-mediated drug release from ELIP. To determine the acoustic and physical properties of ELIP, the frequency-dependent attenuation and backscatter coefficients were measured between 3 and 30 MHz. The results were compared to a theoretical model by measuring the ELIP size distribution in order to determine properties of the lipid membrane. It was found that ELIP have a broad size distribution and can provide enhanced ultrasound image contrast across a broad range of clinically-relevant frequencies. Calcein, a hydrophilic fluorescent dye, and papaverine, a lipophilic vasodilator, were separately encapsulated in ELIP and exposed to color Doppler ultrasound pulses from a clinical diagnostic ultrasound scanner in a flow system. Spectrophotometric techniques (fluorescence and absorbance measurements) were used to detect calcein or papaverine release. As a positive control, Triton X-100 (a non-ionic detergent) was added to ELIP samples not exposed to ultrasound in order

  18. Effects of Ultrasound Frequency and Tissue Stiffness on the Histotripsy Intrinsic Threshold for Cavitation

    PubMed Central

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J.; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-01-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated a cavitation cloud can be formed by a single pulse with one high amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1–2 cycles produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results demonstrated that the intrinsic threshold (the negative pressure at which probability=0.5) is independent of stiffness for Young’s moduli (E) < 1 MPa with only a small increase (~2–3 MPa) in the intrinsic threshold for tendon (E=380 MPa). Additionally, results for all samples showed only a small increase of ~2–3 MPa when the frequency was increased from 345 kHz to 3 MHz. The intrinsic threshold was measured to be between 24.7–30.6 MPa for all samples and frequencies tested in this study. Overall, the results of this study indicate that the intrinsic threshold to initiate a histotripsy bubble cloud is not significantly impacted by tissue stiffness or ultrasound frequency in hundreds of kHz to MHz range. PMID:25766571

  19. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy

    PubMed Central

    Maeda, Kazuki; Colonius, Tim; Kreider, Wayne; Maxwell, Adam; Cunitz, Bryan; Bailey, Michael

    2016-01-01

    A combined modeling and experimental study of acoustic cavitation bubbles that are initiated by focused ultrasound waves is reported. Focused ultrasound waves of frequency 335 kHz and peak negative pressure 8 MPa are generated in a water tank by a piezoelectric transducer to initiate cavitation. The resulting pressure field is obtained by direct numerical simulation (DNS) and used to simulate single bubble oscillation. The characteristics of cavitation bubbles observed by high-speed photography qualitatively agree withs the simulation result. Finally, bubble clouds are captured using acoustic B-mode imaging that works in synchronization with high-speed photography. PMID:27087826

  20. Development of an Acoustic Localization Method for Cavitation Experiments in Reverberant Environments

    NASA Astrophysics Data System (ADS)

    Ranjeva, Minna; Thompson, Lee; Perlitz, Daniel; Bonness, William; Capone, Dean; Elbing, Brian

    2011-11-01

    Cavitation is a major concern for the US Navy since it can cause ship damage and produce unwanted noise. The ability to precisely locate cavitation onset in laboratory scale experiments is essential for proper design that will minimize this undesired phenomenon. Measuring the cavitation onset is more accurately determined acoustically than visually. However, if other parts of the model begin to cavitate prior to the component of interest the acoustic data is contaminated with spurious noise. Consequently, cavitation onset is widely determined by optically locating the event of interest. The current research effort aims at developing an acoustic localization scheme for reverberant environments such as water tunnels. Currently cavitation bubbles are being induced in a static water tank with a laser, allowing the localization techniques to be refined with the bubble at a known location. The source is located with the use of acoustic data collected with hydrophones and analyzed using signal processing techniques. To verify the accuracy of the acoustic scheme, the events are simultaneously monitored visually with the use of a high speed camera. Once refined testing will be conducted in a water tunnel. This research was sponsored by the Naval Engineering Education Center (NEEC).

  1. Nucleation pressure threshold in acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Miles, Christopher J.; Doering, Charles R.; Kripfgans, Oliver D.

    2016-07-01

    We combine classical nucleation theory with superharmonic focusing to predict necessary pressures to induce nucleation in acoustic droplet vaporization. We show that linear acoustics is a valid approximation to leading order when particle displacements in the sound field are small relative to the radius of the droplet. This is done by perturbation analysis of an axisymmetric compressible inviscid flow about a droplet with small surface perturbations relative to the mean radius subjected to an incoming ultrasonic wave. The necessary nucleation pressure threshold inside the droplet is calculated to be -9.33 ± 0.30 MPa for typical experimental parameters by employing results from classical homogeneous nucleation theory. As a result, we are able to predict if a given incident pressure waveform will induce nucleation.

  2. A theoretical study of inertial cavitation from acoustic radiation force impulse (ARFI) imaging and implications for the mechanical index

    PubMed Central

    Church, Charles C.; Labuda, Cecille; Nightingale, Kathryn

    2014-01-01

    The mechanical index (MI) attempts to quantify the likelihood that exposure to diagnostic ultrasound will produce an adverse biological effect by a nonthermal mechanism. The current formulation of the MI implicitly assumes that the acoustic field is generated using the short pulse durations appropriate to B-mode imaging. However, acoustic radiation force impulse (ARFI) imaging employs high-intensity pulses up to several hundred acoustic periods long. The effect of increased pulse durations on the thresholds for inertial cavitation was studied computationally in water, urine, blood, cardiac and skeletal muscle, brain, kidney, liver and skin. The results show that while the effect of pulse duration on cavitation thresholds in the three liquids can be considerable, reducing them by, e.g., 6% – 24% at 1 MHz, the effect in tissue is minor. More importantly, the frequency dependence of the MI appears to be unnecessarily conservative, i.e., that the magnitude of the exponent on frequency could be increased to 0.75. Comparison of these theoretical results with experimental measurements suggests that some tissues do not contain the pre-existing, optimally sized bubbles assumed for the MI. This means that in these tissues the MI is not necessarily a strong predictor of the probability for an adverse biological effect. PMID:25592457

  3. Acoustic cavitation in phacoemulsification and the role of antioxidants.

    PubMed

    Topaz, Moris; Shuster, Vladimir; Assia, Ehud I; Meyerstein, Dan; Meyerstein, Naomi; Mazor, Dalia; Gedanken, Aharon

    2005-08-01

    Cataract surgery by phacoemulsification generates acoustic cavitation, resulting in formation of reactive oxygen species. The aim of this study was to establish the mechanism of damage by phacoemulsification in an in vitro setting simulating cataract surgery and to assess the protective effects of water-soluble antioxidants. Electron paramagnetic resonance spectroscopy was used to analyze generation of radicals in an intraocular irrigating solution by phacoemulsification instrumentation, operating at an ultrasonic frequency range of 40--60 kHz. Hydroxyl radicals were generated by phacoemulsification under conditions simulating cataract surgery. The effects of water-soluble antioxidants in the irrigating solution on the amounts of radicals were evaluated by electron paramagnetic resonance spectroscopy. The water-soluble antioxidant glutathione, applied in either oxidized or reduced form, decreased hydroxyl radicals concentration measured in the sonicated medium. The effective concentrations of oxidized and reduced glutathione in irrigating solution that significantly eliminate the hydroxyl radical signal were determined in the range of 10(-3)-10(-2) M. Antioxidants should be applied clinically to reduce damage to the corneal endothelium induced by phacoemulsification, thereby improving biosafety.

  4. Applications of Acoustics and Cavitation to Noninvasive Therapy and Drug Delivery

    NASA Astrophysics Data System (ADS)

    Coussios, Constantin C.; Roy, Ronald A.

    2008-01-01

    Biomedical acoustics is rapidly evolving from a diagnostic modality into a therapeutic tool, and acoustic cavitation is often the common denominator in a wide range of new therapeutic applications. High-intensity focused ultrasound (HIFU) waves generated outside the body can be used to deposit heat deep within the body. Through a quantitative analysis of heat deposition by ultrasound, it is shown that inertial cavitation can help address some of the major challenges of HIFU therapy by providing a means of enhancing and monitoring treatment noninvasively. In the context of drug delivery, both inertial and stable cavitation play roles in enhancing drug activity and uptake. In particular, shape oscillations arising during stable cavitation provide an effective micropumping mechanism for enhanced mass transport across inaccessible interfaces.

  5. Lowering of the cavitation threshold in aqueous suspensions of porous silicon nanoparticles for sonodynamic therapy applications

    SciTech Connect

    Sviridov, A. P. Osminkina, L. A.; Nikolaev, A. L.; Kudryavtsev, A. A.; Vasiliev, A. N.; Timoshenko, V. Yu.

    2015-09-21

    A significant decrease of the cavitation threshold in aqueous suspensions of porous silicon nanoparticles (PSi NPs) with sizes about 100 nm as compared with pure water was observed for ultrasound irradiation (USI) with therapeutic frequency (0.88 MHz) and intensities (about 1 W/cm{sup 2}). This effect is explained by porous morphology of PSi NPs, which promotes the nucleation of cavitation bubbles. In vitro experiments revealed a suppression of the proliferation of cancer cells with the introduced PSi NPs after exposure to USI related to the enhanced cavitation processes, which led to the cell destruction. The obtained results demonstrate that PSi NPs are prospective for applications as sonosensitizers in mild cancer therapy.

  6. Characterization of acoustic cavitation in water and molten aluminum alloy.

    PubMed

    Komarov, Sergey; Oda, Kazuhiro; Ishiwata, Yasuo; Dezhkunov, Nikolay

    2013-03-01

    High-intensive ultrasonic vibrations have been recognized as an attractive tool for refining the grain structure of metals in casting technology. However, the practical application of ultrasonics in this area remains rather limited. One of the reasons is a lack of data needed to optimize the ultrasonic treatment conditions, particularly those concerning characteristics of cavitation zone in molten aluminum. The main aim of the present study was to investigate the intensity and spectral characteristics of cavitation noise generated during radiation of ultrasonic waves into water and molten aluminum alloys, and to establish a measure for evaluating the cavitation intensity. The measurements were performed by using a high temperature cavitometer capable of measuring the level of cavitation noise within five frequency bands from 0.01 to 10MHz. The effect of cavitation treatment was verified by applying high-intense ultrasonic vibrations to a DC caster to refine the primary silicon grains of a model Al-17Si alloy. It was found that the level of high frequency noise components is the most adequate parameter for evaluating the cavitation intensity. Based on this finding, it was concluded that implosions of cavitation bubbles play a decisive role in refinement of the alloy structure.

  7. Identification of cavitation signatures using both optical and PZT acoustic sensors

    NASA Astrophysics Data System (ADS)

    Vidakovic, M.; Armakolas, I.; Sun, T.; Carlton, J.; Grattan, K. T. V.

    2015-09-01

    This paper presents the results obtained from monitoring a simulated material cavitation process using both a fibre Bragg grating (FBG)-based acoustic sensor system developed at City University London and a commercial PZT (Piezoelectric Transducer) acoustic sensor, with an aim to identify the cavitation signatures. In the experiment, a sample metal plate with its back surface being instrumented with both sensors is positioned very close to an excitation sonotrode with a standard frequency of 19.5kHz. The data obtained from both sensors are recorded and analyzed, showing a very good agreement.

  8. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.

    PubMed

    Zhong, P; Cioanta, I; Cocks, F H; Preminger, G M

    1997-05-01

    The inertial cavitation and associated acoustic emission generated during electrohydraulic shock wave lithotripsy were studied using high-speed photography and acoustic pressure measurements. The dynamics of cavitation bubble clusters, induced in vitro by an experimental laboratory lithotripter, were recorded using a high-speed rotating drum camera at 20,000 frames/s. The acoustic emission, generated by the rapid initial expansion and subsequent violent collapse of the cavitation bubbles, was measured simultaneously using a 1-MHz focused hydrophone, The expansion duration of the cavitation bubble cluster was found to correlate closely with the time delay between the first two groups of pressure spikes in the acoustic emission signal. This correlation provides an essential physical basis to assess the inertial cavitation produced by a clinical Dornier HM-3 shock wave lithotripter, both in water and in renal parenchyma of a swine model. In the clinical output voltage range (16-24 kV), the expansion duration of the primary cavitation bubble cluster generated by the HM-3 lithotripter in water increases from 158 to 254 microseconds, whereas the corresponding values in renal parenchyma are much smaller and remain almost unchanged (from 71 to 72 microseconds). In contrast, subsequent oscillation of the bubble following its primary collapse is significantly prolonged (from 158-235 microseconds in water to 1364-1373 microseconds in renal parenchyma). These distinctive differences between lithotripsy-induced inertial cavitation in vitro and that in vivo are presumably due to the constraining effect of renal tissue on bubble expansion. PMID:9165740

  9. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Kirschner, O.; Riedelbauch, S.; Necker, J.; Kopf, E.; Rieg, M.; Arantes, G.; Wessiak, M.; Mayrhuber, J.

    2014-03-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation.

  10. Threshold improvement and acoustic gain with hearing aids.

    PubMed

    Walden, B E; Kasten, R N

    1976-01-01

    Aided speech reception thresholds were obtained from 20 hearing-impaired listeners with three hearing aids adjusted to confort settings, and with the aids adjusted to deliver 40 dB of acoustic gain. The aided speech reception threshold under each condition was substracted from the unaided speech reception threshold to yield a measure of threshold improvement. Threshold improvement and acoustic gain comparisons revealed that, at comfort setting, these two measures were quite similar. However, at the 40-dB gain setting, acoustic gain exceeded threshold improvement by an average of 5.6 dB. For the high-gain condition, it appeared that the threshold improvement obtained by subjects with relatively good unaided sensitivity was limited by the ambient noise in the test chamber.

  11. Threshold improvement and acoustic gain with hearing aids.

    PubMed

    Walden, B E; Kasten, R N

    1976-01-01

    Aided speech reception thresholds were obtained from 20 hearing-impaired listeners with three hearing aids adjusted to confort settings, and with the aids adjusted to deliver 40 dB of acoustic gain. The aided speech reception threshold under each condition was substracted from the unaided speech reception threshold to yield a measure of threshold improvement. Threshold improvement and acoustic gain comparisons revealed that, at comfort setting, these two measures were quite similar. However, at the 40-dB gain setting, acoustic gain exceeded threshold improvement by an average of 5.6 dB. For the high-gain condition, it appeared that the threshold improvement obtained by subjects with relatively good unaided sensitivity was limited by the ambient noise in the test chamber. PMID:938347

  12. Identifying the Inertial Cavitation Pressure Threshold and Skull Effects in a Vessel Phantom Using Focused Ultrasound and Microbubbles

    NASA Astrophysics Data System (ADS)

    Tung, Yao-Sheng; Choi, James J.; Konofagou, Elisa E.

    2010-03-01

    Using Focused Ultrasound (FUS) and microbubbles to open the blood-brain barrier (BBB) has been shown promising for brain drug delivery. However, the exact mechanism behind the opening remains unknown. Here, the effects of the murine skull on the threshold of inertial cavitation were investigated. In order to investigate the pressure threshold for inertial cavitation of preformed microbubbles during sonication, passive cavitation detection in conjunction with B-mode imaging was used. A cylindrical vessel with a 610-μm diameter inside a polyacrylamide gel was generated within a polyacrylamide gel to simulate large blood vessels. Definity® (Lantheus Medical Imaging, MA, USA) microbubbles with a 1.1-3.3 μm in diameter at 2.5×107 bubbles/mL were injected into the channel before sonication (frequency: 1.525 MHz; pulse length: 100 cycles; PRF: 10 Hz; sonication duration: 2 s) through an excised mouse skull. A cylindrically focused hydrophone, confocal with the FUS transducer, acted as a passive cavitation detector (PCD) to identify the threshold. A 7.5 MHz linear array with the field-of-view perpendicular to the axial length of the FUS beam was also used to image the occurrence of bubble fragmentation. The broadband spectral response acquired at the passive cavitation detector (PCD) and the B-mode images identified the occurrence and location of the inertial cavitation, respectively. Findings indicated that the peak-rarefactional pressure threshold was approximately equal to 0.45 MPa at the presence or the absence of the skull. However, the skull induced 10-50% lower inertial cavitation dose. Mouse skulls did not affect the pressure threshold of inertial cavitation but resulted in a lower inertial cavitation dose. The broadband response could be captured through the murine skull, so the same PCD setup can be used in future in vivo applications.

  13. Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy.

    PubMed

    Coleman, A J; Choi, M J; Saunders, J E

    1996-01-01

    A 1-MHz focused hydrophone has been used to search for acoustic emission expected to arise from cavitation occurring in tissue during clinical extracorporeal shock-wave lithotripsy (ESWL). The hydrophone is acoustically coupled to the patient's skin and the focus directed at depth in tissue under ultrasound guidance. The measured amplitude-time variation of the acoustic emission from tissue near the shock-wave focus of the Storz Modulith SL20 lithotripter has been examined in four patients. There is evidence of increased amplitude acoustic emission at 1 MHz from regions within tissue that also appear hyperechoic in simultaneously acquired ultrasound images. The acoustic emission from these regions decays from an initial peak to the noise level in about 500 microseconds following each shock-wave pulse. Within this period, a second peak, often of higher amplitude than the first, is typically observed about 100 microseconds after the shockwave. The time between the initial and second peaks is found to increase with increasing shock-wave amplitude. The results are similar to those previously observed from cavitation induced by shock-wave exposure in water and indicate that the 1-MHz acoustic emission arises from inertial cavitation in tissue during clinical ESWL.

  14. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications.

    PubMed

    Yusof, Nor Saadah Mohd; Babgi, Bandar; Alghamdi, Yousef; Aksu, Mecit; Madhavan, Jagannathan; Ashokkumar, Muthupandian

    2016-03-01

    Acoustic cavitation in a liquid medium generates several physical and chemical effects. The oscillation and collapse of cavitation bubbles, driven at low ultrasonic frequencies (e.g., 20 kHz), can generate strong shear forces, microjets, microstreaming and shockwaves. Such strong physical forces have been used in cleaning and flux improvement of ultrafiltration processes. These physical effects have also been shown to deactivate pathogens. The efficiency of deactivation of pathogens is not only dependent on ultrasonic experimental parameters, but also on the properties of the pathogens themselves. Bacteria with thick shell wall are found to be resistant to ultrasonic deactivation process. Some evidence does suggest that the chemical effects (radicals) of acoustic cavitation are also effective in deactivating pathogens. Another aspect of cleaning, namely, purification of water contaminated with organic and inorganic pollutants, has also been discussed in detail. Strong oxidising agents produced within acoustic cavitation bubbles could be used to degrade organic pollutants and convert toxic inorganic pollutants to less harmful substances. The effect of ultrasonic frequency and surface activity of solutes on the sonochemical degradation efficiency has also been discussed in this overview.

  15. Changes in cell morphology due to plasma membrane wounding by acoustic cavitation

    PubMed Central

    Schlicher, Robyn K.; Hutcheson, Joshua D.; Radhakrishna, Harish; Apkarian, Robert P.; Prausnitz, Mark R.

    2010-01-01

    Acoustic cavitation-mediated wounding (i.e., sonoporation) has great potential to improve medical and laboratory applications requiring intracellular uptake of exogenous molecules; however, the field lacks detailed understanding of cavitation-induced morphological changes in cells and their relative importance. Here, we present an in-depth study of the effects of acoustic cavitation on cells using electron and confocal microscopy coupled with quantitative flow cytometry. High resolution images of treated cells show that morphologically different types of blebs can occur after wounding conditions caused by ultrasound exposure as well as by mechanical shear and strong laser ablation. In addition, these treatments caused wound-induced non-lytic necrotic death resulting in cell bodies we call wound-derived perikarya (WD-P). However, only cells exposed to acoustic cavitation experienced ejection of intact nuclei and nearly instant lytic necrosis. Quantitative analysis by flow cytometry indicates that wound-derived perikarya are the dominant morphology of nonviable cells, except at the strongest wounding conditions, where nuclear ejection accounts for a significant portion of cell death after ultrasound exposure. PMID:20350691

  16. Histotripsy beyond the “Intrinsic” Cavitation Threshold using Very Short Ultrasound Pulses: “Microtripsy”

    PubMed Central

    Lin, Kuang-Wei; Kim, Yohan; Maxwell, Adam D.; Wang, Tzu-Yin; Hall, Timothy L.; Xu, Zhen; Fowlkes, J. Brian; Cain, Charles A.

    2014-01-01

    Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. Conventional histotripsy treatments have used longer pulses from 3 to 10 cycles wherein the lesion-producing bubble cloud generation depends on the pressure-release scattering of very high peak positive shock fronts from previously initiated, sparsely distributed bubbles (the “shock-scattering” mechanism). In our recent work, the peak negative pressure (P−) for generation of dense bubble clouds directly by a single negative half cycle, the “intrinsic threshold,” was measured. In this paper, the dense bubble clouds and resulting lesions (in RBC phantoms and canine tissues) generated by these supra-intrinsic threshold pulses were studied. A 32-element, PZT-8, 500 kHz therapy transducer was used to generate very short (< 2 cycles) histotripsy pulses at a pulse repetition frequency (PRF) of 1 Hz and P− from 24.5 to 80.7 MPa. The results showed that the spatial extent of the histotripsy-induced lesions increased as the applied P− increased, and the sizes of these lesions corresponded well to the estimates of the focal regions above the intrinsic cavitation threshold, at least in the lower pressure regime (P− = 26–35 MPa). The average sizes for the smallest reproducible lesions were approximately 0.9 × 1.7 mm (lateral × axial), significantly smaller than the −6dB beamwidth of the transducer (1.8 × 4.0 mm). These results suggest that, using the intrinsic threshold mechanism, well-confined and microscopic lesions can be precisely generated and their spatial extent can be estimated based on the fraction of the focal region exceeding the intrinsic cavitation threshold. Since the supra-threshold portion of the negative half cycle can be precisely controlled, lesions considerably less than a wavelength are easily produced, hence the term “microtripsy.” PMID:24474132

  17. Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy.

    PubMed

    Lin, Kuang-Wei; Kim, Yohan; Maxwell, Adam D; Wang, Tzu-Yin; Hall, Timothy L; Xu, Zhen; Fowlkes, J Brian; Cain, Charles A

    2014-02-01

    Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. Conventional histotripsy treatments have used longer pulses from 3 to 10 cycles, wherein the lesion-producing bubble cloud generation depends on the pressure-release scattering of very high peak positive shock fronts from previously initiated, sparsely distributed bubbles (the shock-scattering mechanism). In our recent work, the peak negative pressure (P-) for generation of dense bubble clouds directly by a single negative half cycle, the intrinsic threshold, was measured. In this paper, the dense bubble clouds and resulting lesions (in red blood cell phantoms and canine tissues) generated by these supra-intrinsic threshold pulses were studied. A 32-element, PZT-8, 500-kHz therapy transducer was used to generate very short (<2 cycles) histotripsy pulses at a pulse repetition frequency (PRF) of 1 Hz and P- from 24.5 to 80.7 MPa. The results showed that the spatial extent of the histotripsy-induced lesions increased as the applied P- increased, and the sizes of these lesions corresponded well to the estimates of the focal regions above the intrinsic cavitation threshold, at least in the lower pressure regime (P- = 26 to 35 MPa). The average sizes for the smallest reproducible lesions were approximately 0.9 × 1.7 mm (lateral × axial), significantly smaller than the -6-dB beamwidth of the transducer (1.8 × 4.0 mm). These results suggest that, using the intrinsic threshold mechanism, well-confined and microscopic lesions can be precisely generated and their spatial extent can be estimated based on the fraction of the focal region exceeding the intrinsic cavitation threshold. Because the supra-threshold portion of the negative half cycle can be precisely controlled, lesions considerably less than a wavelength are easily produced, hence the term microtripsy.

  18. Relationship of acoustic gain to aided threshold improvement in children.

    PubMed

    Jirsa, R E; Norris, T W

    1978-08-01

    Aided threshold improvement obtained by 12 hearing-impaired children was compared to the acoustic gain of their hearing aids using both the traditional 2-cc coupler and a variable volume coupler designed to approximate real ear volume in children. Results indicated that acoustic gain determined in the 2-cc coupler underestimated aided threshold improvement by approximately 8.7 dB. Use of the variable volume coupler to determine acoustic gain, however, adequately predicted aided improvement at comfort setting. Use of the variable volume coupler in hearing-aid fittings for children is discussed with special emphasis on preventing over-amplification.

  19. Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles.

    PubMed

    Yasui, Kyuichi; Tuziuti, Toru; Lee, Judy; Kozuka, Teruyuki; Towata, Atsuya; Iida, Yasuo

    2010-02-01

    Numerical simulations of cavitation noise have been performed under the experimental conditions reported by Ashokkumar et al. (2007) [26]. The results of numerical simulations have indicated that the temporal fluctuation in the number of bubbles results in the broad-band noise. "Transient" cavitation bubbles, which disintegrate into daughter bubbles mostly in a few acoustic cycles, generate the broad-band noise as their short lifetimes cause the temporal fluctuation in the number of bubbles. Not only active bubbles in light emission (sonoluminescence) and chemical reactions but also inactive bubbles generate the broad-band noise. On the other hand, "stable" cavitation bubbles do not generate the broad-band noise. The weaker broad-band noise from a low-concentration surfactant solution compared to that from pure water observed experimentally by Ashokkumar et al. is caused by the fact that most bubbles are shape stable in a low-concentration surfactant solution due to the smaller ambient radii than those in pure water. For a relatively high number density of bubbles, the bubble-bubble interaction intensifies the broad-band noise. Harmonics in cavitation noise are generated by both "stable" and "transient" cavitation bubbles which pulsate nonlinearly with the period of ultrasound.

  20. Dynamics and acoustics of a cavitating Venturi flow using a homogeneous air-propylene glycol mixture

    NASA Astrophysics Data System (ADS)

    Navarrete, M.; Naude, J.; Mendez, F.; Godínez, F. A.

    2015-12-01

    Dynamics and acoustics generated in a cavitating Venturi tube are followed up as a function of the input power of a centrifugal pump. The pump of 5 hp with a modified impeller to produce uniform bubbly flow, pumps 70 liters of propylene glycol in a closed loop (with a water cooling system), in which the Venturi is arranged. The goal was to obtain correlations among acoustical emission, dynamics of the shock waves and the light emission from cavitation bubbles. The instrumentation includes: two piezoelectric transducers, a digital camera, a high-speed video camera, and photomultipliers. As results, we show the cavitation patterns as function of the pump power, and a graphical template of the distribution of the Venturi conditions as a function of the cavitation parameter. Our observations show for the first time the sudden formation of bubble clouds in the straight portion of the pipe after the diverging section of the Venturi. We assume that this is due to pre-existing of nuclei-cloud structures which suddenly grow up by the tensile tails of propagating shock waves (producing a sudden drop in pressure).

  1. Electromagnetic acoustic source (EMAS) for generating shock waves and cavitation in mercury

    NASA Astrophysics Data System (ADS)

    Wang, Qi

    In the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory a vessel of liquid mercury is subjected to a proton beam. The resulting nuclear interaction produces neutrons that can be used for materials research, among other things, but also launches acoustic waves with pressures in excess of 10 MPa. The acoustic waves have high enough tensile stress to generate cavitation in the mercury which results in erosion to the steel walls of the vessel. In order to study the cavitation erosion and develop mitigation schemes it would be convenient to have a way of generating similar pressures and cavitation in mercury, without the radiation concerns associated with a proton beam. Here an electromagnetic acoustic source (EMAS) has been developed which consisted of a coil placed close to a metal plate which is in turn is in contact with a fluid. The source is driven by discharging a capacitor through the coil and results in a repulsive force on the plate launching acoustic waves in the fluid. A theoretical model is presented to predict the acoustic field from the EMAS and compares favorably with measurements made in water. The pressure from the EMAS was reported as a function of capacitance, charging voltage, number of coils, mylar thickness, and properties of the plates. The properties that resulted in the highest pressure were employed for experiments in mercury and a maximum pressure recorded was 7.1 MPa. Cavitation was assessed in water and mercury by high speed camera and by detecting acoustic emissions. Bubble clouds with lifetimes on the order of 100 µs were observed in water and on the order of 600 µs in mercury. Based on acoustic emissions the bubble radius in mercury was estimated to be 0.98 mm. Experiments to produce damage to a stainless steel plate in mercury resulted in a minimal effect after 2000 shock waves at a rate of 0.33 Hz - likely because the pressure amplitude was not high enough. In order to replicate the conditions in the SNS it is

  2. Cavitation-induced fragmentation of an acoustically-levitated droplet

    NASA Astrophysics Data System (ADS)

    Gonzalez Avila, Silvestre Roberto; Ohl, Claus-Dieter

    2015-12-01

    In this paper we investigate the initial sequence of events that lead to the fragmentation of a millimetre sized water droplets when interacting with a focused ns-laser pulse. The experimental results show complex processes that result from the reflection of an initial shock wave from plasma generation with the soft boundary of the levitating droplet; furthermore, when the reflected waves from the walls of the droplet refocus they leave behind a trail of microbubbles that later act as cavitation inception regions. Numerical simulations of a shock wave impacting and reflecting from a soft boundary are also reported; the simulated results show that the lowest pressure inside the droplet occurs at the equatorial plane. The results of the numerical model display good agreement with the experimental results both in time and in space.

  3. Non-human primate skull effects on the cavitation detection threshold of FUS-induced blood-brain barrier opening

    NASA Astrophysics Data System (ADS)

    Wu, Shih-Ying; Tung, Yao-Sheng; Marquet, Fabrice; Chen, Cherry C.; Konofagou, Elisa E.

    2012-11-01

    Microbubble (MB)-assisted focused ultrasound is a promising technique for delivering drugs to the brain by noninvasively and transiently opening the blood-brain barrier (BBB), and monitoring BBB opening using passive cavitation detection (PCD) is critical in detecting its occurrence, extent as well as assessing its mechanism. One of the main obstacles in achieving those objectives in large animals is the transcranial attenuation. To study the effects, the cavitation response through the in-vitro non-human primate (NHP) skull was investigated. In-house manufactured lipid-shelled MB (medium diameter: 4-5 um) were injected into a 4-mm channel of a phantom below a degassed monkey skull. A hydrophone confocally aligned with the FUS transducer served as PCD during sonication (frequency: 0.50 MHz, peak rarefactional pressures: 0.05-0.60 MPa, pulse length: 100 cycles, PRF: 10 Hz, duration: 2 s) for four cases: water without skull, water with skull, MB without skull and MB with skull. A 5.1-MHz linear-array transducer was also used to monitor the MB disruption. The frequency spectra, spectrograms, stable cavitation dose (SCD) and inertial cavitation dose (ICD) were quantified. Results showed that the onset of stable cavitation and inertial cavitation in the experiments occurred at 50 kPa, and was detectable throught the NHP skull since the both the detection thresholds for stable cavitation and inertial cavitation remained unchanged compared to the non-skull case, and the SCD and ICD acquired transcranially may not adequately represent the true extent of stable and inertial cavitation due to the skull attenuation.

  4. Theoretical model of ice nucleation induced by inertial acoustic cavitation. Part 2: Number of ice nuclei generated by a single bubble.

    PubMed

    Cogné, C; Labouret, S; Peczalski, R; Louisnard, O; Baillon, F; Espitalier, F

    2016-01-01

    In the preceding paper (part 1), the pressure and temperature fields close to a bubble undergoing inertial acoustic cavitation were presented. It was shown that extremely high liquid water pressures but quite moderate temperatures were attained near the bubble wall just after the collapse providing the necessary conditions for ice nucleation. In this paper (part 2), the nucleation rate and the nuclei number generated by a single collapsing bubble were determined. The calculations were performed for different driving acoustic pressures, liquid ambient temperatures and bubble initial radius. An optimal acoustic pressure range and a nucleation temperature threshold as function of bubble radius were determined. The capability of moderate power ultrasound to trigger ice nucleation at low undercooling level and for a wide distribution of bubble sizes has thus been assessed on the theoretical ground. PMID:26384898

  5. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.

  6. The role of energy density and acoustic cavitation in shock wave lithotripsy.

    PubMed

    Loske, Achim M

    2010-02-01

    Today a high percentage of urinary stones are successfully treated by extracorporeal shockwave lithotripsy (SWL); however, misconceptions regarding fragmentation mechanisms, as well as treatment parameters like dose, applied energy and focal area are still common. A main stone comminution mechanism during SWL is acoustic cavitation. The objective of this study was to analyze the influence of cavitation and energy density on stone fragmentation. A research lithotripter was used to expose a large set of artificial kidney stones to shock waves varying different parameters. Hundreds of pressure records were used to calculate the energy density of the lithotripter at different settings. Results indicate that energy density is a crucial parameter and that better SWL treatment outcomes could be obtained placing the calculus at a prefocal position.

  7. Extremely Efficient Liquid Exfoliation and Dispersion of Layered Materials by Unusual Acoustic Cavitation

    PubMed Central

    Han, Joong Tark; Jang, Jeong In; Kim, Haena; Hwang, Jun Yeon; Yoo, Hyung Keun; Woo, Jong Seok; Choi, Sua; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Cho, Kilwon; Lee, Geon-Woong

    2014-01-01

    Layered materials must be exfoliated and dispersed in solvents for diverse applications. Usually, highly energetic probe sonication may be considered to be an unfavourable method for the less defective exfoliation and dispersion of layered materials. Here we show that judicious use of ultrasonic cavitation can produce exfoliated transition metal dichalcogenide nanosheets extraordinarily dispersed in non-toxic solvent by minimising the sonolysis of solvent molecules. Our method can also lead to produce less defective, large graphene oxide nanosheets from graphite oxide in a short time (within 10 min), which show high electrical conductivity (>20,000 S m−1) of the printed film. This was achieved by adjusting the ultrasonic probe depth to the liquid surface to generate less energetic cavitation (delivered power ~6 W), while maintaining sufficient acoustic shearing (0.73 m s−1) and generating additional microbubbling by aeration at the liquid surface. PMID:24875584

  8. Understanding acoustic cavitation for sonolytic degradation of p-cresol as a model contaminant.

    PubMed

    Balachandran, Rajesh; Patterson, Zach; Deymier, Pierre; Snyder, Shane A; Keswani, Manish

    2016-03-01

    Many modern techniques exist for the degradation of organic pollutants in water. Numerous treatment processes which utilize the formation of hydroxyl radicals for oxidation of pollutants have been studied thoroughly. In this study, a three pronged approach has been used to characterize and understand the effect of two distinct acoustic frequencies (37 kHz and 1 MHz) on cavitation behavior. Correlation of this behavior with sonolysis of a target phenol pollutant is described. Hydroxyl radical capture, hydrophone, and microelectrode studies in this work show that megasonic frequencies are more effective for generation of hydroxyl radicals and stable cavitation events than ultrasonic frequencies. UV absorption and fluorescence measurements confirm that the combination of ultrasonic sonolysis with a Fenton reagent achieved complete degradation of p-cresol at 50 mg/L in about 30 min. Cost estimates have been made for different sonication processes and compared with traditional advanced oxidation processes. PMID:26761597

  9. Development of anticavitation hydrophone using a titanium front plate: Effect of the titanium front plate in high-intensity acoustic field with generation of acoustic cavitation

    NASA Astrophysics Data System (ADS)

    Shiiba, Michihisa; Okada, Nagaya; Kurosawa, Minoru; Takeuchi, Shinichi

    2016-07-01

    Novel anticavitation hydrophones were fabricated by depositing a hydrothermally synthesized lead zirconate titanate polycrystalline film at the back of a titanium front plate. These anticavitation hydrophones were not damaged by the measurement of the acoustic field formed by a high-intensity focused ultrasound (HIFU) device. Their sensitivity was improved by approximately 20 dB over that of the conventional anticavitation hydrophone by modifying their basic structure and materials. The durability of the anticavitation hydrophone that we fabricated was compared by exposing it to a high-intensity acoustic field at the focal point of the HIFU field and in the water tank of an ultrasound cleaner. Therefore, the effect of the surface of the titanium front plate on acoustic cavitation was investigated by exposing such a surface to the high-intensity acoustic field. We found that the fabricated anticavitation hydrophone was robust and was not damaged easily, even in the focused acoustic field where acoustic cavitation occurs.

  10. Transcranial Assessment and Visualization of Acoustic Cavitation: Modeling and Experimental Validation

    PubMed Central

    Clement, Gregory T.; McDannold, Nathan

    2015-01-01

    The interaction of ultrasonically-controlled microbubble oscillations (acoustic cavitation) with tissues and biological media has been shown to induce a wide range of bioeffects that may have significant impact to therapy and diagnosis of central nervous system diseases and disorders. However, the inherently non-linear microbubble oscillations combined with the micrometer and microsecond scales involved in these interactions and the limited methods to assess and visualize them transcranially hinder both their optimal use and translation to the clinics. To overcome these challenges, we present a noninvasive and clinically relevant framework that combines numerical simulations with multimodality imaging to assess and visualize the microbubble oscillations transcranially. In the present work, acoustic cavitation was studied with an integrated US and MR imaging guided clinical FUS system in non-human primates. This multimodality imaging system allowed us to concurrently induce and visualize acoustic cavitation transcranially. A high-resolution brain CT-scan that allowed us to determine the head acoustic properties (density, speed of sound, and absorption) was also co-registered to the US and MR images. The derived acoustic properties and the location of the targets that were determined by the 3D-CT scans and the post sonication MRI respectively were then used as inputs to two-and three-dimensional Finite Difference Time Domain (2D, 3D-FDTD) simulations that matched the experimental conditions and geometry. At the experimentally-determined target locations, synthetic point sources with pressure amplitude traces derived by either a Gaussian function or the output of a microbubble dynamics model were numerically excited and propagated through the skull towards a virtual US imaging array. Then, using passive acoustic mapping that was refined to incorporate variable speed of sound, we assessed the losses and aberrations induced by the skull as a function of the acoustic

  11. Clustering reveals cavitation-related acoustic emission signals from dehydrating branches.

    PubMed

    Vergeynst, Lidewei L; Sause, Markus G R; De Baerdemaeker, Niels J F; De Roo, Linus; Steppe, Kathy

    2016-06-01

    The formation of air emboli in the xylem during drought is one of the key processes leading to plant mortality due to loss in hydraulic conductivity, and strongly fuels the interest in quantifying vulnerability to cavitation. The acoustic emission (AE) technique can be used to measure hydraulic conductivity losses and construct vulnerability curves. For years, it has been believed that all the AE signals are produced by the formation of gas emboli in the xylem sap under tension. More recent experiments, however, demonstrate that gas emboli formation cannot explain all the signals detected during drought, suggesting that different sources of AE exist. This complicates the use of the AE technique to measure emboli formation in plants. We therefore analysed AE waveforms measured on branches of grapevine (Vitis vinifera L. 'Chardonnay') during bench dehydration with broadband sensors, and applied an automated clustering algorithm in order to find natural clusters of AE signals. We used AE features and AE activity patterns during consecutive dehydration phases to identify the different AE sources. Based on the frequency spectrum of the signals, we distinguished three different types of AE signals, of which the frequency cluster with high 100-200 kHz frequency content was strongly correlated with cavitation. Our results indicate that cavitation-related AE signals can be filtered from other AE sources, which presents a promising avenue into quantifying xylem embolism in plants in laboratory and field conditions. PMID:27095256

  12. Cavitation damage prediction for spallation target vessels by assessment of acoustic vibration

    SciTech Connect

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Hasegawa, Shoichi; Ikeda, Dr. Yujiro; Riemer, Bernie; Wendel, Mark W; Haines, John R; Bauer, Guenter; Naoe, Dr. Takashi; Okita, Dr. Kohei; Fujiwara, Dr. Akiko; Matsumoto, Dr. Yoichiro; Tanaka, Dr. Nobuatsu

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed around the world. Proton beams are used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. In order to estimate the cavitation erosion, i.e. the pitting damage formed by the collapse of cavitation bubbles, off-beam tests were performed by using an electric magnetic impact testing machine (MIMTM), which can impose equivalent pressure pulses in mercury. The damage potential was defined based on the relationship between the pitting damage and the time-integrated acoustic vibration induced by impact due to the bubble collapses. Additionally, the damage potential was measured in on-beam tests carried out by using the proton beam at WNR (Weapons Neutron Research) facility in Los Alamos Neutron Science Center (LANSCE). In this paper, the concept of the damage potential, the relationship between the pitting damage formation and the damage potential both in off-beam and on-beam tests is shown.

  13. Nuclear Emissions During Self-Nucleated Acoustic Cavitation

    SciTech Connect

    Taleyarkhan, R.P.; Xu, Y.; West, C.D.; Lahey, R.T. Jr.; Block, R.C.; Nigmatulin, R.I.

    2006-01-27

    A unique, new stand-alone acoustic inertial confinement nuclear fusion test device was successfully tested. Experiments using four different liquid types were conducted in which bubbles were self-nucleated without the use of external neutrons. Four independent detection systems were used (i.e., a neutron track plastic detector to provide unambiguous visible records for fast neutrons, a BF{sub 3} detector, a NE-113-type liquid scintillation detector, and a NaI {gamma} ray detector). Statistically significant nuclear emissions were observed for deuterated benzene and acetone mixtures but not for heavy water. The measured neutron energy was {<=}2.45 MeV, which is indicative of deuterium-deuterium (D-D) fusion. Neutron emission rates were in the range {approx}5x10{sup 3} n/s to {approx}10{sup 4} n/s and followed the inverse law dependence with distance. Control experiments did not result in statistically significant neutron or {gamma} ray emissions.

  14. Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal.

    PubMed

    Johnston, Keith; Tapia-Siles, Cecilia; Gerold, Bjoern; Postema, Michiel; Cochran, Sandy; Cuschieri, Alfred; Prentice, Paul

    2014-12-01

    Single clouds of cavitation bubbles, driven by 254kHz focused ultrasound at pressure amplitudes in the range of 0.48-1.22MPa, have been observed via high-speed shadowgraphic imaging at 1×10(6) frames per second. Clouds underwent repetitive growth, oscillation and collapse (GOC) cycles, with shock-waves emitted periodically at the instant of collapse during each cycle. The frequency of cloud collapse, and coincident shock-emission, was primarily dependent on the intensity of the focused ultrasound driving the activity. The lowest peak-to-peak pressure amplitude of 0.48MPa generated shock-waves with an average period of 7.9±0.5μs, corresponding to a frequency of f0/2, half-harmonic to the fundamental driving. Increasing the intensity gave rise to GOC cycles and shock-emission periods of 11.8±0.3, 15.8±0.3, 19.8±0.2μs, at pressure amplitudes of 0.64, 0.92 and 1.22MPa, corresponding to the higher-order subharmonics of f0/3, f0/4 and f0/5, respectively. Parallel passive acoustic detection, filtered for the fundamental driving, revealed features that correlated temporally to the shock-emissions observed via high-speed imaging, p(two-tailed) < 0.01 (r=0.996, taken over all data). Subtracting the isolated acoustic shock profiles from the raw signal collected from the detector, demonstrated the removal of subharmonic spectral peaks, in the frequency domain. The larger cavitation clouds (>200μm diameter, at maximum inflation), that developed under insonations of peak-to-peak pressure amplitudes >1.0MPa, emitted shock-waves with two or more fronts suggesting non-uniform collapse of the cloud. The observations indicate that periodic shock-emissions from acoustically driven cavitation clouds provide a source for the cavitation subharmonic signal, and that shock structure may be used to study intra-cloud dynamics at sub-microsecond timescales.

  15. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents

    PubMed Central

    Radhakrishnan, Kirthi; Bader, Kenneth B; Haworth, Kevin J; Kopechek, Jonathan A; Raymond, Jason L; Huang, Shao-Ling; McPherson, David D; Holland, Christy K

    2014-01-01

    Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pulse-duration dependent pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation. Previous studies have demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of UCAs as a function of pulse duration. Determining the relationship between cavitation thresholds and loss of echogenicity of UCAs would enable monitoring of cavitation based upon the on-screen echogenicity in clinical applications. Two lipid-shelled UCAs, echogenic liposomes (ELIP) and Definity®, were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations (“sample volumes”) in both a static system and a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a passive cavitation detection system and stable and inertial cavitation thresholds ascertained. Loss of echogenicity from ELIP and Definity® was assessed within regions of interest on B-mode images. A numerical model based on UCA rupture predicted the functional form of the loss of echogenicity from ELIP and Definity®. Stable and inertial cavitation thresholds were found to have a weak dependence on pulse duration. Stable cavitation thresholds were lower than inertial cavitation thresholds. The power of cavitation emissions was an exponential function of the loss of echogenicity over the investigated range of acoustic pressures. Both ELIP and Definity® lost more than 80% echogenicity before the onset of stable or inertial cavitation. Once this level of echogenicity loss occurred, both stable and inertial cavitation were detected in the physiologic flow phantom. These results imply that stable and

  16. The penetration of acoustic cavitation bubbles into micrometer-scale cavities.

    PubMed

    Vaidya, Haresh Anant; Ertunç, Özgür; Lichtenegger, Thomas; Delgado, Antonio; Skupin, Andreas

    2016-04-01

    The penetration of acoustically induced cavitation bubbles in micrometer-scale cavities is investigated experimentally by means of high-speed photography and acoustic measurements. Micrometer-scale cavities of different dimensions (width=40 μm, 80 μm, 10 mm and depth=50 μm) are designed to replicate the cross section of microvias in a PCB. The aim here is to present a method for enhancing mass transfer due to the penetration of bubbles in such narrow geometries under the action of ultrasound. The micrometer-scale cavities are placed in a test-cell filled with water and subjected to an ultrasound excitation at 75 kHz. A cavitation bubble cluster is generated at the mouth of the cavity which acts as a continuous source of bubbles that penetrate into the cavity. The radial oscillation characteristics and translation of these bubbles are investigated in detail here. It is observed that the bubbles arrange themselves into streamer-like structures inside the cavity. Parameters such as bubble population and size distribution and their correlation with the phase of the incident ultrasound radiation are investigated in detail here. This provides a valuable insight into the dynamics of bubbles in narrow confined spaces. Mass transfer investigations show that fresh liquid can be continuously introduced in the cavities under the action of ultrasound. Our findings may have important consequences in optimizing the filling processes for microvias with high aspect ratios. PMID:26763751

  17. Enhanced delivery of gold nanoparticles by acoustic cavitation for photoacoustic imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Hsin; Liao, Ai-Ho; Lin, Jia-Yu; Lee, Cheng-Ru; Wu, Cheng-Ham; Liu, Tzu-Min; Wang, Churng-Ren; Li, Pai-Chi

    2013-03-01

    Gold-nanorods incorporated with microbubbles (AuMBs) were introduced as a photoacoustic/ultrasound dual- modality contrast agent in our previous study. The application can be extended to theragnosis purpose. With the unique physical characteristics of AuMBs, we propose an enhanced delivery method for the encapsulated particles. For example, laser thermotherapy mediated by plasmonic nanoparticles can be made more effective by using microbubbles as a targeted carrier and acoustic cavitation for enhanced sonoporation. The hypothesis was experimentally tested. Firts, these AuMBs first act as molecular probes with binding to specific ligands. The improved targeting efficacy was macroscopically observed by an ultrasound system. The extended retention of targeted AuMB was observed and recorded for 30 minutes in a CT-26 tumor bearing mouse. Secondly, cavitation induced by time-varying acoustic field was also applied to disrupt the microbubbles and cause increased transient cellular permeability (a.k.a., sonoporation). Multimodal optical microscope based on a Cr:forsterite laser was used to directly observe these effects. The microscope can acquired third-harmonic generation (THG) and two-photon fluorescent (2PF) signals produced by the AuMBs. In vitro examination shows approximately a 60% improvement in terms of fluorescence signals from the cellular uptake of gold nanoparticles after sonoporation treatment. Therefore, we conclude that the controlled release is feasible and can further improve the therapeutic effects of the nanoparticles.

  18. Acoustic Droplet Vaporization, Cavitation, and Therapeutic Properties of Copolymer-Stabilized Perfluorocarbon Nanoemulsions

    SciTech Connect

    Nam, Kweon-Ho; Christensen, Douglas A.; Rapoport, Natalya; Kennedy, Anne M.

    2009-04-14

    Acoustic and therapeutic properties of Doxorubicin (DOX) and paclitaxel (PTX)-loaded perfluorocarbon nanoemulsions have been investigated in a mouse model of ovarian cancer. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers that differed in the structure of the hydrophobic block. Acoustic droplet vaporization (ADV) and cavitation parameters were measured as a function of ultrasound frequency, pressure, duty cycles, and temperature. The optimal parameters that induced ADV and inertial cavitation of the formed microbubbles were used in vivo in the experiments on the ultrasound-mediated chemotherapy of ovarian cancer. A combination tumor treatment by intravenous injections of drug-loaded perfluoropentane nanoemulsions and tumor-directed 1-MHz ultrasound resulted in a dramatic decrease of ovarian or breast carcinoma tumor volume and sometimes complete tumor resolution. However, tumors often recurred three to six weeks after the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more aggressive and resistant to the repeated therapy than initial tumors suggesting selection for the resistant cells during the first treatment.

  19. The penetration of acoustic cavitation bubbles into micrometer-scale cavities.

    PubMed

    Vaidya, Haresh Anant; Ertunç, Özgür; Lichtenegger, Thomas; Delgado, Antonio; Skupin, Andreas

    2016-04-01

    The penetration of acoustically induced cavitation bubbles in micrometer-scale cavities is investigated experimentally by means of high-speed photography and acoustic measurements. Micrometer-scale cavities of different dimensions (width=40 μm, 80 μm, 10 mm and depth=50 μm) are designed to replicate the cross section of microvias in a PCB. The aim here is to present a method for enhancing mass transfer due to the penetration of bubbles in such narrow geometries under the action of ultrasound. The micrometer-scale cavities are placed in a test-cell filled with water and subjected to an ultrasound excitation at 75 kHz. A cavitation bubble cluster is generated at the mouth of the cavity which acts as a continuous source of bubbles that penetrate into the cavity. The radial oscillation characteristics and translation of these bubbles are investigated in detail here. It is observed that the bubbles arrange themselves into streamer-like structures inside the cavity. Parameters such as bubble population and size distribution and their correlation with the phase of the incident ultrasound radiation are investigated in detail here. This provides a valuable insight into the dynamics of bubbles in narrow confined spaces. Mass transfer investigations show that fresh liquid can be continuously introduced in the cavities under the action of ultrasound. Our findings may have important consequences in optimizing the filling processes for microvias with high aspect ratios.

  20. Frequency spectrum of the noise emitted by two interacting cavitation bubbles in strong acoustic fields.

    PubMed

    Jiang, Liang; Liu, Fengbing; Chen, Haosheng; Wang, Jiadao; Chen, Darong

    2012-03-01

    The dynamics and acoustic emission of two interacting cavitation bubbles exposed to strong acoustic fields with a frequency of 515 KHz are investigated numerically in this paper. After comparing the dynamics of a single bubble excited by the given pressure waves, bubbles with ambient radii of 2 and 5 μm were chosen to be studied to discuss the influence of the mutual bubble-bubble interaction on the dynamic behaviors and acoustic emission of the bubbles. The results show that, aside from the external driving pressure waves, the interaction between the bubbles imposes an extra nonlinear effect on the oscillations of the bubbles and that the dynamics of the smaller bubble could be suppressed gradually with the enhancement of this mutual interaction by decreasing the distance between the bubbles. Moreover, the improvement in the oscillation nonlinearity of the bubbles due to the change in the ambient circumstance could readily be observed from the frequency spectra of the bubbles' acoustic emission, which interprets the change by exhibiting an appropriate development of the subharmonics, the ultraharmonics, and the broadband component.

  1. Exploiting flow to control the in vitro spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Bonaccorsi, Simone; Choi, James J.

    2014-11-01

    Focused ultrasound and microbubbles have been extensively used to generate therapeutic bioeffects. Despite encouraging in vivo results, there remains poor control of the magnitude and spatial distribution of these bioeffects due to the limited ability of conventional pulse shapes and sequences to control cavitation dynamics. Thus current techniques are restricted by an efficacy-safety trade-off. The primary aim of the present study was to incorporate the presence of flow in the design of new short pulse sequences, which can more uniformly distribute the cavitation activity. Microbubbles flowing (fluid velocity: 10 mm s-1) through a 300 μm tube were sonicated with a focused 0.5 MHz transducer while acoustic emissions were captured with an inserted focused 7.5 MHz passive cavitation detector. The two foci were co-axially aligned and their focal points were overlapped. Whereas conventional sequences are composed of a long burst (>10 000 cycles) emitted at a low burst repetition frequency (<10 Hz), we decomposed this burst into short pulses by adding intervals to facilitate inter-pulse microbubble movement. To evaluate how this sequence influenced cavitation distribution, we emitted short pulses (peak-rarefactional pressure (PRP): 40-366 kPa, pulse length (PL): 5-25 cycles) at high pulse repetition frequencies (PRF: 0.625-10 kHz) for a burst length of 100 ms. Increased cavitation persistence, implied by the duration of the microbubble acoustic emissions, was a measure of improved distribution due to the presence of flow. Sonication at lower acoustic pressures, longer pulse intervals and lower PLs improved the spatial distribution of cavitation. Furthermore, spectral analysis of the microbubble emissions revealed that the improvement at low pressures is due to persisting stable cavitation. In conclusion, new short-pulse sequences were shown to improve spatiotemporal control of acoustic cavitation dynamics during physiologically relevant flow. This

  2. Study of the Cavitation Region and the Evolution of the Acoustic Spectrum

    NASA Astrophysics Data System (ADS)

    Alekseev, V. N.; Andreev, V. G.; Romanenko, G. A.; Rybak, S. A.

    2001-07-01

    An experimental setup and a technique for measuring the transient period before a stationary cavitation in a liquid by the evolution of the cavitation noise spectrum are described. The time dependences of harmonic amplitudes both near the radiator and outside the cavitation region are presented. From the form of these dependences, the characteristic transient periods preceding the stage of a fully developed cavitation in water and in transformer oil are calculated. A formal scheme for describing the cavitation region is proposed.

  3. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C.; Konofagou, Elisa E.

    2015-12-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r2  =  0.77) (2) the permeability of the opened BBB (r2  =  0.82) (3) the likelihood of safe opening (P  <  0.05, safe opening compared to cases of damage; P  <  0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r2  =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response therefore

  4. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening.

    PubMed

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C; Konofagou, Elisa E

    2015-12-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r(2)  =  0.77); (2) the permeability of the opened BBB (r(2)  =  0.82); (3) the likelihood of safe opening (P  <  0.05, safe opening compared to cases of damage; P  <  0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r(2)  =  0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response

  5. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning.

    PubMed

    Kang, Bong-Kyun; Kim, Min-Su; Park, Jin-Goo

    2014-07-01

    Changes in the cavitation intensity of gases dissolved in water, including H2, N2, and Ar, have been established in studies of acoustic bubble growth rates under ultrasonic fields. Variations in the acoustic properties of dissolved gases in water affect the cavitation intensity at a high frequency (0.83 MHz) due to changes in the rectified diffusion and bubble coalescence rate. It has been proposed that acoustic bubble growth rates rapidly increase when water contains a gas, such as hydrogen faster single bubble growth due to rectified diffusion, and a higher rate of coalescence under Bjerknes forces. The change of acoustic bubble growth rate in rectified diffusion has an effect on the damping constant and diffusivity of gas at the acoustic bubble and liquid interface. It has been suggested that the coalescence reaction of bubbles under Bjerknes forces is a reaction determined by the compressibility and density of dissolved gas in water associated with sound velocity and density in acoustic bubbles. High acoustic bubble growth rates also contribute to enhanced cavitation effects in terms of dissolved gas in water. On the other hand, when Ar gas dissolves into water under ultrasound field, cavitation behavior was reduced remarkably due to its lower acoustic bubble growth rate. It is shown that change of cavitation intensity in various dissolved gases were verified through cleaning experiments in the single type of cleaning tool such as particle removal and pattern damage based on numerically calculated acoustic bubble growth rates.

  6. Active cavitation detection of asymmetrical inertial cavitation

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2001-05-01

    The active cavitation detector (ACD) developed in Bob Apfel's laboratory has often been employed to quantify pressure thresholds for inception of symmetrical inertial cavitation of microbubbles. In the current application, however, a 30-MHz ACD interrogates individual echo-contrast agent bubbles adhering to a Mylar(TM) sheet that are driven into asymmetrical (jet-producing) collapse by a 1-MHz toneburst (>1 MPa pp). The resulting ACD output suggests that asymmetrical bubble collapse is slower than symmetrical collapse, producing less total radiated acoustic power. ACD output mixed with reference sinusoids at 30 MHz and low pass filtered yields Doppler signals that may be useful in quantifying asymmetrical collapses under biomedically relevant conditions, such as on endothelial walls.

  7. Towards a reference ultrasonic cavitation vessel. Part 1: preliminary investigation of the acoustic field distribution in a 25 kHz cylindrical cell.

    PubMed

    Hodnett, Mark; Choi, Min Joo; Zeqiri, Bajram

    2007-01-01

    The acoustic field produced by a 25 kHz, 25 l cylindrical sonochemical processing cell has been characterised systematically using a sonar hydrophone, with the aim of establishing it as a reference test bed on which future investigations into acoustic cavitation activity may be based. Data acquired at sonication levels up to 500 W have shown that though significant cavitation activity is generated throughout the vessel, the acoustic field generated is reproducible, typically to +/- 12%. The increases in acoustic pressure are shown to be nonlinear with applied power, suggesting an intermediate optimum level for future study.

  8. Microbubble Cavitation Imaging

    PubMed Central

    Vignon, Francois; Shi, William T.; Powers, Jeffry E.; Everbach, E. Carr; Liu, Jinjin; Gao, Shunji; Xie, Feng; Porter, Thomas R.

    2014-01-01

    Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information. This paper presents a prototype of a 2-D cavitation imager capable of producing images of the dominant cavitation state and activity level in a region of interest. Similar to PCDs, the cavitation imaging described here is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, whereas elevated noise bands indicate inertial cavitation; the absence of both indicates moderate oscillations. The prototype system is a modified commercially available ultrasound scanner with a sector imaging probe. The lateral resolution of the system is 1.5 mm at a focal depth of 3 cm, and the axial resolution is 3 cm for a therapy pulse length of 20 µs. The maximum frame rate of the prototype is 2 Hz. The system has been used for assessing and mapping the relative importance of the different cavitation states of a microbubble contrast agent. In vitro (tissue-mimicking flow phantom) and in vivo (heart, liver, and brain of two swine) results for cavitation states and their changes as a function of acoustic amplitude are presented. PMID:23549527

  9. Cavitation mapping by sonochemiluminescence with less bubble displacement induced by acoustic radiation force in a 1.2 MHz HIFU.

    PubMed

    Yin, Hui; Qiao, Yangzi; Cao, Hua; Li, Zhaopeng; Wan, Mingxi

    2014-03-01

    An acoustic radiation force counterbalanced appliance was employed to map the cavitation distribution in water. The appliance was made up of a focused ultrasound transducer and an aluminum alloy reflector with the exactly same shape. They were centrosymmetry around the focus of the source transducer. Spatial-temporal dynamics of cavitation bubble clouds in the 1.2 MHz ultrasonic field within this appliance were observed in water. And they were mapped by sonochemiluminescence (SCL) recordings and high-speed photography. There were significant differences in spatial distribution and temporal evolution between normal group and counterbalanced group. The reflector could avoid bubble directional displacement induced by acoustic radiation force under certain electric power (≤50 W). As a result, the SCL intensity in the pre-focal region was larger than that of normal group. In event of high electric power (≥70 W), most of the bubbles were moving in acoustic streaming. When electric power decreased, bubbles kept stable and showed stripe structure in SCL images. Both stationary bubbles and moving bubbles have been captured, and exhibited analytical potential with respect to bubbles in therapeutic ultrasound.

  10. Effects of an acoustic diode on the pressure waveform and cavitation bubble dynamics produced by a piezoelectric shock wave generator

    NASA Astrophysics Data System (ADS)

    Zhu, Songlin; Zhong, Pei

    2003-10-01

    High-speed schlieren imaging, combined with fiber optical probe hydrophone (FOPH) and passive cavitation detection (PCD) were used to access the effects of an acoustic diode (AD) on the pressure waveform and associated cavitation activities produced by a piezoelectric shock wave (PSW) generator. Without the AD, a typical pressure waveform at the focus of the PSW generator consists of a leading shock wave, followed by a tensile wave and several oscillation waves (OWs) of gradually reduced amplitudes. When the AD was placed 30 mm in front of the focus, the amplitude of the tensile wave was reduced and the subsequent OWs were removed. The pulse intensity integral of the tensile wave was reduced by 58%, and subsequently, PSW-induced bubble dynamics were altered significantly. Based on PCD data, the collapse time of cavitation bubble(s) was reduced by about 11%. Although intensive collapse of microbubbles was observed in about 10 μs following the shock front of the original PSW, the forced collapse of microbubbles was not observed when the AD was used, presumably due to the removal of the OWs. Theoretical calculation based on the Gilmore model confirmed these experimental observations. [Work supported by the Whitaker Foundation and NIH.

  11. Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets

    SciTech Connect

    Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.; Frederick, G.S.

    1984-09-01

    Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigma STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.

  12. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials

    PubMed Central

    Maxwell, Adam D.; Cain, Charles A.; Hall, Timothy L.; Fowlkes, J. Brian; Xu, Zhen

    2012-01-01

    In this article, the negative pressure values at which inertial cavitation consistently occurs in response to a single, 2-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex-vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (Pcav) for a single pulse as a function of peak negative pressure (p−) followed a sigmoid curve, with the probability approaching 1 when the pressure amplitude was sufficient. The statistical threshold (defined as Pcav = 0.5) was between p− = 26.0–30.0 MPa in all samples with a high water content, but varied between p− = 13.7 to > 36 MPa for other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p− = 28.2 MPa was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at different pressure levels and dimensions of cavitation-induced lesions in tissue. PMID:23380152

  13. The Effect of the 226-Hz Probe Level on Contralateral Acoustic Stapedius Reflex Thresholds

    ERIC Educational Resources Information Center

    Day, Jessica E.; Feeney, M. Patrick

    2008-01-01

    Purpose: The purpose of this study was to examine the effect of the 226-Hz probe level on the acoustic stapedius reflex threshold. Method: Contralateral reflex thresholds for a 1000-Hz pure-tone stimulus were obtained from 40 young adults with normal hearing using an experimental system at four 226-Hz probe levels (70, 75, 80, and 85 dB SPL) with…

  14. Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles.

    PubMed

    Helfield, Brandon; Black, John J; Qin, Bin; Pacella, John; Chen, Xucai; Villanueva, Flordeliza S

    2016-03-01

    Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (∼4 cP). In this study, ultrahigh-speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25-2 MPa). The propensity for individual microbubble (n = 220) fragmentation was found to significantly decrease in 4-cP fluid compared with 1-cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4-cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g., ultraharmonic) with increasing pressure, compared with those in 1-cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations. PMID:26674676

  15. The role of heating, cavitation and acoustic streaming in mediating ultrasound-induced changes of TGF-beta gene expression in bone cells

    NASA Astrophysics Data System (ADS)

    Harle, J.; Mayia, F.

    2004-01-01

    This paper relates ultrasound-induced changes in bone cell function to quantitative data assessing the level of several interaction mechanisms within the exposure environment. Characterisation of ultrasound fields in terms of resultant levels of heating, cavitation and acoustic streaming may provide a novel means of accurately assessing the likelihood of biological effects in vitro.

  16. Wavelet-based acoustic emission detection method with adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Menon, Sunil; Schoess, Jeffrey N.; Hamza, Rida; Busch, Darryl

    2000-06-01

    Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. One such technology, the use of acoustic emission for the early detection of helicopter rotor head dynamic component faults, has been investigated by Honeywell Technology Center for its rotor acoustic monitoring system (RAMS). This ambitious, 38-month, proof-of-concept effort, which was a part of the Naval Surface Warfare Center Air Vehicle Diagnostics System program, culminated in a successful three-week flight test of the RAMS system at Patuxent River Flight Test Center in September 1997. The flight test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. This paper presents the results of stress wave data analysis of the flight-test dataset using wavelet-based techniques to assess background operational noise vs. machinery failure detection results.

  17. Nonlinear bubble dynamics of cavitation.

    PubMed

    An, Yu

    2012-01-01

    For cavitation clouds generated in a standing sound wave driven by an ultrasonic horn, the nonlinear acoustic wave equation governing cavitation dynamics is numerically solved together with the bubble motion equation under an approximation. This conceptual calculation can qualitatively reproduce the observed characteristics of cavitation.

  18. Echo thresholds for reflections from acoustically diffusive architectural surfaces.

    PubMed

    Robinson, Philip W; Walther, Andreas; Faller, Christof; Braasch, Jonas

    2013-10-01

    When sound reflects from an irregular architectural surface, it spreads spatially and temporally. Extensive research has been devoted to prediction and measurement of diffusion, but less has focused on its perceptual effects. This paper examines the effect of temporal diffusion on echo threshold. There are several notable differences between the waveform of a reflection identical to the direct sound and one from an architectural surface. The onset and offset are damped and the energy is spread in time; hence, the reflection response has a lower peak amplitude, and is decorrelated from the direct sound. The perceptual consequences of these differences are previously undocumented. Echo threshold tests are conducted with speech and music signals, using direct sound and a simulated reflection that is either identical to the direct sound or has various degrees of diffusion. Results indicate that for a speech signal, diffuse reflections are less easily detectable as a separate auditory event than specular reflections of the same total energy. For a music signal, no differences are observed between the echo thresholds for reflections with and without temporal diffusion. Additionally, echo thresholds are found to be shorter for speech than for music, and shorter for spatialized than for diotic presentation of signals.

  19. Acoustic cavitation-mediated delivery of small interfering ribonucleic acids with phase-shift nanoemulsions

    PubMed Central

    Burgess, Mark T.; Porter, Tyrone M.

    2015-01-01

    Localized, targeted delivery of small interfering ribonucleic acid (siRNA) has been the foremost hurdle in the use of siRNA for the treatment of various diseases. Major advances have been achieved in the synthesis of siRNA, which has led to greater target messenger RNA (mRNA) silencing and stability in physiological conditions. Although numerous delivery strategies have shown promise, there are still limited options for targeted delivery and release of siRNA administered systemically. In this in vitro study, phase-shift nanoemulsions (PSNE) were explored as cavitation nuclei to facilitate free siRNA delivery to cancer cells via sonoporation. A cell suspension containing varying amounts of PSNE and siRNA was exposed to 5 MHz pulsed ultrasound at fixed settings (6.2 MPa peak negative pressure, 5 cycle pulses, 250 Hz pulse repetition frequency, and total exposure duration of 100 seconds). Inertial cavitation emissions were detected throughout the exposure using a passive cavitation detector. Successful siRNA delivery was achieved (i.e. > 50% cell uptake) with high viability (> 80% viability). The percentage of cells with siRNA uptake was correlated with the amount of inertial cavitation activity generated from vaporized PSNE. The siRNA remained functional after delivery, significantly reducing expression of green fluorescent protein (GFP) in a stably transfected cell line. These results show that vaporized PSNE can facilitate siRNA entry into the cytosol of a majority of sonicated cells and may provide a non-endosomal route for siRNA delivery. PMID:25979417

  20. The role of positive and negative pressure on cavitation nucleation in nanodroplet-mediated histotripsy.

    PubMed

    Vlaisavljevich, Eli; Aydin, Omer; Lin, Kuang-Wei; Durmaz, Yasemin Yuksel; Fowlkes, Brian; ElSayed, Mohamed; Xu, Zhen

    2016-01-21

    Nanodroplet-mediated histotripsy (NMH) is an ultrasound ablation technique combining histotripsy with acoustically sensitive perfluorocarbon (PFC) nanodroplets that can be selectively delivered to tumor cells for targeted tumor ablation. NMH takes advantage of the significantly reduced cavitation threshold of the nanodroplets, allowing for cavitation to be selectively generated only in regions containing nanodroplets. Understanding the physical mechanisms underlying the nanodroplet cavitation process is essential to the development of NMH. In this study, we hypothesize that cavitation nucleation is caused by the negative pressure (p-) exposed to the PFC, and the NMH cavitation threshold is therefore determined by the incident p-  of the single-cycle pulses commonly used in NMH. This paper reports the first study that separately investigates the effects of negative and positive pressure on the NMH cavitation threshold using near half-cycle ultrasound pulses with dominant negative (negative-polarity pulses) or positive (positive-polarity pulses) pressure phases. Tissue phantoms containing perfluorohexane (PFH) nanodroplets were exposed to negative-polarity and positive-polarity pulses generated by a frequency compounding transducer recently developed in our lab, and the probability of generating cavitation was measured as a function of peak negative (p-) and peak positive (p+) pressure. The results showed close agreement in the p- cavitation threshold for PFH phantoms exposed to negative-polarity (11.4 ± 0.1 MPa) and positive-polarity (11.7 ± 0.2 MPa) pulses. The p+ at the cavitation threshold, in contrast, was measured to be sign ficantly different for the negative-polarity (4.0 ± 0.1 MPa) and positive-polarity (42.6 ± 0.2 MPa) pulses. In the final part of this study, the experimental results were compared to the cavitation threshold predicted by classical nucleation theory (CNT), with results showing close agreement between simulations and experiments

  1. Relationship between loss of echogenicity and cavitation emissions from echogenic liposomes insonified by spectral Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Kirthi

    cavitation thresholds. Stable and inertial cavitation thresholds of ELIP were found to have a weak dependence on pulse duration. However, the stable cavitation threshold of ELIP had no dependence on PRF. The inertial cavitation threshold of ELIP had a weak dependence on PRF. Cavitation thresholds ascertained using a PCI agreed with the thresholds ascertained using a single-element PCD. The azimuthal beamwidth of the cavitation emissions detected by the PCI system agreed with the calibrated beamwidth of the insonation Doppler pressure exceeding the cavitation threshold. The power of cavitation emissions was an exponential function of the loss of echogenicity over the investigated range of acoustic pressures. ELIP lost more than 80% echogenicity before the onset of stable or inertial cavitation. Once this level of echogenicity loss occurred, both stable and inertial cavitation emissions were detected in the physiologic flow phantom. These results indicate that 80% loss of echogenicity may be used as a qualitative metric to gauge the onset of stable and inertial cavitation from ELIP.

  2. Trapping of embolic particles in a vessel phantom by cavitation-enhanced acoustic streaming

    NASA Astrophysics Data System (ADS)

    Maxwell, Adam D.; Park, Simone; Vaughan, Benjamin L.; Cain, Charles A.; Grotberg, James B.; Xu, Zhen

    2014-09-01

    Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, uf, was as high as 120 cm/s, while mean crossflow velocities, uc, were imposed up to 14 cm/s. When a solid particle 3-4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing uf promoted particle trapping while increasing uc promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Rec, was approximately linear with focal streaming number, Ref, i.e. Rec = 0.25Ref + 67.44 (R2 = 0.76) corresponding to dimensional velocities uc = 0.084uf + 3.122 for 20 < uf < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location.

  3. Trapping of embolic particles in a vessel phantom by cavitation-enhanced acoustic streaming.

    PubMed

    Maxwell, Adam D; Park, Simone; Vaughan, Benjamin L; Cain, Charles A; Grotberg, James B; Xu, Zhen

    2014-09-01

    Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, uf, was as high as 120 cm/s, while mean crossflow velocities, uc, were imposed up to 14 cm/s. When a solid particle 3-4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing uf promoted particle trapping while increasing uc promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Rec, was approximately linear with focal streaming number, Ref, i.e. Rec = 0.25Ref + 67.44 (R(2) = 0.76) corresponding to dimensional velocities uc = 0.084uf + 3.122 for 20 < uf < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location.

  4. Trapping of Embolic Particles in a Vessel Phantom by Cavitation-Enhanced Acoustic Streaming

    PubMed Central

    Maxwell, Adam D.; Park, Simone; Vaughan, Benjamin L.; Cain, Charles A.; Grotberg, James B.; Xu, Zhen

    2014-01-01

    Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, uf, was as high as 120 cm/s, while mean crossflow velocities, uc, were imposed up to 14 cm/s. When a solid particle 3-4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing uf promoted particle trapping while increasing uc promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Rec, was approximately linear with focal streaming number, Ref, i.e. Rec = 0.25Ref + 67.44 (R2=0.76) corresponding to dimensional velocities uc=0.084uf + 3.122 for 20 < uf < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location. PMID:25109407

  5. Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions.

    PubMed

    Nolf, Markus; Beikircher, Barbara; Rosner, Sabine; Nolf, Anton; Mayr, Stefan

    2015-10-01

    Acoustic emission (AE) analysis allows nondestructive monitoring of embolism formation in plant xylem, but signal interpretation and agreement of acoustically measured hydraulic vulnerability with reference hydraulic techniques remain under debate. We compared the hydraulic vulnerability of 16 species and three crop tree cultivars using hydraulic flow measurements and acoustic emission monitoring, proposing the use of time-dependent AE rates as a novel parameter for AE analysis. There was a linear correlation between the water potential (Ψ) at 50% loss of hydraulic conductivity (P50 ) and the Ψ at maximum AE activity (Pmaxrate ), where species with lower P50 also had lower Pmaxrate (P < 0.001, R(2)  = 0.76). Using AE rates instead of cumulative counts for AE analysis allows more efficient estimation of P50 , while excluding problematic AE at late stages of dehydration.

  6. Can Cavitation Be Anticipated?

    SciTech Connect

    Allgood, G.O.; Dress, W.B.; Hylton, J.O.; Kercel, S.W.

    1999-04-25

    The major problem with cavitation in pumps and hydraulic systems is that there is no effective (conventional) method for detecting or predicting its inception. The traditional method of recognizing cavitation in a pump is to declare the event occurring when the total head drops by some arbitrary value (typically 3%) in response to a pressure reduction at the pump inlet. However, the device is already seriously cavitating when this happens. What is actually needed is a practical method to detect impending rather than incipient cavitation. Whereas the detection of incipient cavitation requires the detection of features just after cavitation starts, the anticipation of cavitation requires the detection and identification of precursor features just before it begins. Two recent advances that make this detection possible. The first is acoustic sensors with a bandwidth of 1 MHz and a dynamic range of 80 dB that preserve the fine details of the features when subjected to coarse vibrations. The second is the application of Bayesian parameter estimation which makes it possible to separate weak signals, such as those present in cavitation precursors, from strong signals, such as pump vibration. Bayesian parameter estimation derives a model based on cavitation hydrodynamics and produces a figure of merit of how well it fits the acquired data. Applying this model to an anticipatory engine should lead to a reliable method of anticipating cavitation before it occurs. This paper reports the findings of precursor features using high-performance sensors and Bayesian analysis of weak acoustic emissions in the 100-1000kHz band from an experimental flow loop.

  7. Perceptual thresholds for detecting modifications applied to the acoustical properties of a violin.

    PubMed

    Fritz, Claudia; Cross, Ian; Moore, Brian C J; Woodhouse, Jim

    2007-12-01

    This study is the first step in the psychoacoustic exploration of perceptual differences between the sounds of different violins. A method was used which enabled the same performance to be replayed on different "virtual violins," so that the relationships between acoustical characteristics of violins and perceived qualities could be explored. Recordings of real performances were made using a bridge-mounted force transducer, giving an accurate representation of the signal from the violin string. These were then played through filters corresponding to the admittance curves of different violins. Initially, limits of listener performance in detecting changes in acoustical characteristics were characterized. These consisted of shifts in frequency or increases in amplitude of single modes or frequency bands that have been proposed previously to be significant in the perception of violin sound quality. Thresholds were significantly lower for musically trained than for nontrained subjects but were not significantly affected by the violin used as a baseline. Thresholds for the musicians typically ranged from 3 to 6 dB for amplitude changes and 1.5%-20% for frequency changes. Interpretation of the results using excitation patterns showed that thresholds for the best subjects were quite well predicted by a multichannel model based on optimal processing. PMID:18247771

  8. Perceptual thresholds for detecting modifications applied to the acoustical properties of a violin.

    PubMed

    Fritz, Claudia; Cross, Ian; Moore, Brian C J; Woodhouse, Jim

    2007-12-01

    This study is the first step in the psychoacoustic exploration of perceptual differences between the sounds of different violins. A method was used which enabled the same performance to be replayed on different "virtual violins," so that the relationships between acoustical characteristics of violins and perceived qualities could be explored. Recordings of real performances were made using a bridge-mounted force transducer, giving an accurate representation of the signal from the violin string. These were then played through filters corresponding to the admittance curves of different violins. Initially, limits of listener performance in detecting changes in acoustical characteristics were characterized. These consisted of shifts in frequency or increases in amplitude of single modes or frequency bands that have been proposed previously to be significant in the perception of violin sound quality. Thresholds were significantly lower for musically trained than for nontrained subjects but were not significantly affected by the violin used as a baseline. Thresholds for the musicians typically ranged from 3 to 6 dB for amplitude changes and 1.5%-20% for frequency changes. Interpretation of the results using excitation patterns showed that thresholds for the best subjects were quite well predicted by a multichannel model based on optimal processing.

  9. PASSIVE CAVITATION DETECTION DURING PULSED HIFU EXPOSURES OF EX VIVO TISSUES AND IN VIVO MOUSE PANCREATIC TUMORS

    PubMed Central

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-01-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been demonstrated to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rarefactional focal pressures (1–12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms, pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KPC mice and closely recapitulate human disease in their morphology. The cavitation threshold, defined at 50 % cavitation probability, was found to vary broadly among the investigated tissues (within 2.5–10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but ex vivo it decreased rapidly and stopped over the first few pulses

  10. Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors.

    PubMed

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-07-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been shown to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rare factional focal pressures (1-12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms and pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KrasLSL.G12 D/+; p53 R172 H/+; PdxCretg/+ (KPC) mice and closely re-capitulate human disease in their morphology. The cavitation threshold, defined at 50% cavitation probability, was found to vary broadly among the investigated tissues (within 2.5-10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but it decreased rapidly and stopped

  11. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power

    NASA Astrophysics Data System (ADS)

    Hodnett, M.; Zeqiri, B.

    2004-01-01

    Acoustic cavitation occurring in the water path between a transducer and the target of a radiation force balance can provide a significant source of error during measurements of ultrasonic power. These problems can be particularly acute at physiotherapy levels (>1 W), and low frequencies (leq 1 MHz). The cavitating bubbles can absorb and scatter incident ultrasound, leading to an underestimate in the measured power. For these reasons, International Specification standards demand the use of degassed water. This imposes requirements that may actually be difficult to meet, for example, in the case of hospitals. Also, initially degassed water will rapidly re-gas, increasing the likelihood of cavitation occurring. For these reasons, NPL has developed a device that monitors acoustic emissions generated by bubble activity, for detecting the onset of cavitation during power measurements. A commercially available needle hydrophone is used to detect these emissions. The acoustic signals are then monitored using a Cavitation Detector (CD) unit, comprising an analogue electrical filter that may be tuned to detect frequency components generated by cavitating bubbles, and which provides an indication of when the measured level exceeds a pre-defined threshold. This paper describes studies to establish a suitable detection scheme, the principles of operation of the CD unit, and the performance tests carried out with a range of propagation media.

  12. Low-frequency acoustic pressure, velocity, and intensity thresholds in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas)

    NASA Astrophysics Data System (ADS)

    Finneran, James J.; Carder, Donald A.; Ridgway, Sam H.

    2002-01-01

    The relative contributions of acoustic pressure and particle velocity to the low-frequency, underwater hearing abilities of the bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas) were investigated by measuring (masked) hearing thresholds while manipulating the relationship between the pressure and velocity. This was accomplished by varying the distance within the near field of a single underwater sound projector (experiment I) and using two underwater sound projectors and an active sound control system (experiment II). The results of experiment I showed no significant change in pressure thresholds as the distance between the subject and the sound source was changed. In contrast, velocity thresholds tended to increase and intensity thresholds tended to decrease as the source distance decreased. These data suggest that acoustic pressure is a better indicator of threshold, compared to particle velocity or mean active intensity, in the subjects tested. Interpretation of the results of experiment II (the active sound control system) was difficult because of complex acoustic conditions and the unknown effects of the subject on the generated acoustic field; however, these data also tend to support the results of experiment I and suggest that odontocete thresholds should be reported in units of acoustic pressure, rather than intensity.

  13. Estimation of low-temperature cracking threshold for asphalt binders using an acoustic emmission approach

    NASA Astrophysics Data System (ADS)

    Apeagyei, Alex K.; Buttlar, William G.; Reis, Henrique

    2009-03-01

    An acoustic emission (AE) approach to evaluate low temperature cracking susceptibility of asphalt binders is presented. Thin films of asphalt binders were bonded to granite substrates and exposed to temperatures ranging from 15°C to - 50°C. Differential thermal contraction between granite substrates and asphalt binders induces progressively higher thermal stress in the binders resulting in thermal crack formation, which is accompanied by a release of elastic energy in the form of transient waves. Using piezoelectric sensors (Digital Wave, Model B-1025), a four-channel acoustic emission system was used to record the acoustic emission activity during the binder/granite cooling process. Assuming the cracking temperature (Tcr) to be the temperature at which the AE signal energy exceeds a pre-selected threshold energy level, this AE testing approach was found to be sensitive and repeatable for predicting cracking temperatures (Tcr) in four SUPERPAVE core asphalt binders. These AE-based Tcr predictions showed strong correlation (R2 = 0.9) with predictions based on either AASHTO TP1 or MP1A protocols. Unlike TP1 and MP1A protocols, the presented AE approach does not require the use of sophisticated software for predicting thermal stresses, and no assumption is required regarding the testing cooling rate and the binder coefficient of thermal contraction.

  14. Effect of hyperbaric oxygen treatment on permanent threshold shift in acoustic trauma among rats.

    PubMed

    Kuokkanen, J; Virkkala, J; Zhai, S; Ylikoski, J

    1997-01-01

    Impulse noise from firearms is a common cause of acute acoustic trauma (AAT). Recently hyperbaric oxygen treatment has become available in many hospitals treating AAT. We exposed 39 Wistar rats to intense impulse noise of 60 shots from the assault rifle (162 dB SPL). After the exposure 15 animals were given hyperbaric oxygen treatment (HBO) by 10 treatment cycles of 90 minutes 100% oxygen in 0.25 MPa, one treatment cycle per day. Four weeks after the exposure the hearing thresholds were measured with auditory brainstem response audiometry at frequencies of 1.0, 2.0, 4.0, 6.0, 8.0 and 10.0 kHz. Characteristics for the resulting noise-induced hearing loss were large variations in its severity not only between animals, but also between the ears of a single animal. The largest permanent threshold shifts were found at 6.0, 8.0 and 10.0 kHz. Most of the HBO-treated animals showed less threshold shift than the non-treated animals. The difference between the HBO group and the control group was only slightly statistically significant (p = 0.067). PMID:9288276

  15. Acoustic Cavitation Enhances Focused Ultrasound Ablation with Phase-Shift Inorganic Perfluorohexane Nanoemulsions: An In Vitro Study Using a Clinical Device.

    PubMed

    Zhao, Lu-Yan; Zou, Jian-Zhong; Chen, Zong-Gui; Liu, Shan; Jiao, Jiao; Wu, Feng

    2016-01-01

    Purpose. To investigate whether acoustic cavitation could increase the evaporation of a phase-shift inorganic perfluorohexane (PFH) nanoemulsion and enhance high intensity focused ultrasound (HIFU) ablation. Materials and Methods. PFH was encapsulated by mesoporous silica nanocapsule (MSNC) to form a nanometer-sized droplet (MSNC-PFH). It was added to a tissue-mimicking phantom, whereas phosphate buffered saline (PBS) was added as a control (PBS-control). HIFU (P ac = 150 W, t = 5/10 s) exposures were performed in both phantoms with various duty cycles (DC). US images, temperature, and cavitation emissions were recorded during HIFU exposure. HIFU-induced lesions were measured and calculated. Results. Compared to PBS-control, MSNC-PFH nanoemulsion could significantly increase the volume of HIFU-induced lesion (P < 0.01). Peak temperatures were 78.16 ± 5.64°C at a DC of 100%, 70.17 ± 6.43°C at 10%, 53.17 ± 4.54°C at 5%, and 42.00 ± 5.55°C at 2%, respectively. Inertial cavitation was much stronger in the pulsed-HIFU than that in the continuous-wave HIFU exposure. Compared to 100%-DC exposure, the mean volume of lesion induced by 5 s exposure at 10%-DC was significantly larger, but smaller at 2%-DC. Conclusions. MSNC-PFH nanoemulsion can significantly enhance HIFU ablation. Appropriate pulsed-HIFU exposure could significantly increase the volume of lesion and reduce total US energy required for HIFU ablation. PMID:27419138

  16. Acoustic Cavitation Enhances Focused Ultrasound Ablation with Phase-Shift Inorganic Perfluorohexane Nanoemulsions: An In Vitro Study Using a Clinical Device

    PubMed Central

    Zhao, Lu-Yan; Zou, Jian-Zhong; Chen, Zong-Gui; Liu, Shan; Jiao, Jiao; Wu, Feng

    2016-01-01

    Purpose. To investigate whether acoustic cavitation could increase the evaporation of a phase-shift inorganic perfluorohexane (PFH) nanoemulsion and enhance high intensity focused ultrasound (HIFU) ablation. Materials and Methods. PFH was encapsulated by mesoporous silica nanocapsule (MSNC) to form a nanometer-sized droplet (MSNC-PFH). It was added to a tissue-mimicking phantom, whereas phosphate buffered saline (PBS) was added as a control (PBS-control). HIFU (Pac = 150 W, t = 5/10 s) exposures were performed in both phantoms with various duty cycles (DC). US images, temperature, and cavitation emissions were recorded during HIFU exposure. HIFU-induced lesions were measured and calculated. Results. Compared to PBS-control, MSNC-PFH nanoemulsion could significantly increase the volume of HIFU-induced lesion (P < 0.01). Peak temperatures were 78.16 ± 5.64°C at a DC of 100%, 70.17 ± 6.43°C at 10%, 53.17 ± 4.54°C at 5%, and 42.00 ± 5.55°C at 2%, respectively. Inertial cavitation was much stronger in the pulsed-HIFU than that in the continuous-wave HIFU exposure. Compared to 100%-DC exposure, the mean volume of lesion induced by 5 s exposure at 10%-DC was significantly larger, but smaller at 2%-DC. Conclusions. MSNC-PFH nanoemulsion can significantly enhance HIFU ablation. Appropriate pulsed-HIFU exposure could significantly increase the volume of lesion and reduce total US energy required for HIFU ablation. PMID:27419138

  17. Acoustic communication in two freshwater gobies: the relationship between ambient noise, hearing thresholds and sound spectrum.

    PubMed

    Lugli, M; Yan, H Y; Fine, M L

    2003-04-01

    Two freshwater gobies Padogobius martensii and Gobius nigricans live in shallow (5-70 cm) stony streams, and males of both species produce courtship sounds. A previous study demonstrated high noise levels near waterfalls, a quiet window in the noise around 100 Hz at noisy locations, and extremely short-range propagation of noise and goby signals. To investigate the relationship of this acoustic environment to communication, we determined audiograms for both species and measured parameters of courtship sounds produced in the streams. We also deflated the swimbladder in P. martensii to determine its effect on frequency utilization in sound production and hearing. Both species are maximally sensitive at 100 Hz and produce low-frequency sounds with main energy from 70 to 100-150 Hz. Swimbladder deflation does not affect auditory threshold or dominant frequency of courtship sounds and has no or minor effects on sound amplitude. Therefore, both species utilize frequencies for hearing and sound production that fall within the low-frequency quiet region, and the equivalent relationship between auditory sensitivity and maximum ambient noise levels in both species further suggests that ambient noise shapes hearing sensitivity. PMID:12665991

  18. Acoustic communication in two freshwater gobies: the relationship between ambient noise, hearing thresholds and sound spectrum.

    PubMed

    Lugli, M; Yan, H Y; Fine, M L

    2003-04-01

    Two freshwater gobies Padogobius martensii and Gobius nigricans live in shallow (5-70 cm) stony streams, and males of both species produce courtship sounds. A previous study demonstrated high noise levels near waterfalls, a quiet window in the noise around 100 Hz at noisy locations, and extremely short-range propagation of noise and goby signals. To investigate the relationship of this acoustic environment to communication, we determined audiograms for both species and measured parameters of courtship sounds produced in the streams. We also deflated the swimbladder in P. martensii to determine its effect on frequency utilization in sound production and hearing. Both species are maximally sensitive at 100 Hz and produce low-frequency sounds with main energy from 70 to 100-150 Hz. Swimbladder deflation does not affect auditory threshold or dominant frequency of courtship sounds and has no or minor effects on sound amplitude. Therefore, both species utilize frequencies for hearing and sound production that fall within the low-frequency quiet region, and the equivalent relationship between auditory sensitivity and maximum ambient noise levels in both species further suggests that ambient noise shapes hearing sensitivity.

  19. Programming the cochlear implant based on electrical acoustic reflex thresholds: patient performance.

    PubMed

    Spivak, L G; Chute, P M; Popp, A L; Parisier, S C

    1994-10-01

    The electrical acoustic reflex threshold (EART) has been shown to be a reliable estimate of behavioral comfort levels in both child and adult cochlear implant patients. The purpose of this study was to investigate the potential for using EARTs for programming the Nucleus cochlear implant. EARTs and behavioral comfort levels were obtained from 7 adult implant patients. Two programs or "maps" were made for each patient, one based on behavioral comfort levels and one based on EARTs. Performance on open set tests of speech recognition was measured with each map. Mean data suggest that speech perception is similar with both maps. Analysis of individual data revealed that, whereas 2 subjects performed better with the C-level maps, the remaining 5 subjects tended to perform either better with the EART map or equally well with both maps. These results suggest that EARTs may be an adequate substitute for comfort levels when programming the implant for patients who are unable to make reliable psychophysical judgments.

  20. Cavitation in medicine.

    PubMed

    Brennen, Christopher Earls

    2015-10-01

    We generally think of bubbles as benign and harmless and yet they can manifest the most remarkable range of physical effects. Some of those effects are the stuff of our everyday experience as in the tinkling of a brook or the sounds of breaking waves at the beach. But even these mundane effects are examples of the ability of bubbles to gather, focus and radiate energy (acoustic energy in the above examples). In other contexts that focusing of energy can lead to serious technological problems as when cavitation bubbles eat great holes through ships' propeller blades or cause a threat to the integrity of the spillways at the Hoover Dam. In liquid-propelled rocket engines, bubbles pose a danger to the stability of the propulsion system, and in artificial heart valves they can cause serious damage to the red blood cells. In perhaps the most extraordinary example of energy focusing, collapsing cavitation bubbles can emit not only sound, but also light with black body radiation temperatures equal to that of the sun (Brennen 1995 Cavitation and bubble dynamics). But, harnessed carefully, this almost unique ability to focus energy can also be put to remarkably constructive use. Cavitation bubbles are now used in a remarkable range of surgical and medical procedures, for example to emulsify tissue (most commonly in cataract surgery or in lithotripsy procedures for the reduction of kidney and gall stones) or to manipulate the DNA in individual cells. By creating cavitation bubbles non-invasively thereby depositing and focusing energy non-intrusively, one can generate minute incisions or target cancer cells. This paper will begin by briefly reviewing the history of cavitation phenomena and will end with a vision of the new horizons for the amazing cavitation bubble. PMID:26442145

  1. Cavitation in medicine

    PubMed Central

    Brennen, Christopher Earls

    2015-01-01

    We generally think of bubbles as benign and harmless and yet they can manifest the most remarkable range of physical effects. Some of those effects are the stuff of our everyday experience as in the tinkling of a brook or the sounds of breaking waves at the beach. But even these mundane effects are examples of the ability of bubbles to gather, focus and radiate energy (acoustic energy in the above examples). In other contexts that focusing of energy can lead to serious technological problems as when cavitation bubbles eat great holes through ships' propeller blades or cause a threat to the integrity of the spillways at the Hoover Dam. In liquid-propelled rocket engines, bubbles pose a danger to the stability of the propulsion system, and in artificial heart valves they can cause serious damage to the red blood cells. In perhaps the most extraordinary example of energy focusing, collapsing cavitation bubbles can emit not only sound, but also light with black body radiation temperatures equal to that of the sun (Brennen 1995 Cavitation and bubble dynamics). But, harnessed carefully, this almost unique ability to focus energy can also be put to remarkably constructive use. Cavitation bubbles are now used in a remarkable range of surgical and medical procedures, for example to emulsify tissue (most commonly in cataract surgery or in lithotripsy procedures for the reduction of kidney and gall stones) or to manipulate the DNA in individual cells. By creating cavitation bubbles non-invasively thereby depositing and focusing energy non-intrusively, one can generate minute incisions or target cancer cells. This paper will begin by briefly reviewing the history of cavitation phenomena and will end with a vision of the new horizons for the amazing cavitation bubble. PMID:26442145

  2. Bioeffects caused by changes in acoustic cavitation bubble density and cell concentration: a unified explanation based on cell-to-bubble ratio and blast radius.

    PubMed

    Guzmán, Héctor R; McNamara, Andrew J; Nguyen, Daniel X; Prausnitz, Mark R

    2003-08-01

    Acoustic cavitation has been shown to load drugs, proteins and DNA into viable cells as a complex function of acoustic and nonacoustic parameters. To better understand and quantify this functionality, DU145 prostate cancer cell suspensions at different cell concentrations (2.5 x 10(5) to 4.0 x 10(7) cells/mL) were exposed to 500 kHz ultrasound (US) over a range of acoustic energy exposures (2 to 817 J/cm(2); peak negative pressures of 0.64 to 2.96 MPa; exposure times of 120 to 2000 ms) in the presence of different initial concentrations of Optison contrast agent bubbles (3.6 x 10(4) to 9.3 x 10(7) bubbles/mL). As determined by flow cytometry, molecular uptake of calcein and cell viability both increased with increasing cell density; viability decreased and uptake was unaffected by increasing initial contrast agent concentration. When normalized relative to the initial contrast agent concentration (e.g., cells killed per bubble), bioeffects increased with increasing cell density and decreased with increasing bubble concentration. These varying effects of contrast agent concentration and cell density were unified through an overall correlation with cell-to-bubble ratio. Additional analysis led to estimation of "blast radii" over which bubbles killed or permeabilized cells; these radii were as much as 3 to 90 times the bubble radius. Combined, these results suggest that extensive molecular uptake into cells at high viability occurs for low-energy exposure US applied at a high cell-to-bubble ratio.

  3. Feedback loop process for controlling inertial cavitation: experimental evidence

    NASA Astrophysics Data System (ADS)

    Inserra, Claude; Sabraoui, Abbas; Reslan, Lina; Bera, Jean-Christophe; Gilles, Bruno; Mestas, Jean-Louis

    2011-09-01

    Applications involving cavitation mechanisms, such as sonoporation, are irreproducible in the case of a fixed-intensity sonication, due to the non-stationary behavior of cavitation. We then propose to work at a fixed-cavitation level instead of under fixed-intensity sonication conditions. For this purpose a regulated cavitation generator has been developed in a stationary wave field configuration, which allows regulation of the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop based on acoustic cavitation measurements. The cavitation level indicator was quantified by the broadband spectrum noise level relative to inertial cavitation events. This generated inertial cavitation was characterized by both acoustic and chemical measurements, quantifying hydroxyl radicals produced by water sonolysis. While the cavitation level is obtained with a 40% standard deviation for fixed applied acoustic intensities in the range [0.01 3.44] W/cm2, the regulated generator reproduces the cavitation level with a standard deviation of 3%. The results show that the hydroxyl radical production is better correlated with the cavitation level setting than with the applied acoustic intensity, highlighting the fact that broadband noise is a good indicator of inertial cavitation, with greatest interest for cavitation monitoring. In summary, the regulated device generates a cavitation level that is reproducible, repeatable and stable in time. This system produces reproducible effects that allow consideration of biological applications such as sonoporation to be independent of the experimental ultrasound device, as confirmed by transfection efficiency and cell cytotoxicity studies. Thus, this feedback loop process presents interesting perspectives for monitoring and controlling in-vivo cavitation.

  4. Saturation diving with heliox to 350 meters. Observation on hearing threshold, brainstem evoked response and acoustic impedance.

    PubMed

    Wang, L; Jiang, W; Gong, J H; Zheng, X Y

    1994-12-01

    Four divers were compressed to 350 m to observe changes in hearing threshold, brainstem evoked response and acoustic impedance. The divers experienced no tinnitus, impairment of hearing, earache during compression. Examination showed that the threshold of lower frequency range of hearing was elevated because of the masking effect of the noise in the hyperbaric chamber. Changes in waveform and latency of brainstem evoked response were due to changes in sound wave transmission affected by the chamber pressure and a poor ratio of signal to noise in the hyperbaric environment with heliox. All these changes were transient. After leaving the chamber, the hearing threshold and brainstem evoked response returned to normal. Besides, there were no changes in tympanogram, acoustic compliance and stapedius reflex before and after diving. This indicated the designed speed of compression and decompression in the experiment caused no damage to the divers' acoustic system, and the functions of their Eustachain tubes, middle and inner ears were normal during the diving test. PMID:7882734

  5. Optical cavitation probe using light scattering from bubble clouds.

    PubMed

    Iida, Yasuo; Lee, Judy; Kozuka, Teruyuki; Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru

    2009-04-01

    To understand the behaviour of systems containing clouds of bubbles (multibubble system) in real sonochemical reactors, a new diagnosis method, i.e., optical cavitation probe (OCP), has been proposed. When a laser beam is introduced into the cavitation bubble cloud, the scattered light intensity changes by the collective oscillation of cavitation bubbles. The frequency domain spectrum of the scattered light contains rich information on the cavitation bubble clouds, comparable with the acoustic emission spectra detected by a hydrophone. The significant merits of OCP, such as capability for spatially resolved, non-invasive measurement of the cavitation bubble clouds, robustness even in a violent cavitation field have been experimentally demonstrated.

  6. Cavitating Langmuir turbulence in the terrestrial aurora.

    PubMed

    Isham, B; Rietveld, M T; Guio, P; Forme, F R E; Grydeland, T; Mjølhus, E

    2012-03-01

    Langmuir cavitons have been artificially produced in Earth's ionosphere, but evidence of naturally occurring cavitation has been elusive. By measuring and modeling the spectra of electrostatic plasma modes, we show that natural cavitating, or strong, Langmuir turbulence does occur in the ionosphere, via a process in which a beam of auroral electrons drives Langmuir waves, which in turn produce cascading Langmuir and ion-acoustic excitations and cavitating Langmuir turbulence. The data presented here are the first direct evidence of cavitating Langmuir turbulence occurring naturally in any space or astrophysical plasma. PMID:22463417

  7. Nuclei and propeller cavitation inception

    SciTech Connect

    Gindroz, B.; Billet, M.L.

    1994-12-31

    Propeller cavitation inception tests were conducted in the Grand Tunnel Hydrodynamique (GTH) of the Bassin d`Essaid des Carenes. Both acoustic and visual cavitation inception were determined for leading-edge sheet, travelling bubble, and tip vortex. These data were obtained for specific water quality conditions. The water quality was determined from cavitation susceptibility meter measurements for degassed water (maximum liquid tension, few nuclei), low injection rate of microbubbles (medium liquid tension, low nuclei concentration), medium injection rate of microbubbles (medium liquid tension, high nuclei concentration) and high injection rate of microbubbles (minimum liquid tension, high nuclei concentration). Results clearly demonstrate a different influence of water quality for each type of cavitation. Little variation in cavitation inception index for a significant increase in liquid tension and microbubble size distribution was found for leading-edge sheet; however, tip vortex cavitation inception index decreased significantly for an increase in liquid tension. In addition, a dependency on event rate was determined for tip vortex cavitation inception.

  8. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model.

    PubMed

    Arvanitis, Costas D; Vykhodtseva, Natalia; Jolesz, Ferenc; Livingstone, Margaret; McDannold, Nathan

    2016-05-01

    OBJECT Transcranial MRI-guided focused ultrasound (TcMRgFUS) is an emerging noninvasive alternative to surgery and radiosurgery that is undergoing testing for tumor ablation and functional neurosurgery. The method is currently limited to central brain targets due to skull heating and other factors. An alternative ablative approach combines very low intensity ultrasound bursts and an intravenously administered microbubble agent to locally destroy the vasculature. The objective of this work was to investigate whether it is feasible to use this approach at deep brain targets near the skull base in nonhuman primates. METHODS In 4 rhesus macaques, targets near the skull base were ablated using a clinical TcMRgFUS system operating at 220 kHz. Low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes in conjunction with the ultrasound contrast agent Definity, which was administered as a bolus injection or continuous infusion. The acoustic power level was set to be near the inertial cavitation threshold, which was measured using passive monitoring of the acoustic emissions. The resulting tissue effects were investigated with MRI and with histological analysis performed 3 hours to 1 week after sonication. RESULTS Thirteen targets were sonicated in regions next to the optic tract in the 4 animals. Inertial cavitation, indicated by broadband acoustic emissions, occurred at acoustic pressure amplitudes ranging from 340 to 540 kPa. MRI analysis suggested that the lesions had a central region containing red blood cell extravasations that was surrounded by edema. Blood-brain barrier disruption was observed on contrast-enhanced MRI in the lesions and in a surrounding region corresponding to the prefocal area of the FUS system. In histology, lesions consisting of tissue undergoing ischemic necrosis were found in all regions that were sonicated above the inertial cavitation threshold. Tissue damage in prefocal areas was found in several cases, suggesting that in

  9. Evolution of linear acoustic domains in a plane layer of a liquid crystal beyond the instability threshold

    NASA Astrophysics Data System (ADS)

    Kapustina, O. A.

    2015-05-01

    This work experimentally validates for the first time the adequacy of a model describing the abovethreshold dynamics of a system of acoustic linear domains appearing in a plane layer of a nematic liquid crystal under the action of an oscillating hydrodynamic flow induced by shear vibrations at frequencies of the audio range. Values of the domain period are determined at the threshold of the effect and above the threshold up to oscillation amplitudes corresponding to orientational turbulization of the medium in layers with a thickness of 10-80 μm at frequencies of 0.1-20 Hz. The domain period has been determined as a function of the amplitude and oscillation frequency at different values of the layer thickness.

  10. Theoretical detection threshold of the proton-acoustic range verification technique

    PubMed Central

    Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei

    2015-01-01

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range

  11. Theoretical detection threshold of the proton-acoustic range verification technique

    SciTech Connect

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei; Xiang, Liangzhong

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic

  12. Dynamics of dissolved gas in a cavitating fluid

    NASA Astrophysics Data System (ADS)

    Mastikhin, Igor V.; Newling, Benedict

    2008-12-01

    A strong acoustic field in a liquid separates the liquid and dissolved gases by the formation of bubbles (cavitation). Bubble growth and collapse is the result of active exchange of gas and vapor through the bubble walls with the surrounding liquid. This paper details a new approach to the study of cavitation, not as an evolution of discrete bubbles, but as the dynamics of molecules constituting both the bubbles and the fluid. We show, by direct, independent measurement of the liquid and the dissolved gas, that the motions of dissolved gas (freon-22, CHClF2 ) and liquid (water) can be quite different during acoustic cavitation and are strongly affected by filtration or previous cavitation of the solvent. Our observations suggest that bubbles can completely refresh their content within two acoustic cycles and that long-lived (˜minutes) microbubbles act as nucleation sites for cavitation. This technique is complementary to the traditional optical and acoustical techniques.

  13. High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy--histotripsy.

    PubMed

    Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J Brian; Cain, Charles A

    2007-10-01

    Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (< 20 micros), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: (1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; (2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and (3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions.

  14. Laser-enhanced cavitation during high intensity focused ultrasound: An in vivo study

    PubMed Central

    Cui, Huizhong; Zhang, Ti; Yang, Xinmai

    2013-01-01

    Laser-enhanced cavitation during high intensity focused ultrasound (HIFU) was studied in vivo using a small animal model. Laser light was employed to illuminate the sample concurrently with HIFU radiation. The resulting cavitation was detected with a passive cavitation detector. The in vivo measurements were made under different combinations of HIFU treatment depths, laser wavelengths, and HIFU durations. The results demonstrated that concurrent light illumination during HIFU has the potential to enhance cavitation effect by reducing cavitation threshold in vivo. PMID:23653486

  15. Cavitation occurrence around ultrasonic dental scalers.

    PubMed

    Felver, Bernhard; King, David C; Lea, Simon C; Price, Gareth J; Damien Walmsley, A

    2009-06-01

    Ultrasonic scalers are used in dentistry to remove calculus and other contaminants from teeth. One mechanism which may assist in the cleaning is cavitation generated in cooling water around the scaler. The vibratory motion of three designs of scaler tip in a water bath has been characterised by laser vibrometry, and compared with the spatial distribution of cavitation around the scaler tips observed using sonochemiluminescence from a luminol solution. The type of cavitation was confirmed by acoustic emission analysed by a 'Cavimeter' supplied by NPL. A node/antinode vibration pattern was observed, with the maximum displacement of each type of tip occurring at the free end. High levels of cavitation activity occurred in areas surrounding the vibration antinodes, although minimal levels were observed at the free end of the tip. There was also good correlation between vibration amplitude and sonochemiluminescence at other points along the scaler tip. 'Cavimeter' analysis correlated well with luminol observations, suggesting the presence of primarily transient cavitation.

  16. Control of cavitation activity by different shockwave pulsing regimes.

    PubMed

    Huber, P; Debus, J; Jöchle, K; Simiantonakis, I; Jenne, J; Rastert, R; Spoo, J; Lorenz, W J; Wannenmacher, M

    1999-06-01

    The aim of the study was to control the number of inertial cavitation bubbles in the focal area of an electromagnetic lithotripter in water independently of peak intensity, averaged intensity or pressure waveform. To achieve this, the shockwave pulses were applied in double pulse sequences, which were administered at a fixed pulse repetition frequency (PRF) of 0.33 Hz. The two pulses of a double pulse were separated by a variable short pulse separation time (PST) ranging from 200 micros to 1500 ms. The number and size of the cavitation bubbles were monitored by scattered laser light and stroboscopic photographs. We found that the number of inertial cavitation bubbles as a measure of cavitation dose was substantially influenced by variation of the PST, while the pressure pulse waveform, averaged acoustic intensity and bubble size were kept constant. The second pulse of each double pulse generated more cavitation bubbles than the first. At 14 kV capacitor voltage, the total number of cavitation bubbles generated by the double pulses increased with shorter PST down to approximately 400 micros, the cavitation lifespan. The results can be explained by cavitation nuclei generated by the violently imploding inertial cavitation bubbles. This method of pulse administration and cavitation monitoring could be useful to establish a cavitation dose-effect relationship independently of other acoustic parameters.

  17. Observation of cavitation during shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Bailey, Michael R.; Crum, Lawrence A.; Pishchalnikov, Yuri A.; McAteer, James A.; Pishchalnikova, Irina V.; Evan, Andrew P.; Sapozhnikov, Oleg A.; Cleveland, Robin O.

    2005-04-01

    A system was built to detect cavitation in pig kidney during shock wave lithotripsy (SWL) with a Dornier HM3 lithotripter. Active detection, using echo on B-mode ultrasound, and passive cavitation detection (PCD), using coincident signals on confocal, orthogonal receivers, were equally sensitive and were used to interrogate the renal collecting system (urine) and the kidney parenchyma (tissue). Cavitation was detected in urine immediately upon SW administration in urine or urine plus X-ray contrast agent, but in tissue, cavitation required hundreds of SWs to initiate. Localization of cavitation was confirmed by fluoroscopy, sonography, and by thermally marking the kidney using the PCD receivers as high intensity focused ultrasound sources. Cavitation collapse times in tissue and native urine were about the same but less than in urine after injection of X-ray contrast agent. Cavitation, especially in the urine space, was observed to evolve from a sparse field to a dense field with strong acoustic collapse emissions to a very dense field that no longer produced detectable collapse. The finding that cavitation occurs in kidney tissue is a critical step toward determining the mechanisms of tissue injury in SWL. [Work sup ported by NIH (DK43881, DK55674, FIRCA), ONRIFO, CRDF and NSBRI SMS00203.

  18. Cavitation measurements on a pump-turbine model

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Kirschner, O.; Riedelbauch, S.

    2015-12-01

    When a hydraulic turbine is operated at off-design conditions, cavitation on the runner and other machine parts can occur. Vibration, noise and erosion caused by cavitation can damage the turbine and lead to a limitation of the operational range. To avoid damage of the turbine, it is fundamental to get knowledge of the presence of cavitation. In this paper, the acoustic emissions at a pump-turbine model at different operating conditions with and without the presence of cavitation were recorded and analysed. High speed video recordings were carried out simultaneously to validate the acoustic measurements. The main goal of the investigation was to compare the acoustic emissions with the visual observations at operating conditions with cavitation on the leading edge of the turbine runner. The analysis of the recorded signals and the visual observations are in good accordance for the investigated operating points.

  19. Ultrasonic atomization of liquids in drop-chain acoustic fountains

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2015-01-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain. PMID:25977591

  20. Cavitation nucleation

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence A.

    2001-05-01

    For his dissertation research at Harvard, Bob Apfel chose the subject of homogeneous nucleation, and conceived of some ingenious experiments to test existing theories. By selecting a small microdroplet of liquid, he could make the reasonable assumption that no inhomogeneities were present to serve as preferential sites for liquid rupture. However, Bob also studied dirty liquids, as well as very clean ones, and wrote some seminal papers on inhomogeneous nucleation, in which he developed the Golden rule: Know thy liquid! Currently, considerable attention has been devoted to the study of cavitation generation in vivo, particularly in blood, and, for this case, the nucleation conditions are much different than those for normal liquids. In this presentation, I will review some of Bob's pioneering studies and present some of our latest studies of cavitation inception, both in vitro and in vivo.

  1. A two-dimensional nonlinear model for the generation of stable cavitation bubbles.

    PubMed

    Vanhille, Christian

    2016-07-01

    Bubbles appear by acoustic cavitation in a liquid when rarefaction pressures attain a specific threshold value in a liquid. Once they are created, the stable cavitation bubbles oscillate nonlinearly and affect the ultrasonic field. Here we present a model developed for the study of bubble generation in a liquid contained in a two-dimensional cavity in which a standing ultrasonic field is established. The model considers dissipation and dispersion due to the bubbles. It also assumes that both the ultrasonic field and the bubble oscillations are nonlinear. The numerical experiments predict where the bubbles are generated from a population of nuclei distributed in the liquid and show how they affect the ultrasonic field. PMID:26964990

  2. A two-dimensional nonlinear model for the generation of stable cavitation bubbles.

    PubMed

    Vanhille, Christian

    2016-07-01

    Bubbles appear by acoustic cavitation in a liquid when rarefaction pressures attain a specific threshold value in a liquid. Once they are created, the stable cavitation bubbles oscillate nonlinearly and affect the ultrasonic field. Here we present a model developed for the study of bubble generation in a liquid contained in a two-dimensional cavity in which a standing ultrasonic field is established. The model considers dissipation and dispersion due to the bubbles. It also assumes that both the ultrasonic field and the bubble oscillations are nonlinear. The numerical experiments predict where the bubbles are generated from a population of nuclei distributed in the liquid and show how they affect the ultrasonic field.

  3. Putting technology to work in reducing cavitation damage

    SciTech Connect

    Shanahan, T.B.

    1995-09-01

    Cavitation has been a persistent problem on the large-sized hydro generating units at the 10,300-MW Guri project in Venezuela. Project owners used a state-of-the-art acoustic testing program to determine power ranges that would minimize cavitation damage while meeting operating goals.

  4. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field.

    PubMed

    Cao, Hua; Wan, Mingxi; Qiao, Yangzi; Zhang, Shusheng; Li, Ruixue

    2012-03-01

    An intensified charge coupled device (ICCD) camera was used to observe the spatial distribution of sonoluminescence (SL) and sonochemiluminescence (SCL) generated by cavitation bubbles in a 1.2 MHz focused ultrasound (FU) field in order to investigate the mechanisms of acoustic cavitation under different sonication conditions for FU therapeutic applications. It was found that SL emissions were located in the post-focal region. When the intensity of SL and SCL increased as the power rose, the growth of SCL was much higher than that of SL. In the post-focal region, the SCL emissions moved along specific paths and formed branch-like streamers. At the beginning of the ultrasound irradiation, cavitation bubbles generated SCL in both the pre-focal and the post-focal region. When the electrical power or the sonication time increased, the SCL in the post-focal region increased and became higher than that in the pre-focal region. The intensity of SCL in the focal region is usually the weakest because of "oversaturation". The spatial distribution of SCL near a tissue boundary differed from that obtained in free fields. It organized into special structures under different acoustic amplitudes. When the electrical power was relatively low, the SCL emission was conical shape which suggested a standing wave formation at the tissue-fluid boundary. When the electrical power exceeded a certain threshold, only a bright spot could be captured in the focus. The cavitation bubbles which centralized in the focus concentrated energy and hindered the formation of standing waves. With rising electrical power at high levels, besides a bright spot in the focus, there were some irregular light spots in pre-focal region, which indicated some cavitation bubbles or small bubble clusters achieved the threshold of SCL and induced the reaction with the luminol solution.

  5. Detection of cavitation in hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Escaler, Xavier; Egusquiza, Eduard; Farhat, Mohamed; Avellan, François; Coussirat, Miguel

    2006-05-01

    An experimental investigation has been carried out in order to evaluate the detection of cavitation in actual hydraulic turbines. The methodology is based on the analysis of structural vibrations, acoustic emissions and hydrodynamic pressures measured in the machine. The proposed techniques have been checked in real prototypes suffering from different types of cavitation. In particular, one Kaplan, two Francis and one Pump-Turbine have been investigated in the field. Additionally, one Francis located in a laboratory has also been tested. First, a brief description of the general features of cavitation phenomenon is given as well as of the main types of cavitation occurring in hydraulic turbines. The work presented here is focused on the most important ones which are the leading edge cavitation due to its erosive power, the bubble cavitation because it affects the machine performance and the draft tube swirl that limits the operation stability. Cavitation detection is based on the previous understanding of the cavity dynamics and its location inside the machine. This knowledge has been gained from flow visualisations and measurements in laboratory devices such as a high-speed cavitation tunnel and a reduced scale turbine test rig. The main techniques are the study of the high frequency spectral content of the signals and of their amplitude demodulation for a given frequency band. Moreover, low frequency spectral content can also be used in certain cases. The results obtained for the various types of cavitation found in the selected machines are presented and discussed in detail in the paper. Conclusions are drawn about the best sensor, measuring location, signal processing and analysis for each type of cavitation, which serve to validate and to improve the detection techniques.

  6. The relationship between electrical acoustic reflex thresholds and behavioral comfort levels in children and adult cochlear implant patients.

    PubMed

    Spivak, L G; Chute, P M

    1994-04-01

    The accuracy with which behavioral comfort levels could be predicted by the electrically elicited acoustic reflex threshold (EART) was examined in 35 Nucleus Cochlear Implant patients (16 adults and 19 children). EARTs were obtained by stimulating bipolar pairs of electrodes through the Nucleus Diagnostic Programming System and monitoring the change in middle ear admittance in the ear contralateral to the implanted ear. EARTs were successfully elicited in 24 patients. EARTs differed from behavioral comfort levels by a mean of 19.4 stimulus level units for adults and 9.6 stimulus level units for children. While EARTs were found to be acceptably close to behavioral comfort levels in four adults and eight children, EARTs significantly overestimated or underestimated comfort levels in the rest. The results of this study suggested that while the EART does not accurately predict comfort levels in all cases, it may provide valuable information regarding levels which should not be exceeded when programming the cochlear implant. Cautious use of information available from the EART may prove useful for programming the cochlear implant in children or adults who are unable to make reliable psychophysical judgments.

  7. Anticipatory model of cavitation

    NASA Astrophysics Data System (ADS)

    Kercel, Stephen W.; Allgood, Glenn O.; Dress, William B.; Hylton, James O.

    1999-03-01

    The Anticipatory System (AS) formalism developed by Robert Rosen provides some insight into the problem of embedding intelligent behavior in machines. AS emulates the anticipatory behavior of biological systems. AS bases its behavior on its expectations about the near future and those expectations are modified as the system gains experience. The expectation is based on an internal model that is drawn from an appeal to physical reality. To be adaptive, the model must be able to update itself. To be practical, the model must run faster than real-time. The need for a physical model and the requirement that the model execute at extreme speeds, has held back the application of AS to practical problems. Two recent advances make it possible to consider the use of AS for practical intelligent sensors. First, advances in transducer technology make it possible to obtain previously unavailable data from which a model can be derived. For example, acoustic emissions (AE) can be fed into a Bayesian system identifier that enables the separation of a weak characterizing signal, such as the signature of pump cavitation precursors, from a strong masking signal, such as a pump vibration feature. The second advance is the development of extremely fast, but inexpensive, digital signal processing hardware on which it is possible to run an adaptive Bayesian-derived model faster than real-time. This paper reports the investigation of an AS using a model of cavitation based on hydrodynamic principles and Bayesian analysis of data from high-performance AE sensors.

  8. Cavitation propagation in water under tension

    NASA Astrophysics Data System (ADS)

    Noblin, Xavier; Yip Cheung Sang, Yann; Pellegrin, Mathieu; Materials and Complex Fluids Team

    2012-11-01

    Cavitation appears when pressure decreases below vapor pressure, generating vapor bubbles. It can be obtain in dynamical ways (acoustic, hydraulic) but also in quasi-static conditions. This later case is often observed in nature, in trees, or during the ejection of ferns spores. We study the cavitation bubbles nucleation dynamics and its propagation in a confined microfabricated media. This later is an ordered array of microcavities made in hydrogel filled with water. When the system is put into dry air, it dehydrates, water leaves the cavities and tension (negative pressure) builds in the cavities. This can be sustained up to a critical pressure (of order -20 MPa), then cavitation bubbles appear. We follow the dynamics using ultra high speed imaging. Events with several bubbles cavitating in a few microseconds could be observed along neighboring cells, showing a propagation phenomenon that we discuss. ANR CAVISOFT 2010-JCJC-0407 01.

  9. FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    NASA Astrophysics Data System (ADS)

    Wu, Yulin

    2015-01-01

    multiphase flow detection Fluid-structure interaction induced by cavitation and multiphase flow Multi-scale modelling of cavitating flows and Multiphase Flow Cavitation nuclei: theory and experiments Supercavitation and its applications Synergetic effects of cavitation and silt-laden erosion Shock waves and microjets generated by cavitation Nonlinear oscillations of gas and vapour bubbles Fundamentals of physics of acoustic cavitation Sonochemistry and sonoluminescence Biomedical applications of cavitation effects Ultrasonic cavitation for molten metal treatment Cavitation for enhanced heat transfer The ISCM 2014 brought together 95 scientists, researchers and graduate students from 11 countries, affiliated with universities, technology centers and industrial firms to debate topics related to advanced technologies for cavitation and Multiphase Flow, which would enhance the sustainable development of cavitation and Multiphase Flow in interdisciplinary sciences and technology. The technical committee selected 54 technical papers on the following topics: (i) Hydrodynamic Cavitation, (ii) Super Cavitation, (iii) Pump Cavitation, (iv) Acoustic Cavitation, (v) Interdisciplinary Research of Cavitation and Multi-Phase Flows, and 13 invited plenary and invited forum lectures, which were presented at the symposium, to be included in the proceedings. All the papers of ISCM 2014, which are published in this Volume of IOP Conference Series: Materials Science and Engineering, had been peer reviewed through processes administered by the editors of the ISCM 2014, those are Yulin WU, Shouqi YUAN, Zhengwei WANG, Shuhong LIU, Xingqi LUO, Fujun WANG and Guoyu WANG. The papers published in this Volume include 54 technical papers and 3 full length texts of the invited lectures. We sincerely hope that the International Symposium on Cavitation and Multiphase Flow is a significant step forward in the world wide efforts to address the present challenges in the modern science and technology. Professor

  10. J-2X Turbopump Cavitation Diagnostics

    NASA Technical Reports Server (NTRS)

    Santi, I. Michael; Butas, John P.; Tyler, Thomas R., Jr.; Aguilar, Robert; Sowers, T. Shane

    2010-01-01

    The J-2X is the upper stage engine currently being designed by Pratt & Whitney Rocketdyne (PWR) for the Ares I Crew Launch Vehicle (CLV). Propellant supply requirements for the J-2X are defined by the Ares Upper Stage to J-2X Interface Control Document (ICD). Supply conditions outside ICD defined start or run boxes can induce turbopump cavitation leading to interruption of J-2X propellant flow during hot fire operation. In severe cases, cavitation can lead to uncontained engine failure with the potential to cause a vehicle catastrophic event. Turbopump and engine system performance models supported by system design information and test data are required to predict existence, severity, and consequences of a cavitation event. A cavitation model for each of the J-2X fuel and oxidizer turbopumps was developed using data from pump water flow test facilities at Pratt & Whitney Rocketdyne (PWR) and Marshall Space Flight Center (MSFC) together with data from Powerpack 1A testing at Stennis Space Center (SSC) and from heritage systems. These component models were implemented within the PWR J-2X Real Time Model (RTM) to provide a foundation for predicting system level effects following turbopump cavitation. The RTM serves as a general failure simulation platform supporting estimation of J-2X redline system effectiveness. A study to compare cavitation induced conditions with component level structural limit thresholds throughout the engine was performed using the RTM. Results provided insight into system level turbopump cavitation effects and redline system effectiveness in preventing structural limit violations. A need to better understand structural limits and redline system failure mitigation potential in the event of fuel side cavitation was indicated. This paper examines study results, efforts to mature J-2X turbopump cavitation models and structural limits, and issues with engine redline detection of cavitation and the use of vehicle-side abort triggers to augment the

  11. Cavitation dynamics on the nanoscale

    SciTech Connect

    Kotaidis, Vassilios; Plech, Anton

    2005-11-21

    The ultrafast excitation of gold nanoparticle sols causes a strong nonequilibrium heating of the particle lattice and subsequently of the water shell close to the particle surface. Above a threshold in laser fluence, which is defined by the onset of homogeneous nucleation, nanoscale vapor bubbles develop around the particles, expand and collapse again within the first nanosecond after excitation. We show the existence of cavitation on the nanometer and subnanosecond time scale, described within the framework of continuum thermodynamics.

  12. Relating xylem cavitation to transpiration in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic emmisions (AEs) from xylem cavitation events are characteristic of transpiration processes. Even though a body of work employing AE exists with a large number of species, cotton and other agronomically important crops have either not been investigated, or limited information exists. A few s...

  13. Regulating Ultrasound Cavitation in order to Induce Reproducible Sonoporation

    NASA Astrophysics Data System (ADS)

    Mestas, J.-L.; Alberti, L.; El Maalouf, J.; Béra, J.-C.; Gilles, B.

    2010-03-01

    Sonoporation would be linked to cavitation, which generally appears to be a non reproducible and unstationary phenomenon. In order to obtain an acceptable trade-off between cell mortality and transfection, a regulated cavitation generator based on an acoustical cavitation measurement was developed and tested. The medium to be sonicated is placed in a sample tray. This tray is immersed in in degassed water and positioned above the face of a flat ultrasonic transducer (frequency: 445 kHz; intensity range: 0.08-1.09 W/cm2). This technical configuration was admitted to be conducive to standing-wave generation through reflection at the air/medium interface in the well thus enhancing the cavitation phenomenon. Laterally to the transducer, a homemade hydrophone was oriented to receive the acoustical signal from the bubbles. From this spectral signal recorded at intervals of 5 ms, a cavitation index was calculated as the mean of the cavitation spectrum integration in a logarithmic scale, and the excitation power is automatically corrected. The device generates stable and reproducible cavitation level for a wide range of cavitation setpoint from stable cavitation condition up to full-developed inertial cavitation. For the ultrasound intensity range used, the time delay of the response is lower than 200 ms. The cavitation regulation device was evaluated in terms of chemical bubble collapse effect. Hydroxyl radical production was measured on terephthalic acid solutions. In open loop, the results present a great variability whatever the excitation power. On the contrary the closed loop allows a great reproducibility. This device was implemented for study of sonodynamic effect. The regulation provides more reproducible results independent of cell medium and experimental conditions (temperature, pressure). Other applications of this regulated cavitation device concern internalization of different particles (Quantum Dot) molecules (SiRNA) or plasmids (GFP, DsRed) into different

  14. Photoacoustic cavitation for theranostics: mechanism, current progress and applications

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Qin, D.; Wan, M.

    2015-12-01

    As an emerging cavitation technology, photoacoustic cavitation (PAC) means the formation of bubbles in liquids using focused laser and pre-established ultrasound synchronously. Its significant advantages include the decreased threshold of each modality and the precise location of cavitation determined by the focused laser. In this paper, a brief review of PAC is presented, including the physical mechanism description, the classic experimental technology, the representative results in variety of media, and its applications in biomedical imaging and therapy. Moreover, some preliminary results of PAC in perfluoropentane (PFP) liquid and PFP droplets investigated by passive cavitation detection (PCD) in our group are also presented.

  15. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi

    2006-09-01

    Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 micros. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W.

  16. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi

    2006-09-01

    Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 micros. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W. PMID:16571378

  17. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.

    PubMed

    Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F

    2015-09-01

    The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial. PMID:25800984

  18. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  19. Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL.

    PubMed

    Crum, L A

    1988-12-01

    The rarefaction shock wave produced by an extracorporeal shockwave lithotripter can result in liquid failure at numerous discrete sites near the second focus. When the liquid fails, vapor-filled cavities can grow to relatively large sizes and subsequently collapse with enormous violence. This phenomenon, called acoustic cavitation, has been shown to cause severe erosion in materials exposed to cavitation fields. It is proposed in this paper that ESWL devices generate acoustic cavitation in vivo and that the high speed liquid microjets produced during cavitation bubble collapse play an important role in renal calculi disintegration.

  20. Ultrahigh-Speed Dynamics of Micrometer-Scale Inertial Cavitation from Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kwan, J. J.; Lajoinie, G.; de Jong, N.; Stride, E.; Versluis, M.; Coussios, C. C.

    2016-10-01

    Direct imaging of cavitation from solid nanoparticles has been a challenge due to the combined nanosized length and time scales involved. We report on high-speed microscopic imaging of inertial cavitation from gas trapped on nanoparticles with a tunable hemispherical depression (nanocups) at nanosecond time scales. The high-speed recordings establish that nanocups facilitate bubble growth followed by inertial collapse. Nanoparticle size, acoustic pressure amplitude, and frequency influence bubble dynamics and are compared to model predictions. Understanding these cavitation dynamics is critical for applications enhanced by acoustic cavitation.

  1. Application of Hydrodynamic Cavitation for Food and Bioprocessing

    NASA Astrophysics Data System (ADS)

    Gogate, Parag R.

    Hydrodynamic cavitation can be simply generated by the alterations in the flow field in high speed/high pressure devices and also by passage of the liquid through a constriction such as orifice plate, venturi, or throttling valve. Hydrodynamic cavitation results in the formation of local hot spots, release of highly reactive free radicals, and enhanced mass transfer rates due to turbulence generated as a result of liquid circulation currents. These conditions can be suitably applied for intensification of different bioprocessing applications in an energy-efficient manner as compared to conventionally used ultrasound-based reactors. The current chapter aims at highlighting different aspects related to hydrodynamic cavitation, including the theoretical aspects for optimization of operating parameters, reactor designs, and overview of applications relevant to food and bioprocessing. Some case studies highlighting the comparison of hydrodynamic cavitation and acoustic cavitation reactors will also be discussed.

  2. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn.

    PubMed

    Žnidarčič, Anton; Mettin, Robert; Dular, Matevž

    2015-01-01

    Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e. below the acoustic driving frequency. The term "acoustic supercavitation" was proposed for this type of cavitation Žnidarčič et al. (2014) [1]. We tested several established hydrodynamic cavitation models on this problem, but none of them was able to correctly predict the flow features. As a specific characteristic of such acoustic cavitation problems lies in the rapidly changing driving pressures, we present an improved approach to cavitation modeling, which does not neglect the second derivatives in the Rayleigh-Plesset equation. Comparison with measurements of acoustic supercavitation at an ultrasonic horn of 20kHz frequency revealed a good agreement in terms of cavity dynamics, cavity volume and emitted pressure pulsations. The newly developed cavitation model is particularly suited for simulation of cavitating flow in highly fluctuating driving pressure fields. PMID:24889548

  3. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn.

    PubMed

    Žnidarčič, Anton; Mettin, Robert; Dular, Matevž

    2015-01-01

    Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e. below the acoustic driving frequency. The term "acoustic supercavitation" was proposed for this type of cavitation Žnidarčič et al. (2014) [1]. We tested several established hydrodynamic cavitation models on this problem, but none of them was able to correctly predict the flow features. As a specific characteristic of such acoustic cavitation problems lies in the rapidly changing driving pressures, we present an improved approach to cavitation modeling, which does not neglect the second derivatives in the Rayleigh-Plesset equation. Comparison with measurements of acoustic supercavitation at an ultrasonic horn of 20kHz frequency revealed a good agreement in terms of cavity dynamics, cavity volume and emitted pressure pulsations. The newly developed cavitation model is particularly suited for simulation of cavitating flow in highly fluctuating driving pressure fields.

  4. Use of hydrodynamic cavitation in (waste)water treatment.

    PubMed

    Dular, Matevž; Griessler-Bulc, Tjaša; Gutierrez-Aguirre, Ion; Heath, Ester; Kosjek, Tina; Krivograd Klemenčič, Aleksandra; Oder, Martina; Petkovšek, Martin; Rački, Nejc; Ravnikar, Maja; Šarc, Andrej; Širok, Brane; Zupanc, Mojca; Žitnik, Miha; Kompare, Boris

    2016-03-01

    The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning.

  5. Memory effect and redistribution of cavitation nuclei in a thin liquid layer.

    PubMed

    Bai, Lixin; Lin, Weijun; Wu, Pengfei; Deng, Jingjun; Li, Chao; Xu, Delong; Wang, Dong; Chen, Lishuo

    2016-09-01

    Temporal evolution and spatial distribution of acoustic cavitation structures in a thin liquid layer were investigated experimentally with high-speed photography. The inception and disappearance processes of cavitation bubble cloud revealed that the metastable cavitaton structures formed in the thin liquid layer caused a long-term "memory effect". A factor which weakens the memory effect was identified. The distribution of cavitation nuclei was investigated by changing the temporal decay of the memory effect. PMID:27150763

  6. In vitro and in vivo enhancement of sonodynamically active cavitation by second-harmonic superimposition.

    PubMed

    Umemura, S; Kawabata, K; Sasaki, K

    1997-01-01

    Acoustic cavitation, the primary mechanism of sonochemical effects, is known to be induced more easily by standing waves than by progressive waves. It has been found that acoustic cavitation can be an order of magnitude enhanced by superimposing the second harmonic on the fundamental. Significant synergistic effects between the fundamental and the second harmonic were observed in both in vitro and in vivo experiments employing a progressive wave field. Second-harmonic superimposition induces in vitro sonochemical reaction as well as fractional harmonic emission at a relatively low ultrasonic intensity even in a progressive wave field. The effect of second-harmonic superimposition was also investigated using exteriorized mouse livers suspended in degassed saline. The intensity threshold for the production of focal tissue damage, paired with fractional harmonic emission was significantly lowered by second-harmonic superimposition especially when a sonodynamically active agent had been administered to the mouse. Insonation with second-harmonic superimposition in combination with such administration may have potential use for selective tumor treatment.

  7. Three types of cavitation caused by air seeding.

    PubMed

    Shen, Fanyi; Wang, Yuansheng; Cheng, Yanxia; Zhang, Li

    2012-11-01

    There are different opinions of the dynamics of an air bubble entering a xylem conduit. In this paper, we present a thorough mechanical analysis and conclude that there are three types of cavitation caused by air seeding. After an air seed enters a conduit at high xylem pressure P'(1), along with the drop of the water potential, it will expand gradually to a long-shaped bubble and extend continually. This is the first type of air seeding, or the type of expanding gradually. When the xylem pressure is moderate, right after an air seed enters a conduit, it will expand first. Then, as soon as the pressure reaches a threshold the bubble will blow up to form a bubble in long shape, accompanied by acoustic (or ultra-acoustic) emission. It will extend further as xylem pressure decreases continually. This is the second type of air seeding, or the type of expanding-exploding, becoming a long-shaped bubble-lengthening by degrees. In the range of P'(1) ≤ - 3P(o) (P(o) is atmospheric pressure), soon after an air seed is sucked into a conduit it will explode immediately and the conduit will be full of the gas of the bubble instantly. This is the third type of air seeding, or the type of sudden exploding and filling conduit instantly. The third type is the frequent event in daily life of plant.

  8. Noninvasive thrombolysis using histotripsy beyond the intrinsic threshold (microtripsy).

    PubMed

    Zhang, Xi; Owens, Gabe E; Gurm, Hitinder S; Ding, Yu; Cain, Charles A; Xu, Zhen

    2015-07-01

    Histotripsy has been investigated as a noninvasive, drug-free, image-guided thrombolysis method that fractionates blood clots using acoustic cavitation alone. In previous histotripsy-mediated thrombolysis studies, cavitation clouds were generated using multi-cycle pulses and tended to form on vessel wall. To avoid potential cavitational damage to the vessel wall, a new histotripsy approach, termed microtripsy, has been recently discovered in which cavitation is generated via an intrinsic-threshold mechanism using single-cycle pulses. We hypothesize that microtripsy can generate and confine cavitation in vessel lumen without contacting the vessel wall, which results in recanalization within the clot and potentially eliminating vessel damage. To test our hypothesis, microtripsy was investigated for clot recanalization in an in vitro flow model. Clots were formed inside a vessel phantom (6.5 mm inner diameter) in line with a flow system. Microtripsy was applied by a 1-MHz transducer at a pulse repetition frequency of 50 Hz with a peak negative pressure (P-) of 30 MPa or 36 MPa. To create a flow channel through a clot, the cavitation focus was scanned through the clot at an interval of 0.3 or 0.7 mm. The treated clots were 3-D-scanned by a 20-MHz ultrasound probe to quantify the channels. Restored flow rates were measured and clot debris particles generated from the treatments were analyzed. In all treatments, the cavitation cloud was consistently generated in the center of the vessel lumen without contacting the vessel wall. After each treatment, a flow channel was successfully generated through and completely confined inside the clot. The channels had a diameter up to 60% of the vessel diameter, with restored flow up to 500 mL/min. The debris particles were small with more than 99.9% <10 μm and the largest at 153 um. Each clot (2 cm long) was recanalized within 7 min. The size of the flow channels increased by using higher P- and was significantly larger by using

  9. Influence of choking and arm lock technique in judo on the acoustic reflex threshold (art) in healthy well-trained male and female judoka.

    PubMed

    Raschka, Christoph; Koch, Horst Josef; Rau, Rüdiger

    2002-05-01

    The objective of this controlled parallel group study was to assess the effects of standardized choke holds (test) and arm lock techniques (controls) in on the acoustic hearing threshold. 104 (test group, 32 female subjects and 72 male subjects, mean age = 28.0 years, SD = 7.9 years) and 51 experienced judoka (controls. 21 female subjects, 30 male subjects; mean age = 26.8 years; SD = 13.2 years) participated. Acoustic reflex thresholds (ART [dB]) were measured separately before and after each manoeuvre both for air and bone conduction of the right and left side. The difference Dart of the ART before and after a manoeuvre (Dart = ARTbefore - ARTafter) was calculated. Data were presented descriptively and nonparametric statistics was applied for nonrelated (Kruskal Wallis ANOVA) or related samples (Friedman ANOVA). Wilcoxon tests were used for pre/post comparisons of original ART values. The effect of choking on Dart was significantly different from the effect of the arm lock technique on Dart independent of the experimental condition. A significant influence of applied frequencies on Dart was ascertained if a choking technique was used. For all frequency ranges applied a highly significant improvement of the ART after choking was found. With regard to bone conduction thresholds increased by an average of 6.1 dB and for air conduction the average increase was 4.9 dB. On the contrary, arm locks induced a slight mean deterioration of the ART for bone conduction of 1.8 dB. The ART for bone conduction also showed a trend towards a reduction after arm locks with a mean decrease of about 1.2 dB. In conclusion, standardized choking manoeuvres reduced the ART corresponding to an improved hearing both with regard to air and bone conduction. Such an effect on hearing ability was not found for arm lock techniques.

  10. Adaptable Design Improvements for Electromagnetic Shock Wave Lithotripters and Techniques for Controlling Cavitation

    NASA Astrophysics Data System (ADS)

    Smith, Nathan Birchard

    In this dissertation work, the aim was to garner better mechanistic understanding of how shock wave lithotripsy (SWL) breaks stones in order to guide design improvements to modern electromagnetic (EM) shock wave lithotripters. To accomplish this goal, experimental studies were carefully designed to isolate mechanisms of fragmentation, and models for wave propagation, fragmentation, and stone motion were developed. In the initial study, a representative EM lithotripter was characterized and tested for in vitro stone comminution efficiency at a variety of field positions and doses using phantom kidney stones of variable physical properties, and in different fluid mediums to isolate the contribution of cavitation. Through parametric analysis of the acoustic field measurements alongside comminution results, a logarithmic correlation was determined between average peak pressure incident on the stone surface and comminution efficiency. It was also noted that for a given stone type, the correlations converged to an average peak pressure threshold for fragmentation, independent of fluid medium in use. The correlation of average peak pressure to efficacy supports the rationale for the acoustic lens modifications, which were pursued to simultaneously enhance beam width and optimize the pulse profile of the lithotripter shock wave (LSW) via in situ pulse superposition for improved stone fragmentation by stress waves and cavitation, respectively. In parallel, a numerical model for wave propagation was used to investigate the variations of critical parameters with changes in lens geometry. A consensus was reached on a new lens design based on high-speed imaging and stone comminution experiments against the original lens at a fixed acoustic energy setting. The results have demonstrated that the new lens has improved efficacy away from the focus, where stones may move due to respiration, fragmentation, acoustic radiation forces, or voluntary

  11. Precise spatial control of cavitation erosion in a vessel phantom by using an ultrasonic standing wave.

    PubMed

    Shi, Aiwei; Huang, Peixuan; Guo, Shifang; Zhao, Lu; Jia, Yingjie; Zong, Yujin; Wan, Mingxi

    2016-07-01

    In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage. PMID:26964937

  12. Precise spatial control of cavitation erosion in a vessel phantom by using an ultrasonic standing wave.

    PubMed

    Shi, Aiwei; Huang, Peixuan; Guo, Shifang; Zhao, Lu; Jia, Yingjie; Zong, Yujin; Wan, Mingxi

    2016-07-01

    In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage.

  13. An Anticipatory Model of Cavitation

    SciTech Connect

    Allgood, G.O.; Dress, W.B., Jr.; Hylton, J.O.; Kercel, S.W.

    1999-04-05

    The Anticipatory System (AS) formalism developed by Robert Rosen provides some insight into the problem of embedding intelligent behavior in machines. AS emulates the anticipatory behavior of biological systems. AS bases its behavior on its expectations about the near future and those expectations are modified as the system gains experience. The expectation is based on an internal model that is drawn from an appeal to physical reality. To be adaptive, the model must be able to update itself. To be practical, the model must run faster than real-time. The need for a physical model and the requirement that the model execute at extreme speeds, has held back the application of AS to practical problems. Two recent advances make it possible to consider the use of AS for practical intelligent sensors. First, advances in transducer technology make it possible to obtain previously unavailable data from which a model can be derived. For example, acoustic emissions (AE) can be fed into a Bayesian system identifier that enables the separation of a weak characterizing signal, such as the signature of pump cavitation precursors, from a strong masking signal, such as a pump vibration feature. The second advance is the development of extremely fast, but inexpensive, digital signal processing hardware on which it is possible to run an adaptive Bayesian-derived model faster than real-time. This paper reports the investigation of an AS using a model of cavitation based on hydrodynamic principles and Bayesian analysis of data from high-performance AE sensors.

  14. Cavitation in flowing superfluid helium

    NASA Technical Reports Server (NTRS)

    Daney, D. E.

    1988-01-01

    Flowing superfluid helium cavitates much more readily than normal liquid helium, and there is a marked difference in the cavitation behavior of the two fluids as the lambda point is traversed. Examples of cavitation in a turbine meter and centrifugal pump are given, together with measurements of the cavitation strength of flowing superfluid helium. The unusual cavitation behavior of superfluid helium is attributed to its immense thermal conductivity .

  15. Complete Inhibition Of Ultrasound Induced Cytolysis In The Presence Of Inertial Cavitation

    NASA Astrophysics Data System (ADS)

    Sostaric, Joe Z.; Miyoshi, Norio; Riesz, Peter; De Graff, William G.; Mitchell, James B.

    2006-05-01

    The investigation of ultrasound for biotechnological applications including non-invasive surgery (HIFU), drug/gene delivery to cells (sonoporation) or through the skin (sonophoresis) and ultrasound assisted bioreactors has focused mainly on the physical effects of ultrasound. The beneficial effects of ultrasound rely on a number of application-dependent mechanisms, and may include tissue heating, acoustic streaming or cavitation. Although acoustic cavitation is necessary in some systems, cavitation bubbles simultaneously result in uncontrollable cell damage and cytolysis. Thus, the development of a number of biotechnological uses of ultrasound has been hampered by the necessity to constrain exposure parameters in order to prevent the occurrence of acoustic cavitation or to at least limit the detrimental effects of cavitation. The current study shows that non-toxic concentrations of specific n-alkyl solutes completely inhibit ultrasound induced cytolysis of in vitro suspensions of human leukemia cells (HL-60). Protection of the whole cell population from cytolysis is achieved even under extreme ultrasound exposure conditions that result in cytolysis of 100 % of the cell population in the absence of the n-alkyl solutes. Furthermore, the n-alkyl solutes did not hinder the process of inertial cavitation. This method may allow utilization of beneficial effects of ultrasound and cavitation while protecting cells from cavitation induced cytolysis and thereby presents new possibilities for ultrasound in medicine and biology.

  16. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    SciTech Connect

    Manzi, Nicholas J; Chitnis, Parag V; Holt, Ray G; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark W

    2010-01-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will be reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  17. Surge instability on a cavitating propeller

    NASA Astrophysics Data System (ADS)

    Duttweiler, Mark Edward

    2001-11-01

    The present study details results from experiments investigating a surge instability on a cavitating propeller. Initially, the stable behavior of the propeller is explored, and the nature and extent of the cavitation is documented at various experimental conditions, including propeller yaw. The cavitation surge instability is first explored through visual observation of the cavitation on the propeller blades and in the tip vortices. Particular note is made of similarities between the behavior of the re-entrant jets and that noted by other investigators. It is also observed that the nature of the instability is closely related to the partial cavity instability observed on single, two-dimensional hydrofoils. The flow conditions that lead to instability are determined and it is shown that onset corresponds to a specific configuration of attached cavity lengths on an individual propeller blade. Pressure measurements are obtained from transducers within the experimental facility, and the acoustic signature of the instability is identified. The magnitude of the fluctuating pressures is very large, presumably capable of producing severe hull vibration. A simple model is developed based on cavity volume estimates obtained from high speed video footage, and the predictions of the model are compared with the experimentally obtained pressures. To assess the significance of the surrounding facility in initiating and sustaining the instability, a model is developed for the experimental facility dynamics. The predictions of this model are then compared with an experimentally determined facility response to a volumetric excitation imposed by an oscillating piston. To quantify the response of the cavitation to fluctuations in test section conditions, quasistatic estimates are obtained for the cavitation compliance and mass flow gain factor of the propeller. These parameters have previously been employed in developing system transfer functions for cavitating pumps. Finally, a model

  18. Air emission into a water shear layer through porous media. Part 2: Cavitation induced pressure attenuation

    SciTech Connect

    Myer, E.C.; Marboe, R.C.

    1994-12-31

    Cavitation near the casing of a hydroturbine can lead to damage through both cavitation erosion and mechanical vibration of the casing and the associated piping. Cavitation erosion results from the collapse of cavitation bubbles on or near a surface such as the casing wall. Mechanical vibrations transmitted to the casing directly through the collapse of bubbles on the casing wall indirectly through a coupling of the acoustic pressure pulse due to a nearby collapse on the turbine blade. Air emission along the casing can reduce the intensity of the tip vortex and the gap cavitation through ventilation of the cavity. Reduction in the machinery vibration is obtained by reduction of the intensity of cavitation bubble collapse and attenuation and scattering of the radiated acoustic pressure. This requires a bubble layer which may be introduced in the vicinity of the turbine blade tips. This layer remains for some distance downstream of the blades and is effective for attenuation of tip vortex induced noise and blade surface cavitation noise. For the purpose of characterizing this bubble layer within a water pipe, the authors spanned a pipe with a two dimensional hydrofoil and emitted air through porous media (20 and 100 micron porosity sintered stainless steel) into the shear flow over the hydrofoil. This paper is limited to an investigation of the attenuation of acoustic pressure propagating to the casing rather than the reduction in acoustic source level due to collapse cushioning effects.

  19. Dynamics of Isolated Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Pennings, Pepijn; Bosschers, Johan; van Terwisga, Tom

    2014-11-01

    Performance of ship propellers and comfort levels in the surroundings are limited by various forms of cavitation. Amongst these forms tip vortex cavitation is one of the first appearing forms and is expected to be mainly responsible for the emission of broadband pressure fluctuations typically occurring between the 4th to the 7th blade passing frequency (approx. 40--70 Hz). These radiated pressure pulses are likely to excite parts of the hull structure resulting in a design compromise between efficiency and comfort. Insight is needed in the mechanism of acoustic emission from the oscillations by a tip vortex cavity. In the current experimental study the tip vortex cavity from a blade with an elliptic planform and sections based on NACA 662 - 415 with meanline a = 0 . 8 is observed using high speed shadowgraphy in combination with blade force and acoustic measurements. An analytic model describing three main cavity deformation modes is verified and used to explain the origin of a cavity eigenfrequency or ``vortex singing'' phenomenon observed by Maines and Arndt (1997) on the tip vortex cavity originating from the same blade. As no hydrodynamic sound originating from the tip vortex cavity was observed it is posed that a tip flow instability is essential for ``vortex singing.'' This research was funded by the Lloyd's Register Foundation as part of the International Institute for Cavitation Research.

  20. Relating xylem cavitation to gas exchange in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic emissions (AEs) from xylem cavitation events are characteristic of transpiration processes. Though a body of work using AE exists with a large number of species, cotton and other agronomically important crops have either not been investigated, or limited information exists. The objective of...

  1. Physics associated with cavitation induced material damage

    NASA Technical Reports Server (NTRS)

    Peterson, F. B.

    1974-01-01

    The role of cavitation in mechanical failure is discussed. Some of the most common types of material damage associated with the presence of cavitation are surface material removal, delamination and structural vibration. This occurs in external flows such as on propellers, hydrofoils, and high speed non-lifting surfaces. In internal flows, pipe bends, inlets, constructions, pumps and turbines are typical. Nominally nonflowing liquids are also susceptible in, for example, strong acoustic fields and high energy particle detectors. For flowing systems, Bernoulli's equation shows how a local pressure is reduced as the fluid's velocity is increased. At sufficiently high velocities, a tension can actually develop and this has, in fact, been demonstrated experimentally. Once the pressure is reduced below the fluid vapor pressure a vapor cavity can be nucleated. Various aspects of this process are simply shown by considering the flow over a lifting surface.

  2. A piezoelectric polymer cavitation sensor installed in an emulsion generation microchannel device and an evaluation of cavitation state

    NASA Astrophysics Data System (ADS)

    Kanda, Takefumi; Yabumoto, Masaki; Suzumori, Koichi

    2016-07-01

    In previous works, ultrasonic emulsification was realized using small microchannel devices oscillated by piezoelectric transducers. By using the devices, the emulsification in the flow process was also realized. In these devices, the driving frequency was higher than 2 MHz. This value is higher than the maximum audible field. On the other hand, the frequency is too high to utilize the cavitation effect. This is because the cavitation threshold depends on the frequency. The aim of this study is to confirm the cavitation state in the microchannel device using a piezoelectric polymer sensor. A micropatterned cavitation detection sensor has been fabricated by a photolithography technique and evaluated in a high-intensity ultrasound field. The emulsification state in the microchannel device has been evaluated using the fabricated sensor.

  3. Sonosensitive nanoparticles for controlled instigation of cavitation and drug delivery by ultrasound

    NASA Astrophysics Data System (ADS)

    Wagstaffe, Sarah J.; Schiffter, Heiko A.; Arora, Manish; Coussios, Constantin-C.

    2012-10-01

    Reliable instigation of cavitation in-vivo during ultrasound therapy is notoriously difficult. Lowering the peak rarefractional pressure required to initiate cavitation (the cavitation threshold) has been previously addressed using ultrasound contrast agents in the form of encapsulated stabilized micron scale bubbles. These agents lack stability and are generally too large to extravasate into tumours and other target tissues. Solid nanoparticles are proposed as novel cavitation nucleation agents, which overcome these limitations. Such agents are manufactured to achieve high surface roughness and hydrophobicity, facilitating air entrapment upon drying, thus harboring an abundance of cavitation nucleation sites. These nanoparticulate nucleating agents have been found to lower the cavitation threshold significantly in aqueous biological media, enabling reproducible cavitation activity during repeated exposure to therapeutic ultrasound. This paper investigates the engineering of core-shell nanoparticles and examines their ability to initiate inertial cavitation in the context of ultrasound-enhanced localized drug delivery for cancer. Core-shell nanoparticles have been found to decrease the peak focal pressure where the probability of cavitation is greater than 0.5, by factors of five- to ten-fold, dependent on particle size, total surface area and surface morphology.

  4. Cavitation guide for control valves

    SciTech Connect

    Tullis, J.P.

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.

  5. Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation.

    PubMed

    Plaksin, Michael; Kimmel, Eitan; Shoham, Shy

    2016-01-01

    Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control.

  6. Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation.

    PubMed

    Plaksin, Michael; Kimmel, Eitan; Shoham, Shy

    2016-01-01

    Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control. PMID:27390775

  7. Cavitation damage prediction for the JSNS mercury target vessel

    NASA Astrophysics Data System (ADS)

    Naoe, Takashi; Kogawa, Hiroyuki; Wakui, Takashi; Haga, Katsuhiro; Teshigawara, Makoto; Kinoshita, Hidetaka; Takada, Hiroshi; Futakawa, Masatoshi

    2016-01-01

    The liquid mercury target system for the Japan Spallation Neutron Source (JSNS) at the Materials and Life science experimental Facility (MLF) in the Japan Proton Accelerator Research Complex (J-PARC) is designed to produce pulsed neutrons. The mercury target vessel in this system, which is made of type 316L stainless steel, is damaged by pressure wave-induced cavitation due to proton beam bombardment. Currently, cavitation damage is considered to be the dominant factor influencing the service life of the target vessel rather than radiation damage. In this study, cavitation damage to the interior surface of the target vessel was predicted on the basis of accumulated damage data from off-beam and on-beam experiments. The predicted damage was compared with the damage observed in a used target vessel. Furthermore, the effect of injecting gas microbubbles on cavitation damage was predicted through the measurement of the acoustic vibration of the target vessel. It was shown that the predicted depth of cavitation damage is reasonably coincident with the observed results. Moreover, it was confirmed that the injection of gas microbubbles had an effect on cavitation damage.

  8. Prediction of pump cavitation performance

    NASA Technical Reports Server (NTRS)

    Moore, R. D.

    1974-01-01

    A method for predicting pump cavitation performance with various liquids, liquid temperatures, and rotative speeds is presented. Use of the method requires that two sets of test data be available for the pump of interest. Good agreement between predicted and experimental results of cavitation performance was obtained for several pumps operated in liquids which exhibit a wide range of properties. Two cavitation parameters which qualitatively evaluate pump cavitation performance are also presented.

  9. Detecting Cavitation Pitting Without Disassembly

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.

    1986-01-01

    Technique for detecting cavitation pitting in pumps, turbines, and other machinery uses low-level nuclear irradiation. Isotopes concentrated below surface emit gamma radiation, a portion of which is attenuated by overlying material. Where there are cavitation pits, output of gamma-ray detector fluctuates as detector is scanned near pits. Important to detect cavitation pits because nozzle, turbine blade, or other pump component weakened by cavitation could fail catastrophically and cause machine to explode.

  10. Loss of echogenicity and onset of cavitation from echogenic liposomes: pulse repetition frequency independence

    PubMed Central

    Radhakrishnan, Kirthi; Haworth, Kevin J; Peng, Tao; McPherson, David D.; Holland, Christy K.

    2014-01-01

    Echogenic liposomes (ELIP) are being developed for the early detection and treatment of atherosclerotic lesions. An 80% loss of echogenicity of ELIP (Radhakrishnan et al. 2013) has been shown to be concomitant with the onset of stable and inertial cavitation. The ultrasound pressure amplitude at which this occurs is weakly dependent on pulse duration. Smith et al. (2007) have reported that the rapid fragmentation threshold of ELIP (based on changes in echogenicity) is dependent on the insonation pulse repetition frequency (PRF). The current study evaluates the relationship between loss of echogenicity and cavitation emissions from ELIP insonified by duplex Doppler pulses at four PRFs (1.25 kHz, 2.5 kHz, 5 kHz, and 8.33 kHz). Loss of echogenicity was evaluated on B-mode images of ELIP. Cavitation emissions from ELIP were recorded passively on a focused single-element transducer and a linear array. Emissions recorded by the linear array were beamformed and the spatial widths of stable and inertial cavitation emissions were compared to the calibrated azimuthal beamwidth of the Doppler pulse exceeding the stable and inertial cavitation thresholds. The inertial cavitation thresholds had a very weak dependence on PRF and stable cavitation thresholds were independent of PRF. The spatial widths of the cavitation emissions recorded by the passive cavitation imaging system agreed with the calibrated Doppler beamwidths. The results also show that 64%–79% loss of echogenicity can be used to classify the presence or absence of cavitation emissions with greater than 80% accuracy. PMID:25438849

  11. Impact of propagating and standing waves on cavitation appearance.

    PubMed

    Kenis, Alexander M; Grinfeld, Javier; Zadicario, Eyal; Vitek, Shuki

    2012-01-01

    Standing waves play a significant role in the appearance of cavitation phenomena. The goal of this study was to investigate the effect that the relation between standing and propagating waves in a focused field has on acoustic bubble cloud formation. Measurements of the cavitation signals were performed on five different configurations of a hemispheric phased array transducer (230 kHz) representing a wide range of relations between propagating and standing waves. The results show that configurations with a larger propagating component induce bubble clouds at lower pressures than configurations with a larger standing component.

  12. Cavitations induced by plasmas, plasmas induced by cavitations, and plasmas produced in cavitations

    NASA Astrophysics Data System (ADS)

    Sasaki, Koichi

    2015-11-01

    Cavitation bubbles are not static bubbles but have dynamics of expansion, shrinkage, and collapse. Since the collapse of a cavitation bubble is roughly an adiabatic process, the inside of the bubble at the collapse has a high temperature and a high pressure, resulting in the production of a plasma. This talk will be focused on cavitation-related plasma phenomena and the role of the cavitation bubble in the synthesis of nanoparticles. A method for inducing a cavitation bubble is laser ablation in liquid. After the disappearance of laser-produced plasma with optical emission, we have observed the formation of a cavitation bubble. We have found that the inside of the cavitation bubble is the reaction field for the synthesis of nanoparticles. The atomic and molecular species ejected from the ablation target toward the liquid are transported into the cavitation bubble, and they condense into nanoparticles inside it. It is important to note that nanoparticles are stored inside the cavitation bubble until its collapse. We have shown that the size and the structure of nanoparticles are controlled by controlling the dynamics of the cavitation bubbles. Another method for inducing cavitation bubbles is to use ultrasonic power. We have found a simple method for the efficient production of standing cavitation bubbles. The method is just inserting a punching metal plate into water irradiated by ultrasonic wave. The depth of water and the position of the punching plate should be tuned precisely. We have proposed the mechanism of the efficient production of cavitation bubbles by this method. Currently, we try to have electric discharges in cavitation bubbles with the intention of realizing nonequilibrium sonochemistry. In particular, the electric discharge in a laser-induced cavitation bubble shows interesting distortion of the bubble shape, which suggests the electrostatic characteristics of the cavitation bubble.

  13. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  14. Non-invasive Thrombolysis using Histotripsy beyond the “Intrinsic” Threshold (Microtripsy)

    PubMed Central

    Zhang, Xi; Owens, Gabe E.; Gurm, Hitinder S.; Ding, Yu; Cain, Charles A.; Xu, Zhen

    2015-01-01

    Histotripsy has been investigated as a non-invasive, drug-free, image-guided thrombolysis method that fractionates blood clots using acoustic cavitation alone. In previous histotripsy-mediated thrombolysis studies, cavitation clouds were generated using multi-cycle pulses and tended to form on vessel wall. To avoid potential cavitational damage to vessel wall, a new histotripsy approach, termed Microtripsy, has been recently discovered where cavitation is generated via an intrinsic-threshold mechanism using single-cycle pulses. We hypothesize that microtripsy can generate and confine cavitation in vessel lumen without contacting vessel wall, which results in recanalization within clot and potentially eliminating vessel damage. To test our hypothesis, microtripsy was investigated for clot recanalization in an in vitro flow model. Clots were formed inside a vessel phantom (6.5 mm inner diameter) in line with a flow system. Microtripsy was applied by a 1-MHz transducer at a pulse repetition frequency of 50 Hz with a peak negative pressure (P-) of 30 MPa or 36 MPa. To create a flow channel through a clot, the cavitation focus was scanned through the clot at an interval of 0.3 or 0.7 mm. The treated clots were 3D-scanned by a 20-MHz ultrasound probe to quantify the channels. Restored flow rates were measured and clot debris particles generated from the treatments were analyzed. In all treatments, cavitation cloud was consistently generated in the center of the vessel lumen without contacting the vessel wall. After each treatment, a flow channel was successfully generated through and completely confined inside the clot. The channels had a diameter up to 60 % of the vessel diameter with restored flow up to 500 mL/min. The debris particles were small with over 99.9% < 10 μm and the largest at 153 um. Each clot (2 cm long) was recanalized within 7 min. The size of the flow channels increased by using higher P- and was significantly larger by using the 0.3 mm scan interval

  15. A Study of Cavitation Erosion

    SciTech Connect

    Hiromu Isaka; Masatsugu Tsutsumi; Tadashi Shiraishi; Hiroyuki Kobayashi

    2002-07-01

    The authors performed experimental study for the purpose of the following two items from a viewpoint of cavitation erosion of a cylindrical orifice in view of a problem at the letdown orifice in PWR (Pressurized Water Reactor). 1. To get the critical cavitation parameter of the cylindrical orifice to establish the design criteria for prevention of cavitation erosion, and 2. to ascertain the erosion rate in such an eventuality that the cavitation erosion occurs with the orifice made of stainless steel with precipitation hardening (17-4-Cu hardening type stainless steel), so that we confirm the appropriateness of the design criteria. Regarding the 1. item, we carried out the cavitation tests to get the critical cavitation parameters inside and downstream of the orifice. The test results showed that the cavitation parameter at inception is independent of the length or the diameter of the orifice. Moreover, the design criteria of cavitation erosion of cylindrical orifices have been established. Regarding the 2. item, we tested the erosion rate under high-pressure conditions. The cavitation erosion actually occurred in the cylindrical orifice at the tests that was strongly resemble to the erosion occurred at the plant. It will be seldom to reproduce resemble cavitation erosion in a cylindrical orifice with the hard material used at plants. We could establish the criteria for preventing the cavitation erosion from the test results. (authors)

  16. Harness cavitation to improve processing

    SciTech Connect

    Pandit, A.G.; Moholkar, V.S.

    1996-07-01

    Mention cavitation to most chemical engineers, and they undoubtedly think of it as an operational problem. Indeed, the rapid creation and then collapse of bubbles, which is after all what cavitation involves, can destroy pumps and erode other equipment. Cavitation, however, also can have a positive side--presuming it is designed for and not unplanned. In this article, the authors look at how cavitation can be harnessed to improve processes, and the mechanisms for inducing cavitation--ultrasonics and hydrodynamics--and their likely roles. Sonication, that is, the use of ultrasound, is the conventional approach for creating cavitation, and so they turn to it first. Over the past few years, a number of groups have attempted to solve the problem of scale-up and design of ultrasonic reactors. The authors review the systems that already exist and also explore a simpler and efficient alternative to the ultrasonic reactor, the hydrodynamic cavitation reactor.

  17. Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor.

    PubMed

    Servant, G; Caltagirone, J P; Gérard, A; Laborde, J L; Hita, A

    2000-10-01

    The use of high frequency ultrasound in chemical systems is of major interest to optimize chemical procedures. Characterization of an open air 477 kHz ultrasound reactor shows that, because of the collapse of transient cavitation bubbles and pulsation of stable cavitation bubbles, chemical reactions are enhanced. Numerical modelling is undertaken to determine the spatio-temporal evolution of cavitation bubbles. The calculus of the emergence of cavitation bubbles due to the acoustic driving (by taking into account interactions between the sound field and bubbles' distribution) gives a cartography of bubbles' emergence within the reactor. Computation of their motion induced by the pressure gradients occurring in the reactor show that they migrate to the pressure nodes. Computed bubbles levitation sites gives a cartography of the chemical activity of ultrasound. Modelling of stable cavitation bubbles' motion induced by the motion of the liquid gives some insight on degassing phenomena. PMID:11062879

  18. Ozone and Cavitation Combination

    NASA Astrophysics Data System (ADS)

    Carreon, Ernestina; Traversoni, Leonardo

    2009-09-01

    From laboratory measurements it is well known that the addition of ozone and cavitation enhances the properties of both, understanding for that the ones related to disinfection and carbon removal from waste water. This paper shows modeling of such phenomena that gives some light to the understanding of it and also provides the opportunity to improve the effectiveness of the current procedures.

  19. Inertial cavitation in theranostic nanoemulsions with simultaneous pulsed laser and low frequency ultrasound excitation

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Wei, Chen-Wei; Xia, Jinjun; Pelivanov, Ivan M.; Lombardo, Michael; Perez, Camilo; Matula, Thomas J.; Pozzo, Danilo; O'Donnell, Matthew

    2014-03-01

    Ultrasound-induced inertial cavitation is a mechanical process used for site-localized therapies such as non-invasive surgery. Initiating cavitation in tissue requires very high intensity focused ultrasound (HIFU) and low-frequencies. Hence, some applications like thrombolysis require targeted contrast agents to reduce peak intensities and the potential for secondary effects. A new type of theranostic nanoemulsion has been developed as a combined ultrasound (US)/photoacoustic(PA) agent for molecular imaging and therapy. It includes a nanoscale emulsion core encapsulated with a layer of gold nanospheres at the water/ oil interface. Its optical absorption exhibits a spectrum broadened up to 1100 nm, opening the possibility that 1064 nm light can excite cavitation nuclei. If optically-excited nuclei are produced at the same time that a low-frequency US wave is at peak negative pressure, then highly localized therapies based on acoustic cavitation may be enabled at very low US pressures. We have demonstrated this concept using a low-cost, low energy, portable 1064 nm fiber laser in conjunction with a 1.24 MHz US transducer for simultaneous laser/US excitation of nanoemulsions. Active cavitation detection from backscattered signals indicated that cavitation can be initiated at very low acoustic pressures (less than 1 MPa) when laser excitation coincides with the rarefaction phase of the acoustic wave, and that no cavitation is produced when light is delivered during the compressive phase. US can sustain cavitation activity during long acoustic bursts and stimulate diffusion of the emulsion, thus increasing treatment speed. An in vitro clot model has been used to demonstrate combined US and laser excitation of the nanoemulsion for efficient thrombolysis.

  20. Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo

    SciTech Connect

    Hutson, M. Shane; Ma Xiaoyan

    2007-10-12

    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo)--specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo --especially at 355 nm--due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

  1. Formation of Zones with Maximum Supersonic Cavitation Intensity in Single-Component and Multicomponent Media

    NASA Astrophysics Data System (ADS)

    Bakhtin, B. I.; Ivashov, A. I.; Kuznetsov, A. V.; Skorokhodov, A. S.

    2016-05-01

    Experimental studies have been made on the formation of highly active cavitation zones in fluid media at high pressures (up to 6.5 MPa) and temperatures (up to 150°C) with the use of a high-power ultrasonic installation. It has been shown that attempts to increase the cavitation intensity in single-component and multicomponent media by increasing the power of the ultrasonic installation to above a certain limit lead to a strong degradation of the cavitation processes. This is due to the appearance of hydrodynamical flows generated by longitudinal vibrations of the installation radiator waveguide. Eliminating or weakening such flows makes it possible to increase markedly the efficiency of cavitation treatment by increasing the medium pressure (in the range of 0.5-1.5 MPa) and choosing the optimum ratio between the temperature of the medium and the power of the ultrasonic installation (specific acoustic power of the radiator). We recommend to use for the cavitation intensity index the acoustic activity of the cavitation zone (acoustic noise amplitude in the frequency range of 200 kHz-10 MHz), as well as its physical activity determined by the destruction rate of thin-layer indicators.

  2. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment.

    PubMed

    Nightingale, Kathryn R; Church, Charles C; Harris, Gerald; Wear, Keith A; Bailey, Michael R; Carson, Paul L; Jiang, Hui; Sandstrom, Kurt L; Szabo, Thomas L; Ziskin, Marvin C

    2015-07-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term "conditionally" is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues.

  3. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment

    PubMed Central

    Nightingale, Kathryn R.; Church, Charles C.; Harris, Gerald; Wear, Keith A.; Bailey, Michael R.; Carson, Paul L.; Jiang, Hui; Sandstrom, Kurt L.; Szabo, Thomas L.; Ziskin, Marvin C.

    2016-01-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term “conditionally” is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. PMID:26112617

  4. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment.

    PubMed

    Nightingale, Kathryn R; Church, Charles C; Harris, Gerald; Wear, Keith A; Bailey, Michael R; Carson, Paul L; Jiang, Hui; Sandstrom, Kurt L; Szabo, Thomas L; Ziskin, Marvin C

    2015-07-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term "conditionally" is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. PMID:26112617

  5. Acoustic droplet vaporization for diagnostic and therapeutic applications

    NASA Astrophysics Data System (ADS)

    Kripfgans, Oliver Daniel

    A technology, termed Acoustic Droplet Vaporization (ADV), is developed whereby superheated droplets are caused to vaporize by application of an ultrasonic field. The droplet emulsion (90% <6 um diameter) is made by mixing saline, albumin, and perfluorocarbon at high speed. It has been observed that an acoustic pressure threshold exists above which the droplets vaporize into bubbles approximately 25-times the original droplet diameter. For frequencies between 1.5 and 8 MHz, the threshold decreases from 4.5 to 0.75 MPa peak rarefactional pressure. The single pulse efficiency of ADV has been measured as 26%. This technology might be useful for tissue occlusion in cancer treatment as well as for aberration correction in acoustic imaging. To demonstrate these potential applications, gas bubbles were made in vivo in animal models by ADV. It was found that ADV could be used to temporarily form large gas bubbles (>30 um) in vivo, which at large number density occluded targeted tissues and reduced the blood flow by 34%. Alternatively, for a very sparse droplet population, gas bubbles could serve as potential point beacons for phase aberration correction given their backscatter amplitudes of 24 dB above tissue background. Other possible applications include drug delivery, indicator for cryo therapy, pressure/radiation beacons, hyperthermia, and cavitation nuclei. ADV of individual droplets showed that during acoustic irradiation, droplets perform dipole-type oscillations and that such oscillations increased in amplitude with acoustic intensity. Smaller droplets required more acoustic intensity for vaporization than larger droplets; however, independent of droplet diameter, a maximum oscillation amplitude of 1.3 um, was required. This threshold corresponds to a Reynolds number of ˜5 x 104. Vaporization started either as a spot on the axis of oscillation close to a pole of the droplet, or homogeneously throughout the droplet's imaged cross-section. It is concluded that

  6. Extracting a Whisper from the DIN: A Bayesian-Inductive Approach to Learning an Anticipatory Model of Cavitation

    SciTech Connect

    Kercel, S.W.

    1999-11-07

    For several reasons, Bayesian parameter estimation is superior to other methods for inductively learning a model for an anticipatory system. Since it exploits prior knowledge, the analysis begins from a more advantageous starting point than other methods. Also, since "nuisance parameters" can be removed from the Bayesian analysis, the description of the model need not be as complete as is necessary for such methods as matched filtering. In the limit of perfectly random noise and a perfect description of the model, the signal-to-noise ratio improves as the square root of the number of samples in the data. Even with the imperfections of real-world data, Bayesian methods approach this ideal limit of performance more closely than other methods. These capabilities provide a strategy for addressing a major unsolved problem in pump operation: the identification of precursors of cavitation. Cavitation causes immediate degradation of pump performance and ultimate destruction of the pump. However, the most efficient point to operate a pump is just below the threshold of cavitation. It might be hoped that a straightforward method to minimize pump cavitation damage would be to simply adjust the operating point until the inception of cavitation is detected and then to slightly readjust the operating point to let the cavitation vanish. However, due to the continuously evolving state of the fluid moving through the pump, the threshold of cavitation tends to wander. What is needed is to anticipate cavitation, and this requires the detection and identification of precursor features that occur just before cavitation starts.

  7. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles.

    PubMed

    Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry

    2016-02-01

    Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems.

  8. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles.

    PubMed

    Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry

    2016-02-01

    Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems. PMID:26585223

  9. Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation123

    PubMed Central

    2016-01-01

    Abstract Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control. PMID:27390775

  10. Experimenting cavitation measuring instruments

    NASA Astrophysics Data System (ADS)

    Toulouse, G.

    1988-09-01

    A calibrating method for measuring the volume of cavitation bubbles is presented and the results of open air experiments are given. The bubbles appearing on the surface of a marine rotating propeller are measured using CCD cameras and optical procedures. Square bubble section first approximations is used. The performance of cameras equipped with light amplifiers is studied in order to use them for real bubble cross section measurements.

  11. Cavitation and Fusion

    NASA Astrophysics Data System (ADS)

    Stringham, Roger S.

    2005-12-01

    Natural cavitation phenomena in D2O using piezo devices, is now amplified initiating DD fusion events that produce heat and helium. The transient cavitation bubble produces micro accelerators in the form of jets containing high densities of deuterons, 1024-25/cc from the cavitating D2O. An electrically driven piezo device in a reactor filled with D2O produces jets that implant deuterons into a target foil producing 4He and T plus heat. There is no long range radiation associated with this process. We are moving in the direction of utilizing smaller systems by gaining faster and less expensive technology growth moving from successes at 0.2 and 0.4 MHz to 1.7 MHz. One of the results of our low frequency studies is a 1 to 3 MHz induced standing wave in our target foils. We are using sonoluminescence intensity as a tool to guide us in finding highest plasma density in the adiabatic bubble collapse process in the jet plasma formation. The generation of these sonoluminescence photons relates to conditions for the target implantation process. These experiments and the analytical methods have concentrated on the mass spectroscopy of reactor gases, calorimetry of the reactor and power supply, and the scanning electron microscope photographs of target foils. This work provides a path for an ecological and hydrocarbon-free energy source for all energy applications.

  12. Primary pulmonary cavitating carcinomas

    PubMed Central

    Chaudhuri, M. Ray

    1973-01-01

    A primary lung cancer can produce a cavity in three ways. The first is `cavitary necrosis' due to breakdown of the growth itself. The second is `stenotic abscess' due to infection and breakdown of the lung parenchyma distal to bronchial obstruction caused by the growth. The third type is `spill-over abscess'. In the present series, necrosis and cavitation were observed in 100 cases out of a total of 632 primary bronchial carcinomas seen at the London Chest Hospital from July 1967 to June 1970. There were 91 males and nine females with an average age of 58·45 years. All except one smoked very heavily and had considerable symptoms. The size of the cavities ranged from 1 to 10 cm and their wall thickness from 0·5 to 3 cm. They were single in 92 cases and multiple (up to four) in eight. In 42 cases, the cancerous cavitation was central, in 38 intermediate, and in 20 peripheral. The segments most frequently affected were the apicoposterior segment of the left upper lobe and the superior segment of the left lower lobe. For descriptive purposes, these cavitating carcinomas were also divided into six broad groups on the basis of radiological and pathological correlations. Neoplastic cells in the sputum were found in 64 cases. Bronchoscopy revealed growth in 42 cases and biopsy was positive in 48. The main microscopic feature was vascular invasion of medium-sized muscular arteries and veins found in the vicinity of every cavitating bronchial carcinoma. Invasion along with tumour plugging of the vessels was observed in 75 cases and thrombosis alone in 55 cases. There were 82 squamous-cell carcinomas, 11 undifferentiated carcinomas of large polygonal-cell type, and seven adeno-alveolar cell carcinomas. The single most important and noteworthy feature in the present series was that oat-cell carcinoma hardly ever undergoes necrosis. Out of a total of 95 cases observed, only three showed necrosis, and this was minimal and characteristically devoid of cavitation. In oat

  13. Cavitation studies in microgravity

    NASA Astrophysics Data System (ADS)

    Kobel, Philippe; Obreschkow, Danail; Farhat, Mohamed; Dorsaz, Nicolas; de Bosset, Aurele

    The hydrodynamic cavitation phenomenon is a major source of erosion for many industrial systems such as cryogenic pumps for rocket propulsion, fast ship propellers, hydraulic pipelines and turbines. Erosive processes are associated with liquid jets and shockwaves emission fol-lowing the cavity collapse. Yet, fundamental understanding of these processes requires further cavitation studies inside various geometries of liquid volumes, as the bubble dynamics strongly depends the surrounding pressure field. To this end, microgravity represents a unique platform to produce spherical fluid geometries and remove the hydrostatic pressure gradient induced by gravity. The goal of our first experiment (flown on ESA's parabolic flight campaigns 2005 and 2006) was to study single bubble dynamics inside large spherical water drops (having a radius between 8 and 13 mm) produced in microgravity. The water drops were created by a micro-pump that smoothly expelled the liquid through a custom-designed injector tube. Then, the cavitation bubble was generated through a fast electrical discharge between two electrodes immersed in the liquid from above. High-speed imaging allowed to analyze the implications of isolated finite volumes and spherical free surfaces on bubble evolution, liquid jets formation and shock wave dynamics. Of particular interest are the following results: (A) Bubble lifetimes are shorter than in extended liquid volumes, which could be explain by deriving novel corrective terms to the Rayleigh-Plesset equation. (B) Transient crowds of micro-bubbles (smaller than 1mm) appeared at the instants of shockwaves emission. A comparison between high-speed visualizations and 3D N-particle simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion

  14. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging.

    PubMed

    Haworth, Kevin J; Raymond, Jason L; Radhakrishnan, Kirthi; Moody, Melanie R; Huang, Shao-Ling; Peng, Tao; Shekhar, Himanshu; Klegerman, Melvin E; Kim, Hyunggun; McPherson, David D; Holland, Christy K

    2016-02-01

    Angioplasty and stenting of a stenosed artery enable acute restoration of blood flow. However, restenosis or a lack of re-endothelization can subsequently occur depending on the stent type. Cavitation-mediated drug delivery is a potential therapy for these conditions, but requires that particular types of cavitation be induced by ultrasound insonation. Because of the heterogeneity of tissue and stochastic nature of cavitation, feedback mechanisms are needed to determine whether the sustained bubble activity is induced. The objective of this study was to determine the feasibility of passive cavitation imaging through a metal stent in a flow phantom and an animal model. In this study, an endovascular stent was deployed in a flow phantom and in porcine femoral arteries. Fluorophore-labeled echogenic liposomes, a theragnostic ultrasound contrast agent, were injected proximal to the stent. Cavitation images were obtained by passively recording and beamforming the acoustic emissions from echogenic liposomes insonified with a low-frequency (500 kHz) transducer. In vitro experiments revealed that the signal-to-noise ratio for detecting stable cavitation activity through the stent was greater than 8 dB. The stent did not significantly reduce the signal-to-noise ratio. Trans-stent cavitation activity was also detected in vivo via passive cavitation imaging when echogenic liposomes were insonified by the 500-kHz transducer. When stable cavitation was detected, delivery of the fluorophore into the arterial wall was observed. Increased echogenicity within the stent was also observed when echogenic liposomes were administered. Thus, both B-mode ultrasound imaging and cavitation imaging are feasible in the presence of an endovascular stent in vivo. Demonstration of this capability supports future studies to monitor restenosis with contrast-enhanced ultrasound and pursue image-guided ultrasound-mediated drug delivery to inhibit restenosis.

  15. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields.

    PubMed

    Bailey, M R; Blackstock, D T; Cleveland, R O; Crum, L A

    1999-08-01

    Dramatically different cavitation was produced by two separate acoustic pulses that had different shapes but similar duration, frequency content, and peak positive and negative pressure. Both pulses were produced by a Dornier HM-3 style lithotripter: one pulse when the ellipsoidal reflector was rigid, the other when the reflector was pressure release. The cavitation, or bubble action, generated by the conventional rigid-reflector pulse was nearly 50 times longer lived and 3-13 times stronger than that produced by the pressure-release-reflector pulse. Cavitation durations measured by passive acoustic detection and high-speed video agreed with calculations based on the Gilmore equation. Cavitation intensity, or destructive potential, was judged (1) experimentally by the size of pits in aluminum foil detectors and (2) numerically by the calculated amplitude of the shock wave emitted by a collapsing bubble. The results indicate that the trailing positive spike in the pressure-release-reflector waveform stifles bubble growth and mitigates the collapse, whereas the trough after the positive spike in the rigid-reflector waveform triggers inertially driven growth and collapse. The two reflectors therefore provide a tool to compare effects in weakly and strongly cavitating fields and thereby help assess cavitation's role in lithotripsy.

  16. Cavitation-resistant inducer

    DOEpatents

    Dunn, C.; Subbaraman, M.R.

    1989-06-13

    An improvement in an inducer for a pump is disclosed wherein the inducer includes a hub, a plurality of radially extending substantially helical blades and a wall member extending about and encompassing an outer periphery of the blades. The improvement comprises forming adjacent pairs of blades and the hub to provide a substantially rectangular cross-sectional flow area which cross-sectional flow area decreases from the inlet end of the inducer to a discharge end of the inducer, resulting in increased inducer efficiency improved suction performance, reduced susceptibility to cavitation, reduced susceptibility to hub separation and reduced fabrication costs. 11 figs.

  17. Cavitation-resistant inducer

    DOEpatents

    Dunn, Charlton; Subbaraman, Maria R.

    1989-01-01

    An improvement in an inducer for a pump wherein the inducer includes a hub, a plurality of radially extending substantially helical blades and a wall member extending about and encompassing an outer periphery of the blades. The improvement comprises forming adjacent pairs of blades and the hub to provide a substantially rectangular cross-sectional flow area which cross-sectional flow area decreases from the inlet end of the inducer to a discharge end of the inducer, resulting in increased inducer efficiency improved suction performance, reduced susceptibility to cavitation, reduced susceptibility to hub separation and reduced fabrication costs.

  18. Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors.

    PubMed

    Kirpalani, D M; McQuinn, K J

    2006-01-01

    Acoustic cavitation plays an important role in enhancing the reaction rate of chemical processes in sonochemical systems. However, quantification of cavitation intensity in sonochemical systems is generally limited to low frequency systems. In this study, an empirical determination of cavitation yield in high frequency ultrasound systems was performed by measuring the amount of iodine liberated from the oxidation of potassium iodide (KI) solution at 1.7 and 2.4 MHz. Experiments for determining cavitation were carried out at various solute (KI) concentrations under constant temperature, obtained by direct cooling of the solution and variable temperature conditions, in the absence of external cooling. Cavitation yield measurements, reported in this work, extend previously reported results and lend credence to the two step reaction pathway in high frequency systems. Additionally, the concentration of KI and temperature affect the cavitation yield of a system such that the iodine production is proportional to both conditions. It is proposed that direct cooling of sonicated KI solution may be advantageous for optimization of cavitation intensity in high frequency sonochemical reactors.

  19. The cavitation induced Becquerel effect and the hot spot theory of sonoluminescence.

    PubMed

    Prevenslik, T V

    2003-06-01

    Over 150 years ago, Becquerel discovered the ultraviolet illumination of one of a pair of identical electrodes in liquid water produced an electric current, the phenomenon called the Becquerel effect. Recently, a similar effect was observed if the water surrounding one electrode is made to cavitate by focused acoustic radiation, which by similarity is referred to as the cavitation induced Becquerel effect. The current in the cavitation induced Becquerel effect was found to be semi-logarithmic with the standard electrode potential that is consistent with the oxidation of the electrode surface by the photo-decomposition theory of photoelectrochemistry. But oxidation of the electrode surface usually requires high temperatures, say as in cavitation. Absent high bubble temperatures, cavitation may produce vacuum ultraviolet (VUV) light that excites water molecules in the electrode film to higher H(2)O(*) energy states, the excited states oxidizing the electrode surface by chemical reaction. Solutions of the Rayleigh-Plesset equation during bubble collapse that include the condensation of water vapor show any increase in temperature or pressure of the water vapor by compression heating is compensated by the condensation of vapor to the bubble wall, the bubbles collapsing almost isothermally. Hence, the cavitation induced Becquerel effect is likely caused by cavitation induced VUV light at ambient temperature. PMID:12782265

  20. Research and development of improved cavitating jets for deep-hole drilling

    SciTech Connect

    Johnson, V.E. Jr.; Lindenmuth, W.T.; Chahine, G.L.; Conn, A.F.; Frederick, G.S.

    1984-01-01

    Improved cavitating nozzles have been developed as part of an on-going program to increase the rate of penetration of deep-hole drill bits. Based on the four criteria of: incipient cavitation number, amplitude of pressure fluctuation (and hence enhanced structuring of the jet flow), rock cutting, and cleaning chips from the hole bottom - these new, STRATOJET (STRuctured Acoustically Tuned Oscillating JET) cavitating nozzle systems have out-performed both conventional drill bit nozzles and the basic CAVIJET cavitating jets. Although nozzle designs which provide large amplitude pressure modulations are now available for the operation in water, additional research is needed to optimize self-resonating jets for use: (a) in mud, (b) in specific drill bit designs, and (c) at higher system pressures than now currently used for deep-hole drilling.

  1. Scale effects on propeller cavitating hydrodynamic and hydroacoustic performances with non-uniform inflow

    NASA Astrophysics Data System (ADS)

    Yang, Qiongfang; Wang, Yongsheng; Zhang, Zhihong

    2013-03-01

    Considering the lack of theoretical models and ingredients necessary to explain the scaling of the results of propeller cavitation inception and cavitating hydroacoustics from model tests to full scale currently, and the insufficient reflection of the nuclei effects on cavitation in the numerical methods, the cavitating hydrodynamics and cavitation low frequency noise spectrum of three geometrically similar 7-bladed highly skewed propellers with non-uniform inflow are addressed. In this process, a numerical bridge from the multiphase viscous simulation of propeller cavitation hydrodynamics to its hydro-acoustics is built, and the scale effects on performances and the applicability of exist scaling law are analyzed. The effects of non-condensable gas(NCG) on cavitation inception are involved explicitly in the improved Sauer's cavitation model, and the cavity volume acceleration related to its characteristic length is used to produce the noise spectrum. Results show that, with the same cavitation number, the cavity extension on propeller blades increases with diameter associated with an earlier shift of the beginning point of thrust decline induced by cavitation, while the three decline slopes of thrust breakdown curves are found to be nearly the same. The power of the scaling law based on local Reynolds number around 0.9 R section is determined as 0.11. As for the smallest propeller, the predominant tonal noise is located at blade passing frequency(BPF), whereas 2BPF for the middle and both 2BPF and 3BPF for the largest, which shows the cavitating line spectrum is fully related to the interaction between non-uniform inflow and fluctuated cavity volume. The predicted spectrum level exceedance from the middle to the large propeller is 6.65 dB at BPF and 5.94 dB at 2BPF. Since it just differs less than 2 dB to the increment obtained by empirical scaling law, it is inferred that the scale effects on them are acceptable with a sufficient model scale, and so do the

  2. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T.; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  3. Effects of Tissue Stiffness, Ultrasound Frequency, and Pressure on Histotripsy-induced Cavitation Bubble Behavior

    PubMed Central

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-01-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 microns. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness causes a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest. PMID:25715732

  4. Modeling of high-intensity focused ultrasound-induced lesions in the presence of cavitation bubbles

    PubMed

    Chavrier; Chapelon; Gelet; Cathignol

    2000-07-01

    The classical "Bio Heat Transfer Equation (BHTE)" model is adapted to take into account the effects of oscillating microbubbles that occur naturally in the tissue during high-intensity focused ultrasound (HIFU) treatment. First, the Gilmore-Akulichev model is used to quantify the acoustic pressure scattered by microbubbles submitted to HIFU. Because this scattered pressure is not monochromatic, the concept of harmonic attenuation is introduced and a global attenuation coefficient is estimated for bubble-filled tissues. The first results show that this global attenuation coefficient varies significantly with respect to several parameters such as the frequency and the density of microbubbles in the medium, but also with respect to the incident acoustic pressure which thus becomes a transcendental function. Under these conditions, a layer-by-layer modeling, in the direction of propagation, is proposed to calculate the ultrasonic beam. Finally, the BHTE is solved and the HIFU-induced lesions are estimated by the calculation of the thermal dose. Using this model, it can be observed first that, when the firing power increases, the lesion develops clearly in the direction of the transducer, with a shape agreeing with in vivo experimentation. Next, it is observed that the lesion can be significantly modified in size and position, if an interface (skin or inner wall) is simulated as a zone with multiple cavitation nuclei. With a firing power increase, it is also shown how a secondary lesion can appear at the interface and how, beyond a certain threshold, this lesion develops at the main lesion expense. Finally, a better in-depth homogeneity of lesions is observed when the acoustic frequency of HIFU is increased.

  5. Ultrasonic cavitation for disruption of microalgae.

    PubMed

    Greenly, Justin M; Tester, Jefferson W

    2015-05-01

    Challenges with mid-stream fractionation steps in proposed microalgae biofuel pathways arise from the typically dilute cell density in growth media, micron scale cell sizes, and often durable cell walls. For microalgae to be a sustainable source of biofuels and co-products, efficient fractionation by some method will be necessary. This study evaluates ultrasonic cell disruption as a processing step that fractionates microalgae. A range of species types with different sizes and cell wall compositions were treated. The initial seconds of sonication offered the most significant disruption, even for the more durable Nannochloropsis cells. Following this initial period, diminishing effectiveness was attributed, by acoustic measurements, to attenuation of the ultrasound in the ensuing cloud of cavitating bubbles. At longer exposure times, differences between species were more pronounced. Processing higher concentrations of Isochrysis slowed cell disintegration only marginally, making the expenditure of energy more worthwhile.

  6. Quantitative assessment of reactive oxygen sonochemically generated by cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Miyashita, Takuya; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-07-01

    Acoustic cavitation bubbles can induce not only a thermal bioeffect but also a chemical bioeffect. When cavitation bubbles collapse and oscillate violently, they produce reactive oxygen species (ROS) that cause irreversible changes to the tissue. A sonosensitizer can promote such ROS generation. A treatment method using a sonosensitizer is called sonodynamic treatment. Rose bengal (RB) is one of the sonosensitizers whose in vivo and in vitro studies have been reported. In sonodynamic treatment, it is important to produce ROS at a high efficiency. For the efficient generation of ROS, a triggered high-intensity focused ultrasound (HIFU) sequence has been proposed. In this study, cavitation bubbles were generated in a chamber where RB solution was sealed, and a high-speed camera captured the behavior of these cavitation bubbles. The amount of ROS was also quantified by a potassium iodide (KI) method and compared with high-speed camera pictures to investigate the effectiveness of the triggered HIFU sequence. As a result, ROS could be obtained efficiently by this sequence.

  7. Current Status in Cavitation Modeling

    NASA Technical Reports Server (NTRS)

    Singhal, Ashok K.; Avva, Ram K.

    1993-01-01

    Cavitation is a common problem for many engineering devices in which the main working fluid is in liquid state. In turbomachinery applications, cavitation generally occurs on the inlet side of pumps. The deleterious effects of cavitation include: lowered performance, load asymmetry, erosion and pitting of blade surfaces, vibration and noise, and reduction of the overall machine life. Cavitation models in use today range from rather crude approximations to sophisticated bubble dynamics models. Details about bubble inception, growth and collapse are relevant to the prediction of blade erosion, but are not necessary to predict the performance of pumps. An engineering model of cavitation is proposed to predict the extent of cavitation and performance. The vapor volume fraction is used as an indicator variable to quantify cavitation. A two-phase flow approach is employed with the assumption of the thermal equilibrium between liquid and vapor. At present velocity slip between the two phases is selected. Preliminary analyses of 2D flows shows qualitatively correct results.

  8. Current status in cavitation modeling

    NASA Astrophysics Data System (ADS)

    Singhal, Ashok K.; Avva, Ram K.

    1993-07-01

    Cavitation is a common problem for many engineering devices in which the main working fluid is in liquid state. In turbomachinery applications, cavitation generally occurs on the inlet side of pumps. The deleterious effects of cavitation include: lowered performance, load asymmetry, erosion and pitting of blade surfaces, vibration and noise, and reduction of the overall machine life. Cavitation models in use today range from rather crude approximations to sophisticated bubble dynamics models. Details about bubble inception, growth and collapse are relevant to the prediction of blade erosion, but are not necessary to predict the performance of pumps. An engineering model of cavitation is proposed to predict the extent of cavitation and performance. The vapor volume fraction is used as an indicator variable to quantify cavitation. A two-phase flow approach is employed with the assumption of the thermal equilibrium between liquid and vapor. At present velocity slip between the two phases is selected. Preliminary analyses of 2D flows shows qualitatively correct results.

  9. Radial Shock Wave Devices Generate Cavitation

    PubMed Central

    Császár, Nikolaus B. M.; Angstman, Nicholas B.; Milz, Stefan; Sprecher, Christoph M.; Kobel, Philippe; Farhat, Mohamed; Furia, John P.; Schmitz, Christoph

    2015-01-01

    Background Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. Methods and Findings We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland) and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA). To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms. Results FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device. Conclusions The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices. Clinical Relevance Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that “kick-starts” the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating

  10. Toward the development of erosion-free ultrasonic cavitation cleaning with gas-supersaturated water

    NASA Astrophysics Data System (ADS)

    Yamashita, Tatsuya; Ando, Keita

    2015-11-01

    In ultrasonic cleaning, contaminant particles attached at target surfaces are removed by liquid flow or acoustic waves that are induced by acoustic cavitation bubbles. However, the inertial collapse of such bubbles often involve strong shock emission or water hammer by re-entrant jets, thereby giving rise to material erosion. Here, we aim at developing an erosion-free ultrasonic cleaning technique with the aid of gas-supersaturated water. The key idea is that (gaseous) cavitation is triggered easily even with low-intensity sonication in water where gases are dissolved beyond Henry's saturation limit, allowing us to buffer violent bubble collapse. In this presentation, we report on observations of the removal of micron/submicron-sized particles attached at glass surfaces by the action of gaseous cavitation bubbles under low-intensity sonication.

  11. Dynamic response of cavitating turbomachines

    NASA Technical Reports Server (NTRS)

    Ng, S. L.

    1976-01-01

    Stimulated by the pogo instability encountered in many liquid propellant rockets, the dynamic behavior of cavitating inducers is discussed. An experimental facility where the upstream and downstream flows of a cavitating inducer could be perturbed was constructed and tested. The upstream and downstream pressure and mass flow fluctuations were measured. Matrices representing the transfer functions across the inducer pump were calculated from these measurements and from the hydraulic system characteristics for two impellers in various states of cavitation. The transfer matrices when plotted against the perturbing frequency showed significant departure from steady state or quasi-steady predictions especially at higher frequencies.

  12. Bubble-bubble interaction: A potential source of cavitation noise

    NASA Astrophysics Data System (ADS)

    Ida, Masato

    2009-01-01

    The interaction between microbubbles through pressure pulses has been studied to show that it can be a source of cavitation noise. A recent report demonstrated that the acoustic noise generated by a shrimp originates from the collapse of a cavitation bubble produced when the shrimp closes its snapper claw. The recorded acoustic signal contains a broadband noise that consists of positive and negative pulses, but a theoretical model for single bubbles fails to reproduce the negative ones. Using a nonlinear multibubble model, we have shown here that the negative pulses can be explained by considering the interaction of microbubbles formed after the cavitation bubble has collapsed and fragmented: Positive pulses produced at the collapse of the microbubbles hit and impulsively compress neighboring microbubbles to generate reflected pulses whose amplitudes are negative. Discussing the details of the noise generation process, we have found that no negative pulses are generated if the internal pressure of the reflecting bubble is very high when hit by a positive pulse.

  13. Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection.

    PubMed

    Chen, Xucai; Wang, Jianjun; Pacella, John J; Villanueva, Flordeliza S

    2016-02-01

    Ultrasound (US)-microbubble (MB)-mediated therapies have been found to restore perfusion and enhance drug/gene delivery. On the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes use short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore, we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure and then formed gas-filled clusters that continued to oscillate, break up and form new clusters. Cavitation detection confirmed continued, albeit diminishing, acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone bursts may confer additional therapeutic effects.

  14. Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection.

    PubMed

    Chen, Xucai; Wang, Jianjun; Pacella, John J; Villanueva, Flordeliza S

    2016-02-01

    Ultrasound (US)-microbubble (MB)-mediated therapies have been found to restore perfusion and enhance drug/gene delivery. On the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes use short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore, we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure and then formed gas-filled clusters that continued to oscillate, break up and form new clusters. Cavitation detection confirmed continued, albeit diminishing, acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone bursts may confer additional therapeutic effects. PMID:26603628

  15. Examination of Inertial Cavitation of Optison™ in Producing Sonoporation of Chinese Hamster Ovary Cells

    PubMed Central

    Forbes, Monica M.; Steinberg, Ryan L.; O’Brien, William D.

    2008-01-01

    The objective of this project is to elucidate the relationship between ultrasound contrast agents (UCAs) and sonoporation. Sonoporation is an ultrasound-induced, transient cell membrane permeability change, which allows for the uptake of normally impermeable macromolecules. Specifically, this study will determine the role that inertial cavitation plays in eliciting sonoporation. The inertial cavitation thresholds of the UCA, Optison™, are directly compared to the results of sonoporation in order to determine the involvement of inertial cavitation in sonoporation. Chinese Hamster Ovary (CHO) cells were exposed as a monolayer, in a solution of Optison™, 500,000 Da Fluorescein isothiocyanate-dextran (FITC-dextran), and Phosphate Buffered Saline (PBS) to 30 seconds of pulsed ultrasound (US) at 3.15-MHz center frequency, 5-cycle pulse duration, and 10-Hz pulse repetition frequency. The peak rarefactional pressure (Pr) was varied over a range from 120 kPa to 3.5 MPa, and five independent replicates were performed at each pressure. As the Pr was increased, from 120 kPa to 3.5 MPa, the fraction of sonoporated cells among the total viable population increased from 0.63% to 10.21%, with the maximum occurring at 2.4 MPa. The inertial cavitation threshold for Optison™ at these exposure conditions has previously been shown to be in the range 0.77–0.83 MPa, at which sonoporation activity was found to be 50% of its maximum level. Furthermore, significant sonoporation activity was observed at pressure levels below the threshold for inertial cavitation of Optison™. Above 2.4 MPa, a significant drop in sonoporation activity occurred, corresponding to pressures where >95% of the Optison™ was collapsing. These results demonstrate that sonoporation is not directly due to inertial cavitation of the UCA, rather that the effect was related to linear and/or nonlinear oscillation of the UCA occurring at pressure levels below the inertial cavitation threshold. PMID:18692296

  16. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies

    PubMed Central

    Arvanitis, Costas D.; McDannold, Nathan

    2013-01-01

    Purpose: Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. Methods: The system was tested with an MRgFUS system developed for transcranial sonication for brain tumor ablation in experiments with a tissue mimicking phantom and a phantom-filled ex vivo macaque skull. In experiments on cavitation-enhanced heating, 10 s continuous wave sonications were applied at increasing power levels (30–110 W) until broadband acoustic emissions (a signature for inertial cavitation) were evident. The presence or lack of signal in the PAM, as well as its magnitude and location, were compared to the focal heating in the MRTI. Additional experiments compared PAM with standard B-mode ultrasound imaging and tested the feasibility of the system to map cavitation activity produced during low-power (5 W) burst sonications in a channel filled with a microbubble ultrasound contrast agent. Results: When inertial cavitation was evident, localized activity was present in PAM and a marked increase in heating was observed in MRTI. The location of the cavitation activity and heating agreed on average after registration of the two imaging modalities; the distance between the maximum cavitation activity and focal heating was −3.4 ± 2.1 mm and −0.1 ± 3.3 mm in the axial and transverse ultrasound array directions, respectively. Distortions and other MRI issues introduced small

  17. Current research in cavitating fluid films

    NASA Technical Reports Server (NTRS)

    Brewe, D. E. (Editor); Ball, J. H. (Editor); Khonsari, M. M. (Editor)

    1990-01-01

    A review of the current research of cavitation in fluid films is presented. Phenomena and experimental observations include gaseous cavitation, vapor cavitation, and gas entrainment. Cavitation in flooded, starved, and dynamically loaded journal bearings, as well as squeeze films are reviewed. Observations of cavitation damage in bearings and the possibility of cavitation between parallel plates with microasperities were discussed. The transcavity fluid transport process, meniscus motion and geometry or form of the film during rupture, and reformation were summarized. Performance effects were related to heat transfer models in the cavitated region and hysteresis influence on rotor dynamics coefficients. A number of cavitation algorithms was presented together with solution procedures using the finite difference and finite element methods. Although Newtonian fluids were assumed in most of the discussions, the effect of non-Newtonian fluids on cavitation was also discussed.

  18. Cavitating vortex generation by a submerged jet

    SciTech Connect

    Belyakov, G. V.; Filippov, A. N.

    2006-05-15

    The surface geometry of a cavitating vortex is determined in the limit of inviscid incompressible flow. The limit surface is an ovaloid of revolution with an axis ratio of 5: 3. It is shown that a cavitating vortex ring cannot develop if the cavitation number is lower than a certain critical value. Experiments conducted at various liquid pressures and several jet exit velocities confirm the existence of a critical cavitation number close to 3. At cavitation numbers higher than the critical one, the cavitating vortex ring does not develop. At substantially lower cavitation numbers (k {<=} 0.1), an elongated asymmetric cavitation bubble is generated, with an axial reentrant jet whose length can exceed the initial jet length by several times. This flow structure is called an asymmetric cavitating vortex, even though steady motion of this structure has not been observed.

  19. Mechanics of collapsing cavitation bubbles.

    PubMed

    van Wijngaarden, Leen

    2016-03-01

    A brief survey is given of the dynamical phenomena accompanying the collapse of cavitation bubbles. The discussion includes shock waves, microjets and the various ways in which collapsing bubbles produce damage.

  20. Cavitation erosion of silver plated coating at different temperatures and pressures

    SciTech Connect

    Hattori, Shuji; Motoi, Yoshihiro; Kikuta, Kengo; Tomaru, Hiroshi

    2014-04-11

    Cavitation often occurs in inducer pumps used for space rockets. Silver plated coating on the inducer liner faces the damage of cavitation. Therefore, it is important to study about the cavitation erosion resistance for silver plated coating at several operating conditions in the inducer pumps. In this study, the cavitation erosion tests were carried for silver plated coating in deionized water and ethanol at several liquid temperatures (273K–400K) and pressures (0.10MPa–0.48MPa). The mass loss rate is evaluated in terms of thermodynamic parameter Σ proposed by Brennen [9], suppression pressure p–p{sub v} (p{sub v}: saturated vapor pressure) and acoustic impedance ρc (ρ: density and c: sound speed). Cavitation bubble behaviors depending on the thermodynamic effect and the liquid type were observed by high speed video camera. The mass loss rate is formulated by thermodynamic parameter Σ, suppression pressure p–p{sub v} and acoustic impedance ρc.

  1. High speed observation of HIFU-induced cavitation cloud near curved rigid boundaries

    NASA Astrophysics Data System (ADS)

    Zuo, Z. G.; Wang, F. B.; Liu, S. H.; Wu, S. J.

    2015-01-01

    This paper focuses on the experimental study of the influence of surface curvature to the behaviour of HIFU-induced cavitation cloud. A Q-switched ruby pulse laser is used to induce cavitation nuclei in deionized water. A piezoelectric ultrasonic transducer (1.7 MHz) provides a focused ultrasound field to inspire the nucleus to cavitation cloud. A PZT probe type hydrophone is applied for measuring the HIFU sound field. It was observed that the motion of cavitation cloud located near the boundary is significantly influenced by the distance between cloud and boundary, as well as the curvature of the boundary. The curvature was defined by parameters λ and ξ. Convex boundary, concave boundary, and flat boundary correspond to ξ <1, ξ >1 and ξ = 1, respectively. Different behaviours of the cloud, including the migration of the cloud, the characteristics of oscillation, etc., were observed under different boundary curvatures by high-speed photography. Sonoluminescence of the acoustic cavitation bubble clouds were also studied to illustrate the characteristics of acoustic streaming.

  2. Cavitation inception by the backscattering of pressure waves from a bubble interface

    NASA Astrophysics Data System (ADS)

    Takahira, Hiroyuki; Ogasawara, Toshiyuki; Mori, Naoto; Tanaka, Moe

    2015-10-01

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t0 to a characteristic time of wave propagation tS, η = t0/ts, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  3. Initiate and Maintain Cavitation by Combining High Amplitude Bursts and Continuous Ultrasound Exposure in Culture Medium

    NASA Astrophysics Data System (ADS)

    Mestas, J.-L.; Alberti, L.; Chesnais, S.; Lafon, C.; Blay, J.-Y.; Cathignol, D.

    2006-05-01

    Ultrasound can produce a variety of nonthermal bioeffects via acoustic cavitation. Most studies on cavitation effects pointed on the difficulty of initiating and controlling the cavitation phenomenon. Our objective is to obtain reproducible viability and transfection rate in the case of the application of a continuous low intensity ultrasound exposure. We propose to initiate and maintain cavitation in the medium by combining a continuous ultrasound exposure with periodical high amplitude bursts. Cells were exposed to ultrasound (444.5 kHz) transmitted through the bottom of twelve-well culture plates containing prostatic cells (AT2, 2.5 106 cells/mL), the plasmid DsRed in transfection case (200 μg/mL) and culture media. The cavitation effects were evaluated on the cell viability and transfection, determined 0 to 3 days after exposure by a flow cytometer (FACScan; total counted events: 10 000). Bursts of 1.73 W/cm2 intensity level had no effect on cells when their duration was lower than 100 ms and their frequency lower than 4 bursts/min. When combined with continuous exposure, only one burst of 1.73 W/cm2 intensity level and 50 ms duration was sufficient to activate the cavitation phenomenon in the medium.

  4. Calibration of acoustic transients.

    PubMed

    Burkard, Robert

    2006-05-26

    This article reviews the appropriate stimulus parameters (click duration, toneburst envelope) that should be used when eliciting auditory brainstem responses from mice. Equipment specifications required to calibrate these acoustic transients are discussed. Several methods of calibrating the level of acoustic transients are presented, including the measurement of peak equivalent sound pressure level (peSPL) and peak sound pressure level (pSPL). It is hoped that those who collect auditory brainstem response thresholds in mice will begin to use standardized methods of acoustic calibration, so that hearing thresholds across mouse strains obtained in different laboratories can more readily be compared.

  5. Osmotic pressure-triggered cavitation in microcapsules.

    PubMed

    Shang, Luoran; Cheng, Yao; Wang, Jie; Yu, Yunru; Zhao, Yuanjin; Chen, Yongping; Gu, Zhongze

    2016-01-21

    A cavitation system was found in solid microcapsules with a membrane shell and a liquid core. By simply treating these microcapsules with hypertonic solutions, cavitation could be controllably triggered without special equipment or complex operations. A cavitation-formed vapor bubble was fully entrapped within the microcapsules, thus providing an advantageous method for fabricating encapsulated microbubbles with controllable dimensions and functional components. PMID:26659708

  6. Observation of bubble dynamics within luminescent cavitation clouds: Sonoluminescence at the nano-scale.

    PubMed

    Weninger, K R; Camara, C G; Putterman, S J

    2001-01-01

    Measurements of acoustically driven cavitation luminescence indicate that this phenomenon is robust over a huge parameter space ranging from 10 kHz to >10 MHz. The minimum bubble radius achieved is an upper bound for the size of the light-emitting region and ranges from about 1 microm at 15 kHz to tens of nm at 11 MHz. Although lines can be discerned in the spectra of some cavitation clouds, they sit on top of a broadband continuum which can have greater spectral density in the ultraviolet than is observed for resonantly driven sonoluminescence from a single bubble.

  7. Adaptive Thresholds

    SciTech Connect

    Bremer, P. -T.

    2014-08-26

    ADAPT is a topological analysis code that allow to compute local threshold, in particular relevance based thresholds for features defined in scalar fields. The initial target application is vortex detection but the software is more generally applicable to all threshold based feature definitions.

  8. Controlling non-inertial cavitation microstreaming for applications in biomedical research

    NASA Astrophysics Data System (ADS)

    Green, Roy; Boltryk, Rosemary J.; Ankrett, Dyan; Glynne-Jones, Peter; Townsend, Paul A.; Hill, Martyn

    2012-05-01

    Within this paper non-inertial cavitation microstreaming is investigated as a method for applying a mechanical stress to biological cells in vitro. A microfluidic device is designed in which microstreaming generated around microbubbles adhered to the floor of the acoustic chamber can be targeted at cells. The repeatability and controllability of microstreaming are investigated by computing μPIV vector fields of microstreaming flows. The uniformity of the acoustic pressure field in the x-y plane of the acoustic chamber is characterized by measuring the prevalence of microstreaming throughout the device.

  9. Design and Characterization of Fibrin-Based Acoustically Responsive Scaffolds for Tissue Engineering Applications.

    PubMed

    Moncion, Alexander; Arlotta, Keith J; Kripfgans, Oliver D; Fowlkes, J Brian; Carson, Paul L; Putnam, Andrew J; Franceschi, Renny T; Fabiilli, Mario L

    2016-01-01

    Hydrogel scaffolds are used in tissue engineering as a delivery vehicle for regenerative growth factors. Spatiotemporal patterns of growth factor signaling are critical for tissue regeneration, yet most scaffolds afford limited control of growth factor release, especially after implantation. We previously found that acoustic droplet vaporization can control growth factor release from a fibrin scaffold doped with a perfluorocarbon emulsion. This study investigates properties of the acoustically responsive scaffold (ARS) critical for further translation. At 2.5 MHz, acoustic droplet vaporization and inertial cavitation thresholds ranged from 1.5 to 3.0 MPa and from 2.0 to 7.0 MPa peak rarefactional pressure, respectively, for ARSs of varying composition. Viability of C3H/10T1/2 cells, encapsulated in the ARS, did not decrease significantly for pressures below 4 MPa. ARSs with perfluorohexane emulsions displayed higher stability versus those with perfluoropentane emulsions, while surrogate payload release was minimal without ultrasound. These results enable the selection of ARS compositions and acoustic parameters needed for optimized spatiotemporally controlled release.

  10. Cavitation erosion size scale effects

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1984-01-01

    Size scaling in cavitation erosion is a major problem confronting the design engineers of modern high speed machinery. An overview and erosion data analysis presented in this paper indicate that the size scale exponent n in the erosion rate relationship as a function of the size or diameter can vary from 1.7 to 4.9 depending on the type of device used. There is, however, a general agreement as to the values of n if the correlations are made with constant cavitation number.

  11. Preventing cavitation in butterfly valves

    SciTech Connect

    Baumann, H.D.

    1985-03-18

    Some of the mechanical problems that plagued butterfly valves in the past are discussed. The authors suggest integrated packages to alleviate these problems. These packages include such innovations as backlash-free stem connections, allenclosed actuator packages, and torque-compensated vanes. Some disadvantages to these packages are outlined and examined, including: high noise levels with compressible fluids, and an increased tendency to cavitate with liquids. A discussion follows on cavitation--how it is caused, just how much of it can be tolerated, and how it can be avoided or reduced.

  12. Study of cavitating inducer instabilities

    NASA Technical Reports Server (NTRS)

    Young, W. E.; Murphy, R.; Reddecliff, J. M.

    1972-01-01

    An analytic and experimental investigation into the causes and mechanisms of cavitating inducer instabilities was conducted. Hydrofoil cascade tests were performed, during which cavity sizes were measured. The measured data were used, along with inducer data and potential flow predictions, to refine an analysis for the prediction of inducer blade suction surface cavitation cavity volume. Cavity volume predictions were incorporated into a linearized system model, and instability predictions for an inducer water test loop were generated. Inducer tests were conducted and instability predictions correlated favorably with measured instability data.

  13. Cavitation clouds created by shock scattering from bubbles during histotripsy.

    PubMed

    Maxwell, Adam D; Wang, Tzu-Yin; Cain, Charles A; Fowlkes, J Brian; Sapozhnikov, Oleg A; Bailey, Michael R; Xu, Zhen

    2011-10-01

    Histotripsy is a therapy that focuses short-duration, high-amplitude pulses of ultrasound to incite a localized cavitation cloud that mechanically breaks down tissue. To investigate the mechanism of cloud formation, high-speed photography was used to observe clouds generated during single histotripsy pulses. Pulses of 5-20 cycles duration were applied to a transparent tissue phantom by a 1-MHz spherically focused transducer. Clouds initiated from single cavitation bubbles that formed during the initial cycles of the pulse, and grew along the acoustic axis opposite the propagation direction. Based on these observations, we hypothesized that clouds form as a result of large negative pressure generated by the backscattering of shockwaves from a single bubble. The positive-pressure phase of the wave inverts upon scattering and superimposes on the incident negative-pressure phase to create this negative pressure and cavitation. The process repeats with each cycle of the incident wave, and the bubble cloud elongates toward the transducer. Finite-amplitude propagation distorts the incident wave such that the peak-positive pressure is much greater than the peak-negative pressure, which exaggerates the effect. The hypothesis was tested with two modified incident waves that maintained negative pressure but reduced the positive pressure amplitude. These waves suppressed cloud formation which supported the hypothesis.

  14. A Study of Cavitation-Ignition Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Jacqmin, David A.

    2005-01-01

    We present the results of an experimental and computational study of the physics and chemistry of cavitation-ignition bubble combustion (CIBC), a process that occurs when combustible gaseous mixtures are ignited by the high temperatures found inside a rapidly collapsing bubble. The CIBC process was modeled using a time-dependent compressible fluid-dynamics code that includes finite-rate chemistry. The model predicts that gas-phase reactions within the bubble produce CO and other gaseous by-products of combustion. In addition, heat and mechanical energy release through a bubble volume-expansion phase are also predicted by the model. We experimentally demonstrate the CIBC process using an ultrasonically excited cavitation flow reactor with various hydrocarbon-air mixtures in liquid water. Low concentrations (< 160 ppm) of carbon monoxide (CO) emissions from the ultrasonic reactor were measured, and found to be proportional to the acoustic excitation power. The results of the model were consistent with the measured experimental results. Based on the experimental findings, the computational model, and previous reports of the "micro-diesel effect" in industrial hydraulic systems, we conclude that CIBC is indeed possible and exists in ultrasonically- and hydrodynamically-induced cavitation. Finally, estimates of the utility of CIBC process as a means of powering an idealized heat engine are also presented.

  15. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus.

    PubMed

    Patek, S N; Caldwell, R L

    2005-10-01

    Mantis shrimp are renowned for their unusual method of breaking shells with brief, powerful strikes of their raptorial appendages. Due to the extreme speeds of these strikes underwater, cavitation occurs between their appendages and hard-shelled prey. Here we examine the magnitude and relative contribution of the impact and cavitation forces generated by the peacock mantis shrimp Odontodactylus scyllarus. We present the surprising finding that each strike generates two brief, high-amplitude force peaks, typically 390-480 micros apart. Based on high-speed imaging, force measurements and acoustic analyses, it is evident that the first force peak is caused by the limb's impact and the second force peak is due to the collapse of cavitation bubbles. Peak limb impact forces range from 400 to 1501 N and peak cavitation forces reach 504 N. Despite their small size, O. scyllarus can generate impact forces thousands of times their body weight. Furthermore, on average, cavitation peak forces are 50% of the limb's impact force, although cavitation forces may exceed the limb impact forces by up to 280%. The rapid succession of high peak forces used by mantis shrimp suggests that mantis shrimp use a potent combination of cavitation forces and extraordinarily high impact forces to fracture shells. The stomatopod's hammer is fundamentally different from typical shell-crushing mechanisms such as fish jaws and lobster claws, and may have played an important and as yet unexamined role in the evolution of shell form. PMID:16169943

  16. A computational simulation study on the acoustic pressure generated by a dental endosonic file: effects of intensity, file shape and volume.

    PubMed

    Tiong, T Joyce; Price, Gareth J; Kanagasingam, Shalini

    2014-09-01

    One of the uses of ultrasound in dentistry is in the field of endodontics (i.e. root canal treatment) in order to enhance cleaning efficiency during the treatment. The acoustic pressures generated by the oscillation of files in narrow channels has been calculated using the COMSOL simulation package. Acoustic pressures in excess of the cavitation threshold can be generated and higher values were found in narrower channels. This parallels experimental observations of sonochemiluminescence. The effect of varying the channel width and length and the dimensions and shape of the file are reported. As well as explaining experimental observations, the work provides a basis for the further development and optimisation of the design of endosonic files.

  17. A study of pump cavitation damage

    NASA Astrophysics Data System (ADS)

    Brophy, M. C.; Stinebring, D. R.; Billet, M. L.

    1983-11-01

    The cavitation assessment for the space shuttle main engine high pressure oxidizer turbopump is documented. A model of the flow through the pump was developed. Initially, a computational procedure was used to analyze the flow through the inlet casing including the prediction of wakes downstream of the casing vanes. From these flow calculations, cavitation patterns on the inducer blades were approximated and the damage rate estimated. The model correlates the heavy damage on the housing and over the inducer with unsteady blade surface cavitation. The unsteady blade surface cavitation is due to the large incidence changes caused by the wakes of the upstream vanes. Very high cavitation damage rates are associated with this type of cavitation. Design recommendations for reducing the unsteady cavitation include removing the set of vanes closest to the inducer and modifying the remaining vanes.

  18. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze–thaw cycles

    PubMed Central

    Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry

    2016-01-01

    Freeze–thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice–liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree–water relations. We investigated water fluxes induced by ice formation during freeze–thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark’s living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze–thaw cycles in tree stems. PMID:26585223

  19. On thermonuclear processes in cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Nigmatulin, R. I.; Lahey, R. T., Jr.; Taleyarkhan, R. P.; West, C. D.; Block, R. C.

    2014-09-01

    The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical cavitation cluster ˜ 10-2 m in diameter is produced of spherical bubbles at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles effectuate volume oscillations with sharp collapses during the compression stage. At the final stages of collapse, the bubble cluster emits 2.5 MeV D-D fusion neutron pulses at a rate of ˜ 2000 per second. The neutron yield is ˜ 10^5 s -1. In parallel, tritium nuclei are produced at the same yield. It is shown numerically that, for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles, which focus energy on the centers of the bubbles. When these shock waves reflect from the centers of the bubbles, extreme conditions of temperature ( ˜ 10^8 K) and density ( ˜ 10^4 kg m -3) arise in a (nano)spherical region ( ˜ 10-7 m in size) that last for ˜ 10-12 s, during which time about ten D-D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result in our experiments is that it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) D-acetone ( C3D6O) vapor (as compared, for example, to deuterated water D2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of 'bubble fusion' has been subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics - Uspekhi) journal, is

  20. Unseeded Inertial Cavitation for Enhancing the Delivery of Chemotherapies: A Safety Study.

    PubMed

    Lafond, Maxime; Mestas, Jean-Louis; Prieur, Fabrice; Chettab, Kamel; Geraci, Sandra; Clézardin, Philippe; Lafon, Cyril

    2016-01-01

    Acoustic cavitation can improve local drug delivery in tumors. Without injected external nucleation agents, initiating inertial cavitation requires high negative pressures, which can lead to biological damage. In the present study, unseeded inertial cavitation was obtained in vivo using confocal beams, and the effect of these exposure conditions was assessed on drug structure and activity, shallow tissues and growth of breast tumors. No change was observed in the structure and cytotoxicity of doxorubicin. Experiments were conducted on healthy rats, exposing the thigh and abdomen. Histologic analyses at 72 h and 2 weeks post-treatment demonstrated a modest impact on tissues. Syngeneic 4 T1 breast tumors in mice were sonicated. Immunohistochemical analyses showed that ultrasound did not impact vascular density, proliferation and apoptosis of cancer cells. In addition, ultrasound did not negatively modify cancer cell spreading to the lungs and bone marrow. This provides evidence that these particular parameters can be used safely in vivo. PMID:26478278

  1. Experimental and numerical studies on super-cavitating flow of axisymmetric cavitators

    NASA Astrophysics Data System (ADS)

    Ahn, Byoung-Kwon; Lee, Chang-Sup; Kim, Hyoung-Tae

    2010-03-01

    Recently underwater systems moving at high speed such as a super-cavitating torpedo have been studied for their practical advantage of the dramatic drag reduction. In this study we are focusing our attention on super-cavitating flows around axisymmetric cavitators. A numerical method based on inviscid flow is developed and the results for several shapes of the cavitator are presented. First using a potential based boundary element method, we find the shape of the cavitator yielding a sufficiently large enough cavity to surround the body. Second, numerical predictions of supercavity are validated by comparing with experimental observations carried out in a high speed cavitation tunnel at Chungnam National University (CNU CT).

  2. Nucleus factory on cavitation bubble for amyloid β fibril

    PubMed Central

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-01-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability. PMID:26912021

  3. Nucleus factory on cavitation bubble for amyloid β fibril.

    PubMed

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-01-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability. PMID:26912021

  4. Nucleus factory on cavitation bubble for amyloid β fibril.

    PubMed

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-02-25

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability.

  5. Nucleus factory on cavitation bubble for amyloid β fibril

    NASA Astrophysics Data System (ADS)

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-02-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability.

  6. Stochastic-field cavitation model

    NASA Astrophysics Data System (ADS)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-07-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  7. Stochastic-field cavitation model

    SciTech Connect

    Dumond, J.; Magagnato, F.; Class, A.

    2013-07-15

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  8. Cavitation inception from bubble nuclei

    PubMed Central

    Mørch, K. A.

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  9. Flow velocity measurement with the nonlinear acoustic wave scattering

    NASA Astrophysics Data System (ADS)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  10. Flow velocity measurement with the nonlinear acoustic wave scattering

    SciTech Connect

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  11. Boundary lubrication of heterogeneous surfaces and the onset of cavitation in frictional contacts.

    PubMed

    Savio, Daniele; Pastewka, Lars; Gumbsch, Peter

    2016-03-01

    Surfaces can be slippery or sticky depending on surface chemistry and roughness. We demonstrate in atomistic simulations that regular and random slip patterns on a surface lead to pressure excursions within a lubricated contact that increase quadratically with decreasing contact separation. This is captured well by a simple hydrodynamic model including wall slip. We predict with this model that pressure changes for larger length scales and realistic frictional conditions can easily reach cavitation thresholds and significantly change the load-bearing capacity of a contact. Cavitation may therefore be the norm, not the exception, under boundary lubrication conditions. PMID:27051871

  12. Boundary lubrication of heterogeneous surfaces and the onset of cavitation in frictional contacts

    PubMed Central

    Savio, Daniele; Pastewka, Lars; Gumbsch, Peter

    2016-01-01

    Surfaces can be slippery or sticky depending on surface chemistry and roughness. We demonstrate in atomistic simulations that regular and random slip patterns on a surface lead to pressure excursions within a lubricated contact that increase quadratically with decreasing contact separation. This is captured well by a simple hydrodynamic model including wall slip. We predict with this model that pressure changes for larger length scales and realistic frictional conditions can easily reach cavitation thresholds and significantly change the load-bearing capacity of a contact. Cavitation may therefore be the norm, not the exception, under boundary lubrication conditions. PMID:27051871

  13. Enhanced cavitation by using two consecutive ultrasound waves at different frequencies

    PubMed Central

    Yang, Xinmai; Jo, Janggun

    2014-01-01

    Efficient and noninvasive generation of cavitation bubbles in soft tissue is a challenging task due to the lack of cavitation nuclei (i.e., pre-existing gas bubbles). In this study, we present a method to generate and enhance cavitation activity based on the utilization of two consecutive ultrasound waves at different frequencies. First, a high frequency (5 MHz) high intensity focused ultrasound (HIFU) wave was applied to a tissue-mimicking phantom to induce a rapid temperature rise in the ultrasound focal region. Immediately following the high frequency HIFU wave, a low frequency (1 MHz) HIFU wave was applied to the same focal region to induce acoustic cavitation. We found that cavitation activity was enhanced when the temperature in the tissue-mimicking phantom was first elevated by the high frequency HIFU wave. The enhancement was greater when a higher intensity of high frequency HIFU wave was applied. This result may be due to the temporary super-saturation of air in the initially air-saturated test samples and the reduction of surface tension at an elevated temperature. PMID:25425746

  14. Continuous Cavitation Designed for Enhancing Radiofrequency Ablation via a Special Radiofrequency Solidoid Vaporization Process.

    PubMed

    Zhang, Kun; Li, Pei; Chen, Hangrong; Bo, Xiaowan; Li, Xiaolong; Xu, Huixiong

    2016-02-23

    Lowering power output and radiation time during radiofrequency (RF) ablation is still a challenge. Although it is documented that metal-based magnetothermal conversion and microbubbles-based inertial cavitation have been tried to overcome above issues, disputed toxicity and poor magnetothermal conversion efficiency for metal-based nanoparticles and violent but transient cavitation for microbubbles are inappropriate for enhancing RF ablation. In this report, a strategy, i.e., continuous cavitation, has been proposed, and solid menthol-encapsulated poly lactide-glycolide acid (PLGA) nanocapsules have been constructed, as a proof of concept, to validate the role of such a continuous cavitation principle in continuously enhancing RF ablation. The synthesized PLGA-based nanocapsules can respond to RF to generate menthol bubbles via distinctive radiofrequency solidoid vaporization (RSV) process, meanwhile significantly enhance ultrasound imaging for HeLa solid tumor, and further facilitate RF ablation via the continuous cavitation, as systematically demonstrated both in vitro and in vivo. Importantly, this RSV strategy can overcome drawbacks and limitations of acoustic droplet vaporization (ADV) and optical droplet vaporization (ODV), and will probably find broad applications in further cancer theranostics. PMID:26800221

  15. Cavitation in ultrasound and shockwave therapy

    NASA Astrophysics Data System (ADS)

    Colonius, Tim

    2014-11-01

    Acoustic waves, especially high-intensity ultrasound and shock waves, are used for medical imaging and intra- and extra-corporeal manipulation of cells, tissue, and urinary calculi. Waves are currently used to treat kidney stone disease, plantar fasciitis, and bone nonunion, and they are being investigated as a technique to ablate cancer tumors and mediate drug delivery. In many applications, acoustic waves induce the expansion and collapse of preexisting or newly cavitating bubbles whose presence can either mediate the generation of localized stresses or lead to collateral damage, depending on how effectively they can be controlled. We describe efforts aimed at simulating the collapse of bubbles, both individually and in clusters, with the aim to characterize the induced mechanical stresses and strains. To simulate collapse of one or a few bubbles, compressible Euler and Navier-Stokes simulations of multi-component materials are performed with WENO-based shock and interface capturing schemes. Repetitive insonification generates numerous bubbles that are difficult to resolve numerically. Such clouds are also important in traditional engineering applications such as caveating hydrofoils. Models that incorporate the dynamics of an unresolved dispersed phase consisting of the bubble cloud are also developed. The results of several model problems including bubble collapse near rigid surfaces, bubble collapse near compliant surfaces and in small capillaries are analyzed. The results are processed to determine the potential for micron-sized preexisting gas bubbles to damage capillaries. The translation of the fundamental fluid dynamics into improvements in the design and clinical application of shockwave lithotripters will be discussed. NIH Grant PO1-DK043881.

  16. Prediction of cryogenic cavitation around hydrofoil by an extensional Schnerr-Sauer cavitation model

    NASA Astrophysics Data System (ADS)

    Sun, T. Z.; Wei, Y. J.; Wang, C.

    2015-12-01

    Developing a robust computational strategy to address the rich physics characteristic involved in the thermodynamic effects on the cryogenic cavitation remains a challenging problem. The objective of this present study is to model the numerical methodology to simulate the cryogenic cavitation by implanting the thermodynamic effects to the Schnerr-Sauer cavitation model, and coupling the energy equation considered the latent heat. For this purpose, cavitating flows are investigated over a three dimensional hydrofoil in liquid hydrogen and nitrogen. Experimental measurements of pressure and temperature are utilized to validate the extensional Schnerr-Sauer cavitation model. Specifically, the further analysis of the cavitation solution with respect to the thermodynamic term is conducted. The results show that the extensional Schnerr-Sauer cavitation model predicts better accuracy to the quasi-steady cavitation over hydrofoil in the two cryogenic fluids.

  17. Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold

    SciTech Connect

    Upadhyay, Arun K.; Inogamov, Nail A.; Rethfeld, Baerbel; Urbassek, Herbert M.

    2008-07-15

    Ultrafast laser irradiation of solids may ablate material off the surface. We study this process for thin films using molecular-dynamics simulation and thermodynamic analysis. Both metals and Lennard-Jones (LJ) materials are studied. We find that despite the large difference in thermodynamical properties between these two classes of materials--e.g., for aluminum versus LJ the ratio T{sub c}/T{sub tr} of critical to triple-point temperature differs by more than a factor of 4--the values of the ablation threshold energy E{sub abl} normalized to the cohesion energy, {epsilon}{sub abl}=E{sub abl}/E{sub coh}, are surprisingly universal: all are near 0.3 with {+-}30% scattering. The difference in the ratio T{sub c}/T{sub tr} means that for metals the melting threshold {epsilon}{sub m} is low, {epsilon}{sub m}<{epsilon}{sub abl}, while for LJ it is high, {epsilon}{sub m}>{epsilon}{sub abl}. This thermodynamical consideration gives a simple explanation for the difference between metals and LJ. It explains why despite the universality in {epsilon}{sub abl}, metals thermomechanically ablate always from the liquid state. This is opposite to LJ materials, which (near threshold) ablate from the solid state. Furthermore, we find that immediately below the ablation threshold, the formation of large voids (cavitation) in the irradiated material leads to a strong temporary expansion on a very slow time scale. This feature is easily distinguished from the acoustic oscillations governing the material response at smaller intensities, on the one hand, and the ablation occurring at larger intensities, on the other hand. This finding allows us to explain the puzzle of huge surface excursions found in experiments at near-threshold laser irradiation.

  18. Efficient Generation of Cavitation Bubbles in Gel Phantom by Ultrasound Exposure with Negative-Followed by Positive-Peak-Pressure-Emphasized Waves

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Asai, Ayumu; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-07-01

    Cavitation bubbles have much potential for emphasizing therapeutic treatments such as high-intensity focused ultrasound (HIFU) treatment, histotripsy, and sonodynamic therapy. Their highly efficient as well as controlled generation is important to utilize them effectively as well as safely. However, producing negative pressure over the cavitation threshold by focused ultrasound is difficult because of the nonlinear propagation combined with the focal phase shift. We have suggested a dual-frequency ultrasound exposure method, in which N- and P-waves emphasizing either the peak negative or positive pressure, respectively, are synthesized by superimposing the second harmonic onto the fundamental frequency. In this study, high-speed camera observation demonstrated that the exposure with N-waves immediately followed by P-waves could generate cavitation bubbles most efficiently in gel phantom. Furthermore, the measured negative and positive pressure distributions of the N- and P-wave fields, respectively, agreed well with the optically observed distributions of cavitation inception and cavitation cloud growth.

  19. Application of signal analysis to cavitation

    NASA Technical Reports Server (NTRS)

    Martin, C. S.; Veerabhadra Rao, P.

    1984-01-01

    The diagnostic facilities of the cross power spectrum and the coherence function have been employed to enhance the identification of not only the inception of cavitation, but also its level. Two piezoelectric pressure transducers placed in the downstream chamber of a model spool valve undergoing various levels of cavitation allowed for the use of both functions - the phase angle of the complex cross spectrum and the dimensionless coherence function - to sense clearly the difference between noise levels associated with a noncavitating jet from those once cavitation inception is attained. The cavitation noise within the chamber exhibited quite a regular character in terms of the phase difference between instruments for limited cavitation. Varying cavitation levels clearly illustrated the effect of bubble size on the attendant frequency range for which there was an extremely high coherence or nearly perfect causality.

  20. Cavitation erosion - scale effect and model investigations

    NASA Astrophysics Data System (ADS)

    Geiger, F.; Rutschmann, P.

    2015-12-01

    The experimental works presented in here contribute to the clarification of erosive effects of hydrodynamic cavitation. Comprehensive cavitation erosion test series were conducted for transient cloud cavitation in the shear layer of prismatic bodies. The erosion pattern and erosion rates were determined with a mineral based volume loss technique and with a metal based pit count system competitively. The results clarified the underlying scale effects and revealed a strong non-linear material dependency, which indicated significantly different damage processes for both material types. Furthermore, the size and dynamics of the cavitation clouds have been assessed by optical detection. The fluctuations of the cloud sizes showed a maximum value for those cavitation numbers related to maximum erosive aggressiveness. The finding suggests the suitability of a model approach which relates the erosion process to cavitation cloud dynamics. An enhanced experimental setup is projected to further clarify these issues.

  1. A cavitation model for computations of unsteady cavitating flows

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Wang, Guoyu; Huang, Biao

    2016-04-01

    A local vortical cavitation (LVC) model for the computation of unsteady cavitation is proposed. The model is derived from the Rayleigh-Plesset equations, and takes into account the relations between the cavitation bubble radius and local vortical effects. Calculations of unsteady cloud cavitating flows around a Clark-Y hydrofoil are performed to assess the predictive capability of the LVC model using well-documented experimental data. Compared with the conventional Zwart's model, better agreement is observed between the predictions of the LVC model and experimental data, including measurements of time-averaged flow structures, instantaneous cavity shapes and the frequency of the cloud cavity shedding process. Based on the predictions of the LVC model, it is demonstrated that the evaporation process largely concentrates in the core region of the leading edge vorticity in accordance with the growth in the attached cavity, and the condensation process concentrates in the core region of the trailing edge vorticity, which corresponds to the spread of the rear component of the attached cavity. When the attached cavity breaks up and moves downstream, the condensation area fully transports to the wake region, which is in accordance with the dissipation of the detached cavity. Furthermore, using vorticity transport equations, we also find that the periodic formation, breakup, and shedding of the sheet/cloud cavities, along with the associated baroclinic torque, are important mechanisms for vorticity production and modification. When the attached cavity grows, the liquid-vapour interface that moves towards the trailing edge enhances the vorticity in the attached cavity closure region. As the re-entrant jet moves upstream, the wavy/bubbly cavity interface enhances the vorticity near the trailing edge. At the end of the cycle, the break-up of the stable attached cavity is the main reason for the vorticity enhancement near the suction surface.

  2. A model for acoustic vaporization of encapsulated droplets.

    PubMed

    Guédra, Matthieu; Coulouvrat, François

    2015-12-01

    The use of encapsulated liquid nanoparticles is currently largely investigated for medical applications, mainly because their reduced size allows them to enter targeted areas which cannot be reached by large microbubbles (contrast agents). Low-boiling point perfluorocarbon droplets can be vaporized on-site under the action of the ultrasonic field, in order to turn them into echogeneous-eventually cavitating-microbubbles. This paper presents a theoretical model describing this phenomenon, paying particular attention to the finite size of the droplet and its encapsulation by a thin viscoelastic layer. Numerical simulations are done for droplets of radii 1 and 10 μm and for frequencies of 1-5 MHz. Results reveal that droplet surface tension and shell rigidity are responsible for an increase of the acoustic droplet vaporization threshold. Furthermore, this threshold does not vary monotonically with frequency, and an optimal frequency can be found to minimize it. Finally, the role of some physical properties on the dynamics of the particle is analyzed, such as the contrast of inner and outer liquids densities and the mechanical properties of the shell. PMID:26723321

  3. Dependence of the drag of a conical axisymmetric cavitation body on the cone angle and the cavitation number

    SciTech Connect

    Khomyakov, A.N.

    1995-11-01

    Numerical investigations of flow past axisymmetric conical cavitation bodies have shown that the drag coefficient of the cavitation body, calculated from the maximum cross-sectional area of the cavity (midsection), depends on the cavitation number and the cone angle.

  4. Cavitation study of a pump-turbine at turbine mode with critical cavitation coefficient condition

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yang, D.; Xu, J. W.; Liu, J. T.; Jiao, L.

    2016-05-01

    To study the cavitation phenomenon of a pump-turbine at turbine mode when it ran at the critical cavitation coefficient condition, a high-head model pump-turbine was disperse using hexahedron grid. Three dimensional, steady cavitating flow was numerically studied using SST k-ω model. It is confirmed that ZGB cavitation model and SST k-ω model are useful ways to study the two-phase cavitation flow in pump-turbine. Mass flow inlet and pressure outlet were specified at the casing inlet and draft tube outlet, respectively. The static pressure was set according to the cavitation coefficient. The steady cavitating flows at critical cavitation coefficient condition were analysed. The cavitation area in the runner was investigated. It was found that the pressure of the suction on the blade surface was decreasing gradually with the decrease of the cavitation coefficient. In addition, the vortex flow in the draft tube was observed at the critical cavitation coefficient. It was found that the vortex flow appeared at the center of the draft tube inlet with the decreasing of the cavitation coefficient. Compared with the experimental data, the simulation results show reasonable agreement with the experimental data.

  5. Theoretical microbubble dynamics in a viscoelastic medium at capillary breaching thresholds.

    PubMed

    Patterson, Brandon; Miller, Douglas L; Johnsen, Eric

    2012-12-01

    In order to predict bioeffects in contrast-enhanced diagnostic and therapeutic ultrasound procedures, the dynamics of cavitation microbubbles in viscoelastic media must be determined. For this theoretical study, measured 1.5 to 7.5 MHz pulse pressure waveforms, which were used in experimental determinations of capillary breaching thresholds for contrast-enhanced diagnostic ultrasound in a rat kidney, were used to calculate cavitation nucleated from contrast agent microbubbles. A numerical model for cavitation in tissue was developed based on the Keller-Miksis equation (a compressible extension of the Rayleigh-Plesset equation for spherical bubble dynamics), with a Kelvin-Voigt constitutive relation. From this model, the bubble dynamics corresponding to the experimentally obtained capillary breaching thresholds were determined. Values of the maximum radius and temperature corresponding to previously determined bioeffect thresholds were computed for a range of ultrasound pulses and bubble sizes for comparison to inertial cavitation threshold criteria. The results were dependent on frequency, the gas contents, and the tissue elastic properties. The bioeffects thresholds were above previously determined inertial cavitation thresholds, even for the tissue models, suggesting the possibility of a more complex dosimetry for capillary injury in tissue. PMID:23231107

  6. Measuring Dynamic Transfer Functions of Cavitating Pumps

    NASA Technical Reports Server (NTRS)

    Baun, Daniel

    2007-01-01

    A water-flow test facility has been built to enable measurement of dynamic transfer functions (DTFs) of cavitating pumps and of inducers in such pumps. Originally, the facility was intended for use in an investigation of the effects of cavitation in a rocket-engine low-pressure oxygen turbopump. The facility can also be used to measure DTFs of cavitating pumps in general

  7. Cavitation on hydrofoils with sinusoidal leading edge

    NASA Astrophysics Data System (ADS)

    Johari, H.

    2015-12-01

    Cavitation characteristics of hydrofoils with sinusoidal leading edge were examined experimentally at a Reynolds number of 7.2 × 105. The hydrofoils had an underlying NACA 634-021 profile and an aspect ratio of 4.3. The sinusoidal leading edge geometries included three amplitudes of 2.5%, 5%, and 12% and two wavelengths of 25% and 50% of the mean chord length. Results revealed that cavitation on the leading edge-modified hydrofoils existed in pockets behind the troughs whereas the baseline hydrofoil produced cavitation along its entire span. Moreover, cavitation on the modified hydrofoils appeared at consistently lower angles of attack than on the baseline hydrofoil.

  8. Blood vessel rupture by cavitation

    PubMed Central

    Chen, Hong; Brayman, Andrew A.; Bailey, Michael R.

    2011-01-01

    Cavitation is thought to be one mechanism for vessel rupture during shock wave lithotripsy treatment. However, just how cavitation induces vessel rupture remains unknown. In this work, a high-speed photomicrography system was set up to directly observe the dynamics of bubbles inside blood vessels in ex vivo rat mesenteries. Vascular rupture correlating to observed bubble dynamics were examined by imaging bubble extravasation and dye leakage. The high-speed images show that bubble expansion can cause vessel distention, and bubble collapse can lead to vessel invagination. Liquid jets were also observed to form. Our results suggest that all three mechanisms, vessel distention, invagination and liquid jets, can contribute to vessel rupture. PMID:20680255

  9. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath

    PubMed Central

    Malc, Ewa P.; Jayakody, Chatura N.; Tsuruta, James K.; Mieczkowski, Piotr A.; Janzen, William P.; Dayton, Paul A.

    2015-01-01

    A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation. PMID:26186461

  10. Ultrasonic emissions reveal individual cavitation bubbles in water-stressed wood.

    PubMed

    Ponomarenko, A; Vincent, O; Pietriga, A; Cochard, H; Badel, É; Marmottant, P

    2014-10-01

    Under drought conditions, the xylem of trees that conducts ascending sap produces ultrasonic emissions whose exact origin is not clear. We introduce a new method to record simultaneously both acoustic events and optical observation of the xylem conduits within slices of wood that were embedded in a transparent material setting a hydric stress. In this article, we resolved the rapid development of all cavitation bubbles and demonstrated that each ultrasound emission was linked to the nucleation of one single bubble, whose acoustic energy is an increasing function of the size of the conduit where nucleation occurred and also of the hydric stress. We modelled these observations by the fact that water columns in conduits store elastic energy and release it into acoustic waves when they are broken by cavitation bubbles. Water columns are thus elastic, and not rigid, 'wires of water' set under tension by hydric stresses. Cavitation bubbles are at the origin of an embolism, whose development was followed in our experiments. Such an embolism of sap circulation can result in a fatal condition for living trees. These findings provide new insights for the non-destructive monitoring of embolisms within trees, and suggest a new approach to study porous media under hydric stress.

  11. Ultrasonic emissions reveal individual cavitation bubbles in water-stressed wood

    PubMed Central

    Ponomarenko, A.; Vincent, O.; Pietriga, A.; Cochard, H.; Badel, É.; Marmottant, P.

    2014-01-01

    Under drought conditions, the xylem of trees that conducts ascending sap produces ultrasonic emissions whose exact origin is not clear. We introduce a new method to record simultaneously both acoustic events and optical observation of the xylem conduits within slices of wood that were embedded in a transparent material setting a hydric stress. In this article, we resolved the rapid development of all cavitation bubbles and demonstrated that each ultrasound emission was linked to the nucleation of one single bubble, whose acoustic energy is an increasing function of the size of the conduit where nucleation occurred and also of the hydric stress. We modelled these observations by the fact that water columns in conduits store elastic energy and release it into acoustic waves when they are broken by cavitation bubbles. Water columns are thus elastic, and not rigid, ‘wires of water’ set under tension by hydric stresses. Cavitation bubbles are at the origin of an embolism, whose development was followed in our experiments. Such an embolism of sap circulation can result in a fatal condition for living trees. These findings provide new insights for the non-destructive monitoring of embolisms within trees, and suggest a new approach to study porous media under hydric stress. PMID:25056212

  12. Numerical study of a confocal ultrasonic setup for creation of cavitation

    SciTech Connect

    Lafond, Maxime Chavrier, Françoise; Prieur, Fabrice; Mestas, Jean-Louis; Lafon, Cyril

    2015-10-28

    Acoustic cavitation is used for various therapeutic applications such as local enhancement of drug delivery, histotripsy or hyperthermia. One of the utmost important parameter for cavitation creation is the rarefaction pressure. The typical magnitude of the rarefaction pressure required to initiate cavitation from gas dissolved in tissue is beyond the range of the megapascal. Because nonlinear effects need to be taken into account, a numerical simulator based on the Westervelt equation was used to study the pressure waveform and the acoustic field generated by a setup for creation of cavitation consisting of two high intensity focused ultrasound transducers mounted confocally. At constant acoustic power, simulations with only one and both transducers from the confocal setup showed that the distortion of the pressure waveform due to the combined effects of nonlinearity and diffraction is less pronounced when both confocal transducers are used. Consequently, the confocal setup generates a greater peak negative pressure at focus which is more favorable for cavitation initiation. Comparison between the confocal setup and a single transducer with the same total emitting surface puts in evidence the role of the spatial separation of the two beams. Furthermore, it has been previously shown that the location of the peak negative pressure created by a single transducer shifts from focus towards the transducers in the presence of nonlinear effects. The simulator was used to study a configuration where the acoustical axes of transducers intersect on the peak negative pressure instead of the geometrical focus. For a representative confocal setup, namely moderate nonlinear effects, a 2% increase of the peak negative pressure and 8% decrease of the peak positive pressure resulted from this configuration. These differences tend to increase by increasing nonlinear effects. Although the optimal position of the transducers varies with the nonlinear regimen, the intersection point

  13. Cavitation in liquid cryogens. 1: Venturi

    NASA Technical Reports Server (NTRS)

    Hord, J.; Anderson, L. M.; Hall, W. J.

    1972-01-01

    The results of continuing cavitation studies are reported. The cavitation characteristics of liquid hydrogen and liquid nitrogen flowing in a transparent plastic Venturi are discussed. Thermodynamic data, consisting of pressure and temperature measurements within fully developed hydrogen cavities, are reported. Details concerning test apparatus, test procedure, and data correlation techniques are given.

  14. Observations on instabilities of cavitating inducers

    NASA Technical Reports Server (NTRS)

    Braisted, D.; Brennen, C.

    1978-01-01

    Experimental observations of instability of cavitating inducers were made for two different inducers operating at different flow coefficients. In general, instability occurred just before head breakdown. Auto-oscillation and rotating cavitation were observed. Analysis of small-amplitude behavior of the inducer and hydraulic system is carried out, and analytical predictions of stability limits were compared with experiment.

  15. Cavitation: Cavitation flow. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Habercom, G. E., Jr.

    1980-05-01

    Reports on general aspects of cavitating flow are included. A wide range of theoretical, analytical, and experimental information is presented involving mathematical analysis, computer programs, and testing. Topics include marine engineering, hydrodynamic and aerodynamic configurations, symmetric and nonaxisymmetric shapes, and measuring technology. Data is given on surface piercing struts, helical inducers, pumps, liquid metal systems, and venturi tubes. Applications include dam outlets and spillways, vertical conduits, deep rock drilling, heat pipe stability, water entry, and liquid cryogenic systems. Discussions are made of flow characteristics, noise, nucleate boiling, perturbation problems, and allied subjects. This updated bibliography contains 253 abstracts.

  16. Cavitation inception by the backscattering of pressure waves from a bubble interface

    SciTech Connect

    Takahira, Hiroyuki Ogasawara, Toshiyuki Mori, Naoto Tanaka, Moe

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  17. Sonoluminescence characterization of inertial cavitation inside a BSA phantom treated by pulsed HIFU.

    PubMed

    Yin, Hui; Chang, Nan; Xu, Shanshan; Wan, Mingxi

    2016-09-01

    The aim of this study was to investigate the inertial cavitation inside a phantom treated by pulsed HIFU (pHIFU). Basic bovine serum albumin (BSA) phantoms without any inherent ultrasound contrast agents (UCAs) or phase-shift nano-emulsions (PSNEs) were used. During the treatment, sonoluminescence (SL) recordings were performed to characterize the spatial distribution of inertial cavitation adjacent to the focal region. High-speed photographs and thermal coagulations, comparing with the SL results, were also recorded and presented. A series of pulse parameters (pulse duration (PD) was between 1 and 23 cycles and pulse repetition frequency (PRF) was between 0.5kHz and 100kHz) were performed to make a systematic investigation under certain acoustic power (APW). Continuous HIFU (cHIFU) investigation was also performed to serve as control group. It was found that, when APW was 19.5W, pHIFU with short PD was much easier to form SL adjacent to the focal region inside the phantom, while it was difficult for cHIFU to generate cavitation bubbles. With appropriate PD and PRF, the residual bubbles of the previous pulses could be stimulated by the incident pulses to oscillate in a higher level and even violently collapse, resulting to enhanced physical thermogenesis. The experimental results showed that the most violent inertial cavitation occurs when PD was set to 6 cycles (5μs) and PRF to 10kHz, while the highest level of thermal coagulation was observed when PD was set to 10 cycles. The cavitational and thermal characteristics were in good correspondence, exhibiting significant potentiality regarding to inject-free cavitation bubble enhanced thermal ablation under lower APW, compared to the conventional thermotherapy. PMID:27150756

  18. Sonoluminescence characterization of inertial cavitation inside a BSA phantom treated by pulsed HIFU.

    PubMed

    Yin, Hui; Chang, Nan; Xu, Shanshan; Wan, Mingxi

    2016-09-01

    The aim of this study was to investigate the inertial cavitation inside a phantom treated by pulsed HIFU (pHIFU). Basic bovine serum albumin (BSA) phantoms without any inherent ultrasound contrast agents (UCAs) or phase-shift nano-emulsions (PSNEs) were used. During the treatment, sonoluminescence (SL) recordings were performed to characterize the spatial distribution of inertial cavitation adjacent to the focal region. High-speed photographs and thermal coagulations, comparing with the SL results, were also recorded and presented. A series of pulse parameters (pulse duration (PD) was between 1 and 23 cycles and pulse repetition frequency (PRF) was between 0.5kHz and 100kHz) were performed to make a systematic investigation under certain acoustic power (APW). Continuous HIFU (cHIFU) investigation was also performed to serve as control group. It was found that, when APW was 19.5W, pHIFU with short PD was much easier to form SL adjacent to the focal region inside the phantom, while it was difficult for cHIFU to generate cavitation bubbles. With appropriate PD and PRF, the residual bubbles of the previous pulses could be stimulated by the incident pulses to oscillate in a higher level and even violently collapse, resulting to enhanced physical thermogenesis. The experimental results showed that the most violent inertial cavitation occurs when PD was set to 6 cycles (5μs) and PRF to 10kHz, while the highest level of thermal coagulation was observed when PD was set to 10 cycles. The cavitational and thermal characteristics were in good correspondence, exhibiting significant potentiality regarding to inject-free cavitation bubble enhanced thermal ablation under lower APW, compared to the conventional thermotherapy.

  19. Vapor Cavitation in Dynamically Loaded Journal Bearings

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.; Hamrock, B. J.

    1983-01-01

    High speed motion camera experiments were performed on dynamically loaded journal bearings. The length to diameter ratio of the bearing, the speed of the roller and the tube, the surface material of the roller, and the static and dynamic eccentricity of the bearing were varied. One hundred and thirty-four cases were filmed. The occurrence of vapor cavitation was clearly evident in the films and figures presented. Vapor cavitation was found to occur when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The physical situation in which vapor cavitation occurs is during the squeezing and sliding motion within a bearing. Besides being able to accurately capture the vapor cavitation on film, an analysis of the formation and collapse of the cavitation bubbles and characteristics of the bubble content are presented.

  20. Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions

    PubMed Central

    Kopechek, Jonathan A; Park, Eun-Joo; Zhang, Yong-Zhi; Vykhodtseva, Natalia I; McDannold, Nathan J; Porter, Tyrone M

    2014-01-01

    Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required. Studies have shown that inertial cavitation can enhance HIFU-mediated heating by generating broadband acoustic emissions that increase tissue absorption and accelerate HIFU-induced heating. Unfortunately, initiating inertial cavitation in tumors requires high intensities and can be unpredictable. To address this need, phase-shift nanoemulsions (PSNE) have been developed. PSNE consist of lipid-coated liquid perfluorocarbon droplets that are less than 200 nm in diameter, thereby allowing passive accumulation in tumors through leaky tumor vasculature. PSNE can be vaporized into microbubbles in tumors in order to nucleate cavitation activity and enhance HIFU-mediated heating. In this study, MR-guided HIFU treatments were performed on intramuscular rabbit VX2 tumors in vivo to assess the effect of vaporized PSNE on acoustic cavitation and HIFU-mediated heating. HIFU pulses were delivered for 30 seconds using a 1.5 MHz, MR-compatible transducer, and cavitation emissions were recorded with a 650-kHz ring hydrophone while temperature was monitored using MR thermometry. Cavitation emissions were significantly higher (P<0.05) after PSNE injection and this was well correlated with enhanced HIFU-mediated heating in tumors. The peak temperature rise induced by sonication was significantly higher (P<0.05) after PSNE injection. For example, the mean percent change in temperature achieved at 5.2 W of acoustic power was 46 ± 22% with PSNE injection. The results indicate that PSNE nucleates cavitation which correlates with enhanced HIFU-mediated heating in tumors. This suggests that PSNE could

  1. Acoustical scattering cross section of gas bubbles under dual-frequency acoustic excitation.

    PubMed

    Zhang, Yuning; Li, Shengcai

    2015-09-01

    The acoustical scattering cross section is a paramount parameter determining the scattering ability of cavitation bubbles when they are excited by the incident acoustic waves. This parameter is strongly related with many important applications of acoustic cavitation including facilitating the reaction of chemical process, boosting bubble sonoluminescence, and performing non-invasive therapy and drug delivery. In present paper, both the analytical and numerical solutions of acoustical scattering cross section of gas bubbles under dual-frequency excitation are obtained. The validity of the analytical solution is shown with demonstrating examples. The nonlinear characteristics (e.g., harmonics, subharmonics and ultraharmonics) of the scattering cross section curve under dual-frequency approach are investigated. Compared with single-frequency approach, the dual-frequency approach displays more resonances termed as "combination resonances" and could promote the acoustical scattering cross section significantly within a much broader range of bubble sizes due to the generation of more resonances. The influence of several paramount parameters (e.g., acoustic pressure amplitude, power allocations between two acoustic components, and the ratio of the frequencies) in the dual-frequency system on the predictions of scattering cross section has been discussed.

  2. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.

    2005-01-01

    A new unsteady, cavitation model is presented wherein the phase change process (bubble growth/collapse) is coupled to the acoustic field in a cryogenic fluid. It predicts the number density and radius of bubbles in vapor clouds by tracking both the aggregate surface area and volume fraction of the cloud. Hence, formulations for the dynamics of individual bubbles (e.g. Rayleigh-Plesset equation) may be integrated within the macroscopic context of a dense vapor cloud i.e. a cloud that occupies a significant fraction of available volume and contains numerous bubbles. This formulation has been implemented within the CRUNCH CFD, which has a compressible real fluid formulation, a multi-element, unstructured grid framework, and has been validated extensively for liquid rocket turbopump inducers. Detailed unsteady simulations of a cavitating ogive in liquid nitrogen are presented where time-averaged mean cavity pressure and temperature depressions due to cavitation are compared with experimental data. The model also provides the spatial and temporal history of the bubble size distribution in the vapor clouds that are shed, an important physical parameter that is difficult to measure experimentally and is a significant advancement in the modeling of dense cloud cavitation.

  3. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy.

    PubMed

    Zhong, P; Tong, H L; Cocks, F H; Preminger, G M

    1997-02-01

    Using high-speed photography and acoustic emission measurements, we studied the dynamics of a transient cavitation bubble near a stone surface and the concomitant shockwaves generated during electrohydraulic lithotripsy (EHL). At each spark discharge, a vapor plasma and subsequently a cavitation bubble oscillating around the tip of an EHL probe are produced. Simultaneously, three distinctive shockwave pulses are generated. The first shockwave is produced by the rapid expansion of the vapor plasma, while the second and third waves are produced by rebounds of the cavitation bubble. Depending on the proximity of the probe to the stone surface, the collapse of the cavitation bubble may be symmetric, resulting in a strong shockwave emission; or asymmetric, leading to the formation of a liquid jet. For the Nortech AUTOLITH lithotripter with a 1.9F probe that was used in this study, maximum shockwave emission is produced when the probe is about 1 mm from the stone surface, whereas the maximum jet velocity is produced when the probe tip is at distance equivalent to the maximum bubble radius of about 3 mm. These findings are consistent with clinical experience, which suggests that for optimal treatment results, the EHL probe should be placed close to the stone surface.

  4. The detection of cavitation in hydraulic machines by use of ultrasonic signal analysis

    NASA Astrophysics Data System (ADS)

    Gruber, P.; Odermatt, P.; Etterlin, M.; Lerch, T.; Frei, M.; Farhat, M.

    2014-03-01

    This presentation describes an experimental approach for the detection of cavitation in hydraulic machines by use of ultrasonic signal analysis. Instead of using the high frequency pulses (typically 1MHz) only for transit time measurement different other signal characteristics are extracted from the individual signals and its correlation function with reference signals in order to gain knowledge of the water conditions. As the pulse repetition rate is high (typically 100Hz), statistical parameters can be extracted of the signals. The idea is to find patterns in the parameters by a classifier that can distinguish between the different water states. This classification scheme has been applied to different cavitation sections: a sphere in a water flow in circular tube at the HSLU in Lucerne, a NACA profile in a cavitation tunnel and a Francis model test turbine both at LMH in Lausanne. From the signal raw data several statistical parameters in the time and frequency domain as well as from the correlation function with reference signals have been determined. As classifiers two methods were used: neural feed forward networks and decision trees. For both classification methods realizations with lowest complexity as possible are of special interest. It is shown that three signal characteristics, two from the signal itself and one from the correlation function are in many cases sufficient for the detection capability. The final goal is to combine these results with operating point, vibration, acoustic emission and dynamic pressure information such that a distinction between dangerous and not dangerous cavitation is possible.

  5. Hybrid reactor based on combined cavitation and ozonation: from concept to practical reality.

    PubMed

    Gogate, P R; Mededovic-Thagard, S; McGuire, D; Chapas, G; Blackmon, J; Cathey, R

    2014-03-01

    The present work gives an in depth discussion related to the development of a hybrid advanced oxidation reactor, which can be effectively used for the treatment of various types of water. The reactor is based on the principle of intensifying degradation/disinfection using a combination of hydrodynamic cavitation, acoustic cavitation, ozone injection and electrochemical oxidation/precipitation. Theoretical studies have been presented to highlight the uniform distribution of the cavitational activity and enhanced generation of hydroxyl radicals in the cavitation zone, as well as higher turbulence in the main reactor zone. The combination of these different oxidation technologies have been shown to result in enhanced water treatment ability, which can be attributed to the enhanced generation of hydroxyl radicals, enhanced contact of ozone and contaminants, and the elimination of mass transfer resistances during electrochemical oxidation/precipitation. Compared to the use of individual approaches, the hybrid reactor is expected to intensify the treatment process by 5-20 times, depending on the application in question, which can be confirmed based on the literature illustrations. Also, the use of Ozonix® has been successfully proven while processing recycled fluids at commercial sites on over 750 oil and natural gas wells during hydraulic operations around the United States. The superiority of the hybrid process over conventional chemical treatments in terms of bacteria and scale reduction as well as increased water flowability and better chemical compatibility, which is a key requirement for oil and gas applications, has been established. PMID:24048074

  6. Investigation of a Method to Reduce Cavitation in Diesel Engine Bearings

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Honaker, Robert W.

    1998-01-01

    Sonoluminescence is the effect of producing light from sound and occurs when a gas bubble is trapped in a fluid filled cavity and is forced to collapse under a barrage of sound waves. Frenzel and Schultes discovered this phenomenon in 1934 while exposing acoustic waves to photographic plates. This effect was not well understood until 1988 when Crum and Gaitan discovered the necessary conditions for producing single bubble sonoluminescence in the laboratory. The luminescence is a result of the bubble violently collapsing from sound waves and this shares a close association with vibratory cavitation. Cavitation erosion is known to cause damage to rotational machinery when the collapse is near to surfaces due to the high pressures associated with bubble collapse. With these high pressures and temperatures there is a considerable amount of damage to the outside layer of a bearing, thereby, reducing its useful life. An experiment was constructed to generate sonoluminescence in the laboratory in order to obtain a greater understanding of this phenomenon and its association with bubble cavitation. Most of the research was done to investigate how to obtain single bubble sonoluminescence under different conditions and to determine how to detect it. Success in this has inspired several theories on how to use the methods for generating sonoluminescence to control cavitation in fluids under industrial conditions.

  7. Periodic cavitation shedding in a cylindrical orifice

    NASA Astrophysics Data System (ADS)

    Stanley, C.; Barber, T.; Milton, B.; Rosengarten, G.

    2011-11-01

    Cavitation structures in a large-scale ( D = 8.25 mm), plain orifice style nozzle within a unique experimental rig are investigated using high-speed visualisation and digital image processing techniques. Refractive index matching with an acrylic nozzle is achieved using aqueous sodium iodide for the test fluid. Cavitation collapse length, unsteady shedding frequency and spray angles are measured for cavitation conditions from incipient to supercavitation for a range of Reynolds numbers, for a fixed L/ D ratio of 4.85. Periodic cavitation shedding was shown to occur with frequencies between 500 and 2,000 Hz for conditions in which cavitation occupied less than 30% of the nozzle length. A discontinuity in collapse length was shown to occur once the cavitation exceeded this length, coinciding with a loss of periodic shedding. A mechanism for this behaviour is discussed. Peak spray angles of approximately θ ≈ 14° were recorded for supercavitation conditions indicating the positive influence of cavitation bubble collapse on the jet atomisation process.

  8. Released air during vapor and air cavitation

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Kozubková, Milada

    2016-06-01

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ɛ model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  9. Simulations of Cavitating Cryogenic Inducers

    NASA Technical Reports Server (NTRS)

    Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.

    2004-01-01

    Simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss, numbers extending from single-phase flow conditions through the critical head break down point are discussed. The flow characteristics and performance of a subscale geometry designed for water testing are compared with the fullscale configuration that employs LOX. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified. The simulations have been performed using the CRUNCH CFD[R] code that has a generalized multi-element unstructured framework suitable for turbomachinery applications. An advanced multi-phase formulation for cryogenic fluids that models temperature depression and real fluid property variations is employed. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils; excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable.

  10. Cavitation bubble generation and control for HIFU transcranial adaptive focusing

    NASA Astrophysics Data System (ADS)

    Gâteau, J.; Marsac, L.; Pernot, M.; Aubry, J.-F.; Tanter, M.; Fink, M.

    2009-04-01

    Brain treatment with High Intensity Focused Ultrasound (HIFU) can be achieved by multichannel arrays through the skull using time-reversal focusing. Such a method requires a reference signal either sent by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull deduced from CT images. This noninvasive computational method allows precise focusing, but is time consuming and suffers from unavoidable modeling errors which reduce the accessible acoustic pressure at the focus in comparison with real experimental time-reversal using an implanted hydrophone. Ex vivo simulations with a half skull immersed in a water tank allow us to reach at low amplitude levels a pressure ratio of 83% of the reference pressure (real time reversal) at 1MHz. Using this method to transcranially focus a pulse signal in an agar gel (model for in vivo bubble formation), we induced a cavitation bubble that generated an ultrasonic wave received by the array. Selecting the 1MHz component, the signal was time reversed and re-emitted, allowing 97%±1.1% of pressure ratio to be restored. To target points in the vicinity of the geometrical focus, electronic steering from the reference signal has been achieved. Skull aberrations severely degrade the accessible pressure while moving away from the focus ( ˜90% at 10mm in the focal plane). Nevertheless, inducing cavitation bubbles close to the limit of the primary accessible zone allowed us to acquire multiple references signal to increase the electronic steering area by 50%.

  11. Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles.

    PubMed

    Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D

    2010-10-01

    Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.

  12. RANS computations of tip vortex cavitation

    NASA Astrophysics Data System (ADS)

    Decaix, Jean; Balarac, Guillaume; Dreyer, Matthieu; Farhat, Mohamed; Münch, Cécile

    2015-12-01

    The present study is related to the development of the tip vortex cavitation in Kaplan turbines. The investigation is carried out on a simplified test case consisting of a NACA0009 blade with a gap between the blade tip and the side wall. Computations with and without cavitation are performed using a R ANS modelling and a transport equation for the liquid volume fraction. Compared with experimental data, the R ANS computations turn out to be able to capture accurately the development of the tip vortex. The simulations have also highlighted the influence of cavitation on the tip vortex trajectory.

  13. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  14. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s‑1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  15. Observations on Rotating Cavitation and Cavitation Surge from the Development of the Fastrac Engine Turbopump

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas F.

    2000-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac engine turbopump are discussed. Detailed observations acquired from the analysis of both water flow and liquid oxygen test data are offered in this paper. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a lumped-parameter hydraulic system model developed to better understand observed data is given.

  16. Overview of Rotating Cavitation and Cavitation Surge in the Fastrac Engine LOX Turbopump

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas; Turner, Jim (Technical Monitor)

    2001-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac 60 Klbf engine turbopump are discussed. Detailed observations from the analysis of both water flow and liquid oxygen test data are offered. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a simple lumped-parameter hydraulic system model developed to better understand observed data is given.

  17. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.

    PubMed

    Xu, W W; Tzanakis, I; Srirangam, P; Mirihanage, W U; Eskin, D G; Bodey, A J; Lee, P D

    2016-07-01

    Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al-10 wt%Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm(2) and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t)=αt(β), and α=0.0021 &β=0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts. PMID:26964960

  18. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.

    PubMed

    Xu, W W; Tzanakis, I; Srirangam, P; Mirihanage, W U; Eskin, D G; Bodey, A J; Lee, P D

    2016-07-01

    Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al-10 wt%Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm(2) and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t)=αt(β), and α=0.0021 &β=0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts.

  19. The effect of chloride ions on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation.

    PubMed

    Wan, Tong; Xiao, Ning; Shen, Hanjie; Yong, Xingyue

    2016-11-01

    The effects of Cl(-) on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation in chloride solutions were investigated using nanoindentation in conjunction with XRD and XPS. The results demonstrate that Cl(-) had a strong effect on the nano-mechanical properties of the corroded surface layer under cavitation, and there was a threshold Cl(-) concentration. Furthermore, a close relationship between the nano-mechanical properties and the cavitation corrosion resistance of 00Cr22Ni5Mo3N duplex stainless steel was observed. The degradation of the nano-mechanical properties of the corroded surface layer was accelerated by the synergistic effect between cavitation erosion and corrosion. A key factor was the adsorption of Cl(-), which caused a preferential dissolution of the ferrous oxides in the passive film layer on the corroded surface layer. Cavitation further promoted the preferential dissolution of the ferrous oxides in the passive film layer. Simultaneously, cavitation accelerated the erosion of the ferrite in the corroded surface layer, resulting in the degradation of the nano-mechanical properties of the corroded surface layer on 00Cr22Ni5Mo3N duplex stainless steel under cavitation. PMID:27245950

  20. CAVITATION DAMAGE STUDY VIA A NOVEL REPETITIVE PRESSURE PULSE APPROACH

    SciTech Connect

    Wang, Jy-An John; Ren, Fei; Wang, Hong

    2010-01-01

    Cavitation damage can significantly affect system performance. Thus, there is great interest in characterizing cavitation damage and improving materials resistance to cavitation damage. In this paper, we present a novel methodology to simulate cavitation environment. A pulsed laser is utilized to induce optical breakdown in the cavitation media, with the emission of shock wave and the generation of bubbles. The pressure waves induced by the optical breakdown fluctuate/propagate within the media, which enables the cavitation to occur and to further develop cavitation damage at the solid boundary. Using the repetitive pulsed-pressure apparatus developed in the current study, cavitation damage in water media was verified on stainless steel and aluminum samples. Characteristic cavitation damages such as pitting and indentation are observed on sample surfaces using scanning electron microscopy.

  1. Cavitation: a blessing in disguise? New method to establish vulnerability curves and assess hydraulic capacitance of woody tissues.

    PubMed

    Vergeynst, Lidewei L; Dierick, Manuel; Bogaerts, Jan A N; Cnudde, Veerle; Steppe, Kathy

    2015-04-01

    The hydraulic performance of woody species during drought is currently of high interest in the context of climate change. It is known that woody species have the capacity to mitigate water shortage by using internally stored water. Elastic shrinkage of living cells and also water release during cavitation contribute to the so-called 'hydraulic capacitance' (C) of the plant, which adds water to the transpiration stream and buffers fluctuations in water potential. Although sap-conducting conduits may ultimately serve as a water pool, cavitation will hamper the conduction of sap. Both hydraulic conductivity and C are thus inextricably linked and the interaction between both should be studied to better understand hydraulic functioning of woody species during drought. However, measurements of C are scarce and no distinction is usually made between C from elastic storage and C supplied by cavitation. In this paper, we propose a new method to assess both the decrease in hydraulic conductivity and the change in C during bench dehydration of a whole-branch segment using continuous measurements of acoustic emissions, radial diameter shrinkage and gravimetrical water loss. With this method we could establish proper vulnerability curves for grapevine (Vitis vinifera L. 'Johanniter') and quantify C during dehydration. Our results showed that loss in hydraulic conductivity during the cavitation phase was accompanied by 22-92% gain in hydraulic capacitance; therefore, a certain degree of cavitation may be tolerated in grapevine during periods of drought stress.

  2. Cavitation for improved sludge conversion into biogas

    NASA Astrophysics Data System (ADS)

    Stoop, A. H.; Bakker, T. W.; Kramer, H. J. M.

    2015-12-01

    In several studies the beneficial influence of pre-treatment of waste activated sludge with cavitation on the biogas production was demonstrated. It is however, still not fully certain whether this effect should be mainly contributed to an increase in conversion rate of organics into biogas by anaerobic bacteria, and how much cavitation increases the total biogas yield. An increase in yield is only the case if cavitation can further disrupt otherwise inaccessible cell membrane structures and long chain organic molecules. In this study the influence of hydrodynamic cavitation on sludge that was already digested for 30 days was investigated. The total biogas yield could indeed be increased. The effect of the backpressure behind the venturi tube on the yield could not yet be established.

  3. Mesenteric lymph node cavitation in coeliac disease.

    PubMed Central

    Holmes, G K

    1986-01-01

    A patient with coeliac disease and mesenteric lymph node cavitation is reported. This is a rare occurrence and has received very little attention in the English literature. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:3721297

  4. Experimental investigation of cavitation in pump inlet

    NASA Astrophysics Data System (ADS)

    Sikora, Roman; Bureček, Adam; Hružík, Lumír; Vašina, Martin

    2015-05-01

    The article deals with experimental research of cavitation development in inlet tube of hydraulic pump. The pressures in inlet and outlet tube of the pump and flow rate were measured. Mineral oil was used as working fluid. The cavitation was visually evaluated in transparent inlet tube. The inlet tube underpressure was achieved by throttle valve. The relationship between the generation of bubbles and the inlet pressure is evaluated.

  5. Sonoporation from Jetting Cavitation Bubbles

    PubMed Central

    Ohl, Claus-Dieter; Arora, Manish; Ikink, Roy; de Jong, Nico; Versluis, Michel; Delius, Michael; Lohse, Detlef

    2006-01-01

    The fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads to the detachment of cells. Cells at the edge of the circular area of detachment are found to be permanently porated, whereas cells at some distance from the detachment area undergo viable cell membrane poration (sonoporation). The wall flow field leading to cell detachment is modeled with a self-similar solution for a wall jet, together with a kinetic ansatz of adhesive bond rupture. The self-similar solution for the δ-type wall jet compares very well with the full solution of the Navier-Stokes equation for a jet of finite thickness. Apart from annular sites of sonoporation we also find more homogenous patterns of molecule delivery with no cell detachment. PMID:16950843

  6. Thermodynamic effects on developed cavitation

    NASA Technical Reports Server (NTRS)

    Holl, J. W.; Billet, M. L.; Weir, D. S.

    1975-01-01

    The results of an investigation of thermodynamic effects are presented. Distributions of temperature and pressure in a developed cavity were measured for zero- and quarter-caliber ogives. A semiempirical entrainment theory was developed to correlate the measured temperature depression in the cavity. This theory correlates the maximum temperature depression expressed in dimensionless form as the Jakob number in terms of the dimensionless numbers of Nusselt, Reynolds, Froude, and Peclet, and dimensionless cavity length, L/D. The results show that in general, the temperature depression increases with L/D and temperature and the cavitation number based on measured cavity pressure is a function of L/D for a given model contour, independent of the thermodynamic effect.

  7. Cell mechanics in biomedical cavitation

    PubMed Central

    Wang, Qianxi; Manmi, Kawa; Liu, Kuo-Kang

    2015-01-01

    Studies on the deformation behaviours of cellular entities, such as coated microbubbles and liposomes subject to a cavitation flow, become increasingly important for the advancement of ultrasonic imaging and drug delivery. Numerical simulations for bubble dynamics of ultrasound contrast agents based on the boundary integral method are presented in this work. The effects of the encapsulating shell are estimated by adapting Hoff's model used for thin-shell contrast agents. The viscosity effects are estimated by including the normal viscous stress in the boundary condition. In parallel, mechanical models of cell membranes and liposomes as well as state-of-the-art techniques for quantitative measurement of viscoelasticity for a single cell or coated microbubbles are reviewed. The future developments regarding modelling and measurement of the material properties of the cellular entities for cutting-edge biomedical applications are also discussed. PMID:26442142

  8. Numerical study on the effective heating due to inertial cavitation in microbubble-enhanced HIFU therapy

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Sugiyama, Kazuyasu; Takagi, Shu; Matsumoto, Yoichiro

    2015-10-01

    The enhancement of heating due to inertial cavitation was focused in high-intensity focused ultrasound (HIFU) therapy. The influences of the rectified diffusion on microbubble-enhanced HIFU were examined numerically. A bubble dynamics equation in consideration of the spherical shell bubble and the elasticity of surrounding tissue was employed. Mass and heat transfer between the surrounding medium and the bubble were considered. The basic equations were discretized by finite difference method. The mixture phase and bubbles are coupled by the Euler-Lagrange method to take into account the interaction between ultrasound and bubbles. The mass transfer rate of gas from the surrounding medium to the bubble was examined as function of the initial bubble radius and the driving pressure amplitude. As the results, the pressure required to bubble growth was decreases with increasing the initial bubble radius. Thus, the injection of microbubble reduces the cavitation threshold pressure. On the other hand, the influence of the rectified diffusion on the triggered HIFU therapy which generates cavitation bubbles by high-intensity burst and induces the localized heating owing to cavitation bubble oscillation by low-intensity continuous waves. The calculation showed that the localized heating was enhanced by the increase of the equilibrium bubble size due to the rectified diffusion.

  9. Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number

    NASA Astrophysics Data System (ADS)

    Ye, Peng-Cheng; Pan, Guang

    2015-06-01

    Due to the high speed of underwater vehicles, cavitation is generated inevitably along with the sound attenuation when the sound signal traverses through the cavity region around the underwater vehicle. The linear wave propagation is studied to obtain the influence of bubbly liquid on the acoustic wave propagation in the cavity region. The sound attenuation coefficient and the sound speed formula of the bubbly liquid are presented. Based on the sound attenuation coefficients with various vapor volume fractions, the attenuation of sound intensity is calculated under large cavitation number conditions. The result shows that the sound intensity attenuation is fairly small in a certain condition. Consequently, the intensity attenuation can be neglected in engineering. Project supported by the National Natural Science Foundation of China (Grant Nos. 51279165 and 51479170) and the National Defense Basic Scientific Research Program of China (Grant No. B2720133014).

  10. An Acoustofluidic Micromixer via Bubble Inception and Cavitation from Microchannel Sidewalls

    PubMed Central

    2015-01-01

    During the deep reactive ion etching process, the sidewalls of a silicon mold feature rough wavy structures, which can be transferred onto a polydimethylsiloxane (PDMS) microchannel through the soft lithography technique. In this article, we utilized the wavy structures of PDMS microchannel sidewalls to initiate and cavitate bubbles in the presence of acoustic waves. Through bubble cavitation, this acoustofluidic approach demonstrates fast, effective mixing in microfluidics. We characterized its performance by using viscous fluids such as poly(ethylene glycol) (PEG). When two PEG solutions with a resultant viscosity 54.9 times higher than that of water were used, the mixing efficiency was found to be 0.92, indicating excellent, homogeneous mixing. The acoustofluidic micromixer presented here has the advantages of simple fabrication, easy integration, and capability to mix high-viscosity fluids (Reynolds number: ∼0.01) in less than 100 ms. PMID:24754496

  11. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation

    NASA Astrophysics Data System (ADS)

    Plaksin, Michael; Shoham, Shy; Kimmel, Eitan

    2014-01-01

    Low-intensity ultrasonic waves can remotely and nondestructively excite central nervous system (CNS) neurons. While diverse applications for this effect are already emerging, the biophysical transduction mechanism underlying this excitation remains unclear. Recently, we suggested that ultrasound-induced intramembrane cavitation within the bilayer membrane could underlie the biomechanics of a range of observed acoustic bioeffects. In this paper, we show that, in CNS neurons, ultrasound-induced cavitation of these nanometric bilayer sonophores can induce a complex mechanoelectrical interplay leading to excitation, primarily through the effect of currents induced by membrane capacitance changes. Our model explains the basic features of CNS acoustostimulation and predicts how the experimentally observed efficacy of mouse motor cortical ultrasonic stimulation depends on stimulation parameters. These results support the hypothesis that neuronal intramembrane piezoelectricity underlies ultrasound-induced neurostimulation, and suggest that other interactions between the nervous system and pressure waves or perturbations could be explained by this new mode of biological piezoelectric transduction.

  12. Cloud cavitation induced by shock-bubble interaction in a viscoelastic solid

    NASA Astrophysics Data System (ADS)

    Oguri, Ryota; Ando, Keita

    2015-12-01

    We experimentally study a shock-bubble interaction problem in a viscoelastic solid, which is relevant to shock wave lithotripsy. A gas bubble is produced by focusing an infrared laser pulse into gelatin. A spherical shock is then created, through rapid expansion of plasma that results from the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gelatin under tension that results from acoustic impedance mismatching at the bubble wall. Namely, the shock reflects at the bubble interface as a rarefaction wave, which induces the nucleation of cavitation bubbles as a result of rupturing the gelatin.

  13. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors.

    PubMed

    Wei, Zongsu; Weavers, Linda K

    2016-07-01

    Scaled-up and economically viable sonochemical systems are critical for increased use of ultrasound in environmental and chemical processing applications. In this study, computational simulations and acoustic pressure maps were used to design a larger-scale sono-reactor containing a multi-stepped ultrasonic horn. Simulations in COMSOL Multiphysics showed ultrasonic waves emitted from the horn neck and tip, generating multiple regions of high acoustic pressure. The volume of these regions surrounding the horn neck were larger compared with those below the horn tip. The simulated acoustic field was verified by acoustic pressure contour maps generated from hydrophone measurements in a plexiglass box filled with water. These acoustic pressure contour maps revealed an asymmetric and discrete distribution of acoustic pressure due to acoustic cavitation, wave interaction, and water movement by ultrasonic irradiation. The acoustic pressure contour maps were consistent with simulation results in terms of the effective scale of cavitation zones (∼ 10 cm and <5 cm above and below horn tip, respectively). With the mapped acoustic field and identified cavitation location, a cylindrically-shaped sono-reactor with a conical bottom was designed to evaluate the treatment capacity (∼ 5 L) for the multi-stepped horn using COMSOL simulations. In this study, verification of simulation results with experiments demonstrates that coupling of COMSOL simulations with hydrophone measurements is a simple, effective and reliable scientific method to evaluate reactor designs of ultrasonic systems. PMID:26964976

  14. Large eddy simulation of turbulent cavitating flows

    NASA Astrophysics Data System (ADS)

    Gnanaskandan, A.; Mahesh, K.

    2015-12-01

    Large Eddy Simulation is employed to study two turbulent cavitating flows: over a cylinder and a wedge. A homogeneous mixture model is used to treat the mixture of water and water vapor as a compressible fluid. The governing equations are solved using a novel predictor- corrector method. The subgrid terms are modeled using the Dynamic Smagorinsky model. Cavitating flow over a cylinder at Reynolds number (Re) = 3900 and cavitation number (σ) = 1.0 is simulated and the wake characteristics are compared to the single phase results at the same Reynolds number. It is observed that cavitation suppresses turbulence in the near wake and delays three dimensional breakdown of the vortices. Next, cavitating flow over a wedge at Re = 200, 000 and σ = 2.0 is presented. The mean void fraction profiles obtained are compared to experiment and good agreement is obtained. Cavity auto-oscillation is observed, where the sheet cavity breaks up into a cloud cavity periodically. The results suggest LES as an attractive approach for predicting turbulent cavitating flows.

  15. Cavitation on Hydrofoils with Leading Edge Protuberances

    NASA Astrophysics Data System (ADS)

    Custodio, Derrick; Henoch, Charles; Johari, Hamid; Office of Naval Research Collaboration

    2012-11-01

    The effects of spanwise-uniform sinusoidal leading edge protuberances on the flow characteristics and forces of finite-span hydrofoils under vaporous cavitation conditions were examined experimentally over angles of attack ranging from -9° α <= 27°. Two planforms were studied, rectangular and swept, at a Reynolds number of ~ 720,000. Two protuberance wavelengths, λ = 0.25 c and 0.50 c, and three amplitudes, A = 0.025 c, 0.05 c, and 0.12 c, were examined as they resemble the humpback whale flipper morphology. All hydrofoils retain a mean NACA 634-021 profile. The forces and moments were measured at a freestream velocity of 7.2 m/s, and high-speed digital photography was used to capture flow field images at several angles of attack. The cavitation number corresponding to incipient leading edge cavitation was also calculated. As far as forces and cavitation number are concerned, results show that the baseline hydrofoil tends to have nearly equal or improved performance over the modified hydrofoils at most angles of attack tested. Flow images reveal that it is possible that the extent of sheet and tip vortex cavitation can be reduced with the introduction of leading edge protuberances. The forces and cavitation characteristics will be presented. Sponsored by the ONR-ULI program.

  16. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  17. Study of cavitation bubble dynamics during Ho:YAG laser lithotripsy by high-speed camera

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yu, Honggang; Devincentis, Dennis

    2016-02-01

    Although laser lithotripsy is now the preferred treatment option for urolithiasis, the mechanism of laser pulse induced calculus damage is still not fully understood. This is because the process of laser pulse induced calculus damage involves quite a few physical and chemical processes and their time-scales are very short (down to sub micro second level). For laser lithotripsy, the laser pulse induced impact by energy flow can be summarized as: Photon energy in the laser pulse --> photon absorption generated heat in the water liquid and vapor (super heat water or plasma effect) --> shock wave (Bow shock, acoustic wave) --> cavitation bubble dynamics (oscillation, and center of bubble movement , super heat water at collapse, sonoluminscence) --> calculus damage and motion (calculus heat up, spallation/melt of stone, breaking of mechanical/chemical bond, debris ejection, and retropulsion of remaining calculus body). Cavitation bubble dynamics is the center piece of the physical processes that links the whole energy flow chain from laser pulse to calculus damage. In this study, cavitation bubble dynamics was investigated by a high-speed camera and a needle hydrophone. A commercialized, pulsed Ho:YAG laser at 2.1 mu;m, StoneLightTM 30, with pulse energy from 0.5J up to 3.0 J, and pulse width from 150 mu;s up to 800 μs, was used as laser pulse source. The fiber used in the investigation is SureFlexTM fiber, Model S-LLF365, a 365 um core diameter fiber. A high-speed camera with frame rate up to 1 million fps was used in this study. The results revealed the cavitation bubble dynamics (oscillation and center of bubble movement) by laser pulse at different energy level and pulse width. More detailed investigation on bubble dynamics by different type of laser, the relationship between cavitation bubble dynamics and calculus damage (fragmentation/dusting) will be conducted as a future study.

  18. Shrinkage processes in standard-size Norway spruce wood specimens with different vulnerability to cavitation

    PubMed Central

    ROSNER, SABINE; KARLSSON, BO; KONNERTH, JOHANNES; HANSMANN, CHRISTIAN

    2011-01-01

    Summary The aim of this study was to observe the radial shrinkage of Norway spruce [Picea abies (L. Karst.)] trunkwood specimens with different hydraulic vulnerability to cavitation from the fully saturated state until the overall shrinkage reaches a stable value, and to relate wood shrinkage and recovery from shrinkage to cavitations of the water column inside the tracheids. Radial shrinkage processes in standard-size sapwood specimens (6 mm × 6 mm × 100 mm; radial, tangential and longitudinal) obtained at different positions within the trunk, representing different ages of the cambium, were compared. Cavitation events were assessed by acoustic emission (AE) testing, hydraulic vulnerability by the AE feature analysis and shrinkage was calculated from the changes in contact pressure between the 150 kHz AE transducer and the wood specimen. Two shrinkage processes were observed in both juvenile (annual rings 1 and 2) and mature wood (annual rings 17–19), the first one termed tension shrinkage and the second one cell wall shrinkage process, which started when most of the tracheids reached relative water contents below fiber saturation. Maximum tension shrinkage coincided with high-energy AEs, and the periods of shrinkage recovery could be traced to tension release due to cavitation. Juvenile wood, which was less sensitive to cavitation, had lower earlywood tracheid diameters and was less prone to deformation due to tensile strain than mature wood, showed a lower cell wall shrinkage, and thus total shrinkage. Earlywood lumen diameters and maximum tension shrinkage were strongly positively related to each other, meaning that bigger tracheids are more prone to deformation at the same water tension than the smaller tracheids. PMID:19797244

  19. Observations on Rotating Cavitation and Cavitation Surge From The Development of the Fastrac Engine Turbopump

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas F.; Turner, James E. (Technical Monitor)

    2000-01-01

    The effects of rotating cavitation and cavitation surges on the Fastrac Engine Turbopump are described in a viewgraph presentation format. The bent inducer blade dilemma and observations of unsteady data and oscillation components are discussed. The pump-feed system stability modeling assessment is outlined. Recommendations are made urging further investigation.

  20. Numerical analysis of the interactions of sheet cavitation and cloud cavitation around a hydrofoil

    NASA Astrophysics Data System (ADS)

    Pan, D. Z.; Zhang, D. S.; Wang, H. Y.; Shi, W. D.; Shi, L.

    2015-01-01

    Partial cavitation and cloud cavitation on NACA66(MOD) was studied based on PANS turbulence model combined with the Zwart cavitation model. The results agree well with the data from the experimental results. The existence of a kind of unsteady characteristics of cloud cavitation is analysed in details. The reasons for the inhibition mechanism of the sheet cavitation are discussed. Pressure shock wave occurs near the tailing edge of the hydrofoil when the collapse of cloud is so large leading to great influence on the cavity closed to the leading edge. The evolution of the pressure peak and its propagation toward the leading edge were investigated through the study of the time domain signal of the monitor points along the streamline of flow. Finally, the propagation of the pressure wave on the suction side was further investigated through analysing the spatial-time history of wall pressure.

  1. Spatial specificity and sensitivity of passive cavitation imaging for monitoring high-intensity focused ultrasound thermal ablation in ex vivo bovine liver

    PubMed Central

    Haworth, Kevin; Salgaonkar, Vasant A.; Corregan, Nicholas M.; Holland, Christy K.; Mast, T. D.

    2014-01-01

    Passive cavitation images (PCIs) generated from scattered acoustic waves are a potential technique for monitoring lesion formation during high-intensity focused ultrasound (HIFU) thermal ablation. HIFU lesion prediction by PCIs was assessed in ex vivo bovine liver samples (N=14) during 30-s sonications with 1.1-MHz continuous-wave ultrasound (1989 W/cm^2 estimated spatial-peak intensity). Treated samples were sectioned, optically scanned, and the HIFU lesions segmented based on tissue discoloration. During each insonation, a 192-element, 7-MHz linear array (L7/Iris 2, Ardent Sound) passively recorded emissions from a plane containing the HIFU propagation axis oriented parallel to the image azimuth direction. PCIs were formed from beamformed A-lines filtered into fundamental, harmonic, ultraharmonic, and inharmonic frequency bands. Lesion prediction was tested using binary classification of local tissue ablation based on thresholded PCIs, with spatial specificity and sensitivity of lesion prediction quantified by the area under receiver operating characteristic curves (AUROC). Tadpole-shaped lesions were best predicted by harmonic emissions (AUROC=0.76), prefocal lesions were best predicted by harmonic or ultraharmonic emissions (AUROC=0.86), and cigar-type focal lesions were best predicted by fundamental and harmonic emissions (AUROC=0.65). These results demonstrate spatial specificity and sensitivity when predicting HIFU lesions with PCIs. PMID:24817990

  2. Optimization of real-time acoustical and mechanical monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for high focused ultrasound (HMIFU).

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2013-01-01

    Harmonic Motion Imaging (HMI) for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in silica, in vitro and in vivo. Its principle is based on emission of an Amplitude-modulated therapeutic ultrasound beam utilizing a therapeutic transducer to induce an oscillatory radiation force while tracking the focal tissue mechanical response during the HIFU treatment using a confocally-aligned diagnostic transducer. In order to translate towards the clinical implementation of HMIFU, a complete assessment study is required in order to investigate the optimal radiation force threshold for reliable monitoring the local tissue mechanical property changes, i.e., the estimation HMIFU displacement under thermal, acoustical, and mechanical effects within focal medium (i.e., boiling, cavitation, and nonlinearity) using biological specimen. In this study, HMIFU technique is applied on HIFU treatment monitoring on freshly excised ex vivo canine liver specimens. In order to perform the multi-characteristic assessment, the diagnostic transducer was operated as either a pulse-echo imager or Passive Cavitation Detector (PCD) to assess the acoustic and mechanical response, while a bare-wire thermocouple was used to monitor the focal temperature change. As the acoustic power of HIFU treatment was ranged from 2.3 to 11.4 W, robust HMI displacement was observed across the entire range. Moreover, an optimized range for high quality displacement monitoring was found to be between 3.6 to 5.2W, where displacement showed an increase followed by significant decrease, indicating a stiffening of focal medium due to thermal lesion formation, while the correlation coefficient was maintained above 0.95.

  3. Optimization of real-time acoustical and mechanical monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for high focused ultrasound (HMIFU).

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2013-01-01

    Harmonic Motion Imaging (HMI) for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in silica, in vitro and in vivo. Its principle is based on emission of an Amplitude-modulated therapeutic ultrasound beam utilizing a therapeutic transducer to induce an oscillatory radiation force while tracking the focal tissue mechanical response during the HIFU treatment using a confocally-aligned diagnostic transducer. In order to translate towards the clinical implementation of HMIFU, a complete assessment study is required in order to investigate the optimal radiation force threshold for reliable monitoring the local tissue mechanical property changes, i.e., the estimation HMIFU displacement under thermal, acoustical, and mechanical effects within focal medium (i.e., boiling, cavitation, and nonlinearity) using biological specimen. In this study, HMIFU technique is applied on HIFU treatment monitoring on freshly excised ex vivo canine liver specimens. In order to perform the multi-characteristic assessment, the diagnostic transducer was operated as either a pulse-echo imager or Passive Cavitation Detector (PCD) to assess the acoustic and mechanical response, while a bare-wire thermocouple was used to monitor the focal temperature change. As the acoustic power of HIFU treatment was ranged from 2.3 to 11.4 W, robust HMI displacement was observed across the entire range. Moreover, an optimized range for high quality displacement monitoring was found to be between 3.6 to 5.2W, where displacement showed an increase followed by significant decrease, indicating a stiffening of focal medium due to thermal lesion formation, while the correlation coefficient was maintained above 0.95. PMID:24111176

  4. Applications of ripple analysis in hydro-acoustics

    NASA Astrophysics Data System (ADS)

    Leducq, D.; Schlegel, R.

    Software developed for ripple analysis in hydro-acoustic applications is described. Noise and vibration analysis using this software is shown to be particularly effective. The importance of post treatment of the data in order to obtain dependable results is stressed. Examples are presented of the use of the ripple analysis software in measuring the noise and vibration produced by a pump. The software is used in the analysis of cavitation noise. Cavitation noise frequency graphs are presented to illustrate the experimented results. The advantages of the ripple analysis techniques in obtaining a better understanding of the underlying physics of the processes studied are stressed.

  5. Enhancing the aggressive intensity of hydrodynamic cavitation through a Venturi tube by increasing the pressure in the region where the bubbles collapse

    NASA Astrophysics Data System (ADS)

    Soyama, H.; Hoshino, J.

    2016-04-01

    In this paper, we used a Venturi tube for generating hydrodynamic cavitation, and in order to obtain the optimum conditions for this to be used in chemical processes, the relationship between the aggressive intensity of the cavitation and the downstream pressure where the cavitation bubbles collapse was investigated. The acoustic power and the luminescence induced by the bubbles collapsing were investigated under various cavitating conditions, and the relationships between these and the cavitation number, which depends on the upstream pressure, the downstream pressure at the throat of the tube and the vapor pressure of the test water, was found. It was shown that the optimum downstream pressure, i.e., the pressure in the region where the bubbles collapse, increased the aggressive intensity by a factor of about 100 compared to atmospheric pressure without the need to increase the input power. Although the optimum downstream pressure varied with the upstream pressure, the cavitation number giving the optimum conditions was constant for all upstream pressures.

  6. Using acoustics to study and stimulate the coalescence of oil drops surrounded by water

    SciTech Connect

    Gardner, E.A.; Apfel, R.E. . Dept. of Mechanical Engineering)

    1993-08-01

    The coalescence of oil drops in water is studied using acoustic levitation and stimulated with acoustic cavitation. Unlike most earlier studies, which investigate the coalescence of a single drop with an initially planar interface, the use of acoustic radiation forces allows two drops to be brought into contact and allowed to coalesce. The acoustic technique has the advantage over other drop-drop coalescence systems in that the drops remain in contact until they coalesce without the use of solid supports to control them. Additionally, acoustic cavitation is observed to deposit sufficient energy in the oil-water interface to trigger the coalescence of a pair of 2-mm-diameter drops. This stimulation mechanism could have application to emulsion breaking. Some of the factors that affect spontaneous and stimulated coalescence are investigated.

  7. Monitoring Cavitation in HIFU as an Aid to Assisting Treatment

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-yu; Smith, Penny Probert; Kennedy, James; Leslie, Thomas

    2007-05-01

    Rapid hypothermia resulting in tissue necrosis is often associated with bubble activity (normally from cavitation) in HIFU treatment. Indeed in some HIFU protocols, the evidence of cavitation is taken as an indicator of tissue lesions. In this paper we discuss two methods to delineate reliably the region in which cavitation occurs, so that a history of the cavitation events can be provided automatically during treatment. Results are shown on simulated images and from a clinical treatment session.

  8. Cavitational Hydrothermal Oxidation: A New Remediation Process - Final Report

    SciTech Connect

    Suslick, K. S.

    2001-07-05

    During the past year, we have continued to make substantial scientific progress on our understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. Our efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions.

  9. Numerical Simulation of Cavitation Characteristics for Pump-jet Propeller

    NASA Astrophysics Data System (ADS)

    Shi, Yao; Pan, Guang; Huang, Qiaogao; Du, Xiaoxu

    2015-09-01

    With k — ε turbulent model, non-cavitating performance of a pump-jet propeller was obtained by calculating RANS equations. The comparison between calculation results and experiment data shown that the numerical model and method was reliable. The cavitating hydrodynamic performance of it was calculated and analyzed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations and sliding mesh. The effects of different inlet velocity ratio, cavitation number and flow velocity on cavitation characteristics of pump-jet were studied. When the cavitation occurred on the blades, the propeller thrust and torque decreased significantly, thereby causing open water efficiency reduced 15%. For the same cavitation number, as the inlet velocity ratio decreased, the pump-jet propeller blade cavitation phenomenon was more obvious. While for the same ratio, the smaller the number of cavitation, cavitation phenomenon was more remarkable. The more significant was that while the cavitation number was greater than a certain value, the blade cavitation phenomenon disappeared.

  10. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2001-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  11. Suitability research on the cavitation model and numerical simulation of the unsteady pulsed cavitation jet flow

    NASA Astrophysics Data System (ADS)

    Chen, S. Y.; Yu, X. F.; Luan, D. Y.; Qu, Y. P.; Zhou, C.

    2016-05-01

    In order to explore the cavitation jet mechanism, it can first study its critical state of single-phase flow before cavity occurrence to explore the trend of pulsed cavitation jet. Then select the cavitation model to simulate the complex multiphase flow state. Such a step-by-step approach is beneficial to advance research reliably and steady, relying on the foundation for further solving the problem. Three turbulence models such as Euler Hybrid Model, Euler Two Phase Model and Euler Lagrange Model are discussed on their suitability. In this paper, it states only RNG k- ε turbulent model can simulate small scale vortex of jet in the transient simulation. Grid independent verification and the effect of time step is presented. The simulation results show that a large scale vortex ring surrounding jet flow in the nozzle, the pressure of vortex core is slightly lower than the upstream nozzle pressure. Considering the capture ability of small scale eddies, an equivalent pressure is established. The single-phase flow turbulence model is modified to simulate the turbulence flow in the self-excited pulsed cavitation after the cavitation occurs. Through different results comparison of not modified cavitation model and the modified cavitation model to the experimental results, it proves that the latter simulation results are relatively accurate.

  12. Transcranial Cavitation Detection in Primates during Blood-Brain Barrier Opening – A Performance Assessment Study

    PubMed Central

    Wu, Shih-Ying; Tung, Yao-Sheng; Marquet, Fabrice; Downs, Matthew Eric; Sanchez, Carlos Sierra; Chen, Cherry Chen; Ferrera, Vincent

    2014-01-01

    Focused ultrasound (FUS) has been shown promise in treating the brain locally and noninvasively. Transcranial passive cavitation detection (PCD) provides methodology of monitoring the treatment in real time, while the skull effects remain a major challenge for its translation to the clinic. In this study, we investigated the sensitivity, reliability, and limitations of PCD through primate (macaque and human) skulls in vitro. The results were further correlated with the in vivo macaque studies including the transcranial PCD calibration and real-time monitoring of BBB opening, with magnetic resonance imaging assessing the opening and safety. The stable cavitation doses using harmonics (SCDh) and ultraharmonics (SCDu), the inertial cavitation dose (ICD), and the cavitation signal-to-noise ratio (SNR) were quantified based on the PCD signals. Results showed that through the macaque skull the pressure threshold for detecting the SCDh remained the same as without the skull in place, while it increased for the SCDu and ICD; through the human skull, it increased for all cavitation doses. The transcranial PCD was found reliable both in vitro and in vivo when the transcranial cavitation SNR exceeded the 1-dB detection limit through the in vitro macaque (attenuation: 4.92 dB/mm) and human (attenuation: 7.33 dB/mm) skull. In addition, using long pulses enabled reliable PCD monitoring and facilitate BBB opening at low pressures. The in vivo results showed that the SCDh became detectable at pressures as low as 100 kPa; the ICD, at 250 kPa while it could occur at lower pressures; the SCDu, at 700 kPa and was less reliable at lower pressures. Real-time monitoring of PCD was further implemented during BBB opening, with successful and safe opening achieved at 250–600 kPa in both the thalamus and the putamen. In conclusion, this study shows that transcranial PCD in macaques in vitro and in vivo as well as humans in vitro is reliable by improving the cavitation SNR beyond the 1-d

  13. Feasibility study of tuned-resonator, pulsating cavitating water jet for deep-hole drilling

    SciTech Connect

    Johnson, V.E. Jr.; Lindenmuth, W.T.; Conn, A.F.; Frederick, G.S.

    1981-08-01

    This study presents the advantages of pulsing a submerged jet to increase its erosion capability (particularly as caused by cavitation) in augmenting deep-hole drill bits. Various methods of accomplishing the pulsation are presented and discussed. The most attractive systems uncovered are acoustic oscillators which passively accomplish pulsations in the flow at frequencies corresponding to a Strouhal number in the range of 0.2 to 1.0. Such passive oscillators are assessed to be feasible candidates for development into practical deep hole drill bit systems and a long range plan for this research and development is presented and discussed.

  14. Micro- and nano-spheres of low melting point metals and alloys, formed by ultrasonic cavitation.

    PubMed

    Friedman, H; Reich, S; Popovitz-Biro, R; von Huth, P; Halevy, I; Koltypin, Y; Gedanken, A; Porat, Z

    2013-01-01

    Metals and alloys of low melting points (<430 °C) can be melted in hot silicone oil to form two immiscible liquids. Irradiation of the system with ultrasonic energy induces acoustic cavitation in the oil, which disperses the molten metals into microspheres that solidify rapidly upon cooling. This method has been applied to seven pure metals (Ga, In, Sn, Bi, Pb, Zn, Hg) and two eutectic alloys of gold (Au-Ge and Au-Si). The morphology and composition of the resulting microspheres were examined by SEM and EDS. Eutectic Au-Si formed also crystalline Au nanoparticles, which were separated and studied by HRTEM.

  15. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  16. Prediction of cavitation erosion for marine applications

    NASA Astrophysics Data System (ADS)

    Maquil, T.; Yakubov, S.; Rung, T.

    2015-12-01

    The paper presents the development of a cavitation erosion prediction method. The approach is tailored to marine applications and embedded into a VoF-based procedure for the simulation of turbulent flows. Supplementary to the frequently employed Euler-Euler models, Euler-Lagrange approaches are employed to simulate cavitation. The study aims to convey the merits of an Euler-Lagrange approach for erosion simulations. Accordingly, the erosion model is able to separate different damage mechanisms, e.g. micro-jets, single and collective bubble collapse, and also quantifies their contribution to the total damage. Emphasis is devoted to the prediction of the cavitation extend, the influence of compressible effects and the performance of the material damage model in practical applications. Examples included refer to 2D validation test cases and reveal a fair predictive accuracy.

  17. Analogy between fluid cavitation and fracture mechanics

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.; Braun, M. J.

    1983-01-01

    When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.

  18. Numerical simulations of cryogenic cavitating flows

    NASA Astrophysics Data System (ADS)

    Kim, Hyunji; Kim, Hyeongjun; Min, Daeho; Kim, Chongam

    2015-12-01

    The present study deals with a numerical method for cryogenic cavitating flows. Recently, we have developed an accurate and efficient baseline numerical scheme for all-speed water-gas two-phase flows. By extending such progress, we modify the numerical dissipations to be properly scaled so that it does not show any deficiencies in low Mach number regions. For dealing with cryogenic two-phase flows, previous EOS-dependent shock discontinuity sensing term is replaced with a newly designed EOS-free one. To validate the proposed numerical method, cryogenic cavitating flows around hydrofoil are computed and the pressure and temperature depression effect in cryogenic cavitation are demonstrated. Compared with Hord's experimental data, computed results are turned out to be satisfactory. Afterwards, numerical simulations of flow around KARI turbopump inducer in liquid rocket are carried out under various flow conditions with water and cryogenic fluids, and the difference in inducer flow physics depending on the working fluids are examined.

  19. Large eddy simulation of cavitating flows

    NASA Astrophysics Data System (ADS)

    Gnanaskandan, Aswin; Mahesh, Krishnan

    2014-11-01

    Large eddy simulation on unstructured grids is used to study hydrodynamic cavitation. The multiphase medium is represented using a homogeneous equilibrium model that assumes thermal equilibrium between the liquid and the vapor phase. Surface tension effects are ignored and the governing equations are the compressible Navier Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. A characteristic-based filtering scheme is developed to handle shocks and material discontinuities in non-ideal gases and mixtures. A TVD filter is applied as a corrector step in a predictor-corrector approach with the predictor scheme being non-dissipative and symmetric. The method is validated for canonical one dimensional flows and leading edge cavitation over a hydrofoil, and applied to study sheet to cloud cavitation over a wedge. This work is supported by the Office of Naval Research.

  20. Inducer Hydrodynamic Forces in a Cavitating Environment

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.

    2004-01-01

    Marshall Space Flight Center has developed and demonstrated a measurement device for sensing and resolving the hydrodynamic loads on fluid machinery. The device - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining the amplitude and frequency content associated with operating in various cavitation modes. The rotating balance was calibrated statically using a dead-weight load system in order to generate the 6 x 12 calibration matrix later used to convert measured voltages to engineering units. Structural modeling suggested that the rotating assembly first bending mode would be significantly reduced with the balance s inclusion. This reduction in structural stiffness was later confirmed experimentally with a hammer-impact test. This effect, coupled with the relatively large damping associated with the rotating balance waterproofing material, limited the device s bandwidth to approximately 50 Hertz Other pre-test validations included sensing the test article rotating assembly built-in imbalance for two configurations and directly measuring the assembly mass and buoyancy while submerged under water. Both tests matched predictions and confirmed the device s sensitivity while stationary and rotating. The rotating balance was then demonstrated in a water test of a full-scale Space Shuttle Main Engine high-pressure liquid oxygen pump inducer. Experimental data was collected a scaled operating conditions at three flow coefficients across a range of cavitation numbers for the single inducer geometry and radial clearance. Two distinct cavitation modes were observed symmetric tip vortex cavitation and alternate-blade cavitation. Although previous experimental tests on the same inducer demonstrated two additional

  1. On instationary mechanisms in cavitating micro throttles

    NASA Astrophysics Data System (ADS)

    Beban, B.; Legat, S.; Schmidt, S. J.; Adams, N. A.

    2015-12-01

    The current investigation presents numerical simulations of cavitating flows in a simplified model of a mushroom valve chamber of a piezo common rail injection system. Two discharge throttles with different step diameters are investigated. The developed models are able to predict relevant features of cavitating flow in fuel injectors. Special attention is put on the investigation of wave dynamics and related instationary mechanisms in the discharge throttle and the valve chamber. To this respect, a compressible flow solver with a homogeneous mixture model and barotropic description of the diesel-like-fluid is utilized. Highly unsteady phenomena are observed in both investigated designs. The structure of the cavitating flow is further analyzed with an emphasis on the interaction between collapsing vapor clouds in the throttle step and reentrant motion in the discharge throttle. Furthermore, numerical simulations reveal significant influence of the throttle step diameter on the cavity dynamics.

  2. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  3. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  4. Towards numerical prediction of cavitation erosion

    PubMed Central

    Fivel, Marc; Franc, Jean-Pierre; Chandra Roy, Samir

    2015-01-01

    This paper is intended to provide a potential basis for a numerical prediction of cavitation erosion damage. The proposed method can be divided into two steps. The first step consists in determining the loading conditions due to cavitation bubble collapses. It is shown that individual pits observed on highly polished metallic samples exposed to cavitation for a relatively small time can be considered as the signature of bubble collapse. By combining pitting tests with an inverse finite-element modelling (FEM) of the material response to a representative impact load, loading conditions can be derived for each individual bubble collapse in terms of stress amplitude (in gigapascals) and radial extent (in micrometres). This step requires characterizing as accurately as possible the properties of the material exposed to cavitation. This characterization should include the effect of strain rate, which is known to be high in cavitation erosion (typically of the order of several thousands s−1). Nanoindentation techniques as well as compressive tests at high strain rate using, for example, a split Hopkinson pressure bar test system may be used. The second step consists in developing an FEM approach to simulate the material response to the repetitive impact loads determined in step 1. This includes a detailed analysis of the hardening process (isotropic versus kinematic) in order to properly account for fatigue as well as the development of a suitable model of material damage and failure to account for mass loss. Although the whole method is not yet fully operational, promising results are presented that show that such a numerical method might be, in the long term, an alternative to correlative techniques used so far for cavitation erosion prediction. PMID:26442139

  5. Towards numerical prediction of cavitation erosion.

    PubMed

    Fivel, Marc; Franc, Jean-Pierre; Chandra Roy, Samir

    2015-10-01

    This paper is intended to provide a potential basis for a numerical prediction of cavitation erosion damage. The proposed method can be divided into two steps. The first step consists in determining the loading conditions due to cavitation bubble collapses. It is shown that individual pits observed on highly polished metallic samples exposed to cavitation for a relatively small time can be considered as the signature of bubble collapse. By combining pitting tests with an inverse finite-element modelling (FEM) of the material response to a representative impact load, loading conditions can be derived for each individual bubble collapse in terms of stress amplitude (in gigapascals) and radial extent (in micrometres). This step requires characterizing as accurately as possible the properties of the material exposed to cavitation. This characterization should include the effect of strain rate, which is known to be high in cavitation erosion (typically of the order of several thousands s(-1)). Nanoindentation techniques as well as compressive tests at high strain rate using, for example, a split Hopkinson pressure bar test system may be used. The second step consists in developing an FEM approach to simulate the material response to the repetitive impact loads determined in step 1. This includes a detailed analysis of the hardening process (isotropic versus kinematic) in order to properly account for fatigue as well as the development of a suitable model of material damage and failure to account for mass loss. Although the whole method is not yet fully operational, promising results are presented that show that such a numerical method might be, in the long term, an alternative to correlative techniques used so far for cavitation erosion prediction. PMID:26442139

  6. Cavitation Instability in Subcooled Liquid Nitrogen Nozzle Flows

    NASA Astrophysics Data System (ADS)

    Niiyama, Kazuki; Nozawa, Masakazu; Ohira, Katsuhide; Oike, Mamoru

    Subcooled cryogenic fluids are used in many fields such as a propellant for liquid propulsion rocket systems and a coolant for superconducting systems. However, the fundamental characteristics of subcooled cryogenic cavitating flows have not been clarified. Therefore, a visualization experiment for a cryogenic cavitating flow passing through a converging-diverging nozzle was carried out with liquid nitrogen in the subcooled condition. The results indicate that the cavitation instability is caused by the intersection of the speed of sound in a gas-liquid two-phase flow with the required velocity for cavitation inception and cavitation conservation.

  7. Ideas in action: Solving a cavitation mystery

    SciTech Connect

    1995-12-31

    Cavitation caused significant erosion from 1985 through 1990 on turbine runners at the 970-MW Murray 1 Power Station operated by Snowy Mountains Hydro-Electric Authority (SMHEA) in Australia. The problem was perplexing because no obvious cause could be found. Investigation eventually showed the problems stemmed form the runners sagging slightly from the correct height. Corrective measures, which included adjustment of runners and new control settings for the units, appear to have relieved the cavitation. The adjustments also reduced stress on the unit thrust-bearings, eliminating a future maintenance headache.

  8. Correlations of thermodynamic effects for developed cavitation

    NASA Technical Reports Server (NTRS)

    Billet, M. L.; Holl, J. W.; Weir, D. S.

    1978-01-01

    The net positive suction head (NPSH) requirements for a pump are determined by the combined effects of cavitation, fluid properties, pump geometry, and pump operating point. An important part of this determination is the temperature depression (Delta T). Correlations are presented of the temperature depression for various degrees of developed cavitation on venturis and ogives. These correlations, based on a semi-empirical entrainment theory, express Delta T in terms of the dimensionless numbers of Nusselt, Reynolds, Froude, Weber, and Peclet, and dimensionless cavity length (L/D). The Delta T data were obtained in Freon 114, hydrogen and nitrogen for the venturis and in Freon 113 and water for the ogives.

  9. Cavitation Inception in Immersed Jet Shear Flows

    NASA Astrophysics Data System (ADS)

    Lockett, R. D.; Ndamuso, N.; Price, R.

    2015-12-01

    Cavitation inception occurring in immersed jets was investigated in a purpose-built mechanical flow rig. The rig utilized custom-built cylindrical and conical nozzles to direct high-velocity jets of variable concentration n-octane-hexadecane mixtures into a fused silica optically accessible receiver. The fluid pressure upstream and down-stream of the nozzles were manually controlled. The study employed a variety of acrylic and metal nozzles. The results show that the critical upstream pressure to downstream pressure ratio for incipient cavitation decreases with increasing n-octane concentration for the cylindrical nozzles, and increases with increasing n-octane concentration for the conical nozzle.

  10. Magnetic resonance imaging of velocity fields, the void fraction and gas dynamics in a cavitating liquid

    NASA Astrophysics Data System (ADS)

    Mastikhin, Igor V.; Arbabi, Aidin; Newling, Benedict; Hamza, Abdelhaq; Adair, Alexander

    2012-01-01

    In acoustic cavitation, the relationship between the bubble dynamics on the microscale and the flow properties on the macroscale is critical in determining sonochemical reaction kinetics. A new technique was developed to measure the void fraction and estimate water mobility in the vicinity of cavitating bubbles using phase-encoded magnetic resonance imaging with short characteristic measurement timescales (0.1-1 ms). The exponential behavior of the NMR signal decay indicated the fast diffusion regime, with the relationship between local mechanical dispersion D mix and the average bubble radius R, D_mix≫ 2R^2/10^{-4s}, resulting in dispersion of orders of magnitude greater than diffusion in quiescent water. For two different samples (water and a surfactant solution), the independent measurements of three-dimensional void fraction and velocity fields permitted the calculation of compressibility, divergence and vorticity of the cavitating medium. The measured dynamics of the dissolved gas, compared with that of the surrounding liquid, reflected the difference in the bubble coalescence and lifetimes and correlated with the macroscopic flow parameters.

  11. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound

    PubMed Central

    Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2011-01-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound. PMID:22088026

  12. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    PubMed

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect.

  13. Review on Lithotripsy and Cavitation in Urinary Stone Therapy.

    PubMed

    Ghorbani, Morteza; Oral, Ozlem; Ekici, Sinan; Gozuacik, Devrim; Kosar, Ali

    2016-01-01

    Cavitation is the sudden formation of vapor bubbles or voids in liquid media and occurs after rapid changes in pressure as a consequence of mechanical forces. It is mostly an undesirable phenomenon. Although the elimination of cavitation is a major topic in the study of fluid dynamics, its destructive nature could be exploited for therapeutic applications. Ultrasonic and hydrodynamic sources are two main origins for generating cavitation. The purpose of this review is to give the reader a general idea about the formation of cavitation phenomenon and existing biomedical applications of ultrasonic and hydrodynamic cavitation. Because of the high number of the studies on ultrasound cavitation in the literature, the main focus of this review is placed on the lithotripsy techniques, which have been widely used for the treatment of urinary stones. Accordingly, cavitation phenomenon and its basic concepts are presented in Section II. The significance of the ultrasound cavitation in the urinary stone treatment is discussed in Section III in detail and hydrodynamic cavitation as an important alternative for the ultrasound cavitation is included in Section IV. Finally, side effects of using both ultrasound and hydrodynamic cavitation in biomedical applications are presented in Section V. PMID:27249837

  14. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.

    PubMed

    Xu, Shanshan; Zong, Yujin; Li, Wusong; Zhang, Siyuan; Wan, Mingxi

    2014-05-01

    Performance and efficiency of numerous cavitation enhanced applications in a wide range of areas depend on the cavitation bubble size distribution. Therefore, cavitation bubble size estimation would be beneficial for biological and industrial applications that rely on cavitation. In this study, an acoustic method using a wide beam with low pressure is proposed to acquire the time intensity curve of the dissolution process for the cavitation bubble population and then determine the bubble size distribution. Dissolution of the cavitation bubbles in saline and in phase-shift nanodroplet emulsion diluted with undegassed or degassed saline was obtained to quantify the effects of pulse duration (PD) and acoustic power (AP) or peak negative pressure (PNP) of focused ultrasound on the size distribution of induced cavitation bubbles. It was found that an increase of PD will induce large bubbles while AP had only a little effect on the mean bubble size in saline. It was also recognized that longer PD and higher PNP increases the proportions of large and small bubbles, respectively, in suspensions of phase-shift nanodroplet emulsions. Moreover, degassing of the suspension tended to bring about smaller mean bubble size than the undegassed suspension. In addition, condensation of cavitation bubble produced in diluted suspension of phase-shift nanodroplet emulsion was involved in the calculation to discuss the effect of bubble condensation in the bubble size estimation in acoustic droplet vaporization. It was shown that calculation without considering the condensation might underestimate the mean bubble size and the calculation with considering the condensation might have more influence over the size distribution of small bubbles, but less effect on that of large bubbles. Without or with considering bubble condensation, the accessible minimum bubble radius was 0.4 or 1.7 μm and the step size was 0.3 μm. This acoustic technique provides an approach to estimate the size

  15. Theoretical analysis of rotating cavitation in rocket pump inducers

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Yoshinobu; Kamijo, Kenjiro; Yoshida, Yoshiki; Yoshida, Yoshiki

    1992-07-01

    Rotating cavitation was analyzed using an actuator disk method. Quasi-steady pressure performance of the impeller, mass flow gain factor and cavitation compliance of the cavity were taken into account. Three types of destabilizing modes were observed: rotating cavitation propagating faster than the rotational speed of the impeller, rotating cavitation propagating in the direction opposite that of the impeller, and rotating stall propagating slower than the rotational speed of the impeller. It was shown that both types of rotating cavitations were caused by the positive mass flow gain factor, while the rotating stall was caused by the positive slope of the pressure performance. Stability and propagation velocity maps are presented for the two types of rotating cavitations in the mass flow gain factor-cavitation compliance plane. The correlation between theoretical results and experimental observations is discussed.

  16. Influence of the empirical coefficients of cavitation model on predicting cavitating flow in the centrifugal pump

    NASA Astrophysics Data System (ADS)

    Liu, Hou-lin; Wang, Jian; Wang, Yong; Zhang, Hua; Huang, Haoqin

    2014-03-01

    The phenomenon of cavitation is an unsteady flow, which is nearly inevitable in pump. It would degrade the pump performance, produce vibration and noise and even damage the pump. Hence, to improve accuracy of the nu¬merical prediction of the pump cavitation performance is much desirable. In the present work, a homogenous model, the Zwart-Gerber-Belamri cavitation model, is considered to investigate the influence of the empirical coefficients on predicting the pump cavitation performance, concerning a centrifugal pump. Three coefficients are analyzed, namely the nucleation site radius, evaporation and condensation coefficients. Also, the experiments are carried out to validate the numerical simulations. The results indicate that, to get a precise prediction, the approaches of declining the initial bubble radius, the condensation coefficient or increasing the evaporation coefficient are all feasible, especially for de¬clining the condensation coefficient, which is the most effective way.

  17. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Ahuja, Vineet

    2005-01-01

    Contents include the following: Background on thermal effects in cavitation. Physical properties of hydrogen. Multi-phase cavitation with thermal effect. Solution procedure. Cavitation model overview. Cavitation source terms. New cavitation model. Source term for bubble growth. One equation les model. Unsteady ogive simulations: liquid nitrogen. Unsteady incompressible flow in a pipe. Time averaged cavity length for NACA15 flowfield.

  18. Whole-body vibration perception thresholds

    NASA Astrophysics Data System (ADS)

    Parsons, K. C.; Griffin, M. J.

    1988-03-01

    This paper presents the results of a series of laboratory experiments concerned with perception thresholds for whole-body vibration. The nature of absolute perception thresholds is discussed and a method of determining vibration thresholds, based upon signal detection theory, is proposed. Thresholds of subjects exposed to x-, y- and z-axis sinusoidal vibration were determined for sitting and standing subjects (from 2 to 100 Hz). Perception thresholds have also been determined for supine subjects exposed to vertical ( x-axis) sinusoidal vibration (10-63 Hz). In additional experiments the effects of complex (e.g., random) vibration and the effects of duration on the perception thresholds were investigated. The relation between perception thresholds and vibration levels, said by subjects to be unacceptable if they occurred in their own homes, was investigated as well as the effects of subjects' personality and the visual and acoustic conditions in the laboratory. For the vertical vibration of seated subjects no significant differences were found between the responses of male and female subjects. Significant differences were found between perception thresholds for sitting and standing postures. The median threshold was approximately 0·01 m/s 2 r.m.s. between 2 and 100 Hz. Perception thresholds for x-axis and y-axis vibration were not significantly different in either sitting or standing subjects but significant differences in thresholds were found between sitting and standing positions for both x-axis and y-axis vibration. Subjects tended to be more sensitive to vibration when lying than when sitting or standing. The results suggested that the perception of random vibrations can be predicted from a knowledge of the perception of its component vibrations. The number of cycles of vibration did not affect perception thresholds for vibration durations of more than about 0·25 s. Some assessments suggested that vibration at more than twice the perception threshold may not

  19. Experimental investigation of the local wave speed in a draft tube with cavitation vortex rope

    NASA Astrophysics Data System (ADS)

    Landry, C.; Favrel, A.; Müller, A.; Nicolet, C.; Yamamoto, K.; Avellan, F.

    2014-03-01

    Hydraulic machines operating in a wider range are subjected to cavitation developments inducing undesirable pressure pulsations which could lead to potential instability of the power plant. The occurrence of pulsating cavitation volumes in the runner and the draft tube is considered as a mass source of the system and is depending on the cavitation compliance. This dynamic parameter represents the cavitation volume variation with the respect to a variation of pressure and defines implicitly the local wave speed in the draft tube. This parameter is also decisive for an accurate prediction of system eigen frequencies. Therefore, the local wave speed in the draft tube is intrinsically linked to the eigen frequencies of the hydraulic system. Thus, if the natural frequency of a hydraulic system can be determined experimentally, it also becomes possible to estimate a local wave speed in the draft tube with a numerical model. In the present study, the reduced scale model of a Francis turbine (v=0.29) was investigated at off-design conditions. In order to measure the first eigenmode of the hydraulic test rig, an additional discharge was injected at the inlet of the hydraulic turbine at a variable frequency and amplitude to excite the system. Thus, with different pressure sensors installed on the test rig, the first eigenmode was determined. Then, a hydro-acoustic test rig model was developed with the In-house EPFL SIMSEN software and the local wave speed in the draft tube was adjusted to obtain the same first eigen frequency as that measured experimentally. Finally, this method was applied for different Thoma and Froude numbers at part load conditions.

  20. Removal of Residual Cavitation Nuclei to Enhance Histotripsy Erosion of Model Urinary Stones

    PubMed Central

    Duryea, Alexander P.; Roberts, William W.; Cain, Charles A.; Hall, Timothy L.

    2015-01-01

    Histotripsy has been shown to be an effective treatment for model kidney stones, eroding their surface to tiny particulate debris via a cavitational bubble cloud. However, similar to shock wave lithotripsy, histotripsy stone treatments display a rate-dependent efficacy with pulses applied at low rate generating more efficient stone erosion in comparison to those applied at high rate. This is hypothesized to be the result of residual cavitation bubble nuclei generated by bubble cloud collapse. While the histotripsy bubble cloud only lasts on the order of 100 µs, these microscopic remnant bubbles can persist on the order of 1 second—inducing direct attenuation of subsequent histotripsy pulses and influencing bubble cloud dynamics. In an effort to mitigate these effects, we have developed a novel strategy to actively remove residual cavitation nuclei from the field using low-amplitude ultrasound pulses. Previous work has demonstrated that with selection of the appropriate acoustic parameters these bubble removal pulses can stimulate the aggregation and subsequent coalescence of microscopic bubble nuclei—effectively deleting them from the target volume. Here, we incorporate bubble removal pulses in histotripsy treatment of model kidney stones. It was found that when histotripsy is applied at low rate (1 Hz), bubble removal does not produce a statistically significant change in erosion. At higher pulse rates of 10, 100, and 500 Hz, incorporating bubble removal results in 3.7-, 7.5-, and 2.7-fold increases in stone erosion, respectively. High speed imaging indicates that the introduction of bubble removal pulses allows bubble cloud dynamics resulting from high pulse rates to more closely approximate those generated at the low rate of 1 Hz. These results corroborate previous work in the field of shock wave lithotripsy regarding the ill-effects of residual bubble nuclei, and suggest that high treatment efficiency can be recovered at high pulse rates through

  1. Reduction of Bubble Cavitation by Modifying the Diffraction Wave from a Lithotripter Aperture

    PubMed Central

    2012-01-01

    Abstract Purpose A new method was devised to suppress the bubble cavitation in the lithotripter focal zone to reduce the propensity of shockwave-induced renal injury. Materials and Methods An edge extender was designed and fabricated to fit on the outside of the ellipsoidal reflector of an electrohydraulic lithotripter to disturb the generation of diffraction wave at the aperture, but with little effect on the acoustic field inside the reflector. Results Although the peak negative pressures at the lithotripter focus using the edge extender at 20 kV were similar to that of the original configuration (-11.1±0.9 vs −10.6±0.7 MPa), the duration of the tensile wave was shortened significantly (3.2±0.54 vs 5.83±0.56 μs, P<0.01). There is no difference, however, in both the amplitude and duration of the compressive shockwaves between these two configurations as well as the −6 dB beam width in the focal plane. The significant suppression effect of bubble cavitation was confirmed by the measured bubble collapse time using passive cavitation detection. At the lithotripter focus, while only about 30 shocks were needed to rupture a blood vessel phantom using the original HM-3 reflector at 20 kV, no damage could be produced after 300 shocks using the edge extender. Meanwhile, the original HM-3 lithotripter at 20 kV can achieve a stone comminution efficiency of 50.4±2.0% on plaster-of-Paris stone phantom after 200 shocks, which is comparable to that of using the edge extender (46.8±4.1%, P=0.005). Conclusions Modifying the diffraction wave at the lithotripter aperture can suppress the shockwave-induced bubble cavitation with significant reduced damage potential on the vessel phantom but satisfactory stone comminution ability. PMID:22332839

  2. Shock wave emission from laser-induced cavitation bubbles in polymer solutions.

    PubMed

    Brujan, Emil-Alexandru

    2008-09-01

    The role of extensional viscosity on the acoustic emission from laser-induced cavitation bubbles in polymer solutions and near a rigid boundary is investigated by acoustic measurements. The polymer solutions consist of a 0.5% polyacrylamide (PAM) aqueous solution with a strong elastic component and a 0.5% carboxymethylcellulose (CMC) aqueous solution with a weak elastic component. A reduction of the maximum amplitude of the shock wave pressure and a prolongation of the oscillation period of the bubble were found in the elastic PAM solution. It might be caused by an increased resistance to extensional flow which is conferred upon the liquid by the polymer additive. In both polymer solutions, however, the shock pressure decays proportionally to r(-1) with increasing distance r from the emission centre.

  3. Optical Measurements of Cavitation in Tribological Contacts

    NASA Astrophysics Data System (ADS)

    Tang, Tian; Morris, Nick; Coupland, Jeremy

    2015-12-01

    The paper describes the use of a white light interformeter to measure the cavitation bubble and oil film thickness in a tribological contact and compares the results to theory. It is found that oil film thickness is best predicted by the theory proposed by Coyne and Elrod.

  4. Film temperatures in the presence of cavitation

    NASA Technical Reports Server (NTRS)

    Elrod, Harold G.; Vijayaraghavan, D.

    1995-01-01

    Numerical algorithms are developed and implemented for the treatment of laminar lubricating-film temperatures associated with cavitated regions. The reformation front, with its film-content discontinuity and flow reversal, is given special attention. Computational economy is achieved through the use of Lobatto-point locations for flow-property determinations.

  5. Evaporation-induced cavitation in nanofluidic channels

    PubMed Central

    Duan, Chuanhua; Karnik, Rohit; Lu, Ming-Chang; Majumdar, Arun

    2012-01-01

    Cavitation, known as the formation of vapor bubbles when liquids are under tension, is of great interest both in condensed matter science as well as in diverse applications such as botany, hydraulic engineering, and medicine. Although widely studied in bulk and microscale-confined liquids, cavitation in the nanoscale is generally believed to be energetically unfavorable and has never been experimentally demonstrated. Here we report evaporation-induced cavitation in water-filled hydrophilic nanochannels under enormous negative pressures up to -7 MPa. As opposed to receding menisci observed in microchannel evaporation, the menisci in nanochannels are pinned at the entrance while vapor bubbles form and expand inside. Evaporation in the channels is found to be aided by advective liquid transport, which leads to an evaporation rate that is an order of magnitude higher than that governed by Fickian vapor diffusion in macro- and microscale evaporation. The vapor bubbles also exhibit unusual motion as well as translational stability and symmetry, which occur because of a balance between two competing mass fluxes driven by thermocapillarity and evaporation. Our studies expand our understanding of cavitation and provide new insights for phase-change phenomena at the nanoscale. PMID:22343530

  6. Cavitation of a Physically Associating Gel

    NASA Astrophysics Data System (ADS)

    Mishra, Satish; Kundu, Santanu

    Self-assembly of block copolymers in selective solvents form ordered structures such as micelles, vesicles, and physically crosslinked gels due to difference in their interaction with solvents. These gels have wide range of applications in tissue engineering, food science and biomedical field due to their tunable properties and responsiveness with changing environmental conditions. Pressurization of a defect inside a physically associating gel can lead to elastic instability (cavitation) leading to failure of the gel. The failure behavior involves dissociation of physical networks. A thermoreversible, physically associating gel with different volume fractions of a triblock copolymer, poly (methyl methacrylate)-poly (n-butyl acrylate)-poly (methyl methacrylate) [PMMA-PnBA-PMMA] in 2-ethyl 1-hexanol, a midblock selective solvent, is considered here. Mechanical properties were investigated using shear rheology and cavitation experiments. The experimental data is fitted with a constitutive model that captures the stiffening behavior followed by softening behavior of a physical gel. Finite element analysis has been performed on cavitation rheology geometry to capture the failure behavior and to calculate energy release rate during cavitation experiments.

  7. Modelling cavitating flow around underwater missiles

    NASA Astrophysics Data System (ADS)

    Petitpas, Fabien; Saurel, Richard; Ahn, Byoung-Kwon; Ko, Sungho

    2011-12-01

    The diffuse interface model of Saurel et al. (2008) is used for the computation of compressible cavitating flows around underwater missiles. Such systems use gas injection and natural cavitation to reduce drag effects. Consequently material interfaces appear separating liquid and gas. These interfaces may have a really complex dynamics such that only a few formulations are able to predict their evolution. Contrarily to front tracking or interface reconstruction method the interfaces are computed as diffused numerical zones, that are captured in a routinely manner, as is done usually with gas dynamics solvers for shocks and contact discontinuity. With the present approach, a single set of partial differential equations is solved everywhere, with a single numerical scheme. This leads to very efficient solvers. The algorithm derived in Saurel et al. (2009) is used to compute cavitation pockets around solid bodies. It is first validated against experiments done in cavitation tunnel at CNU. Then it is used to compute flows around high speed underwater systems (Shkval-like missile). Performance data are then computed showing method ability to predict forces acting on the system.

  8. Size scale effect in cavitation erosion

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Rao, B. C.; Buckley, D. H.

    1982-01-01

    An overview and data analyses pertaining to cavitation erosion size scale effects are presented. The exponents n in the power law relationship are found to vary from 1.7 to 4.9 for venturi and rotating disk devices supporting the values reported in the literature. Suggestions for future studies were made to arrive at further true scale effects.

  9. Surface vibration and nearby cavitation of an ex vivo bovine femur exposed to high intensity focused ultrasound.

    PubMed

    Zhang, Siyuan; Li, Chong; Yin, Hui; Wang, Supin; Wan, Mingxi

    2013-08-01

    The acoustic pressure distribution, thermal ablation, and sonochemiluminescence (SCL) generated by cavitation near the surface of an ex vivo bovine femur were investigated at normal and oblique incidences of high intensity focused ultrasound (HIFU), as were the characteristics of bone surface vibrations. The acoustic pressure at the HIFU focus, the width of thermal ablation, and the SCL intensity in the pre-focal region were 1.3 MPa, 7 mm, and 454 electrons, respectively, in the control group at normal incidence, and they respectively increased to 1.5 MPa, 12 mm and 968 electrons in the presence of the bone. At oblique incidence from the left, the acoustic pressure at 3 mm to the right of the HIFU focus was 0.6 MPa and decreased to 0.4 MPa at 3 mm to the left of the focus. The thermal ablation was 20 mm in width and extended along the front surface of the bone to the right of the HIFU focus. The SCL intensity on the right of the HIFU focus was 394 electrons and was 362 electrons on the left. The presence of bone would directionally change the spatial distribution of acoustic pressure, thermal and cavitation effects for oblique incidence of HIFU.

  10. Cavitation Damage Experiments for Mercury Spallation Targets At the LANSCE WNR in 2008

    SciTech Connect

    Riemer, Bernie; Wendel, Mark W; Felde, David K

    2010-01-01

    Proton beam experiments investigating cavitation damage in short pulse mercury spallation targets were performed at LANSCE WNR in July of 2008. They included two main areas for investigation: damage dependence on mercury velocity using geometry more prototypic to the SNS target than previously employed and damage dependence on incident proton beam flux intensity. The flow dependence experiment employed six test targets with mercury velocity in the channel ranging from 0 to more than 4 m/s. Each was hit with 100 WNR beam pulses with peak proton flux equivalent to that of SNS operating at 2.7 MW. Damage dependence on incident proton beam flux intensity was also investigated with three intensity levels used on simple rectangular shaped targets without mercury flow. Intensity variation was imposed by focusing the beam differently while maintaining protons per pulse. This kept total energy deposited in each target constant. A fourth test target was hit with various beams: constant protons and varied spot size; constant spot size and varied protons. No damage will be assessed in this case. Instead, acoustic emissions associated with cavitation collapse were measured by laser Doppler vibrometer (LDV) from readings of exterior vessel motions as well as by mercury wetted acoustic transducers. This paper will provide a description of the experiment and present available results. Damage assessment will require several months before surface analysis can be completed and was not available in time for IWSMT-9.

  11. The effect of cavitation on the hydrofoil dynamic characteristics

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhou, L. J.; Wang, Z. W.; Zhi, F. L.

    2013-12-01

    Cavitation in hydraulic machinery usually causes a change of fluid dynamic characteristics. In order to predict the effect of cavitation on hydrofoil characteristics, the cavitation around a hydrofoil was studied numerically. The full cavitation model and a modified RNG k ε-turbulence model were used. The finite volume method with the SIMPLEC scheme was used to discretize the time-dependent equations. The second-order upwind scheme was used for the convection terms with the central difference scheme used for the diffusion terms. Fluid dynamic characteristics including cavity's length, shedding frequency, pressure coefficient and lift and drag force coefficients features in a range of cavitation number were analyzed. Computations were made on the three-dimensional flow field around a NACA66 hydrofoil at 8° angle of attack. The recording force signals exhibit periodic behaviours with the time. And the cavity shedding frequency increases with the cavitation number, however the length of cavity decreases with the cavitation number, which result in changing of lift-drag ratio. Especially for larger cavitation numbers, the lift drag ratio of cavitation field is getting closer and closer to that of non-cavitation field.

  12. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  13. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  14. Application of hydrodynamic cavitation in ballast water treatment.

    PubMed

    Cvetković, Martina; Kompare, Boris; Klemenčič, Aleksandra Krivograd

    2015-05-01

    Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO's International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment.

  15. Acoustic neuromodulation from a basic science prospective.

    PubMed

    Sassaroli, Elisabetta; Vykhodtseva, Natalia

    2016-01-01

    We present here biophysical models to gain deeper insights into how an acoustic stimulus might influence or modulate neuronal activity. There is clear evidence that neural activity is not only associated with electrical and chemical changes but that an electro-mechanical coupling is also involved. Currently, there is no theory that unifies the electrical, chemical, and mechanical aspects of neuronal activity. Here, we discuss biophysical models and hypotheses that can explain some of the mechanical aspects associated with neuronal activity: the soliton model, the neuronal intramembrane cavitation excitation model, and the flexoelectricity hypothesis. We analyze these models and discuss their implications on stimulation and modulation of neuronal activity by ultrasound. PMID:27213044

  16. Large Volume Coagulation Utilizing Multiple Cavitation Clouds Generated by Array Transducer Driven by 32 Channel Drive Circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Kotaro; Asai, Ayumu; Sasaki, Hiroshi; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-07-01

    High-intensity focused ultrasound (HIFU) treatment is a noninvasive treatment, in which focused ultrasound is generated outside the body and coagulates a diseased tissue. The advantage of this method is minimal physical and mental stress to the patient, and the disadvantage is the long treatment time caused by the smallness of the therapeutic volume by a single exposure. To improve the efficiency and shorten the treatment time, we are focusing attention on utilizing cavitation bubbles. The generated microbubbles can convert the acoustic energy into heat with a high efficiency. In this study, using the class D amplifiers, which we have developed, to drive the array transducer, we demonstrate a new method to coagulate a large volume by a single HIFU exposure through generating cavitation bubbles distributing in a large volume and vibrating all of them. As a result, the coagulated volume by the proposed method was 1.71 times as large as that of the conventional method.

  17. U-shaped Vortex Structures in Large Scale Cloud Cavitation

    NASA Astrophysics Data System (ADS)

    Cao, Yantao; Peng, Xiaoxing; Xu, Lianghao; Hong, Fangwen

    2015-12-01

    The control of cloud cavitation, especially large scale cloud cavitation(LSCC), is always a hot issue in the field of cavitation research. However, there has been little knowledge on the evolution of cloud cavitation since it is associated with turbulence and vortex flow. In this article, the structure of cloud cavitation shed by sheet cavitation around different hydrofoils and a wedge were observed in detail with high speed camera (HSC). It was found that the U-shaped vortex structures always existed in the development process of LSCC. The results indicated that LSCC evolution was related to this kind of vortex structures, and it may be a universal character for LSCC. Then vortex strength of U-shaped vortex structures in a cycle was analyzed with numerical results.

  18. PIV Analysis of Cavitation Flow Characteristics of He II

    SciTech Connect

    Harada, K.; Murakami, M.

    2006-04-27

    In the present experimental study cavitation phenomena in both He I and He II flows were investigated through the application of the PIV technique and visual observation under the saturated vapor pressure condition. The cavitation flow was generated in the downstream regions of a Venturi channel and a converging jet nozzle driven by a contracting metal bellows. It is seen that cavitation inception is a kind of stochastic process and has definite temperature dependence. The spatial distribution of the cavitation bubble velocity is measured by using the PIV technique. Some differences in the cavitating flow pattern and the void fraction are found between He II and He I cavitating flows. The PIV result indicates that the void fraction for He II flow is larger than that for He I flow.

  19. CARA Risk Assessment Thresholds

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.

    2016-01-01

    Warning remediation threshold (Red threshold): Pc level at which warnings are issued, and active remediation considered and usually executed. Analysis threshold (Green to Yellow threshold): Pc level at which analysis of event is indicated, including seeking additional information if warranted. Post-remediation threshold: Pc level to which remediation maneuvers are sized in order to achieve event remediation and obviate any need for immediate follow-up maneuvers. Maneuver screening threshold: Pc compliance level for routine maneuver screenings (more demanding than regular Red threshold due to additional maneuver uncertainty).

  20. Enhancement of heat and mass transfer by cavitation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. N.; Zhang, Y. N.; Du, X. Z.; Xian, H. Z.

    2015-01-01

    In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment.

  1. Analysis of cavitation bubble dynamics in a liquid

    NASA Technical Reports Server (NTRS)

    Fontenot, L. L.; Lee, Y. C.

    1971-01-01

    General differential equations governing the dynamics of the cavitation bubbles in a liquid were derived. With the assumption of spherical symmetry the governing equations were simplified. Closed form solutions were obtained for simple cases, and numerical solutions were calculated for complicated ones. The growth and the collapse of the bubble were analyzed, oscillations of the bubbles were studied, and the stability of the cavitation bubbles were investigated. The results show that the cavitation bubbles are unstable, and the oscillation is not sinusoidal.

  2. L-Area Cavitation Tests Final Analysis - Limits Application

    SciTech Connect

    Wood, D.C.

    2001-06-26

    The L-Area cavitation test was designed to better define the onset of cavitation in the reactor system. The onset of gas evolution in the effluent piping and pump cavitation was measured using state-of-the-art equipment to provide data with a high confidence and low uncertainty level. The limits calculated from the new data will allow an approximate two percent increase in reactor power if the reactor is effluent temperature-limited with no compromise in reactor safety.

  3. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  4. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  5. Acoustic metafluids.

    PubMed

    Norris, Andrew N

    2009-02-01

    Acoustic metafluids are defined as the class of fluids that allow one domain of fluid to acoustically mimic another, as exemplified by acoustic cloaks. It is shown that the most general class of acoustic metafluids are materials with anisotropic inertia and the elastic properties of what are known as pentamode materials. The derivation uses the notion of finite deformation to define the transformation of one region to another. The main result is found by considering energy density in the original and transformed regions. Properties of acoustic metafluids are discussed, and general conditions are found which ensure that the mapped fluid has isotropic inertia, which potentially opens up the possibility of achieving broadband cloaking. PMID:19206861

  6. Experimental Investigation of Cavitation Induced Feedline Instability from an Orifice

    NASA Technical Reports Server (NTRS)

    Hitt, Matthew A.; Lineberry, David M.; Ahuja, Vineet; Frederick, Robert A,

    2012-01-01

    This paper details the results of an experimental investigation into the cavitation instabilities created by a circular orifice conducted at the University of Alabama in Huntsville Propulsion Research Center. This experiment was conducted in concert with a computational simulation to serve as a reference point for the simulation. Testing was conducted using liquid nitrogen as a cryogenic propellant simulant. A 1.06 cm diameter thin orifice with a rounded inlet was tested in an approximately 1.25 kg/s flow with inlet pressures ranging from 504.1 kPa to 829.3 kPa. Pressure fluctuations generated by the orifice were measured using a high frequency pressure sensor located 0.64 tube diameters downstream of the orifice. Fast Fourier Transforms were performed on the high frequency data to determine the instability frequency. Shedding resulted in a primary frequency with a cavitation related subharmonic frequency. For this experiment, the cavitation instability ranged from 153 Hz to 275 Hz. Additionally, the strength of the cavitation occur red as a function of cavitation number. At lower cavitation numbers, the strength of the cavitation instability ranged from 2.4 % to 7 % of the inlet pressure. However, at higher cavitation numbers, the strength of the cavitation instability ranged from 0.6 % to 1 % of the inlet pressure.

  7. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    PubMed

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation. PMID:26934340

  8. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips

    PubMed Central

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L.; Wang, Qianxi X.; Leppinen, David M.; Walmsley, A. Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation. PMID:26934340

  9. Rayleigh scattering on the cavitation region emerging in liquids.

    PubMed

    Shneider, M N; Pekker, M

    2016-03-15

    It is shown that the scattering of laser radiation off cavitation ruptures in fluids is similar to scattering by gas particles. When the characteristic dimensions of microscopic voids and bubbles are considerably smaller than the laser wavelength, the scattered light is in the Rayleigh regime, which allows for the detection of early stage cavitation. Simple estimates of the scattered radiation intensity and the dynamics of its changes in connection with the generation of cavitation in the test volume are obtained, allowing us to find the critical conditions for cavitation inception. PMID:26977641

  10. Numerical simulation on the cavitation of waterjet propulsion pump

    NASA Astrophysics Data System (ADS)

    Xia, C. Z.; Cheng, L.; Shang, Y. N.; Zhou, J. R.; Yang, F.; Jin, Y.

    2016-05-01

    Waterjet propulsion system is widely used in high speed vessels with advantages of simple transmission mechanism, low noise underwater and good manoeuvrability. Compared with the propeller, waterjet propulsion can be used flow stamping to increasing cavitation resistance at high speed. But under certain conditions, such as low ship speed or high ship speed, cavitation problem still exists. If water-jet propulsion pump is run in cavitation condition for a long time, then the cavitation will cause a great deal of noise CFD is applied to analysis and predict the process of production and development of cavitation in waterjet propulsion pump. Based on the cavitation model of Zwart-Gerber-Belamri and a mixture of homogeneous flow model, commercial CFD software CFX was taken for characteristics of cavitation under the three operating conditions. Commercial software ANSYS 14.0 is used to build entity model, mesh and numerical simulation. The grid independence analysis determine the grid number of mixed flow pump model is about 1.6 million and the grid number of water-jet pump system unit is about 2.7 million. The cavitation characteristics of waterjet pump under three operating conditions are studied. The results show that the cavitation development trend is similar design and small rate of flow condition .Under the design conditions Cavitation bubbles are mainly gathered in suction surface of blade near the inlet side of the hub under the primary stage, and gradually extended to the water side in the direction of the rim with the loss of the inlet total pressure. Cavitation appears in hub before the blade rim, but the maximum value of gas content in blade rim is bigger than that in hub. Under large flow conditions, bubble along the direction of wheel hub extends to the rim gradually. Cavitation is found in the pressure surface of blade near the hub region under the critical point of cavitation nearby. When NPSHa is lower than critical point, the area covering by bubbles

  11. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    PubMed

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.

  12. Alternative approach for cavitation damage study utilizing repetitive laser pulses

    SciTech Connect

    Ren, Fei; Wang, Jy-An John; Wang, Hong

    2010-01-01

    Cavitation is a common phenomenon in fluid systems that can lead to dramatic degradation of solid materials surface in contact with the cavitating media. Study of cavitation damage has great significance in many engineering fields. Current techniques for cavitation damage study either require large scale equipments or tend to introduce damages from other mechanisms. In this project, we utilized the cavitation phenomenon induced by laser optical breakdown and developed a prototype apparatus for cavitation damage study. In our approach, cavitation was generated by the repetitive pressure waves induced by high-power laser pulses. As proof of principal study, stainless steel and aluminum samples were tested using the novel apparatus. Surface characterization via scanning electron microscopy revealed damages such as indentation and surface pitting, which were similar to those reported in literature using other state-of-the-art techniques. These preliminary results demonstrated the new device was capable of generating cavitation damages and could be used as an alternative method for cavitation damage study.

  13. Calcium Is a Major Determinant of Xylem Vulnerability to Cavitation

    PubMed Central

    Herbette, Stephane; Cochard, Herve

    2010-01-01

    Xylem vulnerability to cavitation is a key parameter in the drought tolerance of trees, but little is known about the control mechanisms involved. Cavitation is thought to occur when an air bubble penetrates through a pit wall, and would hence be influenced by the wall's porosity. We first tested the role of wall-bound calcium in vulnerability to cavitation in Fagus sylvatica. Stems perfused with solutions of oxalic acid, EGTA, or sodium phosphate (NaPO4) were found to be more vulnerable to cavitation. The NaPO4-induced increase in vulnerability to cavitation was linked to calcium removal from the wall. In contrast, xylem hydraulic conductance was unaffected by the chemical treatments, demonstrating that the mechanisms controlling vulnerability to cavitation and hydraulic resistance are uncoupled. The NaPO4 solution was then perfused into stems from 13 tree species possessing highly contrasted vulnerability to cavitation. Calcium was found to be a major determinant of between-species differences in vulnerability to cavitation. This was evidenced in angiosperms as well as conifer species, thus supporting the hypothesis of a common mechanism in drought-induced cavitation. PMID:20547703

  14. Propeller sheet cavitation noise source modeling and inversion

    NASA Astrophysics Data System (ADS)

    Lee, Keunhwa; Lee, Jaehyuk; Kim, Dongho; Kim, Kyungseop; Seong, Woojae

    2014-02-01

    Propeller sheet cavitation is the main contributor to high level of noise and vibration in the after body of a ship. Full measurement of the cavitation-induced hull pressure over the entire surface of the affected area is desired but not practical. Therefore, using a few measurements on the outer hull above the propeller in a cavitation tunnel, empirical or semi-empirical techniques based on physical model have been used to predict the hull-induced pressure (or hull-induced force). In this paper, with the analytic source model for sheet cavitation, a multi-parameter inversion scheme to find the positions of noise sources and their strengths is suggested. The inversion is posed as a nonlinear optimization problem, which is solved by the optimization algorithm based on the adaptive simplex simulated annealing algorithm. Then, the resulting hull pressure can be modeled with boundary element method from the inverted cavitation noise sources. The suggested approach is applied to the hull pressure data measured in a cavitation tunnel of the Samsung Heavy Industry. Two monopole sources are adequate to model the propeller sheet cavitation noise. The inverted source information is reasonable with the cavitation dynamics of the propeller and the modeled hull pressure shows good agreement with cavitation tunnel experimental data.

  15. Numerical investigation of cavitation performance on bulb tubular turbine

    NASA Astrophysics Data System (ADS)

    Sun, L. G.; Guo, P. C.; Zheng, X. B.; Luo, X. Q.

    2016-05-01

    The cavitation flow phenomena may occur in the bulb tubular turbine at some certain operation conditions, which even decrease the performance of units and causes insatiably noise and vibration when it goes worse. A steady cavitating flow numerical simulations study is carried out on the bulb tubular unit with the same blade pitch angle and different guide vane openings by using the commercial code ANSYS CFX in this paper. The phenomena of cavitation induction areas and development process are obtained and draws cavitation performance curves. The numerical results show that the travelling bubble cavity is the main types of cavitation development over a wide operating range of discharge and this type of cavitation begins to sensitive to the value of cavitation number when the discharge exceeding a certain valve, in this condition, it can lead to a severe free bubble formation with the gradually decrement of cavitation number. The reported cavitation performance curves results indicate that the flow blockage incident would happen because of a mount of free bubble formation in the flow passage when the cavity developed to certain extend, which caused head drop behavior and power broken dramatically and influenced the output power.

  16. High-harmonic generation in cavitated plasmas

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Comier-Michel, E.; Leemans, W. P.

    2008-05-15

    A method is proposed for producing coherent x-rays via high-harmonic generation using ultraintense lasers interacting with highly stripped ions in cavitated plasmas. This method relies on plasma cavitation by the wake of an intense drive beam (laser or electron beam) to produce an ion cavity. An ultrashort pulse laser propagating in the plasma-electron-free ion cavity generates laser harmonics. The longitudinal electron motion, which inhibits high-harmonic generation at high laser intensities, can be suppressed by the space-charge field in the ion cavity or by using a counterpropagating laser pulse. Periodic suppression of the longitudinal electron motion may also be used to quasi-phase-match. This method enables harmonic generation to be extended to the sub-A regime.

  17. Elastic cavitation and fracture via injection.

    PubMed

    Hutchens, Shelby B; Fakhouri, Sami; Crosby, Alfred J

    2016-03-01

    The cavitation rheology technique extracts soft materials mechanical properties through pressure-monitored fluid injection. Properties are calculated from the system's response at a critical pressure that is governed by either elasticity or fracture (or both); however previous elementary analysis has not been capable of accurately determining which mechanism is dominant. We combine analyses of both mechanisms in order to determine how the full system thermodynamics, including far-field compliance, dictate whether a bubble in an elastomeric solid will grow through either reversible or irreversible deformations. Applying these analyses to experimental data, we demonstrate the sensitivity of cavitation rheology to microstructural variation via a co-dependence between modulus and fracture energy. PMID:26837798

  18. How Snapping Shrimp Snap: Through Cavitating Bubbles

    NASA Astrophysics Data System (ADS)

    Versluis, Michel; Schmitz, Barbara; von der Heydt, Anna; Lohse, Detlef

    2000-09-01

    The snapping shrimp (Alpheus heterochaelis) produces a loud snapping sound by an extremely rapid closure of its snapper claw. One of the effects of the snapping is to stun or kill prey animals. During the rapid snapper claw closure, a high-velocity water jet is emitted from the claw with a speed exceeding cavitation conditions. Hydrophone measurements in conjunction with time-controlled high-speed imaging of the claw closure demonstrate that the sound is emitted at the cavitation bubble collapse and not on claw closure. A model for the bubble dynamics based on a Rayleigh-Plesset-type equation quantitatively accounts for the time dependence of the bubble radius and for the emitted sound.

  19. Mixture segregation by an inertial cavitation bubble.

    PubMed

    Grossier, R; Louisnard, O; Vargas, Y

    2007-04-01

    Pressure diffusion is a mass diffusion process forced by pressure gradients. It has the ability to segregate two species of a mixture, driving the densest species toward high pressure zones, but requires very large pressure gradients to become noticeable. An inertial cavitation bubble develops large pressure gradients in its vicinity, especially as the bubble rebounds at the end of its collapse, and it is therefore expected that a liquid mixture surrounding such a bubble would become segregated. Theory developed in an earlier paper shows that this is indeed the case for sufficiently large molecules or nano-particles. The main theoretical results are recalled and a possible implication of this segregation phenomenon on the well-known cavitation-enhanced crystals nucleation is proposed.

  20. Cavitation, Elasticity and Fracture in Strong Hydrogels

    NASA Astrophysics Data System (ADS)

    Cui, Jun; Madkour, Ahmad; Tew, Gregory; Crosby, Alfred

    2010-03-01

    The interplay between the molecular network and material microstructure of a polymer-based hydrogel is critical for determining both the low strain elastic properties and fracture toughness. We present a novel complex hydrogel network developed by introducing polydimethylsiloxane (PDMS) into a polyethylene glycol (PEG)-based network. Using a combination of conventional characterization techniques, as well as the recently developed technique of cavitation rheology, we investigate the balance of elasticity and fracture in these complex networks. The polymer network maintains elasticity, with negligible hysteresis, at large strains over a wide range of swelling ratios. These properties are investigated across a continuum of length scales ranging from microns to centimeters by taking advantage of cavitation rheology, which uses the onset of an elastic instability to quantify local network mechanics. We compare our results with established scaling theories to describe both the elastic and fracture properties as a function of polymer volume fraction.

  1. Cavitation in liquid cryogens. 3: Ogives

    NASA Technical Reports Server (NTRS)

    Hord, J.

    1973-01-01

    Experimental results for three, scaled, quarter-caliber ogives are given. Both desinent and developed cavity data, using liquid hydrogen and liquid nitrogen, are reported. The desinent data do not exhibit a consistent ogive size effect, but the developed cavity data were consistently influenced by ogive size; B-factor increases with increasing ogive diameter. The developed cavity data indicated that stable thermodynamic equilibrium exists throughout the vaporous cavities. These data were correlated by using the extended theory derived in NASA-CR-2156 (volume II of this report series). The new correlating parameter MTWO, improves data correlation for the ogives, hydrofoil, and venturi and appears attractive for future predictive applications. The cavitation coefficient and equipment size effects are shown to vary with specific equipment-fluid combinations. A method of estimating cavitation coefficient from knowledge of the noncavitating pressure coefficient is suggested.

  2. Sonoluminescence and multi-bubble cavitation phenomena for selected research and industrial applications

    NASA Astrophysics Data System (ADS)

    Greenwood, Larry; Olsen, Khris; Good, Morris; Bond, Leonard; Posakony, Gerald; Peters, Timothy; Baldwin, David; Wester, Dennis; Ahmed, Salahuddin

    2003-04-01

    Single bubble sonoluminescence (SBSL), multi-bubble sonoluminescence (MBSL), multi-bubble sonochemiluminescence (MBSCL) and other high power ultrasound cavitation and noncavitating ultrasound process stream interaction phenomena are known to produce a wide range of both physical and chemical effects that depend upon the system and operating conditions employed. Three interacting regimes are under investigation (a) high power and high frequency (including noncavitating systems), (b) single bubble resonance/sonoluminescence and (c) multi-bubble high power sonochemical processing. In all cases these involve various reactors, including possible schemes for continuous material feeding and processing for selected chemical, nonaqueous fluids and biological research and industrial applications. High power sonochemical and noncavitating ultrasound processing applications and a review of literature pertaining to the potential of high power processing, including fusion are discussed. Work includes the investigation of acoustic fields in reactors, characterization of sonoluminescence spectra, the investigation of system parameters to control maximum bubble temperature and pressure, and acoustic energy partition into light and acoustic emission/shock waves. Effects of various chemical systems on multi-bubble luminescence are being investigated and will be reported. Work to date has emphasized the evaluation of both single and multi-bubble sonoluminescence, spectral measurements, acoustic emission measurements and the observation of a continuous bubble feed phenomenon.

  3. Wind turbine acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  4. Numerical description of cavitation on axisymmetric bodies

    SciTech Connect

    Hickox, C.E.; Hailey, C.E.; Wolfe, W.P.; Watts, H.A.; Gross, R.J.; Ingber, M.S.

    1988-01-01

    This paper reports on ongoing studies which are directed toward the development of predictive techniques for the modeling of steady cavitation on axisymmetric bodies. The primary goal of the modeling effort is the prediction of cavity shape and pressure distribution from which forces and moments can be calculated. Here we present an overview of the modeling techniques developed and compare predictions with experimental data obtained from water tunnel tests for both limited and supercavitation. 14 refs., 4 figs.

  5. Computational fluid dynamic modelling of cavitation

    NASA Technical Reports Server (NTRS)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.

  6. Cavitation effects in ultrasonic cleaning baths

    NASA Technical Reports Server (NTRS)

    Glasscock, Barbara H.

    1995-01-01

    In this project, the effect of cavitation from aqueous ultrasonic cleaning on the surfaces of metal and non-metal sample coupons was studied. After twenty cleaning cycles, the mass loss from the aluminum coupons averaged 0.22 mg/sq cm surface area and 0.014 mg/sq cm for both stainless steel and titanium. The aluminum coupons showed visual evidence of minor cavitation erosion in regions of previously existing surface irregularities. The non-metal samples showed some periods of mass gain. These effects are believed to have minor impact on hardware being cleaned, but should be evaluated in the context of specific hardware requirements. Also the ultrasonic activity in the large cleaning baths was found to be unevenly distributed as measured by damage to sheets of aluminum foil. It is therefore recommended that items being cleaned in an ultrasonic bath be moved or conveyed during the cleaning to more evenly distribute the cavitation action provide more uniform cleaning.

  7. Intensely oscillating cavitation bubble in microfluidics

    NASA Astrophysics Data System (ADS)

    Siew-Wan, Ohl; Tandiono; Klaseboer, Evert; Dave, Ow; Choo, Andre; Claus-Dieter, Ohl

    2015-12-01

    This study reports the technical breakthrough in generating intense ultrasonic cavitation in the confinement of a microfluidics channel [1], and applications that has been developed on this platform for the past few years [2,3,4,5]. Our system consists of circular disc transducers (10-20 mm in diameter), the microfluidics channels on PDMS (polydimethylsiloxane), and a driving circuitry. The cavitation bubbles are created at the gas- water interface due to strong capillary waves which are generated when the system is driven at its natural frequency (around 100 kHz) [1]. These bubbles oscillate and collapse within the channel. The bubbles are useful for sonochemistry and the generation of sonoluminescence [2]. When we add bacteria (Escherichia coli), and yeast cells (Pichia pastoris) into the microfluidics channels, the oscillating and collapsing bubbles stretch and lyse these cells [3]. Furthermore, the system is effective (DNA of the harvested intracellular content remains largely intact), and efficient (yield reaches saturation in less than 1 second). In another application, human red blood cells are added to a microchamber. Cell stretching and rapture are observed when a laser generated cavitation bubble expands and collapses next to the cell [4]. A numerical model of a liquid pocket surrounded by a membrane with surface tension which was placed next to an oscillating bubble was developed using the Boundary Element Method. The simulation results showed that the stretching of the liquid pocket occurs only when the surface tension is within a certain range.

  8. Tuberculosis, Pulmonary Cavitation, and Matrix Metalloproteinases

    PubMed Central

    Ong, Catherine W. M.; Elkington, Paul T.

    2014-01-01

    Tuberculosis (TB), a chronic infectious disease of global importance, is facing the emergence of drug-resistant strains with few new drugs to treat the infection. Pulmonary cavitation, the hallmark of established disease, is associated with very high bacillary burden. Cavitation may lead to delayed sputum culture conversion, emergence of drug resistance, and transmission of the infection. The host immunological reaction to Mycobacterium tuberculosis is implicated in driving the development of TB cavities. TB is characterized by a matrix-degrading phenotype in which the activity of proteolytic matrix metalloproteinases (MMPs) is relatively unopposed by the specific tissue inhibitors of metalloproteinases. Proteases, in particular MMPs, secreted from monocyte-derived cells, neutrophils, and stromal cells, are involved in both cell recruitment and tissue damage and may cause cavitation. MMP activity is augmented by proinflammatory chemokines and cytokines, is tightly regulated by complex signaling paths, and causes matrix destruction. MMP concentrations are elevated in human TB and are closely associated with clinical and radiological markers of lung tissue destruction. Immunomodulatory therapies targeting MMPs in preclinical and clinical trials are potential adjuncts to TB treatment. Strategies targeting patients with cavitary TB have the potential to improve cure rates and reduce disease transmission. PMID:24713029

  9. Multiscale Modeling of Cavitating Bubbly Flows

    NASA Astrophysics Data System (ADS)

    Ma, J.; Hsiao, C.-T.; Chahine, G. L.

    2013-03-01

    Modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Bubble Model for dispersed microbubbles and a level set N-S solver for macro cavities, along with a mesoscale transition model to bridge the two. This approach was implemented in 3DYNAFScopyright and used to simulate sheet-to-cloud cavitation over a hydrofoil. The hybrid model captures well the full cavitation process starting from free field nuclei and nucleation from solid surfaces. In low pressure region of the foil small nuclei are seen to grow large and eventually merge to form a large scale sheet cavity. A reentrant jet forms under the cavity, travels upstream, and breaks it, resulting in a bubble cloud of a large amount of microbubbles as the broken pockets shrink and travel downstream. This is in good agreement with experimental observations based of sheet lengths and frequency of lift force oscillation. DOE-SBIR, ONR (monitored by Dr. Ki-Han Kim)

  10. Discrete Bubble Modeling for Cavitation Bubbles

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Keun; Chahine, Georges; Hsiao, Chao-Tsung

    2007-03-01

    Dynaflow, Inc. has conducted extensive studies on non-spherical bubble dynamics and interactions with solid and free boundaries, vortical flow structures, and other bubbles. From these studies, emerged a simplified Surface Averaged Pressure (SAP) spherical bubble dynamics model and a Lagrangian bubble tracking scheme. In this SAP scheme, the pressure and velocity of the surrounding flow field are averaged on the bubble surface, and then used for the bubble motion and volume dynamics calculations. This model is implemented using the Fluent User Defined Function (UDF) as Discrete Bubble Model (DBM). The Bubble dynamics portion can be solved using an incompressible liquid modified Rayleigh-Plesset equation or a compressible liquid modified Gilmore equation. The Discrete Bubble Model is a very suitable tool for the studies on cavitation inception of foils and turbo machinery, bubble nuclei effects, noise from the bubbles, and can be used in many practical problems in industrial and naval applications associated with flows in pipes, jets, pumps, propellers, ships, and the ocean. Applications to propeller cavitation, wake signatures of waterjet propelled ships, bubble-wake interactions, modeling of cavitating jets, and bubble entrainments around a ship will be presented.

  11. Tuberculosis, pulmonary cavitation, and matrix metalloproteinases.

    PubMed

    Ong, Catherine W M; Elkington, Paul T; Friedland, Jon S

    2014-07-01

    Tuberculosis (TB), a chronic infectious disease of global importance, is facing the emergence of drug-resistant strains with few new drugs to treat the infection. Pulmonary cavitation, the hallmark of established disease, is associated with very high bacillary burden. Cavitation may lead to delayed sputum culture conversion, emergence of drug resistance, and transmission of the infection. The host immunological reaction to Mycobacterium tuberculosis is implicated in driving the development of TB cavities. TB is characterized by a matrix-degrading phenotype in which the activity of proteolytic matrix metalloproteinases (MMPs) is relatively unopposed by the specific tissue inhibitors of metalloproteinases. Proteases, in particular MMPs, secreted from monocyte-derived cells, neutrophils, and stromal cells, are involved in both cell recruitment and tissue damage and may cause cavitation. MMP activity is augmented by proinflammatory chemokines and cytokines, is tightly regulated by complex signaling paths, and causes matrix destruction. MMP concentrations are elevated in human TB and are closely associated with clinical and radiological markers of lung tissue destruction. Immunomodulatory therapies targeting MMPs in preclinical and clinical trials are potential adjuncts to TB treatment. Strategies targeting patients with cavitary TB have the potential to improve cure rates and reduce disease transmission.

  12. Disruption of cultured cells by nitrogen cavitation.

    PubMed

    Simpson, Richard J

    2010-11-01

    Cell disruption by nitrogen decompression from a pressurized vessel is a rapid and effective way to homogenize cells and tissues, to release intact organelles, and to prepare cell membranes. Cells are placed in a pressure vessel and large quantities of oxygen-free nitrogen are dissolved in the cells under high pressure (~5500 kilopascals [kPa], equivalent to 800 pounds per square inch [psi]). When the pressure is released suddenly, the nitrogen bubbles out of solution, rupturing the cell membrane and releasing the cell contents. Nitrogen cavitation is well suited for mammalian and plant cells and fragile bacteria, but is less effective with yeast, fungi, spores, or other cell types with tough cell walls. The chemical and physical stresses imposed by nitrogen cavitation on enzymes and subcellular compartments are minimized compared with ultrasonic and mechanical homogenizing methods. Unlike lysis methods relying on shear stresses and friction, there is no heat damage to proteins and organelles during nitrogen cavitation. Indeed, the method is accompanied by an adiabatic expansion that cools the sample instead. Also, labile cell components are protected from oxidation by the inert nitrogen gas. Furthermore, nitrogen does not alter the pH of the suspending medium. The process is fast and uniform because the same disruptive forces are applied within each cell and throughout the sample, ensuring reproducible cell-free homogenates. Finally, variable sample sizes (e.g., from ~1 mL to 1 L or more) can be accommodated with most commercial systems.

  13. Non-Newtonian effects on flow-generated cavitation and on cavitation in a pressure field

    NASA Technical Reports Server (NTRS)

    Ellis, A. T.; Ting, R. Y.

    1974-01-01

    Observations are presented which show that the stresses in a flow field of very dilute polymer are not well enough described by the Navier-Stokes equations to accurately predict cavitation. The contitutive equation for the particular polymer and concentration used is needed. The second-order fluid form in which accelerations are relatively important appears capable of explaining observed cavitation suppression by changing the pressure field due to flow. Bubble dynamics in stationary dilute polymer solutions are also examined and found to be little different from those in water.

  14. Threshold quantum cryptography

    SciTech Connect

    Tokunaga, Yuuki; Okamoto, Tatsuaki; Imoto, Nobuyuki

    2005-01-01

    We present the concept of threshold collaborative unitary transformation or threshold quantum cryptography, which is a kind of quantum version of threshold cryptography. Threshold quantum cryptography states that classical shared secrets are distributed to several parties and a subset of them, whose number is greater than a threshold, collaborates to compute a quantum cryptographic function, while keeping each share secretly inside each party. The shared secrets are reusable if no cheating is detected. As a concrete example of this concept, we show a distributed protocol (with threshold) of conjugate coding.

  15. Acoustic trauma

    MedlinePlus

    Acoustic trauma is a common cause of sensory hearing loss . Damage to the hearing mechanisms within the inner ... Symptoms include: Partial hearing loss that most often involves ... The hearing loss may slowly get worse. Noises, ringing in ...

  16. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  17. Underwater Acoustics.

    ERIC Educational Resources Information Center

    Creasey, D. J.

    1981-01-01

    Summarizes the history of underwater acoustics and describes related research studies and teaching activities at the University of Birmingham (England). Also includes research studies on transducer design and mathematical techniques. (SK)

  18. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  19. Some practical examples of cavitation erosion and their prevention

    NASA Technical Reports Server (NTRS)

    Conn, A. F.

    1974-01-01

    The problem of failures caused by cavitation erosion are discussed. The concepts of intensity of erosion, erosion strength, and the time dependence of erosion rate are analyzed. The relation of these parameters to system variables such as pressure and velocity, and to the properties of materials are investigated. Using several examples of actual cavitation erosion, methods of prevention and their limitations are examined.

  20. A Eulerian-Lagrangian description of cavitating flow

    NASA Astrophysics Data System (ADS)

    Iben, U.; Ivanov, N. G.; Isaenko, I. I.; Schmidt, A. A.

    2015-12-01

    We propose a method of cavitating flow calculation that is based on the Eulerian-Lagrangian description of multiphase flows. The formation and growth of cavitation bubbles are described using the model of heterogeneous volume nucleation. Results of test calculations demonstrate the efficiency of the proposed model.

  1. Examples of oil cavitation erosion in positive displacement pumps

    NASA Technical Reports Server (NTRS)

    Halat, J. A.; Ellis, G. O.

    1974-01-01

    The effects of cavitation flow on piston type, positive displacement, hydraulic pumps are discussed. The operating principles of the pump and the components which are most subject to erosion effects are described. The mechanisms of cavitation phenomena are identified from photographic records. Curves are developed to show the solubility of air in water, oil-water emulsion, and industrial hydraulic oil.

  2. A continuum damage relation for hydrogen attack cavitation

    SciTech Connect

    Burg, M.W.D. van der; Giessen, E. van der

    1997-07-01

    A continuum damage relation (CDR) is proposed to describe the failure process of hydrogen attack, i.e., grain boundary cavitation of steels under conditions of high temperature and high hydrogen pressure. The cavitation is caused by the chemical reaction of hydrogen with grain boundary carbides forming cavities filled with high pressure methane. The micromechanisms described are the grain boundary cavitation and the dislocation creep of the grains. The CDR is based on two extreme cavitation rate distribution modes. In the first mode, the cavitation rate along the facets is uniform, resulting in a hydrostatic dilatation while the creep deformations remain relatively small. In the second mode, cavitation proceeds predominantly on grain boundary facets transverse to the principal macroscopic stress. This part of the CDR builds on Tvergaard`s constitutive relation for intergranular creep rupture [Tvergaard, V., Acta Metallurgica, 1984, 32, 1977] where the facet cavitation is constrained by creep of the surrounding grains. The mode corresponding to the highest cavitation rate is the active mode. The two-dimensional version of the CDR is verified against detailed finite element analyses of hydrogen attack in planar polycrystalline aggregates. Finally, the generalization to a three-dimensional CDR is discussed.

  3. Radiation induced cavitation: A possible phenomenon in liquid targets?

    SciTech Connect

    West, C.D.

    1998-07-01

    The proposed design of a new, short-pulse spallation neutron source includes a liquid mercury target irradiated with a 1 GeV proton beam. This paper explores the possibility that cavitation bubbles may be formed in the mercury and briefly discusses some design features that could avoid harmful effects should cavitation take place.

  4. A comprehensive analysis of cavitation and liquid impingement erosion data

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Young, S. G.

    1983-01-01

    Cavitation-erosion experimental data previously covering several materials tested in a rotating disk device and a magnetostriction apparatus were analyzed using new normalization and curve-fitting techniques. From this process a universal approach is derived which can include data from cavitation and liquid impingement studies for specific materials from different test devices.

  5. Non-invasive and real-time passive acoustic mapping of ultrasound-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Choi, James J.; Carlisle, Robert C.; Coviello, Christian; Seymour, Len; Coussios, Constantin-C.

    2014-09-01

    New classes of biologically active materials, such as viruses, siRNA, antibodies and a wide range of engineered nanoparticles have emerged as potent agents for diagnosing and treating diseases, yet many of these agents fail because there is no effective route of delivery to their intended targets. Focused ultrasound and its ability to drive microbubble-seeded cavitation have been shown to facilitate drug delivery. However, cavitation is difficult to control temporally and spatially, making prediction of therapeutic outcomes deep in the body difficult. Here, we utilized passive acoustic mapping in vivo to understand how ultrasound parameters influence cavitation dynamics and to correlate spatial maps of cavitation to drug delivery. Focused ultrasound (center frequency: 0.5 MHz, peak-rarefactional pressure: 1.2 MPa, pulse length: 25 cycles or 50,000 cycles, pulse repetition interval: 0.02, 0.2, 1 or 3 s, number of pulses: 80 pulses) was applied to murine xenograft-model tumors in vivo during systemic injection of microbubbles with and without cavitation-sensitive liposomes or type 5 adenoviruses. Analysis of in vivo cavitation dynamics through several pulses revealed that cavitation was more efficiently produced at a lower pulse repetition frequency of 1 Hz than at 50 Hz. Within a pulse, inertial cavitation activity was shown to persist but reduced to 50% and 25% of its initial magnitude in 4.3 and 29.3 ms, respectively. Both through several pulses and within a pulse, the spatial distribution of cavitation was shown to change in time due to variations in microbubble distribution present in tumors. Finally, we demonstrated that the centroid of the mapped cavitation activity was within 1.33  ±  0.6 mm and 0.36 mm from the centroid location of drug release from liposomes and expression of the reporter gene encoded by the adenovirus, respectively. Thus passive acoustic mapping not only unraveled key mechanisms whereby a successful outcome is achieved

  6. Threshold Concepts in Biochemistry

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2011-01-01

    Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…

  7. Effect of vibration amplitude on vapor cavitation in journal bearings

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Jacobson, B. O.

    1986-01-01

    Computational movies were used to analyze the formation and collapse of vapor cavitation bubbles in a submerged journal bearing. The effect of vibration amplitude on vapor cavitation was studied for a journal undergoing circular whirl. The boundary conditions were implemented using Elrod's algorithm, which conserves mass flow through the cavitation bubble as well as through the oil-film region of the bearing. The vibration amplitudes for the different cases studied resulted in maximum eccentricity ratios ranging from 0.4 to 0.9. The minimum eccentricity ratio reached in each case was 0.1. For the least vibration amplitude studied in which the eccentricity ratio varied between 0.1 and 0.4, no vapor cavitation occurred. The largest vibration amplitude (i.e., eccentricity ratios of 0.1 to 0.9) resulted in vapor cavitation present 76 percent of one complete orbit.

  8. Researches upon cavitation erosion behavior of some duplex steels

    NASA Astrophysics Data System (ADS)

    Bordeasu, I.; Popoviciu, M. O.; Mitelea, I.; Micu, L. M.; Bordeasu, C.; Ghera, C.; Iosif, A.

    2016-02-01

    This paper presents the cavitation erosion behavior of two stainless steels having a duplex structure formed by austenite and ferrite. The conclusions were obtained by using both the cavitation erosion characteristic curves and the pictures of the eroded surfaces obtained with performing optic microscopes. The researches were focused upon the optimal correlation between the cavitation erosion resistance and the rate of the two structural constituents. The tests were done with T2 facility, with ceramic crystals, which integrally respects the ASTM G32-2010 Standard. The obtained results present the cumulative effect upon cavitation erosion of the chemical composition, mechanical properties and the structural constituents. The results of the researches are of importance for the specialists which establishes the composition of the stainless steels used for manufacturing hydraulic machineries or other devices subjected to cavitation erosion.

  9. Unsteady Cavitation Simulation in Transient Process of Turbine Flow Meter

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Liu, Shuhong; Cao, Guangjun

    In a turbine flow meter, cavitation will take place when local pressure falls below the vapor pressure of liquid products and it usually speeds up the rotor at the given high flow rate. In order to study its effects on meter factor, numerical simulation on transient unsteady turbulent flow is carried out based on the mixture homogeneous two phase cavitation model which is deduced from the theory of evaporation and condensation on a plane. The momentum source terms from the variation rotating speed of transient processes and the cavitation mass transport source terms are introduced into the transient unsteady governing equations. The results show that the meter factor grows with the increase of the cavitation number and meter factor will be affected by cavitation.

  10. Numerical simulation of viscous cavitating flow around a ship propeller

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Feng; Fang, Shi-Liang; Wang, Xiao-Yan; Meng, Zhao-Wen; Liu, Ping-Xiang; Du, Xuan-Min

    2011-09-01

    In the present study, cavitation and a ship propeller wake are reported by computed fluid dynamics based on viscous multiphase flow theory. Some recent validation results with a hybrid grid based on unsteady Navier-Stokes (N-S) and bubble dynamics equations are presented to predict velocity, pressure and vapor volume fraction in propeller wake in a uniform inflow. Numerical predictions of sheet cavitation, tip vortex cavitation and hub vortex cavitation are in agreement with the experimental data, same as numerical predictions of longitudinal and transversal evolution of the axial velocity. Blade and shaft rate frequency of propeller is well predicted by the computed results of pressure, and tip vortex is the most important to generate the pressure field within the near wake. The overall results indicate that the present approach is reliable for prediction of cavitation and propeller wake on the condition of uniform inflow.

  11. Experiments on the dynamic behavior of cavitating pumps

    NASA Technical Reports Server (NTRS)

    Ng, S. L.; Brennen, C.

    1978-01-01

    This paper describes experiments performed to measure the dynamic transfer matrices for cavitating (and noncavitating) pumps. These transfer matrices describe the relationship between small linear oscillatory perturbations in the pressures and mass flow rates at inlet and discharge from the hydraulic machine. The matrices were deduced from direct measurements of these fluctuating quantities for different modes of excitation of the machine. Results for a cavitating inducer are presented as functions of frequency and mean operating state. Though some of the trends in the data are consistent with existing theoretical models of inducer dynamics, others are not, indicating a need for further theoretical investigation of the dynamic characteristics of such flows. The results exhibit increasingly complex dynamics with increasing cavitation; it appears that the hydraulic machine deviates from an essentially passive response without cavitation to an increasingly active response as the cavitation number is reduced.

  12. AN EFFICIENT TREATMENT STRATEGY FOR HISTOTRIPSY BY REMOVING CAVITATION MEMORY

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Hall, Timothy L.; Fowlkes, J. Brian; Cain, Charles A.

    2012-01-01

    Cavitation memory effects occur when remnants of cavitation bubbles (nuclei) persist in the host medium and act as seeds for subsequent events. In pulsed cavitational ultrasound therapy, or histotripsy, this effect may cause cavitation to repeatedly occur at these seeded locations within a target volume, producing inhomogeneous tissue fractionation or requiring an excess number of pulses to completely homogenize the target volume. We hypothesized that by removing the cavitation memory, i.e., the persistent nuclei, the cavitation bubbles could be induced at random locations in response to each pulse; therefore, complete disruption of a tissue volume may be achieved with fewer pulses. To test the hypothesis, the cavitation memory was passively removed by increasing the intervals between successive pulses, Δt, from 2, 10, 20, 50 and 100, to 200 ms. Histotripsy treatments were performed in red blood cell tissue phantoms and ex vivo livers using 1-MHz ultrasound pulses of 10 cycles at P−/P+ pressure of 21/59 MPa. The phantom study allowed for direct visualization of the cavitation patterns and the lesion development process in real time using high-speed photography; the ex vivo tissue study provided validation of the memory effect in real tissues. Results of the phantom study showed an exponential decrease in the correlation coefficient between cavitation patterns in successive pulses from 0.5 ± 0.1 to 0.1 ± 0.1 as Δt increased from 2–200 ms; correspondingly, the lesion was completely fractionated with significantly fewer pulses for longer Δts. In the tissue study, given the same number of therapy pulses, complete and homogeneous tissue fractionation with well-defined lesion boundaries was achieved only for Δt ≥ 100 ms. These results indicated that the removal of the cavitation memory resulted in more efficient treatments and homogeneous lesions. PMID:22402025

  13. Cavitation instability in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Dai, L. H.; Huang, X.; Ling, Z.

    2015-09-01

    Recent experiments have shown that fracture surfaces of bulk metallic glasses (BMGs) usually exhibit an intriguing nanoscale corrugation like fractographic feature mediated by nanoscale void formation. We attribute the onset of this nanoscale corrugation to TTZs (tension transformation zones) mediated cavitation. In our recent study, the spall experiments of Zr-based BMG using a single-stage light gas gun were performed. To uncover the mechanisms of the spallation damage nucleation and evolution, the samples were designed to be subjected to dynamic tensile loadings of identical amplitude but with different durations by making use of the multi-stress pulse and the double-flyer techniques. It is clearly revealed that the macroscopic spall fracture in BMGs originates from the nucleation, growth and coalescence of micro-voids. Then, a microvoid nucleation model of BMGs based on free volume theory is proposed, which indicates that the nucleation of microvoids at the early stage of spallation in BMGs is resulted from diffusion and coalescence of free volume. Furthermore, a theoretical model of void growth in BMGs undergoing remote dynamic hydrostatic tension is developed. The critical condition of cavitation instability is obtained. It is found that dynamic void growth in BMGs can be well controlled by a dimensionless inertial number characterizing the competition between intrinsic and extrinsic time scales. To unveil the atomic-level mechanism of cavitation, a systematic molecular dynamics (MD) simulation of spallation behaviour of a binary metallic glass with different impact velocities was performed. It is found that micro-void nucleation is determined TTZs while the growth is controlled by shear transformation zones (STZs) at atomic scale.

  14. Numerical 3D analysis of cloud cavitation shedding frequency on a circular leading edge hydrofoil with a barotropic cavitation model

    NASA Astrophysics Data System (ADS)

    Blume, M.; Skoda, R.

    2015-12-01

    A compressible density-based time-explicit low Mach number consistent viscous flow solver is utilised in combination with a barotropic cavitation model for the analysis of cloud cavitation on a circular leading edge (CLE) hydrofoil. For 5° angle of attack, cloud structure and shedding frequency for different cavitation numbers are compared to experimental data. A strong grid sensitivity is found in particular for high cavitation numbers. On a fine grid, a very good agreement with validation data is achieved even without explicit turbulence model. The neglect of viscous effects as well as a two-dimensional set-up lead to a less realistic prediction of cloud structures and frequencies. Comparative simulations with the Sauer-Schnerr cavitation model and modified pre-factors of the mass transfer terms underestimate the measured shedding frequency.

  15. Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes.

    PubMed

    Graham, Susan M; Carlisle, Robert; Choi, James J; Stevenson, Mark; Shah, Apurva R; Myers, Rachel S; Fisher, Kerry; Peregrino, Miriam-Bazan; Seymour, Len; Coussios, Constantin C

    2014-03-28

    The encapsulation of cytotoxic drugs within liposomes enhances pharmacokinetics and allows passive accumulation within tumors. However, liposomes designed to achieve good stability during the delivery phase often have compromised activity at the target site. This problem of inefficient and unpredictable drug release is compounded by the present lack of low-cost, non-invasive methods to measure such release. Here we show that focused ultrasound, used at pressures similar to those applied during diagnostic ultrasound scanning, can be utilised to both trigger and monitor release of payload from liposomes. Notably, drug release was influenced by liposome composition and the presence of SonoVue® microbubbles, which provided the nuclei for the initiation of an event known as inertial cavitation. In vitro studies demonstrated that liposomes formulated with a high proportion of 1,2 distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) released up to 30% of payload following ultrasound exposure in the presence of SonoVue®, provided that the exposure created sufficient inertial cavitation events, as characterised by violent bubble collapse and the generation of broadband acoustic emissions. In contrast a 'Doxil'-like liposome formulation gave no such triggered release. In pre-clinical studies, ultrasound was used as a non-invasive, targeted stimulus to trigger a 16-fold increase in the level of payload release within tumors following intravenous delivery. The inertial cavitation events driving this release could be measured remotely in real-time and were a reliable predictor of drug release.

  16. Experimental investigation of the flow-induced vibration of hydrofoils in cavitating flows

    NASA Astrophysics Data System (ADS)

    Wang, Guoyu; Wu, Qin; Huang, Biao; Gao, Yuan

    2015-12-01

    The objective of this paper is to investigate the correlation between fluid induced vibration and unsteady cavitation behaviours. Experimental results are presented for a modified NACA66 hydrofoil, which is fixed at α=8°. The high-speed camera is synchronized with a single point Laser Doppler Vibrometer to analyze the transient cavitating flow structures and the corresponding structural vibration characteristics. The results showed that, with the decreasing of the cavitation number, the cavitating flows in a water tunnel display several types of cavitation patterns, such as incipient cavitation, sheet cavitation and cloud cavitation. The cavity shedding frequency reduces with the decrease of the cavitation number. As for the cloud cavitation regime, the trend of the vibration velocity goes up with the growth of the attached cavity, accompanied with small amplitude fluctuations. Then the collapse and shedding of the large-scale cloud cavities leads to substantial increase of the vibration velocity fluctuations.

  17. Characterization of Macrolesions Induced by Myocardial Cavitation-Enabled Therapy

    PubMed Central

    Zhu, Yiying I.; Miller, Douglas L.; Dou, Chunyan

    2015-01-01

    Intermittent high intensity ultrasound pulses with circulating contrast agent microbubbles can induce scattered cavitation myocardial microlesions of potential value for tissue reduction therapy. Here, computer-aided histological evaluation of the effective treated volume was implemented to optimize ultrasound pulse parameters, exposure duration, and contrast agent dose. Rats were treated with 1.5 MHz focused ultrasound bursts and Evans blue staining indicates lethal cardiomyocytic injury. Each heart was sectioned to provide samples covering the entire exposed myocardial volume. Both brightfield and fluorescence images were taken for up to 40 tissue sections. Tissue identification and microlesion detection were first done based on 2D images to form microlesion masks containing the outline of the heart and the stained cell regions. Image registration was then performed on the microlesion masks to reconstruct a volume-based model according to the morphology of the heart. The therapeutic beam path was estimated from the 3D stacked microlesions, and finally the total microlesion volume, here termed macrolesion, was characterized along the therapeutic beam axis. Radially symmetric fractional macrolesions were characterized via stepping disks of variable radius determined by the local distribution of microlesions. Treated groups showed significant macrolesions of a median volume of 87.3 μL, 2.7 mm radius, 4.8 mm length, and 14.0% lesion density compared to zero radius, length, and lesion density for sham. The proposed radially symmetric lesion model is a robust evaluation for Myocardial Contrast Enabled Therapy (MCET). Future work will include validating the proposed method with varying acoustic exposures and optimizing involved parameters to provide macrolesion characterization. PMID:25347871

  18. The effect of static pressure on the strength of inertial cavitation events.

    PubMed

    Bader, Kenneth B; Mobley, Joel; Church, Charles C; Gaitan, D Felipe

    2012-10-01

    Recent investigations of cavitation in fluids pressurized up to 30 MPa found that the intensity of light emissions increased by 1000-fold over that measured for single bubble sonoluminescence. A series of measurements is reported here to extend this original work by resolving the static pressure dependence of the shock wave and light emissions from the first and the most energetic collapses, along with the total shock wave energy and light emissions for the event. Each of these parameters was found to increase with the static pressure of the fluid. Furthermore, the energy of these shock wave and light emissions was found to increase in proportion to the stored acoustic energy in the system. These findings were corroborated using the Gilmore equation to numerically compute the work done by the liquid during the bubble collapse. The overall findings suggest that the increased collapse strength at high static pressure is due to the increased tension required to generate inertial cavitation, and not an increased pressure gradient between the interior of the vaporous bubble and the surrounding liquid.

  19. Single bubble perturbation in cavitation proximity of solid glass: hot spot versus distance.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth; Suslick, Kenneth

    2014-02-28

    A systematic study of the energy loss of a cavitation bubble in a close proximity of a glass surface is introduced for the first time in a low acoustic field (1.2-2.4 bar). Single bubble sonoluminescence (SBSL) is used as a tool to predict the temperature and pressure decrease of bubble (μm) versus surface distance. A glass as a model system is used to imitate the boundary conditions relevant for nano- or micromaterials. SBSL preequilibrated with 5% argon is perturbed by a glass rod with the tip (Z-perturbation) and with the long axis (X-perturbation) at a defined distance. From 2 mm to 500 μm argon-SBSL lines monotonically narrow and the effective emission temperature decreases from 9000 K to 6800 K comparable to multiple bubbles. The electron density decreases by two orders of magnitude in Z-perturbation and is by a factor of two higher in X-perturbation than the unperturbed cavitating bubble. The perturbed single bubble sonoluminescence pressure decreases from 2700 atm to 1200 atm at 2.4 bar. In water new non-SBSL SiO molecular emission lines are observed and OH emission disappears.

  20. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  1. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  2. Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles.

    PubMed

    Fernandez Rivas, David; Verhaagen, Bram; Seddon, James R T; Zijlstra, Aaldert G; Jiang, Lei-Meng; van der Sluis, Luc W M; Versluis, Michel; Lohse, Detlef; Gardeniers, Han J G E

    2012-09-01

    We present an ultrasonic device with the ability to locally remove deposited layers from a glass slide in a controlled and rapid manner. The cleaning takes place as the result of cavitating bubbles near the deposited layers and not due to acoustic streaming. The bubbles are ejected from air-filled cavities micromachined in a silicon surface, which, when vibrated ultrasonically at a frequency of 200 kHz, generate a stream of bubbles that travel to the layer deposited on an opposing glass slide. Depending on the pressure amplitude, the bubble clouds ejected from the micropits attain different shapes as a result of complex bubble interaction forces, leading to distinct shapes of the cleaned areas. We have determined the removal rates for several inorganic and organic materials and obtained an improved efficiency in cleaning when compared to conventional cleaning equipment. We also provide values of the force the bubbles are able to exert on an atomic force microscope tip.

  3. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging.

    PubMed

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-01-01

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery. PMID:27630037

  4. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-09-01

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.

  5. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging

    PubMed Central

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-01-01

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery. PMID:27630037

  6. Rational Design of Plasmonic Nanoparticles for Enhanced Cavitation and Cell Perforation.

    PubMed

    Lachaine, Rémi; Boutopoulos, Christos; Lajoie, Pierre-Yves; Boulais, Étienne; Meunier, Michel

    2016-05-11

    Metallic nanoparticles are routinely used as nanoscale antenna capable of absorbing and converting photon energy with subwavelength resolution. Many applications, notably in nanomedicine and nanobiotechnology, benefit from the enhanced optical properties of these materials, which can be exploited to image, damage, or destroy targeted cells and subcellular structures with unprecedented precision. Modern inorganic chemistry enables the synthesis of a large library of nanoparticles with an increasing variety of shapes, composition, and optical characteristic. However, identifying and tailoring nanoparticles morphology to specific applications remains challenging and limits the development of efficient nanoplasmonic technologies. In this work, we report a strategy for the rational design of gold plasmonic nanoshells (AuNS) for the efficient ultrafast laser-based nanoscale bubble generation and cell membrane perforation, which constitute one of the most crucial challenges toward the development of effective gene therapy treatments. We design an in silico rational design framework that we use to tune AuNS morphology to simultaneously optimize for the reduction of the cavitation threshold while preserving the particle structural integrity. Our optimization procedure yields optimal AuNS that are slightly detuned compared to their plasmonic resonance conditions with an optical breakdown threshold 30% lower than randomly selected AuNS and 13% lower compared to similarly optimized gold nanoparticles (AuNP). This design strategy is validated using time-resolved bubble spectroscopy, shadowgraphy imaging and electron microscopy that confirm the particle structural integrity and a reduction of 51% of the cavitation threshold relative to optimal AuNP. Rationally designed AuNS are finally used to perforate cancer cells with an efficiency of 61%, using 33% less energy compared to AuNP, which demonstrate that our rational design framework is readily transferable to a cell environment

  7. Rational Design of Plasmonic Nanoparticles for Enhanced Cavitation and Cell Perforation.

    PubMed

    Lachaine, Rémi; Boutopoulos, Christos; Lajoie, Pierre-Yves; Boulais, Étienne; Meunier, Michel

    2016-05-11

    Metallic nanoparticles are routinely used as nanoscale antenna capable of absorbing and converting photon energy with subwavelength resolution. Many applications, notably in nanomedicine and nanobiotechnology, benefit from the enhanced optical properties of these materials, which can be exploited to image, damage, or destroy targeted cells and subcellular structures with unprecedented precision. Modern inorganic chemistry enables the synthesis of a large library of nanoparticles with an increasing variety of shapes, composition, and optical characteristic. However, identifying and tailoring nanoparticles morphology to specific applications remains challenging and limits the development of efficient nanoplasmonic technologies. In this work, we report a strategy for the rational design of gold plasmonic nanoshells (AuNS) for the efficient ultrafast laser-based nanoscale bubble generation and cell membrane perforation, which constitute one of the most crucial challenges toward the development of effective gene therapy treatments. We design an in silico rational design framework that we use to tune AuNS morphology to simultaneously optimize for the reduction of the cavitation threshold while preserving the particle structural integrity. Our optimization procedure yields optimal AuNS that are slightly detuned compared to their plasmonic resonance conditions with an optical breakdown threshold 30% lower than randomly selected AuNS and 13% lower compared to similarly optimized gold nanoparticles (AuNP). This design strategy is validated using time-resolved bubble spectroscopy, shadowgraphy imaging and electron microscopy that confirm the particle structural integrity and a reduction of 51% of the cavitation threshold relative to optimal AuNP. Rationally designed AuNS are finally used to perforate cancer cells with an efficiency of 61%, using 33% less energy compared to AuNP, which demonstrate that our rational design framework is readily transferable to a cell environment

  8. Wetting and cavitation pathways on nanodecorated surfaces.

    PubMed

    Amabili, Matteo; Lisi, Emanuele; Giacomello, Alberto; Casciola, Carlo Massimo

    2016-03-28

    In this contribution we study the wetting and nucleation of vapor bubbles on nanodecorated surfaces via free energy molecular dynamics simulations. The results shed light on the stability of superhydrophobicity in submerged surfaces with nanoscale corrugations. The re-entrant geometry of the cavities under investigation is capable of sustaining a confined vapor phase within the surface roughness (Cassie state) both for hydrophobic and hydrophilic combinations of liquid and solid. The atomistic system is of nanometric size; on this scale thermally activated events can play an important role ultimately determining the lifetime of the Cassie state. Such a superhydrophobic state can break down by full wetting of the texture at large pressures (Cassie-Wenzel transition) or by nucleating a vapor bubble at negative pressures (cavitation). Specialized rare event techniques show that several pathways for wetting and cavitation are possible, due to the complex surface geometry. The related free energy barriers are of the order of 100kBT and vary with pressure. The atomistic results are found to be in semi-quantitative accord with macroscopic capillarity theory. However, the latter is not capable of capturing the density fluctuations, which determine the destabilization of the confined liquid phase at negative pressures (liquid spinodal). PMID:26905783

  9. Characterization of periodic cavitation in optical tweezers.

    PubMed

    Carmona-Sosa, Viridiana; Alba-Arroyo, José Ernesto; Quinto-Su, Pedro A

    2016-03-10

    Microscopic vapor explosions or cavitation bubbles can be generated repeatedly in optical tweezers with a microparticle that partially absorbs at the trapping laser wavelength. In this work we measure the size distribution and the production rate of cavitation bubbles for microparticles with a diameter of 3 μm using high-speed video recording and a fast photodiode. We find that there is a lower bound for the maximum bubble radius R(max)∼2  μm which can be explained in terms of the microparticle size. More than 94% of the measured R(max) are in the range between 2 and 6 μm, while the same percentage of the measured individual frequencies f(i) or production rates are between 10 and 200 Hz. The photodiode signal yields an upper bound for the lifetime of the bubbles, which is at most twice the value predicted by the Rayleigh equation. We also report empirical relations between R(max), f(i), and the bubble lifetimes. PMID:26974779

  10. Mechanical heart valve cavitation in patients with bileaflet valves.

    PubMed

    Johansen, Peter; Andersen, Tina S; Hasenkam, J Michael; Nygaard, Hans; Paulsen, Peter K

    2014-01-01

    Today, the quality of mechanical heart valves is quite high, and implantation has become a routine clinical procedure with a low operative mortality (< 5%). However, patients still face the risks of blood cell damage, thromboembolic events, and material failure of the prosthetic device. One mechanism found to be a possible contributor to these adverse effects is cavitation. In vitro, cavitation has been directly demonstrated by visualization and indirectly in vivo by registering of high frequency pressure fluctuations (HFPF). Tilting disc valves are thought of having higher cavitation potential than bileaflet valves due to higher closing velocities. However, the thromboembolic potential seems to be the same. Further studies are therefore needed to investigate the cavitation potential of bileaflet valves in vivo. The post processing of HFPF have shown difficulties when applied on bileaflet vavles due to asynchronous closure of the two leaflets. The aim of this study was therefore to isolate the pressure signature from each leaflet closure and perform cavitation analyses on each component. Six patients were included in the study (St. Jude Medical (n=3) and CarboMedics (n=3); all aortic bileaflet mechanical heart valves). HFPFs were recorded intraoperatively through a hydrophone at the aortic root. The pressure signature relating to the first and second leaflet closure was isolated and cavitation parameters were calculated (RMS after 50 kHz highpass filtering and signal energy). Data were averaged over 30 heart cycles. For all patients both the RMS value and signal energy of the second leaflet closure were higher than for the first leaflet closure. This indicates that the second leaflet closure is most prone to cause cavitation. Therefore, quantifying cavitation based on the HFPF related to the second leaflet closure may suggest that the cavitation potential for bileaflet valves in vivo may be higher than previous studies have suggested. PMID:25571278

  11. Fundamental studies on ultrasonic cavitation-assisted molten metal processing of A356-nanocomposites

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoda

    The usage of lightweight high-performance components is expected to increase significantly as automotive, military and aerospace industries are required to improve the energy efficiency and the performance of their products. A356, which is much lighter than steel, is an attractive replacement material. Therefore, it is of great interest to enhance its properties. There is strong evidence that the microstructure and mechanical properties can be considerably improved if nanoparticles are used as reinforcement to form metal-matrix-nano-composite (MMNC). Several recent studies revealed that ultrasonic vibration is highly efficient in dispersing nanoparticles into the melt and producing MMNC. In this thesis, a detailed analysis of the microstructure and mechanical properties is provided for an A356 alloy enhanced with Al2O 3 and SiC nanoparticles via ultrasonic processing. Each type of the nanoparticles was inserted into the A356 molten metal and dispersed by ultrasonic cavitation and acoustic streaming technology (UST) to avoid agglomeration or coalescence. The results showed that microstructures were greatly refined and with the addition of nanoparticles, tensile strength, yield strength and elongation increased significantly. SEM and EDS analyses were also performed to analyze the dispersion of nanoparticles in the A356 matrix. Since the ultrasonic energy is concentrated in a small region under the ultrasonic probe, it is difficult to ensure proper cavitation and acoustic streaming for efficient dispersion of the nanoparticles (especially in larger UST systems) without to determine the suitable ultrasonic parameters via modeling and simulation. Accordingly, another goal of this thesis was to develop well-controlled UST experiments that can be used in the development and validation of a recently developed UST modeling and simulation tool.

  12. Prediction and suppression of HIFU-induced vessel rupture using passive cavitation detection in an ex vivo model

    PubMed Central

    2014-01-01

    Background Occlusion of blood vessels using high-intensity focused ultrasound (HIFU) is a potential treatment for arteriovenous malformations and other neurovascular disorders. However, attempting HIFU-induced vessel occlusion can also cause vessel rupture, resulting in hemorrhage. Possible rupture mechanisms include mechanical effects of acoustic cavitation and heating of the vessel wall. Methods HIFU exposures were performed on 18 ex vivo porcine femoral arteries with simultaneous passive cavitation detection. Vessels were insonified by a 3.3-MHz focused source with spatial-peak, temporal-peak focal intensity of 15,690–24,430 W/cm2 (peak negative-pressure range 10.92–12.52 MPa) and a 50% duty cycle for durations up to 5 min. Time-dependent acoustic emissions were recorded by an unfocused passive cavitation detector and quantified within low-frequency (10–30 kHz), broadband (0.3–1.1 MHz), and subharmonic (1.65 MHz) bands. Vessel rupture was detected by inline metering of saline flow, recorded throughout each treatment. Recorded emissions were grouped into ‘pre-rupture’ (0–10 s prior to measured point of vessel rupture) and ‘intact-vessel’ (>10 s prior to measured point of vessel rupture) emissions. Receiver operating characteristic curve analysis was used to assess the ability of emissions within each frequency band to predict vessel rupture. Based on these measurements associating acoustic emissions with vessel rupture, a real-time feedback control module was implemented to monitor acoustic emissions during HIFU treatment and adjust the ultrasound intensity, with the goal of maximizing acoustic power delivered to the vessel while avoiding rupture. This feedback control approach was tested on 10 paired HIFU exposures of porcine femoral and subclavian arteries, in which the focal intensity was stepwise increased from 9,117 W/cm2 spatial-peak temporal-peak (SPTP) to a maximum of 21,980 W/cm2, with power modulated based on the measured subharmonic

  13. Influence of cathodic and anodic currents on cavitation erosion

    SciTech Connect

    Auret, J.G.; Damm, O.F.R.A.; Wright, G.J. . Div. of Materials Science and Technology); Robinson, F.P.A. . Dept. of Metallurgy and Materials Engineering)

    1993-11-01

    A vibratory-type cavitation test rig was constructed to study the effect of polarizing currents applied to a cavitating body. The generation of gas by electrolysis reduced mechanical damage suffered by a cavitating body because of bubble collapse cushioning. However, the net effect on overall damage depended on several factors, including the intensity of mechanical attack, corrosion rate, and surface geometrical effects. A cathodic current was shown to always decrease the total volume loss rate, but the volume loss rate sometimes was increased and sometimes was reduced in the anodic current range.

  14. Cryogenic cavitating flow in 2D laval nozzle

    NASA Astrophysics Data System (ADS)

    Tani, Naoki; Nagashima, Toshio

    2003-05-01

    Cavitation is one of the troublesome problems in rocket turbo pumps, and since most of high-efficiency rocket propellants are cryogenic fluids, so called “thermodynamic effect” becomes more evident than in water. In the present study, numerical and experimental study of liquid nitrogen cavitation in 2D Laval nozzle was carried out, so that the influence of thermodynamic effect was examined. It was revealed that temperature and cavitation have strong inter-relationship with each other in thermo-sensitive cryogenic fluids.

  15. Experimental and Theoretical Investigations of Cavitation in Water

    NASA Technical Reports Server (NTRS)

    Ackeret, J.

    1945-01-01

    The cavitation in nozzles on airfoils of various shape and on a sphere are experimentally investigated. The limits of cavitation and the extension of the zone of the bubbles in different stages of cavitation are photographically established. The pressure in the bubble area is constant and very low, jumping to high values at the end of the area. The analogy with the gas compression shock is adduced and discussed. The collapse of the bubbles under compression shock produces very high pressures internally, which must be contributory factors to corrosion. The pressure required for purely mechanical corrosion is also discussed.

  16. The role of mechanical properties in cavitation erosion resistance. [parameters affecting metal fatigue under cavitation flow conditions

    NASA Technical Reports Server (NTRS)

    Gould, G. C.

    1974-01-01

    Methods for determining the correlations of erosion resistance and mechanical properties of materials are discussed. The most common method of testing cavitation erosion resistance of materials is the vibratory cavitation probe. The instrument and its operation are described. The use of the whirling arm device is considered as a second method. Metallographic investigations of the earliest stages of cavitation erosion damage of metallic materials was conducted. The materials show plastic deformation occurring during the incubation period and increasing until cracks form and metal fragments are lost. The parameters of the work done to cause material fractures are identified. The reactions obtained with specific materials are reported.

  17. Bayesian Threshold Estimation

    ERIC Educational Resources Information Center

    Gustafson, S. C.; Costello, C. S.; Like, E. C.; Pierce, S. J.; Shenoy, K. N.

    2009-01-01

    Bayesian estimation of a threshold time (hereafter simply threshold) for the receipt of impulse signals is accomplished given the following: 1) data, consisting of the number of impulses received in a time interval from zero to one and the time of the largest time impulse; 2) a model, consisting of a uniform probability density of impulse time…

  18. Pausing at the Threshold

    ERIC Educational Resources Information Center

    Morgan, Patrick K.

    2015-01-01

    Since about 2003, the notion of threshold concepts--the central ideas in any field that change how learners think about other ideas--have become difficult to escape at library conferences and in general information literacy discourse. Their visibility will likely only increase because threshold concepts figure prominently in the Framework for…

  19. Threshold Concepts in Economics

    ERIC Educational Resources Information Center

    Shanahan, Martin

    2016-01-01

    Purpose: The purpose of this paper is to examine threshold concepts in the context of teaching and learning first-year university economics. It outlines some of the arguments for using threshold concepts and provides examples using opportunity cost as an exemplar in economics. Design/ Methodology/Approach: The paper provides an overview of the…

  20. Enhanced Syllable Discrimination Thresholds in Musicians

    PubMed Central

    Kim, Heesoo; Lakshminarayanan, Kala; Gabrieli, John D. E.; Tallal, Paula; Gaab, Nadine

    2013-01-01

    Speech processing inherently relies on the perception of specific, rapidly changing spectral and temporal acoustic features. Advanced acoustic perception is also integral to musical expertise, and accordingly several studies have demonstrated a significant relationship between musical training and superior processing of various aspects of speech. Speech and music appear to overlap in spectral and temporal features; however, it remains unclear which of these acoustic features, crucial for speech processing, are most closely associated with musical training. The present study examined the perceptual acuity of musicians to the acoustic components of speech necessary for intra-phonemic discrimination of synthetic syllables. We compared musicians and non-musicians on discrimination thresholds of three synthetic speech syllable continua that varied in their spectral and temporal discrimination demands, specifically voice onset time (VOT) and amplitude envelope cues in the temporal domain. Musicians demonstrated superior discrimination only for syllables that required resolution of temporal cues. Furthermore, performance on the temporal syllable continua positively correlated with the length and intensity of musical training. These findings support one potential mechanism by which musical training may selectively enhance speech perception, namely by reinforcing temporal acuity and/or perception of amplitude rise time, and implications for the translation of musical training to long-term linguistic abilities. PMID:24339875

  1. Cavitation Performance of a Centrifugal Pump with Water and Mercury

    NASA Technical Reports Server (NTRS)

    Hammitt, F. G.; Barton, R. K.; Cramer, V. F.; Robinson, M. J.

    1961-01-01

    The cavitation performance of a given centrifugal pump with water (hot and cold) and mercury is compared. It is found that there are significant scale effects with all fluids tested, with the Thoma cavitation parameter decreasing in all cases for increased pump speed or fluid Reynolds' number. The data for a fixed flow coefficient fall into a single curve when plotted against pump speed (or fluid velocity), rather than against Reynolds' number. Conversely, the Thoma parameter for a given Reynolds' number is approximately twice as large for mercury as for water. The direction of this variation is as predicted from consideration of the cavitation thermodynamic parameters which vary by a factor of 10(exp 7) between these fluids. No difference in cavitation performance between hot and cold water (approximately 160 F and 80 F) was observed, However, the thermodynamic parameters vary only by a factor of 5.

  2. Hign-speed penetration of projectile with cavitator into sand

    NASA Astrophysics Data System (ADS)

    Daurskikh, Anna; Veldanov, Vladislav

    2011-06-01

    Cavitators are used in underwater projectiles design to form a cavern in which projectile could move with no or significantly reduced drag. An investigation of possible application of this structural element for penetration into porous media was conducted. High-speed impact of a conical-shaped head projectile with cavitator was studied in terms of its influence on penetration capacity and projectile stability in sand for impact velocity about 1500 m/s. Cavitators were manufactured of steel with different strength moduli, and thus two penetration regimes (with eroding/non-eroding cavitator) were compared. Numerical simulations showing wave propagation in target and projectile were performed in AUTODYN with Johnson-Cook model for projectile and granular model for sand.

  3. Influence of cavitation on near nozzle exit spray

    NASA Astrophysics Data System (ADS)

    Mirshahi, M.; Yan, Y.; Nouri, J. M.

    2015-12-01

    The importance of cavitation inside multi-hole injectors for direct injection internal combustion (IC) engineshas been addressed in many previous investigations. Still, the effect of cavitation on jet spray, its stability and liquid breakup and atomisation is not yet fully understood. The current experimental work aims to address some of these issues. It focuses on the initiation and development of cavitation inside a 7× enlarged transparent model of a symmetric 6-hole spark ignition direct injection (SIDI) injector and quantifies the effect of cavitation on near-nozzle spray cone angle and stability utilising high speed Mie scattering visualisation. The regions studied include the full length of the nozzle and its exitjet spray wherethe primary breakup takes place.

  4. Design method of water jet pump towards high cavitation performances

    NASA Astrophysics Data System (ADS)

    Cao, L. L.; Che, B. X.; Hu, L. J.; Wu, D. Z.

    2016-05-01

    As one of the crucial components for power supply, the propulsion system is of great significance to the advance speed, noise performances, stabilities and other associated critical performances of underwater vehicles. Developing towards much higher advance speed, the underwater vehicles make more critical demands on the performances of the propulsion system. Basically, the increased advance speed requires the significantly raised rotation speed of the propulsion system, which would result in the deteriorated cavitation performances and consequently limit the thrust and efficiency of the whole system. Compared with the traditional propeller, the water jet pump offers more favourite cavitation, propulsion efficiency and other associated performances. The present research focuses on the cavitation performances of the waterjet pump blade profile in expectation of enlarging its advantages in high-speed vehicle propulsion. Based on the specifications of a certain underwater vehicle, the design method of the waterjet blade with high cavitation performances was investigated in terms of numerical simulation.

  5. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  6. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  7. Coherent-Phase Monitoring Of Cavitation In Turbomachines

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1996-01-01

    Digital electronic signal-processing system analyzes outputs of accelerometers mounted on turbomachine to detect vibrations characteristic of cavitation. Designed to overcome limitation imposed by interference from discrete components. System digitally implements technique called "coherent-phase wide-band demodulation" (CPWBD), using phase-only (PO) filtering along envelope detection to search for unique coherent-phase relationship associated with cavitation and to minimize influence of large-amplitude discrete components.

  8. Vortex flow and cavitation in diesel injector nozzles

    NASA Astrophysics Data System (ADS)

    Andriotis, A.; Gavaises, M.; Arcoumanis, C.

    Flow visualization as well as three-dimensional cavitating flow simulations have been employed for characterizing the formation of cavitation inside transparent replicas of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested have incorporated five-hole nozzles with cylindrical as well as tapered holes operating at different fixed needle lift positions. High-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, which is referred to as . Computation of the flow distribution and combination with three-dimensional reconstruction of the location of the strings inside the nozzle volume has revealed that strings are found at the core of recirculation zones; they originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle where the pressure falls below the vapour pressure of the flowing liquid, or even from suction of outside air downstream of the hole exit. Processing of the acquired images has allowed estimation of the mean location and probability of appearance of the cavitating strings in the three-dimensional space as a function of needle lift, cavitation and Reynolds number. The frequency of appearance of the strings has been correlated with the Strouhal number of the vortices developing inside the sac volume; the latter has been found to be a function of needle lift and hole shape. The presence of strings has significantly affected the flow conditions at the nozzle exit, influencing the injected spray. The cavitation structures formed inside the injection holes are significantly altered by the presence of cavitation strings and are jointly responsible for up to 10% variation in the instantaneous fuel injection quantity. Extrapolation using model predictions for real-size injectors operating at realistic injection pressures indicates that cavitation strings are expected to appear within the time scales of typical injection

  9. Modelling on cavitation in a diffuser with vortex generator

    NASA Astrophysics Data System (ADS)

    Jablonská, J.

    2013-04-01

    Based on cavitation modelling in Laval nozzle results and experience, problem with the diffuser with vortex generator was defined. The problem describes unsteady multiphase flow of water. Different cavitation models were used when modelling in Fluent, flow condition is inlet and pressure condition is outlet. Boundary conditions were specified by Energy Institute, Victor Kaplan's Department of Fluid Engineering, Faculty of Mechanical Engineering, Brno University of Technology. Numerical modelling is compared with experiment.

  10. Cavitation in liquid cryogens. 2: Hydrofoil

    NASA Technical Reports Server (NTRS)

    Hord, J.

    1973-01-01

    Boundary layer principles, along with two-phase concepts, are used to improve existing correlative theory for developed cavity data. Details concerning cavity instrumentation, data analysis, correlative techniques, and experimental and theoretical aspects of a cavitating hydrofoil are given. Both desinent and thermodynamic data, using liquid hydrogen and liquid nitrogen, are reported. The thermodynamic data indicated that stable thermodynamic equilibrium exists throughout the vaporous cryogen cavities. The improved correlative formulas were used to evaluate these data. A new correlating parameter based on consideration of mass limiting two-phase flow flux across the cavity interface, is proposed. This correlating parameter appears attractive for future correlative and predictive applications. Agreement between theory and experiment is discussed, and directions for future analysis are suggested. The front half of the cavities, developed on the hydrofoil, may be considered as parabolically shaped.

  11. Cavitation of electron bubbles in liquid parahydrogen

    NASA Astrophysics Data System (ADS)

    Ancilotto, Francesco; Barranco, Manuel; Navarro, Jesús; Pi, Martí

    2011-12-01

    Within a finite-temperature density functional approach, we have investigated the structure of electron bubbles in liquid parahydrogen below the saturated vapour pressure, determining the critical pressure at which electron bubbles explode as a function of temperature. The electron-parahydrogen interaction has been modelled by a Hartree-type local potential fitted to the experimental value of the conduction band-edge for a delocalized electron in pH2. We have found that the pressure for bubble explosion is, in absolute value, about a factor of two smaller than that of the homogeneous cavitation pressure in the liquid. Comparison with the results obtained within the capillary model shows the limitations of this approximation, especially as temperature increases.

  12. Wind turbine acoustic standards

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.; Shepherd, K. P.; Grosveld, F.

    1981-01-01

    A program is being conducted to develop noise standards for wind turbines which minimize annoyance and which can be used to design specifications. The approach consists of presenting wind turbine noise stimuli to test subjects in a laboratory listening chamber. The responses of the subjects are recorded for a range of stimuli which encompass the designs, operating conditions, and ambient noise levels of current and future installations. Results to date have established the threshold of detectability for a range of impulsive stimuli of the type associated with blade/tower wake interactions. The status of the ongoing psychoacoustic tests, the subjective data, and the approach to the development of acoustic criteria/standards are described.

  13. Improving Accuracy in Detecting Acoustic Onsets

    ERIC Educational Resources Information Center

    Duyck, Wouter; Anseel, Frederik; Szmalec, Arnaud; Mestdagh, Pascal; Tavernier, Antoine; Hartsuiker, Robert J.

    2008-01-01

    In current cognitive psychology, naming latencies are commonly measured by electronic voice keys that detect when sound exceeds a certain amplitude threshold. However, recent research (e.g., K. Rastle & M. H. Davis, 2002) has shown that these devices are particularly inaccurate in precisely detecting acoustic onsets. In this article, the authors…

  14. Freezing of Xylem Sap Without Cavitation

    PubMed Central

    Hammel, H. T.

    1967-01-01

    Freezing of stem sections and entire twigs of hemlock (Tsuga canadensis) has been demonstrated to occur without increasing the resistance to the movement of water through the frozen part after rewarming. This was interpreted to mean that freezing did not produce cavitation in the xylem sap even though A) the sap was unquestionably frozen; B) it contained dissolved gases; and C) it was under tension before freezing and after. Freezing stem sections of some other evergreen gymnosperms during the summer again produced no evidence for cavitation of the xylem sap. On the other hand, freezing stem sections of some angiosperms invariably increased the resistance to sap flow leading to wilting and death in a few hours when the sap tension was at normal daytime values at the time of freezing. These results were interpreted to mean that the bordered pits on the tracheids of gymnosperms function to isolate the freezing sap in each tracheid so that the expansion of water upon freezing not only eliminates any existing tension but also develops positive pressure in the sap. Dissolved gases frozen out of solution may then be redissolved under this positive pressure as melting occurs. As the bubbles are reduced in size by this ice pressure developed in an isolated tracheid, further pressure is applied by the surface tension of the water against air. If the bubbles are redissolved or are reduced to sufficient small size by the time the tension returns to the sap as the last ice crystals melt, then the internal pressure from surface tension in any existing small bubbles may exceed the hydrostatic tension of the melted sap and the bubbles cannot expand and will continue to dissolve. PMID:16656485

  15. Computing Thermal Effects of Cavitation in Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Ahuja, Vineet; Dash, Sanford M.

    2005-01-01

    A computer program implements a numerical model of thermal effects of cavitation in cryogenic fluids. The model and program were developed for use in designing and predicting the performances of turbopumps for cryogenic fluids. Prior numerical models used for this purpose do not account for either the variability of properties of cryogenic fluids or the thermal effects (especially, evaporative cooling) involved in cavitation. It is important to account for both because in a cryogenic fluid, the thermal effects of cavitation are substantial, and the cavitation characteristics are altered by coupling between the variable fluid properties and the phase changes involved in cavitation. The present model accounts for both thermal effects and variability of properties by incorporating a generalized representation of the properties of cryogenic fluids into a generalized compressible-fluid formulation for a cavitating pump. The model has been extensively validated for liquid nitrogen and liquid hydrogen. Using the available data on the properties of these fluids, the model has been shown to predict accurate temperature-depression values.

  16. Numerical investigation of cavitation flow in journal bearing geometry

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Schmidt, M.; Stücke, P.

    2013-04-01

    The appearance of cavitation is still a problem in technical and industrial applications. Especially in automotive internal combustion engines, hydrodynamic journal bearings are used due to their favourable wearing quality and operating characteristics. Cavitation flows inside the bearings reduces the load capacity and leads to a risk of material damages. Therefore an understanding of the complex flow phenomena inside the bearing is necessary for the design development of hydrodynamic journal bearings. Experimental investigations in the fluid domain of the journal bearing are difficult to realize founded by the small dimensions of the bearing. In the recent years more and more the advantages of the computational fluid dynamics (CFD) are used to investigate the detail of the cavitation flows. The analysis in the paper is carried out in a two-step approach. At first an experimental investigation of journal bearing including cavitation is selected from the literature. The complex numerical model validated with the experimental measured data. In a second step, typically design parameters, such as a groove and feed hole, which are necessary to distribute the oil supply across the gap were added into the model. The paper reflects on the influence of the used design parameters and the variation of the additional supply flow rate through the feed hole regarding to cavitation effects in the bearing. Detailed pictures of the three-dimensional flow structures and the cavitation regions inside the flow film of the bearing are presented.

  17. Application of computational fluid dynamics on cavitation in journal bearings

    NASA Astrophysics Data System (ADS)

    Riedel, Marco; Schmidt, Marcus; Reinke, Peter; Nobis, Matthias; Redlich, Marcel

    2014-03-01

    Journal bearings are applied in internal combustion engines due to their favourable wearing quality and operating characteristics. Under certain operating conditions damage of the journal bearing can occur caused by cavitation. The cavitation reduces the load capacity and leads to material erosion. Experimental investigations of cavitating flows in dimension of real journal bearing are difficult to realize or almost impossible caused by the small gap and transient flow conditions. Therefore numerical simulation is a very helpful engineering tool to research the cavitation behaviour. The CFD-Code OpenFOAM is used to analyse the flow field inside the bearing. The numerical cavitation model based on a bubble dynamic approach and requires necessary initial parameter for the calculation, such as nuclei bubble diameter, the number of nuclei and two empirical constants. The first part of this paper shows the influence of these parameters on the solution. For the adjustment of the parameters an experiment of Jakobsson et.al. [1] was used to validate the numerical flow model. The parameters have been varied according to the method Design of Experiments (DoE). With a defined model equation the parameters determined, to identify the parameter for CFD-calculations in comparison to the experimental values. The second part of the paper presents investigations on different geometrical changes in the bearing geometry. The effect of these geometrical changes on cavitation was compared with experimental results from Wollfarth [2] and Garner et.al. [3].

  18. Effects of physical properties on thermo-fluids cavitating flows

    NASA Astrophysics Data System (ADS)

    Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.

    2015-12-01

    The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.

  19. Researches upon the cavitation erosion behaviour of austenite steels

    NASA Astrophysics Data System (ADS)

    Bordeasu, I.; Popoviciu, M. O.; Mitelea, I.; Salcianu, L. C.; Bordeasu, D.; Duma, S. T.; Iosif, A.

    2016-02-01

    Paper analyzes the cavitation erosion behavior of two stainless steels with 100% austenitic structure but differing by the chemical composition and the values of mechanical properties. The research is based on the MDE(t) and MDER(t) characteristic curves. We studied supplementary the aspect of the eroded areas by other to different means: observations with performing optical microscopes and roughness measurements. The tests were done in the T2 vibratory facility in the Cavitation Laboratory of the Timisoara Polytechnic University. The principal purpose of the study is the identification of the elements influencing significantly the cavitation erosion resistance. It was established the effect of the principal chemical components (determining the proportion of the structural components in conformity the Schaffler diagram) upon the cavitation erosion resistance. The results of the researches present the influence of the proportion of unstable austenite upon cavitation erosion resistance. The stainless steel with the great proportion of unstable austenite has the best behavior. The obtained conclusion are important for the metallurgists which realizes the stainless steels used for manufacturing the runners of hydraulic machineries (turbines and pumps) with increased resistance to cavitation attack.

  20. The perils of thresholding

    NASA Astrophysics Data System (ADS)

    Font-Clos, Francesc; Pruessner, Gunnar; Moloney, Nicholas R.; Deluca, Anna

    2015-04-01

    The thresholding of time series of activity or intensity is frequently used to define and differentiate events. This is either implicit, for example due to resolution limits, or explicit, in order to filter certain small scale physics from the supposed true asymptotic events. Thresholding the birth-death process, however, introduces a scaling region into the event size distribution, which is characterized by an exponent that is unrelated to the actual asymptote and is rather an artefact of thresholding. As a result, numerical fits of simulation data produce a range of exponents, with the true asymptote visible only in the tail of the distribution. This tail is increasingly difficult to sample as the threshold is increased. In the present case, the exponents and the spurious nature of the scaling region can be determined analytically, thus demonstrating the way in which thresholding conceals the true asymptote. The analysis also suggests a procedure for detecting the influence of the threshold by means of a data collapse involving the threshold-imposed scale.